WO2023032926A1 - Laminate and method for producing laminate - Google Patents

Laminate and method for producing laminate Download PDF

Info

Publication number
WO2023032926A1
WO2023032926A1 PCT/JP2022/032444 JP2022032444W WO2023032926A1 WO 2023032926 A1 WO2023032926 A1 WO 2023032926A1 JP 2022032444 W JP2022032444 W JP 2022032444W WO 2023032926 A1 WO2023032926 A1 WO 2023032926A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminate
porous portion
organic layer
porous
polysiloxane
Prior art date
Application number
PCT/JP2022/032444
Other languages
French (fr)
Japanese (ja)
Inventor
浩樹 幅▲崎▼
涼太 山本
Original Assignee
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学 filed Critical 国立大学法人北海道大学
Publication of WO2023032926A1 publication Critical patent/WO2023032926A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/18Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing

Definitions

  • the present invention relates to a laminate and a method for manufacturing the laminate. More particularly, the present invention relates to a laminate having one or more of synovial properties, antifouling properties, liquid repellency, and snow/ice sliding properties, and a method for producing the same.
  • SLIPS Slippery liquid infused porous surface
  • lubricants such as perfluoropolyether and silicone oil
  • SLIPS has synovial properties that allow various liquids such as water and oil to slide down easily, and exhibits many notable properties such as surface antifouling, snow/icing prevention, and corrosion resistance improvement. The following are known prior arts related to SLIPS.
  • an aluminum oxide film is provided on the surface of an aluminum member having a hierarchical structure composed of an aluminum oxide film having hierarchical etching pits and nanopores present on the surface of the etching pits, and the aluminum oxide film is composed of a fluorine-containing organic phosphorous
  • An aluminum composite for use in snow control is described having a monolayer of an acid compound and a coating layer of fluorine-containing oil over the monolayer.
  • US Pat. No. 6,200,400 discloses an article comprising a liquid-impregnated surface, said surface comprising a plurality of microscale and/or nanoscale solids spaced sufficiently closely together to stably contain the impregnating liquid therebetween. features, the surface stably containing the impregnating liquid between the solid features, the impregnating liquid filling spaces between the solid features, and the solid features despite movement of the surface. Articles are described that are held in place between. It is stated that the solid features may be pores and the impregnating liquid may be a silicone oil or a fluorocarbon.
  • Patent Document 3 comprises a lubricating fluid layer, said lubricating fluid being immiscible with biological substances, said lubricating layer forming an ultra-smooth surface on a coarse solid substrate, said lubricating fluid comprising: a slippery surface adhering to said substrate, said substrate being preferentially wetted by said lubricating fluid, said solid substrate and lubricating fluid configured and arranged to contact a biological material; Forming articles for repelling biological material are described. It is stated that the lubricating fluid may be a liquid silicone elastomer or a perfluorinated fluid and that the substrate may be a roughened surface comprising a porous material.
  • Patent Document 4 describes an article having a slippery surface, the supramolecular polymer having the general formula PxSy, where P is a covalently crosslinked polymer, S is a supramolecular block within the polymer network, x+y is 1 , y is 0 to 1) and a lubricating liquid, wherein the lubricating liquid may contain a silicone oil or a perfluorocarbon, and the supramolecular polymer and the lubricating liquid are: Articles are described that have an affinity for each other such that the lubricating liquid is absorbed into the polymeric material in sufficient quantity to form a slippery lubricating layer on the surface of the liquid swelling polymer.
  • Patent Document 5 a surface treatment film such as an anodized film having gaps such as pores and holes applied to the surface of a metal is impregnated with a fluorine-based monomer having a fluorocarbon chain, and then this surface treatment film is subjected to low-energy
  • a metal product having a fluorine-based polymer thin film formed on a metal surface is described in which a fluorine polymer thin film is formed by electron beam irradiation.
  • Patent Document 6 discloses a base material, a porous layer provided on the base material, and a lubricating liquid impregnated inside the porous layer, and the porous layer contains at least inorganic oxide fine particles and A water- and oil-repellent substrate composed of a mixture containing an inorganic binder containing one or more hydrolysates of alkoxysilane, wherein the lubricating liquid is fluorine-based oil or silicone oil.
  • a substrate is described.
  • Non-Patent Documents 1 to 4 describe polydimethylsiloxane (PDMS) and polymethylhydrosiloxane (PMHS) as surfaces for overcoming the problem of durability, which is a problem of SLIPS, by utilizing properties like solid wax. It is described that a synovial solid surface that functions as a liquid phase-like surface is produced by covalently grafting organic molecules having chemical bonds (Si—C, Si—O, CH) such as ing.
  • PDMS polydimethylsiloxane
  • PMHS polymethylhydrosiloxane
  • SLIPS which has been known so far, has little effect of physical damage due to the high fluidity of the lubricant, but the lubricant may be consumed by cleaning, evaporation, detachment, etc., and durability is an issue. rice field.
  • the aluminum composite material described in Patent Document 1, the articles described in Patent Documents 2 to 4, the metal product described in Patent Document 5, and the water- and oil-repellent substrate described in Patent Document 6 are , synovial properties to various solvents (wettability; static contact angle, contact angle hysteresis and drop falling angle), abrasion resistance, durability, corrosion resistance, ice resistance, etc. I didn't.
  • the thickness of the graft layer is only a few nanometers, so improvement in durability is limited.
  • the problem to be solved by the present invention is a laminate having improved synovial properties, abrasion resistance, antifouling properties, liquid repellency, snow/ice sliding properties, droplet falling properties, corrosion resistance, durability, etc., and its It is to provide a manufacturing method.
  • the present inventors have made intensive studies to solve the above problems, and found that a porous portion and an organic layer covering at least a part of the porous portion and filling the inside of the porous portion are provided. and the organic layer is a layer formed from one or more of amorphous fluororesin and/or polysiloxane, and the laminate easily slides down various liquids such as water and oil, similar to SLIPS. In addition to exhibiting excellent synovial properties that can be I have completed my invention.
  • a metal substrate, a porous portion provided in at least a part of the metal substrate, and at least the porous portion SLIPS is a laminate having an organic layer that partially covers and fills the interior of the porous portion, wherein the organic layer is a layer formed of one or more of amorphous fluororesin and / or polysiloxane.
  • the present invention provides the following laminate and method for producing the laminate.
  • Item 1 Having a porous portion and an organic layer covering at least a portion of the porous portion and filling the inside of the porous portion, A laminate, wherein the organic layer is a layer formed from one or more of polysiloxane and/or amorphous fluororesin.
  • Item 2 Having a metal substrate, a porous portion provided in at least a portion of the metal substrate, and an organic layer covering at least a portion of the porous portion and filling the inside of the porous portion death, A laminate, wherein the organic layer is a layer formed from one or more of polysiloxane and/or amorphous fluororesin.
  • Item 3 The polysiloxane has the following formula (1); (In Formula (1), R 1 , R 2 , X 1 and X 3 are each independently an alkyl group, an aromatic group and an unsaturated hydrocarbon group, and X 2 and X 4 are each independently an alkyl group. , an aromatic group, an unsaturated hydrocarbon group, or hydrogen, and n is an integer of 2 or more, and n X 3 and X 4 may be the same or different.) Item 3. The laminate according to item 1 or 2, which is a compound represented by. Item 4: The laminate according to any one of Items 1 to 3, wherein the organic layer is gel.
  • Item 5 The laminate according to any one of Items 1 to 4, which has one or more of synovial properties, antifouling properties, liquid repellency, and snow/ice sliding properties.
  • Item 6 Used as electric wires, steel towers, metal structures, utility poles, transformers, electric wire accessories, power transmission related equipment, signs, signboards, antennas, roofs, bags, vehicles, aircraft, guardrails, building materials, food plant members, Item 6. The laminate according to any one of items 1 to 5.
  • Item 7 A step of forming, on a metal substrate having a porous portion on at least a portion of the surface thereof, an organic layer that covers at least a portion of the porous portion and fills the inside of the porous portion, and heating the organic layer; has The organic layer is a layer formed from one or more of polysiloxane and / or amorphous fluororesin, A method for manufacturing a laminate.
  • Item 8 The method according to Item 7, comprising the step of forming a porous portion on at least part of the surface of the metal substrate.
  • the present invention provides a laminate having improved synovial properties, abrasion resistance, antifouling properties, liquid repellency, snow/ice sliding properties, droplet falling properties, corrosion resistance, durability, etc., and a method for producing the same. .
  • FIG. 4 is an SEM image of the surface morphology of the surface portion of the stainless steel substrate produced in Production Example 4.
  • FIG. 4 is an SEM image of the surface morphology of the surface portion of the titanium base material produced in Production Example 5.
  • FIG. 4 is a SEM image of the surface morphology of the iron substrate surface portion produced in Production Example 7.
  • a first aspect of the present invention has a porous portion, and an organic layer covering at least a portion of the porous portion and filling the inside of the porous portion, wherein the organic layer comprises polysiloxane and/or or a laminate, which is a layer formed from one or more amorphous fluororesins.
  • a second aspect of the present invention includes a metal substrate, a porous portion provided in at least a portion of the metal substrate, and at least a portion of the porous portion and the porous portion filled with The laminate has an organic layer containing a polysiloxane and/or an amorphous fluororesin.
  • the porous portion has an opening in the surface portion and is particularly limited as long as it can be filled with polysiloxane and / or amorphous fluororesin that forms the organic layer. not.
  • the average diameter of the pores forming the porous portion is not particularly limited as long as the polysiloxane and/or amorphous fluororesin forming the organic layer can be filled and not easily released.
  • it is 1 nm or more, preferably 5 nm or more, more preferably 10 nm or more, still more preferably 50 nm or more, for example 1 mm or less, preferably 100 ⁇ m or less, more preferably 10 ⁇ m or less, even more preferably 1 ⁇ m or less, still more preferably 500 nm or less.
  • the average diameter of the pores forming the porous portion is less than 1 nm, it becomes difficult to fill the polysiloxane and/or amorphous fluororesin forming the organic layer, it takes time, special techniques are required, etc. problems may occur.
  • the average diameter exceeds 1 mm, the amount of polysiloxane and/or amorphous fluororesin used increases when forming the organic layer, which is disadvantageous in terms of cost, and there is a risk that it will easily separate after filling. be.
  • the thickness of the porous portion is not particularly limited. For example, it is 100 nm or more, preferably 1 ⁇ m or more, more preferably 10 ⁇ m or more, and for example 1 mm or less, preferably 500 ⁇ m or less, more preferably 100 ⁇ m or less. If the thickness of the porous portion is less than 100 nm, the filling amount of polysiloxane and/or amorphous fluororesin forming the organic layer is reduced, and the laminate may not exhibit the desired effects.
  • porous portion Materials and components that form the porous portion are not particularly limited as long as they can maintain the porous shape and do not change the properties of the polysiloxane and/or the amorphous fluororesin. Examples include metals, oxides, carbon, ceramics, activated carbon, polymers, and organic-inorganic composites. In the present invention, it is preferable to contain an oxide, particularly a metal oxide.
  • the porous portion may be formed, for example, by treating the surface layer of the metal substrate, or may be formed by bonding a separately formed porous member to the surface of the metal substrate. good too. In particular, the one formed by treating the surface layer of the metal substrate is preferable.
  • the porous portion can be formed from one or more kinds of porous members.
  • a porous member further provided with a porous portion may be used. Also, the porous portion may be provided on at least a portion of the nonmetallic base material.
  • a metal substrate in which a porous portion, which is a porous anodic oxide film, is formed on at least a part of the metal substrate by anodizing the metal substrate.
  • a material in which a porous portion is formed by reacting a metal substrate with a reagent capable of forming a porosity for example, various acids, various bases, etc.
  • anodic oxidation treatment In the anodic oxidation treatment, the surface of the metal substrate is oxidized directly under an electric field in an aqueous solution or an organic electrolytic solution containing a small amount of water using the metal substrate as an anode (anode) to oxidize the surface. It is a process to
  • the metal substrate used in the anodizing treatment is not particularly limited, and those described in ⁇ Metal substrate> can be used.
  • a metal substrate containing Al, Ti, Fe, Cu, Zn, or an alloy containing one or more of these is preferably used.
  • Metal substrates containing Al or Al alloys are particularly preferred.
  • the conditions of the anodizing treatment are not particularly limited as long as a porous anodized film having pores can be formed.
  • the conditions for the anodic oxidation treatment can be appropriately adjusted according to the film thickness of the anodic oxide film, the pore size of the pores, and the like.
  • electrolytes for example, for aluminum, acid aqueous solutions such as sulfuric acid, phosphoric acid, nitric acid, chromic acid, silicic acid, oxalic acid, malonic acid, citric acid, sulfamic acid, mixed acids thereof, these acids
  • An aqueous acid solution containing a salt of can be used.
  • a weakly alkaline aqueous borax solution is also available.
  • sulfuric acid, oxalic acid or phosphoric acid are preferred.
  • an aqueous base solution e.g., an aqueous solution of an alkali metal hydroxide such as sodium hydroxide
  • a solvent containing a salt e.g., a water-ethylene glycol mixed solution containing ammonium fluoride, etc.
  • the pH of the electrolytic solution is not particularly limited, and is, for example, pH 6.0 or less, preferably pH 3.0 or less.
  • the temperature of the electrolytic solution is not particularly limited, and is, for example, 0° C. or higher, preferably 10° C. or higher, and for example, 35° C. or lower, preferably 30° C. or lower.
  • the anodic oxidation voltage is not particularly limited, and is, for example, 0.1 V or higher, preferably 10 V or higher, more preferably 20 V or higher, and is, for example, 300 V or lower, preferably 240 V or lower, more preferably 200 V or lower.
  • the anodic oxidation current is not particularly limited, and is, for example, 10 A/m 2 or more, preferably 50 A/m 2 or more, and is, for example, 1000 A/m 2 or less, preferably 500 A/m 2 or less.
  • the time for the anodizing treatment is not particularly limited, and is, for example, 1 second or longer, preferably 1 minute or longer, more preferably 10 minutes or longer, still more preferably 15 minutes or longer, and for example 100 minutes or shorter, preferably 60 minutes or shorter. , more preferably 45 minutes or less.
  • the pore size of the pores of the porous portion obtained by the anodic oxidation treatment is, for example, 1 nm or more, preferably 2 nm or more, more preferably 5 nm or more, and for example, 500 nm or less, preferably 300 nm or less, more preferably 200 nm. It is below.
  • the thickness of the porous portion obtained by the anodic oxidation treatment is, for example, 100 nm or more, preferably 500 nm or more, and for example, 300 ⁇ m or less, more preferably 200 ⁇ m or less.
  • pretreatment such as cleaning treatment, degreasing treatment, etching treatment, electropolishing treatment, etc. is performed as necessary prior to anodization treatment, so that oil and fat components present on the anodization treatment surface and vapor-phase oxidation are removed. It is preferable to remove the film or the like.
  • a pore widening treatment may be performed to further enlarge the diameter of the pores (nanopores) generated by the anodizing treatment.
  • the pore widening treatment is performed by immersing the metal base material after the anodizing treatment in an acid aqueous solution such as sulfuric acid, phosphoric acid, nitric acid, chromic acid, silicic acid, oxalic acid, sulfamic acid, mixed acid of these for a certain period of time. be able to.
  • the conditions for the pore widening treatment in the present invention are, for example, the temperature of the acid aqueous solution is in the range of 10° C. or higher and 40° C.
  • the concentration of the acid aqueous solution is in the range of 1% by mass or higher and 15% by mass or lower, and the treatment time is, for example, The range is from 60 seconds to 7200 seconds.
  • the pore widening treatment is preferably carried out by immersing in an aqueous solution of phosphoric acid, sulfuric acid or oxalic acid having a concentration of 3 to 10% by mass at 15 to 35° C. for 600 to 1200 seconds.
  • the metal substrate is not particularly limited.
  • alloys containing one or more of Al, Ti, Fe, Cu, Zn, Cr, and Ni, laminates thereof, and the like are preferable.
  • Particularly preferred are Al, Al alloys, Ti, Ti alloys, iron, zinc, zinc alloys (eg, zamak, brass, etc.), iron-chromium alloys (eg, stainless steel, etc.).
  • stainless steel examples include austenitic stainless steel, austenitic ferritic duplex stainless steel, ferritic stainless steel, and martensitic stainless steel.
  • austenitic stainless steel for example, SUS200 series, 300 series, etc. indicated by JIS steel grades is preferable.
  • the shape and the like of the metal substrate are not particularly limited. It can have any shape depending on the application. For example, plate-like, line/rod-like (octagonal, hexagonal, flat, square, round, etc.), chevron (L-shaped), straight sheet pile, U-shaped sheet pile, groove (U-shaped), I-shaped, H A shape, a rail shape, a tubular shape, a shape obtained by combining one or more of these shapes, and the like can be mentioned.
  • the thickness of the plate-shaped metal substrate is not particularly limited, and can be, for example, 0.1 mm or more, preferably 0.5 mm or more and 100 mm or less.
  • the diameter of the wire/rod-shaped metal substrate is not particularly limited, and can be, for example, 0.1 mm or more, preferably 0.5 mm or more and 100 mm or less.
  • the metal substrate is preferably subjected to pretreatments such as cleaning, degreasing, etching, and electropolishing to remove oil and fat components, gas-phase oxide films, etc. present on the surface of the metal substrate.
  • pretreatments such as cleaning, degreasing, etching, and electropolishing to remove oil and fat components, gas-phase oxide films, etc. present on the surface of the metal substrate.
  • the organic layer covers at least a portion of the porous portion and fills the inside of the porous portion.
  • the organic layer is a layer formed from one or more of polysiloxane and/or amorphous fluororesin.
  • the organic layer is, for example, (1) a coating film obtained by applying one or more of polysiloxane and / or amorphous fluororesin or a dry coating film thereof, (2) the coating film of (1) or A crosslinked coating obtained by heat-treating a dried coating may also be used.
  • the polysiloxane and/or amorphous fluororesin forming the organic layer may be dissolved in a suitable organic solvent or the like.
  • the organic layer is preferably gel-like.
  • gel-like means that the polysiloxane and/or the amorphous fluororesin are partially thermally decomposed and intermolecularly crosslinked by heating the polysiloxane and/or the amorphous fluororesin, thereby increasing the viscosity. It is in a state of reduced liquidity.
  • dimethylpolysiloxane which is a type of polysiloxane
  • a thermal decomposition initiation temperature about 150° C.
  • part of the dimethylpolysiloxane is thermally decomposed and intermolecularly crosslinked. Viscosity increases and a gel-like substance is formed.
  • Polysiloxane is a resin having a --Si--O-- bond in its molecule, and is not particularly limited as long as it can form a film.
  • siloxane units (M units) represented by R a 3 SiO 0.5 siloxane units (D units) represented by R b 2 SiO, siloxane units (T units) represented by R c SiO 1.5 and SiO Polysiloxane containing one or more siloxane units (Q units) represented by 2 may also be used.
  • R a , R b and R c are each independently an alkyl group, an aromatic group or an unsaturated hydrocarbon group, and when there are a plurality of each of R a , R b and R c in the polysiloxane, the same may be different.
  • MQ resins composed of M units and Q units T resins composed of T units, MDQ resins composed of M units, D units and Q units, M units, D units, T units and Q units DT resin composed of D units and T units, MDT resin composed of M units, D units and T units, MTQ resin composed of M units, T units and Q units, and
  • QDT resins composed of D units, T units and Q units can be used.
  • the structure of polysiloxane is not particularly limited, and may be linear, cyclic, three-dimensional network structure, or the like. In the present invention, it is preferred to use linear polysiloxane.
  • polysiloxane examples include 1,1,3,3-tetramethyldisiloxane, tris(dimethylhydrogensiloxy)methylsilane, tris(dimethylhydrogensiloxy)phenylsilane, and trimethylsiloxy group-blocked at both ends of the molecular chain.
  • R 1 , R 2 , X 1 and X 3 are each independently an alkyl group, an aromatic group and an unsaturated hydrocarbon group
  • X 2 and X 4 are each independently an alkyl group.
  • n is an integer of 2 or more
  • n X 3 and X 4 may be the same or different.
  • It is preferably a linear polysiloxane represented by.
  • polysiloxane in the present invention the following formula (2); R 3 SiO 1.5 (2) (In formula (2), R3 is an alkyl group, an aromatic group, or an unsaturated hydrocarbon group, and multiple R3s may be the same or different.)
  • Polysiloxane polysilsesquioxane having a three-dimensional network structure containing repeating units represented by is preferable.
  • the terminal is, for example, —SiR 3 (OR 4 ) 2 or —SiR 3 (OR 4 )O 0.5 (wherein R 3 is an alkyl group, an aromatic group or an unsaturated hydrocarbon group, and R 4 is , an alkyl group having 1 to 6 carbon atoms or H, and a plurality of R 3 and a plurality of R 4 may be the same or different.).
  • alkyl groups for R 1 , R 2 , R 3 , X 1 , X 2 , X 3 and X 4 in formulas (1) and (2) include alkyl groups having 1 to 20 carbon atoms. Examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, n-hexyl group, cyclohexyl group, heptyl group, dodecyl group and stearyl group. These alkyl groups having 1 to 20 carbon atoms may have a substituent such as halogen.
  • the unsaturated hydrocarbon groups for R 1 , R 2 , R 3 , X 1 , X 2 , X 3 and X 4 in formulas (1) and (2) are unsaturated aliphatic hydrocarbon groups having 2 to 20 carbon atoms. A hydrogen group is mentioned.
  • ethenyl group (vinyl group), propenyl group (allyl group), butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, ethynyl group, propynyl group, butynyl group, pentynyl group, hexynyl group, octynyl group and the like. mentioned.
  • the repeating unit number n is an integer of 1 or more. For example, it is 10 or more, preferably 20 or more, and for example, 15,000 or less, preferably 5,000 or less.
  • the polysiloxane of formula (1) has a kinematic viscosity at 25° C. of, for example, 500 mm 2 /sec or more, preferably 10,000 mm 2 /sec or more, for example 10,000,000 mm 2 /sec or less, preferably It may be 1,000,000 mm 2 /sec or less.
  • the weight average molecular weight of the polysiloxane (polysilsesquioxane) having a three-dimensional network structure containing repeating units represented by formula (2) is not particularly limited. For example, it is 400 or more, preferably 500 or more, and for example, 5,000 or less, preferably 4,000 or less.
  • a commercially available polysiloxane can be used.
  • Commercially available products include, for example, KF-96, KF-965, KF-968, KF-50, KF-54, HIVAC F-4, HIVAC F-5, KF56, KF-99, KR-242A, KR-251, KR-112, KR-255, KR-271, KR-282, KR-300, KR-311, KR-515 , KR-500, KR-401N, KR-510, KR-213, KR-4000G, KR-4000F2, KR-400, KR-401, KR-511, KR-2710, X-48-1030, X-48 -1500, X-48-1600, X-40-2667A, X-40-2756, X-40-9225, X-40-9246, X-40-9250, X-40-9227, X-40-9312 , X-40-2327, X-40-2450, X-40-9300
  • polysiloxane in the present invention for example, polymethylhydrogensiloxane (PMHS) represented by the following formula (3), for example, polydimethylsiloxane (PDMS) represented by the following formula (4), for example, the following formula It is preferable to use one or more of polymethylsilsesquioxanes having the structural unit represented by (5).
  • polysiloxane in the present invention it is preferable to use a mixture of, for example, PMHS represented by the following formula (3) and PDMS represented by, for example, the following formula (4).
  • the amorphous fluororesin is not particularly limited as long as it is an amorphous (amorphous) resin.
  • amorphous fluororesins include perfluoro(4-vinyloxy-1-butene) cyclized polymer (BVE), tetrafluoroethylene-perfluorodioxole copolymer (TFE/PDD), tetrafluoroethylene-per From the group consisting of fluoromethyl vinyl ether copolymer (TFE/MFA), tetrafluoroethylene-perfluoroethyl vinyl ether copolymer (TFE/EFA), tetrafluoroethylene-perfluoropropyl vinyl ether copolymer (TFE/PFA), etc.
  • amorphous fluororesins may be used as they are.
  • the AF series manufactured by DuPont Fluorochemicals, Mitsui
  • the Algoflon series manufactured by Solvay Special Polymers Japan
  • the Cytop series manufactured by AGC
  • the amorphous fluororesin includes, for example, the following repeating unit (6); (Wherein, s represents the number of repeating units.) It is preferable to use a perfluoro(4-vinyloxy-1-butene) cyclized polymer (BVE) having For example, CTX-809A, CTL-109AE, CTX-109AE, CTL-809M, CTL-107MK, CTX-809SP2, CT-SOLV180, CT-SOLV100E, CT-SOLV100K, etc. in Cytop series can be used.
  • BVE perfluoro(4-vinyloxy-1-butene) cyclized polymer
  • the average molecular weight of the amorphous fluororesin is not particularly limited. For example, it is 100,000 or more, preferably 120,000 or more, more preferably 150,000 or more, and for example, 500,000 or less, preferably 300,000 or less, more preferably 200,000 or less.
  • the organic layer formed from one or more of polysiloxane and/or amorphous fluororesin covers at least a portion of the porous portion and fills the inside of the porous portion.
  • the method of covering at least part of the porous portion with the organic layer and filling the interior of the porous portion with the organic layer is not particularly limited.
  • a dip coating method, a bar coating method, a die coating method, a slit coating method, a roll coating method, a spray coating method, a spin coating method, or the like can be used.
  • the dip coating method it is possible to promote the filling into the inside of the porous portion by performing it under ultrasonic waves.
  • a spray coating method it is possible to selectively coat or fill only an arbitrary portion of the porous portion with the organic layer.
  • the coating and filling amount of polysiloxane and/or amorphous fluororesin are not particularly limited. For example, it is 10 ⁇ g/cm 2 or more, preferably 50 ⁇ g/cm 2 or more.
  • Heat treatment In the present invention, an organic layer formed from one or more of polysiloxane and / or amorphous fluororesin, after covering at least a part of the porous portion and filling the inside of the porous portion, if necessary Heat treatment is preferably performed after drying (solvent removal). Heat treatment conditions are not particularly limited. The temperature may be within a range in which the polysiloxane and/or the amorphous fluororesin do not ignite or spontaneously ignite.
  • the heat treatment conditions are, for example, in air at a thermal decomposition temperature or higher, for example, 120° C. or higher, preferably 150° C. or higher, more preferably 170° C. or higher, and for example, 400° C. or lower, preferably 350° C. or lower.
  • the heating time is, for example, 1 minute or longer, preferably 10 minutes or longer, and for example, 5 hours or shorter, preferably 3 hours or shorter.
  • a heating furnace it is preferable to use a heating furnace (oven).
  • the organic layer formed from one or more of polysiloxane and/or amorphous fluororesin can be firmly integrated with the porous portion.
  • an organic layer formed from one or more of polysiloxane and/or amorphous fluororesin is filled in the porous portion and exerts an anchor effect, so that the organic layer has excellent wear resistance. may be provided over at least a portion of the porous portion.
  • the organic layer formed from one or more of polysiloxane and/or amorphous fluororesin is subjected to heat treatment to cause intermolecular cross-linking to form a three-dimensional network and gel. can be done. As a result, the organic layer and the porous portion are firmly integrated, and the detachment of the organic layer can be significantly suppressed. It is possible to express one or more of the above for a long period of time.
  • the laminate of the present invention has one or more of synovial properties, antifouling properties, liquid repellency, and snow/ice sliding properties.
  • the laminate of the present invention has a static contact angle with water of 90° or more, preferably 95° or more and 125° or less.
  • the static contact angle of the laminate of the present invention with respect to organic solvents other than water is not particularly limited. For example, it may be 90° or less.
  • the laminate of the present invention has a surface tension of 20 mN/m or more and 80 mN/m or less of a solvent (water, rapeseed oil, hexadecane, dodecane, ethylene glycol, ethanol, etc.), and the difference between the advancing contact angle and the receding contact angle is It is preferred that the contact angle hysteresis is 15° or less, preferably 10° or less. Further, the laminate of the present invention preferably has a liquid droplet falling angle of 20° or less, preferably 16° or less, for a solvent having a surface tension of 20 mN/m or more and 80 mN/m or less.
  • a solvent water, rapeseed oil, hexadecane, dodecane, ethylene glycol, ethanol, etc.
  • the laminate will have at least one of synovial properties, antifouling properties, liquid repellency, and snow/ice sliding properties. be able to. Furthermore, the laminate of the present invention exhibits little change over time (deterioration over time) in static contact angle, contact angle hysteresis, and falling angle of droplets, and exhibits synovial properties, antifouling properties, liquid repellency, and snow/ice sliding properties. Any one or more of the above can be exhibited continuously for a long period of time. As a result, for example, excellent anti-snow/anti-icing properties can be maintained for a long period of time.
  • the laminate of the present invention has little change (deterioration over time) in static contact angle, contact angle hysteresis, and droplet falling angle, and has good synovial properties, abrasion resistance, antifouling properties, liquid repellency, and snow/ice sliding properties.
  • power transmission related facilities such as electric wires, electric poles, transformers, insulators, electric wire accessories, etc.
  • Equipment and instruments steel towers, radio towers, metal structures, buildings, houses, warehouses, guardrails, protective fences; building materials such as roofing materials, exterior wall materials, window materials, staircase materials; traffic signs, curved mirrors , display equipment and devices such as traffic lights, signboards, signboards, outdoor displays; antennas for broadcasting, communication, radar, etc.; transportation vehicles such as passenger cars, freight vehicles, motorcycles, all-terrain vehicles, and snowmobiles, Construction, agriculture, work vehicles such as snowplows, transportation machinery and equipment such as railroad vehicles, aircraft, and ships; heat exchangers, coolers, refrigerators, ovens, cutters, liquid dispensers, tanks, stirring and mixing ⁇ Processing equipment such as reaction tanks and discharge nozzles ⁇ Tools (including for food); sporting goods such as skis, sleds, skates, snowshoes, stocks, outdoor activity equipment, mountaineering equipment; bags, shoes, fabrics, non-woven fabrics, etc.
  • transportation vehicles such as passenger cars, freight vehicles, motorcycles, all-terrain vehicles
  • the laminate of the present invention can be suitably used for the purpose of exhibiting excellent snow-sliding/ice-sliding properties (hard-to-snow/hard-to-ice properties) for a long period of time.
  • a method for manufacturing a laminate according to a first aspect of the present invention includes steps of preparing a porous member, forming an organic layer covering at least a portion of the porous member and filling the inside of the porous portion, and and heating the organic layer, wherein the organic layer is a layer formed of one or more of polysiloxane and/or amorphous fluororesin. A step of further forming a porous portion on the porous member may be provided.
  • a metal substrate having a porous portion on at least a portion of its surface is coated with at least a portion of the porous portion and the inside of the porous portion is filled with and heating the organic layer, wherein the organic layer is a layer formed from one or more of polysiloxane and/or amorphous fluororesin. Furthermore, a step of forming a porous portion on at least part of the surface of the metal substrate may be included.
  • the metal substrate, the porous portion (porous member), the organic layer, the polysiloxane and the amorphous fluororesin in the method for producing the laminate of the present invention are the same as ⁇ metal substrate>, ⁇ porous Part>, ⁇ Organic layer>, (Polysiloxane) and (Amorphous fluororesin).
  • the step of forming the porous portion is the same as described in the section (anodic oxidation treatment) in ⁇ porous portion>.
  • the step of forming the organic layer is the same as described in the section ⁇ Organic Layer>, and the step of heating the organic layer is the same as described in the section (Heat Treatment) in ⁇ Organic Layer>. is.
  • Example 1 Polymethylhydrogensiloxane (PMHS: KF-99, manufactured by Shin-Etsu Silicone Co., Ltd.) was used as the lubricant.
  • the metal substrate 1 having a porous portion on at least a part of the surface obtained in Production Example 2 was immersed in PMHS for 10 minutes under ultrasonic waves to impregnate the porous portion with PMHS.
  • the metal substrate 1 was taken out and left at 25° C. under atmospheric pressure with an inclination of 45° to remove excess PMHS. After that, heat treatment was performed in an oven at 200° C. for 2 hours to solidify the PMHS, and a laminate 1 was obtained.
  • Example 2 A laminate 2 was obtained in the same manner as in Example 1, except that the laminate was heat-treated in an oven at 150° C. for 2 hours.
  • Example 3 Polydimethylsiloxane (PDMS: KF-96, manufactured by Shin-Etsu Silicone Co., Ltd.) was used as a lubricant.
  • the metal substrate 1 having a porous portion on at least a part of the surface obtained in Production Example 2 was immersed in PDMS for 10 minutes under ultrasonic waves to impregnate the porous portion with PDMS.
  • the metal substrate 1 was taken out and left at 25° C. under atmospheric pressure with an inclination of 45° to remove excess PDMS. After that, heat treatment was performed in an oven at 300° C. for 2 hours to solidify the PDMS, and a laminate 3 was obtained.
  • Example 4 A laminate 4 was obtained in the same manner as in Example 3, except that the laminate was heat-treated in an oven at 280° C. for 2 hours.
  • Laminate 5 was obtained in the same manner as in Example 3, except that heat treatment was performed in an oven at 250° C. for 2 hours.
  • Amorphous fluororesin (CYTOP: manufactured by AGC, CTL-107MK) was used as the lubricant.
  • the metal substrate 1 having a porous portion on at least a part of the surface obtained in Production Example 2 was immersed in a 7% by mass solution of CYTOP under ultrasonic waves for 10 minutes to impregnate the porous portion with CYTOP.
  • the metal substrate 1 is taken out, left at 25° C. under atmospheric pressure for 10 minutes, dried, and then heat-treated in an oven at 80° C. for 30 minutes, followed by heat treatment at 180° C. for 30 minutes to solidify CYTOP. , to obtain a laminate 6.
  • Example 7 In Example 6, the metal substrate 1 having a porous portion on at least a portion of the surface obtained in Production Example 2 was used as the metal substrate 2 having a porous portion on at least a portion of the surface obtained in Production Example 3. A laminate 7 was obtained in the same manner as in Example 3, except that the material was changed.
  • PSi mixture 1 containing 2 parts of polymethylhydrogensiloxane (PMHS: KF-99 manufactured by Shin-Etsu Silicone Co., Ltd.) and 1 part of polydimethylsiloxane (PDMS: KF-96 manufactured by Shin-Etsu Silicone Co., Ltd.) as lubricants was used.
  • the metal substrate 1 having a porous portion on at least a part of the surface obtained in Production Example 2 was immersed in the PSi mixture 1 under ultrasonic waves for 10 minutes to impregnate the porous portion with the PSi mixture 1.
  • the metal substrate 1 was taken out and left at 25° C. under atmospheric pressure with an inclination of 45° to remove excess PSi mixture 1 . After that, heat treatment was performed in an oven at 200° C. for 2 hours to solidify the PSi mixture 1 and obtain a laminate 8 .
  • Example 9 In Example 8, 1 part of polymethylhydrogensiloxane (PMHS: manufactured by Shin-Etsu Silicone Co., Ltd., KF-99) and polydimethylsiloxane (PDMS: manufactured by Shin-Etsu Silicone Co., Ltd., KF-96) were used as lubricants. A laminate 9 was obtained in the same manner as in Example 8, except that the PSi mixture 2 contained in was used.
  • PMHS manufactured by Shin-Etsu Silicone Co., Ltd., KF-99
  • PDMS manufactured by Shin-Etsu Silicone Co., Ltd., KF-96
  • Example 10 A laminate 10 was obtained in the same manner as in Example 9, except that heat treatment was performed in an oven at 180° C. for 2 hours.
  • Example 11 A laminate 11 was obtained in the same manner as in Example 9, except that the laminate was heat-treated in an oven at 220° C. for 2 hours.
  • Example 12 A laminate 12 was obtained in the same manner as in Example 9, except that heat treatment was performed in an oven at 250° C. for 2 hours.
  • PSi mixture 3 containing 1 part of polymethylhydrogensiloxane (PMHS: KF-99, manufactured by Shin-Etsu Silicone Co., Ltd.) and 2 parts of polydimethylsiloxane (PDMS: KF-96, manufactured by Shin-Etsu Silicone Co., Ltd.) as lubricants was used.
  • the metal substrate 1 having a porous portion on at least a part of its surface obtained in Production Example 2 was immersed in the PSi mixture 3 under ultrasonic waves for 10 minutes to impregnate the porous portion with the PSi mixture 3.
  • the metal substrate 1 was taken out and left at 25° C. under atmospheric pressure with an inclination of 45° to remove excess PSi mixture 3 . Thereafter, heat treatment was performed in an oven at 220° C. for 2 hours to solidify the PSi mixture 3 and obtain a laminate 13 .
  • Example 14 As a lubricant, polymethylsilsesquioxane (PSQ: KR-4000G (50 mass % isoparaffin solution) manufactured by Shin-Etsu Silicone Co., Ltd.) was used.
  • PSQ polymethylsilsesquioxane
  • the metal substrate 1 having a porous portion on at least a part of the surface obtained in Production Example 2 was immersed in a 50 mass % isoparaffin solution of PSQ for 10 minutes under ultrasonic waves. After that, it was dried at room temperature (25° C.) to form a dry film, and a laminate 14 was obtained.
  • the electropolished Al substrate obtained in Production Example 1 was immersed in PMHS for 10 minutes under ultrasonic waves.
  • the electropolished Al substrate was taken out and left at 25° C. under atmospheric pressure with an inclination of 45° to remove excessive PMHS. After that, heat treatment was performed in an oven at 200° C. for 2 hours to solidify the PMHS, and a laminate 15 was obtained.
  • a droplet of 10 ⁇ L was placed on the sample on the electric tilting stage, the stage was tilted at a speed of 0.1°/s in this state, and the angle at which the droplet started to roll was obtained as the droplet falling angle.
  • Cross-sectional SEM and cross-sectional EDS analysis Observation and analysis of the cross section were performed by the following methods.
  • a cross-sectional sample was prepared using a cross-section polisher (manufactured by JEOL Ltd., SM-09010). After that, using a field emission scanning electron microscope (Sigma-500, manufactured by ZEISS) equipped with an EDS (XFlash6-30, manufactured by Bruker), observation and EDS analysis were performed at an acceleration voltage of 2 kV or less.
  • a ball-on-flat tribometer manufactured by CSM Instruments was used, SUJ2 steel balls were used, and the conditions were a load of 1.0 N, a rotation radius of 1.5 mm, and a rotation speed of 1 mm/s or 10 mm/s.
  • the ice adhesion force was measured by the shear adhesion strength test described below.
  • a cylindrical polyester container wrapped with a wire is placed on a sample fixed on a water-cooled cooling unit (WLVPU-30, manufactured by VICS), and a Peltier controller (VPE-20, manufactured by VICS) is controlled to- Cooling was performed at 20° C. for 30 minutes. Thereafter, the container was filled with pure water and cooled again at ⁇ 20° C. for 30 minutes to freeze the pure water in the container and form ice blocks on the surface of the sample.
  • WLVPU-30 water-cooled cooling unit
  • VPE-20 Peltier controller
  • the static contact angle for the solvent (water: surface tension 72.8 mN / m) of the laminates 1, 3 and 6 is 100 to 120 °, and the static contact angle for organic solvents other than water is 90. ° or less.
  • the contact angle hysteresis (the difference between the advancing contact angle and the receding contact angle) is about 10° or less for the solvents 1 to 5 for all of the laminates 1, 3 and 6, and the surface tension of the solvent It can be seen that the effect of Furthermore, regarding the droplet falling angle in 10 ⁇ L of solvent, the droplet falling angle of solvents 1 to 5 in layered product 1 is 11° or less, and the droplet falling angle of solvents 1 to 3 in layered product 3 is 5° or less. , and the drop falling angles of the solvents 1 to 5 in the laminate 6 are all 13° or less, indicating that the laminate 6 has excellent synovial properties.
  • Laminates 1, 3, 6 and 14 obtained in Examples 1, 3, 6 and 14 and polytetrafluoroethylene plates (PTFE plates) were measured for falling angles at water droplet volumes of 10 ⁇ L and 30 ⁇ L. Table 2 shows the results.
  • the water tumble angle at a water droplet amount of 30 ⁇ L for the laminates 1, 3, 6 and 14 and the water tumble angle at a water droplet amount of 10 ⁇ L for the laminates 1, 3 and 6 are smaller than the water contact angle of the PTFE plate and smooth. It was found to be excellent in water resistance. In particular, it can be seen that the laminates 1, 3 and 6 have excellent water sliding properties in terms of the falling angle of water droplets.
  • FIG. 3 shows the results of EDS analysis of cross sections of the surface portions of the laminates 1, 3 and 6 obtained in Examples 1, 3 and 6.
  • FIG. 15 to 17 obtained in Comparative Examples 1 to 3 were observed with an electron microscope.
  • a cross-sectional SEM image of the surface portion is shown in FIG. From the cross-sectional SEM image of the surface portion in FIG.
  • a lubricant layer 1 is formed. Further, from the SEM image of the porous portion in FIG. 2 and FIG. 3, the porous portions of the laminates 1, 3, and 6 are filled with a lubricant. It can be seen that the filling rate is high. On the other hand, it can be seen from FIG. 4 that the laminates 15 to 17 have a structure in which the lubricant layer 1 is formed directly on the metal layer 3. FIG.
  • FIG. 5 shows a photograph of the surface morphology, an electron microscope photograph of the surface morphology, and a cross-sectional EDS analysis result surface image of the surface of the laminate 6 and the laminate 17 after 200 rotations.
  • the laminates 1, 3 and 6 and the laminates 15 to 17 do not have a large difference in the initial coefficient of friction.
  • the laminates 15 to 17 have a coefficient of friction (dynamic friction coefficient) exceeding 0.6 at low rotation speeds, the laminates 1, 3, and 6 maintain low friction coefficients even at high rotation speeds.
  • the wear resistance is greatly improved.
  • the laminates 1, 3, and 6 have improved wear resistance because the lubricant penetrates into the porous portion and the adhesion of the liquid phase is improved. From this, it can be seen that the laminates 1, 3 and 6 are significantly improved in durability compared to the laminates 15-17.
  • the lubricant layer remains on the surface of the laminate 6 even after 200 rotations, whereas the lubricant layer peels off and the base aluminum of the laminate 17 is exposed. I know there is.
  • FIG. 6 shows a photograph of the surface morphology, an electron microscope photograph of the surface morphology, and a surface image of the cross-sectional EDS analysis of the surface portion of the laminate 9 after 100 rotations.
  • the laminates 2, 4, 9 and 10 in which the lubricant after heat treatment is gel-like are compared with the laminates 1, 3, 11 and 12 in which the lubricant after heat treatment is not gel-like. , a low coefficient of friction is maintained even when the number of revolutions increases, indicating that the wear resistance is further improved. Furthermore, it can be seen from FIG. 6 that the laminate 9 still has a lubricant layer on the surface even after 100 rotations, and maintains a low coefficient of friction.
  • the laminates 1, 3, and 6 obtained in Examples 1, 3, and 6 and the electropolished Al substrate obtained in Production Example 1 each contained 2 g/L of acetic acid and 10 g/L of sodium chloride. It was immersed in an aqueous solution having a pH of 3.
  • Ag/AgCl (saturated KCl aqueous solution) as the reference electrode, and platinum as the counter electrode scanning at a scanning speed of 1 mV/s, potentiodynamic polarization measurement was performed. and measured the corrosion current density. Photographs of the surface morphology of the laminates 1, 3 and 6 and the electropolished Al substrate after the potentiodynamic polarization measurement are shown in FIG.
  • the corrosion current density values of laminates 1, 3, and 6 were decreased by five orders of magnitude or more from the corrosion current density value of the electropolished Al substrate. From this, it can be seen that the laminates 1, 3, and 6 are superior in corrosion resistance to the electropolished Al substrate. Furthermore, it can be seen from FIG. 7 that no conspicuous pitting corrosion occurred on the surfaces of the laminates 1, 3, and 6, whereas a large number of pitting corrosion occurred on the surface of the electropolished Al substrate. .
  • Laminates 1, 3, and 6 obtained in Examples 1, 3, and 6 and the electropolished Al substrate obtained in Production Example 1 were placed on a Peltier element set at 20° C., and laminate 1 , 3, 6 and an O-ring were placed on the electropolished Al substrate, and these were placed in a constant temperature and humidity bath at a temperature of 20° C. and a humidity of 60%. Then, the temperature of the Peltier device was lowered to -20°C and left for 30 minutes. Thereafter, the O-ring was filled with ultrapure water produced by an ultrapure water production apparatus (Milli-Q), and further cooled at -20°C for 30 minutes to prepare an ice block. The ice adhesion force was then measured when removing the ice block created in the O-ring. Furthermore, the same procedure was repeated for laminates 1, 3, and 6, and the ice adhesion force was measured each time. Table 6 shows the results.
  • each atomic number concentration (atom%) in the porous portion the ratio of fluorine atoms to the sum of fluorine atoms and aluminum atoms in the porous portion F / (F + Al)
  • Table 8 also shows the number of revolutions when the coefficient of friction exceeds 0.3 or 0.6 in the wear resistance test (rotational speed 10 mm/s) using a ball-on-flat tribometer.
  • FIG. 11 shows electron micrographs of cross-sectional morphologies of the surfaces of the laminates 8, 9, and 13.
  • FIG. 12 shows the results of cross-sectional EDS analysis of the surfaces of the laminates 8, 9, and 13.
  • PSi mixtures 1 to 3 which are composed of PMHS and PDMS, are superior to the case of using PMHS or PDMS alone, with almost no change in static contact angle and water droplet falling angle. It can be seen that the water slipperiness is shown. From Table 8, FIGS. 11 and 12, it can be seen that PSi mixtures 1 to 3 penetrated more into the porous part (higher filling rate in the porous part) than when PMHS or PDMS was used alone. , it can be seen that the adhesiveness of the lubricant layer is high. From Table 8, PSi mixtures 1 to 3 had a friction coefficient exceeding 0.6 in a wear resistance test (10 mm/s) using a ball-on-flat tribometer. It can be seen that the wear resistance is extremely high compared to that of .
  • Example 15 [Synovial liquefaction of a stainless steel substrate having a porous portion on at least a part of its surface]
  • the stainless steel substrate prepared in Production Example 4 was immersed in polydimethylsiloxane (PDMS: KF-96-100CS manufactured by Shin-Etsu Chemical Co., Ltd.) to impregnate the porous portion with PDMS.
  • PDMS polydimethylsiloxane
  • the laminate was treated at 5,000 rpm for 60 seconds to remove excess PDMS, and then heat-treated at 300° C. for 2 hours in an electric furnace to solidify the PDMS to obtain a laminate 15 .
  • FIG. 14 shows an SEM photograph of the surface of the titanium base material thus produced. As shown in FIG. 14, a porous oxide film having a large number of cylindrical pores with a diameter of 30 nm to 50 nm is formed on the surface of the prepared titanium base material.
  • Example 16 [Synovial liquefaction of a titanium base material having a porous oxide film on at least a part of its surface] ⁇ Example 16> A laminate 16 was obtained in the same manner as in Example 15, except that the titanium base material produced in Production Example 5 was used.
  • a zinc substrate having FIG. 14 shows SEM photographs of the surface and cross section of the zinc base material thus produced.
  • Example 17 [Synovial liquefaction of a zinc substrate having a porous coating on at least a part of its surface]
  • the zinc surface prepared in Production Example 6 was impregnated with polymethylhydrogensiloxane (PMHS: KF-99 manufactured by Shin-Etsu Chemical Co., Ltd.) and then heat-treated at 200° C. for 2 hours to obtain laminate 17 .
  • PMHS polymethylhydrogensiloxane
  • FIG. 15 shows an SEM photograph of the surface of the iron substrate thus produced.
  • Example 18 [Synovial liquefaction of an iron substrate having a porous coating on at least a part of its surface] ⁇ Example 18> A laminate 18 was obtained in the same manner as in Example 15, except that the iron base material produced in Production Example 7 was used.
  • PVA polyvinyl alcohol
  • 1M boehmite ( ⁇ -AlOOH) clear sol 20 mL of the PVA solution were mixed to obtain a 0.6M boehmite sol.
  • the 0.6 M boehmite sol was spin-cast on the ⁇ -alumina pellets at 3000 rpm/min for 20 seconds, dried at room temperature (25° C.) for 3 hours, and then annealed in air at 700° C. for 3 hours to obtain a thick film.
  • a mesoporous ⁇ -alumina layer having a thickness of 1.2 ⁇ m was deposited to prepare a mesoporous alumina porous material.
  • Example 19 [Synovial liquefaction of mesoporous alumina porous material] ⁇ Example 19> Amorphous fluororesin (CYTOP: manufactured by AGC, CTL-107MK) was added dropwise to the mesoporous alumina porous material produced in Production Example 8, and the entire surface of the mesoporous alumina porous material was covered with the amorphous fluororesin. After standing for one minute, heat treatment was performed at 80° C. for 30 minutes and then at 180° C. for 30 minutes to obtain a laminate 19 .
  • CYTOP manufactured by AGC, CTL-107MK
  • the lubricating solid surface prepared by injecting a lubricant and performing heat treatment has excellent lubricating properties against various liquids, and the adhesion between the lubricant and the substrate is enhanced by the porous part. It was found to improve and exhibit excellent mechanical durability.
  • the synovial solid surface prepared by impregnating with a lubricant and performing heat treatment exhibits water repellency with a static contact angle of water droplets of 95° or more. ° or less, it can be seen that it has excellent synovial properties against water.
  • the porous portion and at least a part of the porous portion were coated by impregnating the porous body with a lubricant and performing heat treatment.
  • a synovial solid surface having an organic layer formed from a lubricant filled inside the porous portion exhibits excellent water repellency with a static contact angle of water droplets of 110° or more. The drop falling angle is 20° or less, indicating that the liquid has synovial properties against water.

Abstract

The purpose of the present invention is to provide: a laminate having improved synovial properties, wear resistance, stain resistance, liquid repellency, snow/ice sliding properties, droplet sliding properties, corrosion resistance, durability, etc.; and a method for producing same. To solve the problem, the present invention provides a laminate comprising: a metal substrate; a porous portion provided in at least a portion of the metal substrate; and an organic layer covering at least a portion of the porous portion and filling the interior of the porous portion, wherein the organic layer is a layer formed from at least one of polysiloxane and/or amorphous fluororesin.

Description

積層体、及び積層体の製造方法LAMINATED PRODUCT AND METHOD FOR MANUFACTURING LAMINATED BODY
 本発明は、積層体及び積層体の製造方法に関する。さらに詳しくは、滑液性、防汚性、撥液性、及び滑雪・滑氷性の1以上を有する積層体及びその製造方法に関する。 The present invention relates to a laminate and a method for manufacturing the laminate. More particularly, the present invention relates to a laminate having one or more of synovial properties, antifouling properties, liquid repellency, and snow/ice sliding properties, and a method for producing the same.
 自然界に存在するウツボカズラの捕虫機能を模倣したSlippery liquid infused porous surface(SLIPS)は、マイクロナノ構造内にパーフルオロポリエーテルやシリコーンオイルなどの潤滑剤を注入し、表面の自由エネルギーを低下させることで動的な撥液性を発揮する。
 SLIPSは、水や油などの様々な液体を容易に滑落させる滑液性を有し、表面防汚、着雪・着氷防止、耐食性改善など多くの特筆すべき性質を示す。
 SLIPSに関係する先行技術としては、以下のものが知られている。
Slippery liquid infused porous surface (SLIPS), which mimics the trapping function of Nepenthes that exists in nature, is made by injecting lubricants such as perfluoropolyether and silicone oil into the micronanostructure to lower the free energy of the surface. Demonstrates dynamic liquid repellency.
SLIPS has synovial properties that allow various liquids such as water and oil to slide down easily, and exhibits many notable properties such as surface antifouling, snow/icing prevention, and corrosion resistance improvement.
The following are known prior arts related to SLIPS.
 特許文献1には、階層状のエッチングピット及びこのエッチングピット表面に存在するナノポアを有する酸化アルミニウム膜からなる階層構造のアルミニウム部材表面に酸化アルミニウム膜を有すると共に、該酸化アルミニウム膜はフッ素含有有機リン酸化合物の単分子層を有し、さらにこの単分子層の上にフッ素含有油の被覆層を有する、着雪抑制に用いるためのアルミニウム複合材が記載されている。 In Patent Document 1, an aluminum oxide film is provided on the surface of an aluminum member having a hierarchical structure composed of an aluminum oxide film having hierarchical etching pits and nanopores present on the surface of the etching pits, and the aluminum oxide film is composed of a fluorine-containing organic phosphorous An aluminum composite for use in snow control is described having a monolayer of an acid compound and a coating layer of fluorine-containing oil over the monolayer.
 特許文献2には、液体含浸表面を含む物品であって、前記表面が、含浸液体を間に安定に含有するのに十分に接近して離間されたマイクロ規模および/またはナノ規模の複数の固体特徴を含み、前記表面が、前記固体特徴の間で前記含浸液体を安定に含有し、前記含浸液体が、前記固体特徴の間の空間を埋め、前記表面の動きにもかかわらず、前記固体特徴の間で、定位置に保持される、物品が記載されている。前記固体特徴は、細孔であってもよく、また、前記含浸液体は、シリコーン油やフルオロカーボンであってもよいことが記載されている。 US Pat. No. 6,200,400 discloses an article comprising a liquid-impregnated surface, said surface comprising a plurality of microscale and/or nanoscale solids spaced sufficiently closely together to stably contain the impregnating liquid therebetween. features, the surface stably containing the impregnating liquid between the solid features, the impregnating liquid filling spaces between the solid features, and the solid features despite movement of the surface. Articles are described that are held in place between. It is stated that the solid features may be pores and the impregnating liquid may be a silicone oil or a fluorocarbon.
 特許文献3には、潤滑流体層を備え、前記潤滑流体は、生物学的物質と非混合性であり、前記潤滑層は、粗固体基質上に超平滑表面を形成し、前記潤滑流体は、前記基質に付着し、前記基質は、前記潤滑流体によって優先的に湿潤させられ、前記固体基質および潤滑流体は、生物学的物質に接触するように構成および配設される、易滑性表面を形成する、生物学的物質を撥ねるための物品が記載されている。前記潤滑流体は、液体シリコーンエラストマーやペルフルオロ流体であってもよく、また、前記基質は、多孔質材料を含む粗面であってもよいことが記載されている。 Patent Document 3 comprises a lubricating fluid layer, said lubricating fluid being immiscible with biological substances, said lubricating layer forming an ultra-smooth surface on a coarse solid substrate, said lubricating fluid comprising: a slippery surface adhering to said substrate, said substrate being preferentially wetted by said lubricating fluid, said solid substrate and lubricating fluid configured and arranged to contact a biological material; Forming articles for repelling biological material are described. It is stated that the lubricating fluid may be a liquid silicone elastomer or a perfluorinated fluid and that the substrate may be a roughened surface comprising a porous material.
 特許文献4には、易滑性表面を有する物品であって、一般式PxSyを有する超分子ポリマー(式中、Pは共有結合架橋ポリマー、Sはこのポリマーネットワーク内の超分子ブロック、x+yは1、yは0~1)と、潤滑液と、を含む、少なくとも1つの表面を備え、前記潤滑液は、シリコーン油やペルフルオロカーボンを含んでいてもよく、前記超分子ポリマーおよび前記潤滑液は、液体膨潤ポリマーの表面上に易滑性潤滑層を形成するのに十分な量で前記潤滑液が前記ポリマー材料内に吸収されるように、互いに対する親和性を有する、物品が記載されている。 Patent Document 4 describes an article having a slippery surface, the supramolecular polymer having the general formula PxSy, where P is a covalently crosslinked polymer, S is a supramolecular block within the polymer network, x+y is 1 , y is 0 to 1) and a lubricating liquid, wherein the lubricating liquid may contain a silicone oil or a perfluorocarbon, and the supramolecular polymer and the lubricating liquid are: Articles are described that have an affinity for each other such that the lubricating liquid is absorbed into the polymeric material in sufficient quantity to form a slippery lubricating layer on the surface of the liquid swelling polymer.
 特許文献5には、金属の表面に施されたポア、孔などの隙間を有する陽極酸化皮膜等の表面処理皮膜に、フルオロカーボン鎖を有するフッ素系モノマーを含浸させ、次いでこの表面処理皮膜に低エネルギー電子線を照射することによりフッ素の重合体薄膜を成膜した、金属表面にフッ素系重合体薄膜が形成された金属製品が記載されている。 In Patent Document 5, a surface treatment film such as an anodized film having gaps such as pores and holes applied to the surface of a metal is impregnated with a fluorine-based monomer having a fluorocarbon chain, and then this surface treatment film is subjected to low-energy A metal product having a fluorine-based polymer thin film formed on a metal surface is described in which a fluorine polymer thin film is formed by electron beam irradiation.
 特許文献6には、基材と、前記基材上に設けられた多孔質層と、前記多孔質層の内部に含浸された潤滑液を有し、前記多孔質層は少なくとも無機酸化物微粒子と1種以上のアルコキシシランの加水分解物を含有する無機バインダーを含む混合物から構成された撥水撥油性基材であって、前記潤滑液が、フッ素系油又はシリコーン油である、撥水撥油性基材が記載されている。 Patent Document 6 discloses a base material, a porous layer provided on the base material, and a lubricating liquid impregnated inside the porous layer, and the porous layer contains at least inorganic oxide fine particles and A water- and oil-repellent substrate composed of a mixture containing an inorganic binder containing one or more hydrolysates of alkoxysilane, wherein the lubricating liquid is fluorine-based oil or silicone oil. A substrate is described.
 非特許文献1~4には、固体ワックスのような性質を利用し、SLIPSの課題である耐久性の課題を克服するための表面として、ポリジメチルシロキサン(PDMS)やポリメチルヒドロシロキサン(PMHS)のような化学結合(Si-C、Si-O、C-H)を持つ有機分子を共有結合によりグラフトさせることで、液相ライク表面として機能する滑液性固体表面を作製することが記載されている。 Non-Patent Documents 1 to 4 describe polydimethylsiloxane (PDMS) and polymethylhydrosiloxane (PMHS) as surfaces for overcoming the problem of durability, which is a problem of SLIPS, by utilizing properties like solid wax. It is described that a synovial solid surface that functions as a liquid phase-like surface is produced by covalently grafting organic molecules having chemical bonds (Si—C, Si—O, CH) such as ing.
特開2019-85597号公報JP 2019-85597 A 特開2014-531989号公報JP 2014-531989 A 特開2017-140405号公報JP 2017-140405 A 特開2015-531005号公報Japanese Patent Application Laid-Open No. 2015-531005 特開平11-342371号公報JP-A-11-342371 特開2019-14793号公報JP 2019-14793 A
 これまで知られているSLIPSは、潤滑剤の高い流動性によって物理的な損傷の影響は少ないものの、洗浄、蒸発、脱離等によって潤滑剤が消費されることがあり、耐久性に課題があった。
 特許文献1に記載されているアルミニウム複合材、特許文献2~4に記載されている物品、特許文献5に記載されている金属製品及び特許文献6に記載されている撥水撥油性基材は、各種溶媒に対する滑液性(濡れ性;静的接触角、接触角ヒステリシス及び液滴転落角)、耐摩耗性、耐久性、耐食性、耐氷性等の点のいずれかの点で満足できるものではなかった。
 非特許文献1~4に記載されている滑液性固体表面は、グラフト層の厚さは数nmしかないため、耐久性の改善は限定的である。
SLIPS, which has been known so far, has little effect of physical damage due to the high fluidity of the lubricant, but the lubricant may be consumed by cleaning, evaporation, detachment, etc., and durability is an issue. rice field.
The aluminum composite material described in Patent Document 1, the articles described in Patent Documents 2 to 4, the metal product described in Patent Document 5, and the water- and oil-repellent substrate described in Patent Document 6 are , synovial properties to various solvents (wettability; static contact angle, contact angle hysteresis and drop falling angle), abrasion resistance, durability, corrosion resistance, ice resistance, etc. I didn't.
In the synovial solid surfaces described in Non-Patent Documents 1 to 4, the thickness of the graft layer is only a few nanometers, so improvement in durability is limited.
 本発明が解決しようとする課題は、滑液性、耐摩耗性、防汚性、撥液性、滑雪・滑氷性、液滴転落性,耐食性、耐久性等が改善された積層体及びその製造方法を提供することである。 The problem to be solved by the present invention is a laminate having improved synovial properties, abrasion resistance, antifouling properties, liquid repellency, snow/ice sliding properties, droplet falling properties, corrosion resistance, durability, etc., and its It is to provide a manufacturing method.
 本発明者らは、前記課題を解決するために鋭意検討を重ねた結果、多孔質部、及び、前記多孔質部の少なくとも一部を被覆するとともに多孔質部内部に充填されている有機層を有し、前記有機層が、アモルファスフッ素樹脂及び/又はポリシロキサンの1つ以上から形成された層である積層体が、SLIPSと同様に、水や油などの様々な液体を容易に滑落させることができる滑液性に優れるとともに、耐摩耗性、防汚性、撥液性、滑雪・滑氷性、液滴転落性、耐食性、耐久性等多くの特筆すべき性質を示すことを見出し、本発明を完成させるに至った。
 また、本発明者らは、前記課題を解決するために鋭意検討を重ねた結果、金属基材、前記金属基材の少なくとも一部に設けられた多孔質部、及び、前記多孔質部の少なくとも一部を被覆するとともに多孔質部内部に充填されている有機層を有し、前記有機層が、アモルファスフッ素樹脂及び/又はポリシロキサンの1つ以上から形成された層である積層体が、SLIPSと同様に、水や油などの様々な液体を容易に滑落させることができる滑液性に優れるとともに、耐摩耗性、防汚性、撥液性、滑雪・滑氷性、液滴転落性、耐食性、耐久性等多くの特筆すべき性質を示すことを見出し、本発明を完成させるに至った。
The present inventors have made intensive studies to solve the above problems, and found that a porous portion and an organic layer covering at least a part of the porous portion and filling the inside of the porous portion are provided. and the organic layer is a layer formed from one or more of amorphous fluororesin and/or polysiloxane, and the laminate easily slides down various liquids such as water and oil, similar to SLIPS. In addition to exhibiting excellent synovial properties that can be I have completed my invention.
In addition, as a result of extensive studies to solve the above problems, the present inventors have found that a metal substrate, a porous portion provided in at least a part of the metal substrate, and at least the porous portion SLIPS is a laminate having an organic layer that partially covers and fills the interior of the porous portion, wherein the organic layer is a layer formed of one or more of amorphous fluororesin and / or polysiloxane. Similar to , it has excellent synovial properties that allow various liquids such as water and oil to slide down easily, and also has abrasion resistance, stain resistance, liquid repellency, snow and ice sliding properties, droplet falling properties, The inventors have found that it exhibits many notable properties such as corrosion resistance and durability, and have completed the present invention.
 即ち、本発明は、以下の積層体及び積層体の製造方法を提供するものである。
項1:多孔質部、及び、前記多孔質部の少なくとも一部を被覆するとともに多孔質部内部に充填されている有機層を有し、
 前記有機層が、ポリシロキサン及び/又はアモルファスフッ素樹脂の1つ以上から形成された層である、積層体。
項2:金属基材、前記金属基材の少なくとも一部に設けられた多孔質部、及び、前記多孔質部の少なくとも一部を被覆するとともに多孔質部内部に充填されている有機層を有し、
 前記有機層が、ポリシロキサン及び/又はアモルファスフッ素樹脂の1つ以上から形成された層である、積層体。
項3:前記ポリシロキサンが、下記式(1);
Figure JPOXMLDOC01-appb-C000002
(式(1)中、R、R、X及びXは、それぞれ独立にアルキル基、芳香族基、不飽和炭化水素基であり、X及びXは、それぞれ独立にアルキル基、芳香族基、不飽和炭化水素基、水素であり、nは2以上の整数である。n個のX及びXは、それぞれ互いに同一であっても異なっていてもよい。)
で表される化合物である、項1又は2に記載の積層体。
項4:前記有機層が、ゲル状である、項1~3のいずれか1項に記載の積層体。
項5:滑液性、防汚性、撥液性、及び滑雪・滑氷性の1以上を有する、項1~4のいずれか1項に記載の積層体。
項6:電線、鉄塔、金属構造物、電柱、変圧器、電線附属物、送電関連器具、標識、看板、アンテナ、屋根、鞄、車両、航空機、ガードレール、建材、食品プラント用部材として用いられる、項1~5のいずれか1項に記載の積層体。
項7:表面の少なくとも一部に多孔質部を有する金属基材上に、前記多孔質部の少なくとも一部を被覆するとともに多孔質部内部に充填されている有機層を形成する工程、及び、
 前記有機層を加熱する工程、
を有し、
 前記有機層が、ポリシロキサン及び/又はアモルファスフッ素樹脂の1つ以上から形成された層である、
積層体の製造方法。
項8:金属基材の表面の少なくとも一部に多孔質部を形成する工程を有する、項7に記載の方法。
That is, the present invention provides the following laminate and method for producing the laminate.
Item 1: Having a porous portion and an organic layer covering at least a portion of the porous portion and filling the inside of the porous portion,
A laminate, wherein the organic layer is a layer formed from one or more of polysiloxane and/or amorphous fluororesin.
Item 2: Having a metal substrate, a porous portion provided in at least a portion of the metal substrate, and an organic layer covering at least a portion of the porous portion and filling the inside of the porous portion death,
A laminate, wherein the organic layer is a layer formed from one or more of polysiloxane and/or amorphous fluororesin.
Item 3: The polysiloxane has the following formula (1);
Figure JPOXMLDOC01-appb-C000002
(In Formula (1), R 1 , R 2 , X 1 and X 3 are each independently an alkyl group, an aromatic group and an unsaturated hydrocarbon group, and X 2 and X 4 are each independently an alkyl group. , an aromatic group, an unsaturated hydrocarbon group, or hydrogen, and n is an integer of 2 or more, and n X 3 and X 4 may be the same or different.)
Item 3. The laminate according to item 1 or 2, which is a compound represented by.
Item 4: The laminate according to any one of Items 1 to 3, wherein the organic layer is gel.
Item 5: The laminate according to any one of Items 1 to 4, which has one or more of synovial properties, antifouling properties, liquid repellency, and snow/ice sliding properties.
Item 6: Used as electric wires, steel towers, metal structures, utility poles, transformers, electric wire accessories, power transmission related equipment, signs, signboards, antennas, roofs, bags, vehicles, aircraft, guardrails, building materials, food plant members, Item 6. The laminate according to any one of items 1 to 5.
Item 7: A step of forming, on a metal substrate having a porous portion on at least a portion of the surface thereof, an organic layer that covers at least a portion of the porous portion and fills the inside of the porous portion, and
heating the organic layer;
has
The organic layer is a layer formed from one or more of polysiloxane and / or amorphous fluororesin,
A method for manufacturing a laminate.
Item 8: The method according to Item 7, comprising the step of forming a porous portion on at least part of the surface of the metal substrate.
 本発明により、滑液性、耐摩耗性、防汚性、撥液性、滑雪・滑氷性、液滴転落性,耐食性、耐久性等が改善された積層体及びその製造方法が提供される。 INDUSTRIAL APPLICABILITY The present invention provides a laminate having improved synovial properties, abrasion resistance, antifouling properties, liquid repellency, snow/ice sliding properties, droplet falling properties, corrosion resistance, durability, etc., and a method for producing the same. .
積層体1、3,6(実施例)及び金属基材1(比較例)の表面形態のSEM画像。SEM images of the surface morphology of laminates 1, 3, 6 (examples) and metal substrate 1 (comparative example). 積層体1、3,6(実施例)の表面部の断面形態のSEM画像。SEM images of cross-sectional forms of surface portions of laminates 1, 3, and 6 (Examples). 積層体1、3,6(実施例)の表面部の断面EDS分析画像。Cross-sectional EDS analysis images of the surface portions of laminates 1, 3, and 6 (Examples). 積層体15~17(比較例)の表面部の断面形態のSEM画像。SEM images of cross-sectional morphologies of surface portions of laminates 15 to 17 (comparative examples). 積層体6(実施例)及び積層体17(比較例)に対する耐摩耗試験実施後の表面形態の画像、表面形態のSEM画像、及び表面部の断面EDS分析画像。An image of the surface morphology, an SEM image of the surface morphology, and a cross-sectional EDS analysis image of the surface portion after the abrasion resistance test was performed on the laminate 6 (Example) and the laminate 17 (Comparative Example). 積層体9(実施例)に対する耐摩耗試験実施後の表面形態の画像、表面形態のSEM画像、及び表面部の断面EDS分析画像。An image of the surface morphology, an SEM image of the surface morphology, and a cross-sectional EDS analysis image of the surface portion after the abrasion resistance test was performed on the laminate 9 (Example). 積層体1~3(実施例)及び電解研磨Al基材(比較例)の動電位分極測定後の表面形態画像。Surface morphology images after potentiodynamic polarization measurement of laminates 1 to 3 (Examples) and an electropolished Al substrate (Comparative Example). アノード酸化条件が異なる金属基材1及び金属基材2の表面形態のSEM画像。SEM images of the surface morphology of Metal Substrate 1 and Metal Substrate 2 with different anodizing conditions. 積層体6及び7(実施例)の表面部の断面形態のSEM画像。SEM images of the cross-sectional morphology of the surfaces of laminates 6 and 7 (Example). 積層体6及び7(実施例)の表面部の断面EDS分析画像。Cross-sectional EDS analysis images of the surface portions of laminates 6 and 7 (Example). 積層体8、9、13(実施例)の表面部の断面形態のSEM画像。SEM images of cross-sectional forms of surface portions of laminates 8, 9, and 13 (Examples). 積層体8、9、13(実施例)の表面部の断面EDS分析画像。Cross-sectional EDS analysis images of surface portions of laminates 8, 9, and 13 (Example). 製造例4で作製されたステンレス鋼基材表面部の表面形態のSEM画像。4 is an SEM image of the surface morphology of the surface portion of the stainless steel substrate produced in Production Example 4. FIG. 製造例5で作製されたチタン基材表面部の表面形態のSEM画像。4 is an SEM image of the surface morphology of the surface portion of the titanium base material produced in Production Example 5. FIG. 製造例6で作製された亜鉛基材表面部の表面形態及び断面形態のSEM画像。SEM images of the surface morphology and cross-sectional morphology of the surface portion of the zinc base material produced in Production Example 6. FIG. 製造例7で作製された鉄基材表面部の表面形態のSEM画像。4 is a SEM image of the surface morphology of the iron substrate surface portion produced in Production Example 7. FIG.
1 潤滑剤層
2 多孔質部
3 金属基材
1 Lubricant layer 2 Porous portion 3 Metal substrate
 以下、本発明の積層体及び積層体の製造方法について詳細に説明する。なお、本発明は、その要旨を逸脱しない範囲において、以下に例示される実施形態により何ら制限されない。 The laminate and the method for producing the laminate of the present invention will be described in detail below. It should be noted that the present invention is not limited at all by the embodiments exemplified below within the scope of the invention.
[積層体]
 本発明の第1態様は、多孔質部、及び、前記多孔質部の少なくとも一部を被覆するとともに多孔質部内部に充填されている有機層を有し、前記有機層が、ポリシロキサン及び/又はアモルファスフッ素樹脂の1つ以上から形成された層である、積層体である。
 本発明の第2態様は、金属基材、前記金属基材の少なくとも一部に設けられた多孔質部、及び、前記多孔質部の少なくとも一部を被覆するとともに多孔質部内部に充填されている有機層を有し、前記有機層が、ポリシロキサン及び/又はアモルファスフッ素樹脂の1つ以上から形成された層である、積層体である。
[Laminate]
A first aspect of the present invention has a porous portion, and an organic layer covering at least a portion of the porous portion and filling the inside of the porous portion, wherein the organic layer comprises polysiloxane and/or or a laminate, which is a layer formed from one or more amorphous fluororesins.
A second aspect of the present invention includes a metal substrate, a porous portion provided in at least a portion of the metal substrate, and at least a portion of the porous portion and the porous portion filled with The laminate has an organic layer containing a polysiloxane and/or an amorphous fluororesin.
<多孔質部>
 本発明の第1態様及び第2態様における、多孔質部は、表面部に開口部を有し、有機層を形成するポリシロキサン及び/又はアモルファスフッ素樹脂を充填し得るものであれば、特に限定されない。
 多孔質部を形成する孔の平均径は、有機層を形成するポリシロキサン及び/又はアモルファスフッ素樹脂が充填可能であるとともに容易に離脱しない範囲であれば、特に限定されない。例えば1nm以上、好ましくは5nm以上、より好ましくは10nm以上、さらに好ましくは50nm以上であり、例えば1mm以下、好ましくは100μm以下、より好ましくは10μm以下、さらに好ましくは1μm以下、よりさらに好ましくは500nm以下である。多孔質部を形成する孔の平均径が1nm未満の場合、有機層を形成するポリシロキサン及び/又はアモルファスフッ素樹脂を充填することが困難となる、時間がかかる、特別の手法が必要となる等の問題が生じるおそれがある。また、平均径が1mmを超える場合、有機層を形成する際にポリシロキサン及び/又はアモルファスフッ素樹脂の使用量が増えてコスト的に不利であり、充填させた後に容易に離脱してしまうおそれがある。
<Porous part>
In the first and second aspects of the present invention, the porous portion has an opening in the surface portion and is particularly limited as long as it can be filled with polysiloxane and / or amorphous fluororesin that forms the organic layer. not.
The average diameter of the pores forming the porous portion is not particularly limited as long as the polysiloxane and/or amorphous fluororesin forming the organic layer can be filled and not easily released. For example, it is 1 nm or more, preferably 5 nm or more, more preferably 10 nm or more, still more preferably 50 nm or more, for example 1 mm or less, preferably 100 μm or less, more preferably 10 μm or less, even more preferably 1 μm or less, still more preferably 500 nm or less. is. When the average diameter of the pores forming the porous portion is less than 1 nm, it becomes difficult to fill the polysiloxane and/or amorphous fluororesin forming the organic layer, it takes time, special techniques are required, etc. problems may occur. In addition, if the average diameter exceeds 1 mm, the amount of polysiloxane and/or amorphous fluororesin used increases when forming the organic layer, which is disadvantageous in terms of cost, and there is a risk that it will easily separate after filling. be.
 多孔質部の厚さは特に限定されない。例えば、100nm以上、好ましくは1μm以上、より好ましくは10μm以上であり、例えば1mm以下、好ましくは500μm以下、より好ましくは100μm以下である。多孔質部の厚さが100nm未満である場合、有機層を形成するポリシロキサン及び/又はアモルファスフッ素樹脂の充填量が少なくなり、積層体が所期の効果を示さなくなるおそれがある。 The thickness of the porous portion is not particularly limited. For example, it is 100 nm or more, preferably 1 μm or more, more preferably 10 μm or more, and for example 1 mm or less, preferably 500 μm or less, more preferably 100 μm or less. If the thickness of the porous portion is less than 100 nm, the filling amount of polysiloxane and/or amorphous fluororesin forming the organic layer is reduced, and the laminate may not exhibit the desired effects.
 多孔質部を構成する材料・成分は、多孔質形状を保持し得るものであり、ポリシロキサン及び/又はアモルファスフッ素樹脂の特性等を変化させないものであれば、特に限定されない。例えば、金属、酸化物、炭素、セラミックス、活性炭、高分子、有機無機複合体等が挙げられる。本発明においては、酸化物、特に、金属酸化物を含むものであることが好ましい。
 多孔質部は、例えば、金属基材の表面層を処理することで形成されたものであってもよく、また、別途形成された多孔質部材を金属基材表面に接合等したものであってもよい。特に、金属基材の表面層を処理して形成したものが好ましい。
 本発明の第1態様においては、多孔質部として、1種以上の多孔質部材から形成されたものを用いることができる。多孔質部材にさらに多孔質部を設けたものを用いてもよい。また、多孔質部は、非金属基材の少なくとも一部に設けられたものであってもよい。
 本発明の第2態様においては、金属基材をアノード酸化処理することで、金属基材の少なくとも一部に、多孔質アノード酸化皮膜である多孔質部を形成したものを用いることができる。また、金属基材を多孔質化可能な試薬(例えば、各種の酸、各種の塩基等)と反応させて多孔質部を形成したものを用いることができる。
Materials and components that form the porous portion are not particularly limited as long as they can maintain the porous shape and do not change the properties of the polysiloxane and/or the amorphous fluororesin. Examples include metals, oxides, carbon, ceramics, activated carbon, polymers, and organic-inorganic composites. In the present invention, it is preferable to contain an oxide, particularly a metal oxide.
The porous portion may be formed, for example, by treating the surface layer of the metal substrate, or may be formed by bonding a separately formed porous member to the surface of the metal substrate. good too. In particular, the one formed by treating the surface layer of the metal substrate is preferable.
In the first aspect of the present invention, the porous portion can be formed from one or more kinds of porous members. A porous member further provided with a porous portion may be used. Also, the porous portion may be provided on at least a portion of the nonmetallic base material.
In the second aspect of the present invention, it is possible to use a metal substrate in which a porous portion, which is a porous anodic oxide film, is formed on at least a part of the metal substrate by anodizing the metal substrate. In addition, it is also possible to use a material in which a porous portion is formed by reacting a metal substrate with a reagent capable of forming a porosity (for example, various acids, various bases, etc.).
(アノード酸化処理)
 前記アノード酸化処理は、金属基材を陽極(アノード)として、水溶液や少量の水を含む有機電解液中において電場下において直接金属基材の表面を酸化物とする電気化学的処理により表面を酸化する処理である。
 アノード酸化処理に際して用いられる金属基材は、特に限定されず、前記<金属基材>に記載したものを用いることができる。本発明においては、好ましくは、Al、Ti、Fe、Cu、Zn、これらの1種以上を含む合金を含む金属基材が用いられる。特に好ましくは、Al又はAl合金を含む金属基材である。
(Anodic oxidation treatment)
In the anodic oxidation treatment, the surface of the metal substrate is oxidized directly under an electric field in an aqueous solution or an organic electrolytic solution containing a small amount of water using the metal substrate as an anode (anode) to oxidize the surface. It is a process to
The metal substrate used in the anodizing treatment is not particularly limited, and those described in <Metal substrate> can be used. In the present invention, a metal substrate containing Al, Ti, Fe, Cu, Zn, or an alloy containing one or more of these is preferably used. Metal substrates containing Al or Al alloys are particularly preferred.
 アノード酸化処理の条件(電解液、アノード酸化電圧、アノード酸化電流、アノード酸化時間等)は、細孔を有する多孔質のアノード酸化皮膜を形成し得るものであれば、特に限定されない。アノード酸化処理の条件は、アノード酸化皮膜の膜厚、細孔の孔径等に応じて、適宜調整することができる。
 電解液としては、例えば、アルミニウムに対しては,酸水溶液、例えば、硫酸、リン酸、硝酸、クロム酸、ケイ酸、シュウ酸、マロン酸,クエン酸,スルファミン酸、これらの混酸、これらの酸の塩を含む酸水溶液を用いることができる。弱アルカリ性のホウ砂水溶液も利用可能である。本発明においては、硫酸,シュウ酸又はリン酸が好ましい。
 また、塩基水溶液(例えば、水酸化ナトリウム等のアルカリ金属水酸化物の水溶液等)、塩を含む溶媒(例えば、フッ化アンモニウムを含む水-エチレングリコール混合溶液等)を電解液として用いることができる。
 電解液のpHとしては、特に限定されず、例えばpH6.0以下、好ましくはpH3.0以下である。
 電解液の温度としては、特に限定されず、例えば、0℃以上、好ましくは10℃以上であり、例えば35℃以下、好ましくは30℃以下である。
The conditions of the anodizing treatment (electrolytic solution, anodizing voltage, anodizing current, anodizing time, etc.) are not particularly limited as long as a porous anodized film having pores can be formed. The conditions for the anodic oxidation treatment can be appropriately adjusted according to the film thickness of the anodic oxide film, the pore size of the pores, and the like.
As electrolytes, for example, for aluminum, acid aqueous solutions such as sulfuric acid, phosphoric acid, nitric acid, chromic acid, silicic acid, oxalic acid, malonic acid, citric acid, sulfamic acid, mixed acids thereof, these acids An aqueous acid solution containing a salt of can be used. A weakly alkaline aqueous borax solution is also available. In the present invention, sulfuric acid, oxalic acid or phosphoric acid are preferred.
In addition, an aqueous base solution (e.g., an aqueous solution of an alkali metal hydroxide such as sodium hydroxide), a solvent containing a salt (e.g., a water-ethylene glycol mixed solution containing ammonium fluoride, etc.) can be used as the electrolytic solution. .
The pH of the electrolytic solution is not particularly limited, and is, for example, pH 6.0 or less, preferably pH 3.0 or less.
The temperature of the electrolytic solution is not particularly limited, and is, for example, 0° C. or higher, preferably 10° C. or higher, and for example, 35° C. or lower, preferably 30° C. or lower.
 アノード酸化電圧としては、特に限定されず、例えば0.1V以上、好ましくは10V以上、より好ましくは20V以上であり、例えば300V以下、好ましくは240V以下、より好ましくは200V以下である。
 アノード酸化電流としては、特に限定されず、例えば10A/m以上、好ましくは50A/m以上であり、例えば1000A/m以下、好ましくは500A/m以下である。
 アノード酸化処理の時間としては、特に限定されず、例えば1秒以上、好ましくは1分以上、より好ましくは10分以上、さらに好ましくは15分以上であり、例えば100分以下、好ましくは60分以下、より好ましくは45分以下である。
The anodic oxidation voltage is not particularly limited, and is, for example, 0.1 V or higher, preferably 10 V or higher, more preferably 20 V or higher, and is, for example, 300 V or lower, preferably 240 V or lower, more preferably 200 V or lower.
The anodic oxidation current is not particularly limited, and is, for example, 10 A/m 2 or more, preferably 50 A/m 2 or more, and is, for example, 1000 A/m 2 or less, preferably 500 A/m 2 or less.
The time for the anodizing treatment is not particularly limited, and is, for example, 1 second or longer, preferably 1 minute or longer, more preferably 10 minutes or longer, still more preferably 15 minutes or longer, and for example 100 minutes or shorter, preferably 60 minutes or shorter. , more preferably 45 minutes or less.
 本発明において、アノード酸化処理により得られる多孔質部の細孔の孔径は、例えば1nm以上、好ましくは2nm以上、より好ましくは5nm以上であり、例えば500nm以下、好ましくは300nm以下、より好ましくは200nm以下である。
 本発明において、アノード酸化処理により得られる多孔質部の厚さは、例えば100nm以上、好ましくは500nm以上であり、例えば、300μm以下、より好ましくは200μm以下である。
In the present invention, the pore size of the pores of the porous portion obtained by the anodic oxidation treatment is, for example, 1 nm or more, preferably 2 nm or more, more preferably 5 nm or more, and for example, 500 nm or less, preferably 300 nm or less, more preferably 200 nm. It is below.
In the present invention, the thickness of the porous portion obtained by the anodic oxidation treatment is, for example, 100 nm or more, preferably 500 nm or more, and for example, 300 μm or less, more preferably 200 μm or less.
 本発明においては、アノード酸化処理前に、必要に応じて、洗浄処理、脱脂処理、エッチング処理、電解研磨処理等の前処理を施すことで、アノード酸化処理面に存在する油脂成分や気相酸化皮膜等を除去しておくことが好ましい。 In the present invention, pretreatment such as cleaning treatment, degreasing treatment, etching treatment, electropolishing treatment, etc. is performed as necessary prior to anodization treatment, so that oil and fat components present on the anodization treatment surface and vapor-phase oxidation are removed. It is preferable to remove the film or the like.
 本発明においては、アノード酸化処理後に、必要に応じて、ポアワイドニング処理を行い、アノード酸化処理で生成した細孔(ナノポア)の径をさらに拡大してもよい。ポアワイドニング処理は、アノード酸化処理後の金属基材を、硫酸、リン酸、硝酸、クロム酸、ケイ酸、シュウ酸、スルファミン酸、これらの混酸等の酸水溶液に一定時間含浸させることで行うことができる。
 本発明におけるポアワイドニング処理の条件としては、例えば酸水溶液温度が10℃以上40℃以下の範囲であり、例えば酸水溶液濃度が1質量%以上15質量%以下の範囲であり、例えば処理時間が60秒以上7200秒以下の範囲である。本発明では、15~35℃で濃度3~10質量%のリン酸、硫酸又はシュウ酸水溶液中に、600~1200秒含浸させてポアワイドニング処理を行うことが好ましい。
In the present invention, after the anodizing treatment, if necessary, a pore widening treatment may be performed to further enlarge the diameter of the pores (nanopores) generated by the anodizing treatment. The pore widening treatment is performed by immersing the metal base material after the anodizing treatment in an acid aqueous solution such as sulfuric acid, phosphoric acid, nitric acid, chromic acid, silicic acid, oxalic acid, sulfamic acid, mixed acid of these for a certain period of time. be able to.
The conditions for the pore widening treatment in the present invention are, for example, the temperature of the acid aqueous solution is in the range of 10° C. or higher and 40° C. or lower, the concentration of the acid aqueous solution is in the range of 1% by mass or higher and 15% by mass or lower, and the treatment time is, for example, The range is from 60 seconds to 7200 seconds. In the present invention, the pore widening treatment is preferably carried out by immersing in an aqueous solution of phosphoric acid, sulfuric acid or oxalic acid having a concentration of 3 to 10% by mass at 15 to 35° C. for 600 to 1200 seconds.
<金属基材>
 金属基材は、特に限定されない。例えば、Mg、Al、Si、Ti、V、Cr、Mn、Fe、Ni、Cu、Zn、Zr、Nb、Pd、Ag、Sn、Ta、W、Pt、Au、Pb、これらの1種以上を含む合金、これらの積層体等が挙げられる。これらのうち、Al、Ti、Fe、Cu、Zn、Cr、Niこれらの1種以上を含む合金、これらの積層体等が好ましい。特に好ましくは、Al、Al合金、Ti、Ti合金、鉄、亜鉛、亜鉛合金(例えば、ザマック、真鍮等)、鉄クロム合金(例えば、ステンレス鋼等)である。ここで、ステンレス鋼としては、オーステナイト系ステンレス鋼、オーステナイトフェライト二相系ステンレス鋼、フェライト系ステンレス鋼、マルテンサイト系ステンレス鋼が挙げられる。特にはオーステナイト系ステンレス鋼(例えば、JIS鋼種で示されるSUS200番台、300番台等)が好ましい。
<Metal substrate>
The metal substrate is not particularly limited. For example, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Zr, Nb, Pd, Ag, Sn, Ta, W, Pt, Au, Pb, one or more of these alloys containing these, laminates thereof, and the like. Among these, alloys containing one or more of Al, Ti, Fe, Cu, Zn, Cr, and Ni, laminates thereof, and the like are preferable. Particularly preferred are Al, Al alloys, Ti, Ti alloys, iron, zinc, zinc alloys (eg, zamak, brass, etc.), iron-chromium alloys (eg, stainless steel, etc.). Examples of stainless steel include austenitic stainless steel, austenitic ferritic duplex stainless steel, ferritic stainless steel, and martensitic stainless steel. In particular, austenitic stainless steel (for example, SUS200 series, 300 series, etc. indicated by JIS steel grades) is preferable.
 金属基材の形状等は、特に限定されない。用途等に応じて、任意の形状とすることができる。例えば、板状、線/棒状(八角、六角、平、角、丸等)、山形(L形)状、直線形矢板状、U形矢板状、溝形(U形)状、I形状、H形状、レール状、管状、これらの1種以上が組合せられた形状等が挙げられる。
 金属基材が板状の場合の厚さは、特に限定されず、例えば0.1mm以上、好ましくは0.5mm以上100mm以下とすることができる。
 金属基材が線/棒状の場合の直径は、特に限定されず、例えば0.1mm以上、好ましくは0.5mm以上100mm以下とすることができる。
The shape and the like of the metal substrate are not particularly limited. It can have any shape depending on the application. For example, plate-like, line/rod-like (octagonal, hexagonal, flat, square, round, etc.), chevron (L-shaped), straight sheet pile, U-shaped sheet pile, groove (U-shaped), I-shaped, H A shape, a rail shape, a tubular shape, a shape obtained by combining one or more of these shapes, and the like can be mentioned.
The thickness of the plate-shaped metal substrate is not particularly limited, and can be, for example, 0.1 mm or more, preferably 0.5 mm or more and 100 mm or less.
The diameter of the wire/rod-shaped metal substrate is not particularly limited, and can be, for example, 0.1 mm or more, preferably 0.5 mm or more and 100 mm or less.
 金属基材は、洗浄処理、脱脂処理、エッチング処理、電解研磨処理等の前処理を施すことで、金属基材表面に存在する油脂成分や気相酸化皮膜等を除去しておくことが好ましい。 The metal substrate is preferably subjected to pretreatments such as cleaning, degreasing, etching, and electropolishing to remove oil and fat components, gas-phase oxide films, etc. present on the surface of the metal substrate.
<有機層>
 本発明において、有機層は、多孔質部の少なくとも一部を被覆するとともに多孔質部内部に充填されている。
 また、本発明において、有機層は、ポリシロキサン及び/又はアモルファスフッ素樹脂の1つ以上から形成された層である。
 本発明において、有機層は、例えば、(1)ポリシロキサン及び/又はアモルファスフッ素樹脂の1つ以上を塗布して得られる塗膜又はその乾燥塗膜、(2)前記(1)の塗膜又は乾燥塗膜を熱処理して得られた架橋塗膜等であってもよい。
 本発明において、有機層を形成するポリシロキサン及び/又はアモルファスフッ素樹脂は、適当な有機溶媒等に溶解されたものを用いてもよい。 本発明において、有機層は、ゲル状であることが好ましい。有機層がゲル状物である場合、液滴転落角が小さくなり、滑液性が向上する。
 ここでのゲル状とは、ポリシロキサン及び/又はアモルファスフッ素樹脂を加熱処理することで、ポリシロキサン及び/又はアモルファスフッ素樹脂の一部が熱分解するとともに分子間架橋することで粘度が増加し、流動性が低下した状態である。例えば、ポリシロキサンの1種であるジメチルポリシロキサンを熱分解開始温度(約150℃)以上、例えば280℃で3時間加熱処理すると、ジメチルポリシロキサンの一部が熱分解されて分子間架橋して粘度が増加し、ゲル状物となる。
<Organic layer>
In the present invention, the organic layer covers at least a portion of the porous portion and fills the inside of the porous portion.
Moreover, in the present invention, the organic layer is a layer formed from one or more of polysiloxane and/or amorphous fluororesin.
In the present invention, the organic layer is, for example, (1) a coating film obtained by applying one or more of polysiloxane and / or amorphous fluororesin or a dry coating film thereof, (2) the coating film of (1) or A crosslinked coating obtained by heat-treating a dried coating may also be used.
In the present invention, the polysiloxane and/or amorphous fluororesin forming the organic layer may be dissolved in a suitable organic solvent or the like. In the present invention, the organic layer is preferably gel-like. When the organic layer is a gel-like material, the drop falling angle is reduced and the synovial properties are improved.
The term "gel-like" as used herein means that the polysiloxane and/or the amorphous fluororesin are partially thermally decomposed and intermolecularly crosslinked by heating the polysiloxane and/or the amorphous fluororesin, thereby increasing the viscosity. It is in a state of reduced liquidity. For example, when dimethylpolysiloxane, which is a type of polysiloxane, is heat-treated at a thermal decomposition initiation temperature (about 150° C.) or higher, for example, at 280° C. for 3 hours, part of the dimethylpolysiloxane is thermally decomposed and intermolecularly crosslinked. Viscosity increases and a gel-like substance is formed.
(ポリシロキサン)
 ポリシロキサンは、分子内に-Si-O-結合を有する樹脂であり、膜形成可能なものであれば、特に限定されない。例えば、R SiO0.5で示されるシロキサン単位(M単位)、R SiOで示されるシロキサン単位(D単位)、RSiO1.5で示されるシロキサン単位(T単位)及びSiOで示されるシロキサン単位(Q単位)の1つ以上を含むポリシロキサンであってもよい。式中、R、R及びRは、それぞれ独立にアルキル基、芳香族基、不飽和炭化水素基であり、ポリシロキサン中にR、R及びRがそれぞれ複数ある場合、同じであっても異なっていてもよい。
 例えば、M単位及びQ単位からから構成されるMQ樹脂、T単位から構成されるT樹脂、M単位、D単位及びQ単位から構成されるMDQ樹脂、M単位、D単位、T単位及びQ単位から構成されるMDTQ樹脂、D単位及びT単位から構成されるDT樹脂、M単位、D単位及びT単位から構成されるMDT樹脂、M単位、T単位及びQ単位から構成されるMTQ樹脂、及びD単位、T単位及びQ単位から構成されるQDT樹脂等からなる群より選ばれる1種以上が挙げられる。
 ポリシロキサンの構造は、特に限定されず、線状、環状、3次元ネットワーク構造等のいずれでもよい。本発明においては、線状のポリシロキサンを用いることが好ましい。
(Polysiloxane)
Polysiloxane is a resin having a --Si--O-- bond in its molecule, and is not particularly limited as long as it can form a film. For example, siloxane units (M units) represented by R a 3 SiO 0.5 , siloxane units (D units) represented by R b 2 SiO, siloxane units (T units) represented by R c SiO 1.5 and SiO Polysiloxane containing one or more siloxane units (Q units) represented by 2 may also be used. In the formula, R a , R b and R c are each independently an alkyl group, an aromatic group or an unsaturated hydrocarbon group, and when there are a plurality of each of R a , R b and R c in the polysiloxane, the same may be different.
For example, MQ resins composed of M units and Q units, T resins composed of T units, MDQ resins composed of M units, D units and Q units, M units, D units, T units and Q units DT resin composed of D units and T units, MDT resin composed of M units, D units and T units, MTQ resin composed of M units, T units and Q units, and One or more selected from the group consisting of QDT resins composed of D units, T units and Q units can be used.
The structure of polysiloxane is not particularly limited, and may be linear, cyclic, three-dimensional network structure, or the like. In the present invention, it is preferred to use linear polysiloxane.
 ポリシロキサンの具体例としては、例えば、1,1,3,3-テトラメチルジシロキサン、トリス(ジメチルハイドロジェンシロキシ)メチルシラン、トリス(ジメチルハイドロジェンシロキシ)フェニルシラン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルフェニルポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルビニルポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖メチルビニルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端トリビニルシロキシ基封鎖ジメチルポリシロキサン、メチルトリアルコキシシランから得られるポリシロキサン等からなる群より選ばれる1種以上が挙げられる。 Specific examples of polysiloxane include 1,1,3,3-tetramethyldisiloxane, tris(dimethylhydrogensiloxy)methylsilane, tris(dimethylhydrogensiloxy)phenylsilane, and trimethylsiloxy group-blocked at both ends of the molecular chain. Dimethylsiloxane, trimethylsiloxy group-blocked methylhydrogenpolysiloxane at both molecular chain ends, dimethylsiloxane/methylhydrogensiloxane copolymer blocked at both molecular chain ends with trimethylsiloxy groups, dimethylsiloxane/methylhydrogen at both molecular chain ends blocked with trimethylsiloxy groups Siloxane-methylphenylsiloxane copolymer, dimethylpolysiloxane with dimethylhydrogensiloxy group-blocked at both molecular chain ends, dimethylsiloxane-methylhydrogensiloxane copolymer with dimethylhydrogensiloxy group-blocked at both molecular chain ends, dimethylhydrogensiloxane at both molecular chain ends Gensiloxy group-blocked dimethylsiloxane/methylphenylsiloxane copolymer, both molecular chain ends dimethylhydrogensiloxy group-blocked methylphenylpolysiloxane, both molecular chain ends trimethylsiloxy group-blocked dimethylsiloxane/methylvinylsiloxane copolymer, molecular chain both ends Trimethylsiloxy-terminated methylvinylpolysiloxane, both molecular chain ends trimethylsiloxy-terminated dimethylsiloxane/methylvinylsiloxane/methylphenylsiloxane copolymer, molecular chain both ends dimethylvinylsiloxy-terminated dimethylpolysiloxane, molecular chain both ends dimethyl Vinylsiloxy group-blocked methylvinylpolysiloxane, both molecular chain ends dimethylvinylsiloxy group-blocked dimethylsiloxane/methylvinylsiloxane copolymer, molecular chain both ends dimethylvinylsiloxy group-blocked dimethylsiloxane/methylvinylsiloxane/methylphenylsiloxane copolymer , trivinylsiloxy group-blocked dimethylpolysiloxane at both ends of the molecular chain, polysiloxane obtained from methyltrialkoxysilane, and the like.
 本発明におけるポリシロキサンとしては、下記式(1);
Figure JPOXMLDOC01-appb-C000003
(式(1)中、R、R、X及びXは、それぞれ独立にアルキル基、芳香族基、不飽和炭化水素基であり、X及びXは、それぞれ独立にアルキル基、芳香族基、不飽和炭化水素基、水素であり、nは2以上の整数である。n個のX及びXは、それぞれ互いに同一であっても異なっていてもよい。)
で表される線状ポリシロキサンであることが好ましい。
As the polysiloxane in the present invention, the following formula (1);
Figure JPOXMLDOC01-appb-C000003
(In Formula (1), R 1 , R 2 , X 1 and X 3 are each independently an alkyl group, an aromatic group and an unsaturated hydrocarbon group, and X 2 and X 4 are each independently an alkyl group. , an aromatic group, an unsaturated hydrocarbon group, or hydrogen, and n is an integer of 2 or more, and n X 3 and X 4 may be the same or different.)
It is preferably a linear polysiloxane represented by.
 また、本発明におけるポリシロキサンとしては、下記式(2);
 RSiO1.5  ・・・(2)
(式(2)中、Rは、アルキル基、芳香族基、不飽和炭化水素基であり、複数個のRは、それぞれ互いに同一であっても異なっていてもよい。)
で表される繰返し単位を含む3次元ネットワーク構造を有するポリシロキサン(ポリシルセスキオキサン)であることが好ましい。末端は、例えば、-SiR(OR)又は-SiR(OR)O0.5(式中、Rはアルキル基、芳香族基、不飽和炭化水素基であり、Rは、炭素数1~6のアルキル基又はHであり、複数個のR及び複数個のRは、それぞれ互いに同一であっても異なっていてもよい。)であることが好ましい。
Further, as the polysiloxane in the present invention, the following formula (2);
R 3 SiO 1.5 (2)
(In formula (2), R3 is an alkyl group, an aromatic group, or an unsaturated hydrocarbon group, and multiple R3s may be the same or different.)
Polysiloxane (polysilsesquioxane) having a three-dimensional network structure containing repeating units represented by is preferable. The terminal is, for example, —SiR 3 (OR 4 ) 2 or —SiR 3 (OR 4 )O 0.5 (wherein R 3 is an alkyl group, an aromatic group or an unsaturated hydrocarbon group, and R 4 is , an alkyl group having 1 to 6 carbon atoms or H, and a plurality of R 3 and a plurality of R 4 may be the same or different.).
 式(1)及び(2)中のR、R、R、X、X、X及びXのアルキル基としては、炭素数1~20のアルキル基が挙げられる。例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、n-ヘキシル基、シクロヘキシル基、へプチル基、ドデシル基、ステアリル基等が挙げられる。これら炭素数1~20のアルキル基は、ハロゲン等の置換基を有していてもよい。
 式(1)及び(2)中のR、R、R、X、X、X及びXの芳香族基としては、炭素数6~30の芳香族基が挙げられる。例えば、フェニル基、トリル基、キシリル基、ナフチル基、アントラセニル基(又はアントラセン基)、フェナントレニル基(又はフェナントレン基)、ビフェニル基、ターフェニル基、ピレニル基(又はピレン基)、ペリレニル基(又はペリレン基)、ベンジル基、フェネチニル基等が挙げられる。これら炭素数6~30の芳香族基は、ハロゲン等の置換基を有していてもよい。
 式(1)及び(2)中のR、R、R、X、X、X及びXの不飽和炭化水素基としては、炭素数2~20の不飽和脂肪族炭化水素基が挙げられる。例えば、エテニル基(ビニル基)、プロペニル基(アリル基)、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、エチニル基、プロピニル基、ブチニル基、ペンチニル基、ヘキシニル基、オクチニル基等が挙げられる。
Examples of alkyl groups for R 1 , R 2 , R 3 , X 1 , X 2 , X 3 and X 4 in formulas (1) and (2) include alkyl groups having 1 to 20 carbon atoms. Examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, n-hexyl group, cyclohexyl group, heptyl group, dodecyl group and stearyl group. These alkyl groups having 1 to 20 carbon atoms may have a substituent such as halogen.
The aromatic groups for R 1 , R 2 , R 3 , X 1 , X 2 , X 3 and X 4 in formulas (1) and (2) include aromatic groups having 6 to 30 carbon atoms. For example, phenyl group, tolyl group, xylyl group, naphthyl group, anthracenyl group (or anthracene group), phenanthrenyl group (or phenanthrene group), biphenyl group, terphenyl group, pyrenyl group (or pyrene group), perylenyl group (or perylene group), benzyl group, phenethinyl group, and the like. These aromatic groups having 6 to 30 carbon atoms may have a substituent such as halogen.
The unsaturated hydrocarbon groups for R 1 , R 2 , R 3 , X 1 , X 2 , X 3 and X 4 in formulas (1) and (2) are unsaturated aliphatic hydrocarbon groups having 2 to 20 carbon atoms. A hydrogen group is mentioned. For example, ethenyl group (vinyl group), propenyl group (allyl group), butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, ethynyl group, propynyl group, butynyl group, pentynyl group, hexynyl group, octynyl group and the like. mentioned.
 式(1)のポリシロキサンにおいて、繰返し単位数nは、1以上の整数である。例えば10以上、好ましくは20以上であり、例えば15,000以下、好ましくは5,000以下である。
 式(1)のポリシロキサンは、その動粘度が、25℃において、例えば500mm/秒以上、好ましくは10,000mm/秒以上であり、例えば10,000,000mm/秒以下、好ましくは1,000,000mm/秒以下であってもよい。
 式(2)で表される繰返し単位を含む3次元ネットワーク構造を有するポリシロキサン(ポリシルセスキオキサン)において、重量平均分子量は特に限定されない。例えば400以上、好ましくは500以上であり、例えば5,000以下、好ましくは4,000以下である。
In the polysiloxane of formula (1), the repeating unit number n is an integer of 1 or more. For example, it is 10 or more, preferably 20 or more, and for example, 15,000 or less, preferably 5,000 or less.
The polysiloxane of formula (1) has a kinematic viscosity at 25° C. of, for example, 500 mm 2 /sec or more, preferably 10,000 mm 2 /sec or more, for example 10,000,000 mm 2 /sec or less, preferably It may be 1,000,000 mm 2 /sec or less.
The weight average molecular weight of the polysiloxane (polysilsesquioxane) having a three-dimensional network structure containing repeating units represented by formula (2) is not particularly limited. For example, it is 400 or more, preferably 500 or more, and for example, 5,000 or less, preferably 4,000 or less.
 ポリシロキサンは、市販されているものを使用することができる。市販品としては、例えば、KF-96、KF-965、KF-968、KF-50、KF-54、HIVAC
 F-4、HIVAC F-5、KF56、KF-99、KR-242A、KR-251、KR-112、KR-255、KR-271、KR-282、KR-300、KR-311、KR-515、KR-500、KR-401N、KR-510、KR-213、KR-4000G、KR-4000F2、KR-400、KR-401、KR-511、KR-2710、X-48-1030、X-48-1500、X-48-1600、X-40-2667A、X-40-2756、X-40-9225、X-40-9246、X-40-9250、X-40-9227、X-40-9312、X-40-2327、X-40-2450、X-40-9300、X-40-9301、X-88-1004及びX-88-1007(いずれも信越シリコーン社製)等が挙げられる。
A commercially available polysiloxane can be used. Commercially available products include, for example, KF-96, KF-965, KF-968, KF-50, KF-54, HIVAC
F-4, HIVAC F-5, KF56, KF-99, KR-242A, KR-251, KR-112, KR-255, KR-271, KR-282, KR-300, KR-311, KR-515 , KR-500, KR-401N, KR-510, KR-213, KR-4000G, KR-4000F2, KR-400, KR-401, KR-511, KR-2710, X-48-1030, X-48 -1500, X-48-1600, X-40-2667A, X-40-2756, X-40-9225, X-40-9246, X-40-9250, X-40-9227, X-40-9312 , X-40-2327, X-40-2450, X-40-9300, X-40-9301, X-88-1004 and X-88-1007 (all manufactured by Shin-Etsu Silicone Co., Ltd.).
 本発明におけるポリシロキサンとしては、例えば、下記式(3)で表されるポリメチルハイドロジェンシロキサン(PMHS)、例えば、下記式(4)で表されるポリジメチルシロキサン(PDMS)、例えば、下記式(5)で表される構造単位からなるポリメチルシルセスキオキサンのいずれか1種以上を用いることが好ましい。
 本発明におけるポリシロキサンとしては、例えば下記式(3)で表されるPMHSと、例えば下記式(4)で表されるPDMSの混合物を用いることが好ましい。PMHSとPDMSの配合比(体積比)は、特に限定されないが、例えば、PDMS/PMHS=30/70~85/15、好ましくは45/55~80/20である。
As the polysiloxane in the present invention, for example, polymethylhydrogensiloxane (PMHS) represented by the following formula (3), for example, polydimethylsiloxane (PDMS) represented by the following formula (4), for example, the following formula It is preferable to use one or more of polymethylsilsesquioxanes having the structural unit represented by (5).
As polysiloxane in the present invention, it is preferable to use a mixture of, for example, PMHS represented by the following formula (3) and PDMS represented by, for example, the following formula (4). The mixing ratio (volume ratio) of PMHS and PDMS is not particularly limited, but is, for example, PDMS/PMHS=30/70 to 85/15, preferably 45/55 to 80/20.
Figure JPOXMLDOC01-appb-C000004
(式中、p、qは、繰返し単位数を表し、pは10~200、qは10~100である。)
Figure JPOXMLDOC01-appb-C000005
(式中、rは、繰返し単位数を表し、1~2500、好ましくは4~2250である。)
 CHSiO1.5 ・・・(5)
Figure JPOXMLDOC01-appb-C000004
(In the formula, p and q represent the number of repeating units, p is 10 to 200 and q is 10 to 100.)
Figure JPOXMLDOC01-appb-C000005
(Wherein, r represents the number of repeating units, 1 to 2500, preferably 4 to 2250.)
CH 3 SiO 1.5 (5)
(アモルファスフッ素樹脂)
 アモルファスフッ素樹脂は、アモルファス(非晶質)の樹脂であれば、特に限定されない。
 アモルファスフッ素樹脂としては、例えば、パーフルオロ(4-ビニルオキシ-1-ブテン)環化重合体(BVE)、テトラフルオロエチレン-パーフルオロジオキソール共重合体(TFE/PDD)、テトラフルオロエチレン-パーフルオロメチルビニルエーテル共重合体(TFE/MFA)、テトラフルオロエチレン-パーフルオロエチルビニルエーテル共重合体(TFE/EFA)、テトラフルオロエチレン-パーフルオロプロピルビニルエーテル共重合体(TFE/PFA)等からなる群より選ばれる1種以上が挙げられる。
 アモルファスフッ素樹脂は、市販品をそのまま用いてもよい。例えば、AFシリーズ(三井・デュポンフロロケミカル社製)、アルゴフロンシリーズ(ソルベイスペシャルポリマーズジャパン社製)、サイトップシリーズ(AGC社製)が挙げられる。
(Amorphous fluororesin)
The amorphous fluororesin is not particularly limited as long as it is an amorphous (amorphous) resin.
Examples of amorphous fluororesins include perfluoro(4-vinyloxy-1-butene) cyclized polymer (BVE), tetrafluoroethylene-perfluorodioxole copolymer (TFE/PDD), tetrafluoroethylene-per From the group consisting of fluoromethyl vinyl ether copolymer (TFE/MFA), tetrafluoroethylene-perfluoroethyl vinyl ether copolymer (TFE/EFA), tetrafluoroethylene-perfluoropropyl vinyl ether copolymer (TFE/PFA), etc. One or more selected types can be mentioned.
Commercially available amorphous fluororesins may be used as they are. For example, the AF series (manufactured by DuPont Fluorochemicals, Mitsui), the Algoflon series (manufactured by Solvay Special Polymers Japan), and the Cytop series (manufactured by AGC) can be mentioned.
 本発明において、アモルファスフッ素樹脂としては、例えば、下記繰返し単位(6);
Figure JPOXMLDOC01-appb-C000006
(式中、sは、繰返し単位数を表す。)
を有する、パーフルオロ(4-ビニルオキシ-1-ブテン)環化重合体(BVE)を用いることが好ましい。例えば、サイトップシリーズにおける、CTX-809A、CTL-109AE、CTX-109AE、CTL-809M、CTL-107MK、CTX-809SP2、CT-SOLV180、CT-SOLV100E、CT-SOLV100K等を用いることができる。
In the present invention, the amorphous fluororesin includes, for example, the following repeating unit (6);
Figure JPOXMLDOC01-appb-C000006
(Wherein, s represents the number of repeating units.)
It is preferable to use a perfluoro(4-vinyloxy-1-butene) cyclized polymer (BVE) having For example, CTX-809A, CTL-109AE, CTX-109AE, CTL-809M, CTL-107MK, CTX-809SP2, CT-SOLV180, CT-SOLV100E, CT-SOLV100K, etc. in Cytop series can be used.
 アモルファスフッ素樹脂の平均分子量は、特に限定されない。例えば、10万以上、好ましくは12万以上、より好ましくは15万以上であり、例えば50万以下、好ましくは30万以下、より好ましくは20万以下である。 The average molecular weight of the amorphous fluororesin is not particularly limited. For example, it is 100,000 or more, preferably 120,000 or more, more preferably 150,000 or more, and for example, 500,000 or less, preferably 300,000 or less, more preferably 200,000 or less.
(被覆及び含浸方法)
 本発明において、ポリシロキサン及び/又はアモルファスフッ素樹脂の1つ以上から形成された有機層は、多孔質部の少なくとも一部を被覆するとともに多孔質部内部に充填されている。
 多孔質部の少なくとも一部を有機層で被覆するとともに有機層を多孔質部内部に充填する方法は、特に限定されない。例えば、ディップコート法、バーコート法、ダイコート法、スリットコート法、ロールコート法、スプレーコート法、スピンコート法等の手段を用いることができる。本発明においては、ディップコート法を用いることが製造効率等の観点から好ましい。また、ディップコート法を用いる際に、超音波下で行うことにより、多孔質部内部への充填を促進させることができる。また、本発明においては、スプレーコート法を用いることで、多孔質部の任意の箇所のみに選択的に有機層を被覆・充填させることが可能である。
 ポリシロキサン及び/又はアモルファスフッ素樹脂の被覆及び充填量は、特に限定されない。例えば10μg/cm以上、好ましくは50μg/cm以上である。
(Coating and impregnation method)
In the present invention, the organic layer formed from one or more of polysiloxane and/or amorphous fluororesin covers at least a portion of the porous portion and fills the inside of the porous portion.
The method of covering at least part of the porous portion with the organic layer and filling the interior of the porous portion with the organic layer is not particularly limited. For example, a dip coating method, a bar coating method, a die coating method, a slit coating method, a roll coating method, a spray coating method, a spin coating method, or the like can be used. In the present invention, it is preferable to use the dip coating method from the viewpoint of production efficiency and the like. In addition, when using the dip coating method, it is possible to promote the filling into the inside of the porous portion by performing it under ultrasonic waves. In addition, in the present invention, by using a spray coating method, it is possible to selectively coat or fill only an arbitrary portion of the porous portion with the organic layer.
The coating and filling amount of polysiloxane and/or amorphous fluororesin are not particularly limited. For example, it is 10 μg/cm 2 or more, preferably 50 μg/cm 2 or more.
(加熱処理)
 本発明においては、ポリシロキサン及び/又はアモルファスフッ素樹脂の1つ以上から形成された有機層を、多孔質部の少なくとも一部を被覆するとともに多孔質部内部に充填された後に、必要に応じて乾燥(溶媒除去)した後に、加熱処理することが好ましい。
 加熱処理条件は、特に限定されない。温度は、ポリシロキサン及び/又はアモルファスフッ素樹脂が引火又は自然発火を起こさない範囲であればよい。本発明においては、ポリシロキサン及び/又はアモルファスフッ素樹脂の少なくとも一部が加熱処理により分子間架橋し、有機層がゲル化して粘度が増加し、粘弾性を有するゲル状物とし得る加熱処理条件であることが好ましい。
 加熱処理条件としては、例えば、空気中において、熱分解温度以上、例えば120℃以上、好ましくは150℃以上、より好ましくは170℃以上であり、例えば400℃以下、好ましくは350℃以下である。加熱時間は、例えば1分以上、好ましくは10分以上であり、例えば5時間以下、好ましくは3時間以下である。加熱手段としては、加熱炉(オーブン)中で行うことが好ましい。
(Heat treatment)
In the present invention, an organic layer formed from one or more of polysiloxane and / or amorphous fluororesin, after covering at least a part of the porous portion and filling the inside of the porous portion, if necessary Heat treatment is preferably performed after drying (solvent removal).
Heat treatment conditions are not particularly limited. The temperature may be within a range in which the polysiloxane and/or the amorphous fluororesin do not ignite or spontaneously ignite. In the present invention, at least a portion of the polysiloxane and/or the amorphous fluororesin undergoes intermolecular cross-linking by heat treatment, the organic layer is gelled, the viscosity is increased, and the heat treatment conditions are such that a gel-like substance having viscoelasticity can be obtained. Preferably.
The heat treatment conditions are, for example, in air at a thermal decomposition temperature or higher, for example, 120° C. or higher, preferably 150° C. or higher, more preferably 170° C. or higher, and for example, 400° C. or lower, preferably 350° C. or lower. The heating time is, for example, 1 minute or longer, preferably 10 minutes or longer, and for example, 5 hours or shorter, preferably 3 hours or shorter. As a heating means, it is preferable to use a heating furnace (oven).
 加熱処理を行うことにより、ポリシロキサン及び/又はアモルファスフッ素樹脂の1つ以上から形成された有機層を、多孔質部と強固に一体化させることができる。
 本発明の積層体は、ポリシロキサン及び/又はアモルファスフッ素樹脂の1つ以上から形成された有機層が、多孔質部内に充填され、アンカー効果を発揮することで、耐摩耗性に優れた有機層を多孔質部の少なくとも一部の上に設けることができる。
 また、本発明においては、加熱処理を行うことにより、ポリシロキサン及び/又はアモルファスフッ素樹脂の1つ以上から形成された有機層を、分子間架橋させて三次元ネットワークを形成させてゲル化させることができる。これにより、有機層と多孔質部とが強固に一体化されるとともに、有機層の離脱を顕著に抑制することができ、滑液性、防汚性、撥液性、及び滑雪・滑氷性の1以上を長期間発現させることが可能となる。
By performing heat treatment, the organic layer formed from one or more of polysiloxane and/or amorphous fluororesin can be firmly integrated with the porous portion.
In the laminate of the present invention, an organic layer formed from one or more of polysiloxane and/or amorphous fluororesin is filled in the porous portion and exerts an anchor effect, so that the organic layer has excellent wear resistance. may be provided over at least a portion of the porous portion.
Further, in the present invention, the organic layer formed from one or more of polysiloxane and/or amorphous fluororesin is subjected to heat treatment to cause intermolecular cross-linking to form a three-dimensional network and gel. can be done. As a result, the organic layer and the porous portion are firmly integrated, and the detachment of the organic layer can be significantly suppressed. It is possible to express one or more of the above for a long period of time.
<積層体の特性>
 本発明の積層体は、滑液性、防汚性、撥液性、及び滑雪・滑氷性の1以上を有する。
 本発明の積層体は、水に対する静的接触角が90°以上、好ましくは95°以上125°以下である。
 本発明の積層体の水以外の有機溶媒に対する静的接触角は、特に限定されない。例えば、90°以下であっても構わない。また、本発明の積層体は、表面張力が20mN/m以上80mN/m以下の溶媒(水、菜種油、ヘキサデカン、ドデカン、エチレングリコール、エタノール等)について、前進接触角と後退接触角の差である接触角ヒステリシスが15°以下、好ましくは10°以下であることが好ましい。さらに、本発明の積層体は、表面張力が20mN/m以上80mN/m以下の溶媒について、液滴転落角が20°以下、好ましくは16°以下であることが好ましい。
 静的接触角、接触角ヒステリシス及び液滴転落角がこれらの範囲にあると、滑液性、防汚性、撥液性、及び滑雪・滑氷性のいずれか1以上を有する積層体とすることができる。さらに、本発明の積層体は、静的接触角、接触角ヒステリシス及び液滴転落角の経時変化(経時劣化)が少なく、滑液性、防汚性、撥液性、及び滑雪・滑氷性のいずれか1以上を長期間持続して発揮できる。これにより、例えば、優れた難着雪性・難着氷性を長期間持続して発揮できる。
<Laminate characteristics>
The laminate of the present invention has one or more of synovial properties, antifouling properties, liquid repellency, and snow/ice sliding properties.
The laminate of the present invention has a static contact angle with water of 90° or more, preferably 95° or more and 125° or less.
The static contact angle of the laminate of the present invention with respect to organic solvents other than water is not particularly limited. For example, it may be 90° or less. In addition, the laminate of the present invention has a surface tension of 20 mN/m or more and 80 mN/m or less of a solvent (water, rapeseed oil, hexadecane, dodecane, ethylene glycol, ethanol, etc.), and the difference between the advancing contact angle and the receding contact angle is It is preferred that the contact angle hysteresis is 15° or less, preferably 10° or less. Further, the laminate of the present invention preferably has a liquid droplet falling angle of 20° or less, preferably 16° or less, for a solvent having a surface tension of 20 mN/m or more and 80 mN/m or less.
If the static contact angle, contact angle hysteresis, and drop falling angle are within these ranges, the laminate will have at least one of synovial properties, antifouling properties, liquid repellency, and snow/ice sliding properties. be able to. Furthermore, the laminate of the present invention exhibits little change over time (deterioration over time) in static contact angle, contact angle hysteresis, and falling angle of droplets, and exhibits synovial properties, antifouling properties, liquid repellency, and snow/ice sliding properties. Any one or more of the above can be exhibited continuously for a long period of time. As a result, for example, excellent anti-snow/anti-icing properties can be maintained for a long period of time.
<積層体の用途等>
 本発明の積層体は、静的接触角、接触角ヒステリシス及び液滴転落角の経時変化(経時劣化)が少なく、滑液性、耐摩耗性、防汚性、撥液性、滑雪・滑氷性、液滴転落性、耐食性及び耐久性のいずれか1以上を長期間持続して発揮できる特性を生かして、例えば、電線、電柱、変圧器、絶縁器、電線附属物等の送電関連設備・機器・器具類;鉄塔、電波塔、金属構造物、ビルディング、住宅、倉庫、ガードレール、防護柵等の建築物;屋根材、外壁材、窓材、階段部材等の建材類;交通標識、カーブミラー、信号機、看板、サインボード、屋外ディスプレイ等の表示設備・装置類;放送用・通信用・レーダー用等アンテナ類;乗用車、貨物車、二輪車、全地形対応車、スノーモービル等の運輸車両等、建設用、農業用、除雪機等の作業車両、鉄道車両、航空機、船舶等の運輸機械・機器類;熱交換器、冷却器、冷凍・冷蔵庫、オーブン、カッター、液体ディスペンサー、タンク、撹拌・混合・反応槽、吐出ノズル等の加工装置・工具類(食品用を含む);スキー、橇、スケート、スノーシュー、ストック、屋外活動用具、登山用具等のスポーツ用品類;鞄、靴、布帛、不織布等の防水性等が必要とされる物品等;が挙げられる。 特に、本発明の積層体は、優れた滑雪・滑氷性(難着雪性・難着氷性)を長期間持続して発揮すること目的とした使途に好適に用いることができる。
<Use of laminate>
The laminate of the present invention has little change (deterioration over time) in static contact angle, contact angle hysteresis, and droplet falling angle, and has good synovial properties, abrasion resistance, antifouling properties, liquid repellency, and snow/ice sliding properties. For example, power transmission related facilities such as electric wires, electric poles, transformers, insulators, electric wire accessories, etc. Equipment and instruments; steel towers, radio towers, metal structures, buildings, houses, warehouses, guardrails, protective fences; building materials such as roofing materials, exterior wall materials, window materials, staircase materials; traffic signs, curved mirrors , display equipment and devices such as traffic lights, signboards, signboards, outdoor displays; antennas for broadcasting, communication, radar, etc.; transportation vehicles such as passenger cars, freight vehicles, motorcycles, all-terrain vehicles, and snowmobiles, Construction, agriculture, work vehicles such as snowplows, transportation machinery and equipment such as railroad vehicles, aircraft, and ships; heat exchangers, coolers, refrigerators, ovens, cutters, liquid dispensers, tanks, stirring and mixing・Processing equipment such as reaction tanks and discharge nozzles ・Tools (including for food); sporting goods such as skis, sleds, skates, snowshoes, stocks, outdoor activity equipment, mountaineering equipment; bags, shoes, fabrics, non-woven fabrics, etc. Articles, etc. that require waterproofness, etc.; In particular, the laminate of the present invention can be suitably used for the purpose of exhibiting excellent snow-sliding/ice-sliding properties (hard-to-snow/hard-to-ice properties) for a long period of time.
[積層体の製造方法]
 本発明の第1態様に係る積層体の製造方法は、多孔質部材を準備し、多孔質部材の少なくとも一部を被覆するとともに多孔質部内部に充填されている有機層を形成する工程、及び、前記有機層を加熱する工程、を有し、前記有機層が、ポリシロキサン及び/又はアモルファスフッ素樹脂の1つ以上から形成された層である。多孔質部材上にさらに多孔質部を形成する工程を有していてもよい。
 本発明の第2態様に係る積層体の製造方法は、表面の少なくとも一部に多孔質部を有する金属基材上に、多孔質部の少なくとも一部を被覆するとともに多孔質部内部に充填されている有機層を形成する工程、及び、前記有機層を加熱する工程、を有し、前記有機層が、ポリシロキサン及び/又はアモルファスフッ素樹脂の1つ以上から形成された層である。さらに、金属基材の表面の少なくとも一部に多孔質部を形成する工程を有していてもよい。
[Laminate production method]
A method for manufacturing a laminate according to a first aspect of the present invention includes steps of preparing a porous member, forming an organic layer covering at least a portion of the porous member and filling the inside of the porous portion, and and heating the organic layer, wherein the organic layer is a layer formed of one or more of polysiloxane and/or amorphous fluororesin. A step of further forming a porous portion on the porous member may be provided.
In the method for producing a laminate according to the second aspect of the present invention, a metal substrate having a porous portion on at least a portion of its surface is coated with at least a portion of the porous portion and the inside of the porous portion is filled with and heating the organic layer, wherein the organic layer is a layer formed from one or more of polysiloxane and/or amorphous fluororesin. Furthermore, a step of forming a porous portion on at least part of the surface of the metal substrate may be included.
 本発明の積層体の製造方法における、金属基材、多孔質部(多孔質部材)、有機層、ポリシロキサン及びアモルファスフッ素樹脂は、前記[積層体]における、<金属基材>、<多孔質部>、<有機層>、(ポリシロキサン)及び(アモルファスフッ素樹脂)の項に記載したものと同様である。
 多孔質部を形成する工程は、<多孔質部>における(アノード酸化処理)の項に記載したのと同様である。
 有機層を形成する工程は、<有機層>の項に記載したのと同様であり、また、有機層を加熱する工程は、<有機層>における(加熱処理)の項に記載したのと同様である。
The metal substrate, the porous portion (porous member), the organic layer, the polysiloxane and the amorphous fluororesin in the method for producing the laminate of the present invention are the same as <metal substrate>, <porous Part>, <Organic layer>, (Polysiloxane) and (Amorphous fluororesin).
The step of forming the porous portion is the same as described in the section (anodic oxidation treatment) in <porous portion>.
The step of forming the organic layer is the same as described in the section <Organic Layer>, and the step of heating the organic layer is the same as described in the section (Heat Treatment) in <Organic Layer>. is.
 以下、本発明を具体例により詳細に説明する。これらの具体例は、本発明の一態様にすぎない。本発明は、これらの例によって何ら限定されるものではない。
 本具体例で使用した化合物は、特に記載しない限り、市販品を精製することなくそのまま使用した。
Hereinafter, the present invention will be described in detail based on specific examples. These specific examples are merely one aspect of the present invention. The present invention is in no way limited by these examples.
Unless otherwise specified, the compounds used in these specific examples were commercially available products and used as they were without purification.
[電解研磨Al基材の作製]
<製造例1>
 厚さ0.3mm、純度99.5%のアルミニウム板をアセトンで洗浄し、60質量%過塩素酸を20体積%含むエタノール溶液中において、アルミニウム箔を対極として20Vで5分間電解研磨処理を行い、電解研磨Al基材を得た。
[Production of electropolished Al substrate]
<Production Example 1>
An aluminum plate with a thickness of 0.3 mm and a purity of 99.5% was washed with acetone and electropolished at 20 V for 5 minutes in an ethanol solution containing 20% by volume of 60% by mass perchloric acid with an aluminum foil as the counter electrode. , to obtain an electropolished Al substrate.
[表面の少なくとも一部に多孔質部を有する金属基材の作製]
<製造例2>
 製造例1で得られた電解研磨Al基材を用い、15℃、0.3MのHSO中において、印加電圧25Vで30分間アノード酸化処理を行い、アルミニウム板上に多孔質アルミナ被覆層を形成した。
 さらに、30℃、5質量%のHPO水溶液中に15分間浸漬するポアワイドニング処理を行い、多孔質アルミナ被覆層の細孔径を30nm~50nmに調整し、表面の少なくとも一部に多孔質部を有する金属基材1を得た。
[Preparation of a metal substrate having a porous portion on at least part of the surface]
<Production Example 2>
Using the electropolished Al substrate obtained in Production Example 1, anodization was performed at 15° C. in 0.3 M H 2 SO 4 at an applied voltage of 25 V for 30 minutes to form a porous alumina coating layer on the aluminum plate. formed.
Furthermore, a pore widening treatment is performed by immersing the porous alumina coating layer in a 5% by mass H 3 PO 4 aqueous solution at 30° C. for 15 minutes to adjust the pore diameter of the porous alumina coating layer to 30 nm to 50 nm, and at least part of the surface is porous. A metal substrate 1 having a mass was obtained.
<製造例3>
 製造例1で得られた電解研磨Al基材を用い、20℃、0.3MのHPO中において、印加電圧100Vで30分間アノード酸化処理を行い、アルミニウム板上に多孔質アルミナ被覆層を形成した。
 さらに、30℃、5質量%のHPO水溶液中に15分間浸漬するポアワイドニング処理を行い、多孔質アルミナ被覆層の細孔径を80nm~120nmに調整し、表面の少なくとも一部に多孔質部を有する金属基材2を得た。
<Production Example 3>
Using the electropolished Al substrate obtained in Production Example 1, anodization treatment was performed at 20° C. in 0.3 M H 3 PO 4 at an applied voltage of 100 V for 30 minutes to form a porous alumina coating layer on the aluminum plate. formed.
Furthermore, a pore widening treatment is performed by immersing the porous alumina coating layer in a 5% by mass H 3 PO 4 aqueous solution at 30° C. for 15 minutes to adjust the pore diameter of the porous alumina coating layer to 80 nm to 120 nm, and at least part of the surface is porous. A metal substrate 2 having a mass was obtained.
[積層体の作製]
<実施例1>
 潤滑剤として、ポリメチルハイドロジェンシロキサン(PMHS:信越シリコーン社製、KF-99)を用いた。
 PMHS中に、製造例2で得た表面の少なくとも一部に多孔質部を有する金属基材1を超音波下で10分間浸漬し、PMHSを多孔質部に含浸させた。
 金属基材1を取り出し、25℃・大気圧下で45°の傾斜をつけて放置することで余分なPMHSを除去した。
 その後、オーブン中で、200℃で2時間加熱処理し、PMHSを固化させ、積層体1を得た。
[Preparation of laminate]
<Example 1>
Polymethylhydrogensiloxane (PMHS: KF-99, manufactured by Shin-Etsu Silicone Co., Ltd.) was used as the lubricant.
The metal substrate 1 having a porous portion on at least a part of the surface obtained in Production Example 2 was immersed in PMHS for 10 minutes under ultrasonic waves to impregnate the porous portion with PMHS.
The metal substrate 1 was taken out and left at 25° C. under atmospheric pressure with an inclination of 45° to remove excess PMHS.
After that, heat treatment was performed in an oven at 200° C. for 2 hours to solidify the PMHS, and a laminate 1 was obtained.
<実施例2>
 実施例1において、オーブン中で、150℃で2時間加熱処理した以外は、実施例1と同様にして、積層体2を得た。
<Example 2>
A laminate 2 was obtained in the same manner as in Example 1, except that the laminate was heat-treated in an oven at 150° C. for 2 hours.
<実施例3>
 潤滑剤として、ポリジメチルシロキサン(PDMS:信越シリコーン社製、KF-96)を用いた。
 PDMS中に、製造例2で得た表面の少なくとも一部に多孔質部を有する金属基材1を超音波下で10分間浸漬し、PDMSを多孔質部に含浸させた。
 金属基材1を取り出し、25℃・大気圧下で45°の傾斜をつけて放置することで余分なPDMSを除去した。
 その後、オーブン中で、300℃で2時間加熱処理し、PDMSを固化させ、積層体3を得た。
<Example 3>
Polydimethylsiloxane (PDMS: KF-96, manufactured by Shin-Etsu Silicone Co., Ltd.) was used as a lubricant.
The metal substrate 1 having a porous portion on at least a part of the surface obtained in Production Example 2 was immersed in PDMS for 10 minutes under ultrasonic waves to impregnate the porous portion with PDMS.
The metal substrate 1 was taken out and left at 25° C. under atmospheric pressure with an inclination of 45° to remove excess PDMS.
After that, heat treatment was performed in an oven at 300° C. for 2 hours to solidify the PDMS, and a laminate 3 was obtained.
<実施例4>
 実施例3において、オーブン中で、280℃で2時間加熱処理した以外は、実施例3と同様にして、積層体4を得た。
<Example 4>
A laminate 4 was obtained in the same manner as in Example 3, except that the laminate was heat-treated in an oven at 280° C. for 2 hours.
<実施例5>
 実施例3において、オーブン中で、250℃で2時間加熱処理した以外は、実施例3と同様にして、積層体5を得た。
<Example 5>
Laminate 5 was obtained in the same manner as in Example 3, except that heat treatment was performed in an oven at 250° C. for 2 hours.
<実施例6>
 潤滑剤として、アモルファスフッ素樹脂(CYTOP:AGC社製、CTL-107MK)を用いた。
 CYTOPの7質量%溶液中に、製造例2で得た表面の少なくとも一部に多孔質部を有する金属基材1を超音波下で10分間浸漬し、CYTOPを多孔質部に含浸させた。
 金属基材1を取り出し、25℃・大気圧下で10分放置して乾燥後に、オーブン中で、80℃で30分加熱処理した後に、引き続き180℃で30分加熱処理し、CYTOPを固化させ、積層体6を得た。
<Example 6>
Amorphous fluororesin (CYTOP: manufactured by AGC, CTL-107MK) was used as the lubricant.
The metal substrate 1 having a porous portion on at least a part of the surface obtained in Production Example 2 was immersed in a 7% by mass solution of CYTOP under ultrasonic waves for 10 minutes to impregnate the porous portion with CYTOP.
The metal substrate 1 is taken out, left at 25° C. under atmospheric pressure for 10 minutes, dried, and then heat-treated in an oven at 80° C. for 30 minutes, followed by heat treatment at 180° C. for 30 minutes to solidify CYTOP. , to obtain a laminate 6.
<実施例7>
 実施例6において、製造例2で得た表面の少なくとも一部に多孔質部を有する金属基材1を、製造例3で得た表面の少なくとも一部に多孔質部を有する金属基材2に代えるほかは、実施例3と同様にして積層体7を得た。
<Example 7>
In Example 6, the metal substrate 1 having a porous portion on at least a portion of the surface obtained in Production Example 2 was used as the metal substrate 2 having a porous portion on at least a portion of the surface obtained in Production Example 3. A laminate 7 was obtained in the same manner as in Example 3, except that the material was changed.
<実施例8>
 潤滑剤として、ポリメチルハイドロジェンシロキサン(PMHS:信越シリコーン社製、KF-99)を2部、ポリジメチルシロキサン(PDMS:信越シリコーン社製、KF-96)を1部の割合で含むPSi混合物1を用いた。
 PSi混合物1中に、製造例2で得た表面の少なくとも一部に多孔質部を有する金属基材1を超音波下で10分間浸漬し、PSi混合物1を多孔質部に含浸させた。
 金属基材1を取り出し、25℃・大気圧下で45°の傾斜をつけて放置することで余分なPSi混合物1を除去した。
 その後、オーブン中で、200℃で2時間加熱処理し、PSi混合物1を固化させ、積層体8を得た。
<Example 8>
PSi mixture 1 containing 2 parts of polymethylhydrogensiloxane (PMHS: KF-99 manufactured by Shin-Etsu Silicone Co., Ltd.) and 1 part of polydimethylsiloxane (PDMS: KF-96 manufactured by Shin-Etsu Silicone Co., Ltd.) as lubricants was used.
The metal substrate 1 having a porous portion on at least a part of the surface obtained in Production Example 2 was immersed in the PSi mixture 1 under ultrasonic waves for 10 minutes to impregnate the porous portion with the PSi mixture 1.
The metal substrate 1 was taken out and left at 25° C. under atmospheric pressure with an inclination of 45° to remove excess PSi mixture 1 .
After that, heat treatment was performed in an oven at 200° C. for 2 hours to solidify the PSi mixture 1 and obtain a laminate 8 .
<実施例9>
 実施例8において、潤滑剤として、ポリメチルハイドロジェンシロキサン(PMHS:信越シリコーン社製、KF-99)を1部、ポリジメチルシロキサン(PDMS:信越シリコーン社製、KF-96)を1部の割合で含むPSi混合物2を用いた以外は、実施例8と同様にして積層体9を得た。
<Example 9>
In Example 8, 1 part of polymethylhydrogensiloxane (PMHS: manufactured by Shin-Etsu Silicone Co., Ltd., KF-99) and polydimethylsiloxane (PDMS: manufactured by Shin-Etsu Silicone Co., Ltd., KF-96) were used as lubricants. A laminate 9 was obtained in the same manner as in Example 8, except that the PSi mixture 2 contained in was used.
<実施例10>
 実施例9において、オーブン中で、180℃で2時間加熱処理した以外は、実施例9と同様にして、積層体10を得た。
<Example 10>
A laminate 10 was obtained in the same manner as in Example 9, except that heat treatment was performed in an oven at 180° C. for 2 hours.
<実施例11>
 実施例9において、オーブン中で、220℃で2時間加熱処理した以外は、実施例9と同様にして、積層体11を得た。
<Example 11>
A laminate 11 was obtained in the same manner as in Example 9, except that the laminate was heat-treated in an oven at 220° C. for 2 hours.
<実施例12>
 実施例9において、オーブン中で、250℃で2時間加熱処理した以外は、実施例9と同様にして、積層体12を得た。
<Example 12>
A laminate 12 was obtained in the same manner as in Example 9, except that heat treatment was performed in an oven at 250° C. for 2 hours.
<実施例13>
 潤滑剤として、ポリメチルハイドロジェンシロキサン(PMHS:信越シリコーン社製、KF-99)を1部、ポリジメチルシロキサン(PDMS:信越シリコーン社製、KF-96)を2部の割合で含むPSi混合物3を用いた。
 PSi混合物3中に、製造例2で得た表面の少なくとも一部に多孔質部を有する金属基材1を超音波下で10分間浸漬し、PSi混合物3を多孔質部に含浸させた。
 金属基材1を取り出し、25℃・大気圧下で45°の傾斜をつけて放置することで余分なPSi混合物3を除去した。
 その後、オーブン中で、220℃で2時間加熱処理し、PSi混合物3を固化させ、積層体13を得た。
<Example 13>
PSi mixture 3 containing 1 part of polymethylhydrogensiloxane (PMHS: KF-99, manufactured by Shin-Etsu Silicone Co., Ltd.) and 2 parts of polydimethylsiloxane (PDMS: KF-96, manufactured by Shin-Etsu Silicone Co., Ltd.) as lubricants was used.
The metal substrate 1 having a porous portion on at least a part of its surface obtained in Production Example 2 was immersed in the PSi mixture 3 under ultrasonic waves for 10 minutes to impregnate the porous portion with the PSi mixture 3.
The metal substrate 1 was taken out and left at 25° C. under atmospheric pressure with an inclination of 45° to remove excess PSi mixture 3 .
Thereafter, heat treatment was performed in an oven at 220° C. for 2 hours to solidify the PSi mixture 3 and obtain a laminate 13 .
<実施例14>
 潤滑剤として、ポリメチルシルセスキオキサン(PSQ:信越シリコーン社製、KR-4000G(50質量%イソパラフィン溶液))を用いた。
 PSQの50質量%イソパラフィン溶液中に、製造例2で得た表面の少なくとも一部に多孔質部を有する金属基材1を超音波下で10分間浸漬した。
 その後、室温(25℃)で乾燥して乾燥皮膜を形成し、積層体14を得た。
<Example 14>
As a lubricant, polymethylsilsesquioxane (PSQ: KR-4000G (50 mass % isoparaffin solution) manufactured by Shin-Etsu Silicone Co., Ltd.) was used.
The metal substrate 1 having a porous portion on at least a part of the surface obtained in Production Example 2 was immersed in a 50 mass % isoparaffin solution of PSQ for 10 minutes under ultrasonic waves.
After that, it was dried at room temperature (25° C.) to form a dry film, and a laminate 14 was obtained.
<比較例1>
 潤滑剤として、ポリメチルハイドロジェンシロキサン(PMHS:信越シリコーン社製、KF-99)を用いた。
 PMHS中に、製造例1で得た電解研磨Al基材を超音波下で10分間浸漬した。
 電解研磨Al基材を取り出し、25℃・大気圧下で45°の傾斜をつけて放置することで余分なPMHSを除去した。
 その後、オーブン中で、200℃で2時間加熱処理し、PMHSを固化させ、積層体15を得た。
<Comparative Example 1>
Polymethylhydrogensiloxane (PMHS: KF-99, manufactured by Shin-Etsu Silicone Co., Ltd.) was used as the lubricant.
The electropolished Al substrate obtained in Production Example 1 was immersed in PMHS for 10 minutes under ultrasonic waves.
The electropolished Al substrate was taken out and left at 25° C. under atmospheric pressure with an inclination of 45° to remove excessive PMHS.
After that, heat treatment was performed in an oven at 200° C. for 2 hours to solidify the PMHS, and a laminate 15 was obtained.
<比較例2>
 比較例1において、潤滑剤としてポリジメチルシロキサン(PDMS:信越シリコーン社製、KF-96)を用いたほかは、比較例1と同様にして、積層体16を得た。
<Comparative Example 2>
A laminate 16 was obtained in the same manner as in Comparative Example 1, except that polydimethylsiloxane (PDMS: KF-96 manufactured by Shin-Etsu Silicone Co., Ltd.) was used as the lubricant.
<比較例3>
 比較例1において、潤滑剤としてアモルファスフッ素樹脂(CYTOP:AGC社製、CTL-107MK)を用いたほかは、比較例1と同様にして、積層体17を得た。
<Comparative Example 3>
A laminate 17 was obtained in the same manner as in Comparative Example 1, except that an amorphous fluororesin (CYTOP: manufactured by AGC, CTL-107MK) was used as the lubricant.
[評価]
<測定方法等>
[evaluation]
<Measurement method, etc.>
(静的接触角の測定方法)
 接触角計(協和界面科学社製、DM-CE1)を用い、マイクロシリンジから4μLの液滴を試料表面に滴下し、その液滴を装置付属のCCDカメラで観察して測定し、静的接触角を求めた。
(Method for measuring static contact angle)
Using a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., DM-CE1), a 4 μL droplet is dropped from a microsyringe onto the sample surface, and the droplet is observed and measured with a CCD camera attached to the device. asked for a corner.
(接触角ヒステリシスの測定方法) 接触角計(協和界面科学社製、DM-CE1)を用い、試料表面上の液滴約4μLに対してマイクロシリンジから液滴を注入しているときの接触角(前進接触角)と液滴を吸引しているときの接触角(後退接触角)を、装置付属のCCDカメラで観察して測定し、前進接触角と後退接触角の差を接触角ヒステリシスとして求めた。 (Measurement method of contact angle hysteresis) Using a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., DM-CE1), the contact angle when injecting a droplet from a microsyringe into a droplet of about 4 μL on the sample surface (Advancing contact angle) and the contact angle (receding contact angle) when the droplet is sucked are observed and measured with a CCD camera attached to the device, and the difference between the advancing contact angle and the receding contact angle is defined as the contact angle hysteresis. asked.
(液滴転落角の測定方法)
 電動傾斜ステージ上の試料の上に10μLの液滴を載せ、その状態でステージを0.1°/sの速度で傾斜させて、液滴が転がり始める角度を液滴転落角として求めた。
(Method for measuring droplet falling angle)
A droplet of 10 μL was placed on the sample on the electric tilting stage, the stage was tilted at a speed of 0.1°/s in this state, and the angle at which the droplet started to roll was obtained as the droplet falling angle.
(表面SEM)
 表面形態の電子顕微鏡による観察(表面SEM)は、以下の方法で行った。
 滑液性固体表面を、観察中のチャージアップを抑制するため、スパッタ装置(真空デバイス社製、MSP-20TK)を用いて、タングステンを約10nm程度製膜した。その後、電解放出型走査電子顕微鏡(ZEISS社製、Sigma-500)を用い、加速電圧2kV以下にて観察した。
(Surface SEM)
The surface morphology was observed with an electron microscope (surface SEM) by the following method.
In order to suppress charge-up during observation of the synovial solid surface, a tungsten film of about 10 nm was formed using a sputtering apparatus (manufactured by Vacuum Device Co., Ltd., MSP-20TK). After that, observation was performed using a field emission scanning electron microscope (Sigma-500 manufactured by ZEISS) at an acceleration voltage of 2 kV or less.
(断面SEM及び断面EDS分析)
 断面の観察と分析は、以下の方法で行った。
 クロスセクションポリッシャ(日本電子社製、SM-09010)を用いて、断面試料を作製した。その後、EDS(ブルカー社製、XFlash6-30)を備えた電解放出型走査電子顕微鏡(ZEISS社製、Sigma-500)を用い、加速電圧2kV以下にて観察及びEDS分析を行った。
(Cross-sectional SEM and cross-sectional EDS analysis)
Observation and analysis of the cross section were performed by the following methods.
A cross-sectional sample was prepared using a cross-section polisher (manufactured by JEOL Ltd., SM-09010). After that, using a field emission scanning electron microscope (Sigma-500, manufactured by ZEISS) equipped with an EDS (XFlash6-30, manufactured by Bruker), observation and EDS analysis were performed at an acceleration voltage of 2 kV or less.
(摩耗試験)
 ボールオンフラットトライボメーター(CSM Instruments社製)を使用し、SUJ2鋼ボールを用い、荷重1.0N、回転半径1.5mm、回転速度1mm/s又は10mm/sの条件で行った。
(Abrasion test)
A ball-on-flat tribometer (manufactured by CSM Instruments) was used, SUJ2 steel balls were used, and the conditions were a load of 1.0 N, a rotation radius of 1.5 mm, and a rotation speed of 1 mm/s or 10 mm/s.
(氷付着力の測定方法)
 氷付着力の測定は、以下に示すせん断付着強度試験で行った。
 水冷式冷却ユニット(VICS社製、WLVPU-30)上に固定した試料に、針金を巻き付けた筒状のポリエステル製容器を乗せ、ペルチェコントローラ(VICS社製、VPE-20)を制御して、-20℃で30分冷却を行った。
 その後、容器内へ純水を満たし、再度-20℃で30分冷却して容器内の純水を凍結させ、試料表面に氷塊を形成させた。氷塊形成後は、-20℃に保持した水冷式冷却ユニット上に試料を乗せたまま,応力測定機(イマダ社製、ZTS-50N)の先端を容器に巻き付けた針金に噛ませて測定機を手動で水平方向に引っ張り、氷塊が試料表面から剥離した時のせん断応力を求め氷付着力とした。
(Method for measuring ice adhesion)
The ice adhesion force was measured by the shear adhesion strength test described below.
A cylindrical polyester container wrapped with a wire is placed on a sample fixed on a water-cooled cooling unit (WLVPU-30, manufactured by VICS), and a Peltier controller (VPE-20, manufactured by VICS) is controlled to- Cooling was performed at 20° C. for 30 minutes.
Thereafter, the container was filled with pure water and cooled again at −20° C. for 30 minutes to freeze the pure water in the container and form ice blocks on the surface of the sample. After ice block formation, while the sample was placed on a water-cooled cooling unit maintained at -20°C, the tip of a stress measuring device (Imada ZTS-50N) was bitten by a wire wrapped around the container, and the measuring device was operated. The sample was pulled horizontally by hand, and the shear stress at which the ice block separated from the surface of the sample was determined as the ice adhesion force.
<濡れ性>
 実施例1、3及び6で得られた積層体1、3及び6について、表1に示す表面張力を有する液体(水(溶媒1)、エチレングリコール(溶媒2)、菜種油(溶媒3)、ヘキサデカン(溶媒4)及びエタノール(溶媒5))に対する、静的接触角(°)、前進接触角と後退接触角の差である接触角ヒステリシス(°)及び液滴量10μLにおける液滴転落角(°)を測定した。結果を表1に示す。
<Wettability>
For laminates 1, 3 and 6 obtained in Examples 1, 3 and 6, liquids having surface tensions shown in Table 1 (water (solvent 1), ethylene glycol (solvent 2), rapeseed oil (solvent 3), hexadecane (solvent 4) and ethanol (solvent 5)), the static contact angle (°), the contact angle hysteresis (°) which is the difference between the advancing contact angle and the receding contact angle, and the droplet falling angle (°) at a droplet volume of 10 μL ) was measured. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1より、積層体1、3及び6の溶媒(水:表面張力72.8mN/m)に対する静的接触角は、100~120°であり、水以外の有機溶媒に対する静的接触角は90°以下となっている。これらより、積層体1、3及び6の表面は、撥水性であり親油性であることがわかる。静的接触角からみて、溶媒2~5についての撥液性は高くないが、優れた滑液性を示す。なお、接触角ヒステリシス(前進接触角と後退接触角の差)は、積層体1、3及び6のいずれについても、溶媒1~5に対して約10°以下となっており、溶媒の表面張力の影響が小さいことがわかる。
 さらに、溶媒10μLにおける液滴転落角について、積層体1における溶媒1~5の液滴転落角はいずれも11°以下、積層体3における溶媒1~3の液滴転落角はいずれも5°以下、積層体6における溶媒1~5の液滴転落角はいずれも13°以下であり、優れた滑液性を有していることがわかる。
From Table 1, the static contact angle for the solvent (water: surface tension 72.8 mN / m) of the laminates 1, 3 and 6 is 100 to 120 °, and the static contact angle for organic solvents other than water is 90. ° or less. These results show that the surfaces of the laminates 1, 3 and 6 are water-repellent and oleophilic. In terms of static contact angle, the liquid repellency for solvents 2 to 5 is not high, but exhibits excellent synovial properties. The contact angle hysteresis (the difference between the advancing contact angle and the receding contact angle) is about 10° or less for the solvents 1 to 5 for all of the laminates 1, 3 and 6, and the surface tension of the solvent It can be seen that the effect of
Furthermore, regarding the droplet falling angle in 10 μL of solvent, the droplet falling angle of solvents 1 to 5 in layered product 1 is 11° or less, and the droplet falling angle of solvents 1 to 3 in layered product 3 is 5° or less. , and the drop falling angles of the solvents 1 to 5 in the laminate 6 are all 13° or less, indicating that the laminate 6 has excellent synovial properties.
 実施例1、3、6及び14で得られた積層体1、3、6、14及びポリテトラフルオロエチレン板(PTFE板)について、水滴量10μL及び30μLにおける転落角を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000008
Laminates 1, 3, 6 and 14 obtained in Examples 1, 3, 6 and 14 and polytetrafluoroethylene plates (PTFE plates) were measured for falling angles at water droplet volumes of 10 μL and 30 μL. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000008
 表2より、積層体1、3、6及び14の水滴量30μLにおける水転落角と、積層体1、3及び6の水滴量10μLにおける水転落角は、PTFE板の水接触角より小さく、滑水性に優れることがわかった。特に、水滴転落角からみて、積層体1、3及び6の滑水性が優れていることがわかる。 From Table 2, the water tumble angle at a water droplet amount of 30 μL for the laminates 1, 3, 6 and 14 and the water tumble angle at a water droplet amount of 10 μL for the laminates 1, 3 and 6 are smaller than the water contact angle of the PTFE plate and smooth. It was found to be excellent in water resistance. In particular, it can be seen that the laminates 1, 3 and 6 have excellent water sliding properties in terms of the falling angle of water droplets.
<濡れ性の加熱処理温度の影響>
 実施例1~5、9~12で得られた積層体1~5、9~12について、水の静的接触角(°)及び水滴量10μLにおける水滴転落角(°)を測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000009
<Effect of heat treatment temperature on wettability>
For the laminates 1 to 5 and 9 to 12 obtained in Examples 1 to 5 and 9 to 12, the static contact angle (°) of water and the falling angle (°) of water droplets at a water droplet volume of 10 μL were measured. Table 3 shows the results.
Figure JPOXMLDOC01-appb-T000009
 PMHSを加熱処理した場合、150℃ではゲル状であり、200℃では固体状(粉末状)である。
 PDMSを加熱処理した場合、250℃では液状であり、280℃ではゲル状であり、300℃では固体状(粉末状)である。
 PSi混合物2を加熱処理した場合、180℃、200℃、220℃及び250℃、いずれもゲル状である。
 表3より、加熱処理後に潤滑剤がゲル状となるように加熱処理温度を調整して得られた積層体2及び4は、加熱処理後に潤滑剤が固体状となるように加熱処理温度を調整して得られた積層体1及び3と比較して、水転落角が小さくなっている。これより、潤滑剤の加熱処理温度を調整することで、水転落角等の積層体の滑液性(滑水性)を制御し得ることがわかる。
When PMHS is heat-treated, it becomes a gel at 150°C and a solid (powder) at 200°C.
When PDMS is heat-treated, it is liquid at 250°C, gel at 280°C, and solid (powder) at 300°C.
When the PSi mixture 2 is heat-treated, it turns into a gel at 180°C, 200°C, 220°C and 250°C.
From Table 3, the heat treatment temperature is adjusted so that the lubricant becomes solid after the heat treatment for the laminates 2 and 4 obtained by adjusting the heat treatment temperature so that the lubricant becomes a gel after the heat treatment. As compared with the laminates 1 and 3 obtained by the above, the water tumble angle is small. From this, it can be seen that by adjusting the heat treatment temperature of the lubricant, it is possible to control the lubricating property (water lubricating property) of the laminate, such as the water sliding angle.
<表面形態>
 実施例1、3、6で得られた積層体1、3、6及び製造例2で得られた金属基材1の表面形態を、電子顕微鏡により観察した。結果を図1に示す。
 図1より、金属基材1の表面は、細孔径30~50nmの細孔が表面に存在している多孔質部を有していることがわかる。一方で、積層体1、3及び6の表面は、いずれも表面が平滑であることがわかる。なお、積層体3の表面には、熱収縮由来の皺の発生が確認された。
<Surface morphology>
The surface morphology of the laminates 1, 3 and 6 obtained in Examples 1, 3 and 6 and the metal substrate 1 obtained in Production Example 2 was observed with an electron microscope. The results are shown in FIG.
From FIG. 1, it can be seen that the surface of the metal substrate 1 has a porous portion in which pores having a pore diameter of 30 to 50 nm are present on the surface. On the other hand, it can be seen that the surfaces of the laminates 1, 3 and 6 are all smooth. In addition, the generation of wrinkles due to heat shrinkage was confirmed on the surface of the laminate 3 .
<表面部断面形態>
 実施例1、3、6で得られた積層体1、3、6の表面部の断面形態を、電子顕微鏡により観察した。表面部の断面SEM像を図2に示す。また、多孔質部のSEM像を併せて図2に示す。
 実施例1、3、6で得られた積層体1、3、6の表面部の断面をEDS分析した結果を図3に示す。
 比較例1~3で得られた積層体15~17の表面部の断面形態を、電子顕微鏡により観察した。表面部の断面SEM像を図4に示す。
 図2における表面部の断面SEM像より、積層体1、3、6の表面部は、金属層3の上に設けられた多孔質部2内に潤滑剤が入り込むとともに、多孔質部2上に潤滑剤層1が形成されていることがわかる。また、図2における多孔質部のSEM像及び図3より、積層体1、3、6の多孔質部には、潤滑剤が充填されており、特に、積層体1及び3は、潤滑剤の充填率が高いことがわかる。
 一方、図4より、積層体15~17は、金属層3の上に直接潤滑剤層1が形成された構造となっていることがわかる。
<Cross-sectional shape of the surface>
The cross-sectional morphologies of the surface portions of the laminates 1, 3 and 6 obtained in Examples 1, 3 and 6 were observed with an electron microscope. A cross-sectional SEM image of the surface portion is shown in FIG. SEM images of the porous portion are also shown in FIG.
FIG. 3 shows the results of EDS analysis of cross sections of the surface portions of the laminates 1, 3 and 6 obtained in Examples 1, 3 and 6. FIG.
The cross-sectional morphologies of the surface portions of the laminates 15 to 17 obtained in Comparative Examples 1 to 3 were observed with an electron microscope. A cross-sectional SEM image of the surface portion is shown in FIG.
From the cross-sectional SEM image of the surface portion in FIG. It can be seen that a lubricant layer 1 is formed. Further, from the SEM image of the porous portion in FIG. 2 and FIG. 3, the porous portions of the laminates 1, 3, and 6 are filled with a lubricant. It can be seen that the filling rate is high.
On the other hand, it can be seen from FIG. 4 that the laminates 15 to 17 have a structure in which the lubricant layer 1 is formed directly on the metal layer 3. FIG.
<耐摩耗性>
 実施例1、3、6で得られた積層体1、3、6及び比較例1~3で得られた積層体15~17について、回転速度1mm/sの条件で摩耗試験を行った。結果を摩擦係数(動摩擦係数)が0.6を超えた時の回転数(摩擦係数0.6超時の回転数)と初期摩擦係数を表4に示す。
 積層体6と積層体17について、200回転終了後における、表面形態の写真、表面形態の電子顕微鏡写真、及び表面部の断面EDS分析の結果表面画像を、図5に示す。
<Abrasion resistance>
The laminates 1, 3 and 6 obtained in Examples 1, 3 and 6 and the laminates 15 to 17 obtained in Comparative Examples 1 to 3 were subjected to an abrasion test at a rotational speed of 1 mm/s. Table 4 shows the results of the number of revolutions when the coefficient of friction (coefficient of dynamic friction) exceeds 0.6 (the number of revolutions when the coefficient of friction exceeds 0.6) and the initial coefficient of friction.
FIG. 5 shows a photograph of the surface morphology, an electron microscope photograph of the surface morphology, and a cross-sectional EDS analysis result surface image of the surface of the laminate 6 and the laminate 17 after 200 rotations.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表4より、積層体1、3、6と積層体15~17では、初期摩擦係数に大きな差が生じていないことがわかる。しかしながら、積層体15~17は、少ない回転数で摩擦係数(動摩擦係数)が0.6を超えるが、積層体1、3、6は、回転数が増えても低い摩擦係数を維持しており、耐摩耗性が大幅に改善しているのがわかる。
 積層体1、3、6は、多孔質部にまで潤滑剤が浸透しており、かつ液相の密着性が改善することで、耐摩耗性が改善したものと考えられる。
 これより、積層体1、3、6は、積層体15~17と比較して、大幅に耐久性が改善されていることがわかる。
 さらに、図5より、積層体6は、200回転後であっても潤滑剤層が表面に残っているのに対し、積層体17は、潤滑剤層が剥離し、素地のアルミニウムが露出していることがわかる。
From Table 4, it can be seen that the laminates 1, 3 and 6 and the laminates 15 to 17 do not have a large difference in the initial coefficient of friction. However, although the laminates 15 to 17 have a coefficient of friction (dynamic friction coefficient) exceeding 0.6 at low rotation speeds, the laminates 1, 3, and 6 maintain low friction coefficients even at high rotation speeds. , it can be seen that the wear resistance is greatly improved.
It is considered that the laminates 1, 3, and 6 have improved wear resistance because the lubricant penetrates into the porous portion and the adhesion of the liquid phase is improved.
From this, it can be seen that the laminates 1, 3 and 6 are significantly improved in durability compared to the laminates 15-17.
Further, from FIG. 5, the lubricant layer remains on the surface of the laminate 6 even after 200 rotations, whereas the lubricant layer peels off and the base aluminum of the laminate 17 is exposed. I know there is.
<耐摩耗性の加熱処理温度依存性>
 実施例1~4、9~12で得られた積層体1~4~12について、回転速度10mm/sの条件で摩耗試験を行ない、摩擦係数が0.6を超えた時の回転数(摩擦係数0.6超時の回転数)を測定した。結果を表5に示す。
 また、積層体9について、100回転終了後における、表面形態の写真、表面形態の電子顕微鏡写真、及び表面部の断面EDS分析の結果表面画像を、図6に示す。
<Heat treatment temperature dependence of wear resistance>
The laminates 1 to 4 to 12 obtained in Examples 1 to 4 and 9 to 12 were subjected to an abrasion test at a rotation speed of 10 mm / s, and the number of rotations when the coefficient of friction exceeded 0.6 (friction The number of rotations when the coefficient exceeds 0.6) was measured. Table 5 shows the results.
FIG. 6 shows a photograph of the surface morphology, an electron microscope photograph of the surface morphology, and a surface image of the cross-sectional EDS analysis of the surface portion of the laminate 9 after 100 rotations.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表5より、加熱処理後の潤滑剤がゲル状である積層体2、4、9及び10は、加熱処理後の潤滑剤がゲル状ではない積層体1、3、11及び12と比較して、回転数が増えても低い摩擦係数を維持しており、耐摩耗性がより改善されていることがわかる。
 さらに、図6より、積層体9は、100回転後であっても潤滑剤層が表面に残っており、低い摩擦係数を維持していることがわかる。
From Table 5, the laminates 2, 4, 9 and 10 in which the lubricant after heat treatment is gel-like are compared with the laminates 1, 3, 11 and 12 in which the lubricant after heat treatment is not gel-like. , a low coefficient of friction is maintained even when the number of revolutions increases, indicating that the wear resistance is further improved.
Furthermore, it can be seen from FIG. 6 that the laminate 9 still has a lubricant layer on the surface even after 100 rotations, and maintains a low coefficient of friction.
<耐食性>
 実施例1、3、6で得られた積層体1、3、6及び製造例1で得られた電解研磨Al基材を、それぞれ酢酸が2g/L及び塩化ナトリウムが10g/Lの割合で含まれpHが3の水溶液中に浸漬した。積層体1、3、6及び電解研磨Al基材を作用極とし、Ag/AgCl(飽和KCl水溶液)を参照極、プラチナを対極として、走査速度1mV/sで走査して、動電位分極測定を行ない、腐食電流密度を測定した。
 動電位分極測定を行った後の、積層体1、3、6及び電解研磨Al基材の表面形態の写真を、図7に示す。
<Corrosion resistance>
The laminates 1, 3, and 6 obtained in Examples 1, 3, and 6 and the electropolished Al substrate obtained in Production Example 1 each contained 2 g/L of acetic acid and 10 g/L of sodium chloride. It was immersed in an aqueous solution having a pH of 3. Using the laminates 1, 3, and 6 and the electropolished Al substrate as the working electrode, Ag/AgCl (saturated KCl aqueous solution) as the reference electrode, and platinum as the counter electrode, scanning at a scanning speed of 1 mV/s, potentiodynamic polarization measurement was performed. and measured the corrosion current density.
Photographs of the surface morphology of the laminates 1, 3 and 6 and the electropolished Al substrate after the potentiodynamic polarization measurement are shown in FIG.
 積層体1、3、6の腐食電流密度値は、電解研磨Al基材の腐食電流密度値よりも5桁以上減少していた。これより、積層体1、3、6は、電解研磨Al基材よりも耐食性に優れたものであることがわかる。
 さらに、図7より、積層体1、3、6の表面には、目立った孔食が発生していないのに対し、電解研磨Al基材表面には、多数の孔食が発生したことがわかる。
The corrosion current density values of laminates 1, 3, and 6 were decreased by five orders of magnitude or more from the corrosion current density value of the electropolished Al substrate. From this, it can be seen that the laminates 1, 3, and 6 are superior in corrosion resistance to the electropolished Al substrate.
Furthermore, it can be seen from FIG. 7 that no conspicuous pitting corrosion occurred on the surfaces of the laminates 1, 3, and 6, whereas a large number of pitting corrosion occurred on the surface of the electropolished Al substrate. .
<耐氷性>
 20℃に設定したペルチェ素子の上に、実施例1、3、6で得られた積層体1、3、6及び製造例1で得られた電解研磨Al基材を載置し、積層体1、3、6及び電解研磨Al基材の上にOリングを載置し、これらを、温度20℃・湿度60%の恒温恒湿槽中に入れた。次いで、ペルチェ素子の温度を-20℃に下げて30分放置した。その後、超純水製造装置(Milli-Q)で製造した超純水をOリング内に入れて満たし、さらに-20℃で30分冷却して氷塊を作製した。
 次いで、Oリング内に作製された氷塊を除去する際の氷付着力を測定した。さらに、積層体1、3、6については、同様の手順を繰り返し、各回における氷付着力をそれぞれ測定した。結果を表6に示す。
<Ice resistance>
Laminates 1, 3, and 6 obtained in Examples 1, 3, and 6 and the electropolished Al substrate obtained in Production Example 1 were placed on a Peltier element set at 20° C., and laminate 1 , 3, 6 and an O-ring were placed on the electropolished Al substrate, and these were placed in a constant temperature and humidity bath at a temperature of 20° C. and a humidity of 60%. Then, the temperature of the Peltier device was lowered to -20°C and left for 30 minutes. Thereafter, the O-ring was filled with ultrapure water produced by an ultrapure water production apparatus (Milli-Q), and further cooled at -20°C for 30 minutes to prepare an ice block.
The ice adhesion force was then measured when removing the ice block created in the O-ring. Furthermore, the same procedure was repeated for laminates 1, 3, and 6, and the ice adhesion force was measured each time. Table 6 shows the results.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表6より、-20℃における氷付着力(氷塊のせん断付着強度)は、電解研磨Al基材では700kPaを超える大きな値を示したが、積層体1、3、6では約50~120kPaほどの低い値を示し、優れた難着氷性を有することがわかる。 From Table 6, the ice adhesion (shear adhesion strength of ice blocks) at −20° C. showed a large value exceeding 700 kPa for the electropolished Al substrate, but the laminates 1, 3, and 6 showed a value of about 50 to 120 kPa. A low value is shown, and it turns out that it has the anti-icing property excellent.
<アノード酸化条件の影響>
 実施例6で得られた積層体6及び実施例7で得られた積層体7について、多孔質部における各原子数濃度(atom%)、多孔質部のフッ素原子及びアルミニウム原子の和に対するフッ素原子の割合F/(F+Al)、ボールオンフラットトライボメーターによる耐摩耗試験(回転速度1mm/s)における、摩擦係数が0.3又は0.6を超えたときの回転数を、それぞれ表7に示す。
 金属基材1及び金属基材2の、表面形態の電子顕微鏡写真を図8に示す。
 積層体3及び積層体4の、表面部の断面形態の電子顕微鏡写真を図9に示す。
 積層体3及び積層体4の、表面部の断面EDS分析の結果を図10に示す。
<Effect of anodic oxidation conditions>
Regarding the laminate 6 obtained in Example 6 and the laminate 7 obtained in Example 7, each atom concentration (atom%) in the porous portion, fluorine atoms with respect to the sum of fluorine atoms and aluminum atoms in the porous portion Table 7 shows the ratio F / (F + Al) and the number of rotations when the friction coefficient exceeds 0.3 or 0.6 in the wear resistance test (rotation speed 1 mm / s) by a ball-on-flat tribometer. .
FIG. 8 shows electron micrographs of the surface morphology of the metal substrate 1 and the metal substrate 2 .
FIG. 9 shows electron micrographs of the cross-sectional forms of the surface portions of the laminates 3 and 4. As shown in FIG.
FIG. 10 shows the results of cross-sectional EDS analysis of the surface portions of the laminates 3 and 4. FIG.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表7及び図8~10より、電解研磨Al板に多孔質部を形成する際のアノード酸化条件を調整することで、多孔質部の孔径を調整することが可能であり、多孔質部の孔径が大きくなることで、多孔質部における潤滑剤の充填率を向上させることが可能となることがわかる。
 また、表7におけるボールオンフラットトライボメーターによる耐摩耗試験(回転速度1mm/s)の結果より、積層体3と比較して多孔質部に潤滑剤を多く含む積層体4は、耐摩耗性が向上していることがわかる。
From Table 7 and FIGS. 8 to 10, it is possible to adjust the pore size of the porous portion by adjusting the anodic oxidation conditions when forming the porous portion on the electropolished Al plate. It can be seen that it is possible to improve the filling rate of the lubricant in the porous portion by increasing the .
In addition, from the results of the wear resistance test (rotational speed 1 mm / s) by a ball-on-flat tribometer in Table 7, the laminate 4, which contains more lubricant in the porous portion than the laminate 3, has better wear resistance. You can see that it is improving.
<PSi混合物の各種評価>
 実施例1、3、8、9、13で得られた積層体1、3、8,9及び13について、水に対する静的接触角(°)、水に対する前進接触角と後退接触角の差である接触角ヒステリシス(°)及び水30μLにおける水滴転落角(°)を測定した。結果を表8に示す。
 さらに、積層体1、3、8、9及び13について、多孔質部における各原子数濃度(atom%)、多孔質部のフッ素原子及びアルミニウム原子の和に対するフッ素原子の割合F/(F+Al)、ボールオンフラットトライボメーターによる耐摩耗試験(回転速度10mm/s)における、摩擦係数が0.3又は0.6を超えたときの回転数を、それぞれ表8に併せて示す。
 積層体8、9、13の、表面部の断面形態の電子顕微鏡写真を図11に示す。
 積層体8、9、13の、表面部の断面EDS分析の結果を図12に示す。
<Various evaluations of PSi mixture>
For the laminates 1, 3, 8, 9 and 13 obtained in Examples 1, 3, 8, 9 and 13, the static contact angle (°) to water and the difference between the advancing and receding contact angles to water A certain contact angle hysteresis (°) and water drop falling angle (°) in 30 μL of water were measured. Table 8 shows the results.
Furthermore, for the laminates 1, 3, 8, 9 and 13, each atomic number concentration (atom%) in the porous portion, the ratio of fluorine atoms to the sum of fluorine atoms and aluminum atoms in the porous portion F / (F + Al), Table 8 also shows the number of revolutions when the coefficient of friction exceeds 0.3 or 0.6 in the wear resistance test (rotational speed 10 mm/s) using a ball-on-flat tribometer.
FIG. 11 shows electron micrographs of cross-sectional morphologies of the surfaces of the laminates 8, 9, and 13. As shown in FIG.
FIG. 12 shows the results of cross-sectional EDS analysis of the surfaces of the laminates 8, 9, and 13. FIG.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表8より、PMHS及びPDMSから構成されるPSi混合物1~3は、PMHS又はPDMS単独で用いた場合と比較して、水に対する静的接触角及び水滴転落角がほとんど変化しておらず、優れた滑水性を示すことがわかる。
 表8、図11及び12より、PSi混合物1~3は、PMHS又はPDMS単独で用いた場合と比較して、多孔質部内に多く入り込んでいる(多孔質部における充填率が高い)ことが分かり、潤滑剤層の密着性が高くなっていることがわかる。
 表8より、PSi混合物1~3は、ボールオンフラットトライボメーターによる耐摩耗試験(10mm/s)において、摩擦係数が0.6を超えた時の回転数が、PMHS又はPDMS単独で用いた場合と比較して極めて高くなっており、優れた耐摩耗性を示すことがわかる。
From Table 8, PSi mixtures 1 to 3, which are composed of PMHS and PDMS, are superior to the case of using PMHS or PDMS alone, with almost no change in static contact angle and water droplet falling angle. It can be seen that the water slipperiness is shown.
From Table 8, FIGS. 11 and 12, it can be seen that PSi mixtures 1 to 3 penetrated more into the porous part (higher filling rate in the porous part) than when PMHS or PDMS was used alone. , it can be seen that the adhesiveness of the lubricant layer is high.
From Table 8, PSi mixtures 1 to 3 had a friction coefficient exceeding 0.6 in a wear resistance test (10 mm/s) using a ball-on-flat tribometer. It can be seen that the wear resistance is extremely high compared to that of .
[表面の少なくとも一部に多孔質部を有するステンレス鋼基材の作製]
<製造例4>
 SUS304ステンレス鋼を#1500のSiC紙にて湿式研磨後、アセトン脱脂し、乾燥後、2.67Mの水酸化ナトリウム+0.133Mペルオキソ二硫酸アンモニウムの水溶液に室温(25℃)下で18時間浸漬して、表面の少なくとも一部に多孔質層を有するステンレス鋼基材を作製した。作製されたステンレス鋼基材表面のSEM写真を図13に示す。
[Preparation of stainless steel substrate having porous portion on at least part of surface]
<Production Example 4>
SUS304 stainless steel was wet-polished with #1500 SiC paper, degreased with acetone, dried, and immersed in an aqueous solution of 2.67M sodium hydroxide + 0.133M ammonium peroxodisulfate at room temperature (25°C) for 18 hours. , a stainless steel substrate having a porous layer on at least a portion of its surface was prepared. FIG. 13 shows an SEM photograph of the surface of the stainless steel substrate thus produced.
<実施例15>
[表面の少なくとも一部に多孔質部を有するステンレス鋼基材の滑液化]
 製造例4で作製されたステンレス鋼基材を、ポリジメチルシロキサン(PDMS:信越化学工業社製、KF-96-100CS)に浸漬し、多孔質部にPDMSを含浸させた。スピンコーターを用い、5,000rpmで60秒処理して余分なPDMSを除去した後に、電気炉中で、300℃で2時間熱処理し、PDMSを固化して積層体15を得た。
<Example 15>
[Synovial liquefaction of a stainless steel substrate having a porous portion on at least a part of its surface]
The stainless steel substrate prepared in Production Example 4 was immersed in polydimethylsiloxane (PDMS: KF-96-100CS manufactured by Shin-Etsu Chemical Co., Ltd.) to impregnate the porous portion with PDMS. Using a spin coater, the laminate was treated at 5,000 rpm for 60 seconds to remove excess PDMS, and then heat-treated at 300° C. for 2 hours in an electric furnace to solidify the PDMS to obtain a laminate 15 .
[表面の少なくとも一部に多孔質酸化被膜を有するチタン基材の作製]
<製造例5>
 JIS2種のチタン板を、1.0Mの塩化ナトリウムを含むエチレングリコール溶液中、20℃において、30Vで10分、その後10Vで10分電解研磨を行い,平滑な表面を得た。
 電解研磨したチタン板を、20℃において、0.1Mのフッ化アンモニウムと1.0Mの水を含むエチレングリコール電解液中で40Vにて5分アノード酸化し、表面の少なくとも日舞に多孔質酸化被膜を有するチタン基材を作製した。この被膜には、フッ化物イオンも含まれているため,エチレングリコールで洗浄後に350℃にて3時間熱処理を行い,非晶質な酸化物へと変化させた。作製されたチタン基材表面のSEM写真を図14に示す。図14に示されるように、作成されたチタン基材表面には、直径30nm~50nmのシリンダー状細孔を多数持つ多孔質酸化被膜が形成されている。
[Preparation of Titanium Base Material Having Porous Oxide Film on at least Part of Surface]
<Production Example 5>
A JIS class 2 titanium plate was electropolished in an ethylene glycol solution containing 1.0 M sodium chloride at 20° C. at 30 V for 10 minutes and then at 10 V for 10 minutes to obtain a smooth surface.
The electropolished titanium plate was anodized at 40 V for 5 minutes in an ethylene glycol electrolyte containing 0.1 M ammonium fluoride and 1.0 M water at 20° C., resulting in porous oxidation of the surface at least to the sun. A titanium substrate having a coating was produced. Since this film also contains fluoride ions, it was changed to an amorphous oxide by heat treatment at 350° C. for 3 hours after washing with ethylene glycol. FIG. 14 shows an SEM photograph of the surface of the titanium base material thus produced. As shown in FIG. 14, a porous oxide film having a large number of cylindrical pores with a diameter of 30 nm to 50 nm is formed on the surface of the prepared titanium base material.
[表面の少なくとも一部に多孔質酸化被膜を有するチタン基材の滑液化]
<実施例16>
 製造例5で作製されたチタン基材を用いたほかは、実施例15と同様にして、積層体16を得た。
[Synovial liquefaction of a titanium base material having a porous oxide film on at least a part of its surface]
<Example 16>
A laminate 16 was obtained in the same manner as in Example 15, except that the titanium base material produced in Production Example 5 was used.
[表面の少なくとも一部に多孔質被膜を有する亜鉛基材の作製]
<製造例6>
 厚さ1mmで純度99.99%のZn板を、アセトン中で5分、エタノール中で5分、超音波洗浄機(W-113)を用いて超音波洗浄することで電解研磨前処理を行った。次いで、3:7の体積比で混合したリン酸:99.5%エタノール溶液1L中、5℃以下に冷却し激しく撹拌しながら、20Vの電圧を10分印加して電解研磨を行った。電解研磨に際して、対極には、12cm×17cmのSUS304ステンレス鋼板を用いた。電解研磨後、脱イオン水で洗浄し、圧縮空気で乾燥した。次いで、電解研磨したZn板を、0.1mol・dm-3の水酸化カリウム水溶液中、室温(25℃)で、電圧4Vで1800秒間定電圧アノード酸化し、表面の少なくとも一部に多孔質被膜を有する亜鉛基材を作製した。作製された亜鉛基材表面及び断面のSEM写真を図14に示す。
[Preparation of zinc substrate having porous coating on at least part of surface]
<Production Example 6>
A Zn plate with a thickness of 1 mm and a purity of 99.99% was subjected to ultrasonic cleaning for 5 minutes in acetone and 5 minutes in ethanol using an ultrasonic cleaning machine (W-113) to perform electropolishing pretreatment. rice field. Next, electropolishing was performed by applying a voltage of 20 V for 10 minutes while cooling to 5° C. or less in 1 L of a phosphoric acid:99.5% ethanol solution mixed at a volume ratio of 3:7 and vigorously stirring. A SUS304 stainless steel plate of 12 cm×17 cm was used as the counter electrode for electropolishing. After electropolishing, it was washed with deionized water and dried with compressed air. Next, the electrolytically polished Zn plate is subjected to constant voltage anodization at room temperature (25 ° C.) in a 0.1 mol dm -3 potassium hydroxide aqueous solution at a voltage of 4 V for 1800 seconds to form a porous coating on at least part of the surface. A zinc substrate having FIG. 14 shows SEM photographs of the surface and cross section of the zinc base material thus produced.
[表面の少なくとも一部に多孔質被膜を有する亜鉛基材の滑液化]
<実施例17>
 製造例6で作製された亜鉛表面を、ポリメチルハイドロジェンシロキサン(PMHS:信越化学製KF-99)に含浸後、200℃にて2時間熱処理して積層体17を得た。
[Synovial liquefaction of a zinc substrate having a porous coating on at least a part of its surface]
<Example 17>
The zinc surface prepared in Production Example 6 was impregnated with polymethylhydrogensiloxane (PMHS: KF-99 manufactured by Shin-Etsu Chemical Co., Ltd.) and then heat-treated at 200° C. for 2 hours to obtain laminate 17 .
[表面の少なくとも一部に多孔質被膜を有する鉄基材の作製]
<製造例7>
 厚さ0.3mmで純度99.99%のFe板を、アセトン中で5分超音波洗浄した。次いで、試料のアノード酸化は,無撹拌の0.1mol・dm-3のフッ化アンモニウムと1.5mol・dm-3の超純水を含むエチレングリコール溶液中にて、無撹拌で、80Vの定電圧で5分間処理してアノード酸化した。次いで、昇温速度5K/分で昇温し、大気中400℃にて30分間熱処理を行い、フッ化物を多く含むアノード酸化膜を多孔質酸化物被膜へと変化させて、表面の少なくとも一部に多孔質被膜を有する鉄基材を作製した。作製された鉄基材表面のSEM写真を図15に示す。
[Preparation of iron substrate having porous coating on at least part of surface]
<Production Example 7>
A Fe plate with a thickness of 0.3 mm and a purity of 99.99% was ultrasonically cleaned in acetone for 5 minutes. Then, the sample was anodized in an ethylene glycol solution containing 0.1 mol·dm −3 of ammonium fluoride and 1.5 mol·dm −3 of ultrapure water without stirring at a constant voltage of 80 V. It was anodized by applying voltage for 5 minutes. Next, the temperature is raised at a temperature elevation rate of 5 K/min, and heat treatment is performed in the atmosphere at 400 ° C. for 30 minutes to change the fluoride-rich anodic oxide film into a porous oxide film, thereby forming at least a portion of the surface. An iron substrate with a porous coating was produced. FIG. 15 shows an SEM photograph of the surface of the iron substrate thus produced.
[表面の少なくとも一部に多孔質被膜を有する鉄基材の滑液化]
<実施例18>
 製造例7で作製された鉄基材を用いたほかは、実施例15と同様にして、積層体18を得た。
[Synovial liquefaction of an iron substrate having a porous coating on at least a part of its surface]
<Example 18>
A laminate 18 was obtained in the same manner as in Example 15, except that the iron base material produced in Production Example 7 was used.
[メソポーラスアルミナ多孔質体の作製]
<製造例8>
 α-アルミナ粉末(Baikowski社製、「BAIKALOX 1.0CR」)を20MPaで一軸加圧し,空気中1200℃で12時間焼成して、マクロポーラスなα-アルミナペレット(直径12mm、厚さ1.0mm)を得た。
 アルミニウム-トリ-sec-ブトキシド 8.4部を90℃の熱水 50mLと混合し、撹拌して白色ゾルを得た。得られた白色ゾルに、0.1M硝酸水溶液 1mLを加えて処理し、1Mベーマイト(γ-AlOOH)クリアゾルを得た。
 ポリビニルアルコール(PVA) 1.05部(PolyScience社製、重量平均分子量Mw=78,000)を撹拌しながら沸騰水 50mLと混合して、PVA溶液を得た。
 前記1Mベーマイト(γ-AlOOH)クリアゾル 30mLと、前記PVA溶液 20mLを混合して、0.6Mベーマイトゾルを得た。
 前記α-アルミナペレット上に、前記0.6Mベーマイトゾルを、3000rmp/分で20秒間スピンキャストした後に、室温(25℃)で3時間乾燥し、更に空気中700℃で3時間アニーリングして厚さ1.2μmのメソポーラスγ-アルミナ層を析出させ、メソポーラスアルミナ多孔質体を作製した。
[Preparation of mesoporous alumina porous material]
<Production Example 8>
α-Alumina powder (manufactured by Baikowski, "BAIKALOX 1.0CR") was uniaxially pressurized at 20 MPa and fired at 1200 ° C. in air for 12 hours to obtain macroporous α-alumina pellets (diameter 12 mm, thickness 1.0 mm). ).
8.4 parts of aluminum-tri-sec-butoxide was mixed with 50 mL of hot water at 90° C. and stirred to obtain a white sol. The obtained white sol was treated by adding 1 mL of 0.1 M nitric acid aqueous solution to obtain 1 M boehmite (γ-AlOOH) clear sol.
1.05 parts of polyvinyl alcohol (PVA) (manufactured by PolyScience, weight average molecular weight Mw=78,000) was mixed with 50 mL of boiling water while stirring to obtain a PVA solution.
30 mL of the 1M boehmite (γ-AlOOH) clear sol and 20 mL of the PVA solution were mixed to obtain a 0.6M boehmite sol.
The 0.6 M boehmite sol was spin-cast on the α-alumina pellets at 3000 rpm/min for 20 seconds, dried at room temperature (25° C.) for 3 hours, and then annealed in air at 700° C. for 3 hours to obtain a thick film. A mesoporous γ-alumina layer having a thickness of 1.2 μm was deposited to prepare a mesoporous alumina porous material.
[メソポーラスアルミナ多孔質体の滑液化]
<実施例19>
 製造例8で作製されたメソポーラスアルミナ多孔質体に、アモルファスフッ素樹脂(CYTOP:AGC社製,CTL-107MK)を滴下し、メソポーラスアルミナ多孔質体全面がアモルファスフッ素樹脂で覆われるようにして約10分間静置した後に、80℃で30分間、次いで180℃で30分間熱処理して積層体19を得た。
[Synovial liquefaction of mesoporous alumina porous material]
<Example 19>
Amorphous fluororesin (CYTOP: manufactured by AGC, CTL-107MK) was added dropwise to the mesoporous alumina porous material produced in Production Example 8, and the entire surface of the mesoporous alumina porous material was covered with the amorphous fluororesin. After standing for one minute, heat treatment was performed at 80° C. for 30 minutes and then at 180° C. for 30 minutes to obtain a laminate 19 .
[積層体15~19の滑液表面特性]
 積層体15~19について、4μLの水滴における静的接触角(°)及び10μLの水における液滴転落角(°)を測定した。結果を表9に示す
[Synovial surface characteristics of laminates 15 to 19]
For laminates 15 to 19, the static contact angle (°) with a 4 μL water droplet and the drop falling angle (°) with 10 μL water were measured. The results are shown in Table 9
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 製造例1~3、実施例1~14、比較例1~3、それらの評価結果に係る表1~表8及び図1~図12より、電解酸化(アノード酸化)によって形成した多孔質部内に潤滑剤を注入し加熱処理を行なうことで作製した滑液性固体表面は、さまざまな液体に対して優れた滑液性を有しており、多孔質部によって潤滑剤と基板との密着性が向上し、優れた機械的耐久性を示すことがわかった。
 製造例4~7、実施例15~18、それらの評価結果に係る表9及び図13~図16より、ステンレス(SUS304)基材、チタン、亜鉛又は鉄の表面に形成された多孔質部内に潤滑剤を含浸し加熱処理を行うことで作製した滑液性固体表面は、水滴の静的接触角が95°以上であって撥水性を示し、水滴量10μLにおける液滴転落角がいずれも5°以下であることから、優れた水に対する滑液性を有していることが分かる。
 製造例8、実施例19及びその評価結果に係る表9より、多孔質体に潤滑剤を含浸し加熱処理を行うことで作製した、多孔質部及び多孔質部の少なくとも一部を被覆するとともに多孔質部内部に充填されている潤滑剤から形成された有機層を有する滑液性固体表面は、水滴の静的接触角が110°以上であって優れた撥水性を示し、水滴量10μLにおける液滴転落角が20°以下であり、水に対する滑液性を有していることが分かる。
From Production Examples 1 to 3, Examples 1 to 14, Comparative Examples 1 to 3, Tables 1 to 8 and FIGS. The lubricating solid surface prepared by injecting a lubricant and performing heat treatment has excellent lubricating properties against various liquids, and the adhesion between the lubricant and the substrate is enhanced by the porous part. It was found to improve and exhibit excellent mechanical durability.
From Production Examples 4 to 7, Examples 15 to 18, and Table 9 and FIGS. The synovial solid surface prepared by impregnating with a lubricant and performing heat treatment exhibits water repellency with a static contact angle of water droplets of 95° or more. ° or less, it can be seen that it has excellent synovial properties against water.
From Production Examples 8 and 19 and Table 9 relating to the evaluation results thereof, the porous portion and at least a part of the porous portion were coated by impregnating the porous body with a lubricant and performing heat treatment. A synovial solid surface having an organic layer formed from a lubricant filled inside the porous portion exhibits excellent water repellency with a static contact angle of water droplets of 110° or more. The drop falling angle is 20° or less, indicating that the liquid has synovial properties against water.

Claims (8)

  1. 多孔質部、及び、前記多孔質部の少なくとも一部を被覆するとともに多孔質部内部に充填されている有機層を有し、
     前記有機層が、ポリシロキサン及び/又はアモルファスフッ素樹脂の1つ以上から形成された層である、積層体。
    Having a porous portion and an organic layer covering at least a portion of the porous portion and filling the inside of the porous portion,
    A laminate, wherein the organic layer is a layer formed from one or more of polysiloxane and/or amorphous fluororesin.
  2.  金属基材、前記金属基材の少なくとも一部に設けられた多孔質部、及び、前記多孔質部の少なくとも一部を被覆するとともに多孔質部内部に充填されている有機層を有し、
     前記有機層が、ポリシロキサン及び/又はアモルファスフッ素樹脂の1つ以上から形成された層である、積層体。
    Having a metal substrate, a porous portion provided in at least a portion of the metal substrate, and an organic layer covering at least a portion of the porous portion and filling the inside of the porous portion,
    A laminate, wherein the organic layer is a layer formed from one or more of polysiloxane and/or amorphous fluororesin.
  3.  前記ポリシロキサンが、下記式(1);
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R、R、X及びXは、それぞれ独立にアルキル基、芳香族基、不飽和炭化水素基であり、X及びXは、それぞれ独立にアルキル基、芳香族基、不飽和炭化水素基、水素であり、nは2以上の整数である。n個のX及びXは、それぞれ互いに同一であっても異なっていてもよい。)
    で表される化合物である、請求項1又は2に記載の積層体。
    The polysiloxane has the following formula (1);
    Figure JPOXMLDOC01-appb-C000001
    (In Formula (1), R 1 , R 2 , X 1 and X 3 are each independently an alkyl group, an aromatic group and an unsaturated hydrocarbon group, and X 2 and X 4 are each independently an alkyl group. , an aromatic group, an unsaturated hydrocarbon group, or hydrogen, and n is an integer of 2 or more, and n X 3 and X 4 may be the same or different.)
    The laminate according to claim 1 or 2, which is a compound represented by.
  4.  前記有機層が、ゲル状である、請求項1又は2に記載の積層体。 The laminate according to claim 1 or 2, wherein the organic layer is gel.
  5.  滑液性、防汚性、撥液性、及び滑雪・滑氷性の1以上を有する、請求項1又は2に記載の積層体。 The laminate according to claim 1 or 2, which has one or more of synovial properties, antifouling properties, liquid repellency, and snow/ice sliding properties.
  6.  電線、鉄塔、金属構造物、電柱、変圧器、電線附属物、送電関連器具、標識、看板、アンテナ、屋根、鞄、車両、航空機、ガードレール、建材、食品プラント用部材として用いられる、請求項1又は2に記載の積層体。 Used as electric wires, steel towers, metal structures, electric poles, transformers, electric wire accessories, equipment related to power transmission, signs, signboards, antennas, roofs, bags, vehicles, aircraft, guardrails, building materials, and food plant members. 3. Or the laminated body of 2.
  7.  表面の少なくとも一部に多孔質部を有する金属基材上に、前記多孔質部の少なくとも一部を被覆するとともに多孔質部内部に充填されている有機層を形成する工程、及び、
     前記有機層を加熱する工程、
    を有し、
     前記有機層が、ポリシロキサン及び/又はアモルファスフッ素樹脂の1つ以上から形成された層である、
    積層体の製造方法。
    forming an organic layer covering at least a portion of the porous portion and filling the interior of the porous portion on a metal substrate having a porous portion on at least a portion of the surface;
    heating the organic layer;
    has
    The organic layer is a layer formed from one or more of polysiloxane and / or amorphous fluororesin,
    A method for manufacturing a laminate.
  8.  金属基材の表面の少なくとも一部に多孔質部を形成する工程を有する、請求項7に記載の方法。 The method according to claim 7, comprising the step of forming a porous portion on at least part of the surface of the metal substrate.
PCT/JP2022/032444 2021-08-30 2022-08-29 Laminate and method for producing laminate WO2023032926A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021140016 2021-08-30
JP2021-140016 2021-08-30

Publications (1)

Publication Number Publication Date
WO2023032926A1 true WO2023032926A1 (en) 2023-03-09

Family

ID=85412278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032444 WO2023032926A1 (en) 2021-08-30 2022-08-29 Laminate and method for producing laminate

Country Status (1)

Country Link
WO (1) WO2023032926A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0349057A (en) * 1989-07-18 1991-03-01 Nec Corp Stamper
JP2001126539A (en) * 1999-10-27 2001-05-11 Japan Gore Tex Inc Transparent conductive film and method of preparing it
JP2006124417A (en) * 2004-10-26 2006-05-18 Asahi Glass Co Ltd Stainproof layer-forming composition and reflection-preventing laminate
US20060159907A1 (en) * 2004-12-10 2006-07-20 Simona Percec Filled ultramicrocellular structures
JP2006225752A (en) * 2005-02-15 2006-08-31 Opto:Kk Aluminum panel reforming method
JP2019014793A (en) * 2017-07-05 2019-01-31 凸版印刷株式会社 Water- and oil-repellent base material
WO2019035192A1 (en) * 2017-08-16 2019-02-21 日産自動車株式会社 Antifouling structure
JP2019123761A (en) * 2018-01-11 2019-07-25 住友電気工業株式会社 Manufacturing method of oil repellent sheet material, and gas sensor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0349057A (en) * 1989-07-18 1991-03-01 Nec Corp Stamper
JP2001126539A (en) * 1999-10-27 2001-05-11 Japan Gore Tex Inc Transparent conductive film and method of preparing it
JP2006124417A (en) * 2004-10-26 2006-05-18 Asahi Glass Co Ltd Stainproof layer-forming composition and reflection-preventing laminate
US20060159907A1 (en) * 2004-12-10 2006-07-20 Simona Percec Filled ultramicrocellular structures
JP2006225752A (en) * 2005-02-15 2006-08-31 Opto:Kk Aluminum panel reforming method
JP2019014793A (en) * 2017-07-05 2019-01-31 凸版印刷株式会社 Water- and oil-repellent base material
WO2019035192A1 (en) * 2017-08-16 2019-02-21 日産自動車株式会社 Antifouling structure
JP2019123761A (en) * 2018-01-11 2019-07-25 住友電気工業株式会社 Manufacturing method of oil repellent sheet material, and gas sensor

Similar Documents

Publication Publication Date Title
Caldona et al. Superhydrophobic rubber-modified polybenzoxazine/SiO2 nanocomposite coating with anticorrosion, anti-ice, and superoleophilicity properties
Sarkar et al. Superhydrophobic coatings with reduced ice adhesion
Wu et al. Alumina nanowire forests via unconventional anodization and super-repellency plus low adhesion to diverse liquids
Song et al. A simple immersion approach for fabricating superhydrophobic Mg alloy surfaces
Lakshmi et al. Effect of the size of silica nanoparticles on wettability and surface chemistry of sol–gel superhydrophobic and oleophobic nanocomposite coatings
Xiao et al. Superhydrophobic CuO nanoneedle-covered copper surfaces for anticorrosion
Varshney et al. Superhydrophobic coatings for aluminium surfaces synthesized by chemical etching process
US11248129B2 (en) Liquid impregnated surfaces for liquid repellancy
Wankhede et al. Development of water-repellent organic–inorganic hybrid sol–gel coatings on aluminum using short chain perfluoro polymer emulsion
KR102018037B1 (en) Devices incorporating a liquid-impregnated surface
JP6228012B2 (en) Slippery surface with high pressure stability, light transmission, and self-healing properties
Momen et al. Wettability behaviour of RTV silicone rubber coated on nanostructured aluminium surface
WO2018085376A2 (en) Coatings having adaptable wettability as well as methods of making and using thereof
US20220024824A1 (en) Ceramic Surface Modification Materials and Methods of Use Thereof
WO2014012052A1 (en) Slips surface based on metal-containing compound
Chen et al. An ionic liquid-infused slippery surface for temperature stability, shear resistance and corrosion resistance
Kondo et al. Superhydrophilic and superhydrophobic aluminum alloys fabricated via pyrophosphoric acid anodizing and fluorinated SAM modification
Liang et al. Facile fabrication of a flower-like CuO/Cu (OH) 2 nanorod film with tunable wetting transition and excellent stability
Wang et al. Preparation and characterization of uniform polyaniline nano-fibrils using the anodic aluminum oxide template
Joo et al. Design and experimental studies of self-healable anti-corrosion coating: Passivation of metal surfaces by silicone oil impregnated porous oxides
Liu et al. Fabrication of acrylamide decorated superhydrophilic and underwater superoleophobic poly (vinylidene fluoride) membranes for oil/water emulsion separation
Jin et al. Highly efficient oil/water separation and excellent self-cleaning surfaces based on 1-triacontanol-polymerized octadecylsiloxane coatings
JP2019014793A (en) Water- and oil-repellent base material
Thi et al. Durable superhydrophobic cotton filter prepared at low temperature for highly efficient hexane and water separation
WO2023032926A1 (en) Laminate and method for producing laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864508

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023545567

Country of ref document: JP