WO2023033184A1 - Communication device and communication method - Google Patents

Communication device and communication method Download PDF

Info

Publication number
WO2023033184A1
WO2023033184A1 PCT/JP2022/033432 JP2022033432W WO2023033184A1 WO 2023033184 A1 WO2023033184 A1 WO 2023033184A1 JP 2022033432 W JP2022033432 W JP 2022033432W WO 2023033184 A1 WO2023033184 A1 WO 2023033184A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
communication device
retransmission
link
links
Prior art date
Application number
PCT/JP2022/033432
Other languages
French (fr)
Japanese (ja)
Inventor
拓広 佐藤
宏道 留場
淳 白川
良太 山田
秀夫 難波
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2023033184A1 publication Critical patent/WO2023033184A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • H04L45/243Multipath using M+N parallel active paths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/14Flow control between communication endpoints using intermediate storage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present invention relates to a communication device and communication method.
  • This application claims priority to Japanese Patent Application No. 2021-144568 filed in Japan on September 6, 2021, the content of which is incorporated herein.
  • IEEE The Institute of Electrical and Electronics Engineers Inc.
  • IEEE802.11 a wireless LAN standard
  • IEEE802.11be Standardization of IEEE802.11be, which realizes capacity enhancement, is underway.
  • FEC forward error correction
  • ARQ automatic repeat request
  • Packet errors during decoding are detected by Medium Access Control (MAC) on the receiving side and discarded without being stored in a buffer.
  • An acknowledgment (ACK) is conveyed to the sender if the packet is successfully decoded and a negative acknowledgment (NACK) if a packet error is detected.
  • Packet retransmission processing is performed by ARQ when a NACK is signaled to the sender or no ACK is signaled to the sender within a certain period of time.
  • hybrid ARQ HARQ
  • HARQ hybrid ARQ
  • HARQ the same packet is sent during retransmission, and the packets are combined on the receiving side to improve the signal-to-noise power ratio (SNR) of the received signal.
  • SNR signal-to-noise power ratio
  • Incremental redundancy (IR) combining which increases the error correction decoding capability of the receiving side by newly transmitting a signal), is being studied.
  • Radio frame aggregation is roughly classified into A-MSDU (Aggregated MAC Service Data Unit) and A-MPDU (Aggregated MAC Protocol Data Unit).
  • A-MSDU Aggregated MAC Service Data Unit
  • A-MPDU Aggregated MAC Protocol Data Unit
  • Aggregation of ACKs for example, block ACK (Block Acknowledgment: BA) that can implement reception completion notification for multiple MPDUs, multi STA block ACK (Multi STA Block ACK: BA) that can implement reception completion notification for multiple users M-BA).
  • BA Block Acknowledgment
  • BA Multi STA Block ACK
  • Wi-Fi registered trademark
  • the frequency band (2.4 GHz band, 5 GHz band, 6 GHz band, etc.) to be used according to the use case. It is desirable to appropriately switch sub-channels included in
  • the conventional wireless LAN communication device in order to switch the frequency band used for communication, it was necessary to once disconnect the current frequency band and connect to another frequency band.
  • MLO multi-link operation
  • a communication device can maintain a plurality of connections with different radio resources to be used and settings related to communication. That is, by using MLO, the communication device can simultaneously maintain connections of different frequency bands, so that it is possible to change the frequency band for frame transmission/reception without performing reconnection operation.
  • IEEE802.11be standardization discusses a wireless communication method using a multi-link device (MLD) having two or more links.
  • MLD multi-link device
  • each link constituting a multilink may not be bundled and used at the same time, but may be used independently for frame transmission/reception. For example, by avoiding congested radio channels and selecting an empty link as appropriate for frame transmission, it is possible to reduce the delay and latency that occur during transmission, thereby realizing low-latency communication. be.
  • the characteristics of high-capacity communication and low-delay communication by these multilinks are that the quality of each link (less radio interference between wireless communication devices, high received signal strength, low frame reception error rate, etc.) is enhanced. The point is that the performance of the multilink is improved as much as possible.
  • IEEE802.11-20/0472r2 May. 2020 IEEE802.11-20/1060r1, October. 2020
  • Multi-link Management Entity the entity that manages multi-links (Multi-link Management Entity: MLME) monitors the load of all links (load) and implements load balance, but the existing mechanism does not allow the effect of HARQ in MLD. may not be obtained.
  • MLME Multi-link Management Entity
  • Non-Patent Document 1 a frame having the same Traffic ID (TID) as the frame so that the link does not shift to the Doze state after transmitting the last buffered PPDU frame of the link configuring the MLD. It proposes a mechanism that does not update the field indicating the presence or absence of buffered frames included in the frame until the transmission is completed.
  • Non-Patent Document 2 discusses sharing acknowledgments between all links by MLME.
  • Non-Patent Document 1 and Non-Patent Document 2 also propose an efficient packet combining method in MLD, such as a method of securing a retransmission destination link as an Awake State in advance for frame retransmission. Not yet.
  • the present invention has been made in view of such circumstances, and its object is to realize efficient packet combining in MLD in the IEEE802.11 standard, contributing to low-delay communication and improvement of received SNR.
  • Disclosed is a communication device and a communication method.
  • the communication device and communication method according to the present invention for solving the above problems are as follows.
  • a communication device that transmits frames using two or more links, wherein the communication device selects retransmission destination link candidates according to the load status of each link in the MAC layer.
  • the control unit generates the retransmission destination link candidate and the retransmission method as control information and transmits the retransmission method to the PHY layer, and the communication device includes a transmission unit that generates a frame in the PHY layer, When no acknowledgment for the frame is received, retransmission on a link other than the retransmission destination link candidate specified by the control information is not permitted, and the communication device transmits the frame on the retransmission destination link candidate according to the control information. and a signal demodulator for packet-combining and decoding the frame.
  • control unit does not include retransmission destination link candidates in the control information and sets a retransmission method when each of the links has the same load status.
  • control unit if it does not receive an acknowledgment for the frame on each of the links or does not receive it within a predetermined time, it updates the retransmission destination link candidate;
  • the communication device according to (1) above.
  • control unit When the control unit does not receive an acknowledgment for the frame in succession for a plurality of times in one link in each of the links, or when the frame is not received within a predetermined time, the control unit The communication device according to (1) above, wherein a link with the next lowest load status to the link is included in the candidates for the retransmission destination link.
  • control unit The communication apparatus according to (1) above, wherein control data for setting a NAV for the another link is added to the control information for a predetermined period of time until an acknowledgment for a frame containing the same identifier is received.
  • a signal demodulator that receives a frame using two or more links, assigns retransmission of the frame to the link specified by the control information, and demodulates and decodes the frame;
  • the communication device according to (1) above, wherein packet synthesis of the frame is performed when is set.
  • a communication method for transmitting frames using two or more links comprising a step of selecting retransmission destination link candidates according to the load status of each of the links in the MAC layer. and generating the retransmission destination link candidate and the retransmission method as control information and transmitting it to the PHY layer, the communication method comprising the step of generating a frame in the PHY layer, and receiving an acknowledgment for the frame if not, retransmission is not permitted on any other than the retransmission destination link candidate specified by the control information, and the communication method comprises the step of: receiving the frame on the retransmission destination link candidate according to the control information; and packetizing and decoding frames.
  • the present invention realizes efficient packet combining in MLD according to the IEEE802.11 standard, and improves low-delay communication by improving reception SNR, speeding up user throughput, and features of multilink communication. It contributes to large-capacity communication and low-delay communication.
  • FIG. 1 is a schematic diagram showing an example of division of radio resources according to one aspect of the present invention
  • FIG. FIG. 4 is a diagram showing an example of a frame structure according to one aspect of the present invention
  • FIG. 4 is a diagram showing an example of a frame structure according to one aspect of the present invention
  • FIG. 3 is a diagram illustrating an example of communication according to one aspect of the present invention
  • 1 is a diagram showing one configuration example of a communication system according to one aspect of the present invention
  • FIG. FIG. 3 illustrates frame transmission and reception according to one aspect of the present invention
  • 1 is a block diagram showing one configuration example of a wireless communication device according to one aspect of the present invention
  • FIG. 1 is a block diagram showing one configuration example of a wireless communication device according to one aspect of the present invention
  • FIG. 1 is a block diagram showing one configuration example of a wireless communication device according to one aspect of the present invention
  • FIG. 1 is a block diagram showing one configuration example of a wireless communication device according to one aspect of the present invention
  • FIG. 1 is a block diagram showing one configuration example of a wireless communication device according to one aspect of the present invention
  • FIG. 1 is a schematic diagram illustrating an example of an encoding scheme according to one aspect of the present invention
  • FIG. 1 is a schematic diagram showing an example of a modulation and coding scheme according to one aspect of the present invention
  • FIG. 4 is a schematic diagram illustrating an example of block lengths for LDPC encoding processing according to an aspect of the present invention
  • 1 is a schematic diagram showing an example of a frame retransmission method according to an aspect of the present invention
  • FIG. 1 is a schematic diagram showing an example of a frame retransmission method according to an aspect of the present invention
  • FIG. 1 is a schematic diagram showing an example of a frame retransmission method according to an aspect of the present invention
  • a communication system in this embodiment is called a base station device or an access point device (Access point: AP), and includes a plurality of terminal devices or station devices (Station: STA).
  • a communication system or network composed of access point devices and station devices is called a basic service set (BSS: Basic service set, management range, cell).
  • BSS Basic service set, management range, cell.
  • the station device according to this embodiment can have the function of an access point device.
  • the access point device according to this embodiment can have the functions of the station device. Therefore, hereinafter, when simply referring to a communication device, the communication device can indicate both a station device and an access point device.
  • This embodiment targets the infrastructure mode in which a base station apparatus communicates with a plurality of terminal apparatuses, but the method of this embodiment can also be implemented in an ad-hoc mode in which terminal apparatuses directly communicate with each other.
  • the terminal device forms a BSS on behalf of the base station device.
  • a BSS in ad-hoc mode is also called an IBSS (Independent Basic Service Set).
  • IBSS Independent Basic Service Set
  • a terminal device forming an IBSS in ad-hoc mode can also be regarded as a base station device.
  • the method of the present embodiment can also be implemented in WiFi Direct (registered trademark) in which terminal devices directly communicate with each other.
  • WiFi In Direct a terminal device forms a group instead of a base station device.
  • a terminal device of a group owner that forms a group in WiFi Direct can also be regarded as a base station device.
  • each device can transmit transmission frames of multiple frame types with a common frame format.
  • a transmission frame is defined in a physical (PHY) layer, a medium access control (MAC) layer, and a logical link control (LLC) layer, respectively.
  • the physical layer is also called the PHY layer
  • the MAC layer is also called the MAC layer.
  • a PHY layer transmission frame is called a physical protocol data unit (PPDU: PHY protocol data unit, physical layer frame).
  • PPDU consists of a physical layer header (PHY header) that includes header information for performing signal processing in the physical layer, and a physical service data unit (PSDU: PHY service data unit) that is a data unit processed in the physical layer.
  • PHY header physical layer header
  • PSDU physical service data unit
  • MAC layer frame physical layer frame
  • PSDU can be composed of aggregated MPDU (A-MPDU: Aggregated MPDU) in which multiple MAC protocol data units (MPDU: MAC protocol data units) that are retransmission units in the wireless section are aggregated.
  • MPDU aggregated MPDU
  • the PHY header includes a short training field (STF) used for signal detection and synchronization, a long training field (LTF) used to acquire channel information for data demodulation, etc. and a control signal such as a signal (Signal: SIG) containing control information for data demodulation.
  • STF can be legacy STF (L-STF: Legacy-STF), high-throughput STF (HT-STF: High throughput-STF), or ultra-high-throughput STF (VHT-STF: Very high throughput-STF), high efficiency STF (HE-STF), ultra-high throughput STF (EHT-STF: Extremely High Throughput-STF), etc.
  • LTF and SIG are also L- It is classified into LTF, HT-LTF, VHT-LTF, HE-LTF, L-SIG, HT-SIG, VHT-SIG, HE-SIG and EHT-SIG.
  • VHT-SIG is further classified into VHT-SIG-A1, VHT-SIG-A2 and VHT-SIG-B.
  • HE-SIG is classified into HE-SIG-A1 to 4 and HE-SIG-B.
  • U-SIG Universal SIGNAL
  • the PHY header can include information identifying the BSS that is the transmission source of the transmission frame (hereinafter also referred to as BSS identification information).
  • the information identifying the BSS can be, for example, the SSID (Service Set Identifier) of the BSS or the MAC address of the base station device of the BSS.
  • the information that identifies the BSS can be a value unique to the BSS (for example, BSS Color, etc.) other than the SSID and MAC address.
  • the PPDU is modulated according to the corresponding standard. For example, according to the IEEE 802.11n standard, it is modulated into an Orthogonal Frequency Division Multiplexing (OFDM) signal.
  • OFDM Orthogonal Frequency Division Multiplexing
  • MPDU is a MAC layer header that contains header information etc. for signal processing in the MAC layer, and a MAC service data unit (MSDU: MAC service data unit) that is a data unit processed in the MAC layer or It consists of a frame body and a frame check sequence (FCS) that checks if there are any errors in the frame. Also, multiple MSDUs can be aggregated as an aggregated MSDU (A-MSDU: Aggregated MSDU).
  • MSDU MAC service data unit
  • FCS frame check sequence
  • the frame type of the transmission frame of the MAC layer is roughly classified into three types: a management frame that manages the connection state between devices, a control frame that manages the communication state between devices, and a data frame that contains actual transmission data. Each is further classified into a plurality of types of subframe types.
  • the control frame includes a reception completion notification (ACK: Acknowledge) frame, a transmission request (RTS: Request to send) frame, a reception preparation completion (CTS: Clear to send) frame, and the like.
  • Management frames include Beacon frames, Probe request frames, Probe response frames, Authentication frames, Association request frames, Association response frames, etc. included.
  • the data frame includes a data (Data) frame, a polling (CF-poll) frame, and the like. Each device can recognize the frame type and subframe type of the received frame by reading the contents of the frame control field included in the MAC header.
  • the ACK may include a Block ACK.
  • Block ACK can implement reception completion notification for multiple MPDUs.
  • the ACK may include a Multi STA Block ACK containing reception completion notifications for a plurality of communication devices.
  • a beacon frame contains a field describing the beacon interval and the SSID.
  • the base station apparatus can periodically broadcast a beacon frame within the BSS, and the terminal apparatus can recognize base station apparatuses around the terminal apparatus by receiving the beacon frame. It is called passive scanning that a terminal device recognizes a base station device based on a beacon frame broadcast from the base station device. On the other hand, searching for a base station apparatus by broadcasting a probe request frame in the BSS by a terminal apparatus is called active scanning.
  • the base station apparatus can transmit a probe response frame as a response to the probe request frame, and the description content of the probe response frame is equivalent to that of the beacon frame.
  • connection processing is classified into an authentication procedure and an association procedure.
  • a terminal device transmits an authentication frame (authentication request) to a base station device that desires connection.
  • the base station apparatus Upon receiving the authentication frame, the base station apparatus transmits to the terminal apparatus an authentication frame (authentication response) including a status code indicating whether or not the terminal apparatus can be authenticated.
  • the terminal device can determine whether or not the terminal device is permitted to be authenticated by the base station device. Note that the base station apparatus and the terminal apparatus can exchange authentication frames multiple times.
  • the terminal device transmits a connection request frame to perform the connection procedure to the base station device.
  • the base station apparatus determines whether or not to permit the connection of the terminal apparatus, and transmits a connection response frame to notify that effect.
  • the connection response frame contains an association identifier (AID) for identifying the terminal device, in addition to a status code indicating whether connection processing is possible.
  • the base station apparatus can manage a plurality of terminal apparatuses by setting different AIDs for the terminal apparatuses that have issued connection permission.
  • the base station device and the terminal device After the connection process is performed, the base station device and the terminal device perform actual data transmission.
  • a distributed control mechanism DCF: Distributed Coordination Function
  • PCF centralized control mechanism
  • EDCA enhanced distributed channel access
  • HCF Hybrid coordination function
  • base station equipment and terminal equipment perform carrier sense (CS) to check the usage status of wireless channels around their own equipment prior to communication. For example, when a base station apparatus, which is a transmitting station, receives a signal higher than a predetermined clear channel evaluation level (CCA level: Clear channel assessment level) on the radio channel, the transmission of the transmission frame on the radio channel is performed. put off.
  • CCA level Clear channel evaluation level
  • a state in which a signal of the CCA level or higher is detected in the radio channel is called a busy state, and a state in which a signal of the CCA level or higher is not detected is called an idle state.
  • CCA level is also called a carrier sense level (CS level) or a CCA threshold (CCAT).
  • the base station device performs carrier sense for the frame interval (IFS: Inter frame space) according to the type of transmission frame to be transmitted, and determines whether the radio channel is busy or idle.
  • the period during which the base station apparatus performs carrier sensing differs depending on the frame type and subframe type of the transmission frame to be transmitted by the base station apparatus.
  • IFS Inter frame space
  • the period during which the base station apparatus performs carrier sensing differs depending on the frame type and subframe type of the transmission frame to be transmitted by the base station apparatus.
  • multiple IFSs with different durations are defined.
  • PCF IFS polling frame interval
  • DCF IFS distributed control frame interval
  • the base station apparatus uses DIFS.
  • the base station device After waiting for DIFS, the base station device further waits for a random backoff time to prevent frame collision.
  • a random backoff time called contention window (CW) is used.
  • CSMA/CA assumes that a transmission frame transmitted by a certain transmitting station is received by a receiving station without interference from other transmitting stations. Therefore, if the transmitting stations transmit transmission frames at the same timing, the frames collide with each other and the receiving stations cannot receive the frames correctly. Therefore, each transmitting station waits for a randomly set time before starting transmission, thereby avoiding frame collision.
  • the base station apparatus determines that the radio channel is in an idle state by carrier sense, it starts counting down the CW and acquires the transmission right only when the CW becomes 0, and can transmit the transmission frame to the terminal apparatus. If the base station apparatus determines that the radio channel is busy by carrier sense during the CW countdown, the CW countdown is stopped. Then, when the radio channel becomes idle, following the previous IFS, the base station apparatus resumes counting down remaining CWs.
  • a terminal device which is a receiving station, receives the transmission frame, reads the PHY header of the transmission frame, and demodulates the received transmission frame. By reading the MAC header of the demodulated signal, the terminal device can recognize whether or not the transmission frame is addressed to itself. In addition, the terminal device may determine the destination of the transmission frame based on the information described in the PHY header (for example, the group identification number (GID: Group identifier, Group ID) described in VHT-SIG-A). It is possible.
  • GID Group identifier, Group ID
  • the terminal device When the terminal device determines that the received transmission frame is addressed to itself and demodulates the transmission frame without error, the terminal device transmits an ACK frame indicating that the frame has been correctly received to the base station device, which is the transmitting station. Must.
  • the ACK frame is one of the highest priority transmission frames that is transmitted only waiting for the SIFS period (no random backoff time).
  • the base station apparatus terminates a series of communications upon receiving the ACK frame transmitted from the terminal apparatus.
  • the terminal device cannot receive the frame correctly, the terminal device does not transmit ACK. Therefore, if the base station apparatus does not receive an ACK frame from the receiving station for a certain period of time (SIFS+ACK frame length) after frame transmission, it assumes that the communication has failed and terminates the communication.
  • the end of one communication (also called a burst) in the IEEE 802.11 system is limited to special cases such as the transmission of a notification signal such as a beacon frame, or the use of fragmentation to divide transmission data. Except for this, the determination is always based on whether or not an ACK frame has been received.
  • the network allocation vector (NAV: Network allocation vector).
  • NAV Network allocation vector
  • the terminal device does not attempt communication during the period set in NAV.
  • the terminal device performs the same operation as when the radio channel is determined to be busy by the physical CS for the period set in the NAV. Therefore, communication control by the NAV is also called virtual carrier sense (virtual CS).
  • virtual CS virtual carrier sense
  • NAV is a request to send (RTS) frame introduced to solve the hidden terminal problem, and a clear reception (CTS) frame. to send) frame.
  • RTS request to send
  • CTS clear reception
  • PCF point coordinator
  • the base station apparatus becomes a PC and acquires the transmission right of the terminal apparatus within the BSS.
  • the communication period by PCF includes a contention-free period (CFP: Contention free period) and a contention period (CP: Contention period).
  • CFP contention-free period
  • CP contention period
  • a base station apparatus which is a PC, notifies a beacon frame in which a CFP duration (CFP Max duration) and the like are described within the BSS prior to PCF communication.
  • CFP Max duration CFP duration
  • PIFS is used to transmit the beacon frame notified at the start of PCF transmission, and is transmitted without waiting for the CW.
  • a terminal device that receives the beacon frame sets the period of the CFP described in the beacon frame to NAV.
  • the terminal equipment signals acquisition of the transmission right transmitted from the PC.
  • the right to transmit can only be obtained when a signal (eg a data frame containing a CF-poll) is received. Note that during the CFP period, packet collisions do not occur within the same BSS, so each terminal device does not take the random backoff time used in DCF.
  • the wireless medium can be divided into multiple resource units (RU).
  • FIG. 1 is a schematic diagram showing an example of a division state of a wireless medium.
  • the wireless communication device can divide frequency resources (subcarriers), which are wireless media, into nine RUs.
  • the wireless communication device can divide subcarriers, which are wireless media, into five RUs.
  • the example of resource division shown in FIG. 1 is only an example, and for example, a plurality of RUs can be configured with different numbers of subcarriers.
  • the wireless medium divided as RUs can include spatial resources as well as frequency resources.
  • a wireless communication device can simultaneously transmit frames to a plurality of terminal devices (for example, a plurality of STAs) by arranging frames addressed to different terminal devices in each RU.
  • the AP can write information (Resource allocation information) indicating the division state of the wireless medium in the PHY header of the frame transmitted by the AP as common control information.
  • the AP can describe information (resource unit assignment information) indicating the RU in which the frame addressed to each STA is allocated as unique control information in the PHY header of the frame transmitted by the AP itself.
  • a plurality of terminal devices can transmit frames simultaneously by arranging frames in assigned RUs and transmitting the frames.
  • a plurality of STAs can transmit a frame after waiting for a predetermined period after receiving a frame (Trigger frame: TF) containing trigger information transmitted from the AP.
  • TF Trigger frame
  • Each STA can grasp the RU assigned to itself based on the information described in the TF. Also, each STA can acquire RUs through random access based on the TF.
  • the AP can allocate multiple RUs to one STA at the same time.
  • the plurality of RUs can be composed of continuous subcarriers or discontinuous subcarriers.
  • the AP can transmit one frame using multiple RUs assigned to one STA, or can transmit multiple frames by assigning them to different RUs.
  • At least one of the plurality of frames can be a frame containing common control information for a plurality of terminal devices transmitting resource allocation information.
  • One STA can be assigned multiple RUs by the AP.
  • a STA can transmit one frame using multiple assigned RUs.
  • the STA can use the assigned multiple RUs to assign multiple frames to different RUs and transmit them.
  • the plurality of frames can be frames of different frame types.
  • An AP can allocate multiple AIDs to one STA.
  • the AP can assign RUs to multiple AIDs assigned to one STA.
  • the AP can transmit different frames to multiple AIDs assigned to one STA using the assigned RUs.
  • the different frames can be frames of different frame types.
  • a single STA can be assigned multiple AIDs by the AP.
  • One STA can be assigned RUs for each of the assigned AIDs.
  • One STA recognizes all RUs assigned to multiple AIDs assigned to itself as RUs assigned to itself, and uses the assigned multiple RUs to transmit one frame. can do.
  • one STA can transmit multiple frames using the multiple assigned RUs.
  • information indicating the AID associated with each assigned RU can be described in the plurality of frames and transmitted.
  • the AP can transmit different frames to multiple AIDs assigned to one STA using the assigned RUs.
  • the different frames can be frames of different frame types.
  • base station devices and terminal devices are also collectively referred to as wireless communication devices or communication devices.
  • Information exchanged when one wireless communication device communicates with another wireless communication device is also called data. That is, a wireless communication device includes a base station device and a terminal device.
  • a wireless communication device has either or both of a function to transmit and a function to receive PPDU.
  • FIG. 2 is a diagram showing an example of the configuration of a PPDU transmitted by a wireless communication device.
  • a PPDU that supports the IEEE802.11a/b/g standard has a configuration that includes L-STF, L-LTF, L-SIG and Data frames (MAC frames, MAC frames, payloads, data parts, data, information bits, etc.). be.
  • a PPDU corresponding to the IEEE 802.11n standard has a configuration including L-STF, L-LTF, L-SIG, HT-SIG, HT-STF, HT-LTF and Data frames.
  • PPDU corresponding to the IEEE802.11ac standard includes part or all of L-STF, L-LTF, L-SIG, VHT-SIG-A, VHT-STF, VHT-LTF, VHT-SIG-B and MAC frames. configuration.
  • PPDUs in the IEEE 802.11ax standard are L-STF, L-LTF, L-SIG, RL-SIG with L-SIG temporally repeated, HE-SIG-A, HE-STF, HE-LTF, HE- This configuration includes part or all of SIG-B and Data frames.
  • the PPDU considered in the IEEE802.11be standard is L-STF, L-LTF, L-SIG, RL-SIG, U-SIG, EHT-SIG, EHT-STF, EHT-LTF and part of Data frame or It is an all-inclusive configuration.
  • L-STF, L-LTF and L-SIG surrounded by dotted lines in FIG. collectively referred to as the L-header).
  • a wireless communication device compatible with the IEEE 802.11a/b/g standard can properly receive an L-header in a PPDU compatible with the IEEE 802.11n/ac standard.
  • a wireless communication device conforming to the IEEE802.11a/b/g standard can receive a PPDU conforming to the IEEE802.11n/ac standard as a PPDU conforming to the IEEE802.11a/b/g standard.
  • the wireless communication device compatible with the IEEE802.11a/b/g standard cannot demodulate the PPDU compatible with the IEEE802.11n/ac standard following the L-header, the transmission address (TA: Transmitter Address) , receiver address (RA), and Duration/ID field used for setting NAV cannot be demodulated.
  • TA Transmitter Address
  • RA receiver address
  • Duration/ID field used for setting NAV cannot be demodulated.
  • IEEE 802.11 inserts Duration information into L-SIG as a method for a wireless communication device compatible with IEEE 802.11a/b/g standards to appropriately set NAV (or perform reception operation for a predetermined period). stipulates the method.
  • Information about the transmission rate in L-SIG (RATE field, L-RATE field, L-RATE, L_DATARATE, L_DATARATE field), information about the transmission period (LENGTH field, L-LENGTH field, L-LENGTH) is IEEE802.11a
  • a wireless communication device supporting the /b/g standard is used to properly set the NAV.
  • FIG. 3 is a diagram showing an example of how Duration information is inserted into L-SIG.
  • FIG. 3 shows a PPDU configuration corresponding to the IEEE802.11ac standard as an example, but the PPDU configuration is not limited to this.
  • a PPDU configuration compatible with the IEEE802.11n standard and a PPDU configuration compatible with the IEEE802.11ax standard may be used.
  • TXTIME comprises information on the length of the PPDU
  • aPreambleLength comprises information on the length of the preamble (L-STF+L-LTF)
  • aPLCPHeaderLength comprises information on the length of the PLCP header (L-SIG).
  • L_LENGTH is Signal Extension, which is a virtual duration set for compatibility with the IEEE 802.11 standard; Nops related to L_RATE; It is calculated based on aPLCPServiceLength indicating the number of bits included in the PLCP Service field and aPLCPConvolutionalTailLength indicating the number of tail bits of the convolutional code.
  • the wireless communication device can calculate L_LENGTH and insert it into L-SIG. Also, the wireless communication device can calculate the L-SIG Duration.
  • L-SIG Duration indicates information on the total duration of the PPDU including L_LENGTH and the duration of ACK and SIFS expected to be transmitted from the destination wireless communication device as a response.
  • FIG. 4 is a diagram showing an example of L-SIG Duration in L-SIG TXOP Protection.
  • DATA frame, payload, data, etc.
  • BA is Block ACK or ACK.
  • the PPDU includes L-STF, L-LTF, L-SIG, and may include any or more of DATA, BA, RTS, or CTS.
  • MAC Duration is the period indicated by the value of Duration/ID field.
  • the Initiator can transmit a CF_End frame to notify the end of the L-SIG TXOP Protection period.
  • the wireless communication device that transmits the PPDU should include information for identifying the BSS (BSS color, BSS identification information, value unique to the BSS) in the PPDU. It is preferable to insert, and it is possible to describe information indicating the BSS color in HE-SIG-A.
  • the wireless communication device can transmit L-SIG multiple times (L-SIG Repetition).
  • L-SIG Repetition For example, the radio communication apparatus on the receiving side receives the L-SIG transmitted multiple times using MRC (Maximum Ratio Combining), thereby improving the demodulation accuracy of the L-SIG.
  • MRC Maximum Ratio Combining
  • the wireless communication device can interpret that the PPDU including the L-SIG is a PPDU conforming to the IEEE802.11ax standard.
  • the wireless communication device shall perform the reception operation of a part of the PPDU other than the PPDU (for example, the preamble, L-STF, L-LTF, PLCP header, etc. specified by IEEE 802.11) even during the reception operation of the PPDU. (also called double receive operation).
  • a wireless communication device detects part of a PPDU other than the relevant PPDU during a PPDU reception operation, the wireless communication device updates part or all of the information on the destination address, the source address, the PPDU, or the DATA period. can be done.
  • ACK and BA can also be called responses (response frames). Also, probe responses, authentication responses, and connection responses can be referred to as responses.
  • FIG. 5 is a diagram showing an example of a wireless communication system according to this embodiment.
  • the radio communication system 3-1 includes a radio communication device 1-1 and radio communication devices 2-1 to 2-3.
  • the wireless communication device 1-1 is also called the base station device 1-1, and the wireless communication devices 2-1 to 2-3 are also called terminal devices 2-1 to 2-3.
  • the wireless communication devices 2-1 to 2-3 and the terminal devices 2-1 to 2-3 are also referred to as a wireless communication device 2A and a terminal device 2A as devices connected to the wireless communication device 1-1.
  • the wireless communication device 1-1 and the wireless communication device 2A are wirelessly connected and are in a state of being able to transmit and receive PPDUs to and from each other.
  • the radio communication system may include a radio communication system 3-2 in addition to the radio communication system 3-1.
  • the radio communication system 3-2 includes a radio communication device 1-2 and radio communication devices 2-4 to 2-6.
  • the wireless communication device 1-2 is also called the base station device 1-2, and the wireless communication devices 2-4 to 2-6 are also called terminal devices 2-4 to 2-6.
  • the wireless communication devices 2-4 to 2-6 and the terminal devices 2-4 to 2-6 are also referred to as a wireless communication device 2B and a terminal device 2B as devices connected to the wireless communication device 1-2.
  • the radio communication system 3-1 and the radio communication system 3-2 form different BSSs, this does not necessarily mean that ESSs (Extended Service Sets) are different.
  • ESS indicates a service set forming a LAN (Local Area Network). That is, wireless communication devices belonging to the same ESS can be regarded as belonging to the same network from higher layers. Also, the BSSs are combined via a DS (Distribution System) to form an ESS.
  • Each of the radio communication systems 3-1 and 3-2 can further include a plurality of radio communication devices.
  • the signal transmitted by the radio communication device 2A reaches the radio communication devices 1-1 and 2B, but does not reach the radio communication device 1-2. do. That is, when the radio communication device 2A transmits a signal using a certain channel, the radio communication device 1-1 and the radio communication device 2B determine that the channel is busy, while the radio communication device 1-2 The channel is determined to be idle. It is also assumed that the signal transmitted by the radio communication device 2B reaches the radio transmission device 1-2 and the radio communication device 2A, but does not reach the radio communication device 1-1. That is, when radio communication device 2B transmits a signal using a certain channel, radio communication device 1-2 and radio communication device 2A determine that the channel is busy, while radio communication device 1-1 The channel is determined to be idle.
  • a MLD Multi-link Device
  • An access point device and a station device of this embodiment, which will be described later, are MLDs that support multilink communication.
  • the radio communication devices 1-1, 1-2, 2A, and 2B described above are described as being MLDs, but in actual operation, even if all the radio communication devices in the radio communication system do not support multilink communication, good.
  • the wireless communication device 1-1 base station device 1-1) transmits and the wireless communication device 2-1 (terminal device 2-1) receives.
  • the wireless communication device 2-1 terminal device 2-1
  • the wireless communication device 1-1 base station device 1-1) receives.
  • the device configurations of the wireless communication device 1-1 and the wireless communication device 2-1 are the same as the device configuration examples shown in FIGS. 8 and 9, which will be described later.
  • FIG. 6 shows an example of the overview of the multilink setup of this embodiment.
  • an MLD wireless communication device 1-1 and an MLD wireless communication device 2-1 are used as examples of wireless communication devices compatible with MLD.
  • the MLD radio communication device 1-1 implements procedures for establishing a multilink (a multilink establishment request 10-1 and a multilink establishment response 10-2) to establish a multilink and maintain the multilink. be able to.
  • maintaining multilink means that frames can be transmitted and received based on a predetermined setting for multilink.
  • the MLD radio communication device 1-1 maintains the multilink, and in addition to the procedure for changing the multilink setting (multilink change request 10-3, multilink change response 10-4), It is also possible to carry out a procedure for canceling the multilink using the multilink change request 10-3 and the multilink change response 10-4, thereby canceling the multilink.
  • the MLD wireless communication device 2-1 in FIG. 6 is also called an initiator (multilink initiator), and transmits a multilink establishment request 10-1 to the MLD wireless communication device 1-1.
  • the multilink initiator may be the MLD wireless communication device 1-1 instead of the MLD wireless communication device 2-1.
  • the multilink establishment request 10-1 may include control information such as multilink capability information (Capability information) and multilink operation mode information of its own wireless communication device.
  • the multilink measurement information is the radio signal quality of the frequency band (or channel or subchannel) that can be used by the own radio communication device, and may be included in the multilink establishment request 10-1. and may be reported to the MLD wireless communication device 1-1 using another frame.
  • the radio signal quality is, for example, received power level, SNR (Signal to Noise Ratio), etc., but is not limited to these. Just do it.
  • the object of measurement of the received power level and SNR may be a broadcast frame (announcement frame) such as a beacon transmitted by each sub access point device constituting the MLD wireless communication device 2-1. Since the broadcast frame is broadcast to the wireless communication devices 2A connected to the MLD wireless communication device 1-1, each wireless communication device 2A can measure the wireless signal quality of the same frame, and can check the reception status of each wireless communication device 2A. A relative comparison may be made. In addition to beacons, broadcast and multicast management frames and control frames may also be measured.
  • the measurement of the multilink measurement information is independently performed by the receiving section of the sub wireless communication device (substation device) and transmitted to the upper layer processing section 10001-1.
  • the measured value may be handled for each sub-radio communication device unit, or may be handled by integrating all sub-stations.
  • the number of links forming the MLD wireless communication device 1-1 and the MLD wireless communication device 2-1 is any number of two or more.
  • the carrier frequency of each link can be set to 6 GHz band, 60 GHz band, etc. in addition to 2.4 GHz band and 5 GHz band, but it may change according to the legal regulations of each country.
  • the multilink capability information includes channel information (frequency, bandwidth, etc.) usable by the own wireless communication device, STR (Simultaneously Transmission and Reception) availability, frame synchronization availability, multilink aggregation availability, multilink switching availability, multilink Information such as TXOP (max, min, etc.) may be included.
  • the multilink operation mode information includes channel information (frequency, bandwidth, etc.) of each link that configures the multilink, multilink TXOP limit, multilink aggregation, multilink switch, frame synchronization, frame asynchronization, STR, non-STR, Response frame method (response frame connection information, response frame timing information, etc.), response frame parameters (frame length threshold, response frame transmission time limit, etc.), etc. may be included.
  • the multilink establishment request may be sent independently and separately on each link, or may be sent on one of the links that make up the multilink.
  • the multilink measurement information may be sent independently and separately on each link, or may be sent on one of the links that make up the multilink (multilink in the multilink establishment request). not include link measurement information).
  • the link for transmitting and receiving frames for multilink management is also called a multilink management link (multilink management link).
  • an access point device 20000-1 (hereinafter also referred to as AP-MLD) supporting multilink and a station device 30000-1 (hereinafter also referred to as STA-MLD) supporting multilink
  • multilink consists of a plurality of sub-radio communication devices corresponding to the frequency bands (or channels or sub-channels) of each link that constitutes the .
  • the AP-MLD consists of three sub wireless communication devices, in this case three sub access point devices (20000-2, 200000-3, 20000-4).
  • the STA-MLD is composed of three sub-radio communication devices, in this case three sub-station devices (30000-2, 300000-3, 30000-4).
  • the sub-radio communication device (sub-access point device, sub-station device, etc.) may be composed of a part of the circuits in the radio communication device, and is called a sub-radio communication unit (sub-access point unit, sub-station unit). You may
  • a plurality of sub wireless communication devices are shown as logically separate blocks (squares) for explanation. Physically, it may consist of one wireless communication device. Alternatively, physically, separate sub-wireless communication devices may be configured, each sub-access point device transmitting and receiving necessary information via connections 9-1 and 9-2, and each substation device Necessary information is transmitted and received through connections 9-3 and 9-4.
  • the separate sub-radio communication devices are managed by the MLME.
  • the former case that is, physically composed of one wireless communication device 10-1
  • the configuration of the wireless communication device 10-1 will be described later with reference to FIGS. 8 and 9. .
  • the number of sub-access point devices included in one AP-MLD and the number of sub-station devices included in one STA-MLD change according to the performance installed in each wireless communication device. That is, the number of sub wireless communication devices (sub access point devices, sub station devices) possessed by each wireless communication device positioned within one wireless communication system does not have to match.
  • substation device 30000-2 establishes link 1 by connecting (associating) with subaccess point device 20000-2.
  • Substation device 30000-3 establishes link 2 by connecting (associating) with sub access point device 20000-3.
  • Substation device 30000-4 establishes link 3 by connecting (associating) with sub access point device 20000-4.
  • the number of links forming the multilink is three, but the number is not limited to this and may be any number of two or more.
  • the carrier frequency of link 1 is 2.4 GHz band
  • the carrier frequency of link 2 is 5 GHz band
  • the carrier frequency of link 3 is 6 GHz band.
  • each link can be arbitrarily set from 2.4 GHz band, 5 GHz band, 6 GHz band, 60 GHz band, and other frequency bands, channels, and sub-channels supported by the wireless communication system. , may vary according to the laws and regulations of each country.
  • FIG. 8 shows an example of the device configuration of radio communication devices 1-1, 1-2, 2A and 2B, AP-MLD and STA-MLD (hereinafter also collectively referred to as radio communication device 10-1). It is a diagram.
  • the wireless communication device 10-1 includes an upper layer section (upper layer processing step) 10001-1, an autonomous distributed control section (autonomous distributed control step) 10002-1, a transmitting section (transmitting step) 10003-1, and a receiving section. (Receiving step)
  • This configuration includes 10004-1 and antenna section 10005-1.
  • the upper layer section 10001-1 handles information handled within its own wireless communication device (information related to transmission frames, MIB (Management Information Base), etc.) and frames received from other wireless communication devices, a layer higher than the physical layer, For example, it performs information processing in the MAC layer and the LLC layer.
  • the multilink control section 10001a-1 may be included in the upper layer section 10001-1, or may be independent.
  • the upper layer section 10001-1 measures the load status of the links that have established multilinks in the MAC layer, and the multilink control section 10001a-1 selects retransmission destination link candidates according to the measurement results.
  • the retransmission destination link candidate includes information designating a retransmission destination link for the frame.
  • the multilink control section 10001a-1 generates the retransmission destination link candidate or control information including the retransmission method (ARQ/HARQ) for the retransmission destination link candidate, and transmits the control information to the PHY layer.
  • the multilink control unit 10001a-1 retransmits the frame by ARQ when no retransmission destination link candidate is set in the control information, and when HARQ is set in the control information, the Perform packet combining on candidate retransmission destination links.
  • the load status of each link includes the channel usage status in the MAC layer of the upper layer section 10001-1, the allocation status of frames for each RU (Resource allocation), and the BSS load information indicating the operation status of the AP. ), BSS average access delay, and BSS access category delay.
  • the load status of each link may be the measurement reported by all STAs or STA-MLDs establishing multi-links with the AP-MLD. Instead of the measured value, the link load status may be an identifier that reflects the load status in stages.
  • the upper layer section 10001-1 generates an MPDU or an A-MPDU frame by aggregating the MPDUs from the frame transmitted to the MAC layer.
  • the multilink control unit 10001a-1 implements TID to link mapping for allocating TIDs to the frame and each link. Note that each link can be assigned multiple TIDs.
  • the multilink control unit 10001a-1 transfers the frame to the PHY layer and generates a PPDU including the control information in the PHY header.
  • the PHY header contains information necessary for frame decoding, such as a PLCP preamble for synchronization detection and a PLCP header for determining the modulation and coding scheme (MCS) according to the received signal strength. shall be
  • the transmitting section 10003-1 in the AP-MLD transmits the frame on the link to which the same TID as the PPDU is assigned.
  • the upper layer section 10001-1 is connected to another network and can notify the autonomous distributed control section 10002-1 of information on frames and traffic.
  • Information about traffic may be, for example, control information included in a management frame such as a beacon, or may be measurement information reported by another wireless communication device addressed to the wireless communication device itself.
  • the destination is not limited (it may be addressed to its own device, may be addressed to another device, or may be broadcast or multicast), even if it is control information included in a management frame or control frame. good.
  • FIG. 9 is a diagram showing an example of the device configuration of the autonomous decentralized control unit 10002-1.
  • the control section 10002-1 includes a CCA section (CCA step) 10002a-1, a backoff section (backoff step) 10002b-1, and a transmission determination section (transmission determination step) 10002c-1.
  • CCA step CCA step
  • backoff step backoff step
  • transmission determination section transmission determination step
  • CCA section 10002a-1 receives one or both of information about received signal power received via radio resources and information about received signals (including information after decoding) notified from receiving section 10004-1. can be used to determine the state of the radio resource (including busy or idle determination).
  • the CCA section 10002a-1 can notify the back-off section 10002b-1 and the transmission decision section 10002c-1 of the radio resource state determination information.
  • the backoff unit 10002b-1 can perform backoff using the radio resource state determination information.
  • the backoff unit 10002b-1 generates a Contention Window (CW) and has a countdown function. For example, when the radio resource state determination information indicates idle, the CW countdown can be executed, and when the radio resource state determination information indicates busy, the CW countdown can be stopped.
  • the backoff unit 10002b-1 can notify the transmission determination unit 10002c-1 of the CW value.
  • the transmission decision unit 10002c-1 makes a transmission decision using either one or both of the radio resource status decision information and the CW value. For example, when the radio resource state determination information indicates idle and the value of CW is 0, the transmission determination information can be notified to the transmitting section 10003-1. Further, when the radio resource state determination information indicates idle, the transmission determination information can be notified to the transmitting section 10003-1.
  • the transmission section 10003-1 includes a physical layer frame generation section (physical layer frame generation step) 10003a-1 and a radio transmission section (radio transmission step) 10003b-1.
  • the physical layer frame generation unit 10003a-1 has a function of generating a physical layer frame (hereinafter also referred to as PPDU) based on transmission determination information notified from the transmission determination unit 10002c-1.
  • Physical layer frame generation section 10003a-1 performs error correction coding, modulation, precoding filter multiplication, and the like on a transmission frame sent from an upper layer.
  • the physical layer frame generator 10003a-1 notifies the radio transmitter 10003b-1 of the generated physical layer frame.
  • Control information is included in the frame generated by the physical layer frame generation unit 10003a-1.
  • the control information includes information indicating in which RU (here, RU includes both frequency resources and space resources) data addressed to each wireless communication device is allocated.
  • the frame generated by the physical layer frame generation unit 10003a-1 includes a trigger frame that instructs the wireless communication device, which is the destination terminal, to transmit the frame.
  • the trigger frame contains information indicating the RU used when the wireless communication device instructed to transmit the frame transmits the frame.
  • the radio transmission unit 10003b-1 converts the physical layer frame generated by the physical layer frame generation unit 10003a-1 into a radio frequency (RF) band signal to generate a radio frequency signal. Processing performed by the radio transmission unit 10003b-1 includes digital/analog conversion, filtering, frequency conversion from the baseband band to the RF band, and the like.
  • the receiving section 10004-1 includes a radio receiving section (radio receiving step) 10004a-1 and a signal demodulating section (signal demodulating step) 10004b-1.
  • Receiving section 10004-1 generates information about received signal power from the RF band signal received by antenna section 10005-1.
  • Receiving section 10004-1 can report information on received signal power and information on received signals to CCA section 10002a-1.
  • the receiving section 10004-1 includes a radio receiving section (radio receiving step) 10004a-1 and a signal demodulating section (signal demodulating step) 10004b-1.
  • Receiving section 10004-1 generates information about received signal power from the RF band signal received by antenna section 10005-1.
  • Receiving section 10004-1 can report information on received signal power and information on received signals to CCA section 10002a-1.
  • the radio receiving section 10004a-1 has a function of converting an RF band signal received by the antenna section 10005-1 into a baseband signal and generating a physical layer signal (for example, a physical layer frame).
  • the processing performed by the radio reception unit 10004a-1 includes frequency conversion processing from the RF band to the baseband band, filtering, and analog/digital conversion.
  • the signal demodulator 10004b-1 has a function of demodulating the physical layer signal generated by the radio receiver 10004a-1. Processing performed by the signal demodulator 10004b-1 includes channel equalization, demapping, error correction decoding, and the like.
  • the signal demodulator 10004b-1 can extract, for example, information contained in the physical layer header, information contained in the MAC header, and information contained in the transmission frame from the physical layer signal.
  • the signal demodulation section 10004b-1 can notify the extracted information to the upper layer section 10001-1.
  • the signal demodulator 10004b-1 can extract any or all of the information included in the physical layer header, the information included in the MAC header, and the information included in the transmission frame.
  • the antenna section 10005-1 has a function of transmitting a radio frequency signal generated by the radio transmission section 10003b-1 to radio space. Also, the antenna section 10005-1 has a function of receiving a radio frequency signal and transferring it to the radio receiving section 10004a-1.
  • the wireless communication device 10-1 writes information indicating the period during which the wireless communication device uses the wireless medium in the PHY header or MAC header of the frame to be transmitted, thereby notifying wireless communication devices around the wireless communication device 10-1 of the period.
  • NAV can be set only for a period of time.
  • wireless communication device 10-1 can write information indicating the duration in the Duration/ID field or Length field of the frame to be transmitted.
  • the NAV period set in the wireless communication devices around the own wireless communication device is called the TXOP period (or simply TXOP) acquired by the wireless communication device 10-1. Then, the wireless communication device 10-1 that has acquired the TXOP is called a TXOP holder.
  • the frame type of the frame that is transmitted by the wireless communication device 10-1 to acquire the TXOP is not limited to anything, and may be a control frame (for example, an RTS frame or a CTS-to-self frame) or a data frame. But it's okay.
  • the wireless communication device 10-1 which is a TXOP holder, can transmit frames to wireless communication devices other than its own wireless communication device during the TXOP. If the radio communication device 1-1 is a TXOP holder, the radio communication device 1-1 can transmit frames to the radio communication device 2A within the period of the TXOP. Further, the radio communication device 1-1 can instruct the radio communication device 2A to transmit a frame addressed to the radio communication device 1-1 within the TXOP period. Within the TXOP period, the radio communication device 1-1 can transmit to the radio communication device 2A a trigger frame containing information instructing frame transmission addressed to the radio communication device 1-1.
  • the wireless communication device 1-1 may secure TXOP for all communication bands (for example, operation bandwidth) in which frame transmission may be performed, or a communication band for actually transmitting frames (for example, transmission bandwidth). may be reserved for a specific communication band (Band).
  • the wireless communication device that instructs the frame transmission within the period of the TXOP acquired by the wireless communication device 1-1 is not necessarily limited to the wireless communication device connected to the own wireless communication device.
  • a wireless communication device is not connected to its own wireless communication device in order to transmit a management frame such as a Reassociation frame or a control frame such as an RTS/CTS frame to wireless communication devices around itself.
  • a wireless communication device can be instructed to transmit a frame.
  • TXOP in EDCA which is a data transmission method different from DCF
  • the IEEE802.11e standard is related to EDCA, and defines TXOP from the viewpoint of QoS (Quality of Service) assurance for various services such as video transmission and VoIP.
  • Services are broadly classified into four access categories: VO (VOice), VI (VIdeo), BE (BestEffort), and BK (Back ground).
  • VO VOice
  • VI VI
  • BE BestEffort
  • BK Back ground
  • the order of priority is VO, VI, BE, and BK.
  • Each access category has parameters for the minimum CW value CWmin, maximum value CWmax, AIFS (arbitration IFS), which is a type of IFS, and TXOP limit, which is the upper limit of transmission opportunities. Value is set.
  • CWmin, CWmax, and AIFS of the VO with the highest priority for voice transmission are set to relatively small values compared to other access categories, thereby giving priority to other access categories. Transmission becomes possible. For example, in VI where the amount of data to be transmitted is relatively large due to video transmission, setting a large TXOP limit makes it possible to secure a longer transmission opportunity than in other access categories. Thus, the values of the four parameters of each access category are adjusted for the purpose of guaranteeing QoS according to various services.
  • the signal demodulation section 10004b-1 of the transmission section can perform decoding processing and error detection on the received signal in the physical layer.
  • the decoding processing here includes decoding processing for the error correction code applied to the received signal.
  • the error detection includes error detection using an error detection code (for example, a cyclic redundancy check (CRC) code) assigned in advance to the received signal, or error correction code (for example, a low-density parity code) originally provided with an error detection function. Includes error detection by check code (Low Density Parity Check: LDPC).
  • a decoding process in the physical layer can be applied for each coded block.
  • the upper layer section 10001-1 transfers the decoding result of the physical layer in the signal demodulation section to the MAC layer.
  • the signal of the MAC layer is restored from the transferred decoding result of the physical layer.
  • error detection is performed, and it is determined whether or not the MAC layer signal transmitted by the station device that is the transmission source of the received frame has been correctly restored.
  • FIG. 10 is a diagram showing an example of error correction coding of the physical layer frame generator 10003a-1 according to this embodiment.
  • information bit (systematic bit) sequences are arranged in hatched areas, and redundant (parity) bit sequences are arranged in white areas.
  • Information bits and redundant bits are appropriately bit interleaved.
  • the physical layer frame generator 10003a-1 can read out the necessary number of bits from the allocated bit sequence as the start position determined according to the value of the redundancy version (RV). By adjusting the number of bits, it is possible to flexibly change the coding rate, that is, puncturing.
  • FIG. 10 shows a total of four RVs, RV options are not limited to specific values in the error correction coding according to this embodiment.
  • the error correction coding method according to the present embodiment is not limited to the example of FIG. 10, and any method may be used as long as the coding rate can be changed and decoding processing on the receiving side can be achieved.
  • a generator matrix is obtained from a low-density parity check matrix, and parity bits calculated from the matrix product of the generator matrix and information bits are obtained. Generate.
  • the parity bit is added to the information bit sequence to form a codeword. That is, the physical layer frame generating section 10003a-1 calculates a predetermined information bit length for error correction coding based on at least the size of the parity check matrix set by the coding rate of MCS.
  • An information bit sequence used for LDPC encoding is also called an LDCP information block, and a bit sequence obtained by LDPC-encoding an LDPC information block is also called an LDPC codeword block.
  • FIG. 11 shows an example of associations between MCS, modulation schemes, and coding rates.
  • the modulation scheme is QPSK and the coding rate is 1/2
  • the modulation scheme is 16QAM and the coding rate is 3/4.
  • FIG. 12 shows an example of the association between the coding rate, the LDPC information block length, and the LDPC codeword block length.
  • the LDPC information block length is obtained by multiplying the LDPC codeword block length by the coding rate.
  • candidates for (LDPC information block length, LDPC codeword block length) are (972, 1944), (648, 1296), and (324, 648).
  • the LDPC information block length and the LDPC codeword block length are values determined by the parity check matrix size, and may differ from the transmitted information block length and codeword block length.
  • FIGS. an example of a frame retransmission method during downlink communication is shown in FIGS. Note that acknowledgments corresponding to frames are omitted in both figures.
  • AP-MLD establishes multi-links with STA-MLD with three links and measures the load status of each link. For each link, the upper layer section 10001-1 assigns TID1 and TID3 to link 1, and TID3 to links 2 and 3.
  • FIG. Assume that the frames following PPDU14 and PPDU23 have already been buffered in link 1 and link 2, respectively, and that link 2 has not received an acknowledgment corresponding to PPDU 22 and a frame error has occurred.
  • PPDU 31 indicates the last frame buffered on link 3 .
  • FIG. 13 On the other hand, in FIG.
  • the multilink control unit 10001a-1 selects the link 3 with the lowest load condition as a retransmission destination link candidate based on the load conditions of the links measured by the upper layer unit 10001-1, Generates control information on how to retransmit frames.
  • FIGS. 13 and 14 an outline of a frame retransmission method when the control information includes only retransmission destination link candidates will be described.
  • the AP-MLD transmits the PPDU31 of the last frame buffered on the link 3 and the PPDU22 of the same TID3 following the PPDU31 on the link 2 to the STA-MLD.
  • the AP-MLD retransmits the erroneous PPDU 22 on link 2 with the highest priority using ARQ in the retransmission destination link candidates specified by the control information.
  • the multilink control unit 10001a-1 allows the PPDU 31 to update a field (for example, a More data field) indicating whether or not there is a frame buffered after the frame until the transmission of the PPDU 22 is completed.
  • control data for setting the NAV for link 3, which is a candidate for the retransmission destination link is added to the control information. That is, according to the control information, the AP-MLD retransmits the PPDU 22 of the link 2 with the highest priority by ARQ immediately after the transmission of the PPDU 31 of the link 3 is completed.
  • NAV settings may be, without limitation, RTS, CTS, or CTS-to-self.
  • the multilink control unit 10001a-1 reorders the buffer of the link 3 so that the PPDU22 can be retransmitted prior to the PPDU33. That is, according to the control information, the AP-MLD retransmits the PPDU 22 with the highest priority using ARQ on link 3, which is a candidate for the retransmission destination link.
  • control information includes a retransmission destination link candidate and a retransmission method
  • ARQ/HARQ may be configured for each link.
  • multilink control section 10001a-1 limits retransmission of frames by ARQ and does not limit retransmission of frames by HARQ in the retransmission destination link candidates.
  • AP-MLD retransmits the PPDU 22 with highest priority when the retransmission method is ARQ on link 3, which is a candidate for the retransmission destination link specified by the control information, and the retransmission method is HARQ.
  • the PPDU 22 is retransmitted with the highest priority and packet combining is performed.
  • the multilink control unit 10001a-1 does not allow the PPDU31 to update the field (More data field) indicating the presence or absence of a buffered frame after the frame until the transmission of the PPDU22 is completed. Control data for setting the NAV for link 3, which is a candidate for the retransmission destination link, is added to the control information.
  • the frame may be retransmitted using a different coding rate from the initial transmission.
  • NAV settings may be, without limitation, RTS, CTS, or CTS-to-self. That is, according to the control information, the AP-MLD retransmits the PPDU 22 of the link 2 immediately after the transmission of the PPDU 31 on the link 3 is completed with the highest priority when the retransmission method is ARQ, and the retransmission method is HARQ. If so, retransmit with highest priority and perform packet combining.
  • the multilink control unit 10001a-1 reorders the buffer of link 3 so that PPDU22 can be retransmitted prior to PPDU33.
  • the AP-MLD retransmits the PPDU 22 on link 3, which is a candidate for the retransmission destination link, with the highest priority when the retransmission method is ARQ, and gives the highest priority when the retransmission method is HARQ. retransmit to and perform packet combining.
  • the measurement of the load status of the link may be performed independently by the receiving section of the sub wireless communication device (substation device), or may be performed by integrating all the substations.
  • the measured value of the load status of each link is not limited to a specific index, and may be any value that can be used to determine the load status of the links that constitute the MLD.
  • the MAC layer indicates the frame buffer size allocated to each link, the channel usage status, the frame allocation status for each RU (Resource allocation), and the AP operation status.
  • BSS load information BSS average access delay, BSS access category access delay (BSS Access Category Access Delay), etc.
  • the ratio of Busy in the carrier sense time of each link, or the like may be used as the measurement value.
  • the load status of the plurality of links may be an identifier (Busy, High, Middle, Low, Idle, Null, etc.) that reflects the load status of the links in stages according to a predetermined threshold.
  • a method for selecting retransmission destination link candidates by the multilink control unit 10001a-1 based on the load status of each link measured by the upper layer unit 10001-1 will be described.
  • the multilink control unit 10001a-1 selects the link with the lowest link load status based on the measurement result of the upper layer unit 10001-1, or creates a list of the measurement results in ascending order. Two or more links are elected as resend-to links. Also, when the load conditions of the respective links are the same, the multilink control unit 10001a-1 does not select retransmission destination link candidates. If a frame error occurs in multiple links forming the MLD, the same retransmission destination link may be set for each frame.
  • the upper layer section 10001-1 establishes a new link by transmitting the multilink establishment request 10-1,
  • the link is set as a retransmission destination link candidate, and control information is generated together with the retransmission method.
  • the multilink control unit 10001a-1 When the multilink control unit 10001a-1 according to the present embodiment does not receive an acknowledgment corresponding to a frame within a predetermined time on a link on which a multilink has been established or a retransmission destination link, the multilink control unit 10001a-1 selects retransmission destination link candidates. Update. For example, when another frame has already been buffered on the retransmission destination link, the multilink control unit 10001a-1 sets the link with the next lowest load status included in the retransmission destination link candidates as the retransmission destination link.
  • Another link among the retransmission destination link candidates is retransmitted.
  • Set as destination link For example, if there are two or more candidates for the retransmission destination link, the link with the next lowest link load condition is selected as the retransmission destination link.
  • the link load status according to this embodiment may be measured using a trigger frame.
  • AP-MLD transmits a trigger frame to all wireless communication devices such as STA-MLD that have established multilinks with them.
  • the STA-MLD that received the trigger frame measures the load status of each link and notifies the AP-MLD of the measurement results.
  • the AP- The MLD determines that the load status of the link is Busy and does not set it as a retransmission destination link candidate.
  • the upper layer unit 10001-1 may set an access category for retransmission with a higher priority than the EDCA access category of the IEEE 802.11e standard. good.
  • the multilink control unit 10001a-1 does not permit transmission of frames other than the retransmission-only access category on the retransmission destination link.
  • the STA-MLD receives the frame transmitted from the AP-MLD in the receiving section 10004-1.
  • the signal demodulator 10004b-1 of the STA-MLD can perform decoding processing and error detection on the received signal in the PHY layer.
  • the signal demodulation unit 10004b-1 decodes the PHY header of the PPDU, which is the received transmission frame, performs packet synthesis of the frame when HARQ is set in the PHY header, Decode the word.
  • the decoding result is transferred to the MAC layer in the upper layer section 10001-1.
  • the MAC layer restores the frame of the MAC layer from the forwarded decoding result, performs error detection, and determines whether the frame of the MAC layer transmitted by the station device which is the transmission source of the received frame has been correctly restored. to judge.
  • error detection error detection using an error detection code (for example, a cyclic redundancy check (CRC) code) attached to a received frame, or error correction code originally provided with an error detection function (for example, a low density parity check code (LDPC )) includes error detection.
  • the decoding processing here includes decoding processing for the error correction code applied to the received signal.
  • a decoding process in the PHY layer can be applied for each coded block.
  • the signal demodulation unit 10004b-1 does not perform packet synthesis of the frame in the decoding process, decodes the codeword of the PPDU, and outputs the decoding result. It is transferred to the upper layer section 10001-1.
  • the communication device maintains the retransmission function of the MAC layer, reduces the overhead of the PHY layer and the MAC layer, and enables effective packet combining in the PHY layer. It can contribute to improvement of transmission efficiency.
  • the communication device can communicate in a frequency band (frequency spectrum) called an unlicensed band that does not require a license from a country or region. is not limited to this.
  • the communication device according to the present invention is, for example, a white band that is not actually used for the purpose of preventing interference between frequencies, even though the country or region has given permission to use it for a specific service.
  • the frequency band called for example, the frequency band allocated for television broadcasting but not used in some areas
  • the shared spectrum shared frequency band
  • the program that operates in the wireless communication device is a program that controls the CPU and the like (a program that causes a computer to function) so as to implement the functions of the above-described embodiments related to the present invention.
  • Information handled by these devices is temporarily stored in RAM during processing, then stored in various ROMs and HDDs, and read, modified, and written by the CPU as necessary.
  • Recording media for storing programs include semiconductor media (eg, ROM, nonvolatile memory cards, etc.), optical recording media (eg, DVD, MO, MD, CD, BD, etc.), magnetic recording media (eg, magnetic tapes, flexible disk, etc.).
  • the program when distributing to the market, can be distributed by storing it in a portable recording medium, or it can be transferred to a server computer connected via a network such as the Internet.
  • the storage device of the server computer is also included in the present invention.
  • part or all of the communication device in the above-described embodiments may be typically implemented as an LSI, which is an integrated circuit.
  • Each functional block of the communication device may be individually chipped, or part or all of them may be integrated and chipped. When each functional block is integrated, an integrated circuit control unit for controlling them is added.
  • the method of circuit integration is not limited to LSIs, but may be realized with dedicated circuits or general-purpose processors.
  • the method of circuit integration is not limited to LSIs, but may be realized with dedicated circuits or general-purpose processors.
  • a technology for integrating circuits to replace LSIs emerges due to advances in semiconductor technology, it is possible to use an integrated circuit based on this technology.
  • the wireless communication device of the present invention is not limited to application to mobile station devices, but can be applied to stationary or non-movable electronic devices installed indoors and outdoors, such as AV equipment, kitchen equipment, cleaning/washing equipment, etc. Needless to say, it can be applied to equipment, air conditioners, office equipment, vending machines, and other household equipment.
  • the present invention is suitable for use in communication devices and communication methods.

Abstract

The present invention provides a wireless communication device that transmits a frame using two or more links. The communication device is provided with a multi-link control unit for selecting a retransmission destination link candidate in accordance with the load status of each of the links in a MAC layer. The control unit generates and sends control information about the retransmission destination link candidate and a retransmission method to a PHY layer. If an affirmative response with respect to the frame is not received, the control unit does not permit retransmission other than by the retransmission destination link candidate designated by the control information. In accordance with the IEEE802.11 standard, the present invention enables packet combining in a multi-link device, and contributes to reduction in latency and an improvement of reception SNR.

Description

通信装置および通信方法Communication device and communication method
 本発明は、通信装置および通信方法に関する。
 本願は、2021年9月6日に日本に出願された特願2021-144568号について優先権を主張し、その内容をここに援用する。
The present invention relates to a communication device and communication method.
This application claims priority to Japanese Patent Application No. 2021-144568 filed in Japan on September 6, 2021, the content of which is incorporated herein.
 IEEE(The Institute of Electrical and Electronics Engineers Inc.)は、無線LAN(Local Area Network)通信の速度高速化、周波数利用効率化を実現するために無線LAN標準規格であるIEEE802.11の仕様更新に取り組んでいる。近年では、無線LANデバイスの急速な普及に伴って、遠隔医療やVR/ARといったリアルタイムアプリケーションとしての利用用途の拡大が見込まれており、IEEE802.11ax標準規格のさらなる低遅延化と通信容量の大容量化を実現するIEEE802.11beの標準化が進められている。 IEEE (The Institute of Electrical and Electronics Engineers Inc.) is working to update the specifications of IEEE802.11, a wireless LAN standard, in order to increase the speed of wireless LAN (Local Area Network) communication and improve frequency utilization efficiency. I'm in. In recent years, with the rapid spread of wireless LAN devices, it is expected that the use of wireless LAN devices will expand in real-time applications such as telemedicine and VR/AR. Standardization of IEEE802.11be, which realizes capacity enhancement, is underway.
 IEEE802.11標準では、スループットの高速化技術として誤り制御が導入されている。誤り制御は、前方誤り訂正(Forward Error Correction:FEC)と自動再送要求(Automatic repeat request:ARQ)に大別される。前方誤り訂正は、誤り訂正符号を用いて伝送路で生じる誤りを受信側で訂正する方式であり、誤ったパケットに対する送信側への再送要求を不要とする。誤り訂正能力は、符号語に占める冗長ビットの割合を増やすことで向上するが、復号処理の増大や伝送効率の低下などとトレードオフの関係にある。一方、ARQは、受信側で適切に復号化されなかったパケットの再送を送信側に要求する方式である。復号時のパケット誤りは、受信側の媒体アクセス制御(Medium Access Control:MAC)で検出され、バッファに蓄積されることなく破棄される。パケットが正常に復号された場合は確認応答(Acknowledgement:ACK)が、パケット誤りが検出された場合には否定応答(Negative Acknowledgement:NACK)が送信側へと伝達される。パケットの再送処理は、送信側にNACKが伝達されるか一定期間内にACKが送信側へと伝達されない場合にARQによって実施される。前記したIEEE802.11標準での誤り制御に加え、IEEE802.11beの標準化活動では、前方誤り訂正符号とARQを組み合わせたハイブリッドARQ(Hybrid ARQ:HARQ)が検討されている。HARQは、再送時に同じパケットを送信し、受信側でパケット合成することで、受信信号の信号対雑音電力比(Signal to Noise power ratio:SNR)を改善させるチェイス合成と、再送時に冗長信号(パリティ信号)を新たに送信することで、受信側の誤り訂正復号能力を高めるインクリメンタルリダンダンシー(Incremental redundancy:IR)合成が検討されている。  In the IEEE802.11 standard, error control is introduced as a technique for speeding up throughput. Error control is roughly divided into forward error correction (FEC) and automatic repeat request (ARQ). Forward error correction is a method of correcting errors that occur on a transmission line using an error correction code on the receiving side, and eliminates the need to request retransmission of erroneous packets to the transmitting side. The error correction capability is improved by increasing the ratio of redundant bits in codewords, but there is a trade-off with the increase in decoding processing and the decrease in transmission efficiency. ARQ, on the other hand, is a scheme for requesting the transmitting side to retransmit packets that were not properly decoded at the receiving side. Packet errors during decoding are detected by Medium Access Control (MAC) on the receiving side and discarded without being stored in a buffer. An acknowledgment (ACK) is conveyed to the sender if the packet is successfully decoded and a negative acknowledgment (NACK) if a packet error is detected. Packet retransmission processing is performed by ARQ when a NACK is signaled to the sender or no ACK is signaled to the sender within a certain period of time. In addition to error control in the IEEE802.11 standard described above, hybrid ARQ (HARQ), which combines forward error correction code and ARQ, is being considered in standardization activities of IEEE802.11be. In HARQ, the same packet is sent during retransmission, and the packets are combined on the receiving side to improve the signal-to-noise power ratio (SNR) of the received signal. Incremental redundancy (IR) combining, which increases the error correction decoding capability of the receiving side by newly transmitting a signal), is being studied.
 IEEE802.11n以降の標準規格では、MACレイヤのオーバーヘッド低減によるスループットの高速化技術として、無線フレームとACKにそれぞれアグリゲーションが導入されている。無線フレームのアグリゲーションは、A-MSDU(Aggregated MAC Service Data Unit)とA-MPDU(Aggregated MAC Protocol Data Unit)に大別される。ACKのアグリゲーションは、例えば、複数のMPDUに対する受信完了通知を実施可能であるブロックACK(Block Acknowledgement:BA)、複数のユーザに対する受信完了通知を実施可能であるマルチSTAブロックACK(Multi STA Block ACK:M-BA)が挙げられる。無線フレームのアグリゲーションは、1度に多くのパケットを送信可能とし、伝送効率を向上させる一方で、伝送誤りの可能性を高める。このことから、IEEE802.11ax以降の標準規格では、スループットの高速化に主要な要素技術として、無線フレームのアグリゲーションによる伝送効率の向上に加え、各々のMPDUに対する効率的な誤り制御が見込まれる。そこで、IEEE802.11beの標準化活動では、HARQによる時間ダイバーシチを得ることで、伝送品質の改善が検討されている。  In IEEE802.11n and later standards, aggregation is introduced for each radio frame and ACK as a technique for speeding up throughput by reducing MAC layer overhead. Radio frame aggregation is roughly classified into A-MSDU (Aggregated MAC Service Data Unit) and A-MPDU (Aggregated MAC Protocol Data Unit). Aggregation of ACKs, for example, block ACK (Block Acknowledgment: BA) that can implement reception completion notification for multiple MPDUs, multi STA block ACK (Multi STA Block ACK: BA) that can implement reception completion notification for multiple users M-BA). Aggregation of radio frames allows many packets to be sent at once, improving transmission efficiency, but also increasing the possibility of transmission errors. For this reason, in IEEE 802.11ax and later standards, efficient error control for each MPDU is expected in addition to improvement in transmission efficiency by aggregation of radio frames as a main element technology for speeding up throughput. Therefore, in IEEE 802.11be standardization activities, improvement of transmission quality is being studied by obtaining time diversity by HARQ.
 一方、使用周波数帯の観点では、欧州においてはETSI(European Telecommunications Standards Institute)が、米国においてはFCC(Federal Communications Commission)が6GHz帯(5.935~7.125GHz)をアンライセンスバンドとして使用できるように検討しており、その他の世界各国においても同様の検討が進んでいる。このことは、無線LANが2.4GHz帯、5GHzに追加して6GHz帯も使用可能となる見込みがでてきたということである。対象周波数拡大に対応するために、Wi-Fi AllianceはWi-Fi6の拡張版であるWi-Fi6E(登録商標)を策定し、6GHz帯使用するとしている。 On the other hand, from the viewpoint of the frequency band used, the ETSI (European Telecommunications Standards Institute) in Europe and the FCC (Federal Communications Commission) in the United States have made it possible to use the 6 GHz band (5.935 to 7.125 GHz) as an unlicensed band. Similar considerations are underway in other countries around the world. This means that it is expected that the wireless LAN will be able to use the 6 GHz band in addition to the 2.4 GHz band and 5 GHz band. In order to cope with the expansion of target frequencies, the Wi-Fi Alliance has formulated Wi-Fi6E (registered trademark), which is an extended version of Wi-Fi6, and plans to use the 6 GHz band.
 2.4GHz帯はカバレッジ(通信可能な範囲)が比較的広くとれる一方で、使用可能な帯域幅が比較的狭く、通信装置間の干渉の影響も大きくなる。一方で、5GHz帯、6GHz帯は通信帯域幅を広くとれる一方で、カバレッジは広く取れない。よって、様々なサービス・アプリケーションを無線LANで実現するためには、ユースケースに応じて使用する周波数バンド(2.4GHz帯、5GHz帯、6GHz帯など。もしくは各周波数バンドに含まれるチャネル、もしくはチャネルに含まれるサブチャネル)を適切に切り替えることが望ましい。しかし、従来の無線LAN通信装置においては、通信に用いる周波数バンドを切り替えるためには、一度現在の周波数バンドの接続を切断し、別の周波数バンドに接続する必要があった。 While the 2.4 GHz band has a relatively wide coverage (communication range), the usable bandwidth is relatively narrow and the influence of interference between communication devices is large. On the other hand, the 5 GHz band and the 6 GHz band can have a wide communication bandwidth, but cannot have a wide coverage. Therefore, in order to realize various services and applications on a wireless LAN, the frequency band (2.4 GHz band, 5 GHz band, 6 GHz band, etc.) to be used according to the use case. It is desirable to appropriately switch sub-channels included in However, in the conventional wireless LAN communication device, in order to switch the frequency band used for communication, it was necessary to once disconnect the current frequency band and connect to another frequency band.
 以上より、IEEE802.11be標準化においては、通信装置が複数の周波数バンドを使用した、複数の接続(リンク)を維持することを可能とする、複数接続動作(Multi-link Operation:MLO)に関する議論が行われている(非特許文献2参照)。MLOの一例を挙げると、IEEE802.11be標準化では、2.4GHz帯の接続、5GHz帯の接続、6GHz帯の接続、前記全帯域の同時接続など、様々な周波数バンド、チャネル、サブチャネルの組み合わせが可能となる。MLOによれば、通信装置は、使用する無線リソースや通信に係る設定が異なる接続を複数維持することができる。すなわち、MLOを用いることで、通信装置は、異なる周波数バンドの接続を同時に維持することができるから、再接続動作を行うことなく、フレーム送受信する周波数バンドを変更することが可能となる。 From the above, in the IEEE 802.11be standardization, there is a discussion on multi-link operation (MLO), which enables a communication device to maintain multiple connections (links) using multiple frequency bands. (See Non-Patent Document 2). To give an example of MLO, in the IEEE802.11be standardization, combinations of various frequency bands, channels, and sub-channels such as 2.4 GHz band connection, 5 GHz band connection, 6 GHz band connection, and simultaneous connection of all bands are possible. It becomes possible. According to MLO, a communication device can maintain a plurality of connections with different radio resources to be used and settings related to communication. That is, by using MLO, the communication device can simultaneously maintain connections of different frequency bands, so that it is possible to change the frequency band for frame transmission/reception without performing reconnection operation.
 また、IEEE802.11be標準化では、2つ以上の複数のリンクを備えるマルチリンクデバイス(Multi-link Device: MLD)を用いた無線通信方式が議論されている。当該マルチリンクを使用してフレーム送信することで、単一端末-基地局間だけではなくシステム全体としてのスループットを増大させる大容量通信の実現が期待されている。また、マルチリンクを構成する各リンクを束ねた同時使用はせずに、独立して使用し、フレームの送受信が行ってもよい。例えば、混雑している無線チャネルを避けて空いているリンクを適宜選択してフレーム送信することで、送信時に生じる遅延、レイテンシを小さくして、低遅延(Low Latency)通信を実現できる可能性がある。これらマルチリンクによる大容量通信、低遅延通信の特徴は、当該各々のリンクの品質(無線通信装置間での電波干渉が少ない、受信信号強度が大きい、またはフレーム受信エラー率が小さいなど)が高まるほどマルチリンクの性能が向上する点にある。 In addition, IEEE802.11be standardization discusses a wireless communication method using a multi-link device (MLD) having two or more links. By transmitting frames using this multilink, it is expected to realize large-capacity communication that increases the throughput not only between a single terminal and a base station but also for the entire system. Also, each link constituting a multilink may not be bundled and used at the same time, but may be used independently for frame transmission/reception. For example, by avoiding congested radio channels and selecting an empty link as appropriate for frame transmission, it is possible to reduce the delay and latency that occur during transmission, thereby realizing low-latency communication. be. The characteristics of high-capacity communication and low-delay communication by these multilinks are that the quality of each link (less radio interference between wireless communication devices, high received signal strength, low frame reception error rate, etc.) is enhanced. The point is that the performance of the multilink is improved as much as possible.
 MLDにおいて、マルチリンクを管理するエンティティ(Multi-link Management Entity: MLME)は、全リンクのロード(負荷、load)を監視し、ロードバランスを実施するものの、既存の仕組みではMLDでHARQの効果を得られない可能性がある。IEEE802.11標準では、リンクにバッファされた最後のPPDUフレームを送信した後、当該フレームの後にバッファされたフレームの有無を示すフィールドが更新される。すなわち、MLDを構成するリンクで誤ったPPDUフレームを別のリンクで再送するとき、再送先リンクがDoze stateである場合に、HARQによるパケット合成は実施されない可能性がある(非特許文献1)。 In MLD, the entity that manages multi-links (Multi-link Management Entity: MLME) monitors the load of all links (load) and implements load balance, but the existing mechanism does not allow the effect of HARQ in MLD. may not be obtained. In the IEEE 802.11 standard, after sending the last buffered PPDU frame on the link, a field is updated to indicate whether there are any buffered frames after that frame. That is, when an erroneous PPDU frame is retransmitted on another link on a link that constitutes MLD, packet combining by HARQ may not be performed if the retransmission destination link is in Doze state (Non-Patent Document 1).
 そこで、非特許文献1は、MLDを構成するリンクがバッファされた最後のPPDUフレームを送信した後に、当該リンクがDoze stateに移行しないように当該フレームと同一のTraffic ID(TID)を有するフレームの送信が完了するまで、当該フレームに含まれるバッファされたフレームの有無を示すフィールドを更新しない仕組みを提案している。一方、非特許文献2は、MLMEによる全リンク間の肯定応答の共有が検討されている。しかしながら、IEEE802.11標準において、非特許文献1および非特許文献2も、フレームの再送に関して、再送先リンクをAwake Stateとして事前に確保する方法など、MLDにおける効率的なパケット合成方法を提案するに至っていない。 Therefore, in Non-Patent Document 1, a frame having the same Traffic ID (TID) as the frame so that the link does not shift to the Doze state after transmitting the last buffered PPDU frame of the link configuring the MLD. It proposes a mechanism that does not update the field indicating the presence or absence of buffered frames included in the frame until the transmission is completed. On the other hand, Non-Patent Document 2 discusses sharing acknowledgments between all links by MLME. However, in the IEEE 802.11 standard, Non-Patent Document 1 and Non-Patent Document 2 also propose an efficient packet combining method in MLD, such as a method of securing a retransmission destination link as an Awake State in advance for frame retransmission. Not yet.
 本発明はこのような事情を鑑みてなされたものであり、その目的はIEEE802.11標準において、MLDにおける効率的なパケット合成を実現するものであって、低遅延通信ならびに受信SNRの改善に寄与する通信装置および通信方法を開示するものである。 The present invention has been made in view of such circumstances, and its object is to realize efficient packet combining in MLD in the IEEE802.11 standard, contributing to low-delay communication and improvement of received SNR. Disclosed is a communication device and a communication method.
 上述した課題を解決するための本発明に係る通信装置および通信方法は、次の通りである。 The communication device and communication method according to the present invention for solving the above problems are as follows.
 (1)2つ以上のリンクを用いてフレームを送信する通信装置であって、前記通信装置は、MACレイヤにて前記各々のリンクの負荷状況に応じて、再送先リンクの候補を選出する制御部を備え、前記制御部は、前記再送先リンクの候補と再送方法を制御情報として生成するとともにPHYレイヤに伝達し、前記通信装置は、PHYレイヤにてフレームを生成する送信部を備え、前記フレームに対する肯定応答を受信しなかった場合に、前記制御情報が指定する再送先リンクの候補以外での再送を許可せず、前記通信装置は、前記制御情報に従って、再送先リンクの候補で前記フレームを受信する受信部と、前記フレームをパケット合成し、復号する信号復調部と、を備える、通信装置。 (1) A communication device that transmits frames using two or more links, wherein the communication device selects retransmission destination link candidates according to the load status of each link in the MAC layer. The control unit generates the retransmission destination link candidate and the retransmission method as control information and transmits the retransmission method to the PHY layer, and the communication device includes a transmission unit that generates a frame in the PHY layer, When no acknowledgment for the frame is received, retransmission on a link other than the retransmission destination link candidate specified by the control information is not permitted, and the communication device transmits the frame on the retransmission destination link candidate according to the control information. and a signal demodulator for packet-combining and decoding the frame.
 (2)前記再送先リンクの候補は、前記再送方法としてARQによる再送を制限し、HARQによる再送を制限しない、上記(1)に記載の通信装置。 (2) The communication apparatus according to (1) above, wherein the retransmission destination link candidate restricts retransmission by ARQ and does not restrict retransmission by HARQ as the retransmission method.
 (3)前記制御部は、前記各々のリンクが同一の負荷状況である場合、前記制御情報に再送先リンクの候補を含めず、再送方法を設定する、上記(1)に記載の通信装置。 (3) The communication device according to (1) above, wherein the control unit does not include retransmission destination link candidates in the control information and sets a retransmission method when each of the links has the same load status.
 (4)前記制御部は、前記各々のリンクにおいて、前記フレームに対する肯定応答を受信しなかった場合に、または、所定の時間内に受信しなかった場合、前記再送先リンクの候補を更新する、上記(1)に記載の通信装置。 (4) if the control unit does not receive an acknowledgment for the frame on each of the links or does not receive it within a predetermined time, it updates the retransmission destination link candidate; The communication device according to (1) above.
 (5)前記制御部は、前記各々のリンクにおける1つのリンクにおいて、前記フレームに対する肯定応答を複数回連続して受信しなかった場合に、また、所定の時間内に受信しなかった場合、前記リンクの次に低い負荷状況のリンクを前記再送先リンクの候補に含める、上記(1)に記載の通信装置。 (5) When the control unit does not receive an acknowledgment for the frame in succession for a plurality of times in one link in each of the links, or when the frame is not received within a predetermined time, the control unit The communication device according to (1) above, wherein a link with the next lowest load status to the link is included in the candidates for the retransmission destination link.
 (6)前記制御部は、送信側の前記各々のリンクにバッファされた最後のフレームと同一の識別子を含むフレームが、前記各々のリンクと別のリンクで後続してバッファ済である場合、前記同一の識別子を含むフレームに対する肯定応答を受信するまでの所定の時間だけ前記別のリンクにNAVを設定するための制御データを前記制御情報に付加する、上記(1)に記載の通信装置。 (6) If a frame containing the same identifier as the last frame buffered in each of the links on the transmitting side has been subsequently buffered in a link other than each of the links, the control unit The communication apparatus according to (1) above, wherein control data for setting a NAV for the another link is added to the control information for a predetermined period of time until an acknowledgment for a frame containing the same identifier is received.
 (7)前記通信装置は、前記各々のリンクに再送用のアクセスカテゴリーを設定し、前記再送用のアクセスカテゴリーのフレームを最優先に送信する制御部を備える、上記(1)に記載の通信装置。 (7) The communication device according to (1) above, wherein the communication device includes a control unit that sets an access category for retransmission to each of the links and transmits frames of the access category for retransmission with top priority. .
 (8)前記通信装置における前記制御部は、前記各々のリンクにおいてバッファのReorderingを実施することで、前記フレームを最優先に再送する、上記(1)に記載の通信装置。 (8) The communication device according to (1) above, wherein the control unit in the communication device retransmits the frame with the highest priority by performing buffer reordering in each of the links.
 (9)前記制御部は、前記再送先リンクで別のフレームが送信されている場合において、前記再送先リンクの候補が指定する別のリンクで前記フレームを再送する、上記(1)に記載の通信装置。 (9) The above-described (1), wherein when another frame is being transmitted on the retransmission destination link, the control unit retransmits the frame on another link specified by the retransmission destination link candidate. Communication device.
 (10)2つ以上のリンクを用いてフレームを受信し、前記フレームの再送を前記制御情報が指定するリンクに割り当て、復調・復号する信号復調部と、前記信号復調部は、前記フレームにHARQが設定されている場合に、前記フレームのパケット合成を実施する、上記(1)に記載の通信装置。 (10) A signal demodulator that receives a frame using two or more links, assigns retransmission of the frame to the link specified by the control information, and demodulates and decodes the frame; The communication device according to (1) above, wherein packet synthesis of the frame is performed when is set.
 (11)2つ以上のリンクを用いてフレームを送信する通信方法であって、前記通信方法は、MACレイヤにて前記各々のリンクの負荷状況に応じて、再送先リンクの候補を選出するステップを備え、前記再送先リンクの候補と再送方法を制御情報として生成するとともにPHYレイヤに伝達し、前記通信方法は、PHYレイヤにてフレームを生成するステップを備え、前記フレームに対する肯定応答を受信しなかった場合に、前記制御情報が指定する再送先リンクの候補以外での再送を許可せず、前記通信方法は、前記制御情報に従って、再送先リンクの候補で前記フレームを受信するステップと、前記フレームをパケット合成し、復号するステップと、を備える、通信方法。 (11) A communication method for transmitting frames using two or more links, wherein the communication method comprises a step of selecting retransmission destination link candidates according to the load status of each of the links in the MAC layer. and generating the retransmission destination link candidate and the retransmission method as control information and transmitting it to the PHY layer, the communication method comprising the step of generating a frame in the PHY layer, and receiving an acknowledgment for the frame if not, retransmission is not permitted on any other than the retransmission destination link candidate specified by the control information, and the communication method comprises the step of: receiving the frame on the retransmission destination link candidate according to the control information; and packetizing and decoding frames.
 本発明は、IEEE802.11標準にて、MLDでの効率的なパケット合成を実現するものであって、受信SNRの改善による低遅延通信の向上とユーザースループットの高速化と、マルチリンク通信の特徴である大容量通信、低遅延通信に寄与する。 The present invention realizes efficient packet combining in MLD according to the IEEE802.11 standard, and improves low-delay communication by improving reception SNR, speeding up user throughput, and features of multilink communication. It contributes to large-capacity communication and low-delay communication.
本発明の一態様に係る無線リソースの分割例を示す概要図である。1 is a schematic diagram showing an example of division of radio resources according to one aspect of the present invention; FIG. 本発明の一態様に係るフレーム構成の一例を示す図である。FIG. 4 is a diagram showing an example of a frame structure according to one aspect of the present invention; 本発明の一態様に係るフレーム構成の一例を示す図である。FIG. 4 is a diagram showing an example of a frame structure according to one aspect of the present invention; 本発明の一態様に係る通信の一例を示す図である。FIG. 3 is a diagram illustrating an example of communication according to one aspect of the present invention; 本発明の一態様に係る通信システムの一構成例を示す図である。1 is a diagram showing one configuration example of a communication system according to one aspect of the present invention; FIG. 本発明の一態様に係るフレーム送受信を示す図である。FIG. 3 illustrates frame transmission and reception according to one aspect of the present invention; 本発明の一態様に係る無線通信装置の一構成例を示すブロック図である。1 is a block diagram showing one configuration example of a wireless communication device according to one aspect of the present invention; FIG. 本発明の一態様に係る無線通信装置の一構成例を示すブロック図である。1 is a block diagram showing one configuration example of a wireless communication device according to one aspect of the present invention; FIG. 本発明の一態様に係る無線通信装置の一構成例を示すブロック図である。1 is a block diagram showing one configuration example of a wireless communication device according to one aspect of the present invention; FIG. 本発明の一態様に係る符号化方式の一例を示す概要図である。1 is a schematic diagram illustrating an example of an encoding scheme according to one aspect of the present invention; FIG. 本発明の一態様に係る変調符号化方式の一例を示す概要図である。1 is a schematic diagram showing an example of a modulation and coding scheme according to one aspect of the present invention; FIG. 本発明の一態様に係るLDPC符号化処理のブロック長の一例を示す概要図である。FIG. 4 is a schematic diagram illustrating an example of block lengths for LDPC encoding processing according to an aspect of the present invention; 本発明の一態様に係るフレームの再送方法の一例を示す概要図である。1 is a schematic diagram showing an example of a frame retransmission method according to an aspect of the present invention; FIG. 本発明の一態様に係るフレームの再送方法の一例を示す概要図である。1 is a schematic diagram showing an example of a frame retransmission method according to an aspect of the present invention; FIG.
 本実施形態における通信システムは、基地局装置もしくはアクセスポイント装置(Access point: AP)と呼称され、端末装置もしくはステーション装置(Station: STA)を複数備える。また、アクセスポイント装置とステーション装置とで構成される通信システム、ネットワークを基本サービスセット(BSS: Basic service set、管理範囲、セル)と呼ぶ。また、本実施形態に係るステーション装置は、アクセスポイント装置の機能を備えることができる。同様に、本実施形態に係るアクセスポイント装置は、ステーション装置の機能を備えることができる。そのため、以下では、単に通信装置と述べた場合、該通信装置は、ステーション装置とアクセスポイント装置の両方を示すことができる。 A communication system in this embodiment is called a base station device or an access point device (Access point: AP), and includes a plurality of terminal devices or station devices (Station: STA). A communication system or network composed of access point devices and station devices is called a basic service set (BSS: Basic service set, management range, cell). Also, the station device according to this embodiment can have the function of an access point device. Similarly, the access point device according to this embodiment can have the functions of the station device. Therefore, hereinafter, when simply referring to a communication device, the communication device can indicate both a station device and an access point device.
 BSS内の基地局装置および端末装置は、それぞれCSMA/CA(Carrier sense multiple access with collision avoidance)に基づいて、通信を行なうものとする。本実施形態においては、基地局装置が複数の端末装置と通信を行なうインフラストラクチャモードを対象とするが、本実施形態の方法は、端末装置同士が通信を直接行なうアドホックモードでも実施可能である。アドホックモードでは、端末装置が、基地局装置の代わりとなりBSSを形成する。アドホックモードにおけるBSSを、IBSS(Independent Basic Service Set)とも呼称する。以下では、アドホックモードにおいてIBSSを形成する端末装置を、基地局装置とみなすこともできる。本実施形態の方法は、端末装置同士が通信を直接行なうWiFi Direct(登録商標)でも実施可能である。WiFi
 Directでは、端末装置が、基地局装置の代わりとなりGroupを形成する。以下では、WiFi DirectにおいてGroupを形成するGroup ownerの端末装置を、基地局装置とみなすこともできる。
It is assumed that the base station apparatus and the terminal apparatus within the BSS perform communication based on CSMA/CA (Carrier sense multiple access with collision avoidance). This embodiment targets the infrastructure mode in which a base station apparatus communicates with a plurality of terminal apparatuses, but the method of this embodiment can also be implemented in an ad-hoc mode in which terminal apparatuses directly communicate with each other. In ad-hoc mode, the terminal device forms a BSS on behalf of the base station device. A BSS in ad-hoc mode is also called an IBSS (Independent Basic Service Set). In the following, a terminal device forming an IBSS in ad-hoc mode can also be regarded as a base station device. The method of the present embodiment can also be implemented in WiFi Direct (registered trademark) in which terminal devices directly communicate with each other. WiFi
In Direct, a terminal device forms a group instead of a base station device. In the following description, a terminal device of a group owner that forms a group in WiFi Direct can also be regarded as a base station device.
 IEEE802.11システムでは、各装置は、共通のフレームフォーマットを持った複数のフレームタイプの送信フレームを送信することが可能である。送信フレームは、物理(Physical:PHY)層、媒体アクセス制御(Medium access control:MAC)層、論理リンク制御(Logical Link Control: LLC)層、でそれぞれ定義されている。それぞれ前記物理層はPHYレイヤ,前記MAC層はMACレイヤとも呼称される。 In the IEEE802.11 system, each device can transmit transmission frames of multiple frame types with a common frame format. A transmission frame is defined in a physical (PHY) layer, a medium access control (MAC) layer, and a logical link control (LLC) layer, respectively. The physical layer is also called the PHY layer, and the MAC layer is also called the MAC layer.
 PHYレイヤの送信フレームは、物理プロトコルデータユニット(PPDU: PHY protocol data unit、物理層フレーム)と呼ばれる。PPDUは、物理層での信号処理を行なうためのヘッダ情報等が含まれる物理層ヘッダ(PHYヘッダ)と、物理層で処理されるデータユニットである物理サービスデータユニット(PSDU: PHY service data unit、MACレイヤフレーム)等から構成される。PSDUは無線区間における再送単位となるMACプロトコルデータユニット(MPDU: MAC protocol data unit)が複数集約された集約MPDU(A-MPDU: Aggregated MPDU)で構成されることが可能である。 A PHY layer transmission frame is called a physical protocol data unit (PPDU: PHY protocol data unit, physical layer frame). A PPDU consists of a physical layer header (PHY header) that includes header information for performing signal processing in the physical layer, and a physical service data unit (PSDU: PHY service data unit) that is a data unit processed in the physical layer. MAC layer frame) and the like. PSDU can be composed of aggregated MPDU (A-MPDU: Aggregated MPDU) in which multiple MAC protocol data units (MPDU: MAC protocol data units) that are retransmission units in the wireless section are aggregated.
 PHYヘッダには、信号の検出・同期等に用いられるショートトレーニングフィールド(STF: Short training field)、データ復調のためのチャネル情報を取得するために用いられるロングトレーニングフィールド(LTF: Long training field)などの参照信号と、データ復調のための制御情報が含まれているシグナル(Signal:SIG)などの制御信号が含まれる。また、STFは、対応する規格に応じて、レガシーSTF(L-STF: Legacy-STF)や、高スループットSTF(HT-STF: High throughput-STF)や、超高スループットSTF(VHT-STF: Very high throughput-STF)や、高効率STF(HE-STF: High efficiency-STF)や、超高スループットSTF(EHT-STF:Extremely High Throughput-STF)等に分類され、LTFやSIGも同様にL-LTF、HT-LTF、VHT-LTF、HE-LTF、L-SIG、HT-SIG、VHT-SIG、HE-SIG、EHT-SIGに分類される。VHT-SIGは更にVHT-SIG-A1とVHT-SIG-A2とVHT-SIG-Bに分類される。同様に、HE-SIGは、HE-SIG-A1~4と、HE-SIG-Bに分類される。また、同一規格における技術更新を想定し、追加の制御情報が含まれているUniversal SIGNAL(U-SIG)フィールドが含まれることができる。 The PHY header includes a short training field (STF) used for signal detection and synchronization, a long training field (LTF) used to acquire channel information for data demodulation, etc. and a control signal such as a signal (Signal: SIG) containing control information for data demodulation. In addition, STF can be legacy STF (L-STF: Legacy-STF), high-throughput STF (HT-STF: High throughput-STF), or ultra-high-throughput STF (VHT-STF: Very high throughput-STF), high efficiency STF (HE-STF), ultra-high throughput STF (EHT-STF: Extremely High Throughput-STF), etc. LTF and SIG are also L- It is classified into LTF, HT-LTF, VHT-LTF, HE-LTF, L-SIG, HT-SIG, VHT-SIG, HE-SIG and EHT-SIG. VHT-SIG is further classified into VHT-SIG-A1, VHT-SIG-A2 and VHT-SIG-B. Similarly, HE-SIG is classified into HE-SIG-A1 to 4 and HE-SIG-B. Also, in anticipation of technical updates in the same standard, a Universal SIGNAL (U-SIG) field containing additional control information can be included.
 さらに、PHYヘッダは当該送信フレームの送信元のBSSを識別する情報(以下、BSS識別情報とも呼称する)を含むことができる。BSSを識別する情報は、例えば、当該BSSのSSID(Service Set Identifier)や当該BSSの基地局装置のMACアドレスであることができる。また、BSSを識別する情報は、SSIDやMACアドレス以外の、BSSに固有な値(例えばBSS Color等)であることができる。 Furthermore, the PHY header can include information identifying the BSS that is the transmission source of the transmission frame (hereinafter also referred to as BSS identification information). The information identifying the BSS can be, for example, the SSID (Service Set Identifier) of the BSS or the MAC address of the base station device of the BSS. Also, the information that identifies the BSS can be a value unique to the BSS (for example, BSS Color, etc.) other than the SSID and MAC address.
 PPDUは対応する規格に応じて変調される。例えば、IEEE802.11n規格であれば、直交周波数分割多重(OFDM: Orthogonal frequency division multiplexing)信号に変調される。 The PPDU is modulated according to the corresponding standard. For example, according to the IEEE 802.11n standard, it is modulated into an Orthogonal Frequency Division Multiplexing (OFDM) signal.
 MPDUはMACレイヤでの信号処理を行なうためのヘッダ情報等が含まれるMACレイヤヘッダ(MAC header)と、MACレイヤで処理されるデータユニットであるMACサービスデータユニット(MSDU: MAC service data unit)もしくはフレームボディ、ならびにフレームに誤りがないかをどうかをチェックするフレーム検査部(Frame check sequence:FCS)で構成されている。また、複数のMSDUは集約MSDU(A-MSDU: Aggregated MSDU)として集約されることも可能である。 MPDU is a MAC layer header that contains header information etc. for signal processing in the MAC layer, and a MAC service data unit (MSDU: MAC service data unit) that is a data unit processed in the MAC layer or It consists of a frame body and a frame check sequence (FCS) that checks if there are any errors in the frame. Also, multiple MSDUs can be aggregated as an aggregated MSDU (A-MSDU: Aggregated MSDU).
 MACレイヤの送信フレームのフレームタイプは、装置間の接続状態などを管理するマネジメントフレーム、装置間の通信状態を管理するコントロールフレーム、および実際の送信データを含むデータフレームの3つに大きく分類され、それぞれは更に複数種類のサブフレームタイプに分類される。コントロールフレームには、受信完了通知(ACK: Acknowledge)フレーム、送信要求(RTS: Request to send)フレーム、受信準備完了(CTS: Clear to send)フレーム等が含まれる。マネジメントフレームには、ビーコン(Beacon)フレーム、プローブ要求(Probe request)フレーム、プローブ応答(Probe response)フレーム、認証(Authentication)フレーム、接続要求(Association request)フレーム、接続応答(Association response)フレーム等が含まれる。データフレームには、データ(Data)フレーム、ポーリング(CF-poll)フレーム等が含まれる。各装置は、MACヘッダに含まれるフレームコントロールフィールドの内容を読み取ることで、受信したフレームのフレームタイプおよびサブフレームタイプを把握することができる。 The frame type of the transmission frame of the MAC layer is roughly classified into three types: a management frame that manages the connection state between devices, a control frame that manages the communication state between devices, and a data frame that contains actual transmission data. Each is further classified into a plurality of types of subframe types. The control frame includes a reception completion notification (ACK: Acknowledge) frame, a transmission request (RTS: Request to send) frame, a reception preparation completion (CTS: Clear to send) frame, and the like. Management frames include Beacon frames, Probe request frames, Probe response frames, Authentication frames, Association request frames, Association response frames, etc. included. The data frame includes a data (Data) frame, a polling (CF-poll) frame, and the like. Each device can recognize the frame type and subframe type of the received frame by reading the contents of the frame control field included in the MAC header.
 なお、ACKには、Block ACKが含まれても良い。Block ACKは、複数のMPDUに対する受信完了通知を実施可能である。また、ACKには、複数の通信装置に対する受信完了通知を含むMulti STA Block ACKが含まれても良い。  The ACK may include a Block ACK. Block ACK can implement reception completion notification for multiple MPDUs. Also, the ACK may include a Multi STA Block ACK containing reception completion notifications for a plurality of communication devices.
 ビーコンフレームには、ビーコンが送信される周期(Beacon interval)やSSIDを記載するフィールド(Field)が含まれる。基地局装置は、ビーコンフレームを周期的にBSS内に報知することが可能であり、端末装置はビーコンフレームを受信することで、端末装置周辺の基地局装置を把握することが可能である。端末装置が基地局装置より報知されるビーコンフレームに基づいて基地局装置を把握することを受動的スキャニング(Passive scanning)と呼ぶ。一方、端末装置がプローブ要求フレームをBSS内に報知することで、基地局装置を探査することを能動的スキャニング(Active scanning)と呼ぶ。基地局装置は該プローブ要求フレームへの応答としてプローブ応答フレームを送信することが可能であり、該プローブ応答フレームの記載内容は、ビーコンフレームと同等である。 A beacon frame contains a field describing the beacon interval and the SSID. The base station apparatus can periodically broadcast a beacon frame within the BSS, and the terminal apparatus can recognize base station apparatuses around the terminal apparatus by receiving the beacon frame. It is called passive scanning that a terminal device recognizes a base station device based on a beacon frame broadcast from the base station device. On the other hand, searching for a base station apparatus by broadcasting a probe request frame in the BSS by a terminal apparatus is called active scanning. The base station apparatus can transmit a probe response frame as a response to the probe request frame, and the description content of the probe response frame is equivalent to that of the beacon frame.
 端末装置は基地局装置を認識したあとに、該基地局装置に対して接続処理を行なう。接続処理は認証(Authentication)手続きと接続(Association)手続きに分類される。端末装置は接続を希望する基地局装置に対して、認証フレーム(認証要求)を送信する。基地局装置は、認証フレームを受信すると、該端末装置に対する認証の可否などを示すステータスコードを含んだ認証フレーム(認証応答)を該端末装置に送信する。端末装置は、該認証フレームに記載されたステータスコードを読み取ることで、自装置が該基地局装置に認証を許可されたか否かを判断することができる。なお、基地局装置と端末装置は認証フレームを複数回やり取りすることが可能である。 After the terminal device recognizes the base station device, it performs connection processing to the base station device. Connection processing is classified into an authentication procedure and an association procedure. A terminal device transmits an authentication frame (authentication request) to a base station device that desires connection. Upon receiving the authentication frame, the base station apparatus transmits to the terminal apparatus an authentication frame (authentication response) including a status code indicating whether or not the terminal apparatus can be authenticated. By reading the status code described in the authentication frame, the terminal device can determine whether or not the terminal device is permitted to be authenticated by the base station device. Note that the base station apparatus and the terminal apparatus can exchange authentication frames multiple times.
 端末装置は認証手続きに続いて、基地局装置に対して接続手続きを行なうために、接続要求フレームを送信する。基地局装置は接続要求フレームを受信すると、該端末装置の接続を許可するか否かを判断し、その旨を通知するために、接続応答フレームを送信する。接続応答フレームには、接続処理の可否を示すステータスコードに加えて、端末装置を識別するためのアソシエーション識別番号(AID: Association identifier)が記載されている。基地局装置は接続許可を出した端末装置にそれぞれ異なるAIDを設定することで、複数の端末装置を管理することが可能となる。 Following the authentication procedure, the terminal device transmits a connection request frame to perform the connection procedure to the base station device. Upon receiving the connection request frame, the base station apparatus determines whether or not to permit the connection of the terminal apparatus, and transmits a connection response frame to notify that effect. The connection response frame contains an association identifier (AID) for identifying the terminal device, in addition to a status code indicating whether connection processing is possible. The base station apparatus can manage a plurality of terminal apparatuses by setting different AIDs for the terminal apparatuses that have issued connection permission.
 接続処理が行われたのち、基地局装置と端末装置は実際のデータ伝送を行なう。IEEE802.11システムでは、分散制御機構(DCF: Distributed Coordination Function)と集中制御機構(PCF: Point Coordination Function)、およびこれらが拡張された機構(拡張分散チャネルアクセス(EDCA: Enhanced distributed channel access)や、ハイブリッド制御機構(HCF: Hybrid coordination function)等)が定義されている。以下では、基地局装置が端末装置にDCFで信号を送信する場合を例にとって説明するが、端末装置から基地局装置にDCFで信号を送信する場合も同様である。 After the connection process is performed, the base station device and the terminal device perform actual data transmission. In the IEEE802.11 system, a distributed control mechanism (DCF: Distributed Coordination Function), a centralized control mechanism (PCF: Point Coordination Function), and enhanced mechanisms of these (enhanced distributed channel access (EDCA), A hybrid control mechanism (HCF: Hybrid coordination function) is defined. In the following, a case where the base station apparatus transmits a signal to the terminal apparatus using DCF will be described as an example, but the same applies to the case where the terminal apparatus transmits a signal to the base station apparatus using DCF.
 DCFでは、基地局装置および端末装置は、通信に先立ち、自装置周辺の無線チャネルの使用状況を確認するキャリアセンス(CS: Carrier sense)を行なう。例えば、送信局である基地局装置は予め定められたクリアチャネル評価レベル(CCAレベル: Clear channel assessment level)よりも高い信号を該無線チャネルで受信した場合、該無線チャネルでの送信フレームの送信を延期する。以下では、該無線チャネルにおいて、CCAレベル以上の信号が検出される状態をビジー(Busy)状態、CCAレベル以上の信号が検出されない状態をアイドル(Idle)状態と呼ぶ。このように、各装置が実際に受信した信号の電力(受信電力レベル)に基づいて行なうCSを物理キャリアセンス(物理CS)と呼ぶ。なおCCAレベルをキャリアセンスレベル(CS level)、もしくはCCA閾値(CCA threshold:CCAT)とも呼ぶ。なお、基地局装置および端末装置は、CCAレベル以上の信号を検出した場合は、少なくともPHYレイヤの信号を復調する動作に入る。 In DCF, base station equipment and terminal equipment perform carrier sense (CS) to check the usage status of wireless channels around their own equipment prior to communication. For example, when a base station apparatus, which is a transmitting station, receives a signal higher than a predetermined clear channel evaluation level (CCA level: Clear channel assessment level) on the radio channel, the transmission of the transmission frame on the radio channel is performed. put off. Hereinafter, a state in which a signal of the CCA level or higher is detected in the radio channel is called a busy state, and a state in which a signal of the CCA level or higher is not detected is called an idle state. Thus, CS performed based on the power (reception power level) of the signal actually received by each device is called physical carrier sense (physical CS). The CCA level is also called a carrier sense level (CS level) or a CCA threshold (CCAT). When the base station apparatus and the terminal apparatus detect a signal of the CCA level or higher, they start the operation of demodulating at least the PHY layer signal.
 基地局装置は送信する送信フレームに種類に応じたフレーム間隔(IFS: Inter frame space)だけキャリアセンスを行ない、無線チャネルがビジー状態かアイドル状態かを判断する。基地局装置がキャリアセンスする期間は、これから基地局装置が送信する送信フレームのフレームタイプおよびサブフレームタイプによって異なる。IEEE802.11システムでは、期間の異なる複数のIFSが定義されており、最も高い優先度が与えられた送信フレームに用いられる短フレーム間隔(SIFS: Short IFS)、優先度が比較的高い送信フレームに用いられるポーリング用フレーム間隔(PCF IFS: PIFS)、最も優先度の低い送信フレームに用いられる分散制御用フレーム間隔(DCF IFS: DIFS)などがある。基地局装置がDCFでデータフレームを送信する場合、基地局装置はDIFSを用いる。 The base station device performs carrier sense for the frame interval (IFS: Inter frame space) according to the type of transmission frame to be transmitted, and determines whether the radio channel is busy or idle. The period during which the base station apparatus performs carrier sensing differs depending on the frame type and subframe type of the transmission frame to be transmitted by the base station apparatus. In the IEEE 802.11 system, multiple IFSs with different durations are defined. There are the polling frame interval (PCF IFS: PIFS) used, the distributed control frame interval (DCF IFS: DIFS) used for the lowest priority transmission frame, and the like. When the base station apparatus transmits data frames in DCF, the base station apparatus uses DIFS.
 基地局装置はDIFSだけ待機したあとで、フレームの衝突を防ぐためのランダムバックオフ時間だけ更に待機する。IEEE802.11システムにおいては、コンテンションウィンドウ(CW: Contention window)と呼ばれるランダムバックオフ時間が用いられる。CSMA/CAでは、ある送信局が送信した送信フレームは、他送信局からの干渉が無い状態で受信局に受信されることを前提としている。そのため、送信局同士が同じタイミングで送信フレームを送信してしまうと、フレーム同士が衝突してしまい、受信局は正しく受信することができない。そこで、各送信局が送信開始前に、ランダムに設定される時間だけ待機することで、フレームの衝突が回避される。基地局装置はキャリアセンスによって無線チャネルがアイドル状態であると判断すると、CWのカウントダウンを開始し、CWが0となって初めて送信権を獲得し、端末装置に送信フレームを送信できる。なお、CWのカウントダウン中に基地局装置がキャリアセンスによって無線チャネルをビジー状態と判断した場合は、CWのカウントダウンを停止する。そして、無線チャネルがアイドル状態となった場合、先のIFSに続いて、基地局装置は残留するCWのカウントダウンを再開する。 After waiting for DIFS, the base station device further waits for a random backoff time to prevent frame collision. In the IEEE 802.11 system, a random backoff time called contention window (CW) is used. CSMA/CA assumes that a transmission frame transmitted by a certain transmitting station is received by a receiving station without interference from other transmitting stations. Therefore, if the transmitting stations transmit transmission frames at the same timing, the frames collide with each other and the receiving stations cannot receive the frames correctly. Therefore, each transmitting station waits for a randomly set time before starting transmission, thereby avoiding frame collision. When the base station apparatus determines that the radio channel is in an idle state by carrier sense, it starts counting down the CW and acquires the transmission right only when the CW becomes 0, and can transmit the transmission frame to the terminal apparatus. If the base station apparatus determines that the radio channel is busy by carrier sense during the CW countdown, the CW countdown is stopped. Then, when the radio channel becomes idle, following the previous IFS, the base station apparatus resumes counting down remaining CWs.
 次に、フレーム受信の詳細について説明する。受信局である端末装置は、送信フレームを受信し、該送信フレームのPHYヘッダを読み取り、受信した送信フレームを復調する。そして、端末装置は復調した信号のMACヘッダを読み取ることで、該送信フレームが自装置宛てのものか否かを認識することができる。なお、端末装置は、PHYヘッダに記載の情報(例えばVHT-SIG-Aの記載されるグループ識別番号(GID: Group identifier, Group ID))に基づいて、該送信フレームの宛先を判断することも可能である。 Next, the details of frame reception will be explained. A terminal device, which is a receiving station, receives the transmission frame, reads the PHY header of the transmission frame, and demodulates the received transmission frame. By reading the MAC header of the demodulated signal, the terminal device can recognize whether or not the transmission frame is addressed to itself. In addition, the terminal device may determine the destination of the transmission frame based on the information described in the PHY header (for example, the group identification number (GID: Group identifier, Group ID) described in VHT-SIG-A). It is possible.
 端末装置は、受信した送信フレームが自装置宛てのものと判断し、そして誤りなく送信フレームを復調できた場合、フレームを正しく受信できたことを示すACKフレームを送信局である基地局装置に送信しなければならない。ACKフレームは、SIFS期間の待機だけ(ランダムバックオフ時間は取られない)で送信される最も優先度の高い送信フレームの一つである。基地局装置は端末装置から送信されるACKフレームの受信をもって、一連の通信を終了する。なお、端末装置がフレームを正しく受信できなかった場合、端末装置はACKを送信しない。よって基地局装置は、フレーム送信後、一定期間(SIFS+ACKフレーム長)の間、受信局からのACKフレームを受信しなかった場合、通信は失敗したものとして、通信を終了する。このように、IEEE802.11システムの1回の通信(バーストとも呼ぶ)の終了は、ビーコンフレームなどの報知信号の送信の場合や、送信データを分割するフラグメンテーションが用いられる場合などの特別な場合を除き、必ずACKフレームの受信の有無で判断されることになる。 When the terminal device determines that the received transmission frame is addressed to itself and demodulates the transmission frame without error, the terminal device transmits an ACK frame indicating that the frame has been correctly received to the base station device, which is the transmitting station. Must. The ACK frame is one of the highest priority transmission frames that is transmitted only waiting for the SIFS period (no random backoff time). The base station apparatus terminates a series of communications upon receiving the ACK frame transmitted from the terminal apparatus. In addition, when the terminal device cannot receive the frame correctly, the terminal device does not transmit ACK. Therefore, if the base station apparatus does not receive an ACK frame from the receiving station for a certain period of time (SIFS+ACK frame length) after frame transmission, it assumes that the communication has failed and terminates the communication. As described above, the end of one communication (also called a burst) in the IEEE 802.11 system is limited to special cases such as the transmission of a notification signal such as a beacon frame, or the use of fragmentation to divide transmission data. Except for this, the determination is always based on whether or not an ACK frame has been received.
 端末装置は、受信した送信フレームが自装置宛てのものではないと判断した場合、PHYヘッダ等に記載されている該送信フレームの長さ(Length)に基づいて、ネットワークアロケーションベクタ(NAV: Network allocation vector)を設定する。端末装置は、NAVに設定された期間は通信を試行しない。つまり、端末装置は物理CSによって無線チャネルがビジー状態と判断した場合と同じ動作をNAVに設定された期間行なうことになるから、NAVによる通信制御は仮想キャリアセンス(仮想CS)とも呼ばれる。NAVは、PHYヘッダに記載の情報に基づいて設定される場合に加えて、隠れ端末問題を解消するために導入される送信要求(RTS: Request to send)フレームや、受信準備完了(CTS: Clear to send)フレームによっても設定される。 When the terminal device determines that the received transmission frame is not addressed to itself, the network allocation vector (NAV: Network allocation vector). The terminal device does not attempt communication during the period set in NAV. In other words, the terminal device performs the same operation as when the radio channel is determined to be busy by the physical CS for the period set in the NAV. Therefore, communication control by the NAV is also called virtual carrier sense (virtual CS). In addition to being set based on the information in the PHY header, NAV is a request to send (RTS) frame introduced to solve the hidden terminal problem, and a clear reception (CTS) frame. to send) frame.
 各装置がキャリアセンスを行ない、自律的に送信権を獲得するDCFに対して、PCFは、ポイントコーディネータ(PC: Point coordinator)と呼ばれる制御局が、BSS内の各装置の送信権を制御する。一般に基地局装置がPCとなり、BSS内の端末装置の送信権を獲得することになる。 In contrast to DCF, in which each device performs carrier sense and acquires the transmission right autonomously, in PCF, a control station called a point coordinator (PC) controls the transmission right of each device within the BSS. In general, the base station apparatus becomes a PC and acquires the transmission right of the terminal apparatus within the BSS.
 PCFによる通信期間には、非競合期間(CFP: Contention free period)と競合期間(CP: Contention period)が含まれる。CPの間は、前述してきたDCFに基づいて通信が行われ、PCが送信権を制御するのはCFPの間となる。PCである基地局装置は、CFPの期間(CFP Max duration)などが記載されたビーコンフレームをPCFの通信に先立ちBSS内に報知する。なお、PCFの送信開始時に報知されるビーコンフレームの送信にはPIFSが用いられ、CWを待たずに送信される。該ビーコンフレームを受信した端末装置は、該ビーコンフレームに記載されたCFPの期間をNAVに設定する。以降、NAVが経過する、もしくはCFPの終了をBSS内に報知する信号(例えばCF-endを含んだデータフレーム)が受信されるまでは、端末装置はPCより送信される送信権獲得をシグナリングする信号(例えばCF-pollを含んだデータフレーム)を受信した場合のみ、送信権を獲得可能である。なお、CFPの期間内では、同一BSS内でのパケットの衝突は発生しないから、各端末装置はDCFで用いられるランダムバックオフ時間を取らない。 The communication period by PCF includes a contention-free period (CFP: Contention free period) and a contention period (CP: Contention period). During the CP, communication is performed based on the DCF described above, and it is during the CFP that the PC controls the transmission right. A base station apparatus, which is a PC, notifies a beacon frame in which a CFP duration (CFP Max duration) and the like are described within the BSS prior to PCF communication. It should be noted that PIFS is used to transmit the beacon frame notified at the start of PCF transmission, and is transmitted without waiting for the CW. A terminal device that receives the beacon frame sets the period of the CFP described in the beacon frame to NAV. Thereafter, until the NAV elapses or until a signal announcing the end of the CFP within the BSS (for example, a data frame containing CF-end) is received, the terminal equipment signals acquisition of the transmission right transmitted from the PC. The right to transmit can only be obtained when a signal (eg a data frame containing a CF-poll) is received. Note that during the CFP period, packet collisions do not occur within the same BSS, so each terminal device does not take the random backoff time used in DCF.
 無線媒体は複数のリソースユニット(Resource unit:RU)に分割されることができる。図1は無線媒体の分割状態の1例を示す概要図である。例えば、リソース分割例1では、無線通信装置は無線媒体である周波数リソース(サブキャリア)を9個のRUに分割することができる。同様に、リソース分割例2では、無線通信装置は無線媒体であるサブキャリアを5個のRUに分割することができる。当然ながら、図1に示すリソース分割例はあくまで1例であり、例えば、複数のRUはそれぞれ異なるサブキャリア数によって構成されることも可能である。また、RUとして分割される無線媒体には周波数リソースだけではなく空間リソースも含まれることができる。無線通信装置(例えばAP)は、各RUに異なる端末装置宛てのフレームを配置することで、複数の端末装置(例えば複数のSTA)に同時にフレームを送信することができる。APは、無線媒体の分割の状態を示す情報(Resource allocation information)を、共通制御情報として、自装置が送信するフレームのPHYヘッダに記載することができる。更に、APは、各STA宛てのフレームが配置されたRUを示す情報(resource unit assignment information)を固有制御情報として、自装置が送信するフレームのPHYヘッダに記載することができる。 The wireless medium can be divided into multiple resource units (RU). FIG. 1 is a schematic diagram showing an example of a division state of a wireless medium. For example, in resource division example 1, the wireless communication device can divide frequency resources (subcarriers), which are wireless media, into nine RUs. Similarly, in resource division example 2, the wireless communication device can divide subcarriers, which are wireless media, into five RUs. Of course, the example of resource division shown in FIG. 1 is only an example, and for example, a plurality of RUs can be configured with different numbers of subcarriers. Also, the wireless medium divided as RUs can include spatial resources as well as frequency resources. A wireless communication device (for example, an AP) can simultaneously transmit frames to a plurality of terminal devices (for example, a plurality of STAs) by arranging frames addressed to different terminal devices in each RU. The AP can write information (Resource allocation information) indicating the division state of the wireless medium in the PHY header of the frame transmitted by the AP as common control information. Furthermore, the AP can describe information (resource unit assignment information) indicating the RU in which the frame addressed to each STA is allocated as unique control information in the PHY header of the frame transmitted by the AP itself.
 また、複数の端末装置(例えば複数のSTA)は、それぞれ割り当てられたRUにフレームを配置して送信することで、同時にフレームを送信することができる。複数のSTAは、APから送信されるトリガ情報を含んだフレーム(Trigger frame:TF)を受信した後、所定の期間待機したのち、フレーム送信を行なうことができる。各STAは、該TFに記載の情報に基づいて自装置に割り当てられたRUを把握することができる。また、各STAは、該TFを基準としたランダムアクセスによりRUを獲得することができる。 Also, a plurality of terminal devices (for example, a plurality of STAs) can transmit frames simultaneously by arranging frames in assigned RUs and transmitting the frames. A plurality of STAs can transmit a frame after waiting for a predetermined period after receiving a frame (Trigger frame: TF) containing trigger information transmitted from the AP. Each STA can grasp the RU assigned to itself based on the information described in the TF. Also, each STA can acquire RUs through random access based on the TF.
 APは、1つのSTAに複数のRUを同時に割り当てることができる。該複数のRUは、連続するサブキャリアで構成されることも出来るし、不連続のサブキャリアで構成されることも出来る。APは、1つのSTAに割り当てた複数のRUを用いて、1つのフレームを送信することが出来るし、複数のフレームをそれぞれ異なるRUに割り当てて送信することができる。該複数のフレームの少なくとも1つは、Resource allocation informationを送信する複数の端末装置に対する共通の制御情報を含むフレームであることができる。 The AP can allocate multiple RUs to one STA at the same time. The plurality of RUs can be composed of continuous subcarriers or discontinuous subcarriers. The AP can transmit one frame using multiple RUs assigned to one STA, or can transmit multiple frames by assigning them to different RUs. At least one of the plurality of frames can be a frame containing common control information for a plurality of terminal devices transmitting resource allocation information.
 1つのSTAは、APより複数のRUを割り当てられることができる。STAは、割り当てられた複数のRUを用いて、1つのフレームを送信することができる。また、STAは割り当てられた複数のRUを用いて、複数のフレームをそれぞれ異なるRUに割り当てて送信することができる。該複数のフレームは、それぞれ異なるフレームタイプのフレームであることができる。 One STA can be assigned multiple RUs by the AP. A STA can transmit one frame using multiple assigned RUs. Also, the STA can use the assigned multiple RUs to assign multiple frames to different RUs and transmit them. The plurality of frames can be frames of different frame types.
 APは、1つのSTAに複数のAIDを割り当てることができる。APは、1つのSTAに割り当てた複数のAIDに対して、それぞれRUを割り当てることができる。APは、1つのSTAに割り当てた複数のAIDに対して、それぞれ割り当てたRUを用いて、それぞれ異なるフレームを送信することができる。該異なるフレームは、それぞれ異なるフレームタイプのフレームであることができる。 An AP can allocate multiple AIDs to one STA. The AP can assign RUs to multiple AIDs assigned to one STA. The AP can transmit different frames to multiple AIDs assigned to one STA using the assigned RUs. The different frames can be frames of different frame types.
 1つのSTAは、APより複数のAIDを割り当てられることができる。1つのSTAは割り当てられた複数のAIDに対して、それぞれRUを割り当てられることができる。1つのSTAは、自装置に割り当てられた複数のAIDにそれぞれ割り当てられたRUは、全て自装置に割り当てられたRUと認識し、該割り当てられた複数のRUを用いて、1つのフレームを送信することができる。また、1つのSTAは、該割り当てられた複数のRUを用いて、複数のフレームを送信することができる。このとき、該複数のフレームには、それぞれ割り当てられたRUに関連付けられたAIDを示す情報を記載して送信することができる。APは、1つのSTAに割り当てた複数のAIDに対して、それぞれ割り当てたRUを用いて、それぞれ異なるフレームを送信することができる。該異なるフレームは、異なるフレームタイプのフレームであることができる。 A single STA can be assigned multiple AIDs by the AP. One STA can be assigned RUs for each of the assigned AIDs. One STA recognizes all RUs assigned to multiple AIDs assigned to itself as RUs assigned to itself, and uses the assigned multiple RUs to transmit one frame. can do. Also, one STA can transmit multiple frames using the multiple assigned RUs. At this time, information indicating the AID associated with each assigned RU can be described in the plurality of frames and transmitted. The AP can transmit different frames to multiple AIDs assigned to one STA using the assigned RUs. The different frames can be frames of different frame types.
 以下では、基地局装置、端末装置を総称して、無線通信装置もしくは通信装置とも呼称する。また、ある無線通信装置が別の無線通信装置と通信を行う際にやりとりされる情報をデータ(data)とも呼称する。つまり、無線通信装置は、基地局装置及び端末装置を含む。 Below, base station devices and terminal devices are also collectively referred to as wireless communication devices or communication devices. Information exchanged when one wireless communication device communicates with another wireless communication device is also called data. That is, a wireless communication device includes a base station device and a terminal device.
 無線通信装置は、PPDUを送信する機能と受信する機能のいずれか、または両方を備える。図2は、無線通信装置が送信するPPDUの構成の一例を示した図である。IEEE802.11a/b/g規格に対応するPPDUはL-STF、L-LTF、L-SIG及びDataフレーム(MAC Frame、MACフレーム、ペイロード、データ部、データ、情報ビット等)を含んだ構成である。IEEE802.11n規格に対応するPPDUはL-STF、L-LTF、L-SIG、HT-SIG、HT-STF、HT-LTF及びDataフレームを含んだ構成である。IEEE802.11ac規格に対応するPPDUはL-STF、L-LTF、L-SIG、VHT-SIG-A、VHT-STF、VHT-LTF、VHT-SIG-B及びMACフレームの一部あるいは全てを含んだ構成である。IEEE802.11ax標準におけるPPDUは、L-STF、L-LTF、L-SIG、L-SIGが時間的に繰り返されたRL-SIG、HE-SIG-A、HE-STF、HE-LTF、HE-SIG-B及びDataフレームの一部あるいは全てを含んだ構成である。IEEE802.11be標準で検討されているPPDUは、L-STF、L-LTF、L-SIG、RL-SIG、U-SIG、EHT-SIG、EHT-STF、EHT-LTF及びDataフレームの一部あるいは全てを含んだ構成である。 A wireless communication device has either or both of a function to transmit and a function to receive PPDU. FIG. 2 is a diagram showing an example of the configuration of a PPDU transmitted by a wireless communication device. A PPDU that supports the IEEE802.11a/b/g standard has a configuration that includes L-STF, L-LTF, L-SIG and Data frames (MAC frames, MAC frames, payloads, data parts, data, information bits, etc.). be. A PPDU corresponding to the IEEE 802.11n standard has a configuration including L-STF, L-LTF, L-SIG, HT-SIG, HT-STF, HT-LTF and Data frames. PPDU corresponding to the IEEE802.11ac standard includes part or all of L-STF, L-LTF, L-SIG, VHT-SIG-A, VHT-STF, VHT-LTF, VHT-SIG-B and MAC frames. configuration. PPDUs in the IEEE 802.11ax standard are L-STF, L-LTF, L-SIG, RL-SIG with L-SIG temporally repeated, HE-SIG-A, HE-STF, HE-LTF, HE- This configuration includes part or all of SIG-B and Data frames. The PPDU considered in the IEEE802.11be standard is L-STF, L-LTF, L-SIG, RL-SIG, U-SIG, EHT-SIG, EHT-STF, EHT-LTF and part of Data frame or It is an all-inclusive configuration.
 図2中の点線で囲まれているL-STF、L-LTF及びL-SIGはIEEE802.11規格において共通に用いられる構成である(以下では、L-STF、L-LTF及びL-SIGをまとめてL-ヘッダとも呼称する)。例えばIEEE802.11a/b/g規格に対応する無線通信装置は、IEEE802.11n/ac規格に対応するPPDU内のL-ヘッダを適切に受信することが可能である。IEEE802.11a/b/g規格に対応する無線通信装置は、IEEE802.11n/ac規格に対応するPPDUを、IEEE802.11a/b/g規格に対応するPPDUとみなして受信することができる。 L-STF, L-LTF and L-SIG surrounded by dotted lines in FIG. collectively referred to as the L-header). For example, a wireless communication device compatible with the IEEE 802.11a/b/g standard can properly receive an L-header in a PPDU compatible with the IEEE 802.11n/ac standard. A wireless communication device conforming to the IEEE802.11a/b/g standard can receive a PPDU conforming to the IEEE802.11n/ac standard as a PPDU conforming to the IEEE802.11a/b/g standard.
 ただし、IEEE802.11a/b/g規格に対応する無線通信装置はL-ヘッダの後に続く、IEEE802.11n/ac規格に対応するPPDUを復調することができないため、送信アドレス(TA:Transmitter Address)や受信アドレス(RA:Receiver Address)やNAVの設定に用いられるDuration/IDフィールドに関する情報を復調することができない。 However, since the wireless communication device compatible with the IEEE802.11a/b/g standard cannot demodulate the PPDU compatible with the IEEE802.11n/ac standard following the L-header, the transmission address (TA: Transmitter Address) , receiver address (RA), and Duration/ID field used for setting NAV cannot be demodulated.
 IEEE802.11a/b/g規格に対応する無線通信装置が適切にNAVを設定する(あるいは所定の期間受信動作を行う)ための方法として、IEEE802.11は、L-SIGにDuration情報を挿入する方法を規定している。L-SIG内の伝送速度に関する情報(RATE field、L-RATE field、L-RATE、L_DATARATE、L_DATARATE field)、伝送期間に関する情報(LENGTH field、L-LENGTH field、L-LENGTH)は、IEEE802.11a/b/g規格に対応する無線通信装置が適切にNAVを設定するために使用される。 IEEE 802.11 inserts Duration information into L-SIG as a method for a wireless communication device compatible with IEEE 802.11a/b/g standards to appropriately set NAV (or perform reception operation for a predetermined period). stipulates the method. Information about the transmission rate in L-SIG (RATE field, L-RATE field, L-RATE, L_DATARATE, L_DATARATE field), information about the transmission period (LENGTH field, L-LENGTH field, L-LENGTH) is IEEE802.11a A wireless communication device supporting the /b/g standard is used to properly set the NAV.
 図3は、L-SIGに挿入されるDuration情報の方法の一例を示す図である。図3においては、一例としてIEEE802.11ac規格に対応するPPDU構成を示しているが、PPDU構成はこれに限定されない。IEEE802.11n規格に対応のPPDU構成及びIEEE802.11ax規格に対応するPPDU構成でも良い。TXTIMEは、PPDUの長さに関する情報を備え、aPreambleLengthは、プリアンブル(L-STF+L-LTF)の長さに関する情報を備え、aPLCPHeaderLengthは、PLCPヘッダ(L-SIG)の長さに関する情報を備える。L_LENGTHは、IEEE802.11規格の互換性をとるために設定される仮想的な期間であるSignal Extension、L_RATEに関連するNops、1シンボル(symbol,OFDM symbol等)の期間に関する情報であるaSymbolLength、PLCP Service fieldが含むビット数を示すaPLCPServiceLength、畳みこみ符号のテールビット数を示すaPLCPConvolutionalTailLengthに基づいて算出される。無線通信装置は、L_LENGTHを算出し、L-SIGに挿入することができる。また、無線通信装置は、L-SIG Durationを算出することができる。L-SIG Durationは、L_LENGTHを含むPPDUと、その応答として宛先の無線通信装置より送信されることが期待されるACKとSIFSの期間を合計した期間に関する情報を示す。 FIG. 3 is a diagram showing an example of how Duration information is inserted into L-SIG. FIG. 3 shows a PPDU configuration corresponding to the IEEE802.11ac standard as an example, but the PPDU configuration is not limited to this. A PPDU configuration compatible with the IEEE802.11n standard and a PPDU configuration compatible with the IEEE802.11ax standard may be used. TXTIME comprises information on the length of the PPDU, aPreambleLength comprises information on the length of the preamble (L-STF+L-LTF), and aPLCPHeaderLength comprises information on the length of the PLCP header (L-SIG). L_LENGTH is Signal Extension, which is a virtual duration set for compatibility with the IEEE 802.11 standard; Nops related to L_RATE; It is calculated based on aPLCPServiceLength indicating the number of bits included in the PLCP Service field and aPLCPConvolutionalTailLength indicating the number of tail bits of the convolutional code. The wireless communication device can calculate L_LENGTH and insert it into L-SIG. Also, the wireless communication device can calculate the L-SIG Duration. L-SIG Duration indicates information on the total duration of the PPDU including L_LENGTH and the duration of ACK and SIFS expected to be transmitted from the destination wireless communication device as a response.
 図4は、L-SIG TXOP Protectionにおける、L-SIG Durationの一例を示した図である。DATA(フレーム、ペイロード、データ等)は、MACフレームとPLCPヘッダの一部または両方から構成される。また、BAはBlock ACK、またはACKである。PPDUは、L-STF,L-LTF,L-SIGを含み、さらにDATA,BA、RTSあるいはCTSのいずれかまたはいずれか複数を含んで構成されることができる。図4に示す一例では、RTS/CTSを用いたL-SIG TXOP Protectionを示しているが、CTS-to-Selfを用いても良い。ここで、MAC Durationは、Duration/ID fieldの値によって示される期間である。また、InitiatorはL-SIG TXOP Protection期間の終了を通知するためにCF_Endフレームを送信することができる。 FIG. 4 is a diagram showing an example of L-SIG Duration in L-SIG TXOP Protection. DATA (frame, payload, data, etc.) consists of part or both of the MAC frame and the PLCP header. Also, BA is Block ACK or ACK. The PPDU includes L-STF, L-LTF, L-SIG, and may include any or more of DATA, BA, RTS, or CTS. Although the example shown in FIG. 4 shows L-SIG TXOP Protection using RTS/CTS, CTS-to-Self may be used. Here, MAC Duration is the period indicated by the value of Duration/ID field. Also, the Initiator can transmit a CF_End frame to notify the end of the L-SIG TXOP Protection period.
 続いて、無線通信装置が受信するフレームからBSSを識別する方法について説明する。無線通信装置が、受信するフレームからBSSを識別するためには、PPDUを送信する無線通信装置が当該PPDUにBSSを識別するための情報(BSS color,BSS識別情報、BSSに固有な値)を挿入することが好適であり、BSS colorを示す情報をHE-SIG-Aに記載することが可能である。 Next, a method for identifying a BSS from a frame received by the wireless communication device will be described. In order for the wireless communication device to identify the BSS from the received frame, the wireless communication device that transmits the PPDU should include information for identifying the BSS (BSS color, BSS identification information, value unique to the BSS) in the PPDU. It is preferable to insert, and it is possible to describe information indicating the BSS color in HE-SIG-A.
 無線通信装置は、L-SIGを複数回送信する(L-SIG Repetition)ことができる。例えば、受信側の無線通信装置は、複数回送信されるL-SIGをMRC(Maximum Ratio Combining)を用いて受信することで、L-SIGの復調精度が向上する。さらに無線通信装置は、MRCによりL-SIGを正しく受信完了した場合に、当該L-SIGを含むPPDUがIEEE802.11ax規格に対応するPPDUであると解釈することができる。 The wireless communication device can transmit L-SIG multiple times (L-SIG Repetition). For example, the radio communication apparatus on the receiving side receives the L-SIG transmitted multiple times using MRC (Maximum Ratio Combining), thereby improving the demodulation accuracy of the L-SIG. Furthermore, when the L-SIG is correctly received by the MRC, the wireless communication device can interpret that the PPDU including the L-SIG is a PPDU conforming to the IEEE802.11ax standard.
 無線通信装置は、PPDUの受信動作中も、当該PPDU以外のPPDUの一部(例えば、IEEE802.11により規定されるプリアンブル、L-STF、L-LTF、PLCPヘッダ等)の受信動作を行うことができる(二重受信動作とも呼称する)。無線通信装置は、PPDUの受信動作中に、当該PPDU以外のPPDUの一部を検出した場合に、宛先アドレスや、送信元アドレスや、PPDUあるいはDATA期間に関する情報の一部または全部を更新することができる。 The wireless communication device shall perform the reception operation of a part of the PPDU other than the PPDU (for example, the preamble, L-STF, L-LTF, PLCP header, etc. specified by IEEE 802.11) even during the reception operation of the PPDU. (also called double receive operation). When a wireless communication device detects part of a PPDU other than the relevant PPDU during a PPDU reception operation, the wireless communication device updates part or all of the information on the destination address, the source address, the PPDU, or the DATA period. can be done.
 ACK及びBAは、応答(応答フレーム)とも呼称されることができる。また、プローブ応答や、認証応答、接続応答を応答と呼称することができる。 ACK and BA can also be called responses (response frames). Also, probe responses, authentication responses, and connection responses can be referred to as responses.
 図5は、本実施形態に係る無線通信システムの一例を示した図である。無線通信システム3-1は、無線通信装置1-1及び無線通信装置2-1~2-3を備えている。なお、無線通信装置1-1を基地局装置1-1とも呼称し、無線通信装置2-1~2-3を端末装置2-1~3とも呼称する。また、無線通信装置2-1~2-3および端末装置2-1~2-3を、無線通信装置1-1に接続されている装置として、無線通信装置2Aおよび端末装置2Aとも呼称する。無線通信装置1-1及び無線通信装置2Aは、無線接続されており、お互いにPPDUの送受信を行うことができる状態にある。また、本実施形態に係る無線通信システムは、無線通信システム3-1の他に無線通信システム3-2を備えてもよい。無線通信システム3-2は、無線通信装置1-2及び無線通信装置2-4~6を備えている。なお、無線通信装置1-2を基地局装置1-2とも呼称し、無線通信装置2-4~6を端末装置2-4~6とも呼称する。また、無線通信装置2-4~6および端末装置2-4~6を、無線通信装置1-2に接続されている装置として、無線通信装置2Bおよび端末装置2Bとも呼称する。無線通信システム3-1、無線通信システム3-2は異なるBSSを形成するが、これはESS(Extended Service Set)が異なることを必ずしも意味していない。ESSは、LAN(Local Area Network)を形成するサービスセットを示している。つまり、同じESSに属する無線通信装置は、上位層から同一のネットワークに属しているとみなされることができる。また、BSSはDS(Distribution System)を介して結合されてESSを形成する。なお、無線通信システム3-1、3-2のそれぞれは、さらに複数の無線通信装置を備えることも可能である。 FIG. 5 is a diagram showing an example of a wireless communication system according to this embodiment. The radio communication system 3-1 includes a radio communication device 1-1 and radio communication devices 2-1 to 2-3. The wireless communication device 1-1 is also called the base station device 1-1, and the wireless communication devices 2-1 to 2-3 are also called terminal devices 2-1 to 2-3. The wireless communication devices 2-1 to 2-3 and the terminal devices 2-1 to 2-3 are also referred to as a wireless communication device 2A and a terminal device 2A as devices connected to the wireless communication device 1-1. The wireless communication device 1-1 and the wireless communication device 2A are wirelessly connected and are in a state of being able to transmit and receive PPDUs to and from each other. Also, the radio communication system according to this embodiment may include a radio communication system 3-2 in addition to the radio communication system 3-1. The radio communication system 3-2 includes a radio communication device 1-2 and radio communication devices 2-4 to 2-6. The wireless communication device 1-2 is also called the base station device 1-2, and the wireless communication devices 2-4 to 2-6 are also called terminal devices 2-4 to 2-6. The wireless communication devices 2-4 to 2-6 and the terminal devices 2-4 to 2-6 are also referred to as a wireless communication device 2B and a terminal device 2B as devices connected to the wireless communication device 1-2. Although the radio communication system 3-1 and the radio communication system 3-2 form different BSSs, this does not necessarily mean that ESSs (Extended Service Sets) are different. ESS indicates a service set forming a LAN (Local Area Network). That is, wireless communication devices belonging to the same ESS can be regarded as belonging to the same network from higher layers. Also, the BSSs are combined via a DS (Distribution System) to form an ESS. Each of the radio communication systems 3-1 and 3-2 can further include a plurality of radio communication devices.
 図5において、以下の説明においては、無線通信装置2Aが送信する信号は、無線通信装置1-1および無線通信装置2Bには到達する一方で、無線通信装置1-2には到達しないものとする。つまり、無線通信装置2Aがあるチャネルを使って信号を送信すると、無線通信装置1-1と、無線通信装置2Bは、当該チャネルをビジー状態と判断する一方で、無線通信装置1-2は、当該チャネルをアイドル状態と判断する。また、無線通信装置2Bが送信する信号は、無線送信装置1-2および無線通信装置2Aには到達する一方で、無線通信装置1-1には到達しないものとする。つまり、無線通信装置2Bがあるチャネルを使って信号を送信すると、無線通信装置1-2と、無線通信装置2Aは、当該チャネルをビジー状態と判断する一方で、無線通信装置1-1は、当該チャネルをアイドル状態と判断する。 In FIG. 5, in the following description, it is assumed that the signal transmitted by the radio communication device 2A reaches the radio communication devices 1-1 and 2B, but does not reach the radio communication device 1-2. do. That is, when the radio communication device 2A transmits a signal using a certain channel, the radio communication device 1-1 and the radio communication device 2B determine that the channel is busy, while the radio communication device 1-2 The channel is determined to be idle. It is also assumed that the signal transmitted by the radio communication device 2B reaches the radio transmission device 1-2 and the radio communication device 2A, but does not reach the radio communication device 1-1. That is, when radio communication device 2B transmits a signal using a certain channel, radio communication device 1-2 and radio communication device 2A determine that the channel is busy, while radio communication device 1-1 The channel is determined to be idle.
 MLD(Multi-link Device)は、マルチリンク通信可能である無線通信装置である。後述する本実施形態のアクセスポイント装置やステーション装置は、マルチリンク通信に対応するMLDである。前述した無線通信装置1-1、1-2、2A、2Bは、MLDであるとして説明するが、実際の運用では無線通信システム内の全ての無線通信装置がマルチリンク通信に対応していなくともよい。 A MLD (Multi-link Device) is a wireless communication device capable of multi-link communication. An access point device and a station device of this embodiment, which will be described later, are MLDs that support multilink communication. The radio communication devices 1-1, 1-2, 2A, and 2B described above are described as being MLDs, but in actual operation, even if all the radio communication devices in the radio communication system do not support multilink communication, good.
 以下の実施形態では、無線通信装置1-1(基地局装置1-1)が送信し、無線通信装置2-1(端末装置2-1)が受信する場合を説明するが、本発明はこれに限らず、無線通信装置2-1(端末装置2-1)が送信し、無線通信装置1-1(基地局装置1-1)が受信する場合も含まれる。なお、無線通信装置1-1及び無線通信装置2-1の装置構成は、特に断らない限り、後述する図8、図9の装置構成例と同様である。 In the following embodiment, a case will be described in which the wireless communication device 1-1 (base station device 1-1) transmits and the wireless communication device 2-1 (terminal device 2-1) receives. However, it also includes the case where the wireless communication device 2-1 (terminal device 2-1) transmits and the wireless communication device 1-1 (base station device 1-1) receives. Unless otherwise specified, the device configurations of the wireless communication device 1-1 and the wireless communication device 2-1 are the same as the device configuration examples shown in FIGS. 8 and 9, which will be described later.
 本実施形態のマルチリンクのセットアップの概要例を図6に示す。当該図中では、MLDに対応する無線通信装置の例として、MLD無線通信装置1-1とMLD無線通信装置2-1を用いて示す。当該MLD無線通信装置1-1は、マルチリンクを確立するための手続き(マルチリンク確立要求10-1、マルチリンク確立応答10-2)を実施してマルチリンクを確立し、マルチリンクを維持することができる。ここで、マルチリンクを維持するということは、マルチリンクのための所定の設定に基づいてフレームの送受信を行うことができることを意味する。また、当該MLD無線通信装置1-1は、マルチリンクを維持しつつ、マルチリンクの設定を変更するための手続き(マルチリンク変更要求10-3、マルチリンク変更応答10-4)の他、当該マルチリンク変更要求10-3と当該マルチリンク変更応答10-4を用いてマルチリンクを解除するための手続きを実施し、マルチリンクを解除することもできる。 FIG. 6 shows an example of the overview of the multilink setup of this embodiment. In the figure, an MLD wireless communication device 1-1 and an MLD wireless communication device 2-1 are used as examples of wireless communication devices compatible with MLD. The MLD radio communication device 1-1 implements procedures for establishing a multilink (a multilink establishment request 10-1 and a multilink establishment response 10-2) to establish a multilink and maintain the multilink. be able to. Here, maintaining multilink means that frames can be transmitted and received based on a predetermined setting for multilink. In addition, the MLD radio communication device 1-1 maintains the multilink, and in addition to the procedure for changing the multilink setting (multilink change request 10-3, multilink change response 10-4), It is also possible to carry out a procedure for canceling the multilink using the multilink change request 10-3 and the multilink change response 10-4, thereby canceling the multilink.
 当該図6中の当該MLD無線通信装置2-1は、initiator(マルチリンクイニシエータ)とも呼称し、当該MLD無線通信装置1-1に対してマルチリンク確立要求10-1を送信する。なお、マルチリンクイニシエータはMLD無線通信装置2-1ではなく、MLD無線通信装置1-1であってもよい。マルチリンク確立要求10-1には、自無線通信装置のマルチリンク能力情報(Capability情報)、マルチリンク動作モード情報などの制御情報を含めてもよい。マルチリンク測定情報(Measurement情報)は、自無線通信装置が使用可能な周波数バンド(もしくはチャネル、もしくはサブチャネル)の無線信号品質であって、マルチリンク確立要求10-1に含まれていてもよいし、別のフレームを用いてMLD無線通信装置1-1に報告されてもよい。当該無線信号品質は、例えば、受信電力レベル、SNR(Signal to Noise Ratio)などがあるが、これらに限られず信号品質の良し悪しやリンクの負荷状況の判断や指標に用いることができる値であればよい。当該の受信電力レベルやSNRの測定対象は、MLD無線通信装置2-1を構成する各サブアクセスポイント装置が送信するビーコン(Beacon)などのブロードキャストフレーム(報知フレーム)としてもよい。ブロードキャストフレームは、MLD無線通信装置1-1に接続する無線通信装置2Aにブロードキャストされるので、各無線通信装置2Aは同じフレームを対象として無線信号品質測定でき、各無線通信装置2Aの受信状況を相対的に比較してもよい。また、ビーコン以外にブロードキャスト、マルチキャストされるマネジメントフレームや、コントロールフレームを測定対象としてもよい。なお、当該マルチリンク測定情報の測定は、サブ無線通信装置(サブステーション装置)の受信部が独立に実施し、上位層処理部10001-1に伝達される。当該測定値は、サブ無線通信装置単位毎に扱ってもよいし、全サブステーションを統合して扱ってもよい。 The MLD wireless communication device 2-1 in FIG. 6 is also called an initiator (multilink initiator), and transmits a multilink establishment request 10-1 to the MLD wireless communication device 1-1. Note that the multilink initiator may be the MLD wireless communication device 1-1 instead of the MLD wireless communication device 2-1. The multilink establishment request 10-1 may include control information such as multilink capability information (Capability information) and multilink operation mode information of its own wireless communication device. The multilink measurement information (measurement information) is the radio signal quality of the frequency band (or channel or subchannel) that can be used by the own radio communication device, and may be included in the multilink establishment request 10-1. and may be reported to the MLD wireless communication device 1-1 using another frame. The radio signal quality is, for example, received power level, SNR (Signal to Noise Ratio), etc., but is not limited to these. Just do it. The object of measurement of the received power level and SNR may be a broadcast frame (announcement frame) such as a beacon transmitted by each sub access point device constituting the MLD wireless communication device 2-1. Since the broadcast frame is broadcast to the wireless communication devices 2A connected to the MLD wireless communication device 1-1, each wireless communication device 2A can measure the wireless signal quality of the same frame, and can check the reception status of each wireless communication device 2A. A relative comparison may be made. In addition to beacons, broadcast and multicast management frames and control frames may also be measured. The measurement of the multilink measurement information is independently performed by the receiving section of the sub wireless communication device (substation device) and transmitted to the upper layer processing section 10001-1. The measured value may be handled for each sub-radio communication device unit, or may be handled by integrating all sub-stations.
 MLD無線通信装置1-1ならびにMLD無線通信装置2-1を構成するリンク数は、2つ以上の任意の数である。当該各々のリンクのキャリア周波数は、2.4GHz帯、5GHz帯の他に、6GHz帯、60GHz帯などに設定可能であるが、各国の法規制に応じて変化することもある。 The number of links forming the MLD wireless communication device 1-1 and the MLD wireless communication device 2-1 is any number of two or more. The carrier frequency of each link can be set to 6 GHz band, 60 GHz band, etc. in addition to 2.4 GHz band and 5 GHz band, but it may change according to the legal regulations of each country.
 マルチリンク能力情報には、自無線通信装置が使用可能なチャネル情報(周波数、帯域幅など)、STR(Simultaneously Transmission and Reception)可否、フレーム同期可否、マルチリンクアグリゲーション可否、マルチリンクスイッチ可否、マルチリンクTXOP(最大値、最小値など)などの情報が含まれてよい。マルチリンク動作モード情報には、マルチリンクを構成する各リンクのチャネル情報(周波数、帯域幅など)、マルチリンクTXOP limit、マルチリンクアグリゲーション、マルチリンクスイッチ、フレーム同期、フレーム非同期、STR、非STR、応答フレーム方式(応答フレーム接続情報、応答フレームタイミング情報、など)、応答フレームパラメータ(フレーム長の閾値、応答フレーム送信期限時間、など)、などが含まれていてもよい。 The multilink capability information includes channel information (frequency, bandwidth, etc.) usable by the own wireless communication device, STR (Simultaneously Transmission and Reception) availability, frame synchronization availability, multilink aggregation availability, multilink switching availability, multilink Information such as TXOP (max, min, etc.) may be included. The multilink operation mode information includes channel information (frequency, bandwidth, etc.) of each link that configures the multilink, multilink TXOP limit, multilink aggregation, multilink switch, frame synchronization, frame asynchronization, STR, non-STR, Response frame method (response frame connection information, response frame timing information, etc.), response frame parameters (frame length threshold, response frame transmission time limit, etc.), etc. may be included.
 マルチリンク確立要求は、各々のリンクで独立して別々に送信してもよいし、もしくはマルチリンクを構成するリンクのうちの一つで送信してもよい。同様に、マルチリンク測定情報は、各々のリンクで独立して別々に送信してもよいし、もしくはマルチリンクを構成するリンクのうちの一つで送信してもよい(マルチリンク確立要求にマルチリンク測定情報を含めない場合)。一つのリンクで送信する場合、マルチリンクのマネジメントのためのフレーム送受信を行うリンクとして、マルチリンク管理リンク(マルチリンクマネジメントリンク)とも呼ぶ。 The multilink establishment request may be sent independently and separately on each link, or may be sent on one of the links that make up the multilink. Similarly, the multilink measurement information may be sent independently and separately on each link, or may be sent on one of the links that make up the multilink (multilink in the multilink establishment request). not include link measurement information). When transmission is performed by one link, the link for transmitting and receiving frames for multilink management is also called a multilink management link (multilink management link).
 本実施形態に係るMLDの構成例を図7に示す。当該図中のマルチリンクに対応するアクセスポイント装置20000-1(以降、AP‐MLDとも呼称する)とマルチリンクに対応するステーション装置30000-1(以降、STA‐MLDとも呼称する)は、マルチリンクを構成する各々のリンクの周波数バンド(もしくはチャネル、もしくはサブチャネル)に対応した複数のサブ無線通信装置から構成される。当該AP‐MLDは、3つのサブ無線通信装置、この場合は3つのサブアクセスポイント装置(20000-2、200000-3、20000-4)から構成されている。同様に、当該STA‐MLDは、3つのサブ無線通信装置、この場合は3つのサブステーション装置(30000-2、300000-3、30000-4)から構成されている。なお、サブ無線通信装置(サブアクセスポイント装置、サブステーション装置など)は無線通信装置内の一部の回路で構成されてもよく、サブ無線通信部(サブアクセスポイント部、サブステーション部)と呼称してもよい。 A configuration example of the MLD according to this embodiment is shown in FIG. In the figure, an access point device 20000-1 (hereinafter also referred to as AP-MLD) supporting multilink and a station device 30000-1 (hereinafter also referred to as STA-MLD) supporting multilink are multilink consists of a plurality of sub-radio communication devices corresponding to the frequency bands (or channels or sub-channels) of each link that constitutes the . The AP-MLD consists of three sub wireless communication devices, in this case three sub access point devices (20000-2, 200000-3, 20000-4). Similarly, the STA-MLD is composed of three sub-radio communication devices, in this case three sub-station devices (30000-2, 300000-3, 30000-4). The sub-radio communication device (sub-access point device, sub-station device, etc.) may be composed of a part of the circuits in the radio communication device, and is called a sub-radio communication unit (sub-access point unit, sub-station unit). You may
 当該図7では、説明のために複数のサブ無線通信装置を論理的に別々のブロック(四角)で示している。物理的には、1つの無線通信装置から構成されてもよい。もしくは、物理的には、別々のサブ無線通信装置を構成してもよく、各々のサブアクセスポイント装置は、結線9-1や9-2により必要な情報を送受信し、各々のサブステーション装置は結線9-3や9-4により必要な情報を送受信する。この場合、当該別々のサブ無線通信装置は、MLMEで管理される。本実施形態の例では、主に前者の場合、つまり物理的に1つの無線通信装置10-1から構成され、当該無線通信装置10-1の構成は、図8、図9を用いて後述する。 In FIG. 7, a plurality of sub wireless communication devices are shown as logically separate blocks (squares) for explanation. Physically, it may consist of one wireless communication device. Alternatively, physically, separate sub-wireless communication devices may be configured, each sub-access point device transmitting and receiving necessary information via connections 9-1 and 9-2, and each substation device Necessary information is transmitted and received through connections 9-3 and 9-4. In this case, the separate sub-radio communication devices are managed by the MLME. In the example of the present embodiment, mainly the former case, that is, physically composed of one wireless communication device 10-1, the configuration of the wireless communication device 10-1 will be described later with reference to FIGS. 8 and 9. .
 なお、1つのAP‐MLDに含まれるサブアクセスポイント装置の数、一つのSTA‐MLDに含まれるサブステーション装置の数は、各々の無線通信装置が搭載する性能に応じて変わる。つまり、1つの無線通信システム内に位置する各々の無線通信装置が保有するサブ無線通信装置(サブアクセスポイント装置、サブステーション装置)の数は一致しなくてもよい。 The number of sub-access point devices included in one AP-MLD and the number of sub-station devices included in one STA-MLD change according to the performance installed in each wireless communication device. That is, the number of sub wireless communication devices (sub access point devices, sub station devices) possessed by each wireless communication device positioned within one wireless communication system does not have to match.
 当該図7において、サブステーション装置30000-2は、サブアクセスポイント装置20000-2に接続(Association)し、リンク1を確立する。サブステーション装置30000-3は、サブアクセスポイント装置20000-3に接続(Association)し、リンク2を確立する。サブステーション装置30000-4は、サブアクセスポイント装置20000-4に接続(Association)し、リンク3を確立する。本実施形態の例では、マルチリンクを構成するリンク数は3つとするが、これには限られず2以上の任意の数である。また、リンク1のキャリア周波数は2.4GHz帯、リンク2のキャリア周波数は5GHz帯、リンク3のキャリア周波数は6GHz帯とする。しかし、当該各々のリンクが使用する周波数は、2.4GHz帯、5GHz帯、6GHz帯、60GHz帯、その他、無線通信システムがサポートする周波数バンド、チャネル、サブチャネルの中から任意に設定可能であり、各国の法規制に応じて変化することもある。 In FIG. 7, substation device 30000-2 establishes link 1 by connecting (associating) with subaccess point device 20000-2. Substation device 30000-3 establishes link 2 by connecting (associating) with sub access point device 20000-3. Substation device 30000-4 establishes link 3 by connecting (associating) with sub access point device 20000-4. In the example of this embodiment, the number of links forming the multilink is three, but the number is not limited to this and may be any number of two or more. The carrier frequency of link 1 is 2.4 GHz band, the carrier frequency of link 2 is 5 GHz band, and the carrier frequency of link 3 is 6 GHz band. However, the frequency used by each link can be arbitrarily set from 2.4 GHz band, 5 GHz band, 6 GHz band, 60 GHz band, and other frequency bands, channels, and sub-channels supported by the wireless communication system. , may vary according to the laws and regulations of each country.
 図8は、無線通信装置1-1、1-2、2A及び2B、AP‐MLDおよびSTA‐MLD(以下では、まとめて無線通信装置10-1とも呼称する)の装置構成の一例を示した図である。無線通信装置10-1は、上位層部(上位層処理ステップ)10001-1と、自律分散制御部(自律分散制御ステップ)10002-1と、送信部(送信ステップ)10003-1と、受信部(受信ステップ)10004-1と、アンテナ部10005-1と、を含んだ構成である。 FIG. 8 shows an example of the device configuration of radio communication devices 1-1, 1-2, 2A and 2B, AP-MLD and STA-MLD (hereinafter also collectively referred to as radio communication device 10-1). It is a diagram. The wireless communication device 10-1 includes an upper layer section (upper layer processing step) 10001-1, an autonomous distributed control section (autonomous distributed control step) 10002-1, a transmitting section (transmitting step) 10003-1, and a receiving section. (Receiving step) This configuration includes 10004-1 and antenna section 10005-1.
 上位層部10001-1は、自無線通信装置内で扱う情報(送信フレームに関わる情報やMIB(Management Information Base)など)および他無線通信装置から受信したフレームについて、物理層よりも上位の層、例えばMAC層やLLC層の情報処理を行う。マルチリンク制御部10001a-1は、上位層部10001-1に含まれる構成であってもよいが、別に独立していてもよい。 The upper layer section 10001-1 handles information handled within its own wireless communication device (information related to transmission frames, MIB (Management Information Base), etc.) and frames received from other wireless communication devices, a layer higher than the physical layer, For example, it performs information processing in the MAC layer and the LLC layer. The multilink control section 10001a-1 may be included in the upper layer section 10001-1, or may be independent.
 上位層部10001-1は、MACレイヤにてマルチリンクを確立したリンクの負荷状況を測定し、マルチリンク制御部10001a-1では、当該測定結果に応じて再送先リンクの候補を選出する。当該再送先リンクの候補は、フレームに対する再送先リンクを指定する情報を含める。当該マルチリンク制御部10001a-1は、当該再送先リンクの候補または当該再送先リンクの候補に再送方法(ARQ/HARQ)を含めた制御情報を生成し、PHYレイヤへと伝達する。例えば、当該マルチリンク制御部10001a-1は、当該制御情報に再送先リンクの候補が設定されていない場合、ARQによるフレームの再送を実施し、当該制御情報にHARQが設定されている場合、当該再送先リンクの候補においてパケット合成を実施する。 The upper layer section 10001-1 measures the load status of the links that have established multilinks in the MAC layer, and the multilink control section 10001a-1 selects retransmission destination link candidates according to the measurement results. The retransmission destination link candidate includes information designating a retransmission destination link for the frame. The multilink control section 10001a-1 generates the retransmission destination link candidate or control information including the retransmission method (ARQ/HARQ) for the retransmission destination link candidate, and transmits the control information to the PHY layer. For example, the multilink control unit 10001a-1 retransmits the frame by ARQ when no retransmission destination link candidate is set in the control information, and when HARQ is set in the control information, the Perform packet combining on candidate retransmission destination links.
 当該各々のリンクの負荷状況は、当該上位層部10001-1のMACレイヤにおけるチャネルの使用状況、各RUに対するフレームの割り当て状態(Resource allocation)、APの運用状況を示すBSS負荷情報(BSS load information)、BSS平均アクセス遅延(BSS average access delay)、BSSアクセスカテゴリー遅延(BSS Access Category Delay)に基づいて算出される値であってもよい。また、当該各々のリンクの負荷状況は、AP-MLDとマルチリンクを確立する全てのSTAまたはSTA‐MLDが通知する当該測定値であってもよい。なお、リンクの負荷状況は、当該測定値に代わって、負荷状況を段階的に反映した識別子であってもよい。 The load status of each link includes the channel usage status in the MAC layer of the upper layer section 10001-1, the allocation status of frames for each RU (Resource allocation), and the BSS load information indicating the operation status of the AP. ), BSS average access delay, and BSS access category delay. Also, the load status of each link may be the measurement reported by all STAs or STA-MLDs establishing multi-links with the AP-MLD. Instead of the measured value, the link load status may be an identifier that reflects the load status in stages.
 上位層部10001-1は、MACレイヤへと伝達されたフレームからMPDUまたはMPDUを集約したA-MPDUフレームを生成する。当該マルチリンク制御部10001a-1は、当該フレームと当該各々のリンクにそれぞれTIDを割り当てるTID to link mappingを実施する。なお、当該各々のリンクには、複数のTIDを割り当てることができる。また、当該マルチリンク制御部10001a-1は、当該フレームをPHYレイヤに伝達し、PHYヘッダに当該制御情報を含めたPPDUを生成する。当該PHYヘッダには、同期検出のためのPLCPプリアンブル、受信信号強度に応じて変調符号化方式(MCS:Modulation and Coding Scheme)を定めるためのPLCPヘッダなどフレーム復号時に必要な情報が含まれているものとする。当該AP‐MLDにおける送信部10003-1は、当該PPDUと同一のTIDが割り当てられたリンクでフレームの送信を実施する。 The upper layer section 10001-1 generates an MPDU or an A-MPDU frame by aggregating the MPDUs from the frame transmitted to the MAC layer. The multilink control unit 10001a-1 implements TID to link mapping for allocating TIDs to the frame and each link. Note that each link can be assigned multiple TIDs. Also, the multilink control unit 10001a-1 transfers the frame to the PHY layer and generates a PPDU including the control information in the PHY header. The PHY header contains information necessary for frame decoding, such as a PLCP preamble for synchronization detection and a PLCP header for determining the modulation and coding scheme (MCS) according to the received signal strength. shall be The transmitting section 10003-1 in the AP-MLD transmits the frame on the link to which the same TID as the PPDU is assigned.
 上位層部10001-1は、他のネットワークと接続され、自律分散制御部10002-1にフレームやトラフィックに関する情報を通知することができる。トラフィックに関する情報とは、例えば、ビーコンなどのマネジメントフレームに含まれる制御情報であってもよいし、自無線通信装置宛てに他の無線通信装置が報告する測定情報であってもよい。さらには、宛先を限定せず(自装置宛であってもよいし、他装置宛であってもよいし、ブロードキャスト、マルチキャストでもよい)、マネジメントフレームやコントロールフレームに含まれる制御情報であってもよい。 The upper layer section 10001-1 is connected to another network and can notify the autonomous distributed control section 10002-1 of information on frames and traffic. Information about traffic may be, for example, control information included in a management frame such as a beacon, or may be measurement information reported by another wireless communication device addressed to the wireless communication device itself. Furthermore, the destination is not limited (it may be addressed to its own device, may be addressed to another device, or may be broadcast or multicast), even if it is control information included in a management frame or control frame. good.
 図9は、自律分散制御部10002-1の装置構成の一例を示した図である。制御部10002-1は、CCA部(CCAステップ)10002a-1と、バックオフ部(バックオフステップ)10002b-1と、送信判断部(送信判断ステップ)10002c-1とを含んだ構成である。 FIG. 9 is a diagram showing an example of the device configuration of the autonomous decentralized control unit 10002-1. The control section 10002-1 includes a CCA section (CCA step) 10002a-1, a backoff section (backoff step) 10002b-1, and a transmission determination section (transmission determination step) 10002c-1.
 CCA部10002a-1は、受信部10004-1から通知される、無線リソースを介して受信する受信信号電力に関する情報と、受信信号に関する情報(復号後の情報を含む)のいずれか一方、または両方を用いて、当該無線リソースの状態判断(busyまたはidleの判断を含む)を行うことができる。CCA部10002a-1は、当該無線リソースの状態判断情報を、バックオフ部10002b-1及び送信判断部10002c-1に通知することができる。 CCA section 10002a-1 receives one or both of information about received signal power received via radio resources and information about received signals (including information after decoding) notified from receiving section 10004-1. can be used to determine the state of the radio resource (including busy or idle determination). The CCA section 10002a-1 can notify the back-off section 10002b-1 and the transmission decision section 10002c-1 of the radio resource state determination information.
 バックオフ部10002b-1は、無線リソースの状態判断情報を用いて、バックオフを行うことができる。バックオフ部10002b-1は、Contention Window(CW)を生成し、カウントダウン機能を有する。例えば、無線リソースの状態判断情報がidleを示す場合に、CWのカウントダウンを実行し、無線リソースの状態判断情報がbusyを示す場合に、CWのカウントダウンを停止することができる。バックオフ部10002b-1は、CWの値を送信判断部10002c-1に通知することができる。 The backoff unit 10002b-1 can perform backoff using the radio resource state determination information. The backoff unit 10002b-1 generates a Contention Window (CW) and has a countdown function. For example, when the radio resource state determination information indicates idle, the CW countdown can be executed, and when the radio resource state determination information indicates busy, the CW countdown can be stopped. The backoff unit 10002b-1 can notify the transmission determination unit 10002c-1 of the CW value.
 送信判断部10002c-1は、無線リソースの状態判断情報、またはCWの値のいずれか一方、あるいは両方を用いて送信判断を行う。例えば、無線リソースの状態判断情報がidleを示し、CWの値が0の時に送信判断情報を送信部10003-1に通知することができる。また、無線リソースの状態判断情報がidleを示す場合に送信判断情報を送信部10003-1に通知することができる。 The transmission decision unit 10002c-1 makes a transmission decision using either one or both of the radio resource status decision information and the CW value. For example, when the radio resource state determination information indicates idle and the value of CW is 0, the transmission determination information can be notified to the transmitting section 10003-1. Further, when the radio resource state determination information indicates idle, the transmission determination information can be notified to the transmitting section 10003-1.
 送信部10003-1は、物理層フレーム生成部(物理層フレーム生成ステップ)10003a-1と、無線送信部(無線送信ステップ)10003b-1とを含んだ構成である。物理層フレーム生成部10003a-1は、送信判断部10002c-1から通知される送信判断情報に基づき、物理層フレーム(以下、PPDUとも呼称する)を生成する機能を有する。物理層フレーム生成部10003a-1は、上位層から送られる送信フレームに対して誤り訂正符号化、変調、プレコーディングフィルタ乗算等を施す。物理層フレーム生成部10003a-1は、生成した物理層フレームを無線送信部10003b-1に通知する。 The transmission section 10003-1 includes a physical layer frame generation section (physical layer frame generation step) 10003a-1 and a radio transmission section (radio transmission step) 10003b-1. The physical layer frame generation unit 10003a-1 has a function of generating a physical layer frame (hereinafter also referred to as PPDU) based on transmission determination information notified from the transmission determination unit 10002c-1. Physical layer frame generation section 10003a-1 performs error correction coding, modulation, precoding filter multiplication, and the like on a transmission frame sent from an upper layer. The physical layer frame generator 10003a-1 notifies the radio transmitter 10003b-1 of the generated physical layer frame.
 物理層フレーム生成部10003a-1が生成するフレームには、制御情報が含まれる。該制御情報には、各無線通信装置宛てのデータが、どのRU(ここでRUには周波数リソースと空間リソースの両方を含む)に配置されているかを示す情報が含まれる。また、物理層フレーム生成部10003a-1が生成するフレームには、宛先端末である無線通信装置にフレーム送信を指示するトリガーフレームが含まれる。該トリガーフレームには、フレーム送信を指示された無線通信装置がフレームを送信する際に用いるRUを示す情報が含まれている。 Control information is included in the frame generated by the physical layer frame generation unit 10003a-1. The control information includes information indicating in which RU (here, RU includes both frequency resources and space resources) data addressed to each wireless communication device is allocated. Also, the frame generated by the physical layer frame generation unit 10003a-1 includes a trigger frame that instructs the wireless communication device, which is the destination terminal, to transmit the frame. The trigger frame contains information indicating the RU used when the wireless communication device instructed to transmit the frame transmits the frame.
 無線送信部10003b-1は、物理層フレーム生成部10003a-1が生成する物理層フレームを、無線周波数(RF: Radio Frequency)帯の信号に変換し、無線周波数信号を生成する。無線送信部10003b-1が行う処理には、デジタル・アナログ変換、フィルタリング、ベースバンド帯からRF帯への周波数変換等が含まれる。 The radio transmission unit 10003b-1 converts the physical layer frame generated by the physical layer frame generation unit 10003a-1 into a radio frequency (RF) band signal to generate a radio frequency signal. Processing performed by the radio transmission unit 10003b-1 includes digital/analog conversion, filtering, frequency conversion from the baseband band to the RF band, and the like.
 受信部10004-1は、無線受信部(無線受信ステップ)10004a-1と、信号復調部(信号復調ステップ)10004b-1を含んだ構成である。受信部10004-1は、アンテナ部10005-1が受信するRF帯の信号から受信信号電力に関する情報を生成する。受信部10004-1は、受信信号電力に関する情報と、受信信号に関する情報をCCA部10002a-1に通知することができる。 The receiving section 10004-1 includes a radio receiving section (radio receiving step) 10004a-1 and a signal demodulating section (signal demodulating step) 10004b-1. Receiving section 10004-1 generates information about received signal power from the RF band signal received by antenna section 10005-1. Receiving section 10004-1 can report information on received signal power and information on received signals to CCA section 10002a-1.
 受信部10004-1は、無線受信部(無線受信ステップ)10004a-1と、信号復調部(信号復調ステップ)10004b-1を含んだ構成である。受信部10004-1は、アンテナ部10005-1が受信するRF帯の信号から受信信号電力に関する情報を生成する。受信部10004-1は、受信信号電力に関する情報と、受信信号に関する情報をCCA部10002a-1に通知することができる。 The receiving section 10004-1 includes a radio receiving section (radio receiving step) 10004a-1 and a signal demodulating section (signal demodulating step) 10004b-1. Receiving section 10004-1 generates information about received signal power from the RF band signal received by antenna section 10005-1. Receiving section 10004-1 can report information on received signal power and information on received signals to CCA section 10002a-1.
 無線受信部10004a-1は、アンテナ部10005-1が受信するRF帯の信号をベースバンド信号に変換し、物理層信号(例えば、物理層フレーム)を生成する機能を有する。無線受信部10004a-1が行う処理には、RF帯からベースバンド帯への周波数変換処理、フィルタリング、アナログ・デジタル変換が含まれる。 The radio receiving section 10004a-1 has a function of converting an RF band signal received by the antenna section 10005-1 into a baseband signal and generating a physical layer signal (for example, a physical layer frame). The processing performed by the radio reception unit 10004a-1 includes frequency conversion processing from the RF band to the baseband band, filtering, and analog/digital conversion.
 信号復調部10004b-1は、無線受信部10004a-1が生成する物理層信号を復調する機能を有する。信号復調部10004b-1が行う処理には、チャネル等化、デマッピング、誤り訂正復号化等が含まれる。信号復調部10004b-1は、物理層信号から、例えば、物理層ヘッダが含む情報と、MACヘッダが含む情報と、送信フレームが含む情報とを取り出すことができる。信号復調部10004b-1は、取り出した情報を上位層部10001-1に通知することができる。なお、信号復調部10004b-1は、物理層ヘッダが含む情報と、MACヘッダが含む情報と、送信フレームが含む情報のいずれか、あるいは全てを取り出すことができる。 The signal demodulator 10004b-1 has a function of demodulating the physical layer signal generated by the radio receiver 10004a-1. Processing performed by the signal demodulator 10004b-1 includes channel equalization, demapping, error correction decoding, and the like. The signal demodulator 10004b-1 can extract, for example, information contained in the physical layer header, information contained in the MAC header, and information contained in the transmission frame from the physical layer signal. The signal demodulation section 10004b-1 can notify the extracted information to the upper layer section 10001-1. The signal demodulator 10004b-1 can extract any or all of the information included in the physical layer header, the information included in the MAC header, and the information included in the transmission frame.
 アンテナ部10005-1は、無線送信部10003b-1が生成する無線周波数信号を、無線空間に送信する機能を有する。また、アンテナ部10005-1は、無線周波数信号を受信し、無線受信部10004a-1に渡す機能を有する。 The antenna section 10005-1 has a function of transmitting a radio frequency signal generated by the radio transmission section 10003b-1 to radio space. Also, the antenna section 10005-1 has a function of receiving a radio frequency signal and transferring it to the radio receiving section 10004a-1.
 無線通信装置10-1は、送信するフレームのPHYヘッダやMACヘッダに、自無線通信装置が無線媒体を利用する期間を示す情報を記載することにより、自無線通信装置周辺の無線通信装置に当該期間だけNAVを設定させることができる。例えば、無線通信装置10-1は送信するフレームのDuration/IDフィールドまたはLengthフィールドに当該期間を示す情報を記載することができる。自無線通信装置周辺の無線通信装置に設定されたNAV期間を、無線通信装置10-1が獲得したTXOP期間(もしくは単にTXOP)と呼ぶこととする。そして、該TXOPを獲得した無線通信装置10-1を、TXOP獲得者(TXOP holder、TXOPホルダー)と呼ぶ。無線通信装置10-1がTXOPを獲得するために送信するフレームのフレームタイプは何かに限定されるものではなく、コントロールフレーム(例えばRTSフレームやCTS-to-selfフレーム)でも良いし、データフレームでも良い。 The wireless communication device 10-1 writes information indicating the period during which the wireless communication device uses the wireless medium in the PHY header or MAC header of the frame to be transmitted, thereby notifying wireless communication devices around the wireless communication device 10-1 of the period. NAV can be set only for a period of time. For example, wireless communication device 10-1 can write information indicating the duration in the Duration/ID field or Length field of the frame to be transmitted. The NAV period set in the wireless communication devices around the own wireless communication device is called the TXOP period (or simply TXOP) acquired by the wireless communication device 10-1. Then, the wireless communication device 10-1 that has acquired the TXOP is called a TXOP holder. The frame type of the frame that is transmitted by the wireless communication device 10-1 to acquire the TXOP is not limited to anything, and may be a control frame (for example, an RTS frame or a CTS-to-self frame) or a data frame. But it's okay.
 TXOPホルダーである無線通信装置10-1は、該TXOPの間で、自無線通信装置以外の無線通信装置に対して、フレームを送信することができる。無線通信装置1-1がTXOPホルダーであった場合、該TXOPの期間内で、無線通信装置1-1は無線通信装置2Aに対してフレームを送信することができる。また、無線通信装置1-1は、該TXOP期間内で、無線通信装置2Aに対して、無線通信装置1-1宛てのフレーム送信を指示することができる。無線通信装置1-1は、該TXOP期間内で、無線通信装置2Aに対して、無線通信装置1-1宛てのフレーム送信を指示する情報を含むトリガーフレームを送信することができる。 The wireless communication device 10-1, which is a TXOP holder, can transmit frames to wireless communication devices other than its own wireless communication device during the TXOP. If the radio communication device 1-1 is a TXOP holder, the radio communication device 1-1 can transmit frames to the radio communication device 2A within the period of the TXOP. Further, the radio communication device 1-1 can instruct the radio communication device 2A to transmit a frame addressed to the radio communication device 1-1 within the TXOP period. Within the TXOP period, the radio communication device 1-1 can transmit to the radio communication device 2A a trigger frame containing information instructing frame transmission addressed to the radio communication device 1-1.
 無線通信装置1-1は、フレーム送信を行なう可能性のある全通信帯域(例えばOperation bandwidth)に対してTXOPを確保してもよいし、実際にフレームを送信する通信帯域(例えばTransmission bandwidth)等の特定の通信帯域(Band)に対して確保してもよい。 The wireless communication device 1-1 may secure TXOP for all communication bands (for example, operation bandwidth) in which frame transmission may be performed, or a communication band for actually transmitting frames (for example, transmission bandwidth). may be reserved for a specific communication band (Band).
 無線通信装置1-1が獲得したTXOPの期間内でフレーム送信の指示を行なう無線通信装置は、必ずしも自無線通信装置に接続されている無線通信装置には限定されない。例えば、無線通信装置は、自無線通信装置の周辺にいる無線通信装置にReassociationフレームなどのマネジメントフレームや、RTS/CTSフレーム等のコントロールフレームを送信させるために、自無線通信装置に接続されていない無線通信装置に、フレームの送信を指示することができる。 The wireless communication device that instructs the frame transmission within the period of the TXOP acquired by the wireless communication device 1-1 is not necessarily limited to the wireless communication device connected to the own wireless communication device. For example, a wireless communication device is not connected to its own wireless communication device in order to transmit a management frame such as a Reassociation frame or a control frame such as an RTS/CTS frame to wireless communication devices around itself. A wireless communication device can be instructed to transmit a frame.
 さらに、DCFとは異なるデータ伝送方法であるEDCAにおけるTXOPについても説明する。IEEE802.11e規格はEDCAに関わるもので、映像伝送やVoIPなどの各種サービスのためのQoS(Quality of Service)保証の観点からTXOPについて規定されている。サービスは大きくは、VO(VOice)、VI(VIdeo)、BE(BestEffort)、BK(BacK ground)の4つのアクセスカテゴリーに分類されている。一般的には、優先度の高い方からVO、VI、BE、BKの順番である。それぞれのアクセスカテゴリーでは、CWの最小値CWmin、最大値CWmax、IFSの一種であるAIFS(Arbitration IFS)、送信機会の上限値であるTXOP limitのパラメータがあり、優先度の高低差をつけるように値が設定される。例えば、音声伝送を目的とした優先度の一番高いVOのCWmin,CWmax、AIFSは、他のアクセスカテゴリーに比較して相対的に小さい値を設定することで、他のアクセスカテゴリーに優先したデータ伝送が可能となる。例えば、映像伝送のため送信データ量が比較的大きくなるVIでは、TXOP limitを大きく設定することで、他のアクセスカテゴリーよりも送信機会を長くとることが可能となる。このように、各種サービスに応じたQoS保証を目的として、各アクセスカテゴリーの4つのパラメータの値が調整される。  In addition, TXOP in EDCA, which is a data transmission method different from DCF, will also be explained. The IEEE802.11e standard is related to EDCA, and defines TXOP from the viewpoint of QoS (Quality of Service) assurance for various services such as video transmission and VoIP. Services are broadly classified into four access categories: VO (VOice), VI (VIdeo), BE (BestEffort), and BK (Back ground). In general, the order of priority is VO, VI, BE, and BK. Each access category has parameters for the minimum CW value CWmin, maximum value CWmax, AIFS (arbitration IFS), which is a type of IFS, and TXOP limit, which is the upper limit of transmission opportunities. Value is set. For example, CWmin, CWmax, and AIFS of the VO with the highest priority for voice transmission are set to relatively small values compared to other access categories, thereby giving priority to other access categories. Transmission becomes possible. For example, in VI where the amount of data to be transmitted is relatively large due to video transmission, setting a large TXOP limit makes it possible to secure a longer transmission opportunity than in other access categories. Thus, the values of the four parameters of each access category are adjusted for the purpose of guaranteeing QoS according to various services.
 本実施形態において、当該送信部の信号復調部10004b-1は、受信した信号に対して、物理レイヤにおいて、復号処理を行い、誤り検出を行うことができる。ここで復号処理は、受信した信号に適用されている誤り訂正符号に対する復号処理を含む。ここで、誤り検出は、受信した信号に予め付与されている誤り検出符号(例えば巡回冗長検査(CRC)符号)を用いた誤り検出や、もともと誤り検出機能を備える誤り訂正符号(例えば低密度パリティ検査符号(Low Density Parity Check:LDPC))による誤り検出を含む。物理レイヤにおける復号処理は、符号化ブロック毎に適用されることが可能である。 In this embodiment, the signal demodulation section 10004b-1 of the transmission section can perform decoding processing and error detection on the received signal in the physical layer. The decoding processing here includes decoding processing for the error correction code applied to the received signal. Here, the error detection includes error detection using an error detection code (for example, a cyclic redundancy check (CRC) code) assigned in advance to the received signal, or error correction code (for example, a low-density parity code) originally provided with an error detection function. Includes error detection by check code (Low Density Parity Check: LDPC). A decoding process in the physical layer can be applied for each coded block.
 上位層部10001-1は、信号復調部における物理レイヤの復号の結果をMACレイヤに転送する。MACレイヤでは、転送されてきた物理レイヤの復号結果から、MACレイヤの信号を復元する。そして、MACレイヤにおいて、誤り検出を行い、受信フレームの送信元のステーション装置が送信したMACレイヤの信号が正しく復元できたか否かを判断する。 The upper layer section 10001-1 transfers the decoding result of the physical layer in the signal demodulation section to the MAC layer. In the MAC layer, the signal of the MAC layer is restored from the transferred decoding result of the physical layer. Then, in the MAC layer, error detection is performed, and it is determined whether or not the MAC layer signal transmitted by the station device that is the transmission source of the received frame has been correctly restored.
 図10は本実施形態に係る物理層フレーム生成部10003a-1の誤り訂正符号化の一例を示す図である。図10に示すように、斜線の領域には、情報ビット(システマティックビット)系列、白抜きの領域には冗長(パリティ)ビット系列が配置される。情報ビットおよび冗長ビットはそれぞれ適切にビットインターリーバが適用されている。物理層フレーム生成部10003a-1は配置されたビット系列に対し、リダンダンシーバージョン(RV)の値に応じて決定される開始位置として、必要なビット数を読み出すことができる。ビット数を調整することで符号化率の柔軟な変更、すなわちパンクチャリングが可能となる。なお、図10においては、RVは全部で4通りが示されているが、本実施形態に係る誤り訂正符号化において、RVの選択肢は、特定の値に限定されるものではない。RVの位置については、ステーション装置間で共有されている必要がある。本実施形態に係る誤り訂正符号化の方法が図10の例に限定されないことは言うまでもなく、符号化率を変更可能であり、また受信側の復号処理が達成される方法であればよい。 FIG. 10 is a diagram showing an example of error correction coding of the physical layer frame generator 10003a-1 according to this embodiment. As shown in FIG. 10, information bit (systematic bit) sequences are arranged in hatched areas, and redundant (parity) bit sequences are arranged in white areas. Information bits and redundant bits are appropriately bit interleaved. The physical layer frame generator 10003a-1 can read out the necessary number of bits from the allocated bit sequence as the start position determined according to the value of the redundancy version (RV). By adjusting the number of bits, it is possible to flexibly change the coding rate, that is, puncturing. Although FIG. 10 shows a total of four RVs, RV options are not limited to specific values in the error correction coding according to this embodiment. The position of the RV must be shared between station devices. Needless to say, the error correction coding method according to the present embodiment is not limited to the example of FIG. 10, and any method may be used as long as the coding rate can be changed and decoding processing on the receiving side can be achieved.
 例えば、IEEE802.11標準の低密度パリティ検査符号を用いた誤り訂正符号化は、まず低密度なパリティ検査行列から生成行列を求め、当該生成行列と情報ビットの行列積から算出されるパリティビットを生成する。次に、当該情報ビット系列に当該パリティビットを付与し、符号語を構成する。すなわち、当該物理層フレーム生成部10003a-1は、少なくともMCSの符号化率が設定する当該パリティ検査行列のサイズに基づいて、誤り訂正符号化を施す所定の情報ビット長を算出する。なお、LDPC符号化に用いる情報ビット系列をLDCP情報ブロック、LDPC情報ブロックをLDPC符号化されて得られるビット系列をLDPC符号語ブロックとも呼ぶ。 For example, in error correction coding using IEEE802.11 standard low-density parity check codes, first, a generator matrix is obtained from a low-density parity check matrix, and parity bits calculated from the matrix product of the generator matrix and information bits are obtained. Generate. Next, the parity bit is added to the information bit sequence to form a codeword. That is, the physical layer frame generating section 10003a-1 calculates a predetermined information bit length for error correction coding based on at least the size of the parity check matrix set by the coding rate of MCS. An information bit sequence used for LDPC encoding is also called an LDCP information block, and a bit sequence obtained by LDPC-encoding an LDPC information block is also called an LDPC codeword block.
 図11は、MCSと変調方式、符号化率との関連付けの一例を示している。例えばMCSが1のとき、変調方式はQPSKで符号化率は1/2であり、MCSが4のとき変調方式は16QAMで符号化率は3/4である。また、図12は符号化率とLDPC情報ブロック長、及びLDPC符号語ブロック長の関連付けの一例を示している。LDPC符号語ブロック長に符号化率を乗算するとLDPC情報ブロック長となる。例えば符号化率が1/2の場合、(LDPC情報ブロック長、LDPC符号語ブロック長)の候補は、(972、1944)、(648、1296)、(324、648)である。なお、LDPC情報ブロック長及びLDPC符号語ブロック長は、パリティ検査行列サイズにより決定される値であり、送信される情報ブロック長や符号語ブロック長とは異なる可能性がある。 FIG. 11 shows an example of associations between MCS, modulation schemes, and coding rates. For example, when the MCS is 1, the modulation scheme is QPSK and the coding rate is 1/2, and when the MCS is 4, the modulation scheme is 16QAM and the coding rate is 3/4. Also, FIG. 12 shows an example of the association between the coding rate, the LDPC information block length, and the LDPC codeword block length. The LDPC information block length is obtained by multiplying the LDPC codeword block length by the coding rate. For example, when the coding rate is ½, candidates for (LDPC information block length, LDPC codeword block length) are (972, 1944), (648, 1296), and (324, 648). Note that the LDPC information block length and the LDPC codeword block length are values determined by the parity check matrix size, and may differ from the transmitted information block length and codeword block length.
 本実施形態において、ダウンリンク通信時のフレームの再送方法の一例を図13と図14に示す。なお、当該両図中において、フレームに対応する肯定応答は省略されている。当該両図中において、AP‐MLDは、STA‐MLDと3つのリンクでマルチリンクを確立し、当該各々のリンクの負荷状況を測定する。当該各々のリンクについて、上位層部10001-1は、リンク1にTID1とTID3、リンク2と3にTID3を割り当てる。リンク1とリンク2にはそれぞれPPDU14とPPDU23に後続するフレームがバッファ済であって、リンク2にはPPDU22に対応する肯定応答が受信されずフレーム誤りが発生しているものとする。図13において、PPDU31は、リンク3にてバッファ済である最後のフレームを示す。一方、図14においては、リンク3のPPDU31には後続するPPDU32からPPDU33がバッファ済である。当該両図中では、マルチリンク制御部10001a-1は、上位層部10001-1で測定されたリンクの負荷状況に基づいて、最も負荷状況の低いリンク3を再送先リンクの候補として選出し、フレームの再送方法に関する制御情報を生成する。  In this embodiment, an example of a frame retransmission method during downlink communication is shown in FIGS. Note that acknowledgments corresponding to frames are omitted in both figures. In both figures, AP-MLD establishes multi-links with STA-MLD with three links and measures the load status of each link. For each link, the upper layer section 10001-1 assigns TID1 and TID3 to link 1, and TID3 to links 2 and 3. FIG. Assume that the frames following PPDU14 and PPDU23 have already been buffered in link 1 and link 2, respectively, and that link 2 has not received an acknowledgment corresponding to PPDU 22 and a frame error has occurred. In FIG. 13, PPDU 31 indicates the last frame buffered on link 3 . On the other hand, in FIG. 14, PPDU 32 to PPDU 33 that follow are already buffered in PPDU 31 of link 3 . In both figures, the multilink control unit 10001a-1 selects the link 3 with the lowest load condition as a retransmission destination link candidate based on the load conditions of the links measured by the upper layer unit 10001-1, Generates control information on how to retransmit frames.
 図13と図14において、当該制御情報が再送先リンクの候補のみを含む場合のフレームの再送方法の概要を説明する。まず、図13において、AP‐MLDは、リンク3にてバッファ済である最後のフレームのPPDU31、リンク2にて当該PPDU31に後続する同TID3のPPDU22を、STA‐MLDへと送信する。当該AP-MLDは、当該制御情報が指定する再送先リンクの候補において、リンク2で誤ったPPDU22をARQで最優先に再送する。マルチリンク制御部10001a-1は、当該PPDU22の送信が完了するまでの時間、当該PPDU31に対し、当該フレームの後にバッファされたフレームの有無を示すフィールド(例えば、More dataフィールド)の更新を許可せず、再送先リンクの候補であるリンク3にNAVを設定するための制御データを当該制御情報に付加する。すなわち、当該制御情報に従えば、AP‐MLDは、リンク3においてPPDU31の送信完了直後にリンク2のPPDU22をARQで最優先に再送する。NAVの設定は、何かに限定するものではなく、RTS、CTS、または、CTS-to-selfであってもよい。次に、図14では、リンク3で当該PPDU22の再送を実施する際に、当該リンク3において当該PPDU22に先行してPPDU33がバッファ済みである場合の再送方法を示す。マルチリンク制御部10001a-1は、リンク3のバッファをReorderingすることで、当該PPDU33に先行して当該PPDU22を再送できるように並び替える。すなわち、当該制御情報に従えば、AP‐MLDは、再送先リンクの候補であるリンク3でPPDU22をARQで最優先に再送する。  In FIGS. 13 and 14, an outline of a frame retransmission method when the control information includes only retransmission destination link candidates will be described. First, in FIG. 13, the AP-MLD transmits the PPDU31 of the last frame buffered on the link 3 and the PPDU22 of the same TID3 following the PPDU31 on the link 2 to the STA-MLD. The AP-MLD retransmits the erroneous PPDU 22 on link 2 with the highest priority using ARQ in the retransmission destination link candidates specified by the control information. The multilink control unit 10001a-1 allows the PPDU 31 to update a field (for example, a More data field) indicating whether or not there is a frame buffered after the frame until the transmission of the PPDU 22 is completed. First, control data for setting the NAV for link 3, which is a candidate for the retransmission destination link, is added to the control information. That is, according to the control information, the AP-MLD retransmits the PPDU 22 of the link 2 with the highest priority by ARQ immediately after the transmission of the PPDU 31 of the link 3 is completed. NAV settings may be, without limitation, RTS, CTS, or CTS-to-self. Next, FIG. 14 shows a retransmission method when PPDU 33 has already been buffered prior to PPDU 22 on link 3 when retransmitting PPDU 22 on link 3 . The multilink control unit 10001a-1 reorders the buffer of the link 3 so that the PPDU22 can be retransmitted prior to the PPDU33. That is, according to the control information, the AP-MLD retransmits the PPDU 22 with the highest priority using ARQ on link 3, which is a candidate for the retransmission destination link.
 次に、図13と図14において、当該制御情報が再送先リンクの候補と再送方法を含む場合のフレームの再送方法およびパケット合成方法の概要を説明する。当該制御情報に2つ以上の再送先リンクの候補が含まれる場合、当該各々のリンクにそれぞれARQ/HARQを設定してもよい。ただし、この場合、マルチリンク制御部10001a-1は、再送先リンクの候補において、ARQによるフレームの再送を制限し、HARQによるフレームの再送を制限しない。まず、図13において、AP-MLDは、当該制御情報が指定する再送先リンクの候補であるリンク3において、再送方法がARQである場合に最優先にPPDU22を再送し、再送方法がHARQである場合に最優先にPPDU22を再送するとともにパケット合成を実施する。マルチリンク制御部10001a-1は、当該PPDU22の送信が完了するまでの時間、当該PPDU31に対し、当該フレームの後にバッファされたフレームの有無を示すフィールド(More dataフィールド)の更新を許可せず、再送先リンクの候補であるリンク3にNAVを設定するための制御データを当該制御情報に付加する。再送方法がHARQである場合、当該制御情報にパケット合成方法に関わる情報(MCS,符号化率)を含めることで、初送時と異なる符号化率を用いてフレームを再送してもよい。NAVの設定は、何かに限定するものではなく、RTS、CTS、または、CTS-to-selfであってもよい。すなわち、当該制御情報に従えば、AP‐MLDは、リンク3において、PPDU31の送信完了直後にリンク2のPPDU22を、再送方法がARQである場合に最優先に再送し、再送方法がHARQである場合に最優先に再送するとともにパケット合成を実施する。次に、図14では、マルチリンク制御部10001a-1は、リンク3のバッファをReorderingすることで、当該PPDU33に先行して当該PPDU22を再送できるように並び替える。当該制御情報に従えば、AP‐MLDは、再送先リンクの候補であるリンク3で当該PPDU22を、再送方法がARQである場合に最優先に再送し、再送方法がHARQである場合に最優先に再送するとともにパケット合成を実施する。 Next, with reference to FIGS. 13 and 14, outlines of a frame retransmission method and a packet combining method when the control information includes a retransmission destination link candidate and a retransmission method will be described. If the control information includes two or more retransmission destination link candidates, ARQ/HARQ may be configured for each link. However, in this case, multilink control section 10001a-1 limits retransmission of frames by ARQ and does not limit retransmission of frames by HARQ in the retransmission destination link candidates. First, in FIG. 13, AP-MLD retransmits the PPDU 22 with highest priority when the retransmission method is ARQ on link 3, which is a candidate for the retransmission destination link specified by the control information, and the retransmission method is HARQ. In this case, the PPDU 22 is retransmitted with the highest priority and packet combining is performed. The multilink control unit 10001a-1 does not allow the PPDU31 to update the field (More data field) indicating the presence or absence of a buffered frame after the frame until the transmission of the PPDU22 is completed. Control data for setting the NAV for link 3, which is a candidate for the retransmission destination link, is added to the control information. When the retransmission method is HARQ, by including information (MCS, coding rate) related to the packet combining method in the control information, the frame may be retransmitted using a different coding rate from the initial transmission. NAV settings may be, without limitation, RTS, CTS, or CTS-to-self. That is, according to the control information, the AP-MLD retransmits the PPDU 22 of the link 2 immediately after the transmission of the PPDU 31 on the link 3 is completed with the highest priority when the retransmission method is ARQ, and the retransmission method is HARQ. If so, retransmit with highest priority and perform packet combining. Next, in FIG. 14, the multilink control unit 10001a-1 reorders the buffer of link 3 so that PPDU22 can be retransmitted prior to PPDU33. According to the control information, the AP-MLD retransmits the PPDU 22 on link 3, which is a candidate for the retransmission destination link, with the highest priority when the retransmission method is ARQ, and gives the highest priority when the retransmission method is HARQ. retransmit to and perform packet combining.
 本実施形態に係る上位層部10001-1のリンクの負荷状況の測定方法を述べる。当該リンクの負荷状況の測定は、サブ無線通信装置(サブステーション装置)の受信部が独立して実施してもよいし、全サブステーションを統合する形で実施してもよい。当該各々のリンクの負荷状況の測定値は、特定の指標に限定されるものではなく、MLDを構成するリンクの負荷状況の判断に用いることができる値であればよい。例えば、リンクの負荷状況の測定値として、MACレイヤでは当該各々のリンクに割り振られたフレームのバッファサイズ、チャネルの使用状況、各RUに対するフレームの割り当て状態(Resource allocation)、APの運用状況を示すBSS負荷情報(BSS load information)、BSS平均アクセス遅延(BSS average access delay)、BSSアクセスカテゴリーアクセス遅延(BSS AccessCategory Access Delay)などを、また、PHYレイヤではマルチリンクセットアップにおけるマルチリンク確立要求の際に、当該各々のリンクのキャリアセンス時間に占めるBusyの割合などを当該測定値として用いてもよい。また、当該複数のリンクの負荷状況は、所定の閾値に従ってリンクの負荷状況を段階的に反映する識別子(Busy,High,Middle,Low,Idle,Nullなど)であってもよい。 A method of measuring the load status of the link of the upper layer section 10001-1 according to this embodiment will be described. The measurement of the load status of the link may be performed independently by the receiving section of the sub wireless communication device (substation device), or may be performed by integrating all the substations. The measured value of the load status of each link is not limited to a specific index, and may be any value that can be used to determine the load status of the links that constitute the MLD. For example, as a link load status measurement value, the MAC layer indicates the frame buffer size allocated to each link, the channel usage status, the frame allocation status for each RU (Resource allocation), and the AP operation status. BSS load information, BSS average access delay, BSS access category access delay (BSS Access Category Access Delay), etc. In addition, at the PHY layer, at the time of multi-link establishment request in multi-link setup , the ratio of Busy in the carrier sense time of each link, or the like may be used as the measurement value. Further, the load status of the plurality of links may be an identifier (Busy, High, Middle, Low, Idle, Null, etc.) that reflects the load status of the links in stages according to a predetermined threshold.
 当該上位層部10001-1が測定する当該各々のリンクの負荷状況に基づいて、マルチリンク制御部10001a-1が再送先リンクの候補を選出する方法について述べる。マルチリンク制御部10001a-1は、当該上位層部10001-1の測定結果に基づいて、リンクの負荷状況が最も低いリンクを選出するか、または、測定結果を昇順化したリストを作成し、上位2つ以上のリンクを再送先リンクとして選出する。また、当該各々のリンクの負荷状況が同一である場合、マルチリンク制御部10001a-1は、再送先リンクの候補を選出しない。MLDを構成する複数のリンクでフレーム誤りが発生した場合、当該各々のフレームに同一の再送先リンクを設定してもよい。また、マルチリンク確立応答10-2を受信していない空きリンクがある場合、当該上位層部10001-1は、マルチリンク確立要求10-1を送信することで、新たにリンクを確立するとともに、当該リンクの負荷状況が既存の負荷状況を下回る場合に、再送先リンクの候補に当該リンクを設定し、再送方法と合わせて制御情報を生成する。 A method for selecting retransmission destination link candidates by the multilink control unit 10001a-1 based on the load status of each link measured by the upper layer unit 10001-1 will be described. The multilink control unit 10001a-1 selects the link with the lowest link load status based on the measurement result of the upper layer unit 10001-1, or creates a list of the measurement results in ascending order. Two or more links are elected as resend-to links. Also, when the load conditions of the respective links are the same, the multilink control unit 10001a-1 does not select retransmission destination link candidates. If a frame error occurs in multiple links forming the MLD, the same retransmission destination link may be set for each frame. Further, when there is an empty link for which the multilink establishment response 10-2 has not been received, the upper layer section 10001-1 establishes a new link by transmitting the multilink establishment request 10-1, When the load status of the link is lower than the existing load status, the link is set as a retransmission destination link candidate, and control information is generated together with the retransmission method.
 本実施形態に係るマルチリンク制御部10001a-1は、マルチリンクを確立したリンクまたは再送先リンクにおいて、所定の時間内にフレームに対応する肯定応答を受信しなかった場合、再送先リンクの候補を更新する。例えば、当該マルチリンク制御部10001a-1は、再送先リンクで別のフレームがバッファ済である場合に、当該再送先リンクの候補に含まれる次に低い負荷状況のリンクを再送先リンクとして設定してもよい。また、所定の時間内にフレームに対応する肯定応答を受信しなかった場合もしくはフレームに対する肯定応答を複数回連続して受信しなかった場合に、再送先リンクの候補の内、別のリンクを再送先リンクに設定する。例えば、当該再送先リンクの候補が2つ以上存在する場合、次にリンクの負荷状況が低いリンクを再送先リンクとして選出する。 When the multilink control unit 10001a-1 according to the present embodiment does not receive an acknowledgment corresponding to a frame within a predetermined time on a link on which a multilink has been established or a retransmission destination link, the multilink control unit 10001a-1 selects retransmission destination link candidates. Update. For example, when another frame has already been buffered on the retransmission destination link, the multilink control unit 10001a-1 sets the link with the next lowest load status included in the retransmission destination link candidates as the retransmission destination link. may Also, if no acknowledgment corresponding to the frame is received within a predetermined time, or if acknowledgments for the frame are not received a plurality of times consecutively, another link among the retransmission destination link candidates is retransmitted. Set as destination link. For example, if there are two or more candidates for the retransmission destination link, the link with the next lowest link load condition is selected as the retransmission destination link.
 また、本実施形態に係るリンクの負荷状況は、トリガーフレームを用いて測定してもよい。例えば、図13または図14において、AP‐MLDは、STA‐MLDなどの無線通信装置とマルチリンクを確立した全ての無線通信装置に対してトリガーフレームを送信する。一方、トリガーフレームを受信したSTA‐MLDは、当該各々のリンクの負荷状況を測定し、当該測定結果をAP‐MLDに通知する。当該各々のリンクにおいて、所定の時間内に当該トリガーフレームに対応する測定結果を受信しなかった場合、または、当該トリガーフレームに対する測定結果を複数回連続して受信しなかった場合に、当該AP‐MLDは、当該リンクの負荷状況をBusyと判断し、再送先リンクの候補に設定しない。 Also, the link load status according to this embodiment may be measured using a trigger frame. For example, in FIG. 13 or 14, AP-MLD transmits a trigger frame to all wireless communication devices such as STA-MLD that have established multilinks with them. On the other hand, the STA-MLD that received the trigger frame measures the load status of each link and notifies the AP-MLD of the measurement results. In each of the links, if the measurement result corresponding to the trigger frame is not received within a predetermined time, or if the measurement result for the trigger frame is not received continuously for a plurality of times, the AP- The MLD determines that the load status of the link is Busy and does not set it as a retransmission destination link candidate.
 本実施形態に係る再送先リンクの候補におけるフレームの再送方法について、上位層部10001-1は、IEEE802.11e規格のEDCAのアクセスカテゴリーよりも優先順位の高い再送用のアクセスカテゴリーを設定してもよい。当該マルチリンク制御部10001a-1は、再送先リンクにおいて、再送専用のアクセスカテゴリー以外のフレームの送信を許可しない。 Regarding the method of retransmitting frames in the retransmission destination link candidate according to the present embodiment, the upper layer unit 10001-1 may set an access category for retransmission with a higher priority than the EDCA access category of the IEEE 802.11e standard. good. The multilink control unit 10001a-1 does not permit transmission of frames other than the retransmission-only access category on the retransmission destination link.
 本実施形態に係るSTA‐MLDは受信部10004-1において、AP‐MLDから送信されたフレームを受信する。当該STA‐MLDの信号復調部10004b-1は、受信した信号に対して、PHYレイヤにおいて、復号処理を行い、誤り検出を行うことができる。まず、信号復調部10004b-1は、受信した送信フレームであるPPDUのPHYヘッダを復号し、当該PHYヘッダにHARQが設定されている場合に、前記フレームのパケット合成を実施し、当該PPDUの符号語を復号する。当該復号結果は、上位層部10001-1におけるMACレイヤに転送される。当該MACレイヤは、転送されてきた前記復号結果から、MACレイヤのフレームを復元するとともに、誤り検出を行い、受信フレームの送信元のステーション装置が送信したMACレイヤのフレームを正しく復元できたか否かを判断する。誤り検出は、受信したフレームに付与されている誤り検出符号(例えば巡回冗長検査(CRC)符号)を用いた誤り検出や、もともと誤り検出機能を備える誤り訂正符号(例えば低密度パリティ検査符号(LDPC))による誤り検出を含む。ここで復号処理は、受信した信号に適用されている誤り訂正符号に対する復号処理を含む。PHYレイヤにおける復号処理は、符号化ブロック毎に適用されることが可能である。一方、受信したフレームのPHYヘッダにARQが設定されている場合、信号復調部10004b-1は、復号処理において前記フレームのパケット合成は実施せず、当該PPDUの符号語を復号し、復号結果を上位層部10001-1へ転送する。 The STA-MLD according to this embodiment receives the frame transmitted from the AP-MLD in the receiving section 10004-1. The signal demodulator 10004b-1 of the STA-MLD can perform decoding processing and error detection on the received signal in the PHY layer. First, the signal demodulation unit 10004b-1 decodes the PHY header of the PPDU, which is the received transmission frame, performs packet synthesis of the frame when HARQ is set in the PHY header, Decode the word. The decoding result is transferred to the MAC layer in the upper layer section 10001-1. The MAC layer restores the frame of the MAC layer from the forwarded decoding result, performs error detection, and determines whether the frame of the MAC layer transmitted by the station device which is the transmission source of the received frame has been correctly restored. to judge. For error detection, error detection using an error detection code (for example, a cyclic redundancy check (CRC) code) attached to a received frame, or error correction code originally provided with an error detection function (for example, a low density parity check code (LDPC )) includes error detection. The decoding processing here includes decoding processing for the error correction code applied to the received signal. A decoding process in the PHY layer can be applied for each coded block. On the other hand, when ARQ is set in the PHY header of the received frame, the signal demodulation unit 10004b-1 does not perform packet synthesis of the frame in the decoding process, decodes the codeword of the PPDU, and outputs the decoding result. It is transferred to the upper layer section 10001-1.
 以上、本実施形態に係る通信装置は、MACレイヤの再送機能を維持しつつ、PHYレイヤとMACレイヤのオーバーヘッドを削減し、PHYレイヤにおける効果的なパケット合成を可能とすることで、通信品質ならびに伝送効率の改善に寄与できる。 As described above, the communication device according to the present embodiment maintains the retransmission function of the MAC layer, reduces the overhead of the PHY layer and the MAC layer, and enables effective packet combining in the PHY layer. It can contribute to improvement of transmission efficiency.
 本発明に係る通信装置は、国や地域からの使用許可を必要としない、いわゆるアンライセンスバンド(unlicensed band)と呼ばれる周波数バンド(周波数スペクトラム)において通信を行うことができるが、使用可能な周波数バンドはこれに限定されない。本発明に係る通信装置は、例えば、国や地域から特定サービスへの使用許可が与えられているにも関わらず、周波数間の混信を防ぐ等の目的により、実際には使われていないホワイトバンドと呼ばれる周波数バンド(例えば、テレビ放送用として割り当てられたものの、地域によっては使われていない周波数バンド)や、複数の事業者で共用することが見込まれる共用スペクトラム(共用周波数バンド)においても、その効果を発揮することが可能である。 The communication device according to the present invention can communicate in a frequency band (frequency spectrum) called an unlicensed band that does not require a license from a country or region. is not limited to this. The communication device according to the present invention is, for example, a white band that is not actually used for the purpose of preventing interference between frequencies, even though the country or region has given permission to use it for a specific service. Also in the frequency band called (for example, the frequency band allocated for television broadcasting but not used in some areas) and the shared spectrum (shared frequency band) that is expected to be shared by multiple operators It is possible to exert an effect.
 本発明に係る無線通信装置で動作するプログラムは、本発明に関わる上記実施形態の機能を実現するように、CPU等を制御するプログラム(コンピュータを機能させるプログラム)である。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAMに蓄積され、その後、各種ROMやHDDに格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。プログラムを格納する記録媒体としては、半導体媒体(例えば、ROM、不揮発性メモリカード等)、光記録媒体(例えば、DVD、MO、MD、CD、BD等)、磁気記録媒体(例えば、磁気テープ、フレキシブルディスク等)等のいずれであってもよい。また、ロードしたプログラムを実行することにより、上述した実施形態の機能が実現されるだけでなく、そのプログラムの指示に基づき、オペレーティングシステムあるいは他のアプリケーションプログラム等と共同して処理することにより、本発明の機能が実現される場合もある。 The program that operates in the wireless communication device according to the present invention is a program that controls the CPU and the like (a program that causes a computer to function) so as to implement the functions of the above-described embodiments related to the present invention. Information handled by these devices is temporarily stored in RAM during processing, then stored in various ROMs and HDDs, and read, modified, and written by the CPU as necessary. Recording media for storing programs include semiconductor media (eg, ROM, nonvolatile memory cards, etc.), optical recording media (eg, DVD, MO, MD, CD, BD, etc.), magnetic recording media (eg, magnetic tapes, flexible disk, etc.). By executing the loaded program, the functions of the above-described embodiments are realized. In some cases, inventive features are realized.
 また市場に流通させる場合には、可搬型の記録媒体にプログラムを格納して流通させたり、インターネット等のネットワークを介して接続されたサーバコンピュータに転送したりすることができる。この場合、サーバコンピュータの記憶装置も本発明に含まれる。また、上述した実施形態における通信装置の一部、または全部を典型的には集積回路であるLSIとして実現してもよい。通信装置の各機能ブロックは個別にチップ化してもよいし、一部、または全部を集積してチップ化してもよい。各機能ブロックを集積回路化した場合に、それらを制御する集積回路制御部が付加される。 Also, when distributing to the market, the program can be distributed by storing it in a portable recording medium, or it can be transferred to a server computer connected via a network such as the Internet. In this case, the storage device of the server computer is also included in the present invention. Also, part or all of the communication device in the above-described embodiments may be typically implemented as an LSI, which is an integrated circuit. Each functional block of the communication device may be individually chipped, or part or all of them may be integrated and chipped. When each functional block is integrated, an integrated circuit control unit for controlling them is added.
 また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。 Also, the method of circuit integration is not limited to LSIs, but may be realized with dedicated circuits or general-purpose processors. In addition, when a technology for integrating circuits to replace LSIs emerges due to advances in semiconductor technology, it is possible to use an integrated circuit based on this technology.
 なお、本願発明は上述の実施形態に限定されるものではない。本願発明の無線通信装置は、移動局装置への適用に限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などに適用出来ることは言うまでもない。 It should be noted that the present invention is not limited to the above-described embodiments. The wireless communication device of the present invention is not limited to application to mobile station devices, but can be applied to stationary or non-movable electronic devices installed indoors and outdoors, such as AV equipment, kitchen equipment, cleaning/washing equipment, etc. Needless to say, it can be applied to equipment, air conditioners, office equipment, vending machines, and other household equipment.
 以上、この発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も特許請求の範囲に含まれる。 Although the embodiments of the present invention have been described in detail above with reference to the drawings, the specific configuration is not limited to these embodiments, and designs and the like within the scope of the scope of the present invention can be applied within the scope of claims. Included in the scope.
 本発明は、通信装置、および通信方法に用いて好適である。 The present invention is suitable for use in communication devices and communication methods.
1-1、1-2、2-1~6、2A、2B 無線通信装置
3-1、3-2 管理範囲
10-1 無線通信装置
10001-1 上位層部
10001a-1 マルチリンク制御部
10002-1 制御部
10002a-1 CCA部
10002b-1 バックオフ部
10002c-1 送信判断部
10003-1 送信部
10003a-1 物理層フレーム生成部
10003b-1 無線送信部
10004-1 受信部
10004a-1 無線受信部
10004b-1 信号復調部
10005-1 アンテナ部
20000-1 アクセスポイント装置
20000-2、20000-3、20000-4 サブ無線通信装置(サブアクセスポイント装置)
30000-1 ステーション装置
30000-2、30000-3、30000-4 サブ無線通信装置(サブステーション装置)
10-1 マルチリンク確立要求
10-2 マルチリンク確立応答
10-3 マルチリンク変更要求
10-4 マルチリンク変更応答
1-1, 1-2, 2-1 to 6, 2A, 2B Wireless communication devices 3-1, 3-2 Control range 10-1 Wireless communication device 10001-1 Upper layer unit 10001a-1 Multilink control unit 10002- 1 Control section 10002a-1 CCA section 10002b-1 Backoff section 10002c-1 Transmission judgment section 10003-1 Transmission section 10003a-1 Physical layer frame generation section 10003b-1 Radio transmission section 10004-1 Reception section 10004a-1 Radio reception section 10004b-1 Signal demodulation unit 10005-1 Antenna unit 20000-1 Access point device 20000-2, 20000-3, 20000-4 Sub wireless communication device (sub access point device)
30000-1 Station device 30000-2, 30000-3, 30000-4 Sub wireless communication device (substation device)
10-1 Multilink establishment request 10-2 Multilink establishment response 10-3 Multilink change request 10-4 Multilink change response

Claims (11)

  1.  2つ以上のリンクを用いてフレームを送信する通信装置であって、前記通信装置は、MACレイヤにて前記各々のリンクの負荷状況に応じて、再送先リンクの候補を選出する制御部を備え、前記制御部は、前記再送先リンクの候補と再送方法を制御情報として生成するとともにPHYレイヤに伝達し、前記通信装置は、PHYレイヤにてフレームを生成する送信部を備え、前記フレームに対する肯定応答を受信しなかった場合に、前記制御情報が指定する再送先リンクの候補以外での再送を許可せず、前記通信装置は、前記制御情報に従って、再送先リンクの候補で前記フレームを受信する受信部と、前記フレームをパケット合成し、復号する信号復調部と、を備える、通信装置。 A communication device that transmits frames using two or more links, the communication device comprising a control unit that selects retransmission destination link candidates according to the load status of each of the links in the MAC layer. wherein the control unit generates the retransmission destination link candidate and the retransmission method as control information and transmits the same to a PHY layer; the communication device includes a transmission unit that generates a frame in the PHY layer; When no response is received, retransmission is not permitted on any other than the retransmission destination link candidate specified by the control information, and the communication device receives the frame on the retransmission destination link candidate according to the control information. A communication device, comprising: a receiver; and a signal demodulator that packet-synthesizes and decodes the frame.
  2.  前記再送先リンクの候補は、前記再送方法としてARQによる再送を制限し、HARQによる再送を制限しない、請求項1に記載の通信装置。 The communication apparatus according to claim 1, wherein the retransmission destination link candidate restricts retransmission by ARQ and does not restrict retransmission by HARQ as the retransmission method.
  3.  前記制御部は、前記各々のリンクが同一の負荷状況である場合、前記制御情報に再送先リンクの候補を含めず、再送方法を設定する、請求項1に記載の通信装置。 The communication device according to claim 1, wherein the control unit sets a retransmission method without including retransmission destination link candidates in the control information when each of the links has the same load status.
  4.  前記制御部は、前記各々のリンクにおいて、前記フレームに対する肯定応答を受信しなかった場合に、または、所定の時間内に受信しなかった場合、前記再送先リンクの候補を更新する、請求項1に記載の通信装置。 2. The control unit updates the retransmission destination link candidates when an acknowledgment for the frame is not received on each of the links or when no acknowledgment is received within a predetermined time. The communication device according to .
  5.  前記制御部は、前記各々のリンクにおける1つのリンクにおいて、前記フレームに対する肯定応答を複数回連続して受信しなかった場合に、また、所定の時間内に受信しなかった場合、前記リンクの次に低い負荷状況のリンクを前記再送先リンクの候補に含める、請求項1に記載の通信装置。 If the control unit does not receive a plurality of consecutive acknowledgments for the frame in one link in each of the links, or if the acknowledgment for the frame is not received within a predetermined time, 2. The communication device according to claim 1, wherein a link with a low load status is included in the retransmission destination link candidates.
  6.  前記制御部は、送信側の前記各々のリンクにバッファされた最後のフレームと同一の識別子を含むフレームが、前記各々のリンクと別のリンクで後続してバッファ済である場合、前記同一の識別子を含むフレームに対する肯定応答を受信するまでの所定の時間だけ前記別のリンクにNAVを設定するための制御データを前記制御情報に付加する、請求項1に記載の通信装置。 If a frame containing the same identifier as the last frame buffered in each of the links on the transmitting side is subsequently buffered in a link other than the respective link, the control unit 2. The communication apparatus according to claim 1, wherein control data for setting a NAV for said another link is added to said control information for a predetermined time until receiving an acknowledgment for a frame containing .
  7.  前記通信装置は、前記各々のリンクに再送用のアクセスカテゴリーを設定し、前記再送用のアクセスカテゴリーのフレームを最優先に送信する制御部を備える、請求項1に記載の通信装置。 The communication device according to claim 1, wherein the communication device comprises a control unit that sets an access category for retransmission to each of the links and transmits frames of the access category for retransmission with top priority.
  8.  前記通信装置における前記制御部は、前記各々のリンクにおいてバッファのReorderingを実施することで、前記フレームを最優先に再送する、請求項1に記載の通信装置。 The communication device according to claim 1, wherein the control unit in the communication device retransmits the frame with the highest priority by performing buffer reordering in each of the links.
  9.  前記制御部は、前記再送先リンクで別のフレームが送信されている場合において、前記再送先リンクの候補が指定する別のリンクで前記フレームを再送する、請求項1に記載の通信装置。 The communication device according to claim 1, wherein when another frame is being transmitted on the retransmission destination link, the control unit retransmits the frame on another link specified by the retransmission destination link candidate.
  10.  2つ以上のリンクを用いてフレームを受信し、前記フレームを前記制御情報が指定するリンクに割り当て、復調・復号する信号復調部と、前記信号復調部は、前記フレームにHARQが設定されている場合に、前記フレームのパケット合成を実施する、請求項1に記載の通信装置。 A signal demodulator that receives a frame using two or more links, assigns the frame to the link specified by the control information, and demodulates and decodes the frame, and the signal demodulator has HARQ set to the frame. 2. The communication device according to claim 1, wherein packet combining of said frames is performed when a frame is received.
  11.  2つ以上のリンクを用いてフレームを送信する通信方法であって、前記通信方法は、MACレイヤにて前記各々のリンクの負荷状況に応じて、再送先リンクの候補を選出するステップを備え、前記再送先リンクの候補と再送方法を制御情報として生成するとともにPHYレイヤに伝達し、前記通信方法は、PHYレイヤにてフレームを生成するステップを備え、前記フレームに対する肯定応答を受信しなかった場合に、前記制御情報が指定する再送先リンクの候補以外での再送を許可せず、前記通信方法は、前記制御情報に従って、再送先リンクの候補で前記フレームを受信するステップと、前記フレームをパケット合成し、復号するステップと、を備える、通信方法。 A communication method for transmitting frames using two or more links, the communication method comprising the step of selecting retransmission destination link candidates according to the load status of each of the links in the MAC layer, When the retransmission destination link candidate and the retransmission method are generated as control information and transmitted to the PHY layer, and the communication method includes the step of generating a frame in the PHY layer, and an acknowledgment for the frame is not received and retransmission is not permitted on any link other than the retransmission destination link candidate specified by the control information, and the communication method comprises: receiving the frame on the retransmission destination link candidate according to the control information; combining and decoding.
PCT/JP2022/033432 2021-09-06 2022-09-06 Communication device and communication method WO2023033184A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021144568 2021-09-06
JP2021-144568 2021-09-06

Publications (1)

Publication Number Publication Date
WO2023033184A1 true WO2023033184A1 (en) 2023-03-09

Family

ID=85412473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033432 WO2023033184A1 (en) 2021-09-06 2022-09-06 Communication device and communication method

Country Status (1)

Country Link
WO (1) WO2023033184A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955776A (en) * 1995-08-11 1997-02-25 Kokusai Denshin Denwa Co Ltd <Kdd> Packet communication device
WO2017043195A1 (en) * 2015-09-11 2017-03-16 ソニー株式会社 Wireless communication device, wireless communication method and wireless communication system
WO2020032664A1 (en) * 2018-08-10 2020-02-13 엘지전자 주식회사 Method and device for controlling plurality of links in wireless local area network system supporting plurality of links
WO2020217704A1 (en) * 2019-04-23 2020-10-29 ソニー株式会社 Communication device and communication method
WO2021166924A1 (en) * 2020-02-18 2021-08-26 シャープ株式会社 Station device and communication method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955776A (en) * 1995-08-11 1997-02-25 Kokusai Denshin Denwa Co Ltd <Kdd> Packet communication device
WO2017043195A1 (en) * 2015-09-11 2017-03-16 ソニー株式会社 Wireless communication device, wireless communication method and wireless communication system
WO2020032664A1 (en) * 2018-08-10 2020-02-13 엘지전자 주식회사 Method and device for controlling plurality of links in wireless local area network system supporting plurality of links
WO2020217704A1 (en) * 2019-04-23 2020-10-29 ソニー株式会社 Communication device and communication method
WO2021166924A1 (en) * 2020-02-18 2021-08-26 シャープ株式会社 Station device and communication method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DENG CAILIAN; FANG XUMING; HAN XIAO; WANG XIANBIN; YAN LI; HE RONG; LONG YAN; GUO YUCHEN: "IEEE 802.11be Wi-Fi 7: New Challenges and Opportunities", IEEE COMMUNICATIONS SURVEYS & TUTORIALS, vol. 22, no. 4, 29 July 2020 (2020-07-29), USA , pages 2136 - 2166, XP011821374, DOI: 10.1109/COMST.2020.3012715 *

Similar Documents

Publication Publication Date Title
KR102548620B1 (en) Method for transmitting data in a wireless communication system and apparatus therefor
CN107251469B (en) Data transmission method and apparatus in wireless communication system
JP2008532332A (en) Method and radio communication network for accessing a radio channel in a communication network including a plurality of stations and one access point connected by the radio channel
CN107925514B (en) Wireless communication method using trigger information, and wireless communication terminal
US11489632B2 (en) Method for supporting HARQ process in wireless LAN system and wireless terminal using same
US20230276516A1 (en) Radio communication apparatus
WO2022131317A1 (en) Station apparatus and access point apparatus
CN115066927A (en) Station apparatus and communication method
US11510095B2 (en) Method for transmitting or receiving frame in wireless LAN system and apparatus therefor
KR20170030759A (en) Method and apparatus for uplink transmission and acknowledgment in response thereto for multiple channel access in high efficiency wireless lan
WO2022270489A1 (en) Communication device and communication method
WO2021241452A1 (en) Communication device and communication method
WO2023033184A1 (en) Communication device and communication method
WO2022254897A1 (en) Communication device and communication method
WO2023276907A1 (en) Communication device
WO2022210090A1 (en) Access point device, station device, and communication method
WO2023152843A1 (en) Wireless communication device and wireless communication method
WO2023054153A1 (en) Access point device and communication method
WO2022004667A1 (en) Access point device, station device, and communication method
US20230199825A1 (en) Terminal apparatus, base station apparatus, and communication method
JP2023113977A (en) Communication device and method for communication
JP2024012732A (en) Communication apparatus and communication method
JP2024012729A (en) Radio communication device, station device, and radio communication system
JP2023114921A (en) Communication device and communication method
JP2023093082A (en) Base station device, terminal device, and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864766

Country of ref document: EP

Kind code of ref document: A1