WO2023033157A1 - Electrolytic recovery device - Google Patents

Electrolytic recovery device Download PDF

Info

Publication number
WO2023033157A1
WO2023033157A1 PCT/JP2022/033182 JP2022033182W WO2023033157A1 WO 2023033157 A1 WO2023033157 A1 WO 2023033157A1 JP 2022033182 W JP2022033182 W JP 2022033182W WO 2023033157 A1 WO2023033157 A1 WO 2023033157A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
recovery device
electrolytic
electrolytic recovery
load cell
Prior art date
Application number
PCT/JP2022/033182
Other languages
French (fr)
Japanese (ja)
Inventor
大介 吉井
Original Assignee
松田産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松田産業株式会社 filed Critical 松田産業株式会社
Publication of WO2023033157A1 publication Critical patent/WO2023033157A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to an electrolytic recovery device.
  • Patent Document 1 describes an electrolytic recovery apparatus that recovers metals in a solution by depositing metals on a cathode that rotates about its axis.
  • the electrolytic recovery device by depositing metal on the cathode while rotating the cathode, the current efficiency in the electrolytic cell can be increased while improving the condition of electrodeposition on the cathode.
  • the operation of the electrolytic recovery apparatus it is important for the operation of the electrolytic recovery apparatus to know the amount of metal deposited on the cathode, that is, the amount of metal recovered.
  • the metal recovery amount is measured by removing the cathode from the electrolytic recovery device while the operation of the electrolytic recovery device is stopped and weighing the cathode with an electronic balance or the like.
  • it is necessary to stop the operation of the electrolytic recovery apparatus which reduces the operating rate of the electrolytic recovery apparatus.
  • the cathode removed from the electrolytic recovery apparatus may be stolen.
  • the purpose of the present invention is to provide a technique that can measure the amount of metal recovered without stopping the operation of the electrolytic recovery device.
  • the present invention provides a configuration for reducing vibration of the shaft to which the rotating cathode is fixed.
  • the present invention relates to an electrolytic recovery apparatus for recovering a metal by electrolyzing a solution containing a metal, comprising: an electrolytic cell into which the solution is introduced; a space provided in the electrolytic cell, a shaft extending from the inside of the electrolytic cell to the space, a rotating cathode fixed to the shaft in the electrolytic cell and rotating around the rotation axis of the shaft, and the electrolysis an anode arranged in a tank; a drive mechanism for rotating the shaft around the rotation axis; a bearing arranged in the space and holding the shaft on the lower end side of the shaft in the gravitational direction; a bearing case having insulating properties and containing the bearing; a load cell disposed in the space and measuring the load of the rotating cathode received by the bearing case through the shaft; and a vibration reduction unit for reducing vibration.
  • the vibration reducing section may have a support for suspending the load cell in the space.
  • the vibration reducing section may have a vibration absorbing sheet arranged between the load cell and the bottom surface of the space section.
  • the vibration reducing section may include a support for suspending the load cell in the space, and a vibration absorbing sheet disposed between the load cell and the support. .
  • the amount of metal recovered can be measured without stopping the operation of the electrolytic recovery device.
  • FIG. 1 is a cross-sectional view of the electrolytic recovery device according to the embodiment when cut along the axial direction.
  • FIG. 2 is a cross-sectional view of an electrolytic recovery device according to a comparative example cut along the axial direction.
  • FIG. 3 is a graph showing the output voltage of the load cell by the electrolytic recovery device according to the embodiment.
  • FIG. 4 is a graph showing the output voltage of the load cell by the electrolytic recovery device according to the comparative example.
  • FIG. 5 is a graph showing weight changes of the rotating cathode of the electrolytic recovery apparatus according to the embodiment.
  • FIG. 6 is a cross-sectional view of the electrolytic recovery device according to Modification 1 taken along the axial direction.
  • FIG. 7 is a graph showing the output voltage of the load cell by the electrolytic recovery device according to Modification 1.
  • FIG. 8 is a cross-sectional view of the electrolytic recovery device according to Modification 2 taken along the axial direction.
  • 9 is a graph showing the output voltage of the load cell by the electrolytic recovery device according to Modification 2.
  • FIG. 1 is a cross-sectional view of the electrolytic recovery device according to the present embodiment, taken along the axial direction. It is an apparatus for depositing metal by electrolyzing a solution containing metal (hereinafter simply referred to as "solution") and recovering the metal.
  • the electrolytic recovery device 10 comprises an electrolytic cell 12 .
  • the electrolytic recovery device 10 has an upper end opening 11A formed at the upper end in the installed state, a bottom portion 11B arranged opposite the upper end opening 11A, and a peripheral wall portion 11C connecting the upper end opening 11A and the bottom portion 11B.
  • the electrolytic recovery device 10 has a tubular inner peripheral wall portion 11D and an inner bottom surface portion 11E connecting the inner peripheral wall portion 11D and the peripheral wall portion 11C.
  • the electrolytic recovery device 10 has an outer wall composed of a bottom surface portion 11B and a peripheral wall portion 11C, and an inner wall composed of an inner peripheral wall portion 11D and an inner bottom surface portion 11E, and accommodates various circuits therein.
  • the electrolytic bath 12 is defined by a peripheral wall portion 11C, an inner peripheral wall portion 11D, and an inner bottom surface portion 11E.
  • the bottom surface portion 11B, the peripheral wall portion 11C, the inner peripheral wall portion 11D, and the inner bottom surface portion 11E are made of resin such as hard vinyl chloride.
  • An upper end opening 12A is formed at the upper end of the electrolytic bath 12 in the installed state.
  • a two-dot chain line Z represents the central axis of the electrolytic cell 12, and hereinafter, the two-dot chain line Z is referred to as the central axis Z (corresponding to the "axis of the electrolytic cell" in the present application).
  • a central axis Z of the electrolytic cell passes through the center of the inner peripheral wall portion 11D.
  • a solution introduction hole and a solution discharge hole are formed in the peripheral wall portion 11C, and the solution is introduced through the introduction hole by a pump (not shown) installed outside the electrolytic recovery device 10.
  • the solution that is about to overflow from the electrolytic cell 12 is discharged from the discharge hole, and this solution is again introduced into the electrolytic cell 12 from the introduction hole.
  • the solution circulates inside and outside the electrolytic cell 12 through the introduction hole and the discharge hole.
  • the electrolytic recovery device 10 also includes a shaft 14 extending from inside the electrolytic cell 12 along the central axis Z of the electrolytic cell 12 .
  • the shaft 14 is made of metal so as to have electrical conductivity, and is rotatable around the central axis Z.
  • the electrolytic recovery device 10 also includes a space 13 provided below the electrolytic cell 12 in the direction of gravity.
  • the space portion 13 is a region below the electrolytic bath 12 defined by the peripheral wall portion 11C and the bottom portion 11B.
  • the shaft 14 extends from inside the electrolytic bath 12 to inside a bearing case 21 , which will be described later, arranged in the space 13 . In this manner, the electrolytic recovery apparatus 10 is provided with the electrolytic bath 12 on the upper side and the space 13 below the electrolytic bath 12 in the installed state.
  • the electrolytic recovery device 10 also includes a rotating cathode 15 that is fixed to a shaft 14 in the electrolytic cell 12 and rotates around the rotation axis of the shaft 14 , and an anode 17 that is arranged in the electrolytic cell 12 .
  • the electrolytic recovery apparatus 10 electrolyzes the solution by applying a voltage between the rotating cathode 15 and the anode 17, thereby depositing (electrodepositing) the metal contained in the solution on the surface of the rotating cathode 15. Let Thus, the electrolytic recovery device 10 can recover the metal.
  • the rotating cathode 15 has a cylindrical shape and is arranged in the electrolytic cell 12 from the upper end opening 12A.
  • a screw groove is formed in the upper end of the shaft 14 , and the rotating cathode 15 is attached to the shaft 14 by fixing a bolt 16 to the screw groove while the rotating cathode 15 is inserted through the shaft 14 . . Further, the rotating cathode 15 can be removed from the shaft 14 by removing the bolt 16 from the shaft 14 .
  • the electrolytic recovery device 10 also includes a carbon brush 19 electrically connected to the shaft 14 .
  • the carbon brush 19 is electrically connected to the shaft 14 in the space 13 and supplies direct current to the rotating cathode 15 via the shaft 14 . It should be noted that current supply to the rotating cathode 15 may be performed through the shaft 14 and is not limited to using the carbon brush 19 .
  • the electrolytic recovery device 10 also includes a drive mechanism 18 that rotates the shaft 14 around the rotation axis.
  • the drive mechanism 18 is connected to the shaft 14 within the space 13 and transmits rotary motion to the shaft 14 .
  • the drive mechanism 18 includes a motor 18A, a motor pulley 18B fixed to the rotating shaft of the motor 18A, a pulley 18D through which the shaft 14 is inserted and fixed to the shaft 14, and a timing for transmitting the rotational motion of the motor pulley 18B to the pulley 18D. It has a belt 18C.
  • the motor 18A is a drive source operated by a drive circuit (not shown) housed in the electrolytic recovery device 10. As shown in FIG.
  • the timing belt 18C is made of rubber, for example, and mechanically connects the motor pulley 18B and the pulley 18D.
  • the timing belt 18C can be bent even if metal is deposited on the rotating cathode 15 and the load applied to the shaft 14 increases.
  • the electrolytic recovery device 10 also includes a bearing 20 that is arranged in the space 13 and holds the shaft 14 on the lower end side of the shaft 14 in the direction of gravity, and a bearing case 21 that houses the bearing 20 .
  • the bearing case 21 has a box shape (cup shape) with an open upper end, and the outer peripheral surface of the bearing 20 is fixed to the inner peripheral surface of the bearing case 21 . As a result, the rotational motion of the shaft 14 is not transmitted to the bearing case 21 .
  • the bearing case 21 is installed so as not to rotate with the shaft 14 .
  • the bearing case 21 is made of an insulating resin material such as vinyl chloride, and has insulating properties.
  • the electrolytic recovery device 10 also includes a load cell 22 which is arranged in the space 13 and measures the load of the rotating cathode 15 received by the bearing case 21 via the shaft 14 .
  • the load cell 22 has the bearing case 21 mounted thereon so that the load of the bearing case 21 can be measured.
  • the load cell 22 detects the load of the rotating cathode 15 as the radial load of the shaft 14, converts the detected load into an electrical signal, and outputs the electrical signal.
  • a manager of the electrolytic recovery apparatus 10 can obtain information on the amount of metal deposited on the rotating cathode 15 by monitoring the output signal value of the load cell 22 .
  • the rotating cathode 15 is attached to the shaft 14 and driven to rotate together with the shaft 14 by the drive mechanism 18 . If the load of the shaft 14 were directly received by the load cell 22 , the rotation of the shaft 14 would cause friction, which could wear the contact surface of the load cell 22 with the shaft 14 . Further, in order to electrolyze the solution in the electrolytic cell 12, it is necessary to supply a direct current to the rotating cathode 15, and this current supply is performed through the shaft 14. Therefore, if the shaft 14 and the load cell 22 are in direct contact with each other, a voltage will be applied to the load cell 22 . Application of a voltage to the load cell 22 is not preferable because it causes failure of the load cell 22 .
  • the bearing case 21 is arranged between the shaft 14 and the load cell 22 . Since the bearing case 21 does not rotate together with the shaft 14 due to the bearings 20, it is possible to prevent the load cell 22 from wearing even if it comes into direct contact with the load cell 22. ⁇ Moreover, the bearing case 21 has insulation. Therefore, the bearing case 21 can prevent the DC current supplied to the shaft 14 from flowing through the load cell 22 and applying a voltage to the load cell 22 .
  • the electrolytic recovery device 10 also includes a vibration reduction section 23 that is arranged below the load cell 22 in the direction of gravity and that reduces vibration of the shaft 14 .
  • the shaft 14 is rotationally driven by a driving mechanism 18 and generates vibrations during driving.
  • the electrolytic recovery device 10 includes the vibration reducing section 23 .
  • the vibration reduction unit 23 reduces the vibration of the shaft 14 to prevent noise from being mixed in the detected value of the radial load of the shaft 14 . Thereby, the electrolytic recovery device 10 can accurately measure the radial load of the shaft 14 , that is, the amount of metal deposited on the rotating cathode 15 .
  • the vibration reduction section 23 has a support 23A and a vibration absorption sheet 23B.
  • the support 23 ⁇ /b>A reduces vibration of the shaft 14 by suspending the load cell 22 within the space 13 .
  • the support 23A suspends the load cell 22 within the space 13 in order to prevent the load cell 22 from contacting the bottom surface portion 11B.
  • the support 23A is made of, for example, a resin material such as vinyl chloride, and is fixed inside the peripheral wall 11C with bolts (not shown). By suspending the load cell 22, the support 23A damps the vibration of the shaft 14, thereby reducing the vibration of the shaft 14. As shown in FIG.
  • the vibration absorbing sheet 23B has a sheet shape made of a material having viscoelasticity.
  • the vibration absorbing sheet 23B is formed of gel in a sheet shape with a thickness of about 5 mm.
  • the vibration absorbing sheet 23B can reduce vibration of the shaft 14 by viscoelasticity.
  • the vibration absorbing sheet 23B may be made of other viscoelastic materials such as rubber and sponge.
  • FIG. 2 is a cross-sectional view of an electrolytic recovery device according to a comparative example cut along the axial direction.
  • the electrolysis recovery apparatus 100 according to the comparative example is not provided with the vibration reducing section 23, and the load cell 22 is mounted on the pedestal 24 installed on the bottom surface section 11B. In this manner, the electrolytic recovery device 100 is configured without the vibration reducing section 23 .
  • FIG. 3 is a graph showing the output voltage of the load cell 22 by the electrolytic recovery device 10 according to this embodiment.
  • FIG. 4 is a graph showing the output voltage of the load cell 22 by the electrolytic recovery device 100 according to the comparative example.
  • the vertical axis represents the output voltage (V) of the load cell 22
  • the horizontal axis represents the operating time (seconds) of each electrolytic recovery device.
  • the output voltage of the load cell 22 is obtained by being amplified by an amplifier.
  • the electrolytic recovery device 10 can significantly reduce noise in the output voltage of the load cell 22 more than the electrolytic recovery device 100 according to the comparative example.
  • the electrolytic recovery device 10 can measure the radical load of the shaft 14, that is, the amount of metal deposited on the rotating cathode 15 by the output voltage of the load cell 22. Therefore, the administrator can continuously measure the metal recovery amount without stopping the operation of the electrolytic recovery apparatus 10 . Therefore, the electrolytic recovery apparatus 10 does not lower the operation rate, and the rotating cathode 15 does not need to be removed until the replacement timing of the rotating cathode 15, so that theft of the rotating cathode 15 can be suppressed.
  • FIG. 5 is a graph showing weight changes of the rotating cathode 15.
  • the vertical axis represents the weight (g) of the rotating cathode 15, and the horizontal axis represents the operating time of the electrolytic recovery device 10.
  • the noise of the load cell 22 is suppressed, and the change in weight of the rotating cathode 15, that is, the amount of metal recovered can be accurately grasped.
  • the collector installs the electrolytic recovery apparatus at the manufacturer's manufacturing site, and the manager of the collector resides at a remote location from the electrolytic recovery apparatus.
  • the administrator can receive the weight information of the rotating cathode 15 transmitted via the network from the information terminal device connected to the electrolytic recovery device 10, the terminal device carried by him/herself, or the administrator. It can be obtained from a terminal device installed at the place of residence. Therefore, the electrolytic recovery device 10 according to this embodiment can be monitored from a remote location.
  • the replacement timing of the rotating cathode 15 is, for example, when the output voltage value of the load cell 22 reaches approximately 1.4 V and when the weight of the rotating cathode 15 reaches approximately 2.0 kg.
  • the administrator can determine the replacement timing of the rotating cathode 15 by monitoring the weight of the rotating cathode 15 .
  • the output voltage value of the load cell 22 at the replacement timing of the rotating cathode 15 changes depending on the specification of the load cell 22 and the setting of the amplification factor of the amplifier.
  • the administrator can appropriately determine the replacement timing of the rotating cathode 15 by grasping the specifications of the load cell 22, the amplification factor of the amplifier, the output voltage value of the load cell 22, and the weight of the rotating cathode 15. be able to.
  • FIG. 6 is a cross-sectional view of the electrolytic recovery device according to Modification 1 taken along the axial direction.
  • the vibration reducing section 23 has the support 23A and does not have the vibration absorbing sheet 23B. That is, the electrolysis recovery device 10 according to this modification has a configuration in which the vibration absorbing sheet 23B is omitted from the electrolysis recovery device 10 according to the above-described embodiment.
  • FIG. 7 is a graph showing the output voltage of the load cell 22 by the electrolytic recovery device 10 according to this modified example.
  • the vertical axis represents the output voltage (V) of the load cell 22
  • the horizontal axis represents the operating time (seconds) of the electrolytic recovery apparatus.
  • the area surrounded by a rectangle S3 indicates the period during which the driving mechanism 18 was driven.
  • the electrolytic recovery device 10 according to this modified example can reduce noise in the output voltage of the load cell 22 more than the electrolytic recovery device 100 according to the comparative example. Therefore, the electrolytic recovery apparatus 10 according to this modified example can continuously measure the amount of recovered metal without stopping the operation.
  • FIG. 8 is a cross-sectional view of the electrolytic recovery device according to Modification 2 taken along the axial direction.
  • the vibration reducing section 23 has the vibration absorbing sheet 23B and does not have the support 23A.
  • a vibration absorbing sheet 23B is arranged on a pedestal 24 installed on the bottom surface portion 11B, and a load cell 22 is placed on the vibration absorbing sheet 23B.
  • the vibration absorbing sheet 23B is arranged between the load cell 22 and the bottom surface portion 11B of the space portion 13. As shown in FIG.
  • the vibration absorbing sheet 23B may be arranged on the bottom surface portion 11B without providing the pedestal 24, and the load cell 22 may be placed on the vibration absorbing sheet 23B. That is, the electrolysis recovery device 10 according to this modification has a configuration in which the support 23A is omitted from the electrolysis recovery device 10 according to the above-described embodiment.
  • FIG. 9 is a graph showing the output voltage of the load cell 22 by the electrolytic recovery device 10 according to this modified example.
  • the vertical axis represents the output voltage (V) of the load cell 22
  • the horizontal axis represents the operating time (seconds) of the electrolytic recovery apparatus.
  • the area surrounded by a rectangle S4 indicates the period during which the drive mechanism 18 was driven.
  • the electrolytic recovery device 10 according to this modified example can reduce the noise of the output voltage of the load cell 22 more than the electrolytic recovery device 100 according to the comparative example. Therefore, the electrolytic recovery apparatus 10 according to this modified example can continuously measure the amount of recovered metal without stopping the operation.
  • Electrolytic recovery device 11A...Upper end opening 11B...Bottom part 11C...Surrounding wall part 11D...Inner peripheral wall part 11E...Inner bottom part 12...Electrolytic bath 12A...Upper end opening 13...Space part 14.
  • Shaft 15 Rotating cathode 16
  • Bolt 17 Anode 18 Drive mechanism 18A
  • Motor 18B Motor pulley 18C
  • Timing belt 18D Pulley 19
  • Carbon brush 20 Bearing 21
  • Bearing Case 22 Load cell 23 Vibration reducing portion 23A Support 23B Vibration absorbing sheet 24 Base 100
  • Electrolytic recovery device 11A...Upper end opening 11B...Bottom part 11C...Surrounding wall part 11D...Inner peripheral wall part 11E...Inner bottom part 12
  • Electric bath 12A AnUpper end opening 13...Space part 14.
  • Shaft 15 Rotating cathode 16
  • Bolt 17 Anode 18 Drive mechanism 18A
  • Motor 18B Motor pulley 18C
  • Timing belt 18D Pulley 19

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

The purpose of the present invention is to provide a technology capable of measuring a recovery amount of a metal without stopping the operation of an electrolytic recovery device. This electrolytic recovery device comprises: an electrolysis tank into which solution is supplied; a space part provided below the electrolysis tank in the gravity direction; a shaft extending from the inside of the electrolysis tank to the space part; a rotary negative electrode which is fixed to the shaft inside the electrolysis tank and rotates about the rotation axis of the shaft; a positive electrode disposed inside the electrolysis tank; a drive mechanism which rotationally drives the shaft about the rotation axis of the shaft; a bearing which is disposed inside the space part and holds the shaft on a lower end section side of the shaft in the gravity direction; a bearing case which has an insulating property and accommodates the bearing; a load sensor which is disposed inside the space part and measures the load of the rotary negative electrode, the load being received by the bearing case via the shaft; and a vibration reducing part which reduces the vibration of the shaft.

Description

電解回収装置Electrolytic recovery device
 本発明は、電解回収装置に関する。 The present invention relates to an electrolytic recovery device.
 電子部品や半導体装置などの製造工程においては、金属被膜を形成する湿式めっき工程が行われる。湿式メッキ工程では、金属(ニッケル、コバルト、金、銀、白金、パラジウム)を含有する溶液が発生する。そこで、これらの溶液から金属を回収する電解回収装置が知られている(特許文献1)。特許文献1には、軸回りに回転する陰極に金属を析出させることで溶液中の金属を回収する電解回収装置が記載されている。  In the manufacturing process of electronic components and semiconductor devices, a wet plating process is performed to form a metal film. The wet plating process generates solutions containing metals (nickel, cobalt, gold, silver, platinum, palladium). Therefore, an electrolytic recovery apparatus for recovering metals from these solutions is known (Patent Document 1). Patent Literature 1 describes an electrolytic recovery apparatus that recovers metals in a solution by depositing metals on a cathode that rotates about its axis.
特許第5651332号公報Japanese Patent No. 5651332
 電解回収装置では、陰極を回転させながら当該陰極に金属を析出させることで、当該陰極への電着状態を良化させつつ、電解槽内の電流効率が高められる。一方、陰極での金属の析出量、すなわち、金属の回収量を把握することは、電解回収装置の運用上重要である。一般的には、電解回収装置を稼働停止させた状態で電解回収装置から陰極を取り外し、電子天秤などで当該陰極の重量を計量することで、金属の回収量が測定される。しかしながら、この方法は、電解回収装置を稼働停止させる必要があり、電解回収装置の稼働率を低下させてしまう。また、電解回収装置から取り外された陰極が盗難されるなどの懸念もある。 In the electrolytic recovery device, by depositing metal on the cathode while rotating the cathode, the current efficiency in the electrolytic cell can be increased while improving the condition of electrodeposition on the cathode. On the other hand, it is important for the operation of the electrolytic recovery apparatus to know the amount of metal deposited on the cathode, that is, the amount of metal recovered. In general, the metal recovery amount is measured by removing the cathode from the electrolytic recovery device while the operation of the electrolytic recovery device is stopped and weighing the cathode with an electronic balance or the like. However, in this method, it is necessary to stop the operation of the electrolytic recovery apparatus, which reduces the operating rate of the electrolytic recovery apparatus. There is also concern that the cathode removed from the electrolytic recovery apparatus may be stolen.
 本発明は、電解回収装置を稼働停止させることなく、金属の回収量を測定できる技術を提供することを目的とする。 The purpose of the present invention is to provide a technique that can measure the amount of metal recovered without stopping the operation of the electrolytic recovery device.
 上記課題を解決するために、本発明では、回転陰極が固定されたシャフトの振動を低減させる構成を設けた。 In order to solve the above problems, the present invention provides a configuration for reducing vibration of the shaft to which the rotating cathode is fixed.
 具体的には、本発明は、金属が含有された溶液を電気分解することで前記金属を回収する電解回収装置であって、前記溶液が導入される電解槽と、前記電解槽の重力方向下方に設けられた空間部と、前記電解槽内から前記空間部まで延在するシャフトと、前記電解槽内で前記シャフトに固定され、前記シャフトの回転軸を中心として回転する回転陰極と、前記電解槽内に配置された陽極と、前記シャフトを前記回転軸回りに回転駆動させる駆動機構と、前記空間部内に配置され、前記シャフトの前記重力方向下方の端部側で前記シャフトを保持するベアリングと、絶縁性を有し、前記ベアリングを収納するベアリングケースと、前記空間部内に配置され、前記シャフトを介して前記ベアリングケースが受けた前記回転陰極の荷重を計測するロードセルと、前記シャフトの振動を低減させる振動低減部と、を備える。 Specifically, the present invention relates to an electrolytic recovery apparatus for recovering a metal by electrolyzing a solution containing a metal, comprising: an electrolytic cell into which the solution is introduced; a space provided in the electrolytic cell, a shaft extending from the inside of the electrolytic cell to the space, a rotating cathode fixed to the shaft in the electrolytic cell and rotating around the rotation axis of the shaft, and the electrolysis an anode arranged in a tank; a drive mechanism for rotating the shaft around the rotation axis; a bearing arranged in the space and holding the shaft on the lower end side of the shaft in the gravitational direction; a bearing case having insulating properties and containing the bearing; a load cell disposed in the space and measuring the load of the rotating cathode received by the bearing case through the shaft; and a vibration reduction unit for reducing vibration.
 上記の電解回収装置において、前記振動低減部は、前記ロードセルを前記空間部内で吊り下げる支持体を有していてもよい。 In the electrolytic recovery device described above, the vibration reducing section may have a support for suspending the load cell in the space.
 上記の電解回収装置において、前記振動低減部は、前記ロードセルと前記空間部の底面部の間に配置された振動吸収シートを有していてもよい。 In the above electrolytic recovery device, the vibration reducing section may have a vibration absorbing sheet arranged between the load cell and the bottom surface of the space section.
 上記の電解回収装置において、前記振動低減部は、前記ロードセルを前記空間部内で吊り下げる支持体と、前記ロードセルと前記支持体の間に配置された振動吸収シートと、を有していてもよい。 In the electrolytic recovery apparatus described above, the vibration reducing section may include a support for suspending the load cell in the space, and a vibration absorbing sheet disposed between the load cell and the support. .
 本発明によれば、電解回収装置を稼働停止させることなく、金属の回収量を測定できる。 According to the present invention, the amount of metal recovered can be measured without stopping the operation of the electrolytic recovery device.
図1は、実施形態に係る電解回収装置を軸方向に沿って切断した場合の断面図である。FIG. 1 is a cross-sectional view of the electrolytic recovery device according to the embodiment when cut along the axial direction. 図2は、比較例に係る電解回収装置を軸方向に沿って切断した場合の断面図である。FIG. 2 is a cross-sectional view of an electrolytic recovery device according to a comparative example cut along the axial direction. 図3は、実施形態に係る電解回収装置によるロードセルの出力電圧を示すグラフである。FIG. 3 is a graph showing the output voltage of the load cell by the electrolytic recovery device according to the embodiment. 図4は、比較例に係る電解回収装置によるロードセルの出力電圧を示すグラフである。FIG. 4 is a graph showing the output voltage of the load cell by the electrolytic recovery device according to the comparative example. 図5は、実施形態に係る電解回収装置の回転陰極の重量変化を示すグラフである。FIG. 5 is a graph showing weight changes of the rotating cathode of the electrolytic recovery apparatus according to the embodiment. 図6は、変形例1に係る電解回収装置を軸方向に沿って切断した場合の断面図である。FIG. 6 is a cross-sectional view of the electrolytic recovery device according to Modification 1 taken along the axial direction. 図7は、変形例1に係る電解回収装置によるロードセルの出力電圧を示すグラフである。7 is a graph showing the output voltage of the load cell by the electrolytic recovery device according to Modification 1. FIG. 図8は、変形例2に係る電解回収装置を軸方向に沿って切断した場合の断面図である。FIG. 8 is a cross-sectional view of the electrolytic recovery device according to Modification 2 taken along the axial direction. 図9は、変形例2に係る電解回収装置によるロードセルの出力電圧を示すグラフである。9 is a graph showing the output voltage of the load cell by the electrolytic recovery device according to Modification 2. FIG.
 以下に、図面を参照して本発明の実施形態について説明する。なお、以下の実施形態の構成は例示であり、本発明はこれらの実施形態の構成に限定されるものではない。 Embodiments of the present invention will be described below with reference to the drawings. The configurations of the following embodiments are examples, and the present invention is not limited to the configurations of these embodiments.
<実施形態>
 実施形態に係る電解回収装置について説明する。図1は、本実施形態に係る電解回収装置を軸方向に沿って切断した場合の断面図である。金属が含有された溶液(以下、単に「溶液」と称する)を電気分解することで金属を析出させ、当該金属を回収する装置である。電解回収装置10は、電解槽12を備える。電解回収装置10は、設置状態における上端に形成された上端開口11Aと、上端開口11Aに対向配置された底面部11Bと、上端開口11Aと底面部11Bとを繋ぐ周壁部11Cとを有する。また、電解回収装置10は、筒状の内側周壁部11Dと、内側周壁部11Dと周壁部11Cを繋ぐ内側底面部11Eとを有する。電解回収装置10は、底面部11B及び周壁部11Cで構成された外壁と、内側周壁部11D及び内側底面部11Eで構成された内壁を有し、その中に各種回路等を収容する。電解槽12は、周壁部11Cと内側周壁部11Dと内側底面部11Eとで画定されている。なお、底面部11B、周壁部11C、内側周壁部11D及び内側底面部11Eは、硬質塩化ビニルのような樹脂で形成されている。
<Embodiment>
An electrolytic recovery device according to an embodiment will be described. FIG. 1 is a cross-sectional view of the electrolytic recovery device according to the present embodiment, taken along the axial direction. It is an apparatus for depositing metal by electrolyzing a solution containing metal (hereinafter simply referred to as "solution") and recovering the metal. The electrolytic recovery device 10 comprises an electrolytic cell 12 . The electrolytic recovery device 10 has an upper end opening 11A formed at the upper end in the installed state, a bottom portion 11B arranged opposite the upper end opening 11A, and a peripheral wall portion 11C connecting the upper end opening 11A and the bottom portion 11B. Further, the electrolytic recovery device 10 has a tubular inner peripheral wall portion 11D and an inner bottom surface portion 11E connecting the inner peripheral wall portion 11D and the peripheral wall portion 11C. The electrolytic recovery device 10 has an outer wall composed of a bottom surface portion 11B and a peripheral wall portion 11C, and an inner wall composed of an inner peripheral wall portion 11D and an inner bottom surface portion 11E, and accommodates various circuits therein. The electrolytic bath 12 is defined by a peripheral wall portion 11C, an inner peripheral wall portion 11D, and an inner bottom surface portion 11E. The bottom surface portion 11B, the peripheral wall portion 11C, the inner peripheral wall portion 11D, and the inner bottom surface portion 11E are made of resin such as hard vinyl chloride.
 電解槽12は、設置状態における上端に上端開口12Aが形成されている。図1中、2点鎖線Zは、電解槽12の中心軸を表しており、以降では、2点鎖線Zを中心軸Z(本願でいう「電解槽の軸」に相当)と称する。電解槽の中心軸Zは、内側周壁部11Dの中心を通る。周壁部11Cには、溶液の導入孔及び排出孔(不図示)が形成されており、電解回収装置10の外部に設置されたポンプ(不図示)によって当該導入孔から溶液が導入される。また、電解槽12から溢れ出そうになる溶液が当該排出孔から排出され、この溶液は、再度、導入孔から電解槽12内に導入される。このように、電解回収装置10の稼働中においては、溶液が導入孔及び排出孔を介して電解槽12の内外を循環する。 An upper end opening 12A is formed at the upper end of the electrolytic bath 12 in the installed state. In FIG. 1, a two-dot chain line Z represents the central axis of the electrolytic cell 12, and hereinafter, the two-dot chain line Z is referred to as the central axis Z (corresponding to the "axis of the electrolytic cell" in the present application). A central axis Z of the electrolytic cell passes through the center of the inner peripheral wall portion 11D. A solution introduction hole and a solution discharge hole (not shown) are formed in the peripheral wall portion 11C, and the solution is introduced through the introduction hole by a pump (not shown) installed outside the electrolytic recovery device 10. Moreover, the solution that is about to overflow from the electrolytic cell 12 is discharged from the discharge hole, and this solution is again introduced into the electrolytic cell 12 from the introduction hole. In this manner, during operation of the electrolytic recovery apparatus 10, the solution circulates inside and outside the electrolytic cell 12 through the introduction hole and the discharge hole.
 また、電解回収装置10は、電解槽12内から電解槽12の中心軸Zに沿って延在するシャフト14を備える。シャフト14は、導電性を有するように金属で形成されており、中心軸Z周りに回転可能である。また、電解回収装置10は、電解槽12の重力方向下方に設けられた空間部13を備える。空間部13は、電解槽12の下方で周壁部11Cと底面部11Bによって画定された領域である。シャフト14は、電解槽12内から空間部13に配置された後述のベアリングケース21内まで延在している。このように、電解回収装置10は、設置状態で上側に電解槽12が設けられ、電解槽12の下方に空間部13が設けられている。 The electrolytic recovery device 10 also includes a shaft 14 extending from inside the electrolytic cell 12 along the central axis Z of the electrolytic cell 12 . The shaft 14 is made of metal so as to have electrical conductivity, and is rotatable around the central axis Z. As shown in FIG. The electrolytic recovery device 10 also includes a space 13 provided below the electrolytic cell 12 in the direction of gravity. The space portion 13 is a region below the electrolytic bath 12 defined by the peripheral wall portion 11C and the bottom portion 11B. The shaft 14 extends from inside the electrolytic bath 12 to inside a bearing case 21 , which will be described later, arranged in the space 13 . In this manner, the electrolytic recovery apparatus 10 is provided with the electrolytic bath 12 on the upper side and the space 13 below the electrolytic bath 12 in the installed state.
 また、電解回収装置10は、電解槽12内でシャフト14に固定され、シャフト14の回転軸を中心として回転する回転陰極15と、電解槽12内に配置された陽極17と、を備える。電解回収装置10は、回転陰極15と陽極17との間に電圧を印加することによって溶液を電気分解し、これによって回転陰極15の表面に当該溶液に含有されている金属を析出(電着)させる。このようにして電解回収装置10は、金属を回収することができる。回転陰極15は、円筒形状を有し、上端開口12Aから電解槽12内に配置される。シャフト14の上端部には、ねじ溝が形成されており、シャフト14に回転陰極15が挿通された状態で当該ねじ溝にボルト16が固定されることによって、シャフト14に回転陰極15が取り付けられる。また、シャフト14からボルト16を外すことによって、回転陰極15をシャフト14から取り外し可能となる。また、電解回収装置10は、シャフト14に電気的に接続されたカーボンブラシ19を備える。カーボンブラシ19は、シャフト14と空間部13内で電気的に接続されており、シャフト14を介して回転陰極15に直流電流を供給する。なお、回転陰極15への電流供給は、シャフト14を介して行わればよく、カーボンブラシ19を用いることに限定されない。 The electrolytic recovery device 10 also includes a rotating cathode 15 that is fixed to a shaft 14 in the electrolytic cell 12 and rotates around the rotation axis of the shaft 14 , and an anode 17 that is arranged in the electrolytic cell 12 . The electrolytic recovery apparatus 10 electrolyzes the solution by applying a voltage between the rotating cathode 15 and the anode 17, thereby depositing (electrodepositing) the metal contained in the solution on the surface of the rotating cathode 15. Let Thus, the electrolytic recovery device 10 can recover the metal. The rotating cathode 15 has a cylindrical shape and is arranged in the electrolytic cell 12 from the upper end opening 12A. A screw groove is formed in the upper end of the shaft 14 , and the rotating cathode 15 is attached to the shaft 14 by fixing a bolt 16 to the screw groove while the rotating cathode 15 is inserted through the shaft 14 . . Further, the rotating cathode 15 can be removed from the shaft 14 by removing the bolt 16 from the shaft 14 . The electrolytic recovery device 10 also includes a carbon brush 19 electrically connected to the shaft 14 . The carbon brush 19 is electrically connected to the shaft 14 in the space 13 and supplies direct current to the rotating cathode 15 via the shaft 14 . It should be noted that current supply to the rotating cathode 15 may be performed through the shaft 14 and is not limited to using the carbon brush 19 .
 また、電解回収装置10は、シャフト14を回転軸回りに回転駆動させる駆動機構18を備える。本実施形態では、駆動機構18は、空間部13内でシャフト14に接続されており、シャフト14に回転運動を伝達させる。駆動機構18は、モータ18Aと、モータ18Aの回転軸に固定されたモータプーリ18Bと、シャフト14が挿通されてシャフト14に固定されたプーリ18Dと、モータプーリ18Bの回転運動をプーリ18Dに伝達するタイミングベルト18Cを有する。モータ18Aは、電解回収装置10内に収容された駆動回路(不図示)によって動作する駆動源である。タイミングベルト18Cは、例えばゴム製であり、モータプーリ18Bとプーリ18Dを機械的に接続する。タイミングベルト18Cは、回転陰極15に金属が析出してシャフト14に掛かる荷重が増加しても撓むことができるため、シャフト14に掛かる荷重を後述のロードセル22が計測することを阻害しない。 The electrolytic recovery device 10 also includes a drive mechanism 18 that rotates the shaft 14 around the rotation axis. In this embodiment, the drive mechanism 18 is connected to the shaft 14 within the space 13 and transmits rotary motion to the shaft 14 . The drive mechanism 18 includes a motor 18A, a motor pulley 18B fixed to the rotating shaft of the motor 18A, a pulley 18D through which the shaft 14 is inserted and fixed to the shaft 14, and a timing for transmitting the rotational motion of the motor pulley 18B to the pulley 18D. It has a belt 18C. The motor 18A is a drive source operated by a drive circuit (not shown) housed in the electrolytic recovery device 10. As shown in FIG. The timing belt 18C is made of rubber, for example, and mechanically connects the motor pulley 18B and the pulley 18D. The timing belt 18C can be bent even if metal is deposited on the rotating cathode 15 and the load applied to the shaft 14 increases.
 また、電解回収装置10は、空間部13内に配置され、シャフト14の重力方向下方の端部側でシャフト14を保持するベアリング20と、ベアリング20を収納するベアリングケース21を備える。ベアリングケース21は上端全面が開口された箱形状(カップ形状)を有しており、ベアリング20の外周面がベアリングケース21の内周面に固定されている。これによって、ベアリングケース21にはシャフト14の回転運動が伝達されない。ベアリングケース21は、シャフト14と伴に回転しないように設置されている。また、ベアリングケース21は、塩化ビニルのような絶縁性の樹脂材料で形成されており、絶縁性を有する。 The electrolytic recovery device 10 also includes a bearing 20 that is arranged in the space 13 and holds the shaft 14 on the lower end side of the shaft 14 in the direction of gravity, and a bearing case 21 that houses the bearing 20 . The bearing case 21 has a box shape (cup shape) with an open upper end, and the outer peripheral surface of the bearing 20 is fixed to the inner peripheral surface of the bearing case 21 . As a result, the rotational motion of the shaft 14 is not transmitted to the bearing case 21 . The bearing case 21 is installed so as not to rotate with the shaft 14 . Moreover, the bearing case 21 is made of an insulating resin material such as vinyl chloride, and has insulating properties.
 また、電解回収装置10は、空間部13内に配置され、シャフト14を介してベアリングケース21が受けた回転陰極15の荷重を計測するロードセル22を備える。ロードセル22は、ベアリングケース21の荷重を計測可能なように、その上側にベアリングケース21が載置されている。ロードセル22は、回転陰極15の荷重をシャフト14のラジアル荷重として検出し、検出した荷重を電気信号に変換して出力する。電解回収装置10の管理者は、ロードセル22の出力信号値を監視することで、回転陰極15に析出した金属量の情報を得ることができる。 The electrolytic recovery device 10 also includes a load cell 22 which is arranged in the space 13 and measures the load of the rotating cathode 15 received by the bearing case 21 via the shaft 14 . The load cell 22 has the bearing case 21 mounted thereon so that the load of the bearing case 21 can be measured. The load cell 22 detects the load of the rotating cathode 15 as the radial load of the shaft 14, converts the detected load into an electrical signal, and outputs the electrical signal. A manager of the electrolytic recovery apparatus 10 can obtain information on the amount of metal deposited on the rotating cathode 15 by monitoring the output signal value of the load cell 22 .
 本実施形態に係る電解回収装置10において、回転陰極15は、シャフト14に取り付けられており、駆動機構18によってシャフト14と伴に回転駆動される。仮に、シャフト14の荷重を直接的にロードセル22が受けると、シャフト14の回転によって摩擦が生じでロードセル22のシャフト14との接触面が摩耗する虞れがある。また、電解槽12内の溶液を電気分解するためには、回転陰極15に直流電流を供給する必要があり、この電流供給は、シャフト14を介して行われる。したがって、仮に、シャフト14とロードセル22が直接的に接触すると、ロードセル22に電圧が印加されることになる。ロードセル22に電圧が印加されることは、ロードセル22の故障の原因となるので好ましくない。 In the electrolytic recovery device 10 according to this embodiment, the rotating cathode 15 is attached to the shaft 14 and driven to rotate together with the shaft 14 by the drive mechanism 18 . If the load of the shaft 14 were directly received by the load cell 22 , the rotation of the shaft 14 would cause friction, which could wear the contact surface of the load cell 22 with the shaft 14 . Further, in order to electrolyze the solution in the electrolytic cell 12, it is necessary to supply a direct current to the rotating cathode 15, and this current supply is performed through the shaft 14. Therefore, if the shaft 14 and the load cell 22 are in direct contact with each other, a voltage will be applied to the load cell 22 . Application of a voltage to the load cell 22 is not preferable because it causes failure of the load cell 22 .
 そこで、本実施形態に係る電解回収装置10では、シャフト14とロードセル22の間にベアリングケース21を配置した。ベアリングケース21は、ベアリング20によってシャフト14と伴に回転することがないので、ロードセル22に直接的に接触してもロードセル22が摩耗するのを防ぐことができる。また、ベアリングケース21は、絶縁性を有している。このため、ベアリングケース21は、シャフト14に供給される直流電流がロードセル22に流れ、ロードセル22に電圧が印加されるのを防ぐことができる。 Therefore, in the electrolytic recovery device 10 according to this embodiment, the bearing case 21 is arranged between the shaft 14 and the load cell 22 . Since the bearing case 21 does not rotate together with the shaft 14 due to the bearings 20, it is possible to prevent the load cell 22 from wearing even if it comes into direct contact with the load cell 22.例文帳に追加Moreover, the bearing case 21 has insulation. Therefore, the bearing case 21 can prevent the DC current supplied to the shaft 14 from flowing through the load cell 22 and applying a voltage to the load cell 22 .
 また、電解回収装置10は、ロードセル22の重力方向下方に配置され、シャフト14の振動を低減させる振動低減部23を備える。シャフト14は、駆動機構18によって回転駆動されており、駆動時には振動が発生する。ロードセル22がこの振動を検知すると、シャフト14のラジアル荷重の検出値にノイズが混在する。これによって、ロードセル22がシャフト14のラジアル荷重を正確に検出することができなくなる。そこで、本実施形態に係る電解回収装置10は、振動低減部23を備える。振動低減部23は、シャフト14の振動を低減させることによって、シャフト14のラジアル荷重の検出値にノイズが混在するのを抑制する。これによって、電解回収装置10は、シャフト14のラジアル荷重、すなわち、回転陰極15に析出した金属量を正確に測定することができる。 The electrolytic recovery device 10 also includes a vibration reduction section 23 that is arranged below the load cell 22 in the direction of gravity and that reduces vibration of the shaft 14 . The shaft 14 is rotationally driven by a driving mechanism 18 and generates vibrations during driving. When the load cell 22 detects this vibration, the detected value of the radial load of the shaft 14 contains noise. This makes it impossible for the load cell 22 to accurately detect the radial load on the shaft 14 . Therefore, the electrolytic recovery device 10 according to this embodiment includes the vibration reducing section 23 . The vibration reduction unit 23 reduces the vibration of the shaft 14 to prevent noise from being mixed in the detected value of the radial load of the shaft 14 . Thereby, the electrolytic recovery device 10 can accurately measure the radial load of the shaft 14 , that is, the amount of metal deposited on the rotating cathode 15 .
 本実施形態では、振動低減部23は、支持体23Aと振動吸収シート23Bとを有する。支持体23Aは、ロードセル22を空間部13内で吊り下げることによってシャフト14の振動を低減させる。支持体23Aは、ロードセル22が底面部11Bに接触するのを防ぐために、ロードセル22を空間部13内で吊り下げる。支持体23Aは、例えば、塩化ビニルなどの樹脂材料で形成されており、周壁部11Cの内側にボルト(不図示)で固定されている。支持体23Aは、ロードセル22を吊り下げることで、シャフト14の振動を緩衝し、これによって、シャフト14の振動を低減できる。 In this embodiment, the vibration reduction section 23 has a support 23A and a vibration absorption sheet 23B. The support 23</b>A reduces vibration of the shaft 14 by suspending the load cell 22 within the space 13 . The support 23A suspends the load cell 22 within the space 13 in order to prevent the load cell 22 from contacting the bottom surface portion 11B. The support 23A is made of, for example, a resin material such as vinyl chloride, and is fixed inside the peripheral wall 11C with bolts (not shown). By suspending the load cell 22, the support 23A damps the vibration of the shaft 14, thereby reducing the vibration of the shaft 14. As shown in FIG.
 振動吸収シート23Bは、粘弾性を有する材料で形成されたシート形状を有する。本実施形態では、振動吸収シート23Bは、ゲルによって厚さが5mm程度のシート状に形成されている。振動吸収シート23Bは、粘弾性によってシャフト14の振動を低減できる。なお、振動吸収シート23Bは、ゴムやスポンジなどのその他の粘弾性を有する材料によって形成されていてもよい。 The vibration absorbing sheet 23B has a sheet shape made of a material having viscoelasticity. In this embodiment, the vibration absorbing sheet 23B is formed of gel in a sheet shape with a thickness of about 5 mm. The vibration absorbing sheet 23B can reduce vibration of the shaft 14 by viscoelasticity. The vibration absorbing sheet 23B may be made of other viscoelastic materials such as rubber and sponge.
 次に、本実施形態に係る電解回収装置10によるロードセル22の出力電圧と、比較例に係る電解回収装置100よるロードセル22の出力電圧とを比較する。図2は、比較例に係る電解回収装置を軸方向に沿って切断した場合の断面図である。図2に示すように、比較例に係る電解回収装置100は、振動低減部23が設けられておらず、ロードセル22が底面部11B上に設置された台座24上に載置されている。このように、電解回収装置100は、振動低減部23を備えない構成である。 Next, the output voltage of the load cell 22 by the electrolytic recovery device 10 according to this embodiment and the output voltage of the load cell 22 by the electrolytic recovery device 100 according to the comparative example will be compared. FIG. 2 is a cross-sectional view of an electrolytic recovery device according to a comparative example cut along the axial direction. As shown in FIG. 2, the electrolysis recovery apparatus 100 according to the comparative example is not provided with the vibration reducing section 23, and the load cell 22 is mounted on the pedestal 24 installed on the bottom surface section 11B. In this manner, the electrolytic recovery device 100 is configured without the vibration reducing section 23 .
 図3は、本実施形態に係る電解回収装置10によるロードセル22の出力電圧を示すグラフである。図4は、比較例に係る電解回収装置100によるロードセル22の出力電圧を示すグラフである。図3および図4のグラフにおいて、縦軸はロードセル22の出力電圧(V)を表し、横軸は各電解回収装置の稼働時間(秒)を表している。なお、ロードセル22の出力電圧のノイズを比較するために、電解槽12に溶液を導入しない状態で図3および図4のデータを取得した。なお、ロードセル22の出力電圧はアンプにより増幅して取得したものである。 FIG. 3 is a graph showing the output voltage of the load cell 22 by the electrolytic recovery device 10 according to this embodiment. FIG. 4 is a graph showing the output voltage of the load cell 22 by the electrolytic recovery device 100 according to the comparative example. In the graphs of FIGS. 3 and 4, the vertical axis represents the output voltage (V) of the load cell 22, and the horizontal axis represents the operating time (seconds) of each electrolytic recovery device. In order to compare the noise of the output voltage of the load cell 22, the data of FIGS. 3 and 4 were obtained without introducing the solution into the electrolytic cell 12. FIG. Note that the output voltage of the load cell 22 is obtained by being amplified by an amplifier.
 図3において、四角形S1で囲んだ領域は、駆動機構18が駆動していた期間を示し、図4において、四角形S2で囲んだ領域は、駆動機構18が駆動していた期間を示している。図3と図4の比較から分かるように、本実施形態に係る電解回収装置10は、比較例に係る電解回収装置100よりもロードセル22の出力電圧のノイズを大幅に低減することができる。 In FIG. 3, the area surrounded by a rectangle S1 indicates the period during which the drive mechanism 18 was driven, and in FIG. 4, the area surrounded by the rectangle S2 indicates the period during which the drive mechanism 18 was driven. As can be seen from the comparison between FIGS. 3 and 4, the electrolytic recovery device 10 according to the present embodiment can significantly reduce noise in the output voltage of the load cell 22 more than the electrolytic recovery device 100 according to the comparative example.
 したがって、本実施形態に係る電解回収装置10は、ロードセル22の出力電圧によってシャフト14のラジカル荷重、すなわち、回転陰極15に析出した金属量を計測することができる。このため、管理者は、電解回収装置10を稼働停止することなく、金属の回収量を連続的に測定できる。したがって、電解回収装置10は、稼働率を低下させることもなく、回転陰極15の交換タイミングまで回転陰極15を取り外す必要がないため、回転陰極15の盗難を抑制することもできる。 Therefore, the electrolytic recovery device 10 according to the present embodiment can measure the radical load of the shaft 14, that is, the amount of metal deposited on the rotating cathode 15 by the output voltage of the load cell 22. Therefore, the administrator can continuously measure the metal recovery amount without stopping the operation of the electrolytic recovery apparatus 10 . Therefore, the electrolytic recovery apparatus 10 does not lower the operation rate, and the rotating cathode 15 does not need to be removed until the replacement timing of the rotating cathode 15, so that theft of the rotating cathode 15 can be suppressed.
 次に、本実施形態に係る電解回収装置10を実際に稼働した場合のロードセル22の出力電圧から得られた回転陰極15の重量変化について説明する。図5は、回転陰極15の重量変化を示すグラフである。図5のグラフにおいて、縦軸は回転陰極15の重量(g)を表し、横軸は電解回収装置10の稼働時間を表している。図5のグラフに示すように、ロードセル22のノイズが抑制されており、回転陰極15の重量変化、すなわち金属の回収量を正確に把握することができる。 Next, the change in weight of the rotating cathode 15 obtained from the output voltage of the load cell 22 when the electrolytic recovery device 10 according to this embodiment is actually operated will be described. FIG. 5 is a graph showing weight changes of the rotating cathode 15. As shown in FIG. In the graph of FIG. 5, the vertical axis represents the weight (g) of the rotating cathode 15, and the horizontal axis represents the operating time of the electrolytic recovery device 10. As shown in FIG. As shown in the graph of FIG. 5, the noise of the load cell 22 is suppressed, and the change in weight of the rotating cathode 15, that is, the amount of metal recovered can be accurately grasped.
 例えば、金属回収行う回収業者と、電解回収装置を使用する半導体装置などの製造業者とが異なる場合がある。この場合には、一般的に、回収業者が電解回収装置を製造業者の製造現場に設置し、回収業者の管理者は、電解回収装置から遠隔地に在住している。本実施形態に係る電解回収装置10によれば、管理者は、電解回収装置10と接続された情報端末装置からネットワークを介して送信される回転陰極15の重量情報を自身が携帯する端末装置や在住場所に設置した端末装置により取得することができる。したがって、本実施形態に係る電解回収装置10は遠隔地から監視可能である。 For example, there are cases where the recovery company that recovers metals and the manufacturer of semiconductor devices that use electrolytic recovery equipment are different. In this case, generally, the collector installs the electrolytic recovery apparatus at the manufacturer's manufacturing site, and the manager of the collector resides at a remote location from the electrolytic recovery apparatus. According to the electrolytic recovery device 10 according to the present embodiment, the administrator can receive the weight information of the rotating cathode 15 transmitted via the network from the information terminal device connected to the electrolytic recovery device 10, the terminal device carried by him/herself, or the administrator. It can be obtained from a terminal device installed at the place of residence. Therefore, the electrolytic recovery device 10 according to this embodiment can be monitored from a remote location.
 また、回転陰極15の交換タイミングは、例えば、ロードセル22の出力電圧値が約1.4Vになった時点であって、回転陰極15の重量が約2.0kgになった時点である。このように、管理者は、回転陰極15の重量を監視することによって回転陰極15の交換タイミングを判断することができる。なお、回転陰極15の交換タイミングにおけるロードセル22の出力電圧値は、ロードセル22の仕様やアンプによる増幅率の設定によって変化する。管理者は、ロードセル22の仕様やアンプによる増幅率と、ロードセル22の出力電圧値と、回転陰極15の重量との関係を把握しておくことにより、回転陰極15の交換タイミングを適切に判断することができる。 Also, the replacement timing of the rotating cathode 15 is, for example, when the output voltage value of the load cell 22 reaches approximately 1.4 V and when the weight of the rotating cathode 15 reaches approximately 2.0 kg. Thus, the administrator can determine the replacement timing of the rotating cathode 15 by monitoring the weight of the rotating cathode 15 . It should be noted that the output voltage value of the load cell 22 at the replacement timing of the rotating cathode 15 changes depending on the specification of the load cell 22 and the setting of the amplification factor of the amplifier. The administrator can appropriately determine the replacement timing of the rotating cathode 15 by grasping the specifications of the load cell 22, the amplification factor of the amplifier, the output voltage value of the load cell 22, and the weight of the rotating cathode 15. be able to.
<変形例1>
 次に、実施形態の変形例1に係る電解回収装置について説明する。図6は、変形例1に係る電解回収装置を軸方向に沿って切断した場合の断面図である。本変形例に係る電解回収装置10は、振動低減部23が、支持体23Aを有し、振動吸収シート23Bを有していない。すなわち、本変形例に係る電解回収装置10は、上記実施形態に係る電解回収装置10から振動吸収シート23Bを省略した構成を備える。
<Modification 1>
Next, an electrolytic recovery device according to Modification 1 of the embodiment will be described. FIG. 6 is a cross-sectional view of the electrolytic recovery device according to Modification 1 taken along the axial direction. In the electrolytic recovery device 10 according to this modification, the vibration reducing section 23 has the support 23A and does not have the vibration absorbing sheet 23B. That is, the electrolysis recovery device 10 according to this modification has a configuration in which the vibration absorbing sheet 23B is omitted from the electrolysis recovery device 10 according to the above-described embodiment.
 図7は、本変形例に係る電解回収装置10によるロードセル22の出力電圧を示すグラフである。図7のグラフにおいて、縦軸はロードセル22の出力電圧(V)を表し、横軸は電解回収装置の稼働時間(秒)を表している。なお、本変形例に係る電解回収装置10のロードセル22の出力電圧と、図4に示す比較例に係る電解回収装置100のロードセル22の出力電圧のノイズを比較するために、電解槽12に溶液を導入しない状態で図7のデータを取得した。なお、ロードセル22の出力電圧はアンプにより増幅して取得したものである。 FIG. 7 is a graph showing the output voltage of the load cell 22 by the electrolytic recovery device 10 according to this modified example. In the graph of FIG. 7, the vertical axis represents the output voltage (V) of the load cell 22, and the horizontal axis represents the operating time (seconds) of the electrolytic recovery apparatus. In order to compare the noise of the output voltage of the load cell 22 of the electrolysis recovery apparatus 10 according to this modified example and the output voltage of the load cell 22 of the electrolysis recovery apparatus 100 according to the comparative example shown in FIG. The data in FIG. 7 were obtained without introducing Note that the output voltage of the load cell 22 is obtained by being amplified by an amplifier.
 図7において、四角形S3で囲んだ領域は、駆動機構18が駆動していた期間を示している。図4と図7の比較から分かるように、本変形例に係る電解回収装置10は、比較例に係る電解回収装置100よりもロードセル22の出力電圧のノイズを低減することができる。したがって、本変形例に係る電解回収装置10は、稼働停止することなく、金属の回収量を連続的に測定できる。 In FIG. 7, the area surrounded by a rectangle S3 indicates the period during which the driving mechanism 18 was driven. As can be seen from the comparison between FIG. 4 and FIG. 7, the electrolytic recovery device 10 according to this modified example can reduce noise in the output voltage of the load cell 22 more than the electrolytic recovery device 100 according to the comparative example. Therefore, the electrolytic recovery apparatus 10 according to this modified example can continuously measure the amount of recovered metal without stopping the operation.
<変形例2>
 次に、実施形態の変形例2に係る電解回収装置について説明する。図8は、変形例2に係る電解回収装置を軸方向に沿って切断した場合の断面図である。本変形例に係る電解回収装置10は、振動低減部23が、振動吸収シート23Bを有し、支持体23Aを有していない。本変形例において、底面部11B上に設置された台座24上に振動吸収シート23Bが配置されており、振動吸収シート23B上にロードセル22が載置されている。本変形例において、振動吸収シート23Bは、ロードセル22と空間部13の底面部11Bの間に配置されている。なお、台座24を設けずに、底面部11B上に振動吸収シート23Bを配置し、振動吸収シート23B上にロードセル22が載置される構成としてもよい。すなわち、本変形例に係る電解回収装置10は、上記実施形態に係る電解回収装置10から支持体23Aを省略した構成を備える。
<Modification 2>
Next, an electrolytic recovery device according to Modification 2 of the embodiment will be described. FIG. 8 is a cross-sectional view of the electrolytic recovery device according to Modification 2 taken along the axial direction. In the electrolytic recovery device 10 according to this modification, the vibration reducing section 23 has the vibration absorbing sheet 23B and does not have the support 23A. In this modified example, a vibration absorbing sheet 23B is arranged on a pedestal 24 installed on the bottom surface portion 11B, and a load cell 22 is placed on the vibration absorbing sheet 23B. In this modification, the vibration absorbing sheet 23B is arranged between the load cell 22 and the bottom surface portion 11B of the space portion 13. As shown in FIG. Alternatively, the vibration absorbing sheet 23B may be arranged on the bottom surface portion 11B without providing the pedestal 24, and the load cell 22 may be placed on the vibration absorbing sheet 23B. That is, the electrolysis recovery device 10 according to this modification has a configuration in which the support 23A is omitted from the electrolysis recovery device 10 according to the above-described embodiment.
 図9は、本変形例に係る電解回収装置10によるロードセル22の出力電圧を示すグラフである。図9のグラフにおいて、縦軸はロードセル22の出力電圧(V)を表し、横軸は電解回収装置の稼働時間(秒)を表している。なお、本変形例に係る電解回収装置10のロードセル22の出力電圧と、図4に示す比較例に係る電解回収装置100のロードセル22の出力電圧のノイズを比較するために、電解槽12に溶液を導入しない状態で図9のデータを取得した。なお、ロードセル22の出力電圧はアンプにより増幅して取得したものである。 FIG. 9 is a graph showing the output voltage of the load cell 22 by the electrolytic recovery device 10 according to this modified example. In the graph of FIG. 9, the vertical axis represents the output voltage (V) of the load cell 22, and the horizontal axis represents the operating time (seconds) of the electrolytic recovery apparatus. In order to compare the noise of the output voltage of the load cell 22 of the electrolysis recovery apparatus 10 according to this modified example and the output voltage of the load cell 22 of the electrolysis recovery apparatus 100 according to the comparative example shown in FIG. The data in FIG. 9 were obtained without introducing Note that the output voltage of the load cell 22 is obtained by being amplified by an amplifier.
 図9において、四角形S4で囲んだ領域は、駆動機構18が駆動していた期間を示している。図4と図9の比較から分かるように、本変形例に係る電解回収装置10は、比較例に係る電解回収装置100よりもロードセル22の出力電圧のノイズを低減することができる。したがって、本変形例に係る電解回収装置10は、稼働停止することなく、金属の回収量を連続的に測定できる。 In FIG. 9, the area surrounded by a rectangle S4 indicates the period during which the drive mechanism 18 was driven. As can be seen from the comparison between FIG. 4 and FIG. 9, the electrolytic recovery device 10 according to this modified example can reduce the noise of the output voltage of the load cell 22 more than the electrolytic recovery device 100 according to the comparative example. Therefore, the electrolytic recovery apparatus 10 according to this modified example can continuously measure the amount of recovered metal without stopping the operation.
 以上、本願発明の実施形態について説明したが、上述した種々の実施形態は可能な限り組み合わせることができる。 Although the embodiments of the present invention have been described above, the various embodiments described above can be combined as much as possible.
10・・電解回収装置
11A・・上端開口
11B・・底面部
11C・・周壁部
11D・・内側周壁部
11E・・内側底面部
12・・電解槽
12A・・上端開口
13・・空間部
14・・シャフト
15・・回転陰極
16・・ボルト
17・・陽極
18・・駆動機構
18A・・モータ
18B・・モータプーリ
18C・・タイミングベルト
18D・・プーリ
19・・カーボンブラシ
20・・ベアリング
21・・ベアリングケース
22・・ロードセル
23・・振動低減部
23A・・支持体
23B・・振動吸収シート
24・・台座
100・・電解回収装置
10...Electrolytic recovery device 11A...Upper end opening 11B...Bottom part 11C...Surrounding wall part 11D...Inner peripheral wall part 11E...Inner bottom part 12...Electrolytic bath 12A...Upper end opening 13...Space part 14. Shaft 15 Rotating cathode 16 Bolt 17 Anode 18 Drive mechanism 18A Motor 18B Motor pulley 18C Timing belt 18D Pulley 19 Carbon brush 20 Bearing 21 Bearing Case 22 Load cell 23 Vibration reducing portion 23A Support 23B Vibration absorbing sheet 24 Base 100 Electrolytic recovery device

Claims (4)

  1.  金属が含有された溶液を電気分解することで前記金属を回収する電解回収装置であって、
     前記溶液が導入される電解槽と、
     前記電解槽の重力方向下方に設けられた空間部と、
     前記電解槽内から前記空間部まで延在するシャフトと、
     前記電解槽内で前記シャフトに固定され、前記シャフトの回転軸を中心として回転する回転陰極と、
     前記電解槽内に配置された陽極と、
     前記シャフトを前記回転軸回りに回転駆動させる駆動機構と、
     前記空間部内に配置され、前記シャフトの前記重力方向下方の端部側で前記シャフトを保持するベアリングと、
     絶縁性を有し、前記ベアリングを収納するベアリングケースと、
     前記空間部内に配置され、前記シャフトを介して前記ベアリングケースが受けた前記回転陰極の荷重を計測するロードセルと、
     前記シャフトの振動を低減させる振動低減部と、
     を備える、電解回収装置。
    An electrolytic recovery device for recovering the metal by electrolyzing a solution containing the metal,
    an electrolytic cell into which the solution is introduced;
    a space provided below the electrolytic cell in the direction of gravity;
    a shaft extending from inside the electrolytic cell to the space;
    a rotating cathode fixed to the shaft in the electrolytic cell and rotating about the axis of rotation of the shaft;
    an anode disposed within the electrolytic cell;
    a drive mechanism that rotates the shaft about the rotation axis;
    a bearing that is arranged in the space and holds the shaft on the lower end side of the shaft in the direction of gravity;
    a bearing case having insulating properties and housing the bearing;
    a load cell arranged in the space and measuring the load of the rotating cathode received by the bearing case through the shaft;
    a vibration reduction section that reduces vibration of the shaft;
    an electrolytic recovery device.
  2.  前記振動低減部は、前記ロードセルを前記空間部内で吊り下げる支持体を有する、
     請求項1に記載の電解回収装置。
    The vibration reduction section has a support for suspending the load cell in the space,
    The electrolytic recovery device according to claim 1.
  3.  前記振動低減部は、前記ロードセルと前記空間部の底面部の間に配置された振動吸収シートを有する、
     請求項1に記載の電解回収装置。
    The vibration reducing section has a vibration absorbing sheet disposed between the load cell and the bottom surface of the space.
    The electrolytic recovery device according to claim 1.
  4.  前記振動低減部は、
      前記ロードセルを前記空間部内で吊り下げる支持体と、
      前記ロードセルと前記支持体の間に配置された振動吸収シートと、
     を有する、
     請求項1に記載の電解回収装置。
    The vibration reduction unit is
    a support for suspending the load cell in the space;
    a vibration absorbing sheet disposed between the load cell and the support;
    having
    The electrolytic recovery device according to claim 1.
PCT/JP2022/033182 2021-09-06 2022-09-02 Electrolytic recovery device WO2023033157A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-144834 2021-09-06
JP2021144834A JP6975871B1 (en) 2021-09-06 2021-09-06 Electrolytic recovery device

Publications (1)

Publication Number Publication Date
WO2023033157A1 true WO2023033157A1 (en) 2023-03-09

Family

ID=78767720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033182 WO2023033157A1 (en) 2021-09-06 2022-09-02 Electrolytic recovery device

Country Status (2)

Country Link
JP (1) JP6975871B1 (en)
WO (1) WO2023033157A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08508068A (en) * 1993-11-08 1996-08-27 ロイドルフ・ユルゲン Method and apparatus for electrodepositing metal using a rotating cathode device
WO2008153001A1 (en) * 2007-06-11 2008-12-18 Asahipretec Corporation Metal recovering device
JP2013079427A (en) * 2011-10-04 2013-05-02 Dowa Eco-System Co Ltd Method for recovering valuable metal from liquid containing valuable metal, and electrolytic recovery device
JP3191315U (en) * 2014-03-04 2014-06-19 アサヒプリテック株式会社 Metal electrolytic recovery equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08508068A (en) * 1993-11-08 1996-08-27 ロイドルフ・ユルゲン Method and apparatus for electrodepositing metal using a rotating cathode device
WO2008153001A1 (en) * 2007-06-11 2008-12-18 Asahipretec Corporation Metal recovering device
JP2013079427A (en) * 2011-10-04 2013-05-02 Dowa Eco-System Co Ltd Method for recovering valuable metal from liquid containing valuable metal, and electrolytic recovery device
JP3191315U (en) * 2014-03-04 2014-06-19 アサヒプリテック株式会社 Metal electrolytic recovery equipment

Also Published As

Publication number Publication date
JP2023037977A (en) 2023-03-16
JP6975871B1 (en) 2021-12-01

Similar Documents

Publication Publication Date Title
TWI237317B (en) Plating apparatus, plating cup and cathode ring
WO2023033157A1 (en) Electrolytic recovery device
EP1467840A1 (en) Process control in electro-chemical mechanical polishing
US20080017521A1 (en) Process control in electro-chemical mechanical polishing
WO2013157129A1 (en) Substrate plating jig and plating device using same
US7608173B2 (en) Biased retaining ring
TWI249591B (en) Plating barrel, barrel plating apparatus and drain equipment
JP2988624B2 (en) Plating method
US3342718A (en) Apparatus for the recovery of silver from used photographic fixing solutions by electrolysis
KR20210016460A (en) Electrocoagulation cell with an integrated mechanism of uniform anode consumption
WO2005113193A1 (en) Retaining ring with conductive portion
WO2012171209A1 (en) Reclaiming metal from articles
CN108462018A (en) A kind of the abrasion sensing device further and its application method of graphene carbon carbon brush for electric machine component
JP2006020486A (en) Flat-type vibrating motor
JPH0348280B2 (en)
CN216947275U (en) Conductive connection structure
JPH0790694A (en) Revolving jig for surface treatment
JP4632570B2 (en) Exterior type electric corrosion preventer for underwater rotating machinery
WO2000021651A1 (en) An agitator
CA2050306C (en) Device for transporting bulk materials comprising a vibrator conveyor which dips into a liquid
JP2006312759A (en) Barrel plating device for electrolytic chromium plating
CN217641064U (en) Dustproof material level switch
KR20140053615A (en) Vibration type plating apparatus
JP3309660B2 (en) Anode rod for electroplating
JP6666933B2 (en) Communication device and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE