WO2023033000A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2023033000A1
WO2023033000A1 PCT/JP2022/032653 JP2022032653W WO2023033000A1 WO 2023033000 A1 WO2023033000 A1 WO 2023033000A1 JP 2022032653 W JP2022032653 W JP 2022032653W WO 2023033000 A1 WO2023033000 A1 WO 2023033000A1
Authority
WO
WIPO (PCT)
Prior art keywords
offset
flow direction
plate joint
fins
heat exchanger
Prior art date
Application number
PCT/JP2022/032653
Other languages
French (fr)
Japanese (ja)
Inventor
駿作 江口
陽一 上藤
玄人 市川
優好 平沢
克弘 齊藤
博之 中拂
雄太 ▲高▼橋
陸史 亀井
毅 金子
浩一 谷本
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Publication of WO2023033000A1 publication Critical patent/WO2023033000A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • F28F3/027Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements with openings, e.g. louvered corrugated fins; Assemblies of corrugated strips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/06Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being attachable to the element

Definitions

  • the present disclosure relates to heat exchangers.
  • This oil cooler includes a tube through which oil flows inside and a cooling medium through the outside, and offset fins that are arranged in the tube and perform heat exchange between the oil and the cooling medium.
  • the offset fin has a cross-sectional shape perpendicular to the direction of oil flow, which is a wave shape in which the convex portions are alternately positioned on one side and the other side.
  • a temperature boundary layer is formed on the fin wall surfaces between the fluids passing on both sides of the offset fins where heat is exchanged between a high-temperature fluid such as oil and a low-temperature fluid such as a cooling medium. is formed.
  • the thermal boundary layer is a layer formed by a temperature gradient between the fluid heated or cooled on the fin wall surface and the fluid near the wall surface. The thickness of the thermal boundary layer increases due to heat exchange, and when the temperature gradient in the fluid near the wall surface becomes smaller, the heat exchange is suppressed and the heat transfer performance decreases. put away.
  • an object of the present disclosure is to provide a heat exchanger capable of suppressing deterioration in heat transfer performance by reducing the thickness of the temperature boundary layer.
  • a heat exchanger includes a pair of plates facing each other, and inner fins provided between the pair of plates and through which a fluid circulates.
  • a plurality of offset fins are arranged side by side and offset from each other in the width direction orthogonal to the flow direction, and the offset fins are joined to the plate and formed in the flow direction.
  • a plate joint portion having a stepped portion; a fin portion connected to the plate joint portion and provided along the facing direction of the pair of plates; and a fin portion provided at the plate joint portion and oblique to the flow direction. , and a receiving slope of the step portion that receives the fluid.
  • Another heat exchanger of the present disclosure includes a pair of plates that face each other, and inner fins that are provided between the pair of plates and in which a fluid flows. and a plurality of offset fins arranged side by side along the width direction perpendicular to the flow direction, wherein the offset fins are a plate joint portion joined to the plate; A fin portion connected to the plate joint portion and provided along the facing direction of the pair of plates, and a projection portion provided at the plate joint portion and protruding inward from the plate joint portion.
  • Another heat exchanger of the present disclosure includes a pair of plates that face each other, and inner fins that are provided between the pair of plates and in which a fluid flows. and a plurality of offset fins arranged side by side along the width direction perpendicular to the flow direction, wherein the offset fins are a plate joint portion joined to the plate; A fin portion connected to the plate joint portion and provided along the facing direction of the pair of plates, and a hole provided in the plate joint portion and recessed from the plate joint portion toward the plate side.
  • FIG. 1 is a perspective view schematically showing a heat exchanger according to Embodiment 1.
  • FIG. 2 is a perspective view showing offset fins of the heat exchanger according to Embodiment 1.
  • FIG. 3 is a two-sided view of the offset fin.
  • FIG. 4 is a cross-sectional view of an offset fin.
  • FIG. 5 is an explanatory diagram regarding the flow of fluid.
  • FIG. 6 is a perspective view showing offset fins of the heat exchanger according to Embodiment 2.
  • FIG. FIG. 7 is a perspective view showing projections of offset fins.
  • FIG. 8 is a two-sided view of the offset fin.
  • 9 is a perspective view showing offset fins of a heat exchanger according to Embodiment 3.
  • FIG. 10 is a plan view of the offset fin.
  • FIG. 11 is a cross-sectional view of an offset fin.
  • FIG. 12 is an explanatory diagram regarding the flow of fluid.
  • the heat exchanger 1 according to Embodiment 1 is a heat exchanger in which a structure in which inner fins are provided between a pair of plates is laminated, and is called a so-called plate heat exchanger.
  • heat is exchanged between a high-temperature side fluid and a low-temperature side fluid that flow inside.
  • the fluid flowing through the heat exchanger 1 may be liquid or gas, and is not particularly limited.
  • FIG. 1 is a perspective view schematically showing the heat exchanger according to Embodiment 1.
  • FIG. 2 is a perspective view showing offset fins of the heat exchanger according to Embodiment 1.
  • FIG. 3 is a two-sided view of the offset fin.
  • FIG. 4 is a cross-sectional view of an offset fin.
  • FIG. 5 is an explanatory diagram regarding the flow of fluid.
  • the heat exchanger 1 includes a plurality of plates 10 and inner fins 12 provided between the plates 10 .
  • the plate 10 is formed in a plate shape.
  • the plurality of plates 10 are arranged at predetermined intervals in the direction in which their plate surfaces face each other, that is, in the thickness direction.
  • the high-temperature side fluid flows on one side in the thickness direction, and the low-temperature side fluid flows on the other side in the thickness direction.
  • a metal material with high heat transfer performance is used for the plate 10 .
  • the inner fins 12 are provided between a pair of adjacent plates 10 and joined to the plates 10 by brazing. That is, the inner fin 12 is joined to the plate 10 on one side at one side in the thickness direction, and joined to the plate on the other side at the other side in the thickness direction.
  • the inner fins 12 function as strength members that support the space between the pair of plates 10 . Further, the inner fins 12 are provided with flow paths through which fluid flows. Therefore, the fluid flows between the pair of plates 10 facing each other, that is, inside the inner fins 12 .
  • the plurality of plates 10 and inner fins 12 are alternately arranged and joined in the thickness direction. Therefore, the flow paths formed by the inner fins 12 are partitioned by the plate 10 so that a plurality of flow paths are formed side by side in the thickness direction.
  • the plurality of flow paths arranged in the thickness direction circulate the high-temperature side fluid and the low-temperature side fluid so that the flow path for the high-temperature side fluid and the flow path for the low-temperature side fluid alternate.
  • the flow path is formed so that the fluid flows in one direction in a plane perpendicular to the thickness direction. The direction of flow of the high-temperature side fluid and the direction of flow of the low-temperature side fluid are opposite to each other.
  • the inner fin 12 has a plurality of offset fins 15. As shown in FIG. A plurality of offset fins 15 are arranged side by side along the flow direction of the fluid. Also, the plurality of offset fins 15 are provided in a plane orthogonal to the thickness direction, offset from each other in the width direction orthogonal to the flow direction.
  • the offset fins 15 are provided across the width direction.
  • the offset fins 15 have apexes 15a that protrude upstream in the flow direction, and troughs 15b that are recessed downstream in the flow direction. It has a wavy shape.
  • the offset fins 15 on one side adjacent in the flow direction and the offset fins 15 on the other side adjacent in the flow direction are arranged line-symmetrically with respect to the width direction as an axis of symmetry, and are mutually offset in the width direction. are placed as follows.
  • the offset fin 15 has an angle ⁇ a between the top portion 15a and the valley portion 15b in a range of 60 degrees to 160 degrees when viewed from above in a height direction orthogonal to the flow direction and the width direction.
  • the offset fins 15 are arranged in four rows in the flow direction as one set.
  • the first row of offset fins 15 on the upstream side in the flow direction and the third row of offset fins 15 on the downstream side are at the same position in the width direction.
  • the offset fins 15 in the second row are offset to one side in the width direction (right side in FIGS. 3 and 4) with respect to the offset fins 15 in the first and third rows.
  • the offset fins 15 in the fourth row are offset from the offset fins 15 in the first and third rows to the other side in the width direction (left side in FIGS. 3 and 4).
  • the distance between the tops in the width direction is set to 1 unit.
  • the offset fins 15 in the second row are offset from the offset fins 15 in the first and third rows to one side in the width direction by 1 ⁇ 2 unit.
  • the offset fins 15 in the fourth row are offset from the offset fins 15 in the first and third rows to the other side in the width direction by 1 ⁇ 2 unit.
  • the offset fins 15 in the second and fourth rows are offset by 1/2 units, but if the shape of the offset fins 15 does not restrict the offset fins 15, the offset fins 15 may be offset by 1/4 to 1/2 units. is preferably offset within the range of .
  • the offset fin 15 has a plate joint portion 21, a fin portion 22, and a blocking portion 23, and these portions are integrated.
  • the plate joint portion 21 is a portion that is joined to the plate 10 .
  • the plate joint portion 21 includes a plate joint portion 21 a joined to one side of the pair of plates 10 and a plate joint portion 21 b joined to the other side of the pair of plates 10 .
  • the plate joint portion 21 is formed in a parallelogram plate shape or a V-shaped plate shape obtained by symmetrically developing a parallelogram in the width direction.
  • the plate joint portion 21 forms part of the top portion 15 a and the valley portion 15 b of the offset fin 15 .
  • the plate joint portion 21 has a surface facing the plate 10 joined to the plate 10 , so that an end portion in the flow direction exposed on the inner channel side is formed as a stepped portion 25 .
  • the fin portion 22 is provided over the thickness direction.
  • the fin portion 22 is connected to the widthwise end portion of the plate joint portion 21 .
  • the fin portion 22 is formed in a plate shape.
  • the blocking portion 23 is provided at the plate joint portion 21 .
  • the inhibition portion 23 is a portion that inhibits the formation of a thermal boundary layer generated in the fluid flowing along the inner side of the plate joint portion 21 .
  • the obstruction portion 23 is a receiving slope 38 that receives the fluid in the stepped portion 25 and is oblique with respect to the flow direction. Since the receiving slope 38 is oblique with respect to the flow direction of the fluid, the fluid flowing along the receiving slope 38 becomes a swirling flow that circulates in the circumferential direction about the flow direction.
  • FIG. 5 is a cross-section cut along a plane orthogonal to the flow direction, the upper side of the drawing is the upstream side in the flow direction, and the lower side of the drawing is the downstream side in the flow direction.
  • the fluid flowing along the receiving slope 38 generates a flow R1 from the top portion 15a to the valley portion 15b in the width direction as it goes from the upstream side to the downstream side in the flow direction.
  • the fluid becomes a swirling flow R2 swirling in the flow direction from the top portion 15a to the valley portion 15b.
  • the fluid that becomes the swirling flow R2 has an increased flow velocity inside the plate joint portion 21, and thus inhibits formation of a temperature boundary layer that occurs inside the plate joint portion 21.
  • FIG. 6 is a perspective view showing offset fins of the heat exchanger according to Embodiment 2.
  • FIG. 7 is a perspective view showing projections of offset fins.
  • FIG. 8 is a two-sided view of the offset fin.
  • a heat exchanger 50 of the second embodiment differs from the offset fins 15 of the first embodiment in the plurality of offset fins 51 in the inner fins 12 .
  • a plurality of offset fins 51 are arranged side by side along the flow direction of the fluid.
  • the plurality of offset fins 51 are offset in the width direction perpendicular to the flow direction in the plane perpendicular to the thickness direction.
  • the offset fins 51 are provided across the width direction.
  • the offset fin 15 is a long member whose longitudinal direction is the width direction.
  • the offset fin 51 has a plate joint portion 61, a fin portion 62, and an obstruction portion 63, and these portions are integrated.
  • the plate joint portion 61 is a portion that is joined to the plate 10 . Similar to the plate joint portion 21 of the first embodiment, the plate joint portion 61 includes a plate joint portion 61a joined to one side of the pair of plates 10 and a plate joint portion 61b joined to the other side of the pair of plates 10. and includes The plate joint portion 61 is formed in a square plate shape. In addition, the plate joint portion 61 has a surface facing the plate 10 joined to the plate 10 , so that an end portion in the flow direction exposed on the inner channel side is formed as the stepped portion 25 .
  • the fin portion 62 is provided over the thickness direction.
  • the fin portion 62 is connected to the widthwise end portion of the plate joint portion 61 .
  • the fin portion 62 is formed in a plate shape.
  • the blocking portion 63 is provided at the plate joint portion 61 .
  • the inhibition portion 63 is a portion that inhibits the formation of a temperature boundary layer generated in the fluid that flows along the inner side of the plate joint portion 61 .
  • the blocking portion 63 is a protrusion 65 that protrudes inward from the plate joint portion 61 .
  • the projecting portion 65 is provided at the plate joint 61 on the upstream side in the flow direction.
  • the protrusion 65 is formed in a rectangular shape elongated in the flow direction when viewed from the height direction orthogonal to the flow direction and the width direction. Moreover, the protrusion 65 is formed in a triangular shape that is convex in the protrusion direction when viewed from the front in the flow direction. In the second embodiment, the protrusion 65 has a rectangular shape in plan view and a triangular shape in front view, but the shape is not particularly limited to this.
  • the protrusion 65 may have a polygonal shape or an annular shape such as a circle or an ellipse in a plan view, and may have a polygonal shape, a semicircular shape, or a semicircular shape in a front view. An arc shape such as an ellipse may be used.
  • the projecting portion 65 has a first guide slope 65a that slopes from the upstream side to the downstream side in the flow direction, and a second guide slope 65b that slopes from one side to the other side in the width direction. ing.
  • the first guide slope 65a includes an upstream guide slope 65a and a downstream guide slope 65a. Assuming that the angle formed by the first guide slope 65a and the flow direction is a first inclination angle ⁇ 1, the first inclination angle ⁇ 1 is in the range of 10 degrees to 60 degrees.
  • the first inclination angle ⁇ 1 on the downstream side may be the same as the first inclination angle ⁇ 1 on the upstream side, or may be larger than the first inclination angle ⁇ 1 on the upstream side with an upper limit of 90 degrees.
  • the second guide slope 65b includes a guide slope 65b on one side in the width direction and a guide slope 65b on the other side in the width direction. Assuming that the angle formed by the second guide slope 65b and the width direction is a second inclination angle ⁇ 2, the inclination angles ⁇ 2 of the second guide slopes 65b on both sides in the width direction are the same.
  • the protrusions 65 are provided at predetermined positions in the flow direction and the width direction. Specifically, the projecting portion 65 is arranged with a distance L1 equal to or greater than the thickness of the fin portion 62 from the end portion of the plate joint portion 61 in the flow direction. In addition, the projecting portion 65 is spaced apart from the fin portion 62 by a distance L2 equal to or greater than the thickness of the fin portion 62 in the width direction.
  • part of the fluid that flows inside the inner fins 12 in the flow direction crosses over the stepped portion 25, reaches the projecting portion 65, and flows along the first guide slope 65a. .
  • the flow velocity of the fluid flowing along the first guide slope 65a of the protrusion 65 and the fluid flowing along the plate joint portion 61 without the protrusion 65 are different. Therefore, a pressure gradient is generated between the fluids, and the pressure gradient generates a cross-sectional secondary flow whose cross section is a plane perpendicular to the flow direction. This cross-sectional secondary flow increases the flow velocity of the fluid inside the plate joint portion 21 , thereby inhibiting the formation of a temperature boundary layer that occurs inside the plate joint portion 21 .
  • the protrusions 65 have a rectangular shape elongated in the flow direction in plan view, but may be arranged as indicated by the dotted lines in FIG. That is, the projecting portion 65 may have a rectangular shape elongated in a direction inclined with respect to the flow direction in plan view. Specifically, if the angle formed by the length direction of the protrusion 65 and the flow direction is defined as an inclination angle ⁇ 3, the inclination angle ⁇ 3 ranges from 0 degrees to 45 degrees.
  • FIG. 9 is a perspective view showing offset fins of a heat exchanger according to Embodiment 3.
  • FIG. 10 is a plan view of the offset fin.
  • FIG. 11 is a cross-sectional view of an offset fin.
  • FIG. 12 is an explanatory diagram regarding the flow of fluid.
  • a heat exchanger 70 of the third embodiment differs from the offset fins 15 and 51 of the first and second embodiments in the plurality of offset fins 71 in the inner fins 12 .
  • a plurality of offset fins 71 are obtained by replacing the blocking portions 63 of the second embodiment with blocking portions 83 . Therefore, the blocking portion 83 of the offset fin 71 will be described, and the plate joint portion 81 and the fin portion 82 of the offset fin 71, which are other portions, are the same as the plate joint portion 61 and the fin portion 62 of the second embodiment. Therefore, the description is omitted.
  • the blocking portion 83 is provided at the plate joint portion 81 .
  • the inhibition portion 83 is a portion that inhibits the formation of a thermal boundary layer generated in the fluid that flows along the inner side of the plate joint portion 81 .
  • the obstruction portion 83 is a hole 85 that enters from the plate joint portion 81 toward the plate 10 side.
  • the holes 85 are provided in the plate joints 81 on the downstream side in the flow direction.
  • the hole 85 is a through hole formed through the plate joint portion 81 .
  • the hole 85 is a through hole in the third embodiment, it may be a bottomed hole. At least one or more holes 85 are provided in the inner fin 12 in the machine direction and the width direction.
  • the hole 85 is formed in a square shape when viewed from the height direction orthogonal to the flow direction and the width direction.
  • the hole 85 has a square shape in plan view, but is not particularly limited to this shape.
  • the hole 85 may have a polygonal shape or an annular shape such as a circular or elliptical shape in plan view.
  • the hole 85 has a longest length L5 that is two to eight times the thickness of the fin portion 82 in plan view.
  • the holes 85 are provided at predetermined positions in the flow direction and the width direction. Specifically, the hole 85 is arranged with a distance L3 that is equal to or greater than the thickness of the fin portion 82 from the end portion of the plate joint portion 81 in the flow direction. Moreover, the hole 85 is spaced apart from the fin portion 62 by a distance L4 equal to or greater than the thickness of the fin portion 62 in the width direction.
  • FIG. The plate joint portion 81 has a downstream slope 81a formed at the downstream end in the flow direction.
  • the downstream slope 81a is a portion on the downstream side of the plate joint portion 81 where the other plate joint portion 81 is not adjacent to the downstream side in the flow direction, that is, a portion where the stepped portion 88 is formed (see conventional in FIG. 12). formed in Assuming that the angle formed by the downstream side slope 81a and the flow direction is the downstream side inclination angle ⁇ 4, the downstream side inclination angle ⁇ 4 is in the range of 7 degrees to 45 degrees.
  • part of the fluid that flows inside the inner fins 12 in the flow direction crosses over the stepped portion 25 and reaches the hole 85 .
  • the fluid flowing along the plate joint 81 is separated at the hole 85 , thereby initializing the formation of the thermal boundary layer generated inside the plate joint 21 .
  • heat exchangers 1, 50, and 70 described in this embodiment are understood as follows, for example.
  • a heat exchanger 1 includes a pair of plates 10 facing each other, and inner fins 12 provided between the pair of plates 10 and through which a fluid flows. , a plurality of offset fins 15 arranged side by side along the flow direction of the fluid and offset from each other in the width direction orthogonal to the flow direction, the offset fins 15 being arranged on the plate 10 a plate joint portion 21 having a stepped portion 25 formed in the flow direction; a fin portion 22 connected to the plate joint portion 21 and provided along the facing direction of the pair of plates 10; a receiving slope 38 provided at the plate joint 21 and oblique to the flow direction for receiving the fluid of the stepped portion 25 .
  • the swirling flow R2 can be imparted to the fluid by the receiving slope 38. Therefore, since the flow velocity increases inside the plate joint portion 21 due to the swirl flow R2, the formation of the temperature boundary layer generated inside the plate joint portion 21 can be inhibited appropriately. Therefore, it is possible to reduce the thickness of the temperature boundary layer and suppress deterioration of the heat transfer performance via the plate 10 , thereby suppressing deterioration of the heat exchange performance of the heat exchanger 1 .
  • the offset fins 15 have a top portion 15a on the upstream side in the flow direction and a valley portion 15b on the downstream side in the flow direction, and the top portion 15a and the valley portion 15b
  • the offset fins 15 on one side adjacent in the flow direction and the offset fins 15 on the other side adjacent in the flow direction are arranged alternately along the width direction. They are arranged axisymmetrically with the direction as an axis of symmetry, and are arranged with positions offset from each other in the width direction.
  • the offset fins 15 can be arranged line-symmetrically and offset, so that only one type of the offset fins 15 can be used for the inner fins 12, which reduces the manufacturing cost. reduction can be achieved.
  • the offset fins 15 are arranged in four rows in the flow direction as one set, and the offset fins 15 in the first row and the offset fins 15 in the third row are arranged in the width direction.
  • the offset fins 15 of the second row are offset to one side in the width direction with respect to the offset fins 15 of the first and third rows, and the offset fins 15 of the fourth row are positioned at the same position. is offset to the other side in the width direction with respect to the offset fins 15 of the first and third rows.
  • the offset fins 15 can be placed in a suitable arrangement that inhibits the formation of the temperature boundary layer.
  • the inner fins 12 can be easily configured.
  • a heat exchanger 50 includes a pair of plates 10 facing each other, and inner fins 12 provided between the pair of plates 10 and through which a fluid flows. , a plurality of offset fins 51 arranged side by side along the flow direction of the fluid and offset from each other in the width direction orthogonal to the flow direction, the offset fins 51 being arranged on the plate 10 a plate joint portion 61 joined to the plate joint portion 61; a fin portion 62 connected to the plate joint portion 61 and provided along the facing direction of the pair of plates 10; and a projection 65 projecting inwardly from 61 .
  • the protrusion 65 can impart a cross-sectional secondary flow to the fluid. For this reason, since the cross-sectional secondary flow increases the flow velocity on the inner side of the plate joint portion 21 , the formation of the temperature boundary layer generated on the inner side of the plate joint portion 21 can be inhibited appropriately. Therefore, it is possible to reduce the thickness of the temperature boundary layer and suppress deterioration of the heat transfer performance via the plate 10 , thereby suppressing deterioration of the heat exchange performance of the heat exchanger 50 .
  • the projecting portion 65 is provided at the plate joint portion 61 on the upstream side in the flow direction.
  • the projecting portion 65 can provide a cross-sectional secondary flow on the upstream side in the flow direction, it is possible to suitably inhibit the formation of a temperature boundary layer on the downstream side.
  • the protrusion 65 is composed of a guide slope 65a that slopes from the upstream side to the downstream side in the flow direction and a guide slope 65b that slopes from one side to the other side in the width direction. At least one of the guide slopes 65a and 65b is provided.
  • the cross-sectional secondary flow can be easily imparted to the fluid by circulating the fluid along the guide slopes 65a and 65b.
  • the protrusion 65 has a shape elongated in a direction inclined with respect to the flow direction.
  • the cross-sectional secondary flow can be easily imparted to the fluid by circulating the fluid along the length direction of the protrusion 65 .
  • the protrusion 65 is arranged with a distance L1 equal to or greater than the thickness of the fin portion 62 from the end portion of the plate joint portion 61 in the flow direction, and in the width direction , are spaced apart from the fin portion 62 by a distance L2 equal to or greater than the thickness of the fin portion 62 .
  • the arrangement of the protrusions 65 can be a suitable arrangement for imparting a cross-sectional secondary flow to the fluid.
  • a heat exchanger 70 includes a pair of plates 10 facing each other, and inner fins 12 provided between the pair of plates 10 and through which a fluid flows. , a plurality of offset fins 71 arranged side by side along the flow direction of the fluid and offset from each other in the width direction orthogonal to the flow direction, the offset fins 71 being arranged on the plate 10 a plate joint portion 81 joined to the plate joint portion 81; a fin portion 82 connected to the plate joint portion 81 and provided along the facing direction of the pair of plates 10; and a hole 85 recessed from 81 toward the plate 10 side.
  • the holes 85 can separate the fluid flow. Therefore, by separating the flow of the fluid, the formation of the thermal boundary layer can be initialized, so that the formation of the thermal boundary layer can be favorably inhibited. Therefore, the thickness of the thermal boundary layer can be reduced to suppress deterioration in heat transfer performance via the plate 10, thereby suppressing deterioration in the heat exchange performance of the heat exchanger 70.
  • the holes 85 are provided in the plate joint portions 81 on the downstream side in the flow direction.
  • the hole 85 has a maximum length in the plane of the plate 10 that is two to eight times the thickness of the fin portion 82 .
  • the size of the hole 85 can be set to a suitable size for initializing the formation of the temperature boundary layer.
  • the hole 85 is arranged with a distance L3 equal to or greater than the thickness of the fin portion 82 from the end portion of the plate joint portion 81 in the flow direction, and in the width direction, With respect to the fin portion 82, a distance L4 equal to or greater than the thickness of the fin portion 82 is provided.
  • the arrangement of the holes 85 can be a suitable arrangement for initializing the formation of the temperature boundary layer.
  • the plate joint portion 81 is formed at the downstream end in the flow direction, and has a downstream inclined surface 81a inclined toward the plate 10 toward the downstream side in the flow direction. .
  • the formation of the separation flow R3 is suppressed by the fluid flowing along the downstream slope 81a. Therefore, the heat transfer area of the fluid on the downstream side of the plate joint portion 81 can be increased to the extent that the formation of the separated flow R3 is suppressed, and the heat transfer performance can be improved. Moreover, pressure loss can be reduced by suppressing the formation of the separation flow R3.

Abstract

This heat exchanger comprises: a pair of plates that face each other; and an inner fin which is provided between the plates and in which a fluid circulates. The inner fin has a plurality of offset fins which are arranged side by side in the flowing direction of the fluid and are provided such that the positions thereof are mutually offset in the width direction orthogonal to the flowing direction. The offset fins include: plate joint parts which are joined to the plates and have steps formed in the flowing direction; fin parts provided along the opposing direction of the plates and connected to the plate joint parts; and reception slopes which are provided to the plate joint parts obliquely to the flowing direction and which receive the fluid from the steps.

Description

熱交換器Heat exchanger
 本開示は、熱交換器に関するものである。 The present disclosure relates to heat exchangers.
 従来、インナーフィンとしてオフセットフィンを用いたオイルクーラ等の熱交換器が知られている(例えば、特許文献1参照)。このオイルクーラは、内部をオイルが流通すると共に、外部を冷却媒体が流通するチューブと、チューブ内に配置され、オイルと冷却媒体との間での熱交換を行うオフセットフィンと、を備えている。オフセットフィンは、オイルの流れ方向に垂直な断面形状が、凸部を一方側と他方側に交互に位置させて曲折する波形状となっている。 Conventionally, heat exchangers such as oil coolers using offset fins as inner fins are known (see Patent Document 1, for example). This oil cooler includes a tube through which oil flows inside and a cooling medium through the outside, and offset fins that are arranged in the tube and perform heat exchange between the oil and the cooling medium. . The offset fin has a cross-sectional shape perpendicular to the direction of oil flow, which is a wave shape in which the convex portions are alternately positioned on one side and the other side.
特開2012-17943号公報JP 2012-17943 A
 オフセットフィンを用いた熱交換器では、オイル等の高温側流体と、冷却媒体等の低温側流体とが熱交換されるオフセットフィンの両側を通過する流体同士の間のフィン壁面において、温度境界層が形成される。温度境界層は、フィン壁面で加熱もしくは冷却された流体と、壁面近傍の流体との間で生じる温度勾配によって形成される層である。温度境界層は熱交換によりその厚みが大きくなり、壁面近傍の流体内の温度勾配が小さくなると熱交換が抑制され、伝熱性能が低下することから、熱交換器の熱交換性能が低下してしまう。 In a heat exchanger using offset fins, a temperature boundary layer is formed on the fin wall surfaces between the fluids passing on both sides of the offset fins where heat is exchanged between a high-temperature fluid such as oil and a low-temperature fluid such as a cooling medium. is formed. The thermal boundary layer is a layer formed by a temperature gradient between the fluid heated or cooled on the fin wall surface and the fluid near the wall surface. The thickness of the thermal boundary layer increases due to heat exchange, and when the temperature gradient in the fluid near the wall surface becomes smaller, the heat exchange is suppressed and the heat transfer performance decreases. put away.
 そこで、本開示は、温度境界層の厚みを低減して、伝熱性能の低下を抑制することができる熱交換器を提供することを課題とする。 Therefore, an object of the present disclosure is to provide a heat exchanger capable of suppressing deterioration in heat transfer performance by reducing the thickness of the temperature boundary layer.
 本開示の熱交換器は、対向する一対のプレートと、一対の前記プレートの間に設けられ、内部において流体が流通するインナーフィンと、を備え、前記インナーフィンは、前記流体の流れ方向に沿って並べて設けられると共に、前記流れ方向に直交する幅方向において相互に位置をオフセットして設けられる複数のオフセットフィンを有し、前記オフセットフィンは、前記プレートに接合され、前記流れ方向に形成される段差部を有するプレート接合部と、前記プレート接合部に接続され、一対の前記プレートの対向方向に沿って設けられるフィン部と、前記プレート接合部に設けられ、前記流れ方向に対して斜めとなる、前記段差部の前記流体を受ける受け斜面と、を含む。 A heat exchanger according to the present disclosure includes a pair of plates facing each other, and inner fins provided between the pair of plates and through which a fluid circulates. A plurality of offset fins are arranged side by side and offset from each other in the width direction orthogonal to the flow direction, and the offset fins are joined to the plate and formed in the flow direction. a plate joint portion having a stepped portion; a fin portion connected to the plate joint portion and provided along the facing direction of the pair of plates; and a fin portion provided at the plate joint portion and oblique to the flow direction. , and a receiving slope of the step portion that receives the fluid.
 本開示の他の熱交換器は、対向する一対のプレートと、一対の前記プレートの間に設けられ、内部において流体が流通するインナーフィンと、を備え、前記インナーフィンは、前記流体の流れ方向に沿って並べて設けられると共に、前記流れ方向に直交する幅方向において相互に位置をオフセットして設けられる複数のオフセットフィンを有し、前記オフセットフィンは、前記プレートに接合されるプレート接合部と、前記プレート接合部に接続され、一対の前記プレートの対向方向に沿って設けられるフィン部と、前記プレート接合部に設けられ、前記プレート接合部から内部側へ突出する突起部と、を含む。 Another heat exchanger of the present disclosure includes a pair of plates that face each other, and inner fins that are provided between the pair of plates and in which a fluid flows. and a plurality of offset fins arranged side by side along the width direction perpendicular to the flow direction, wherein the offset fins are a plate joint portion joined to the plate; A fin portion connected to the plate joint portion and provided along the facing direction of the pair of plates, and a projection portion provided at the plate joint portion and protruding inward from the plate joint portion.
 本開示の他の熱交換器は、対向する一対のプレートと、一対の前記プレートの間に設けられ、内部において流体が流通するインナーフィンと、を備え、前記インナーフィンは、前記流体の流れ方向に沿って並べて設けられると共に、前記流れ方向に直交する幅方向において相互に位置をオフセットして設けられる複数のオフセットフィンを有し、前記オフセットフィンは、前記プレートに接合されるプレート接合部と、前記プレート接合部に接続され、一対の前記プレートの対向方向に沿って設けられるフィン部と、前記プレート接合部に設けられ、前記プレート接合部から前記プレート側へ没入する孔と、を含む。 Another heat exchanger of the present disclosure includes a pair of plates that face each other, and inner fins that are provided between the pair of plates and in which a fluid flows. and a plurality of offset fins arranged side by side along the width direction perpendicular to the flow direction, wherein the offset fins are a plate joint portion joined to the plate; A fin portion connected to the plate joint portion and provided along the facing direction of the pair of plates, and a hole provided in the plate joint portion and recessed from the plate joint portion toward the plate side.
 本開示によれば、温度境界層の形成を抑制して、伝熱性能の低下を抑制することができる。 According to the present disclosure, it is possible to suppress the formation of a temperature boundary layer and suppress the deterioration of heat transfer performance.
図1は、実施形態1に係る熱交換器を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing a heat exchanger according to Embodiment 1. FIG. 図2は、実施形態1に係る熱交換器のオフセットフィンを示す斜視図である。2 is a perspective view showing offset fins of the heat exchanger according to Embodiment 1. FIG. 図3は、オフセットフィンの二面図である。FIG. 3 is a two-sided view of the offset fin. 図4は、オフセットフィンの断面図である。FIG. 4 is a cross-sectional view of an offset fin. 図5は、流体の流れに関する説明図である。FIG. 5 is an explanatory diagram regarding the flow of fluid. 図6は、実施形態2に係る熱交換器のオフセットフィンを示す斜視図である。FIG. 6 is a perspective view showing offset fins of the heat exchanger according to Embodiment 2. FIG. 図7は、オフセットフィンの突起部を示す斜視図である。FIG. 7 is a perspective view showing projections of offset fins. 図8は、オフセットフィンの二面図である。FIG. 8 is a two-sided view of the offset fin. 図9は、実施形態3に係る熱交換器のオフセットフィンを示す斜視図である。9 is a perspective view showing offset fins of a heat exchanger according to Embodiment 3. FIG. 図10は、オフセットフィンの平面図である。FIG. 10 is a plan view of the offset fin. 図11は、オフセットフィンの断面図である。FIG. 11 is a cross-sectional view of an offset fin. 図12は、流体の流れに関する説明図である。FIG. 12 is an explanatory diagram regarding the flow of fluid.
 以下に、本開示に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態により本開示が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能であり、また、実施形態が複数ある場合には、各実施形態を組み合わせることも可能である。 Hereinafter, embodiments according to the present disclosure will be described in detail based on the drawings. Note that the present disclosure is not limited by this embodiment. In addition, components in the following embodiments include components that can be easily replaced by those skilled in the art, or components that are substantially the same. Furthermore, the components described below can be combined as appropriate, and when there are multiple embodiments, each embodiment can be combined.
[実施形態1]
 実施形態1に係る熱交換器1は、一対のプレート間にインナーフィンを設けた構造を積層した熱交換器となっており、いわゆるプレート式熱交換器と呼ばれるものである。熱交換器1では、内部を流通する高温側流体と低温側流体との間で熱交換が行われている。なお、熱交換器1の内部を流通する流体としては、液体であってもよいし、気体であってもよく、特に限定されない。
[Embodiment 1]
The heat exchanger 1 according to Embodiment 1 is a heat exchanger in which a structure in which inner fins are provided between a pair of plates is laminated, and is called a so-called plate heat exchanger. In the heat exchanger 1, heat is exchanged between a high-temperature side fluid and a low-temperature side fluid that flow inside. The fluid flowing through the heat exchanger 1 may be liquid or gas, and is not particularly limited.
 図1は、実施形態1に係る熱交換器を模式的に示す斜視図である。図2は、実施形態1に係る熱交換器のオフセットフィンを示す斜視図である。図3は、オフセットフィンの二面図である。図4は、オフセットフィンの断面図である。図5は、流体の流れに関する説明図である。 FIG. 1 is a perspective view schematically showing the heat exchanger according to Embodiment 1. FIG. 2 is a perspective view showing offset fins of the heat exchanger according to Embodiment 1. FIG. FIG. 3 is a two-sided view of the offset fin. FIG. 4 is a cross-sectional view of an offset fin. FIG. 5 is an explanatory diagram regarding the flow of fluid.
(熱交換器)
 熱交換器1は、複数のプレート10と、プレート10間に設けられるインナーフィン12と、を備えている。プレート10は、板状に形成されている。複数のプレート10は、その板面が対向する対向方向、つまり厚さ方向に、所定の間隔を空けて配置されている。プレート10は、厚さ方向の一方側において、高温側流体が流通し、厚さ方向の他方側において、低温側流体が流通する。プレート10は、伝熱性能の高い金属材料が用いられている。
(Heat exchanger)
The heat exchanger 1 includes a plurality of plates 10 and inner fins 12 provided between the plates 10 . The plate 10 is formed in a plate shape. The plurality of plates 10 are arranged at predetermined intervals in the direction in which their plate surfaces face each other, that is, in the thickness direction. In the plate 10, the high-temperature side fluid flows on one side in the thickness direction, and the low-temperature side fluid flows on the other side in the thickness direction. A metal material with high heat transfer performance is used for the plate 10 .
 インナーフィン12は、隣接する一対のプレート10間に設けられ、ろう付けによりプレート10と接合される。つまり、インナーフィン12は、厚さ方向の一方側が、一方側のプレート10に接合され、厚さ方向の他方側が、他方側のプレートに接合される。インナーフィン12は、一対のプレート10間を支持する強度部材として機能している。また、インナーフィン12には、流体が流通する流路が設けられる。このため、流体は、対向する一対のプレート10間、つまり、インナーフィン12の内部において流通する。 The inner fins 12 are provided between a pair of adjacent plates 10 and joined to the plates 10 by brazing. That is, the inner fin 12 is joined to the plate 10 on one side at one side in the thickness direction, and joined to the plate on the other side at the other side in the thickness direction. The inner fins 12 function as strength members that support the space between the pair of plates 10 . Further, the inner fins 12 are provided with flow paths through which fluid flows. Therefore, the fluid flows between the pair of plates 10 facing each other, that is, inside the inner fins 12 .
 複数のプレート10とインナーフィン12とは、厚さ方向に交互に配置され接合されている。このため、インナーフィン12により形成される流路は、プレート10によって仕切られることで、厚さ方向に複数並んで形成される。厚さ方向に並ぶ複数の流路は、高温側流体が流通する流路と、低温側流体が流通する流路とが交互となるように、高温側流体及び低温側流体を流通させる。また、流路は、厚さ方向直交する面内において、一方向に流体が流れるように形成されている。そして、高温側流体の流れ方向と、低温側流体の流れ方向とは、対向する方向となっている。 The plurality of plates 10 and inner fins 12 are alternately arranged and joined in the thickness direction. Therefore, the flow paths formed by the inner fins 12 are partitioned by the plate 10 so that a plurality of flow paths are formed side by side in the thickness direction. The plurality of flow paths arranged in the thickness direction circulate the high-temperature side fluid and the low-temperature side fluid so that the flow path for the high-temperature side fluid and the flow path for the low-temperature side fluid alternate. Moreover, the flow path is formed so that the fluid flows in one direction in a plane perpendicular to the thickness direction. The direction of flow of the high-temperature side fluid and the direction of flow of the low-temperature side fluid are opposite to each other.
 このような熱交換器1において、高温側流体と低温側流体とを流通させると、高温側流体は、所定の流れ方向に流通し、低温側流体は、高温側流体の流れ方向に対向する流れ方向に流通する。そして、高温側流体と低温側流体とは、プレート10及びインナーフィン12を介して熱交換される。 In such a heat exchanger 1, when the high-temperature side fluid and the low-temperature side fluid flow, the high-temperature side fluid flows in a predetermined flow direction, and the low-temperature side fluid flows in a direction opposite to the flow direction of the high-temperature side fluid. flow in the direction The high-temperature side fluid and the low-temperature side fluid are heat-exchanged via the plate 10 and the inner fins 12 .
 次に、図2から図4を参照して、インナーフィン12について説明する。図2から図4に示すように、インナーフィン12は、複数のオフセットフィン15を有している。複数のオフセットフィン15は、流体の流れ方向に沿って並べて設けられている。また、複数のオフセットフィン15は、厚さ方向に直交する面内において、流れ方向に直交する幅方向に相互に位置をオフセットして設けられる。 Next, the inner fins 12 will be described with reference to FIGS. 2 to 4. FIG. As shown in FIGS. 2 to 4, the inner fin 12 has a plurality of offset fins 15. As shown in FIG. A plurality of offset fins 15 are arranged side by side along the flow direction of the fluid. Also, the plurality of offset fins 15 are provided in a plane orthogonal to the thickness direction, offset from each other in the width direction orthogonal to the flow direction.
 オフセットフィン15は、幅方向に亘って設けられている。オフセットフィン15は、流れ方向の上流側に突出する部位を頂部15aとし、流れ方向の下流側に窪む部位を谷部15bとし、頂部15aと谷部15bとが幅方向に沿って交互に設けられた波形状となっている。流れ方向に隣接する一方側のオフセットフィン15と、流れ方向に隣接する他方側のオフセットフィン15とは、幅方向を対称軸として線対称に配置されていると共に、幅方向において相互に位置をオフセットして配置される。また、オフセットフィン15は、流れ方向及び幅方向に直交する高さ方向から見た平面視において、頂部15a及び谷部15bにおける角度θaが60度から160度の範囲となっている。 The offset fins 15 are provided across the width direction. The offset fins 15 have apexes 15a that protrude upstream in the flow direction, and troughs 15b that are recessed downstream in the flow direction. It has a wavy shape. The offset fins 15 on one side adjacent in the flow direction and the offset fins 15 on the other side adjacent in the flow direction are arranged line-symmetrically with respect to the width direction as an axis of symmetry, and are mutually offset in the width direction. are placed as follows. In addition, the offset fin 15 has an angle θa between the top portion 15a and the valley portion 15b in a range of 60 degrees to 160 degrees when viewed from above in a height direction orthogonal to the flow direction and the width direction.
 ここで、図3に示すように、オフセットフィン15は、流れ方向に4列並べたものをワンセットとしている。流れ方向の上流側となる一列目のオフセットフィン15と、下流側となる三列目のオフセットフィン15とは、幅方向において同じ位置となっている。二列目のオフセットフィン15は、一列目及び三列目のオフセットフィン15に対して、幅方向の一方側(図3及び図4の右側)にオフセットさせた位置となっている。四列目のオフセットフィン15は、一列目及び三列目のオフセットフィン15に対して、幅方向の他方側(図3及び図4の左側)にオフセットさせた位置となっている。 Here, as shown in FIG. 3, the offset fins 15 are arranged in four rows in the flow direction as one set. The first row of offset fins 15 on the upstream side in the flow direction and the third row of offset fins 15 on the downstream side are at the same position in the width direction. The offset fins 15 in the second row are offset to one side in the width direction (right side in FIGS. 3 and 4) with respect to the offset fins 15 in the first and third rows. The offset fins 15 in the fourth row are offset from the offset fins 15 in the first and third rows to the other side in the width direction (left side in FIGS. 3 and 4).
 具体的に、図4に示すように、幅方向における頂部同士の間の距離を1単位とする。この場合、二列目のオフセットフィン15は、一列目及び三列目のオフセットフィン15に対して、幅方向の一方側に、1/2単位だけオフセットさせた位置となっている。また、四列目のオフセットフィン15は、一列目及び三列目のオフセットフィン15に対して、幅方向の他方側に、1/2単位だけオフセットさせた位置となっている。なお、実施形態1では、二列目及び四列目のオフセットフィン15を、1/2単位だけオフセットさせたが、オフセットフィン15の形状に規制されなければ、1/4単位から1/2単位の範囲でオフセットさせることが好ましい。 Specifically, as shown in FIG. 4, the distance between the tops in the width direction is set to 1 unit. In this case, the offset fins 15 in the second row are offset from the offset fins 15 in the first and third rows to one side in the width direction by ½ unit. Also, the offset fins 15 in the fourth row are offset from the offset fins 15 in the first and third rows to the other side in the width direction by ½ unit. In the first embodiment, the offset fins 15 in the second and fourth rows are offset by 1/2 units, but if the shape of the offset fins 15 does not restrict the offset fins 15, the offset fins 15 may be offset by 1/4 to 1/2 units. is preferably offset within the range of .
 次に、オフセットフィン15について説明する。オフセットフィン15は、プレート接合部21と、フィン部22と、阻害部23と、を有しており、これら各部は、一体となっている。 Next, the offset fins 15 will be explained. The offset fin 15 has a plate joint portion 21, a fin portion 22, and a blocking portion 23, and these portions are integrated.
 プレート接合部21は、プレート10に接合される部位となっている。プレート接合部21は、一対のプレート10の一方側に接合されるプレート接合部21aと、一対のプレート10の他方側に接合されるプレート接合部21bと、を含んでいる。プレート接合部21は、平行四辺形の板状、または、平行四辺形を幅方向に対称に展開したV字形の板状に形成されている。プレート接合部21は、オフセットフィン15の頂部15a及び谷部15bの一部を構成している。また、プレート接合部21は、プレート10と対向する面が、プレート10に接合されることで、内部の流路側において露出する流れ方向の端部が、段差部25として形成される。 The plate joint portion 21 is a portion that is joined to the plate 10 . The plate joint portion 21 includes a plate joint portion 21 a joined to one side of the pair of plates 10 and a plate joint portion 21 b joined to the other side of the pair of plates 10 . The plate joint portion 21 is formed in a parallelogram plate shape or a V-shaped plate shape obtained by symmetrically developing a parallelogram in the width direction. The plate joint portion 21 forms part of the top portion 15 a and the valley portion 15 b of the offset fin 15 . In addition, the plate joint portion 21 has a surface facing the plate 10 joined to the plate 10 , so that an end portion in the flow direction exposed on the inner channel side is formed as a stepped portion 25 .
 フィン部22は、厚さ方向に亘って設けられている。フィン部22は、プレート接合部21の幅方向の端部に接続されている。フィン部22は、板状に形成されている。 The fin portion 22 is provided over the thickness direction. The fin portion 22 is connected to the widthwise end portion of the plate joint portion 21 . The fin portion 22 is formed in a plate shape.
 阻害部23は、プレート接合部21に設けられている。阻害部23は、プレート接合部21の内部側に沿って流通する流体に発生する温度境界層の形成を阻害する部位となっている。具体的に、阻害部23は、流れ方向に対して斜めとなる、段差部25の流体を受ける受け斜面38である。受け斜面38は、流体の流れ方向に対して斜めとなっていることから、受け斜面38に沿って流れる流体は、流れ方向を軸として周方向に旋回する旋回流となる。 The blocking portion 23 is provided at the plate joint portion 21 . The inhibition portion 23 is a portion that inhibits the formation of a thermal boundary layer generated in the fluid flowing along the inner side of the plate joint portion 21 . Specifically, the obstruction portion 23 is a receiving slope 38 that receives the fluid in the stepped portion 25 and is oblique with respect to the flow direction. Since the receiving slope 38 is oblique with respect to the flow direction of the fluid, the fluid flowing along the receiving slope 38 becomes a swirling flow that circulates in the circumferential direction about the flow direction.
 図5を参照して、実施形態1のインナーフィン12を流通する流体の流れについて説明する。図5は、流れ方向に直交する面で切った断面となっており、図の上側が流れ方向の上流側となっており、図の下側が流れ方向の下流側となっている。受け斜面38に沿って流れる流体は、流れ方向の上流側から下流側に向かうにつれて、幅方向において、頂部15aから谷部15bへ向かう流れR1が発生する。頂部15aから谷部15bへ向かう流れR1が流体に付与されることによって、流体は、頂部15aから谷部15bへ向かう流れ方向に旋回する旋回流R2となる。旋回流R2となる流体は、プレート接合部21の内部側において流速が増大することから、プレート接合部21の内部側に発生する温度境界層の形成を阻害する。 The flow of fluid flowing through the inner fins 12 of Embodiment 1 will be described with reference to FIG. FIG. 5 is a cross-section cut along a plane orthogonal to the flow direction, the upper side of the drawing is the upstream side in the flow direction, and the lower side of the drawing is the downstream side in the flow direction. The fluid flowing along the receiving slope 38 generates a flow R1 from the top portion 15a to the valley portion 15b in the width direction as it goes from the upstream side to the downstream side in the flow direction. When the flow R1 directed from the top portion 15a to the valley portion 15b is applied to the fluid, the fluid becomes a swirling flow R2 swirling in the flow direction from the top portion 15a to the valley portion 15b. The fluid that becomes the swirling flow R2 has an increased flow velocity inside the plate joint portion 21, and thus inhibits formation of a temperature boundary layer that occurs inside the plate joint portion 21. FIG.
[実施形態2]
 次に、図6から図8を参照して、実施形態2について説明する。なお、実施形態2では、重複した記載を避けるべく、実施形態1と異なる部分について説明し、実施形態1と同様の構成である部分については、同じ符号を付して説明する。図6は、実施形態2に係る熱交換器のオフセットフィンを示す斜視図である。図7は、オフセットフィンの突起部を示す斜視図である。図8は、オフセットフィンの二面図である。
[Embodiment 2]
Next, Embodiment 2 will be described with reference to FIGS. 6 to 8. FIG. In order to avoid redundant description, in the second embodiment, portions different from those in the first embodiment will be described, and portions having the same configuration as in the first embodiment will be described with the same reference numerals. FIG. 6 is a perspective view showing offset fins of the heat exchanger according to Embodiment 2. FIG. FIG. 7 is a perspective view showing projections of offset fins. FIG. 8 is a two-sided view of the offset fin.
(熱交換器)
 実施形態2の熱交換器50は、インナーフィン12における複数のオフセットフィン51が、実施形態1のオフセットフィン15と異なっている。
(Heat exchanger)
A heat exchanger 50 of the second embodiment differs from the offset fins 15 of the first embodiment in the plurality of offset fins 51 in the inner fins 12 .
 複数のオフセットフィン51は、流体の流れ方向に沿って並べて設けられている。また、複数のオフセットフィン51は、厚さ方向に直交する面内において、流れ方向に直交する幅方向に相互に位置をオフセットして設けられる。 A plurality of offset fins 51 are arranged side by side along the flow direction of the fluid. In addition, the plurality of offset fins 51 are offset in the width direction perpendicular to the flow direction in the plane perpendicular to the thickness direction.
 オフセットフィン51は、幅方向に亘って設けられている。つまり、オフセットフィン15は、幅方向を長手方向とする長尺の部材となっている。図6及び図8に示すように、オフセットフィン51は、プレート接合部61と、フィン部62と、阻害部63と、を有しており、これら各部は、一体となっている。 The offset fins 51 are provided across the width direction. In other words, the offset fin 15 is a long member whose longitudinal direction is the width direction. As shown in FIGS. 6 and 8, the offset fin 51 has a plate joint portion 61, a fin portion 62, and an obstruction portion 63, and these portions are integrated.
 プレート接合部61は、プレート10に接合される部位となっている。プレート接合部61は、実施形態1のプレート接合部21と同様に、一対のプレート10の一方側に接合されるプレート接合部61aと、一対のプレート10の他方側に接合されるプレート接合部61bと、を含んでいる。プレート接合部61は、方形の板状に形成されている。また、プレート接合部61は、プレート10と対向する面が、プレート10に接合されることで、内部の流路側において露出する流れ方向の端部が、段差部25として形成される。 The plate joint portion 61 is a portion that is joined to the plate 10 . Similar to the plate joint portion 21 of the first embodiment, the plate joint portion 61 includes a plate joint portion 61a joined to one side of the pair of plates 10 and a plate joint portion 61b joined to the other side of the pair of plates 10. and includes The plate joint portion 61 is formed in a square plate shape. In addition, the plate joint portion 61 has a surface facing the plate 10 joined to the plate 10 , so that an end portion in the flow direction exposed on the inner channel side is formed as the stepped portion 25 .
 フィン部62は、厚さ方向に亘って設けられている。フィン部62は、プレート接合部61の幅方向の端部に接続されている。フィン部62は、板状に形成されている。 The fin portion 62 is provided over the thickness direction. The fin portion 62 is connected to the widthwise end portion of the plate joint portion 61 . The fin portion 62 is formed in a plate shape.
 阻害部63は、プレート接合部61に設けられている。阻害部63は、実施形態1と同様に、プレート接合部61の内部側に沿って流通する流体に発生する温度境界層の形成を阻害する部位となっている。具体的に、阻害部63は、プレート接合部61から内部側へ突出する突起部65である。流れ方向に隣接するオフセットフィン51において、プレート接合部61が連続する場合、突起部65は、流れ方向の上流側のプレート接合部61に設けられる。 The blocking portion 63 is provided at the plate joint portion 61 . As in the first embodiment, the inhibition portion 63 is a portion that inhibits the formation of a temperature boundary layer generated in the fluid that flows along the inner side of the plate joint portion 61 . Specifically, the blocking portion 63 is a protrusion 65 that protrudes inward from the plate joint portion 61 . When the plate joints 61 are continuous in the offset fins 51 adjacent in the flow direction, the projecting portion 65 is provided at the plate joint 61 on the upstream side in the flow direction.
 突起部65は、流れ方向及び幅方向に直交する高さ方向から見た平面視において、流れ方向に長い長方形状に形成されている。また、突起部65は、流れ方向から見た正面視において、突出方向に凸となる三角形状に形成されている。なお、実施形態2において、突起部65は、平面視において長方形状、正面視において三角形状としたが、この形状に特に限定されない。突起部65は、平面視において、多角形状であってもよいし、円形または楕円形等の円環形状であってもよく、正面視においても、多角形状であってもよいし、半円形または楕円形等の円弧形状であってもよい。 The protrusion 65 is formed in a rectangular shape elongated in the flow direction when viewed from the height direction orthogonal to the flow direction and the width direction. Moreover, the protrusion 65 is formed in a triangular shape that is convex in the protrusion direction when viewed from the front in the flow direction. In the second embodiment, the protrusion 65 has a rectangular shape in plan view and a triangular shape in front view, but the shape is not particularly limited to this. The protrusion 65 may have a polygonal shape or an annular shape such as a circle or an ellipse in a plan view, and may have a polygonal shape, a semicircular shape, or a semicircular shape in a front view. An arc shape such as an ellipse may be used.
 この突起部65は、流れ方向の上流側から下流側に向かって傾斜する第1のガイド斜面65aと、幅方向の一方側から他方側に向かって傾斜する第2のガイド斜面65bとを有している。第1のガイド斜面65aは、上流側のガイド斜面65aと、下流側のガイド斜面65aとを含む。第1のガイド斜面65aと流れ方向とが為す角度を第1の傾斜角度θ1とすると、第1の傾斜角度θ1は、10度から60度の範囲となっている。ここで、下流側の第1の傾斜角度θ1は、上流側の第1の傾斜角度θ1と同じであってもよいし、90度を上限として上流側の第1の傾斜角度θ1より大きくしてもよい。第2のガイド斜面65bは、幅方向の一方側のガイド斜面65bと、幅方向の他方側のガイド斜面65bとを含む。第2のガイド斜面65bと幅方向とが為す角度を第2の傾斜角度θ2とすると、幅方向の両側の第2のガイド斜面65bの傾斜角度θ2は、同じ角度となっている。 The projecting portion 65 has a first guide slope 65a that slopes from the upstream side to the downstream side in the flow direction, and a second guide slope 65b that slopes from one side to the other side in the width direction. ing. The first guide slope 65a includes an upstream guide slope 65a and a downstream guide slope 65a. Assuming that the angle formed by the first guide slope 65a and the flow direction is a first inclination angle θ1, the first inclination angle θ1 is in the range of 10 degrees to 60 degrees. Here, the first inclination angle θ1 on the downstream side may be the same as the first inclination angle θ1 on the upstream side, or may be larger than the first inclination angle θ1 on the upstream side with an upper limit of 90 degrees. good too. The second guide slope 65b includes a guide slope 65b on one side in the width direction and a guide slope 65b on the other side in the width direction. Assuming that the angle formed by the second guide slope 65b and the width direction is a second inclination angle θ2, the inclination angles θ2 of the second guide slopes 65b on both sides in the width direction are the same.
 また、突起部65は、図8に示すように、流れ方向及び幅方向において、所定の位置となるように設けられている。具体的に、突起部65は、流れ方向において、プレート接合部61の端部に対して、フィン部62の厚さ以上の距離L1を空けて配置されている。また、突起部65は、幅方向において、フィン部62に対して、フィン部62の厚さ以上の距離L2を空けて配置されている。 Further, as shown in FIG. 8, the protrusions 65 are provided at predetermined positions in the flow direction and the width direction. Specifically, the projecting portion 65 is arranged with a distance L1 equal to or greater than the thickness of the fin portion 62 from the end portion of the plate joint portion 61 in the flow direction. In addition, the projecting portion 65 is spaced apart from the fin portion 62 by a distance L2 equal to or greater than the thickness of the fin portion 62 in the width direction.
 実施形態2の熱交換器50において、インナーフィン12の内部を流れ方向に流通する流体は、その一部が段差部25を乗り越えて突起部65に至り、第1のガイド斜面65aに沿って流れる。プレート接合部61では、突起部65の第1のガイド斜面65aに沿って流れる流体と、突起部65の無いプレート接合部61に沿って流れる流体との流速が異なるものとなる。このため、流体間において圧力勾配が発生し、圧力勾配によって流れ方向に直交する面を断面とする断面二次流れが発生する。この断面二次流れによって、流体は、プレート接合部21の内部側において流速が増大することから、プレート接合部21の内部側に発生する温度境界層の形成を阻害する。 In the heat exchanger 50 of the second embodiment, part of the fluid that flows inside the inner fins 12 in the flow direction crosses over the stepped portion 25, reaches the projecting portion 65, and flows along the first guide slope 65a. . At the plate joint portion 61, the flow velocity of the fluid flowing along the first guide slope 65a of the protrusion 65 and the fluid flowing along the plate joint portion 61 without the protrusion 65 are different. Therefore, a pressure gradient is generated between the fluids, and the pressure gradient generates a cross-sectional secondary flow whose cross section is a plane perpendicular to the flow direction. This cross-sectional secondary flow increases the flow velocity of the fluid inside the plate joint portion 21 , thereby inhibiting the formation of a temperature boundary layer that occurs inside the plate joint portion 21 .
 なお、実施形態2では、突起部65は、平面視において、流れ方向に長い長方形状となっていたが、図8の点線で示す配置としてもよい。つまり、突起部65は、平面視において、流れ方向に対して傾斜する方向に長い長方形状としてもよい。具体的に、突起部65の長さ方向と流れ方向とが為す角度を傾斜角度θ3とすると、傾斜角度θ3は、0度から45度の範囲となっている。 In the second embodiment, the protrusions 65 have a rectangular shape elongated in the flow direction in plan view, but may be arranged as indicated by the dotted lines in FIG. That is, the projecting portion 65 may have a rectangular shape elongated in a direction inclined with respect to the flow direction in plan view. Specifically, if the angle formed by the length direction of the protrusion 65 and the flow direction is defined as an inclination angle θ3, the inclination angle θ3 ranges from 0 degrees to 45 degrees.
[実施形態3]
 次に、図9から図12を参照して、実施形態3について説明する。なお、実施形態3では、重複した記載を避けるべく、実施形態1及び2と異なる部分について説明し、実施形態1及び2と同様の構成である部分については、同じ符号を付して説明する。図9は、実施形態3に係る熱交換器のオフセットフィンを示す斜視図である。図10は、オフセットフィンの平面図である。図11は、オフセットフィンの断面図である。図12は、流体の流れに関する説明図である。
[Embodiment 3]
Next, Embodiment 3 will be described with reference to FIGS. 9 to 12. FIG. Note that in the third embodiment, portions different from those in the first and second embodiments will be described in order to avoid redundant description, and portions having the same configurations as in the first and second embodiments will be described with the same reference numerals. 9 is a perspective view showing offset fins of a heat exchanger according to Embodiment 3. FIG. FIG. 10 is a plan view of the offset fin. FIG. 11 is a cross-sectional view of an offset fin. FIG. 12 is an explanatory diagram regarding the flow of fluid.
(熱交換器)
 実施形態3の熱交換器70は、インナーフィン12における複数のオフセットフィン71が、実施形態1及び2のオフセットフィン15,51と異なっている。
(Heat exchanger)
A heat exchanger 70 of the third embodiment differs from the offset fins 15 and 51 of the first and second embodiments in the plurality of offset fins 71 in the inner fins 12 .
 複数のオフセットフィン71は、実施形態2の阻害部63を、阻害部83に代えたものである。このため、オフセットフィン71の阻害部83について説明し、他の部位であるオフセットフィン71のプレート接合部81及びフィン部82については、実施形態2のプレート接合部61及びフィン部62と同様であることから、説明を省略する。 A plurality of offset fins 71 are obtained by replacing the blocking portions 63 of the second embodiment with blocking portions 83 . Therefore, the blocking portion 83 of the offset fin 71 will be described, and the plate joint portion 81 and the fin portion 82 of the offset fin 71, which are other portions, are the same as the plate joint portion 61 and the fin portion 62 of the second embodiment. Therefore, the description is omitted.
 阻害部83は、プレート接合部81に設けられている。阻害部83は、実施形態1と同様に、プレート接合部81の内部側に沿って流通する流体に発生する温度境界層の形成を阻害する部位となっている。具体的に、阻害部83は、プレート接合部81からプレート10側へ没入する孔85である。流れ方向に隣接するオフセットフィン71において、プレート接合部81が連続する場合、孔85は、流れ方向の下流側のプレート接合部81に設けられる。孔85は、プレート接合部81に対して貫通形成された貫通孔となっている。なお、実施形態3において、孔85は、貫通孔としたが、有底の孔であってもよい。孔85は、インナーフィン12において、流れ方向及び幅方向に少なくとも一つ以上設けられている。 The blocking portion 83 is provided at the plate joint portion 81 . As in the first embodiment, the inhibition portion 83 is a portion that inhibits the formation of a thermal boundary layer generated in the fluid that flows along the inner side of the plate joint portion 81 . Specifically, the obstruction portion 83 is a hole 85 that enters from the plate joint portion 81 toward the plate 10 side. When the plate joints 81 are continuous in the offset fins 71 adjacent in the flow direction, the holes 85 are provided in the plate joints 81 on the downstream side in the flow direction. The hole 85 is a through hole formed through the plate joint portion 81 . Although the hole 85 is a through hole in the third embodiment, it may be a bottomed hole. At least one or more holes 85 are provided in the inner fin 12 in the machine direction and the width direction.
 孔85は、流れ方向及び幅方向に直交する高さ方向から見た平面視において、方形状に形成されている。なお、実施形態3において、孔85は、平面視において方形状としたが、この形状に特に限定されない。孔85は、平面視において、多角形状であってもよいし、円形または楕円形等の円環形状であってもよい。孔85は、平面視において、最長となる長さL5が、フィン部82の厚さの2倍以上8倍以下の長さとなっている。 The hole 85 is formed in a square shape when viewed from the height direction orthogonal to the flow direction and the width direction. In addition, in the third embodiment, the hole 85 has a square shape in plan view, but is not particularly limited to this shape. The hole 85 may have a polygonal shape or an annular shape such as a circular or elliptical shape in plan view. The hole 85 has a longest length L5 that is two to eight times the thickness of the fin portion 82 in plan view.
 また、孔85は、図10に示すように、流れ方向及び幅方向において、所定の位置となるように設けられている。具体的に、孔85は、流れ方向において、プレート接合部81の端部に対して、フィン部82の厚さ以上の距離L3を空けて配置されている。また、孔85は、幅方向において、フィン部62に対して、フィン部62の厚さ以上の距離L4を空けて配置されている。 Also, as shown in FIG. 10, the holes 85 are provided at predetermined positions in the flow direction and the width direction. Specifically, the hole 85 is arranged with a distance L3 that is equal to or greater than the thickness of the fin portion 82 from the end portion of the plate joint portion 81 in the flow direction. Moreover, the hole 85 is spaced apart from the fin portion 62 by a distance L4 equal to or greater than the thickness of the fin portion 62 in the width direction.
 次に、図11及び図12を参照して、プレート接合部81について説明する。プレート接合部81は、流れ方向の下流側の端部に形成される下流側斜面81aを有している。下流側斜面81aは、プレート接合部81の下流側において、流れ方向の下流側に他のプレート接合部81が隣接しない部位、つまり、段差部88が形成される部位(図12の従来を参照)に形成される。下流側斜面81aと流れ方向とが為す角度を下流側傾斜角度θ4とすると、下流側傾斜角度θ4は、7度から45度の範囲となっている。 Next, the plate joint portion 81 will be described with reference to FIGS. 11 and 12. FIG. The plate joint portion 81 has a downstream slope 81a formed at the downstream end in the flow direction. The downstream slope 81a is a portion on the downstream side of the plate joint portion 81 where the other plate joint portion 81 is not adjacent to the downstream side in the flow direction, that is, a portion where the stepped portion 88 is formed (see conventional in FIG. 12). formed in Assuming that the angle formed by the downstream side slope 81a and the flow direction is the downstream side inclination angle θ4, the downstream side inclination angle θ4 is in the range of 7 degrees to 45 degrees.
 図12に示すように、従来において、プレート接合部81に下流側斜面81aを設けない場合、プレート接合部81の下流側の端部が段差部88となる。このため、プレート接合部81の内面を流通する流体は、段差部88を通過することにより、剥離流R3による剥離領域が形成される。一方で、実施形態3において、プレート接合部81に下流側斜面81aを設ける場合、プレート接合部81の内面を流通する流体は、下流側斜面81aに沿って流れることで、剥離流R3の形成が抑制される。 As shown in FIG. 12 , conventionally, when the plate joint portion 81 is not provided with the downstream slope 81 a, the downstream end portion of the plate joint portion 81 becomes the stepped portion 88 . Therefore, the fluid flowing through the inner surface of the plate joint portion 81 passes through the stepped portion 88 to form a separation region due to the separation flow R3. On the other hand, in the third embodiment, when the plate joint portion 81 is provided with the downstream slope 81a, the fluid flowing through the inner surface of the plate joint portion 81 flows along the downstream slope 81a, thereby forming the separation flow R3. Suppressed.
 実施形態3の熱交換器70において、インナーフィン12の内部を流れ方向に流通する流体は、その一部が段差部25を乗り越えて孔85に至る。プレート接合部81に沿って流れる流体は、孔85において剥離することで、プレート接合部21の内部側に発生する温度境界層の形成が初期化される。 In the heat exchanger 70 of Embodiment 3, part of the fluid that flows inside the inner fins 12 in the flow direction crosses over the stepped portion 25 and reaches the hole 85 . The fluid flowing along the plate joint 81 is separated at the hole 85 , thereby initializing the formation of the thermal boundary layer generated inside the plate joint 21 .
 以上のように、本実施形態に記載の熱交換器1,50,70は、例えば、以下のように把握される。 As described above, the heat exchangers 1, 50, and 70 described in this embodiment are understood as follows, for example.
 第1の態様に係る熱交換器1は、対向する一対のプレート10と、一対の前記プレート10の間に設けられ、内部において流体が流通するインナーフィン12と、を備え、前記インナーフィン12は、前記流体の流れ方向に沿って並べて設けられると共に、前記流れ方向に直交する幅方向において相互に位置をオフセットして設けられる複数のオフセットフィン15を有し、前記オフセットフィン15は、前記プレート10に接合され、前記流れ方向に形成される段差部25を有するプレート接合部21と、前記プレート接合部21に接続され、一対の前記プレート10の対向方向に沿って設けられるフィン部22と、前記プレート接合部21に設けられ、前記流れ方向に対して斜めとなる、前記段差部25の前記流体を受ける受け斜面38と、を含む。 A heat exchanger 1 according to a first aspect includes a pair of plates 10 facing each other, and inner fins 12 provided between the pair of plates 10 and through which a fluid flows. , a plurality of offset fins 15 arranged side by side along the flow direction of the fluid and offset from each other in the width direction orthogonal to the flow direction, the offset fins 15 being arranged on the plate 10 a plate joint portion 21 having a stepped portion 25 formed in the flow direction; a fin portion 22 connected to the plate joint portion 21 and provided along the facing direction of the pair of plates 10; a receiving slope 38 provided at the plate joint 21 and oblique to the flow direction for receiving the fluid of the stepped portion 25 .
 この構成によれば、受け斜面38により、流体に旋回流R2を与えることができる。このため、旋回流R2によりプレート接合部21の内部側において流速が増大することから、プレート接合部21の内部側に発生する温度境界層の形成を好適に阻害することができる。このため、温度境界層の厚みを低減して、プレート10を介した伝熱性能の低下を抑制することができることから、熱交換器1の熱交換性能の低下を抑制することができる。 According to this configuration, the swirling flow R2 can be imparted to the fluid by the receiving slope 38. Therefore, since the flow velocity increases inside the plate joint portion 21 due to the swirl flow R2, the formation of the temperature boundary layer generated inside the plate joint portion 21 can be inhibited appropriately. Therefore, it is possible to reduce the thickness of the temperature boundary layer and suppress deterioration of the heat transfer performance via the plate 10 , thereby suppressing deterioration of the heat exchange performance of the heat exchanger 1 .
 第2の態様として、前記オフセットフィン15は、前記流れ方向の上流側の部位を頂部15aとし、前記流れ方向の下流側の部位を谷部15bとし、前記頂部15aと前記谷部15bとが前記幅方向に沿って交互に設けられた波形状となっており、前記流れ方向に隣接する一方側の前記オフセットフィン15と、前記流れ方向に隣接する他方側の前記オフセットフィン15とは、前記幅方向を対称軸として線対称に配置されると共に、前記幅方向において相互に位置をオフセットして配置される。 As a second aspect, the offset fins 15 have a top portion 15a on the upstream side in the flow direction and a valley portion 15b on the downstream side in the flow direction, and the top portion 15a and the valley portion 15b The offset fins 15 on one side adjacent in the flow direction and the offset fins 15 on the other side adjacent in the flow direction are arranged alternately along the width direction. They are arranged axisymmetrically with the direction as an axis of symmetry, and are arranged with positions offset from each other in the width direction.
 この構成によれば、オフセットフィン15を線対称に配置すると共に、オフセットさせて配置することができるため、インナーフィン12に用いられるオフセットフィン15の種類を一種類とすることができ、製造コストの低減を図ることができる。 According to this configuration, the offset fins 15 can be arranged line-symmetrically and offset, so that only one type of the offset fins 15 can be used for the inner fins 12, which reduces the manufacturing cost. reduction can be achieved.
 第3の態様として、前記オフセットフィン15は、前記流れ方向に4列並べたものをワンセットとしており、一列目の前記オフセットフィン15と三列目の前記オフセットフィン15とは、前記幅方向において同じ位置となり、二列目の前記オフセットフィン15は、一列目及び三列目の前記オフセットフィン15に対して、前記幅方向の一方側にオフセットさせた位置となり、四列目の前記オフセットフィン15は、一列目及び三列目の前記オフセットフィン15に対して、前記幅方向の他方側にオフセットさせた位置となっている。 As a third aspect, the offset fins 15 are arranged in four rows in the flow direction as one set, and the offset fins 15 in the first row and the offset fins 15 in the third row are arranged in the width direction. The offset fins 15 of the second row are offset to one side in the width direction with respect to the offset fins 15 of the first and third rows, and the offset fins 15 of the fourth row are positioned at the same position. is offset to the other side in the width direction with respect to the offset fins 15 of the first and third rows.
 この構成によれば、オフセットフィン15を、温度境界層の形成を阻害する好適な配置とすることができる。また、ワンセットなるオフセットフィン15を流れ方向に配置することで、インナーフィン12を容易に構成することができる。 According to this configuration, the offset fins 15 can be placed in a suitable arrangement that inhibits the formation of the temperature boundary layer. In addition, by arranging one set of offset fins 15 in the flow direction, the inner fins 12 can be easily configured.
 第4の態様に係る熱交換器50は、対向する一対のプレート10と、一対の前記プレート10の間に設けられ、内部において流体が流通するインナーフィン12と、を備え、前記インナーフィン12は、前記流体の流れ方向に沿って並べて設けられると共に、前記流れ方向に直交する幅方向において相互に位置をオフセットして設けられる複数のオフセットフィン51を有し、前記オフセットフィン51は、前記プレート10に接合されるプレート接合部61と、前記プレート接合部61に接続され、一対の前記プレート10の対向方向に沿って設けられるフィン部62と、前記プレート接合部61に設けられ、前記プレート接合部61から内部側へ突出する突起部65と、を含む。 A heat exchanger 50 according to a fourth aspect includes a pair of plates 10 facing each other, and inner fins 12 provided between the pair of plates 10 and through which a fluid flows. , a plurality of offset fins 51 arranged side by side along the flow direction of the fluid and offset from each other in the width direction orthogonal to the flow direction, the offset fins 51 being arranged on the plate 10 a plate joint portion 61 joined to the plate joint portion 61; a fin portion 62 connected to the plate joint portion 61 and provided along the facing direction of the pair of plates 10; and a projection 65 projecting inwardly from 61 .
 この構成によれば、突起部65により、流体に断面二次流れを与えることができる。このため、断面二次流れによりプレート接合部21の内部側において流速が増大することから、プレート接合部21の内部側に発生する温度境界層の形成を好適に阻害することができる。このため、温度境界層の厚みを低減して、プレート10を介した伝熱性能の低下を抑制することができることから、熱交換器50の熱交換性能の低下を抑制することができる。 According to this configuration, the protrusion 65 can impart a cross-sectional secondary flow to the fluid. For this reason, since the cross-sectional secondary flow increases the flow velocity on the inner side of the plate joint portion 21 , the formation of the temperature boundary layer generated on the inner side of the plate joint portion 21 can be inhibited appropriately. Therefore, it is possible to reduce the thickness of the temperature boundary layer and suppress deterioration of the heat transfer performance via the plate 10 , thereby suppressing deterioration of the heat exchange performance of the heat exchanger 50 .
 第5の態様として、前記流れ方向に隣接する前記オフセットフィン51において、前記プレート接合部61が連続する場合、前記突起部65は、前記流れ方向の上流側の前記プレート接合部61に設けられる。 As a fifth aspect, when the plate joint portions 61 are continuous in the offset fins 51 adjacent in the flow direction, the projecting portion 65 is provided at the plate joint portion 61 on the upstream side in the flow direction.
 この構成によれば、突起部65により流れ方向の上流側に断面二次流れを与えることができるため、下流側における温度境界層の形成を好適に阻害することができる。 According to this configuration, since the projecting portion 65 can provide a cross-sectional secondary flow on the upstream side in the flow direction, it is possible to suitably inhibit the formation of a temperature boundary layer on the downstream side.
 第6の態様として、前記突起部65は、前記流れ方向の上流側から下流側に向かって傾斜するガイド斜面65aと、前記幅方向の一方側から他方側に向かって傾斜するガイド斜面65bとのうち、少なくともいずれかのガイド斜面65a,65bを有する。 As a sixth aspect, the protrusion 65 is composed of a guide slope 65a that slopes from the upstream side to the downstream side in the flow direction and a guide slope 65b that slopes from one side to the other side in the width direction. At least one of the guide slopes 65a and 65b is provided.
 この構成によれば、流体をガイド斜面65a,65bに沿って流通させることにより、流体に断面二次流れを容易に付与することができる。 According to this configuration, the cross-sectional secondary flow can be easily imparted to the fluid by circulating the fluid along the guide slopes 65a and 65b.
 第7の態様として、前記突起部65は、前記流れ方向に対して傾斜する方向に長い形状となっている。 As a seventh aspect, the protrusion 65 has a shape elongated in a direction inclined with respect to the flow direction.
 この構成によれば、流体を突起部65の長さ方向に沿って流通させることにより、流体に断面二次流れを容易に付与することができる。 According to this configuration, the cross-sectional secondary flow can be easily imparted to the fluid by circulating the fluid along the length direction of the protrusion 65 .
 第8の態様として、前記突起部65は、前記流れ方向において、前記プレート接合部61の端部に対して、前記フィン部62の厚さ以上の距離L1を空けて配置され、前記幅方向において、前記フィン部62に対して、前記フィン部62の厚さ以上の距離L2を空けて配置されている。 As an eighth aspect, the protrusion 65 is arranged with a distance L1 equal to or greater than the thickness of the fin portion 62 from the end portion of the plate joint portion 61 in the flow direction, and in the width direction , are spaced apart from the fin portion 62 by a distance L2 equal to or greater than the thickness of the fin portion 62 .
 この構成によれば、突起部65の配置を、流体に断面二次流れを与える好適な配置とすることができる。 According to this configuration, the arrangement of the protrusions 65 can be a suitable arrangement for imparting a cross-sectional secondary flow to the fluid.
 第9の態様に係る熱交換器70は、対向する一対のプレート10と、一対の前記プレート10の間に設けられ、内部において流体が流通するインナーフィン12と、を備え、前記インナーフィン12は、前記流体の流れ方向に沿って並べて設けられると共に、前記流れ方向に直交する幅方向において相互に位置をオフセットして設けられる複数のオフセットフィン71を有し、前記オフセットフィン71は、前記プレート10に接合されるプレート接合部81と、前記プレート接合部81に接続され、一対の前記プレート10の対向方向に沿って設けられるフィン部82と、前記プレート接合部81に設けられ、前記プレート接合部81から前記プレート10側へ没入する孔85と、を含む。 A heat exchanger 70 according to a ninth aspect includes a pair of plates 10 facing each other, and inner fins 12 provided between the pair of plates 10 and through which a fluid flows. , a plurality of offset fins 71 arranged side by side along the flow direction of the fluid and offset from each other in the width direction orthogonal to the flow direction, the offset fins 71 being arranged on the plate 10 a plate joint portion 81 joined to the plate joint portion 81; a fin portion 82 connected to the plate joint portion 81 and provided along the facing direction of the pair of plates 10; and a hole 85 recessed from 81 toward the plate 10 side.
 この構成によれば、孔85により、流体の流れを剥離させることができる。このため、流体の流れを剥離させることにより、温度境界層の形成を初期化させることができるため、温度境界層の形成を好適に阻害することができる。このため、温度境界層の厚みを低減して、プレート10を介した伝熱性能の低下を抑制することができることから、熱交換器70の熱交換性能の低下を抑制することができる。 According to this configuration, the holes 85 can separate the fluid flow. Therefore, by separating the flow of the fluid, the formation of the thermal boundary layer can be initialized, so that the formation of the thermal boundary layer can be favorably inhibited. Therefore, the thickness of the thermal boundary layer can be reduced to suppress deterioration in heat transfer performance via the plate 10, thereby suppressing deterioration in the heat exchange performance of the heat exchanger 70. FIG.
 第10の態様として、前記流れ方向に隣接する前記オフセットフィン71において、前記プレート接合部81が連続する場合、前記孔85は、前記流れ方向の下流側の前記プレート接合部81に設けられる。 As a tenth aspect, when the plate joint portions 81 are continuous in the offset fins 71 adjacent in the flow direction, the holes 85 are provided in the plate joint portions 81 on the downstream side in the flow direction.
 この構成によれば、孔85により温度境界層が厚くなる下流側において、温度境界層の形成を初期化させることができるため、下流側における温度境界層の形成を好適に阻害することができる。 According to this configuration, it is possible to initialize the formation of the temperature boundary layer on the downstream side where the temperature boundary layer becomes thicker due to the holes 85, so it is possible to suitably inhibit the formation of the temperature boundary layer on the downstream side.
 第11の態様として、前記孔85は、前記プレート10の面内において最長となる長さが、前記フィン部82の厚さの2倍以上8倍以下となっている。 As an eleventh aspect, the hole 85 has a maximum length in the plane of the plate 10 that is two to eight times the thickness of the fin portion 82 .
 この構成によれば、孔85の大きさを、温度境界層の形成を初期化させる好適な大きさとすることができる。 According to this configuration, the size of the hole 85 can be set to a suitable size for initializing the formation of the temperature boundary layer.
 第12の態様として、前記孔85は、前記流れ方向において、前記プレート接合部81の端部に対して、前記フィン部82の厚さ以上の距離L3を空けて配置され、前記幅方向において、前記フィン部82に対して、前記フィン部82の厚さ以上の距離L4を空けて配置されている。 As a twelfth aspect, the hole 85 is arranged with a distance L3 equal to or greater than the thickness of the fin portion 82 from the end portion of the plate joint portion 81 in the flow direction, and in the width direction, With respect to the fin portion 82, a distance L4 equal to or greater than the thickness of the fin portion 82 is provided.
 この構成によれば、孔85の配置を、温度境界層の形成を初期化させる好適な配置とすることができる。 According to this configuration, the arrangement of the holes 85 can be a suitable arrangement for initializing the formation of the temperature boundary layer.
 第13の態様として、前記プレート接合部81は、前記流れ方向の下流側の端部に形成されると共に、前記流れ方向の下流側へ向かって前記プレート10側に傾斜する下流側斜面81aを有する。 As a thirteenth aspect, the plate joint portion 81 is formed at the downstream end in the flow direction, and has a downstream inclined surface 81a inclined toward the plate 10 toward the downstream side in the flow direction. .
 この構成によれば、流体が下流側斜面81aに沿って流れることによって、剥離流R3の形成が抑制される。このため、剥離流R3の形成が抑制される分、プレート接合部81の下流側における流体の伝熱面積を増加させることができ、伝熱性能の向上を図ることができる。また、剥離流R3の形成を抑制することで、圧力損失の低減を図ることができる。 According to this configuration, the formation of the separation flow R3 is suppressed by the fluid flowing along the downstream slope 81a. Therefore, the heat transfer area of the fluid on the downstream side of the plate joint portion 81 can be increased to the extent that the formation of the separated flow R3 is suppressed, and the heat transfer performance can be improved. Moreover, pressure loss can be reduced by suppressing the formation of the separation flow R3.
 1 熱交換器
 10 プレート
 12 インナーフィン
 15 オフセットフィン
 21 プレート接合部
 22 フィン部
 23 阻害部
 25 段差部
 38 受け斜面
 50 熱交換器(実施形態2)
 51 オフセットフィン
 61 プレート接合部
 62 フィン部
 63 阻害部
 65 突起部
 70 熱交換器(実施形態3)
 71 オフセットフィン
 81 プレート接合部
 82 フィン部
 83 阻害部
 85 孔
 88 段差部
Reference Signs List 1 heat exchanger 10 plate 12 inner fin 15 offset fin 21 plate joint portion 22 fin portion 23 blocking portion 25 stepped portion 38 receiving slope 50 heat exchanger (second embodiment)
51 offset fin 61 plate joint portion 62 fin portion 63 inhibition portion 65 projection portion 70 heat exchanger (third embodiment)
71 offset fin 81 plate junction 82 fin portion 83 blocking portion 85 hole 88 stepped portion

Claims (13)

  1.  対向する一対のプレートと、
     一対の前記プレートの間に設けられ、内部において流体が流通するインナーフィンと、を備え、
     前記インナーフィンは、
     前記流体の流れ方向に沿って並べて設けられると共に、前記流れ方向に直交する幅方向において相互に位置をオフセットして設けられる複数のオフセットフィンを有し、
     前記オフセットフィンは、
     前記プレートに接合され、前記流れ方向に形成される段差部を有するプレート接合部と、
     前記プレート接合部に接続され、一対の前記プレートの対向方向に沿って設けられるフィン部と、
     前記プレート接合部に設けられ、前記流れ方向に対して斜めとなる、前記段差部の前記流体を受ける受け斜面と、を含む熱交換器。
    a pair of plates facing each other;
    an inner fin provided between the pair of plates and through which a fluid flows;
    The inner fins are
    a plurality of offset fins arranged side by side along the flow direction of the fluid and offset from each other in the width direction orthogonal to the flow direction;
    The offset fins are
    a plate joint portion joined to the plate and having a stepped portion formed in the flow direction;
    a fin portion connected to the plate joint portion and provided along the facing direction of the pair of plates;
    a receiving slanted surface of the stepped portion, which is provided at the plate joint portion and is oblique with respect to the flow direction, for receiving the fluid.
  2.  前記オフセットフィンは、前記流れ方向の上流側の部位を頂部とし、前記流れ方向の下流側の部位を谷部とし、前記頂部と前記谷部とが前記幅方向に沿って交互に設けられた波形状となっており、
     前記流れ方向に隣接する一方側の前記オフセットフィンと、前記流れ方向に隣接する他方側の前記オフセットフィンとは、前記幅方向を対称軸として線対称に配置されると共に、前記幅方向において相互に位置をオフセットして配置される請求項1に記載の熱交換器。
    The offset fin has a crest at a portion on the upstream side in the flow direction and a trough at a portion on the downstream side in the flow direction, and the crest and the trough are provided alternately along the width direction. It has the shape of
    The offset fins on one side adjacent to the flow direction and the offset fins on the other side adjacent to the flow direction are arranged line-symmetrically with respect to the width direction as an axis of symmetry, and are mutually arranged in the width direction. 2. A heat exchanger according to claim 1, arranged in an offset position.
  3.  前記オフセットフィンは、前記流れ方向に4列並べたものをワンセットとしており、
     一列目の前記オフセットフィンと三列目の前記オフセットフィンとは、前記幅方向において同じ位置となり、
     二列目の前記オフセットフィンは、一列目及び三列目の前記オフセットフィンに対して、前記幅方向の一方側にオフセットさせた位置となり、
     四列目の前記オフセットフィンは、一列目及び三列目の前記オフセットフィンに対して、前記幅方向の他方側にオフセットさせた位置となっている請求項1または2に記載の熱交換器。
    The offset fins are arranged in four rows in the flow direction as one set,
    The offset fins in the first row and the offset fins in the third row are at the same position in the width direction,
    The offset fins in the second row are offset to one side in the width direction with respect to the offset fins in the first row and the third row,
    3. The heat exchanger according to claim 1, wherein the offset fins in the fourth row are offset to the other side in the width direction with respect to the offset fins in the first row and the third row.
  4.  対向する一対のプレートと、
     一対の前記プレートの間に設けられ、内部において流体が流通するインナーフィンと、を備え、
     前記インナーフィンは、
     前記流体の流れ方向に沿って並べて設けられると共に、前記流れ方向に直交する幅方向において相互に位置をオフセットして設けられる複数のオフセットフィンを有し、
     前記オフセットフィンは、
     前記プレートに接合されるプレート接合部と、
     前記プレート接合部に接続され、一対の前記プレートの対向方向に沿って設けられるフィン部と、
     前記プレート接合部に設けられ、前記プレート接合部から内部側へ突出する突起部と、を含む熱交換器。
    a pair of plates facing each other;
    an inner fin provided between the pair of plates and through which a fluid flows;
    The inner fins are
    a plurality of offset fins arranged side by side along the flow direction of the fluid and offset from each other in the width direction orthogonal to the flow direction;
    The offset fins are
    a plate joint joined to the plate;
    a fin portion connected to the plate joint portion and provided along the facing direction of the pair of plates;
    a projection provided at the plate joint and projecting inwardly from the plate joint.
  5.  前記流れ方向に隣接する前記オフセットフィンにおいて、前記プレート接合部が連続する場合、
     前記突起部は、前記流れ方向の上流側の前記プレート接合部に設けられる請求項4に記載の熱交換器。
    When the plate joint portions are continuous in the offset fins adjacent to each other in the flow direction,
    5. The heat exchanger according to claim 4, wherein the protrusion is provided at the plate joint on the upstream side in the flow direction.
  6.  前記突起部は、前記流れ方向の上流側から下流側に向かって傾斜するガイド斜面と、前記幅方向の一方側から他方側に向かって傾斜するガイド斜面とのうち、少なくともいずれかのガイド斜面を有する請求項4または5に記載の熱交換器。 The projecting portion has at least one of a guide slope inclined from the upstream side to the downstream side in the flow direction and a guide slope sloped from one side to the other side in the width direction. 6. A heat exchanger according to claim 4 or 5, comprising:
  7.  前記突起部は、前記流れ方向に対して傾斜する方向に長い形状となっている請求項4または5に記載の熱交換器。 The heat exchanger according to claim 4 or 5, wherein the projection has a shape elongated in a direction inclined with respect to the flow direction.
  8.  前記突起部は、
     前記流れ方向において、前記プレート接合部の端部に対して、前記フィン部の厚さ以上の距離を空けて配置され、
     前記幅方向において、前記フィン部に対して、前記フィン部の厚さ以上の距離を空けて配置されている請求項4から7のいずれか1項に記載の熱交換器。
    The protrusion is
    arranged at a distance equal to or greater than the thickness of the fin portion with respect to the end portion of the plate joint portion in the flow direction;
    The heat exchanger according to any one of claims 4 to 7, wherein the heat exchanger is arranged with a distance equal to or greater than the thickness of the fin portion with respect to the fin portion in the width direction.
  9.  対向する一対のプレートと、
     一対の前記プレートの間に設けられ、内部において流体が流通するインナーフィンと、を備え、
     前記インナーフィンは、
     前記流体の流れ方向に沿って並べて設けられると共に、前記流れ方向に直交する幅方向において相互に位置をオフセットして設けられる複数のオフセットフィンを有し、
     前記オフセットフィンは、
     前記プレートに接合されるプレート接合部と、
     前記プレート接合部に接続され、一対の前記プレートの対向方向に沿って設けられるフィン部と、
     前記プレート接合部に設けられ、前記プレート接合部から前記プレート側へ没入する孔と、を含む熱交換器。
    a pair of plates facing each other;
    an inner fin provided between the pair of plates and through which a fluid flows;
    The inner fins are
    a plurality of offset fins arranged side by side along the flow direction of the fluid and offset from each other in the width direction orthogonal to the flow direction;
    The offset fins are
    a plate joint joined to the plate;
    a fin portion connected to the plate joint portion and provided along the facing direction of the pair of plates;
    A heat exchanger comprising: a hole provided in the plate joint portion and recessed from the plate joint portion toward the plate side.
  10.  前記流れ方向に隣接する前記オフセットフィンにおいて、前記プレート接合部が連続する場合、
     前記孔は、前記流れ方向の下流側の前記プレート接合部に設けられる請求項9に記載の熱交換器。
    When the plate joint portions are continuous in the offset fins adjacent to each other in the flow direction,
    10. The heat exchanger according to claim 9, wherein the hole is provided at the plate joint on the downstream side in the flow direction.
  11.  前記孔は、前記プレートの面内において最長となる長さが、前記フィン部の厚さの2倍以上8倍以下となっている請求項9または10に記載の熱交換器。 The heat exchanger according to claim 9 or 10, wherein the hole has a longest length in the plane of the plate that is two to eight times the thickness of the fin portion.
  12.  前記孔は、
     前記流れ方向において、前記プレート接合部の端部に対して、前記フィン部の厚さ以上の距離を空けて配置され、
     前記幅方向において、前記フィン部に対して、前記フィン部の厚さ以上の距離を空けて配置されている請求項9から11のいずれか1項に記載の熱交換器。
    The holes are
    arranged at a distance equal to or greater than the thickness of the fin portion with respect to the end portion of the plate joint portion in the flow direction;
    The heat exchanger according to any one of claims 9 to 11, wherein the heat exchanger is arranged with a distance equal to or greater than the thickness of the fin portion with respect to the fin portion in the width direction.
  13.  前記プレート接合部は、前記流れ方向の下流側の端部に形成されると共に、前記流れ方向の下流側へ向かって前記プレート側に傾斜する下流側斜面を有する請求項1から12のいずれか1項に記載の熱交換器。 13. Any one of claims 1 to 12, wherein the plate joint portion is formed at an end portion on the downstream side in the flow direction, and has a downstream slope that slopes toward the plate side toward the downstream side in the flow direction. A heat exchanger according to any one of the preceding paragraphs.
PCT/JP2022/032653 2021-08-31 2022-08-30 Heat exchanger WO2023033000A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-141672 2021-08-31
JP2021141672A JP2023035071A (en) 2021-08-31 2021-08-31 Heat exchanger

Publications (1)

Publication Number Publication Date
WO2023033000A1 true WO2023033000A1 (en) 2023-03-09

Family

ID=85411273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032653 WO2023033000A1 (en) 2021-08-31 2022-08-30 Heat exchanger

Country Status (2)

Country Link
JP (1) JP2023035071A (en)
WO (1) WO2023033000A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263881A (en) * 2003-01-23 2004-09-24 Showa Denko Kk Heat transfer fin, heat exchanger, evaporator and condenser for car air conditioner
JP2010096456A (en) * 2008-10-17 2010-04-30 Denso Corp Exhaust heat exchanging device
JP2012017943A (en) 2010-07-09 2012-01-26 Denso Corp Oil cooler
JP2020012589A (en) * 2018-07-18 2020-01-23 本田技研工業株式会社 Heat exchanger
JP2021050868A (en) * 2019-09-25 2021-04-01 株式会社ケーヒン Heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263881A (en) * 2003-01-23 2004-09-24 Showa Denko Kk Heat transfer fin, heat exchanger, evaporator and condenser for car air conditioner
JP2010096456A (en) * 2008-10-17 2010-04-30 Denso Corp Exhaust heat exchanging device
JP2012017943A (en) 2010-07-09 2012-01-26 Denso Corp Oil cooler
JP2020012589A (en) * 2018-07-18 2020-01-23 本田技研工業株式会社 Heat exchanger
JP2021050868A (en) * 2019-09-25 2021-04-01 株式会社ケーヒン Heat exchanger

Also Published As

Publication number Publication date
JP2023035071A (en) 2023-03-13

Similar Documents

Publication Publication Date Title
US8162041B2 (en) Heat exchanger of plate fin and tube type
JP4175443B2 (en) Heat exchanger
US6073686A (en) High efficiency modular OLF heat exchanger with heat transfer enhancement
JP5096134B2 (en) Heat exchanger cross rib plate pair
JPH11287580A (en) Heat exchanger
WO2016067501A1 (en) Heat exchanger
US20070137840A1 (en) Corrugated fin and heat exchanger using the same
WO2023033000A1 (en) Heat exchanger
WO2007089619A2 (en) Fin and tube heat exchanger
JP6679810B1 (en) Heat exchange tube, heat exchange tube manufacturing method, and heat exchanger
JP5884484B2 (en) Heat exchanger
US11506457B2 (en) Header plateless type heat exchanger
KR20200099088A (en) Heat exchanger
WO2022220192A1 (en) Tube
JP7072790B2 (en) Heat exchanger
JP2017101904A (en) Fin for heat exchanger
US20120298344A1 (en) Header for heat exchanger
JP2001304719A (en) Module type multi-channel flat pipe evaporator
JP7000777B2 (en) Heat exchanger
WO2016043341A1 (en) Corrugated fins for heat exchanger
JP2009133598A (en) Heat exchanger
US11009296B2 (en) Heat exchange conduit and heat exchanger
WO2020162549A1 (en) Heat sink and heat exchanger
WO2023276689A1 (en) Heat exchanger
KR102158387B1 (en) heat exchanger enhancing coherence of header tank

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864582

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022864582

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022864582

Country of ref document: EP

Effective date: 20240202