WO2023032907A1 - Information processing device for tires, and program - Google Patents

Information processing device for tires, and program Download PDF

Info

Publication number
WO2023032907A1
WO2023032907A1 PCT/JP2022/032385 JP2022032385W WO2023032907A1 WO 2023032907 A1 WO2023032907 A1 WO 2023032907A1 JP 2022032385 W JP2022032385 W JP 2022032385W WO 2023032907 A1 WO2023032907 A1 WO 2023032907A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
information
sensor
detection value
measurement condition
Prior art date
Application number
PCT/JP2022/032385
Other languages
French (fr)
Japanese (ja)
Inventor
忠雄 千里内
貞春 米田
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Publication of WO2023032907A1 publication Critical patent/WO2023032907A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/06Signalling devices actuated by deformation of the tyre, e.g. tyre mounted deformation sensors or indirect determination of tyre deformation based on wheel speed, wheel-centre to ground distance or inclination of wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/20Devices for measuring or signalling tyre temperature only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/068Road friction coefficient

Definitions

  • the present disclosure relates to an information processing device and a program.
  • sensors have been used to monitor tire parameters.
  • a piezoelectric element that is a strain sensor is attached to a tire, the magnitude of deformation of the tire is detected according to the magnitude of the amplitude of the signal detected by the piezoelectric element, and a load is applied to the tire based on the detection result. estimating the load to be applied.
  • the sensor may be damaged.
  • variations in sensitivity occur, causing variations in the values detected by the sensors.
  • such calibration often needs to be done after the sensor is mounted on the tire, which can be difficult.
  • the present disclosure has been made in consideration of such circumstances, and an information processing device and program capable of accurately acquiring evaluation information about tires even if there are individual variations in sensors that detect information about tires.
  • the task is to provide
  • One aspect of the present disclosure is tire information based on the first detection value detected by a first sensor that detects a first detection value regarding a tire that is provided in a vehicle and has a wheel and a rubber portion, the tire information relating to a predetermined event
  • the information processing device includes an information processing unit that acquires evaluation information about the tire based on two or more pieces of tire information corresponding to two or more different conditions.
  • One aspect of the present disclosure is tire information based on the first detection value detected by a first sensor that detects a first detection value regarding a tire that is provided in a vehicle and has a wheel and a rubber portion in a computer,
  • the information processing device and the program it is possible to acquire the evaluation information about the tire with high accuracy even if there are individual variations in the sensors that detect the information about the tire.
  • FIG. 4 is a diagram showing an example of relative relationship between two distortion signals according to the embodiment
  • FIG. 10 is a diagram showing another example of the relative relationship between two distortion signals according to the embodiment
  • FIG. 1 is a diagram showing an example of a schematic configuration of an information processing device 1 according to an embodiment.
  • the tire 51 and the measurement condition acquisition target 52 are shown in FIG.
  • the information processing apparatus 1 has a function of analyzing data regarding the tire 51 based on data regarding the measurement condition acquisition target 52 .
  • the information processing device 1 may be called an information processing system or the like.
  • the tire 51 is one of one or more tires connected to a vehicle such as an automobile.
  • a predetermined number of tires (for example, four in the case of an automobile) are connected to the vehicle.
  • the vehicle is not particularly limited, and may be, for example, a motorcycle, a bicycle, or an aircraft.
  • an aircraft can also be regarded as a vehicle when the aircraft is traveling on the ground with its tires.
  • the tire 51 generally has a wheel and a rubber portion attached around the wheel.
  • the rubber portion may have, for example, a bead portion, a sidewall portion, a shoulder portion, and a tread portion.
  • the tire 51 may be, for example, various tires having a rubber portion, or various tires having a wheel and a rubber portion.
  • the measurement condition acquisition target 52 is the tire 51 or a vehicle provided with the tire 51 (here, a portion other than the tire). Note that the measurement condition acquisition target 52 may be another object.
  • the information processing device 1 includes a tire characteristic acquisition sensor 11 , a measurement condition acquisition sensor 12 , and a data analysis device 21 .
  • the data analysis device 21 includes a measurement condition determination section 31 , a comparison data selection section 32 , a data analysis section 33 and a storage section 34 .
  • the tire characteristic acquisition sensor 11 detects (measures) a predetermined physical quantity value (detection value) relating to the tire 51 .
  • the tire characteristic acquisition sensor 11 outputs the detected value (detection value) to the comparison data selection section 32 of the data analysis device 21 .
  • the tire characteristic acquisition sensor 11 is attached to the tire 51, for example, but if it can detect a predetermined physical quantity value (detection value) related to the tire 51, it can be provided at a location other than the tire 51. good too.
  • a sensor that is not directly attached to the tire 51 and detects a detection value related to the tire 51 by emitting light and receiving reflected light from the tire 51 may be used as the tire characteristic acquisition sensor 11. good.
  • the measurement condition acquisition sensor 12 detects (measures) a value (detected value) of a predetermined physical quantity relating to the measurement condition acquisition target 52 .
  • the measurement condition acquisition sensor 12 outputs the detected value (detection value) to the measurement condition determination section 31 of the data analysis device 21 .
  • the measurement condition acquisition sensor 12 is attached to the measurement condition acquisition target 52, for example, but if it can detect a predetermined physical quantity value (detection value), it can be attached to a location other than the measurement condition acquisition target 52. may be provided.
  • a line (wired or wireless) for outputting the detection value detected by the tire characteristic acquisition sensor 11 to the measurement condition determining section 31 of the data analysis device 21 is also shown.
  • the tire characteristic acquisition sensor 11 may output the detected value to the measurement condition determination unit 31 of the data analysis device 21.
  • the measurement condition determination unit 31 outputs the detection value from the measurement condition acquisition sensor 12. It is possible to use not only the value but also the detected value from the tire characteristic acquisition sensor 11 .
  • the measurement condition determination section 31 does not use the detection value of the tire characteristic acquisition sensor 11, the detection value detected by the tire characteristic acquisition sensor 11 is output to the measurement condition determination section 31 of the data analysis device 21.
  • No line (wired or wireless) may be provided.
  • the tire characteristic acquisition sensor 11 and the measurement condition acquisition sensor 12 are different sensors, and the detection value (detection target and detection target) detected by the tire characteristic acquisition sensor 11 is physical quantity) and the detected value (combination of detection target and physical quantity) detected by the measurement condition acquisition sensor 12 are different.
  • Sensor 12 may be a common sensor.
  • the function of the measurement condition acquisition sensor 12 is shared by the tire characteristic acquisition sensor 11, so the measurement condition acquisition sensor 12 is not provided, and the tire characteristic acquisition sensor 12 is not provided.
  • the detection value of the sensor 11 for measurement is output to the comparison data selection section 32 and the measurement condition determination section 31 of the data analysis device 21 .
  • the data analysis device 21 is provided in the tire or the vehicle (here, the portion other than the tire).
  • the data analysis device 21 may be configured using, for example, a microcomputer.
  • the data analysis device 21 includes a processor such as a CPU (Central Processing Unit) and a memory (the storage unit 34 in the example of FIG. 1). , to implement various processes.
  • the storage unit 34 stores various information.
  • the storage unit 34 may store the program.
  • the measurement condition determination unit 31 acquires information on a predetermined event (also referred to as predetermined event information for convenience of explanation) based on the detection value input from the measurement condition acquisition sensor 12, and based on the acquired predetermined event information to determine at least two conditions (referred to as measurement conditions for convenience of explanation).
  • the measurement condition determination unit 31 outputs information representing each determined measurement condition (for convenience of explanation, also referred to as measurement condition information) to the comparison data selection unit 32 .
  • each measurement condition includes information capable of specifying comparison data (information based on detection values of the tire characteristic acquisition sensor 11) to be selected by the comparison data selection section 32.
  • the information may be, for example, information indicating the timing of the comparison data to be selected (or the order of arrangement).
  • the measurement conditions may be called, for example, detection conditions, or simply conditions.
  • the measurement condition determination unit 31 may further use the detection value detected by the tire characteristic acquisition sensor 11 . In this case, the measurement condition determination unit 31 determines the measurement conditions based on the detection value input from the measurement condition acquisition sensor 12 and the detection value input from the tire characteristic acquisition sensor 11 .
  • the measurement condition determination unit 31 may have, for example, an analog circuit and an analog-to-digital converter (A/D converter: Analog to Digital Converter).
  • the analog circuit receives a detection value signal (analog signal) output from the tire characteristic acquisition sensor 11 and, if necessary, performs analog processing such as amplification on the signal.
  • the A/D converter converts a detection value signal (analog signal) analog-processed by an analog circuit into a digital signal (detection value data). Then, the measurement condition determining section 31 may process the digital data.
  • the comparison data selection unit 32 acquires information about the tire 51 (also referred to as tire information for convenience of explanation) based on the detected value input from the tire characteristic acquisition sensor 11 , and also inputs from the measurement condition determination unit 31 . Get the measurement condition information to be used. Then, the comparison data selection section 32 selects (acquires) tire information corresponding to the measurement conditions represented by the measurement condition information input from the measurement condition determination section 31 . The comparison data selection unit 32 acquires tire information (at least two pieces of tire information) corresponding to at least two measurement conditions, and outputs the tire information to the data analysis unit 33 as comparison data.
  • the tire information is information about the characteristics of the tire 51 , and is information that changes according to the degree of deterioration of the tire 51 , for example.
  • detection is always performed by each of the tire characteristic acquisition sensor 11 and the measurement condition acquisition sensor 12 while the vehicle is running, and the data analysis device 21 detects the tire characteristic acquisition sensor 11.
  • a value (or tire information based on the detected value may be stored) in the storage unit 34, and a detected value of the measurement condition acquisition sensor 12 (or predetermined event information based on the detected value may be stored). It is stored in the storage unit 34.
  • the measurement condition determination unit 31 determines measurement conditions based on the information stored in the storage unit 34 (the detection value of the measurement condition acquisition sensor 12 or the predetermined event information based on the detection value).
  • the comparison data selection unit 32 selects tire information corresponding to the measurement conditions based on the information stored in the storage unit 34 (detected values of the tire characteristic acquisition sensor 11 or tire information based on the detected values). is selectively obtained.
  • the constant detection may be, for example, detection at predetermined timings such as constant time intervals.
  • the storage unit 34 simultaneously (or substantially simultaneously) detection values of the tire characteristic acquisition sensor 11 (or tire information based on the detection values may be used) and measurement condition acquisition sensor 12 Detected values (or predetermined event information based on the detected values may be used) are associated with each other and stored. Such correspondence between both pieces of stored information may be performed, for example, by adding detection time information (time stamp) to each piece of stored information. may be done by attachment.
  • detection time information time stamp
  • the comparison data selection unit 32 receives the detection values that are sequentially output from the tire characteristic acquisition sensor 11 in real time, and the comparison data selection unit 32 selects data based on the measurement condition information input from the measurement condition determination unit 31.
  • the tire information based on the detection value may be selectively acquired at the timing when the measurement condition to be determined is satisfied (or at substantially the same timing as the timing).
  • the detected values (or information based on the detected values) of the sensors may be stored once and then processed. Alternatively, it may be processed in real time. Note that the detected value of the sensor or information obtained from the detected value may be called sensing data or the like.
  • the predetermined event information acquired by the measurement condition determination unit 31 is information on the detection value of the measurement condition acquisition sensor 12 .
  • the measurement condition acquisition sensor 12 detects a detection value for a predetermined event.
  • the predetermined event information acquired by the measurement condition determination unit 31 may be information of the result of calculation using the detection value of the measurement condition acquisition sensor 12 .
  • the measurement condition determination unit 31 acquires the predetermined event information by performing a predetermined calculation or the like based on the detection value of the measurement condition acquisition sensor 12 .
  • the calculation or the like may be, for example, calculation using a predetermined calculation formula, or estimation using a predetermined calculation formula (estimation formula) or the like.
  • the tire information acquired by the comparison data selection unit 32 is information of the detection value of the tire characteristic acquisition sensor 11 .
  • the tire characteristic acquisition sensor 11 detects a detection value for predetermined tire information.
  • the tire information acquired by the comparison data selection unit 32 may be information obtained as a result of computation using the detection values of the tire characteristic acquisition sensor 11 .
  • the comparison data selection unit 32 acquires tire information by performing a predetermined calculation or the like based on the detection value of the tire characteristic acquisition sensor 11 .
  • the calculation or the like may be, for example, calculation using a predetermined calculation formula, or may be estimation using a predetermined calculation formula (estimation formula) or the like.
  • the comparison data selection unit 32 may have, for example, an analog circuit and an analog-to-digital converter (A/D converter).
  • the analog circuit receives the signal of the detected value output from the tire characteristic acquisition sensor 11, and performs analog processing such as amplification on the signal as necessary.
  • the A/D converter converts a detection value signal (analog signal) analog-processed by an analog circuit into a digital signal (detection value data). Then, the comparison data selection unit 32 may process the digital data.
  • the tire information and the predetermined event information are respectively acquired based on the values (detected values) detected by the sensors. be done.
  • the tire information and the predetermined event information are different information based on a common detection value, but as another configuration example, the tire information and the predetermined event information may be common information.
  • the tire information is distortion information (or speed information)
  • the predetermined event information is speed information (or distortion information)
  • the data analysis unit 33 analyzes the comparison data (at least two pieces of tire information) input from the comparison data selection unit 32 .
  • the data analysis unit 33 compares at least two pieces of tire information and acquires evaluation information regarding the tire 51 based on the comparison result.
  • the data analysis unit 33 acquires the evaluation information, for example, by performing a predetermined calculation or the like using at least two pieces of tire information.
  • the evaluation information may be information obtained as a result of calculation using at least two pieces of tire information.
  • the calculation or the like may be, for example, calculation using a predetermined calculation formula, or estimation using a predetermined calculation formula (estimation formula) or the like.
  • the object to be compared with respect to the two pieces of tire information may be arbitrary, for example, one or more of amplitude, level difference between peaks, temporal feature, noise, waveform, dispersion, etc. There may be.
  • the evaluation information may be, for example, evaluation information regarding the tire 51 itself, or may be information regarding evaluation of an object related to the tire 51, such as a road surface in contact with the tire 51. Alternatively, it may be evaluation information regarding both of them. Also, the evaluation information may be information on deterioration or information on abnormality of the tire 51, an object related to the tire 51, or both.
  • the word "deterioration” is used when the tire 51 is deteriorated to the extent that it can be used
  • the word “abnormality” is used when the tire 51 is deteriorated to such an extent that it cannot be used.
  • the distinction between the meanings of these terms is an example for convenience of explanation, and the terms are not necessarily limited to the distinction, and any term may be used according to each system or the like.
  • the deterioration of the tire 51 includes, for example, deterioration due to wear of the rubber portion (eg, tread portion) of the tire 51 or due to hardening of the rubber portion of the tire 51 .
  • the deformation of the rubber portion of the tire 51 changes due to abrasion of the rubber portion (for example, the tread portion) of the tire 51, or hardening of the rubber portion of the tire 51. It is possible to grasp the degree of deterioration of the tire 51 .
  • an abnormality of the tire 51 includes burst or puncture of the tire 51, for example.
  • each processing unit (measurement condition determination unit 31, comparison data selection unit 32, data analysis unit 33, storage unit 34) of the data analysis device 21 will be described separately.
  • Such division of each processing unit may be arbitrary, and such division of each processing unit may not necessarily exist.
  • each processing unit of the information processing device 1 performs each process.
  • the information may be set in advance in the information processing device 1, or may be automatically set by user (human) operation or machine learning. Specifically, it may be possible to set or change.
  • exchange of information between different processing units may be performed by wire or wirelessly, for example.
  • FIG. 2 is a diagram illustrating an example of mounting positions of sensors according to the embodiment.
  • FIG. 2 schematically shows how the tire 51 is in contact with the ground 111 .
  • arrows are used to indicate the direction of rotation of the tire 51.
  • the rubber portion 121 of the tire 51 is shown, and the illustration of the wheel of the tire 51 is omitted.
  • the tire characteristic acquisition sensor 11 may be provided on the inner surface 123 (which may be called an inner wall or the like) of the rubber portion 121 of the tire 51 .
  • the position where the tire characteristic acquisition sensor 11 is provided is, for example, the tire when the tire 51 is viewed in the traveling direction (in the example of FIG. 2, substantially in the horizontal direction). 51 (in the example of FIG. 2, the direction substantially perpendicular to the drawing) may be positioned (for example, the central position).
  • 51 in the example of FIG. 2, the direction substantially perpendicular to the drawing
  • the portion in contact with the ground 111 and its vicinity are deformed. to be done.
  • FIG. 2 shows a configuration example in which the tire characteristic acquisition sensor 11 is adhered to the inner surface 123 of the rubber portion 121
  • the tire characteristic acquisition sensor 11 is attached to the inner surface 123 of the rubber portion 121.
  • Embedded configurations may also be used.
  • the mounting position of the tire characteristic acquisition sensor 11 is not particularly limited, and may be provided on the inner surface (inner wall) of the wheel of the tire 51, for example. Further, a configuration may be used in which an acceleration sensor is provided on the inner surface of the wheel of the tire 51, and the degree of deformation of the tire 51 (for example, the rubber portion 121) is indirectly detected based on the detection value of the acceleration sensor. . Also, FIG. 2 shows an example of the mounting position of the tire characteristic acquisition sensor 11, but the same mounting position may be used for the measurement condition acquisition sensor 12 as well.
  • FIGS. 3A and 3B are diagrams showing other examples of mounting positions of sensors according to the embodiment.
  • FIG. 3A shows the tire 51 with the wheel 131 and the rubber portion 132 attached.
  • the tire characteristic acquisition sensor 11 is provided between a wheel 131 (for example, a rim portion) and a rubber portion 132 .
  • FIG. 3B shows the wheel 131 and the tire characteristic acquisition sensor 11 without the rubber portion 132 attached.
  • FIGS. 3(A) and 3(B) show an example of the mounting position of the tire characteristic acquiring sensor 11, the same mounting position may be used for the measurement condition acquiring sensor 12 as well.
  • Examples of measurement conditions and examples of types of sensors for acquiring measurement conditions An example of measurement conditions based on predetermined event information detected by the measurement condition acquisition sensor 12 is shown. Examples of types of sensors (in this case, the measurement condition acquisition sensor 12) that detect the detection values (predetermined event information itself may be used) that are the basis of the predetermined event information are also shown.
  • the measurement condition may be, for example, the speed condition.
  • the detected value detected by the measurement condition acquisition sensor 12 may be, for example, speed information, or other information that can be used to calculate speed information. There may be.
  • the other information may be, for example, acceleration information or distortion information (for example, distortion occurring in the tire 51 when the tire 51 contacts the ground).
  • a speed sensor vehicle speed sensor
  • the sensor the measurement condition acquisition sensor 12
  • a sensor that detects the amount of rotation of the tire 51 (wheel) may be used, and the speed may be calculated based on the amount of rotation.
  • the tire characteristic acquisition sensor 11 may be used as the measurement condition acquisition sensor 12 .
  • a measurement condition such as 20 km/h or 40 km/h may be used as the speed measurement condition.
  • tire information based on detection values of the tire characteristic acquisition sensor 11 when the vehicle is running at a speed of 20 km/h or 40 km/h is acquired as the tire information corresponding to the measurement conditions.
  • an acceleration sensor that detects acceleration may be used as the sensor (here, the measurement condition acquisition sensor 12). In this case, the velocity is detected (eg, calculated) based on the detected acceleration.
  • a strain sensor that detects strain may be used as the sensor (here, the measurement condition acquisition sensor 12). In this case, the velocity is detected (calculated, for example) based on the detected strain.
  • the measurement conditions may be, for example, load conditions.
  • the detected value detected by the measurement condition acquisition sensor 12 may be, for example, load information, or other information that can be used to calculate load information.
  • the load information is information about the force applied to the tire 51 from the vehicle (here, the portion other than the tire). For example, in a vehicle having four tires, the force applied to one tire is approximately 1/4 of the weight of the vehicle, but this is not limitative depending on the structure of the vehicle.
  • the sensor for example, a load sensor that detects a load may be used.
  • the load sensor may be attached to the suspension of the vehicle.
  • the tire characteristic acquisition sensor 11 may be used as the measurement condition acquisition sensor 12 .
  • the tire information based on the detection value of the tire characteristic acquisition sensor 11 at that timing is acquired as the tire information corresponding to the measurement conditions.
  • the measurement conditions may be, for example, air pressure conditions.
  • the detected value detected by the measurement condition acquisition sensor 12 may be, for example, air pressure information, or other information that can be used to calculate the air pressure information. There may be.
  • the sensor for example, a pressure sensor that detects air pressure may be used.
  • a pressure sensor may be installed in the tire 51, for example.
  • a condition before the tire 51 is inflated (for example, immediately before) and a condition after the tire 51 is inflated (for example, immediately after) may be used.
  • timing conditions before and after the tire 51 is inflated may be used.
  • the measurement condition may be the temperature condition of the tire 51, for example.
  • the detected value detected by the measurement condition acquisition sensor 12 may be, for example, temperature information, or other information capable of calculating temperature information.
  • the sensor for example, a temperature sensor that detects temperature may be used.
  • the temperature sensor may be installed in the tire 51, for example.
  • a condition that the tire 51 is heated by running the vehicle and a condition that the tire 51 is heated by running the vehicle may be used. Timing conditions before and after 51 is heated may be used.
  • the load, the air pressure, or the temperature of the tire 51 are parameters that change while the vehicle is in use.
  • the parameters are used for measurement conditions, for example, it is possible to obtain tire information when the parameters are desired values while the vehicle is running without preparing a special environment.
  • Information analyzed based on the tire information may be, for example, information on the distortion of the tire 51 .
  • the tire information based on the detection value detected by the tire characteristic acquisition sensor 11 may be, for example, distortion information, or may be used to calculate distortion information. Other information may be used.
  • the sensor for example, a strain sensor that detects the strain of the tire 51 may be used.
  • the strain sensor is installed on the tire 51 in this embodiment.
  • the tire information may be distortion information.
  • the strain sensor can detect the degree of deformation of the tire 51 .
  • the detected value of the strain sensor changes when the tire 51 rotates and the portion of the tire 51 corresponding to the predetermined portion touches the ground.
  • the predetermined portion of the tire 51 may be the inner surface of the rubber portion 121 of the tire 51, as shown in FIG.
  • the way the tire 51 deforms changes depending on the wear of the tread portion of the tire 51 and the change in the hardness of the rubber portion of the tire 51. Therefore, the degree of deterioration of the tire 51 can be determined by the difference in the way the tire 51 deforms. It is possible to grasp
  • the sensor for example, an acceleration sensor may be used.
  • the acceleration sensor is installed on the tire 51 in this embodiment.
  • the tire information may be acceleration information. It is also possible to detect the degree of deformation of the tire 51 based on the detection value of the acceleration sensor.
  • a pressure sensor may be used as the sensor (here, the tire characteristic acquisition sensor 11).
  • the pressure sensor is installed in the tire 51 in this embodiment.
  • the tire information may be pressure information.
  • a pressure sensor can detect the degree of deformation of the tire 51 .
  • the detected value of the pressure sensor changes when the portion of the tire 51 corresponding to the predetermined location touches the ground when the tire 51 rotates.
  • the predetermined location on the tire 51 may be a location between the wheel 131 (for example, the rim portion) and the rubber portion 132, as shown in FIGS. 3(A) and 3(B).
  • a strain sensor, an acceleration sensor, or a pressure sensor may be used in order to grasp the deformation of an object.
  • a strain sensor, an acceleration sensor, or a pressure sensor is suitable as a sensor for detecting deformation of the rubber portion of the tire 51, for example.
  • FIG. 4 is a diagram illustrating an example of a detection value (distortion signal) of the distortion sensor according to the embodiment;
  • the example of FIG. 4 is an example in which a strain sensor is used as the tire characteristic acquisition sensor 11 .
  • the horizontal axis represents time
  • the vertical axis represents the level of the detected value of the strain sensor (for example, amplitude of voltage).
  • the graph shows an example of a strain signal (strain signal 1011) detected by the strain sensor.
  • the strain sensor is installed at a predetermined location on the tire 51 .
  • the strain signal 1011 shown in FIG. 4 indicates that the portion of the tire 51 corresponding to the predetermined location is in contact with the ground at time T1 and time T2 when the tire 51 rotates.
  • the time T2 is later than the time T1, and the period in which the tire 51 rotates once (one rotation period 1021) corresponds to the period of (time T2-time T1).
  • the evaluation information includes, for example, the deterioration of the tire 51, the abnormality of the tire 51, the condition of the road surface on which the tire 51 is in contact (for example, the condition of the road surface being wet with rain, the condition of the road surface being frozen, etc.), or may be information relating to one or more of the grip force between the road surface in contact with the tire 51 and the like.
  • the type of deterioration of the tire 51 is not particularly limited, and may be deterioration due to wear of the tread portion of the tire 51 or deterioration due to a change in hardness of the tire 51, for example.
  • FIG. 5 An example of evaluation performed by the data analysis unit 33 is shown with reference to FIGS. 5 and 6.
  • FIG. 6 The example of FIG. 5 and the example of FIG. 6 show the case where the distortion signal based on the tire information is evaluated.
  • FIG. 5 is a diagram illustrating an example of a relative relationship between two distortion signals according to the embodiment;
  • the horizontal axis shows the case where the vehicle speed (vehicle speed) is A (A is a positive value, for example, 20) km per hour, and the case where the vehicle speed (vehicle speed) is the speed per hour.
  • B B is a positive value greater than A, eg, 40 km is represented, and the vertical axis represents level (eg, amplitude of voltage).
  • the graph shows a distortion signal 1111 when the speed is A km/h and a distortion signal 1112 when the speed is B km/h.
  • the data analysis section 33 acquires evaluation information based on the relative value between the two distortion signals 1111 and 1112 .
  • the relative value is, for example, the value between the peaks of one distortion signal 1111 (the value corresponding to the magnitude between the positive peak and the negative peak in the example of FIG. 5) and the Even if the difference 1113 (for example, the absolute value and the positive value) between the peak-to-peak value (the value corresponding to the magnitude between the positive peak and the negative peak in the example of FIG. 5) good.
  • FIG. 6 is a diagram showing another example of the relative relationship between two distortion signals according to the embodiment.
  • the horizontal axis represents the case where the vehicle speed (vehicle speed) is A km/h and the case where the vehicle speed (vehicle speed) is B km/h
  • the vertical axis represents the level (for example, voltage amplitude).
  • the graph shows a distortion signal 1121 when the speed is A km/h and a distortion signal 1122 when the speed is B km/h.
  • the data analysis unit 33 acquires evaluation information based on the relative value between the two distortion signals 1121 and 1122 .
  • the relative value is, for example, the value between the peaks of one distortion signal 1121 (the value corresponding to the magnitude between the positive peak and the negative peak in the example of FIG. 6) and the value of the other distortion signal 1122. Even if the difference 1123 (e.g., absolute value and positive value) between the peak-to-peak value (the value corresponding to the magnitude between the positive peak and the negative peak in the example of FIG. 6) good.
  • the tire 51 The degree of deterioration of the for example, the degree of deterioration of the tire 51 is grasped based on the degree of change in the value between peaks due to the difference in measurement conditions.
  • the degree to which the value changes for example, the degree to which the other value is a percentage of one value (the rate of change) may be used, or A measure of how much the value of is increased or decreased (amount of change) may be used.
  • the evaluation information for example, information representing the extent to which such values change may be used, or other information that is calculated based on the extent to which such values change may be used. good.
  • the tire 51 for example, a new tire 51
  • the tire 51 having a smaller degree of change in such a value is a deteriorated tire 51 .
  • FIG. 7 is a diagram illustrating an example of characteristics of a value (Vpp) between peaks according to the embodiment.
  • the horizontal axis represents the speed per hour [km]
  • the vertical axis represents the difference level between peaks (for example, the difference in voltage amplitude).
  • the graph shows a peak-to-peak value characteristic 1211 when the deteriorated tire 51 is used and a peak-to-peak value characteristic 1212 when the new tire 51 is used.
  • the characteristic 1211 related to the deteriorated tire 51 has a smaller slope
  • the characteristic 1212 related to the new tire 51 has a larger slope.
  • FIG. 8 is a diagram illustrating an example of characteristics of changes in values between peaks according to the embodiment.
  • the horizontal axis represents the degree of deterioration (in the example of FIG. 8, the degree of deterioration increases toward the right), and the vertical axis represents the change [%] in values between peaks.
  • the graph also shows a characteristic 1311 of changes in values between peaks.
  • the graph also shows a predetermined threshold value 1321 that serves as a judgment value for changes in values between peaks.
  • the data analysis unit 33 determines that the degree of deterioration of the tire 51 is within the allowable range when the characteristic 1311 exceeds the threshold 1321 (or is equal to or greater than the threshold 1321).
  • the data analysis unit 33 determines that the degree of deterioration of the tire 51 is outside the allowable range (deterioration or abnormal ).
  • the evaluation information for example, information indicating whether the degree of deterioration is within the allowable range may be used.
  • [ ⁇ (peak-to-peak value at speed A km/h)/(peak-to-peak value at speed B km/h) ⁇ 100] is used as the change [%] in the value between peaks.
  • the detected value corresponding to each of the two measurement conditions or the magnification of the detected value is converted while maintaining the magnification
  • the influence of the variation is canceled by obtaining the ratio of the calculated value).
  • FIGS. 9 to 11 show an example of comparing time-related feature amounts in the data analysis device 21.
  • the object of comparison is a predetermined period of time, specifically the period of time during which the tire 51 touches the ground (contact time).
  • the tire characteristic acquisition sensor 11 is a strain sensor.
  • the tire characteristic acquisition sensor 11 may be an acceleration sensor or a pressure sensor.
  • the measurement condition acquisition sensor 12 is a load sensor or an air pressure sensor.
  • FIG. 9 is a diagram showing an example of a state in which the contact time of the tire according to the embodiment is long.
  • FIG. 9 shows how the tire 211 is in contact with the ground 111 and is rotating.
  • the direction of rotation of the tire 211 is indicated using an arrow.
  • the tire 211 is an example of the tire 51 .
  • the ground contact point Z1 of the tire 211 represents a new contact point with the ground 111
  • the ground contact point Z2 of the tire 211 represents a point leaving the ground 111 from now on.
  • the example of FIG. 9 shows the moment when the contact point Z1 of the tire 211 touches the ground 111 and the contact point Z2 separates from the ground 111.
  • the distance 221 between the contact point Z1 and the contact point Z2 depends on the time (contact time) during which the same point of the tire 211 (for example, the contact point Z1 or the contact point Z2) is in contact with the ground 111.
  • the size is.
  • FIG. 10 is a diagram showing an example of a situation in which the contact time of the tire according to the embodiment is short.
  • FIG. 10 shows how the tire 212 is in contact with the ground 111 and is rotating. 10 also shows the direction of rotation of the tire 212 using an arrow.
  • the tire 212 is an example of the tire 51 .
  • the ground contact point Z11 of the tire 212 represents a new contact point with the ground 111
  • the ground contact point Z12 of the tire 212 represents a point leaving the ground 111 from now on.
  • the example of FIG. 10 shows the moment when the contact point Z11 of the tire 212 touches the ground 111 and the contact point Z12 separates from the ground 111.
  • the distance 222 between the contact point Z11 and the contact point Z12 depends on the time (contact time) during which the same point of the tire 212 (for example, the contact point Z11 or the contact point Z12) is in contact with the ground 111.
  • the size is.
  • the example of FIG. 9 shows a case where the load applied to the tire 211 (for example, the tire 51) is larger or the air pressure of the tire 211 (for example, the tire 51) is lower than the example shown in FIG. Yes, and in these cases the distance 221 and contact time will be longer.
  • the example of FIG. 10 shows a case where the load applied to the tire 212 (eg, the tire 51) is smaller than the example of FIG. 9, or the case where the air pressure of the tire 212 (eg, the tire 51) is high. , in these cases the distance 222 and ground contact time are reduced.
  • FIG. 11 is a diagram illustrating an example of a detection value (distortion signal) of the distortion sensor according to the embodiment;
  • the horizontal axis represents time [msec]
  • the vertical axis represents the output (detected value) [V] of the strain sensor.
  • the graph shows an example of the strain signal 1411 detected for a tire with a large load (for example, the tire in the state shown in FIG. 9) and a tire with a small load (for example, the tire in the state shown in FIG. 10).
  • An example of a detected distortion signal 1412 is shown.
  • the time T11 at which the positive peak occurs in the distortion signal 1411, the time T12 at which the positive peak occurs in the distortion signal 1412, the time T13 at which the negative peak occurs in the distortion signal 1412, the distortion signal The time T14 at which the negative peak occurs at 1411 is shown.
  • the moment when the positive peak occurs in the strain signal 1411 and the strain signal 1412 represents the moment (or the vicinity thereof) when a predetermined portion of the tire touches the ground.
  • the moment when the negative peak occurs in the strain signal 1411 and the strain signal 1412 represents the moment (or the vicinity thereof) when a predetermined portion of the tire leaves the ground.
  • the strain sensor detects a value (output from the strain sensor) at the moment when a predetermined portion of the tire corresponding to the position of the strain sensor touches the ground and at the moment when the predetermined portion is separated from the ground. change greatly.
  • the contact time 1421 estimated from the detected strain signal 1411 for the heavily loaded tire is greater than the contact time 1422 estimated from the detected strain signal 1412 for the lightly loaded tire.
  • the contact time 1421 estimated from the distortion signal 1411 corresponds to the period between time T11 and time T14.
  • the contact time 1422 estimated from the distortion signal 1412 corresponds to the period between time T12 and time T13.
  • the contact start time T11 in the contact time 1421 of the tire with a large load is earlier than the contact start time T12 in the contact time 1422 of the tire with a small load.
  • the contact end time T14 in the contact time 1421 of the tire with a large load is later than the contact end time T13 in the contact time 1422 of the tire with a small load.
  • the strain signal 1411 detected for a tire with a large load for example, the tire in the state shown in FIG. 9 and a tire with a small load (for example, the tire in the state shown in FIG. 10)
  • the trends in the detected strain signal 1412 for and the strain signals detected for low-inflated tires and high-inflated tires have similar trends.
  • the contact time obtained from the strain signal is greater for the new tire than for the old tire. becomes larger.
  • evaluation information may be acquired using such a tendency.
  • the degree of deterioration of the tire 51 is evaluated based on the amount of change in contact time of the tire 51 .
  • the degree of deterioration of the tire is evaluated based on the magnitude of the detected value (e.g., amplitude) of the strain sensor attached to the inner surface of the tire, or the change in the magnitude of the detected value under certain measurement conditions. If this is the case, the magnitude of the strain sensor detection value (e.g., amplitude) or changes in the magnitude may vary depending on the sensitivity of the sensor, which may reduce the accuracy of the evaluation.
  • the magnitude of the strain sensor detection value e.g., amplitude
  • changes in the magnitude may vary depending on the sensitivity of the sensor, which may reduce the accuracy of the evaluation.
  • the object of comparison is noise included in the detection value of the tire characteristic acquisition sensor 11, for example, noise of high-frequency components.
  • the tire characteristic acquisition sensor 11 is a strain sensor.
  • the tire characteristic acquisition sensor 11 may be an acceleration sensor or a pressure sensor.
  • the measurement condition acquisition sensor 12 is a speed sensor.
  • the noise in this example, high-frequency components included in the detection values detected by the tire characteristic acquisition sensor 11 during high-speed driving is greater than that of a new tire. It is considered to be.
  • the old tire is detected by the tire characteristic acquisition sensor 11 more than the new tire.
  • the amount of change in noise (in this example, high frequency components) included in the detected value increases.
  • evaluation information may be acquired using such a tendency.
  • the information processing apparatus 1 even if there is individual variation in the sensor (in the present embodiment, the tire characteristic acquisition sensor 11) that detects information (detection value) regarding the tire 51, Evaluation information regarding the tire 51 can be obtained with high accuracy.
  • the sensor in this embodiment, the tire characteristic acquisition sensor 11
  • the sensor is not affected by individual variations ( or reduced) to obtain the evaluation information. Accordingly, in the information processing apparatus 1 according to this embodiment, it is possible to eliminate the need for calibration for calibrating individual variations in the sensors (in this embodiment, the tire characteristic acquisition sensor 11).
  • a sensor detects a waveform (detection value) representing tire characteristics under the same measurement conditions (for example, a condition at a speed of 20 km/h), and the level difference (absolute value) between the positive and negative peaks of the waveform is used.
  • a method for determining the degree of tire deterioration by using the sensor (hereinafter referred to as method A1 for convenience of explanation) is also conceivable. The accuracy of determination of the degree is lowered.
  • a plurality of tire information obtained under a plurality of different conditions for example, 20 km/h and 40 km/h are compared, and the evaluation reflects the relative relationship between the plurality of tire information.
  • the information processing apparatus 1 acquires evaluation information based on tire information under a plurality of different measurement conditions as described above. condition) based on the tire information (determination of method A1 described above) may be used together. Moreover, in the information processing apparatus 1 according to the present embodiment, any other evaluation method may be used together.
  • the case where one tire characteristic acquisition sensor 11 is used is shown, but as another configuration example, a plurality of tire characteristic acquisition sensors 11 may be used.
  • the plurality of tire characteristic acquisition sensors 11 may be, for example, sensors that detect detection values of different physical quantities.
  • the data analysis device 21 may perform analysis based on the detection value of the tire characteristic acquisition sensor 11 for each tire characteristic acquisition sensor 11, or may perform analysis based on the detection values of two or more tire characteristic acquisition sensors 11. Analysis based on detected values may be performed.
  • the data analysis device 21 detects the tire characteristic acquisition sensors 11 .
  • evaluation information may be acquired for a combination of these detection values using the detection values of two or more tire characteristic acquisition sensors 11. .
  • the detection values of these two or more tire characteristic acquisition sensors 11 may be used, and one of the detected values (or information based on the detected values) of these two or more tire characteristic acquisition sensors 11 (for example, , median, etc.) may be selected and adopted.
  • the detection values of these two or more tire characteristic acquisition sensors 11 may be used to calculate one piece of evaluation information (common evaluation information).
  • the data analysis device 21 evaluates based on the detection value of the tire characteristic acquisition sensor 11 installed on the tire. Get information. That is, the characteristics of each of the plurality of tires are usually independent. However, when one vehicle is equipped with a plurality of tires, there is a configuration in which the data analysis device 21 acquires evaluation information based on the detection values of the tire characteristic acquisition sensors 11 installed on two or more tires. may be used. For example, a configuration may be used in which the data analysis device 21 acquires evaluation information regarding the entire vehicle based on the detection values of the tire characteristic acquisition sensors 11 installed on two or more tires.
  • the plurality of measurement condition acquisition sensors 12 may be, for example, sensors that detect different physical quantities.
  • the data analysis device 21 may use measurement conditions based on the detection values of the measurement condition acquisition sensors 12 for each measurement condition acquisition sensor 12, or may use two or more measurement condition acquisition sensors. With 12 detection values, measurement conditions based on combinations of these detection values may be used.
  • the detection values of these two or more measurement condition acquisition sensors 12 may be used, and one of the detected values (or information based on the detected values) of these two or more measurement condition acquisition sensors 12 (for example, , median, etc.) may be selected and adopted.
  • the detection values of these two or more measurement condition acquisition sensors 12 may be used to calculate a piece of measurement condition information (common measurement condition information).
  • the information processing device 1 includes, for example, a first device having a tire characteristic acquisition sensor 11, a second device having a measurement condition acquisition sensor 12, and a third device having a data analysis device 21 as separate devices. may be configured.
  • the first device includes a tire characteristic acquisition sensor 11, a first data acquisition section, and a first transmission section.
  • the second device includes a measurement condition acquisition sensor 12, a second data acquisition section, and a second transmission section.
  • the third device includes a first data receiver, a second data receiver, and an information processor.
  • the information processing section has the functions of the data analysis device 21 shown in FIG. has the function of
  • the tire characteristic acquisition sensor 11 detects a detection value
  • the first data acquisition unit acquires the data of the detection value
  • the first transmission unit transmits the data wirelessly or by wire.
  • the measurement condition acquisition sensor 12 detects the detection value
  • the second data acquisition section acquires the data of the detection value
  • the second transmission section transmits the data wirelessly or by wire.
  • the first data receiving section receives data transmitted from the first device
  • the second data receiving section receives data transmitted from the second device
  • the information processing section receives the first data receiving section. and the data received by the second data receiving unit.
  • the first data receiving section and the second data receiving section may be shared. Further, when the tire characteristic acquisition sensor 11 and the measurement condition acquisition sensor 12 are shared, the first device and the second device are shared. In this case, in the third device, the first data receiving section and the second data receiving section are shared.
  • the third device may be provided in a place other than the tire 51 and the vehicle (here, a portion other than the tire).
  • the third device is a server device connected to a network such as the Internet. may be provided for. In this configuration, it is possible to transmit information about the respective detected values from the first device and the second device to the server device (the third device), and perform various information processing in the server device.
  • an information processing device (information processing device 1 in the example of FIG. 1) is provided in a vehicle and includes a wheel (wheel 131 in the example of FIG. 3A) and a rubber portion (FIG. 3A).
  • the first detection value (the value detected by the tire characteristic acquisition sensor 11 in the example of FIG. 1) related to the tire (tire 51 in the example of FIG. 1) having the rubber portion 132) is detected.
  • Tire information based on the first detection value detected by the sensor (in the example of FIG. 1, the tire characteristic acquisition sensor 11), two or more different conditions related to the predetermined event (in the example of FIG.
  • the measurement condition determination unit 31 based on two or more pieces of tire information corresponding to each of the measurement conditions determined by the information processing unit (in the example of FIG. 1, for example, the measurement condition determination unit 31, comparison data selection 32, a data analysis unit 33, and a storage unit 34).
  • the predetermined event is one or more of tire rotation speed, tire load, tire air pressure, and tire temperature.
  • the first detection value detected by the first sensor is one or more of strain, acceleration, and pressure.
  • the evaluation information is information about tire deterioration, information about tire abnormality, information about the condition of the road surface that the tire contacts, or information about the grip force between the tire and the road surface that the tire contacts. Contains one or more of information.
  • the information on tire deterioration includes one or more of information representing changes in tire hardness and information representing the degree of wear of the tread portion of the tire.
  • the condition regarding the predetermined event is the second sensor (value detected by the measurement condition acquisition sensor 12 in the example of FIG. 1) that detects the second detection value regarding the tire or the vehicle.
  • the condition is based on predetermined event information, which is information about a predetermined event based on the second detection value detected by the measurement condition acquisition sensor 12).
  • an information processing apparatus includes one or both of a first sensor and a second sensor.
  • the first sensor and the second sensor are common sensors, the first detection value and the second detection value are common detection values, and tire information and predetermined event information are are different information based on common detection values.
  • the program is provided in a computer (in the example of FIG. 1, the computer constituting the information processing device 1), a first sensor that detects a first detection value related to a tire that is provided in a vehicle and has a wheel and a rubber portion for executing a step of acquiring evaluation information about a tire based on two or more pieces of tire information based on the first detection value detected by and corresponding to two or more different conditions relating to a predetermined event. program.
  • a program for realizing the functions of any component in any device is recorded on a computer-readable recording medium, and the program is read into a computer system. You can also set it to execute.
  • the term "computer system” as used herein includes an operating system and hardware such as peripheral devices.
  • “computer-readable recording medium” means portable media such as flexible discs, magneto-optical discs, ROM, CD (Compact Disc)-ROM (Read Only Memory), and storage such as hard disks built into computer systems. It refers to equipment.
  • “computer-readable recording medium” means a certain amount of memory, such as volatile memory inside a computer system that acts as a server or client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. It also includes those holding time programs.
  • the volatile memory may be, for example, RAM (Random Access Memory).
  • the recording medium may be, for example, a non-transitory recording medium.
  • the above program may be transmitted from a computer system storing this program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in a transmission medium.
  • the "transmission medium" for transmitting the program means a medium having a function of transmitting information, such as a network such as the Internet or a communication line such as a telephone line.
  • the above program may be for realizing part of the functions described above.
  • the above program may be a so-called difference file, which can realize the functions described above in combination with a program already recorded in the computer system.
  • a difference file may be referred to as a difference program.
  • any component in any device may be implemented by a processor.
  • each process in the embodiment may be implemented by a processor that operates based on information such as a program and a computer-readable recording medium that stores information such as the program.
  • the function of each section may be implemented by separate hardware, or the function of each section may be implemented by integrated hardware.
  • a processor includes hardware, which may include at least one of circuitry that processes digital signals and circuitry that processes analog signals.
  • a processor may be configured using one or more circuit devices and/or one or more circuit elements mounted on a circuit board.
  • An IC (Integrated Circuit) or the like may be used as the circuit device, and a resistor, capacitor, or the like may be used as the circuit element.
  • the processor may be, for example, a CPU.
  • the processor is not limited to the CPU, and various processors such as GPU (Graphics Processing Unit) or DSP (Digital Signal Processor) may be used.
  • the processor may be, for example, a hardware circuit based on ASIC (Application Specific Integrated Circuit).
  • the processor may be composed of, for example, a plurality of CPUs, or may be composed of a plurality of ASIC hardware circuits.
  • the processor may be configured by, for example, a combination of multiple CPUs and multiple ASIC hardware circuits.
  • the processor may also include one or more of, for example, amplifier circuits or filter circuits that process analog signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Tires In General (AREA)

Abstract

An information processing device according to an embodiment of the present invention comprises an information processing unit that acquires evaluation information pertaining to a tire mounted on a vehicle and having a wheel and a rubber part, the evaluation information being acquired on the basis of two or more pieces of tire information that are based on a first detection value detected by a first sensor for detecting the first detection value pertaining to the tire, and respectively correspond to each of two or more different conditions pertaining to a prescribed event.

Description

[規則37.2に基づきISAが決定した発明の名称] タイヤに関する情報処理装置およびプログラム[Title of invention determined by ISA based on Rule 37.2] Information processing device and program related to tires
 本開示は、情報処理装置およびプログラムに関する。 The present disclosure relates to an information processing device and a program.
 自動車などのタイヤに関し、センサを使用してタイヤのパラメータを監視することが行われている。
 例えば、歪みセンサである圧電素子をタイヤに取り付け、当該圧電素子により検出される信号の振幅の大きさに応じて当該タイヤの変形の大きさを検出し、その検出結果に基づいて当該タイヤに負荷される荷重を推定することなどが行われている。
With respect to tires such as automobiles, sensors have been used to monitor tire parameters.
For example, a piezoelectric element that is a strain sensor is attached to a tire, the magnitude of deformation of the tire is detected according to the magnitude of the amplitude of the signal detected by the piezoelectric element, and a load is applied to the tire based on the detection result. estimating the load to be applied.
 特許文献1に記載された技術では、圧電デバイスを使用してタイヤのパラメータを監視することが行われており、例えば、圧電デバイスにより検出される歪みに基づいて得られる、タイヤの回転の計数、タイヤの速度、およびタイヤの接触面角度などの正確さを向上させることが図られている(特許文献1参照。)。 The technique described in US Pat. No. 6,200,402 uses piezoelectric devices to monitor tire parameters, such as tire rotation counts, obtained based on the strain detected by the piezoelectric devices; An attempt has been made to improve the accuracy of the speed of the tire and the contact surface angle of the tire (see Patent Document 1).
特表2016-505438号公報Japanese Patent Publication No. 2016-505438
 しかしながら、従来の技術では、圧電素子などからなるセンサの個々の特性のバラツキ、あるいは、センサとタイヤとを接着させる接着剤の厚みまたは硬度などの接着具合のバラツキ、などに起因して、センサの感度にバラツキが発生し、センサの検出値にバラツキが発生する場合があった。この場合、センサから出力される検出値の振幅方向の情報を有効に活用するために、センサ自体のキャリブレーションまたはセンサの検出値のキャリブレーションを行う必要があった。
 また、このようなキャリブレーションは、センサがタイヤに取り付けられた後に行われる必要があることが多く、容易ではない場合があった。
However, in the conventional technology, due to variations in the characteristics of individual sensors made up of piezoelectric elements or the like, or variations in the degree of adhesion such as the thickness or hardness of the adhesive that bonds the sensor and the tire, the sensor may be damaged. In some cases, variations in sensitivity occur, causing variations in the values detected by the sensors. In this case, it is necessary to calibrate the sensor itself or to calibrate the detected value of the sensor in order to effectively utilize information about the amplitude direction of the detected value output from the sensor.
Also, such calibration often needs to be done after the sensor is mounted on the tire, which can be difficult.
 本開示は、このような事情を考慮してなされたもので、タイヤに関する情報を検出するセンサに個々のバラツキがあっても、タイヤに関する評価情報を精度良く取得することができる情報処理装置およびプログラムを提供することを課題とする。 The present disclosure has been made in consideration of such circumstances, and an information processing device and program capable of accurately acquiring evaluation information about tires even if there are individual variations in sensors that detect information about tires. The task is to provide
 本開示の一態様は、車両に備えられてホイールとゴム部を有するタイヤに関する第1検出値を検出する第1センサによって検出された前記第1検出値に基づくタイヤ情報であって、所定事象に関する2以上の異なる条件のそれぞれに対応する2以上の前記タイヤ情報に基づいて、前記タイヤに関する評価情報を取得する情報処理部を備える、情報処理装置である。 One aspect of the present disclosure is tire information based on the first detection value detected by a first sensor that detects a first detection value regarding a tire that is provided in a vehicle and has a wheel and a rubber portion, the tire information relating to a predetermined event The information processing device includes an information processing unit that acquires evaluation information about the tire based on two or more pieces of tire information corresponding to two or more different conditions.
 本開示の一態様は、コンピューターに、車両に備えられてホイールとゴム部を有するタイヤに関する第1検出値を検出する第1センサによって検出された前記第1検出値に基づくタイヤ情報であって、所定事象に関する2以上の異なる条件のそれぞれに対応する2以上の前記タイヤ情報に基づいて、前記タイヤに関する評価情報を取得するステップを実行させるためのプログラムである。 One aspect of the present disclosure is tire information based on the first detection value detected by a first sensor that detects a first detection value regarding a tire that is provided in a vehicle and has a wheel and a rubber portion in a computer, A program for executing a step of acquiring evaluation information about the tire based on two or more pieces of tire information corresponding to two or more different conditions relating to a predetermined event.
 本開示によれば、情報処理装置およびプログラムにおいて、タイヤに関する情報を検出するセンサに個々のバラツキがあっても、タイヤに関する評価情報を精度良く取得することができる。 According to the present disclosure, in the information processing device and the program, it is possible to acquire the evaluation information about the tire with high accuracy even if there are individual variations in the sensors that detect the information about the tire.
実施形態に係る情報処理装置の概略的な構成の一例を示す図である。It is a figure which shows an example of a schematic structure of the information processing apparatus which concerns on embodiment. 実施形態に係るセンサの取り付け位置の一例を示す図である。It is a figure which shows an example of the attachment position of the sensor which concerns on embodiment. (A)および(B)は実施形態に係るセンサの取り付け位置の他の例を示す図である。(A) and (B) are diagrams showing other examples of mounting positions of the sensors according to the embodiment. 実施形態に係る歪みセンサの検出値の一例を示す図である。It is a figure which shows an example of the detection value of the strain sensor which concerns on embodiment. 実施形態に係る2つの歪み信号の相対的な関係の一例を示す図である。FIG. 4 is a diagram showing an example of relative relationship between two distortion signals according to the embodiment; 実施形態に係る2つの歪み信号の相対的な関係の他の例を示す図である。FIG. 10 is a diagram showing another example of the relative relationship between two distortion signals according to the embodiment; 実施形態に係るピーク間の値の特性の一例を示す図である。It is a figure which shows an example of the characteristic of the value between peaks which concerns on embodiment. 実施形態に係るピーク間の値の変化の特性の一例を示す図である。It is a figure which shows an example of the characteristic of the change of the value between peaks which concerns on embodiment. 実施形態に係るタイヤの接地時間が長い場合の様子の一例を示す図である。It is a figure which shows an example of a state when the grounding time of the tire which concerns on embodiment is long. 実施形態に係るタイヤの接地時間が短い場合の様子の一例を示す図である。It is a figure which shows an example of a state when the grounding time of the tire which concerns on embodiment is short. 実施形態に係る歪みセンサの検出値の一例を示す図である。It is a figure which shows an example of the detection value of the strain sensor which concerns on embodiment.
 以下、図面を参照し、本開示の実施形態について説明する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
 [情報処理装置]
 図1は、実施形態に係る情報処理装置1の概略的な構成の一例を示す図である。
 なお、説明の便宜上、図1にはタイヤ51および測定条件取得対象52を示してあるが、本実施形態では、タイヤ51および測定条件取得対象52は情報処理装置1には含まれない。
 本実施形態では、情報処理装置1は、測定条件取得対象52に関するデータに基づいて、タイヤ51に関するデータを解析する機能を有する。
 なお、情報処理装置1は、情報処理システムなどと呼ばれてもよい。
[Information processing device]
FIG. 1 is a diagram showing an example of a schematic configuration of an information processing device 1 according to an embodiment.
For convenience of explanation, the tire 51 and the measurement condition acquisition target 52 are shown in FIG.
In this embodiment, the information processing apparatus 1 has a function of analyzing data regarding the tire 51 based on data regarding the measurement condition acquisition target 52 .
Note that the information processing device 1 may be called an information processing system or the like.
 本実施形態では、タイヤ51は、自動車などの車両に接続されて備えられる1個以上のタイヤのうちの1個のタイヤである。当該車両には、所定数(例えば、自動車であれば4個など)のタイヤが接続されている。
 なお、本実施形態では、車両が自動車である場合について説明するが、車両としては、特に限定は無く、例えば、自動二輪車、自転車、あるいは、航空機などであってもよい。ここで、航空機についても、当該航空機がタイヤによって地上を走行しているときには、車両とみなすことができる。
In this embodiment, the tire 51 is one of one or more tires connected to a vehicle such as an automobile. A predetermined number of tires (for example, four in the case of an automobile) are connected to the vehicle.
In this embodiment, a case where the vehicle is an automobile will be described, but the vehicle is not particularly limited, and may be, for example, a motorcycle, a bicycle, or an aircraft. Here, an aircraft can also be regarded as a vehicle when the aircraft is traveling on the ground with its tires.
 タイヤ51は、概略的に、ホイールと、当該ホイールの周囲に取り付けられるゴム部と、を有する。当該ゴム部は、例えば、ビード部、サイドウォール部、ショルダー部、および、トレッド部を有していてもよい。なお、タイヤ51は、例えば、ゴム部を有する各種のタイヤ、あるいは、ホイールとゴム部を有する各種のタイヤであってもよい。
 また、本実施形態では、測定条件取得対象52は、タイヤ51、または、タイヤ51が備えられている車両(ここでは、タイヤ以外の部分)である。なお、測定条件取得対象52は、他の物であってもよい。
The tire 51 generally has a wheel and a rubber portion attached around the wheel. The rubber portion may have, for example, a bead portion, a sidewall portion, a shoulder portion, and a tread portion. The tire 51 may be, for example, various tires having a rubber portion, or various tires having a wheel and a rubber portion.
Further, in the present embodiment, the measurement condition acquisition target 52 is the tire 51 or a vehicle provided with the tire 51 (here, a portion other than the tire). Note that the measurement condition acquisition target 52 may be another object.
 情報処理装置1は、タイヤ特性取得用センサ11と、測定条件取得用センサ12と、データ解析装置21と、を備える。
 データ解析装置21は、測定条件決定部31と、比較データ選択部32と、データ解析部33と、記憶部34と、を備える。
The information processing device 1 includes a tire characteristic acquisition sensor 11 , a measurement condition acquisition sensor 12 , and a data analysis device 21 .
The data analysis device 21 includes a measurement condition determination section 31 , a comparison data selection section 32 , a data analysis section 33 and a storage section 34 .
 タイヤ特性取得用センサ11は、タイヤ51に関する所定の物理量の値(検出値)を検出(測定)する。タイヤ特性取得用センサ11は、検出した値(検出値)をデータ解析装置21の比較データ選択部32に出力する。
 ここで、タイヤ特性取得用センサ11は、例えば、タイヤ51に取り付けられているが、タイヤ51に関する所定の物理量の値(検出値)を検出することができれば、タイヤ51以外の箇所に備えられてもよい。例えば、タイヤ51に直接取り付けられず、タイヤ51に対して光の放射と反射光の受光を行うことなどによりタイヤ51に関する検出値を検出するセンサが、タイヤ特性取得用センサ11として用いられてもよい。
The tire characteristic acquisition sensor 11 detects (measures) a predetermined physical quantity value (detection value) relating to the tire 51 . The tire characteristic acquisition sensor 11 outputs the detected value (detection value) to the comparison data selection section 32 of the data analysis device 21 .
Here, the tire characteristic acquisition sensor 11 is attached to the tire 51, for example, but if it can detect a predetermined physical quantity value (detection value) related to the tire 51, it can be provided at a location other than the tire 51. good too. For example, a sensor that is not directly attached to the tire 51 and detects a detection value related to the tire 51 by emitting light and receiving reflected light from the tire 51 may be used as the tire characteristic acquisition sensor 11. good.
 測定条件取得用センサ12は、測定条件取得対象52に関する所定の物理量の値(検出値)を検出(測定)する。測定条件取得用センサ12は、検出した値(検出値)をデータ解析装置21の測定条件決定部31に出力する。
 ここで、測定条件取得用センサ12は、例えば、測定条件取得対象52に取り付けられているが、所定の物理量の値(検出値)を検出することができれば、測定条件取得対象52以外の箇所に備えられてもよい。
The measurement condition acquisition sensor 12 detects (measures) a value (detected value) of a predetermined physical quantity relating to the measurement condition acquisition target 52 . The measurement condition acquisition sensor 12 outputs the detected value (detection value) to the measurement condition determination section 31 of the data analysis device 21 .
Here, the measurement condition acquisition sensor 12 is attached to the measurement condition acquisition target 52, for example, but if it can detect a predetermined physical quantity value (detection value), it can be attached to a location other than the measurement condition acquisition target 52. may be provided.
 また、図1の例では、タイヤ特性取得用センサ11によって検出された検出値をデータ解析装置21の測定条件決定部31に出力する線(有線、または、無線)も示してある。このように、タイヤ特性取得用センサ11は検出値をデータ解析装置21の測定条件決定部31に出力してもよく、この場合、測定条件決定部31は、測定条件取得用センサ12からの検出値ばかりでなく、タイヤ特性取得用センサ11からの検出値も利用することが可能である。
 一方、測定条件決定部31がタイヤ特性取得用センサ11の検出値を利用しない場合には、タイヤ特性取得用センサ11によって検出された検出値をデータ解析装置21の測定条件決定部31に出力する線(有線、または、無線)は備えられなくてもよい。
In the example of FIG. 1, a line (wired or wireless) for outputting the detection value detected by the tire characteristic acquisition sensor 11 to the measurement condition determining section 31 of the data analysis device 21 is also shown. In this way, the tire characteristic acquisition sensor 11 may output the detected value to the measurement condition determination unit 31 of the data analysis device 21. In this case, the measurement condition determination unit 31 outputs the detection value from the measurement condition acquisition sensor 12. It is possible to use not only the value but also the detected value from the tire characteristic acquisition sensor 11 .
On the other hand, when the measurement condition determination section 31 does not use the detection value of the tire characteristic acquisition sensor 11, the detection value detected by the tire characteristic acquisition sensor 11 is output to the measurement condition determination section 31 of the data analysis device 21. No line (wired or wireless) may be provided.
 ここで、本実施形態では、説明の便宜上、タイヤ特性取得用センサ11と測定条件取得用センサ12とが別のセンサであって、タイヤ特性取得用センサ11によって検出される検出値(検出対象および物理量の組み合わせ)と測定条件取得用センサ12によって検出される検出値(検出対象および物理量の組み合わせ)とが異なるとして説明するが、他の構成例として、タイヤ特性取得用センサ11と測定条件取得用センサ12とは共通のセンサであってもよい。この場合、図1の例において、概略的には、測定条件取得用センサ12の機能はタイヤ特性取得用センサ11に兼用されるために、測定条件取得用センサ12は備えられず、タイヤ特性取得用センサ11の検出値がデータ解析装置21の比較データ選択部32および測定条件決定部31に出力される。 Here, in the present embodiment, for convenience of explanation, the tire characteristic acquisition sensor 11 and the measurement condition acquisition sensor 12 are different sensors, and the detection value (detection target and detection target) detected by the tire characteristic acquisition sensor 11 is physical quantity) and the detected value (combination of detection target and physical quantity) detected by the measurement condition acquisition sensor 12 are different. Sensor 12 may be a common sensor. In this case, in the example of FIG. 1, roughly speaking, the function of the measurement condition acquisition sensor 12 is shared by the tire characteristic acquisition sensor 11, so the measurement condition acquisition sensor 12 is not provided, and the tire characteristic acquisition sensor 12 is not provided. The detection value of the sensor 11 for measurement is output to the comparison data selection section 32 and the measurement condition determination section 31 of the data analysis device 21 .
 本実施形態では、データ解析装置21は、タイヤ、または、車両(ここでは、タイヤ以外の部分)に備えられている。
 データ解析装置21は、例えば、マイクロコンピューター(マイコン)を用いて構成されていてもよい。この場合、データ解析装置21は、CPU(Central Processing Unit)などのプロセッサーとメモリ(図1の例では、記憶部34)を備えており、プロセッサーによって所定のプログラム(制御プログラム)を実行することで、各種の処理を実現する。
 記憶部34は、各種の情報を記憶する。記憶部34は、当該プログラムを記憶していてもよい。
In this embodiment, the data analysis device 21 is provided in the tire or the vehicle (here, the portion other than the tire).
The data analysis device 21 may be configured using, for example, a microcomputer. In this case, the data analysis device 21 includes a processor such as a CPU (Central Processing Unit) and a memory (the storage unit 34 in the example of FIG. 1). , to implement various processes.
The storage unit 34 stores various information. The storage unit 34 may store the program.
 測定条件決定部31は、測定条件取得用センサ12から入力される検出値に基づいて所定の事象の情報(説明の便宜上、所定事象情報とも呼ぶ。)を取得し、取得した所定事象情報に基づいて、少なくとも2個の条件(説明の便宜上、測定条件と呼ぶ。)を決定する。測定条件決定部31は、決定したそれぞれの測定条件を表す情報(説明の便宜上、測定条件情報とも呼ぶ。)を比較データ選択部32に出力する。
 ここで、本実施形態では、それぞれの測定条件は、比較データ選択部32において選択すべき比較データ(タイヤ特性取得用センサ11の検出値に基づく情報)を特定することが可能な情報を含む。当該情報は、例えば、選択すべき比較データのタイミング(並びの順番などでもよい。)を示す情報であってもよい。
 なお、測定条件は、例えば、検出条件と呼ばれてもよく、または、単に、条件などと呼ばれてもよい。
The measurement condition determination unit 31 acquires information on a predetermined event (also referred to as predetermined event information for convenience of explanation) based on the detection value input from the measurement condition acquisition sensor 12, and based on the acquired predetermined event information to determine at least two conditions (referred to as measurement conditions for convenience of explanation). The measurement condition determination unit 31 outputs information representing each determined measurement condition (for convenience of explanation, also referred to as measurement condition information) to the comparison data selection unit 32 .
Here, in the present embodiment, each measurement condition includes information capable of specifying comparison data (information based on detection values of the tire characteristic acquisition sensor 11) to be selected by the comparison data selection section 32. FIG. The information may be, for example, information indicating the timing of the comparison data to be selected (or the order of arrangement).
Note that the measurement conditions may be called, for example, detection conditions, or simply conditions.
 なお、測定条件決定部31は、さらに、タイヤ特性取得用センサ11によって検出された検出値を利用してもよい。この場合、測定条件決定部31は、測定条件取得用センサ12から入力される検出値と、タイヤ特性取得用センサ11から入力される検出値に基づいて、測定条件を決定する。 Note that the measurement condition determination unit 31 may further use the detection value detected by the tire characteristic acquisition sensor 11 . In this case, the measurement condition determination unit 31 determines the measurement conditions based on the detection value input from the measurement condition acquisition sensor 12 and the detection value input from the tire characteristic acquisition sensor 11 .
 ここで、測定条件決定部31は、例えば、アナログ回路と、アナログデジタルコンバータ(A/Dコンバータ:Analog to Digital Converter)と、を有してもよい。アナログ回路は、タイヤ特性取得用センサ11から出力される検出値の信号(アナログ信号)を入力し、必要に応じて、当該信号に対して増幅等のアナログ処理を行う。A/Dコンバータは、アナログ回路によってアナログ処理が行われた検出値の信号(アナログ信号)をデジタル信号(検出値のデータ)へ変換する。そして、測定条件決定部31は、当該デジタルデータを処理してもよい。 Here, the measurement condition determination unit 31 may have, for example, an analog circuit and an analog-to-digital converter (A/D converter: Analog to Digital Converter). The analog circuit receives a detection value signal (analog signal) output from the tire characteristic acquisition sensor 11 and, if necessary, performs analog processing such as amplification on the signal. The A/D converter converts a detection value signal (analog signal) analog-processed by an analog circuit into a digital signal (detection value data). Then, the measurement condition determining section 31 may process the digital data.
 比較データ選択部32は、タイヤ特性取得用センサ11から入力される検出値に基づいてタイヤ51に関する情報(説明の便宜上、タイヤ情報とも呼ぶ。)を取得し、また、測定条件決定部31から入力される測定条件情報を取得する。
 そして、比較データ選択部32は、測定条件決定部31から入力された測定条件情報によって表される測定条件に対応するタイヤ情報を選択(取得)する。比較データ選択部32は、少なくとも2個の測定条件のそれぞれに対応するタイヤ情報(少なくとも2個のタイヤ情報)を取得し、これらのタイヤ情報を比較データとしてデータ解析部33に出力する。
 本実施形態では、タイヤ情報は、タイヤ51の特性に関する情報であり、例えば、タイヤ51の劣化度に応じて変化する情報である。
The comparison data selection unit 32 acquires information about the tire 51 (also referred to as tire information for convenience of explanation) based on the detected value input from the tire characteristic acquisition sensor 11 , and also inputs from the measurement condition determination unit 31 . Get the measurement condition information to be used.
Then, the comparison data selection section 32 selects (acquires) tire information corresponding to the measurement conditions represented by the measurement condition information input from the measurement condition determination section 31 . The comparison data selection unit 32 acquires tire information (at least two pieces of tire information) corresponding to at least two measurement conditions, and outputs the tire information to the data analysis unit 33 as comparison data.
In this embodiment, the tire information is information about the characteristics of the tire 51 , and is information that changes according to the degree of deterioration of the tire 51 , for example.
 ここで、本実施形態では、車両の走行中などに、常時、タイヤ特性取得用センサ11と測定条件取得用センサ12のそれぞれによって検出を行い、データ解析装置21においてタイヤ特性取得用センサ11の検出値(または、当該検出値に基づくタイヤ情報でもよい。)を記憶部34に記憶しておき、測定条件取得用センサ12の検出値(または、当該検出値に基づく所定事象情報でもよい。)を記憶部34に記憶しておく。そして、測定条件決定部31は、記憶部34に記憶された情報(測定条件取得用センサ12の検出値、または、当該検出値に基づく所定事象情報)に基づいて測定条件を決定する。また、比較データ選択部32は、記憶部34に記憶された情報(タイヤ特性取得用センサ11の検出値、または、当該検出値に基づくタイヤ情報)に基づいて、当該測定条件に対応するタイヤ情報を選択的に取得する。なお、常時の検出は、例えば、一定時間間隔などの所定のタイミングごとの検出であってもよい。 Here, in the present embodiment, detection is always performed by each of the tire characteristic acquisition sensor 11 and the measurement condition acquisition sensor 12 while the vehicle is running, and the data analysis device 21 detects the tire characteristic acquisition sensor 11. A value (or tire information based on the detected value may be stored) in the storage unit 34, and a detected value of the measurement condition acquisition sensor 12 (or predetermined event information based on the detected value may be stored). It is stored in the storage unit 34. Then, the measurement condition determination unit 31 determines measurement conditions based on the information stored in the storage unit 34 (the detection value of the measurement condition acquisition sensor 12 or the predetermined event information based on the detection value). Further, the comparison data selection unit 32 selects tire information corresponding to the measurement conditions based on the information stored in the storage unit 34 (detected values of the tire characteristic acquisition sensor 11 or tire information based on the detected values). is selectively obtained. The constant detection may be, for example, detection at predetermined timings such as constant time intervals.
 この場合、記憶部34において、同時(または、ほぼ同時)に検出されたタイヤ特性取得用センサ11の検出値(または、当該検出値に基づくタイヤ情報でもよい。)および測定条件取得用センサ12の検出値(または、当該検出値に基づく所定事象情報でもよい。)が互いに対応付けられて記憶される。このような両者の記憶情報の対応付けは、例えば、それぞれの記憶情報に検出時間の情報(タイムスタンプ)が付されることで行われてもよく、あるいは、それぞれの記憶情報の並び順の対応付けによって行われてもよい。 In this case, in the storage unit 34, simultaneously (or substantially simultaneously) detection values of the tire characteristic acquisition sensor 11 (or tire information based on the detection values may be used) and measurement condition acquisition sensor 12 Detected values (or predetermined event information based on the detected values may be used) are associated with each other and stored. Such correspondence between both pieces of stored information may be performed, for example, by adding detection time information (time stamp) to each piece of stored information. may be done by attachment.
 他の構成例として、比較データ選択部32は、タイヤ特性取得用センサ11から順次出力される検出値をリアルタイムに入力しているときに、測定条件決定部31から入力される測定条件情報によって表される測定条件が満たされたタイミング(または、当該タイミングとほぼ同時のタイミング)で、当該検出値に基づくタイヤ情報を選択的に取得する構成であってもよい。 As another example of configuration, the comparison data selection unit 32 receives the detection values that are sequentially output from the tire characteristic acquisition sensor 11 in real time, and the comparison data selection unit 32 selects data based on the measurement condition information input from the measurement condition determination unit 31. The tire information based on the detection value may be selectively acquired at the timing when the measurement condition to be determined is satisfied (or at substantially the same timing as the timing).
 つまり、データ解析装置21では、センサ(タイヤ特性取得用センサ11、測定条件取得用センサ12)の検出値(または、当該検出値に基づく情報)を、いったん記憶してから処理してもよく、あるいは、リアルタイムで処理してもよい。
 なお、センサの検出値あるいは当該検出値から得られる情報は、センシングデータなどと呼ばれてもよい。
That is, in the data analysis device 21, the detected values (or information based on the detected values) of the sensors (the tire characteristic acquisition sensor 11 and the measurement condition acquisition sensor 12) may be stored once and then processed. Alternatively, it may be processed in real time.
Note that the detected value of the sensor or information obtained from the detected value may be called sensing data or the like.
 ここで、一例として、測定条件決定部31により取得される所定事象情報は、測定条件取得用センサ12の検出値の情報である。この場合、測定条件取得用センサ12は、所定の事象について検出値を検出している。
 他の例として、測定条件決定部31により取得される所定事象情報は、測定条件取得用センサ12の検出値を用いて演算等された結果の情報であってもよい。この場合、測定条件決定部31は、測定条件取得用センサ12の検出値に基づいて所定の演算等を行うことで、所定事象情報を取得する。当該演算等は、例えば、所定の演算式を用いた演算であってもよく、あるいは、所定の演算式(推定式)などを用いた推定であってもよい。
Here, as an example, the predetermined event information acquired by the measurement condition determination unit 31 is information on the detection value of the measurement condition acquisition sensor 12 . In this case, the measurement condition acquisition sensor 12 detects a detection value for a predetermined event.
As another example, the predetermined event information acquired by the measurement condition determination unit 31 may be information of the result of calculation using the detection value of the measurement condition acquisition sensor 12 . In this case, the measurement condition determination unit 31 acquires the predetermined event information by performing a predetermined calculation or the like based on the detection value of the measurement condition acquisition sensor 12 . The calculation or the like may be, for example, calculation using a predetermined calculation formula, or estimation using a predetermined calculation formula (estimation formula) or the like.
 また、一例として、比較データ選択部32により取得されるタイヤ情報は、タイヤ特性取得用センサ11の検出値の情報である。この場合、タイヤ特性取得用センサ11は、所定のタイヤ情報について検出値を検出している。
 他の例として、比較データ選択部32により取得されるタイヤ情報は、タイヤ特性取得用センサ11の検出値を用いて演算等された結果の情報であってもよい。この場合、比較データ選択部32は、タイヤ特性取得用センサ11の検出値に基づいて所定の演算等を行うことで、タイヤ情報を取得する。当該演算等は、例えば、所定の演算式を用いた演算であってもよく、あるいは、所定の演算式(推定式)などを用いた推定であってもよい。
Further, as an example, the tire information acquired by the comparison data selection unit 32 is information of the detection value of the tire characteristic acquisition sensor 11 . In this case, the tire characteristic acquisition sensor 11 detects a detection value for predetermined tire information.
As another example, the tire information acquired by the comparison data selection unit 32 may be information obtained as a result of computation using the detection values of the tire characteristic acquisition sensor 11 . In this case, the comparison data selection unit 32 acquires tire information by performing a predetermined calculation or the like based on the detection value of the tire characteristic acquisition sensor 11 . The calculation or the like may be, for example, calculation using a predetermined calculation formula, or may be estimation using a predetermined calculation formula (estimation formula) or the like.
 ここで、比較データ選択部32は、例えば、アナログ回路と、アナログデジタルコンバータ(A/Dコンバータ)と、を有してもよい。アナログ回路は、タイヤ特性取得用センサ11から出力される検出値の信号を入力し、必要に応じて、当該信号に対して増幅等のアナログ処理を行う。A/Dコンバータは、アナログ回路によってアナログ処理が行われた検出値の信号(アナログ信号)をデジタル信号(検出値のデータ)へ変換する。そして、比較データ選択部32は、当該デジタルデータを処理してもよい。 Here, the comparison data selection unit 32 may have, for example, an analog circuit and an analog-to-digital converter (A/D converter). The analog circuit receives the signal of the detected value output from the tire characteristic acquisition sensor 11, and performs analog processing such as amplification on the signal as necessary. The A/D converter converts a detection value signal (analog signal) analog-processed by an analog circuit into a digital signal (detection value data). Then, the comparison data selection unit 32 may process the digital data.
 なお、タイヤ特性取得用センサ11と測定条件取得用センサ12とが共通のセンサである場合、当該センサにより検出された値(検出値)に基づいて、タイヤ情報と所定事象情報とのそれぞれが取得される。この場合、例えば、タイヤ情報と所定事象情報とは、共通の検出値に基づく異なる情報であるが、他の構成例として、タイヤ情報と所定事象情報とが共通の情報であってもよい。
 タイヤ情報と所定事象情報とが共通の検出値に基づく異なる情報である態様としては、例えば、タイヤ情報が歪みの情報(または、速度の情報)であり、所定事象情報が速度の情報(または、歪みの情報)である態様などが用いられてもよい。
Note that when the tire characteristic acquisition sensor 11 and the measurement condition acquisition sensor 12 are a common sensor, the tire information and the predetermined event information are respectively acquired based on the values (detected values) detected by the sensors. be done. In this case, for example, the tire information and the predetermined event information are different information based on a common detection value, but as another configuration example, the tire information and the predetermined event information may be common information.
As a mode in which the tire information and the predetermined event information are different information based on a common detection value, for example, the tire information is distortion information (or speed information), and the predetermined event information is speed information (or distortion information) may be used.
 データ解析部33は、比較データ選択部32から入力された比較データ(少なくとも2個のタイヤ情報)の解析を行う。
 本実施形態では、データ解析部33は、少なくとも2個のタイヤ情報を比較し、その比較結果に基づいて、タイヤ51に関する評価情報を取得する。ここで、データ解析部33は、例えば、少なくとも2個のタイヤ情報を用いて所定の演算等を行うことで、評価情報を取得する。評価情報は、少なくとも2個のタイヤ情報を用いて演算等された結果の情報であってもよい。当該演算等は、例えば、所定の演算式を用いた演算であってもよく、あるいは、所定の演算式(推定式)などを用いた推定であってもよい。
 なお、2個のタイヤ情報に関して比較される対象としては、任意であってもよく、例えば、振幅、ピーク間のレベルの差分、時間的な特徴、ノイズ、波形、分散などのうちの1以上であってもよい。
The data analysis unit 33 analyzes the comparison data (at least two pieces of tire information) input from the comparison data selection unit 32 .
In this embodiment, the data analysis unit 33 compares at least two pieces of tire information and acquires evaluation information regarding the tire 51 based on the comparison result. Here, the data analysis unit 33 acquires the evaluation information, for example, by performing a predetermined calculation or the like using at least two pieces of tire information. The evaluation information may be information obtained as a result of calculation using at least two pieces of tire information. The calculation or the like may be, for example, calculation using a predetermined calculation formula, or estimation using a predetermined calculation formula (estimation formula) or the like.
Note that the object to be compared with respect to the two pieces of tire information may be arbitrary, for example, one or more of amplitude, level difference between peaks, temporal feature, noise, waveform, dispersion, etc. There may be.
 ここで、評価情報は、例えば、タイヤ51自体に関する評価の情報であってもよく、または、タイヤ51と接触する路面のように、タイヤ51に関連する物体の評価に関する情報であってもよく、あるいは、これら両方に関する評価の情報であってもよい。
 また、評価情報は、タイヤ51、または、タイヤ51に関連する物体、あるいは、これら両方について、劣化に関する情報であってもよく、または、異常に関する情報であってもよい。
 なお、本実施形態では、タイヤ51が使用可能である範囲で劣化した場合に「劣化」という語を使用し、タイヤ51が使用不可能である程度で劣化した場合に「異常」という語を使用するが、これらの語の意味の区別は説明の便宜上の一例であり、必ずしも当該区別に限定されず、それぞれのシステム等に応じて任意の用語が使用されてもよい。
Here, the evaluation information may be, for example, evaluation information regarding the tire 51 itself, or may be information regarding evaluation of an object related to the tire 51, such as a road surface in contact with the tire 51. Alternatively, it may be evaluation information regarding both of them.
Also, the evaluation information may be information on deterioration or information on abnormality of the tire 51, an object related to the tire 51, or both.
In this embodiment, the word "deterioration" is used when the tire 51 is deteriorated to the extent that it can be used, and the word "abnormality" is used when the tire 51 is deteriorated to such an extent that it cannot be used. However, the distinction between the meanings of these terms is an example for convenience of explanation, and the terms are not necessarily limited to the distinction, and any term may be used according to each system or the like.
 本実施形態では、タイヤ51の劣化としては、例えば、タイヤ51のゴム部(例えば、トレッド部)などの摩耗、あるいは、タイヤ51のゴム部の硬化などに起因する劣化がある。例えば、タイヤ51のゴム部(例えば、トレッド部)などの摩耗、あるいは、タイヤ51のゴム部の硬化などによりタイヤ51のゴム部の変形の仕方が変化し、このような変形の違いに基づいてタイヤ51の劣化度を把握することが可能である。
 また、本実施形態では、タイヤ51の異常としては、例えば、タイヤ51のバーストあるいはパンクなどがある。
In the present embodiment, the deterioration of the tire 51 includes, for example, deterioration due to wear of the rubber portion (eg, tread portion) of the tire 51 or due to hardening of the rubber portion of the tire 51 . For example, the deformation of the rubber portion of the tire 51 changes due to abrasion of the rubber portion (for example, the tread portion) of the tire 51, or hardening of the rubber portion of the tire 51. It is possible to grasp the degree of deterioration of the tire 51 .
Further, in the present embodiment, an abnormality of the tire 51 includes burst or puncture of the tire 51, for example.
 ここで、本実施形態では、情報処理装置1がタイヤ特性取得用センサ11および測定条件取得用センサ12を含む構成例を示すが、他の構成例として、情報処理装置1はタイヤ特性取得用センサ11と測定条件取得用センサ12との一方または両方を含まないと捉えられてもよい。
 また、本実施形態では、説明の便宜上、データ解析装置21の各処理部(測定条件決定部31、比較データ選択部32、データ解析部33、記憶部34)を区分して説明するが、このような各処理部の区分は任意であってもよく、また、このような各処理部の区分は必ずしも存在しなくてもよい。
Here, in the present embodiment, a configuration example in which the information processing device 1 includes the tire characteristic acquisition sensor 11 and the measurement condition acquisition sensor 12 is shown. 11 and/or the sensor 12 for obtaining measurement conditions.
Further, in the present embodiment, for convenience of explanation, each processing unit (measurement condition determination unit 31, comparison data selection unit 32, data analysis unit 33, storage unit 34) of the data analysis device 21 will be described separately. Such division of each processing unit may be arbitrary, and such division of each processing unit may not necessarily exist.
 また、本実施形態では、情報処理装置1の各処理部(タイヤ特性取得用センサ11、測定条件取得用センサ12、データ解析装置21の各処理部)がそれぞれの処理を行うために必要な情報(例えば、演算式、あるいは、閾値など)がある場合、当該情報は、例えば、あらかじめ情報処理装置1に設定されていてもよく、あるいは、ユーザー(人)の操作、または、機械学習などによって自動的に、設定または変更などが可能であってもよい。 Further, in the present embodiment, each processing unit of the information processing device 1 (each processing unit of the tire characteristic acquisition sensor 11, the measurement condition acquisition sensor 12, and the data analysis device 21) performs each process. (For example, an arithmetic expression or a threshold value), the information may be set in advance in the information processing device 1, or may be automatically set by user (human) operation or machine learning. Specifically, it may be possible to set or change.
 また、情報処理装置1において複数の処理部の区分が設けられる場合、異なる処理部の間での情報のやり取りは、例えば、有線で行われてもよく、あるいは、無線で行われてもよい。 Further, when the information processing apparatus 1 is provided with a plurality of divisions of processing units, exchange of information between different processing units may be performed by wire or wirelessly, for example.
 <センサの取り付け位置>
 図2は、実施形態に係るセンサの取り付け位置の一例を示す図である。
 図2には、地面111にタイヤ51が接触している様子を概略的に示してある。
 また、図2には、矢印を用いて、タイヤ51の回転方向を示してある。
 また、図2の例では、説明の便宜上、タイヤ51のゴム部121を示してあり、タイヤ51のホイールについては図示を省略してある。
 本例では、タイヤ特性取得用センサ11は、タイヤ51のゴム部121の内面123(内壁などと呼ばれてもよい。)に備えられてもよい。
<Sensor mounting position>
FIG. 2 is a diagram illustrating an example of mounting positions of sensors according to the embodiment.
FIG. 2 schematically shows how the tire 51 is in contact with the ground 111 .
In FIG. 2, arrows are used to indicate the direction of rotation of the tire 51. As shown in FIG.
Further, in the example of FIG. 2, for convenience of explanation, the rubber portion 121 of the tire 51 is shown, and the illustration of the wheel of the tire 51 is omitted.
In this example, the tire characteristic acquisition sensor 11 may be provided on the inner surface 123 (which may be called an inner wall or the like) of the rubber portion 121 of the tire 51 .
 ここで、タイヤ51のゴム部121の内面123において、タイヤ特性取得用センサ11が備えられる位置は、例えば、タイヤ51を進行方向(図2の例では、ほぼ左右方向)で見た場合にタイヤ51の両側(図2の例では、図面にほぼ垂直な方向)にはみ出さない位置(例えば、中央の位置)であってもよい。
 図2に示されるタイヤ51の状態では、地面111に接触している部分およびその付近が変形しており、例えば、センサとして歪みセンサが用いられる場合、当該変形に応じて歪みセンサにより歪みを検出することが行われる。
 図2の例では、タイヤ特性取得用センサ11がゴム部121の内面123に接着されている構成例を示したが、他の例として、タイヤ特性取得用センサ11がゴム部121の内面123に埋め込まれている構成が用いられてもよい。
Here, on the inner surface 123 of the rubber portion 121 of the tire 51, the position where the tire characteristic acquisition sensor 11 is provided is, for example, the tire when the tire 51 is viewed in the traveling direction (in the example of FIG. 2, substantially in the horizontal direction). 51 (in the example of FIG. 2, the direction substantially perpendicular to the drawing) may be positioned (for example, the central position).
In the state of the tire 51 shown in FIG. 2, the portion in contact with the ground 111 and its vicinity are deformed. to be done.
Although the example of FIG. 2 shows a configuration example in which the tire characteristic acquisition sensor 11 is adhered to the inner surface 123 of the rubber portion 121, as another example, the tire characteristic acquisition sensor 11 is attached to the inner surface 123 of the rubber portion 121. Embedded configurations may also be used.
 なお、タイヤ特性取得用センサ11の取り付け位置としては、特に限定はなく、例えば、タイヤ51のホイールの内面(内壁)などに備えられてもよい。また、タイヤ51のホイールの内面などに加速度センサを備えて、当該加速度センサの検出値に基づいて間接的にタイヤ51(例えば、ゴム部121)の変形度を検出する構成が用いられてもよい。 また、図2では、タイヤ特性取得用センサ11の取り付け位置の例を示したが、測定条件取得用センサ12についても同様な取り付け位置が用いられてもよい。 The mounting position of the tire characteristic acquisition sensor 11 is not particularly limited, and may be provided on the inner surface (inner wall) of the wheel of the tire 51, for example. Further, a configuration may be used in which an acceleration sensor is provided on the inner surface of the wheel of the tire 51, and the degree of deformation of the tire 51 (for example, the rubber portion 121) is indirectly detected based on the detection value of the acceleration sensor. . Also, FIG. 2 shows an example of the mounting position of the tire characteristic acquisition sensor 11, but the same mounting position may be used for the measurement condition acquisition sensor 12 as well.
 図3(A)および図3(B)は、実施形態に係るセンサの取り付け位置の他の例を示す図である。
 図3(A)には、ホイール131とゴム部132とが取り付けられた状態のタイヤ51を示してある。
 本例では、タイヤ特性取得用センサ11は、ホイール131(例えば、リムの部分)とゴム部132との間に備えられている。
 図3(B)には、ゴム部132が取り付けられていない状態のホイール131およびタイヤ特性取得用センサ11を示してある。
 なお、図3(A)および図3(B)では、タイヤ特性取得用センサ11の取り付け位置の例を示したが、測定条件取得用センサ12についても同様な取り付け位置が用いられてもよい。
FIGS. 3A and 3B are diagrams showing other examples of mounting positions of sensors according to the embodiment.
FIG. 3A shows the tire 51 with the wheel 131 and the rubber portion 132 attached.
In this example, the tire characteristic acquisition sensor 11 is provided between a wheel 131 (for example, a rim portion) and a rubber portion 132 .
FIG. 3B shows the wheel 131 and the tire characteristic acquisition sensor 11 without the rubber portion 132 attached.
Although FIGS. 3(A) and 3(B) show an example of the mounting position of the tire characteristic acquiring sensor 11, the same mounting position may be used for the measurement condition acquiring sensor 12 as well.
 <測定条件の例、および、測定条件取得用センサの種類の例>
 測定条件取得用センサ12によって検出される所定事象情報に基づく測定条件の例を示す。
 また、所定事象情報の元となる検出値(所定事象情報自体でもよい。)を検出するセンサ(ここでは、測定条件取得用センサ12)の種類の例を示す。
<Examples of measurement conditions and examples of types of sensors for acquiring measurement conditions>
An example of measurement conditions based on predetermined event information detected by the measurement condition acquisition sensor 12 is shown.
Examples of types of sensors (in this case, the measurement condition acquisition sensor 12) that detect the detection values (predetermined event information itself may be used) that are the basis of the predetermined event information are also shown.
 測定条件は、例えば、速度の条件であってもよい。この場合、測定条件取得用センサ12によって検出される検出値は、例えば、速度の情報であってもよく、あるいは、速度の情報を演算等するために使用されることが可能な他の情報であってもよい。当該他の情報は、例えば、加速度の情報であってもよく、あるいは、歪み(例えば、タイヤ51が地面と接するときにタイヤ51に発生する歪み)の情報であってもよい。 The measurement condition may be, for example, the speed condition. In this case, the detected value detected by the measurement condition acquisition sensor 12 may be, for example, speed information, or other information that can be used to calculate speed information. There may be. The other information may be, for example, acceleration information or distortion information (for example, distortion occurring in the tire 51 when the tire 51 contacts the ground).
 センサ(ここでは、測定条件取得用センサ12)としては、例えば、速度を検出する速度センサ(車速センサ)が用いられてもよい。
 また、センサ(ここでは、測定条件取得用センサ12)としては、タイヤ51(車輪)の回転量を検出するセンサが用いられてもよく、当該回転量に基づいて速度が演算等されてもよい。
 なお、タイヤ特性取得用センサ11の検出値に基づいて速度が演算等される場合には、タイヤ特性取得用センサ11が測定条件取得用センサ12として共用されてもよい。
For example, a speed sensor (vehicle speed sensor) that detects speed may be used as the sensor (here, the measurement condition acquisition sensor 12).
Further, as the sensor (here, the measurement condition acquisition sensor 12), a sensor that detects the amount of rotation of the tire 51 (wheel) may be used, and the speed may be calculated based on the amount of rotation. .
Note that when the speed is calculated based on the detection value of the tire characteristic acquisition sensor 11 , the tire characteristic acquisition sensor 11 may be used as the measurement condition acquisition sensor 12 .
 具体例として、速度の測定条件として、時速20km、あるいは、時速40kmなどの測定条件が用いられてもよい。この場合、例えば、車両の走行中に、時速20kmあるいは時速40kmなどになったときにおけるタイヤ特性取得用センサ11の検出値に基づくタイヤ情報が、測定条件に対応するタイヤ情報として、取得される。 As a specific example, a measurement condition such as 20 km/h or 40 km/h may be used as the speed measurement condition. In this case, for example, tire information based on detection values of the tire characteristic acquisition sensor 11 when the vehicle is running at a speed of 20 km/h or 40 km/h is acquired as the tire information corresponding to the measurement conditions.
 他の例として、センサ(ここでは、測定条件取得用センサ12)としては、加速度を検出する加速度センサが用いられてもよい。この場合、検出される加速度に基づいて速度が検出(例えば、演算等)される。
 他の例として、センサ(ここでは、測定条件取得用センサ12)としては、歪みを検出する歪みセンサが用いられてもよい。この場合、検出される歪みに基づいて速度が検出(例えば、演算等)される。
As another example, an acceleration sensor that detects acceleration may be used as the sensor (here, the measurement condition acquisition sensor 12). In this case, the velocity is detected (eg, calculated) based on the detected acceleration.
As another example, a strain sensor that detects strain may be used as the sensor (here, the measurement condition acquisition sensor 12). In this case, the velocity is detected (calculated, for example) based on the detected strain.
 測定条件は、例えば、荷重の条件であってもよい。この場合、測定条件取得用センサ12によって検出される検出値は、例えば、荷重の情報であってもよく、あるいは、荷重の情報を演算等するために使用されることが可能な他の情報であってもよい。
 ここで、荷重の情報は、車両(ここでは、タイヤ以外の部分)からタイヤ51にかかる力に関する情報である。例えば、4個のタイヤを有する車両では、1個のタイヤにかかる力は概略的には車両の重量の1/4となるが、車両の構造等によっては、これに限られない。
The measurement conditions may be, for example, load conditions. In this case, the detected value detected by the measurement condition acquisition sensor 12 may be, for example, load information, or other information that can be used to calculate load information. There may be.
Here, the load information is information about the force applied to the tire 51 from the vehicle (here, the portion other than the tire). For example, in a vehicle having four tires, the force applied to one tire is approximately 1/4 of the weight of the vehicle, but this is not limitative depending on the structure of the vehicle.
 センサ(ここでは、測定条件取得用センサ12)としては、例えば、荷重を検出する荷重センサが用いられてもよい。荷重センサは、車両のサスペンションに取り付けられてもよい。
 なお、タイヤ特性取得用センサ11の検出値に基づいて荷重が演算等される場合には、タイヤ特性取得用センサ11が測定条件取得用センサ12として共用されてもよい。
As the sensor (here, the measurement condition acquisition sensor 12), for example, a load sensor that detects a load may be used. The load sensor may be attached to the suspension of the vehicle.
When the load is calculated based on the detected value of the tire characteristic acquisition sensor 11 , the tire characteristic acquisition sensor 11 may be used as the measurement condition acquisition sensor 12 .
 具体例として、荷重の測定条件として、車両に乗っている人、車両に乗っている荷物、あるいは、車両に乗っている燃料(例えば、ガソリン)の荷重が変化したタイミングの条件が用いられてもよい。この場合、例えば、当該タイミングにおけるタイヤ特性取得用センサ11の検出値に基づくタイヤ情報が、測定条件に対応するタイヤ情報として、取得される。 As a specific example, as a load measurement condition, even if the condition of the timing when the load of the person riding in the vehicle, the luggage on the vehicle, or the fuel (for example, gasoline) on the vehicle changes. good. In this case, for example, the tire information based on the detection value of the tire characteristic acquisition sensor 11 at that timing is acquired as the tire information corresponding to the measurement conditions.
 測定条件は、例えば、空気圧の条件であってもよい。この場合、測定条件取得用センサ12によって検出される検出値は、例えば、空気圧の情報であってもよく、あるいは、空気圧の情報を演算等するために使用されることが可能な他の情報であってもよい。 The measurement conditions may be, for example, air pressure conditions. In this case, the detected value detected by the measurement condition acquisition sensor 12 may be, for example, air pressure information, or other information that can be used to calculate the air pressure information. There may be.
 センサ(ここでは、測定条件取得用センサ12)としては、例えば、空気圧を検出する圧力センサが用いられてもよい。圧力センサは、例えば、タイヤ51に設置されてもよい。
 具体例として、空気圧の測定条件として、タイヤ51に空気が入れられる前(例えば、直前)という条件、および、タイヤ51に空気が入れられた後(例えば、直後)という条件が用いられてもよく、例えば、タイヤ51に空気が入れられる前後のタイミングの条件が用いられてもよい。
As the sensor (here, the measurement condition acquisition sensor 12), for example, a pressure sensor that detects air pressure may be used. A pressure sensor may be installed in the tire 51, for example.
As a specific example, as the air pressure measurement conditions, a condition before the tire 51 is inflated (for example, immediately before) and a condition after the tire 51 is inflated (for example, immediately after) may be used. For example, timing conditions before and after the tire 51 is inflated may be used.
 測定条件は、例えば、タイヤ51の温度の条件であってもよい。この場合、測定条件取得用センサ12によって検出される検出値は、例えば、温度の情報であってもよく、あるいは、温度の情報を演算等することが可能な他の情報であってもよい。 The measurement condition may be the temperature condition of the tire 51, for example. In this case, the detected value detected by the measurement condition acquisition sensor 12 may be, for example, temperature information, or other information capable of calculating temperature information.
 センサ(ここでは、測定条件取得用センサ12)としては、例えば、温度を検出する温度センサが用いられてもよい。温度センサは、例えば、タイヤ51に設置されていてもよい。
 具体例として、測定条件として、車両の走行によってタイヤ51が加熱する前という条件、および、車両の走行によってタイヤ51が加熱された後という条件が用いられてもよく、例えば、車両の走行によってタイヤ51が加熱される前後のタイミングの条件が用いられてもよい。
As the sensor (here, the measurement condition acquisition sensor 12), for example, a temperature sensor that detects temperature may be used. The temperature sensor may be installed in the tire 51, for example.
As a specific example, as the measurement conditions, a condition that the tire 51 is heated by running the vehicle and a condition that the tire 51 is heated by running the vehicle may be used. Timing conditions before and after 51 is heated may be used.
 例えば、荷重、空気圧、あるいは、タイヤ51の温度などは、車両の使用中に変化するパラメータである。このようなパラメータが測定条件に関して用いられる場合、例えば、特別な環境を用意することなく、車両の走行中に当該パラメータが所望値となるときのタイヤ情報を取得することが可能である。 For example, the load, the air pressure, or the temperature of the tire 51 are parameters that change while the vehicle is in use. When such parameters are used for measurement conditions, for example, it is possible to obtain tire information when the parameters are desired values while the vehicle is running without preparing a special environment.
 <タイヤ情報の例、および、タイヤ特性取得用センサの種類の例>
 タイヤ情報に基づいて解析される情報は、例えば、タイヤ51の歪みの情報であってもよい。この場合、タイヤ特性取得用センサ11によって検出される検出値に基づくタイヤ情報は、例えば、歪みの情報であってもよく、あるいは、歪みの情報を演算等するために使用されることが可能な他の情報であってもよい。
<Example of tire information and examples of types of sensors for acquiring tire characteristics>
Information analyzed based on the tire information may be, for example, information on the distortion of the tire 51 . In this case, the tire information based on the detection value detected by the tire characteristic acquisition sensor 11 may be, for example, distortion information, or may be used to calculate distortion information. Other information may be used.
 センサ(ここでは、タイヤ特性取得用センサ11)としては、例えば、タイヤ51の歪みを検出する歪みセンサが用いられてもよい。この場合、本実施形態では、歪みセンサは、タイヤ51に設置される。また、この場合、タイヤ情報は、歪み情報であってもよい。 具体例として、歪みセンサによって、タイヤ51の変形の度合いを検出することができる。歪みセンサがタイヤ51の所定箇所に設置された場合、タイヤ51が回転するときに、当該所定箇所に対応するタイヤ51の部分が地面に接地するときに、歪みセンサの検出値が変化する。タイヤ51における当該所定箇所は、図2に示されるように、タイヤ51のゴム部121の内面などであってもよい。 As the sensor (here, the tire characteristic acquisition sensor 11), for example, a strain sensor that detects the strain of the tire 51 may be used. In this case, the strain sensor is installed on the tire 51 in this embodiment. Moreover, in this case, the tire information may be distortion information. As a specific example, the strain sensor can detect the degree of deformation of the tire 51 . When the strain sensor is installed at a predetermined portion of the tire 51, the detected value of the strain sensor changes when the tire 51 rotates and the portion of the tire 51 corresponding to the predetermined portion touches the ground. The predetermined portion of the tire 51 may be the inner surface of the rubber portion 121 of the tire 51, as shown in FIG.
 一般に、タイヤ51の変形の仕方は、タイヤ51のトレッド部の摩耗、および、タイヤ51のゴム部の硬度の変化により変化するため、タイヤ51の変形の仕方の違いによりタイヤ51の劣化の度合いを把握することが可能である。 In general, the way the tire 51 deforms changes depending on the wear of the tread portion of the tire 51 and the change in the hardness of the rubber portion of the tire 51. Therefore, the degree of deterioration of the tire 51 can be determined by the difference in the way the tire 51 deforms. It is possible to grasp
 また、センサ(ここでは、タイヤ特性取得用センサ11)としては、例えば、加速度センサが用いられてもよい。この場合、本実施形態では、加速度センサは、タイヤ51に設置される。また、この場合、タイヤ情報は、加速度情報であってもよい。
 加速度センサの検出値によっても、タイヤ51の変形の度合いを検出することが可能である。
As the sensor (here, the tire characteristic acquisition sensor 11), for example, an acceleration sensor may be used. In this case, the acceleration sensor is installed on the tire 51 in this embodiment. Further, in this case, the tire information may be acceleration information.
It is also possible to detect the degree of deformation of the tire 51 based on the detection value of the acceleration sensor.
 また、センサ(ここでは、タイヤ特性取得用センサ11)としては、例えば、圧力センサが用いられてもよい。この場合、本実施形態では、圧力センサは、タイヤ51に設置される。また、この場合、タイヤ情報は、圧力情報であってもよい。
 具体例として、圧力センサによって、タイヤ51の変形の度合いを検出することができる。圧力センサがタイヤ51の所定箇所に設置された場合、タイヤ51が回転するときに、当該所定箇所に対応するタイヤ51の部分が地面に接地するときに、圧力センサの検出値が変化する。タイヤ51における当該所定箇所は、図3(A)および図3(B)に示されるように、ホイール131(例えば、リムの部分)とゴム部132との間の位置などであってもよい。
As the sensor (here, the tire characteristic acquisition sensor 11), for example, a pressure sensor may be used. In this case, the pressure sensor is installed in the tire 51 in this embodiment. Moreover, in this case, the tire information may be pressure information.
As a specific example, a pressure sensor can detect the degree of deformation of the tire 51 . When the pressure sensor is installed at a predetermined location on the tire 51, the detected value of the pressure sensor changes when the portion of the tire 51 corresponding to the predetermined location touches the ground when the tire 51 rotates. The predetermined location on the tire 51 may be a location between the wheel 131 (for example, the rim portion) and the rubber portion 132, as shown in FIGS. 3(A) and 3(B).
 なお、一般に、対象物の変形を把握するために、歪みセンサ、加速度センサ、あるいは、圧力センサが用いられる場合がある。
 本実施形態では、歪みセンサ、加速度センサ、あるいは、圧力センサは、例えば、タイヤ51のゴム部の変形を検出するセンサとして適している。
Incidentally, generally, a strain sensor, an acceleration sensor, or a pressure sensor may be used in order to grasp the deformation of an object.
In this embodiment, a strain sensor, an acceleration sensor, or a pressure sensor is suitable as a sensor for detecting deformation of the rubber portion of the tire 51, for example.
 図4は、実施形態に係る歪みセンサの検出値(歪み信号)の一例を示す図である。
 図4の例は、タイヤ特性取得用センサ11として歪みセンサが用いられた場合の例である。
 図4に示されるグラフにおいて、横軸は時間を表しており、縦軸は歪みセンサの検出値のレベル(例えば、電圧の振幅)を表している。
 そして、当該グラフに、歪みセンサによって検出された歪みの信号(歪み信号1011)の一例を示してある。
FIG. 4 is a diagram illustrating an example of a detection value (distortion signal) of the distortion sensor according to the embodiment;
The example of FIG. 4 is an example in which a strain sensor is used as the tire characteristic acquisition sensor 11 .
In the graph shown in FIG. 4, the horizontal axis represents time, and the vertical axis represents the level of the detected value of the strain sensor (for example, amplitude of voltage).
The graph shows an example of a strain signal (strain signal 1011) detected by the strain sensor.
 本例では、歪みセンサはタイヤ51の所定箇所に設置されている。そして、図4に示される歪み信号1011では、タイヤ51が回転するときに、時間T1および時間T2において、当該所定箇所に対応するタイヤ51の部分が地面に接地していることが表されている。
 ここで、時間T1よりも時間T2の方が後の時間であり、タイヤ51が一回転する周期(一回転周期1021)は(時間T2-時間T1)の期間に相当する。
In this example, the strain sensor is installed at a predetermined location on the tire 51 . The strain signal 1011 shown in FIG. 4 indicates that the portion of the tire 51 corresponding to the predetermined location is in contact with the ground at time T1 and time T2 when the tire 51 rotates. .
Here, the time T2 is later than the time T1, and the period in which the tire 51 rotates once (one rotation period 1021) corresponds to the period of (time T2-time T1).
 <評価情報の例>
 データ解析部33によって取得される評価情報の例を示す。
 評価情報としては、例えば、タイヤ51の劣化、タイヤ51の異常、タイヤ51が接する路面の状態(例えば、路面が雨でぬれている状態、路面が凍っている状態、など)、あるいは、タイヤ51が接する路面とタイヤ51との間のグリップ力、などのうちの1以上に関する情報であってもよい。
<Example of evaluation information>
An example of evaluation information acquired by the data analysis unit 33 is shown.
The evaluation information includes, for example, the deterioration of the tire 51, the abnormality of the tire 51, the condition of the road surface on which the tire 51 is in contact (for example, the condition of the road surface being wet with rain, the condition of the road surface being frozen, etc.), or may be information relating to one or more of the grip force between the road surface in contact with the tire 51 and the like.
 また、タイヤ51の劣化の種類としては、特に限定は無く、例えば、タイヤ51のトレッド部の摩耗による劣化であってもよく、あるいは、タイヤ51の硬度の変化による劣化であってもよい。 Further, the type of deterioration of the tire 51 is not particularly limited, and may be deterioration due to wear of the tread portion of the tire 51 or deterioration due to a change in hardness of the tire 51, for example.
 図5および図6を参照して、データ解析部33により行われる評価の例を示す。
 図5の例および図6の例では、タイヤ情報に基づく歪み信号について評価が行われる場合を示す。
An example of evaluation performed by the data analysis unit 33 is shown with reference to FIGS. 5 and 6. FIG.
The example of FIG. 5 and the example of FIG. 6 show the case where the distortion signal based on the tire information is evaluated.
 図5は、実施形態に係る2つの歪み信号の相対的な関係の一例を示す図である。
 図5に示されるグラフにおいて、横軸には、車両の速度(車速)が時速A(Aは正の値であり、例えば、20など)kmである場合と、車両の速度(車速)が時速B(BはAよりも大きい正の値であり、例えば、40など)kmである場合が表されており、縦軸はレベル(例えば、電圧の振幅)を表している。
 そして、当該グラフに、時速Akmである場合における歪み信号1111と、時速Bkmである場合における歪み信号1112が示されている。
FIG. 5 is a diagram illustrating an example of a relative relationship between two distortion signals according to the embodiment;
In the graph shown in FIG. 5, the horizontal axis shows the case where the vehicle speed (vehicle speed) is A (A is a positive value, for example, 20) km per hour, and the case where the vehicle speed (vehicle speed) is the speed per hour. B (B is a positive value greater than A, eg, 40) km is represented, and the vertical axis represents level (eg, amplitude of voltage).
The graph shows a distortion signal 1111 when the speed is A km/h and a distortion signal 1112 when the speed is B km/h.
 データ解析部33は、2つの歪み信号1111、1112の間の相対値に基づいて評価情報を取得する。
 当該相対値は、例えば、一方の歪み信号1111のピーク間の値(図5の例では、正のピークと負のピークとの間の大きさに相当する値)と、他方の歪み信号1112のピーク間の値(図5の例では、正のピークと負のピークとの間の大きさに相当する値)と、の差分1113(例えば、絶対値であり、正の値)であってもよい。
The data analysis section 33 acquires evaluation information based on the relative value between the two distortion signals 1111 and 1112 .
The relative value is, for example, the value between the peaks of one distortion signal 1111 (the value corresponding to the magnitude between the positive peak and the negative peak in the example of FIG. 5) and the Even if the difference 1113 (for example, the absolute value and the positive value) between the peak-to-peak value (the value corresponding to the magnitude between the positive peak and the negative peak in the example of FIG. 5) good.
 図6は、実施形態に係る2つの歪み信号の相対的な関係の他の例を示す図である。
 図6に示されるグラフにおいて、横軸には、車両の速度(車速)が時速Akmである場合と、車両の速度(車速)が時速Bkmである場合が表されており、縦軸はレベル(例えば、電圧の振幅)を表している。
 そして、当該グラフに、時速Akmである場合における歪み信号1121と、時速Bkmである場合における歪み信号1122が示されている。
FIG. 6 is a diagram showing another example of the relative relationship between two distortion signals according to the embodiment.
In the graph shown in FIG. 6, the horizontal axis represents the case where the vehicle speed (vehicle speed) is A km/h and the case where the vehicle speed (vehicle speed) is B km/h, and the vertical axis represents the level ( for example, voltage amplitude).
The graph shows a distortion signal 1121 when the speed is A km/h and a distortion signal 1122 when the speed is B km/h.
 データ解析部33は、2つの歪み信号1121、1122の間の相対値に基づいて評価情報を取得する。
 当該相対値は、例えば、一方の歪み信号1121のピーク間の値(図6の例では、正のピークと負のピークとの間の大きさに相当する値)と、他方の歪み信号1122のピーク間の値(図6の例では、正のピークと負のピークとの間の大きさに相当する値)と、の差分1123(例えば、絶対値であり、正の値)であってもよい。
The data analysis unit 33 acquires evaluation information based on the relative value between the two distortion signals 1121 and 1122 .
The relative value is, for example, the value between the peaks of one distortion signal 1121 (the value corresponding to the magnitude between the positive peak and the negative peak in the example of FIG. 6) and the value of the other distortion signal 1122. Even if the difference 1123 (e.g., absolute value and positive value) between the peak-to-peak value (the value corresponding to the magnitude between the positive peak and the negative peak in the example of FIG. 6) good.
 ここで、図5および図6の例では、2個の測定条件(速度Akmのときの条件、速度Bkmのときの条件)におけるピーク間の値の差分1113、1123の変化に基づいて、タイヤ51の劣化の度合いが把握される。
 例えば、測定条件の違いによってピーク間の値が変化する程度に基づいて、タイヤ51の劣化の度合いが把握される。
 なお、値が変化する程度としては、例えば、一方の値に対して他方の値が何割になるかの程度(変化の割合)が用いられてもよく、あるいは、一方の値に対して他方の値がどれくらい増減するかの程度(変化の量)が用いられてもよい。
Here, in the examples of FIGS. 5 and 6, the tire 51 The degree of deterioration of the
For example, the degree of deterioration of the tire 51 is grasped based on the degree of change in the value between peaks due to the difference in measurement conditions.
As the degree to which the value changes, for example, the degree to which the other value is a percentage of one value (the rate of change) may be used, or A measure of how much the value of is increased or decreased (amount of change) may be used.
 評価情報としては、例えば、このような値が変化する程度を表す情報が用いられてもよく、あるいは、このような値が変化する程度に基づいて演算等される他の情報が用いられてもよい。
 例えば、図5の例のように、このような値が変化する程度が大きい方が劣化していないタイヤ51(例えば、新品のタイヤ51)であり、また、図6の例のように、このような値が変化する程度が小さい方が劣化したタイヤ51である、といった評価が可能となる。
As the evaluation information, for example, information representing the extent to which such values change may be used, or other information that is calculated based on the extent to which such values change may be used. good.
For example, as in the example of FIG. 5, the tire 51 (for example, a new tire 51) is not degraded when such a value changes to a greater extent, and as in the example of FIG. It is possible to evaluate that the tire 51 having a smaller degree of change in such a value is a deteriorated tire 51 .
 図7は、実施形態に係るピーク間の値(Vpp)の特性の一例を示す図である。
 図7に示されるグラフにおいて、横軸は時速[km]を表しており、縦軸はピーク間の差分のレベル(例えば、電圧の振幅の差分)を表している。
 そして、当該グラフに、劣化したタイヤ51が用いられる場合におけるピーク間の値の特性1211と、新品のタイヤ51が用いられる場合におけるピーク間の値の特性1212と、が示されている。図7の例では、劣化したタイヤ51に関する特性1211の方が傾きが小さく、新品のタイヤ51に関する特性1212の方が傾きが大きい。
FIG. 7 is a diagram illustrating an example of characteristics of a value (Vpp) between peaks according to the embodiment.
In the graph shown in FIG. 7, the horizontal axis represents the speed per hour [km], and the vertical axis represents the difference level between peaks (for example, the difference in voltage amplitude).
The graph shows a peak-to-peak value characteristic 1211 when the deteriorated tire 51 is used and a peak-to-peak value characteristic 1212 when the new tire 51 is used. In the example of FIG. 7, the characteristic 1211 related to the deteriorated tire 51 has a smaller slope, and the characteristic 1212 related to the new tire 51 has a larger slope.
 図8は、実施形態に係るピーク間の値の変化の特性の一例を示す図である。
 図8に示されるグラフにおいて、横軸は劣化度(図8の例において右へ行くほど劣化度が高い)を表しており、縦軸はピーク間の値の変化[%]を表している。
 そして、当該グラフに、ピーク間の値の変化の特性1311が示されている。
FIG. 8 is a diagram illustrating an example of characteristics of changes in values between peaks according to the embodiment.
In the graph shown in FIG. 8, the horizontal axis represents the degree of deterioration (in the example of FIG. 8, the degree of deterioration increases toward the right), and the vertical axis represents the change [%] in values between peaks.
The graph also shows a characteristic 1311 of changes in values between peaks.
 また、当該グラフには、ピーク間の値の変化に関して、判定値となる所定の閾値1321を示してある。
 図8の例では、データ解析部33は、特性1311が閾値1321を超える場合(または、閾値1321以上である場合)には、タイヤ51の劣化度が許容範囲であると判定する。一方、データ解析部33は、特性1311が閾値1321以下である場合(または、閾値1321未満である場合)には、タイヤ51の劣化度が許容範囲外(本実施形態では、劣化、または、異常)であると判定する。評価情報として、例えば、劣化度が許容範囲であるか否かを示す情報が用いられてもよい。
The graph also shows a predetermined threshold value 1321 that serves as a judgment value for changes in values between peaks.
In the example of FIG. 8, the data analysis unit 33 determines that the degree of deterioration of the tire 51 is within the allowable range when the characteristic 1311 exceeds the threshold 1321 (or is equal to or greater than the threshold 1321). On the other hand, when the characteristic 1311 is equal to or less than the threshold value 1321 (or less than the threshold value 1321), the data analysis unit 33 determines that the degree of deterioration of the tire 51 is outside the allowable range (deterioration or abnormal ). As the evaluation information, for example, information indicating whether the degree of deterioration is within the allowable range may be used.
 図8の例では、ピーク間の値の変化[%]として、[{(時速Akmにおけるピーク間の値)/(時速Bkmにおけるピーク間の値)}×100]が用いられている。
 例えば、タイヤ特性取得用センサ11の個々のバラツキとして、検出値が所定倍になるバラツキがある場合、2つの測定条件のそれぞれに対応する検出値(または、当該検出値の倍率を保持したまま変換された値)の比率を求めることで、当該バラツキの影響がキャンセルされる。
In the example of FIG. 8, [{(peak-to-peak value at speed A km/h)/(peak-to-peak value at speed B km/h)}×100] is used as the change [%] in the value between peaks.
For example, if there is a variation in the detected value of the tire characteristic acquisition sensor 11 that results in a predetermined multiple of the individual variation, the detected value corresponding to each of the two measurement conditions (or the magnification of the detected value is converted while maintaining the magnification) The influence of the variation is canceled by obtaining the ratio of the calculated value).
 他の例として、タイヤ特性取得用センサ11の個々のバラツキとして、検出値に所定値が加算(または、減算)されるバラツキがある場合には、例えば、2つの測定条件のそれぞれに対応する検出値(または、当該検出値に含まれる当該所定値を保持したまま変換された値)の差を求めることで、当該バラツキの影響がキャンセルされてもよい。
 また、タイヤ特性取得用センサ11の個々のバラツキとして、他の態様のバラツキがある場合においても、当該バラツキの影響がキャンセルされるように、2つの測定条件のそれぞれに対応する検出値(または、当該検出値を用いて変換された値)の演算が行われてもよい。
 また、タイヤ特性取得用センサ11の個々のバラツキの影響をキャンセルする(当該バラツキの影響をゼロにする)構成の代わりに、タイヤ特性取得用センサ11の個々のバラツキの影響を低減させる構成が用いられてもよい。
As another example, when there is a variation in which a predetermined value is added (or subtracted) to the detected value as an individual variation in the tire characteristic acquisition sensor 11, for example, detection corresponding to each of the two measurement conditions The influence of the variation may be canceled by obtaining the difference between the values (or the value converted while retaining the predetermined value included in the detected value).
In addition, even if there are variations in other aspects as individual variations in the tire characteristic acquisition sensor 11, the detection values corresponding to each of the two measurement conditions (or A value converted using the detected value) may be calculated.
In addition, instead of the configuration that cancels the influence of individual variations in the tire characteristic acquisition sensors 11 (the influence of the variations is made zero), a configuration that reduces the effects of individual variations in the tire characteristic acquisition sensors 11 is used. may be
 <時間に関する特徴量を比較する場合の例>
 図9~図11を参照して、データ解析装置21において時間に関する特徴量を比較する場合の例を示す。
 本例では、比較対象は、所定の時間であり、具体的には、タイヤ51が地面に接地する時間(接地時間)である。
 本例では、タイヤ特性取得用センサ11は、歪みセンサである。他の例として、タイヤ特性取得用センサ11は、加速度センサ、あるいは、圧力センサであってもよい。
 本例では、測定条件取得用センサ12は、荷重センサ、または、空気圧センサである。
<Example of comparing time-related feature values>
FIGS. 9 to 11 show an example of comparing time-related feature amounts in the data analysis device 21. FIG.
In this example, the object of comparison is a predetermined period of time, specifically the period of time during which the tire 51 touches the ground (contact time).
In this example, the tire characteristic acquisition sensor 11 is a strain sensor. As another example, the tire characteristic acquisition sensor 11 may be an acceleration sensor or a pressure sensor.
In this example, the measurement condition acquisition sensor 12 is a load sensor or an air pressure sensor.
 図9は、実施形態に係るタイヤの接地時間が長い場合の様子の一例を示す図である。 図9には、タイヤ211が地面111に接地されて回転している様子を示してある。 また、図9には、矢印を用いて、タイヤ211の回転方向を示してある。
 ここで、タイヤ211は、タイヤ51の一例である。
 図9の例では、タイヤ211における接地点Z1が、新たに地面111に接地する点を表しており、また、タイヤ211における接地点Z2が、これから地面111から離れる点を表している。つまり、図9の例では、タイヤ211における接地点Z1が地面111に接地するとともに接地点Z2が地面111から離れる瞬間の様子を示してある。
 接地点Z1と接地点Z2との間の距離221は、タイヤ211の同じ点(例えば、接地点Z1、あるいは、接地点Z2など)が地面111に接地している時間(接地時間)に応じた大きさとなっている。
FIG. 9 is a diagram showing an example of a state in which the contact time of the tire according to the embodiment is long. FIG. 9 shows how the tire 211 is in contact with the ground 111 and is rotating. In addition, in FIG. 9, the direction of rotation of the tire 211 is indicated using an arrow.
Here, the tire 211 is an example of the tire 51 .
In the example of FIG. 9, the ground contact point Z1 of the tire 211 represents a new contact point with the ground 111, and the ground contact point Z2 of the tire 211 represents a point leaving the ground 111 from now on. In other words, the example of FIG. 9 shows the moment when the contact point Z1 of the tire 211 touches the ground 111 and the contact point Z2 separates from the ground 111. FIG.
The distance 221 between the contact point Z1 and the contact point Z2 depends on the time (contact time) during which the same point of the tire 211 (for example, the contact point Z1 or the contact point Z2) is in contact with the ground 111. The size is.
 図10は、実施形態に係るタイヤの接地時間が短い場合の様子の一例を示す図である。 図10には、タイヤ212が地面111に接地されて回転している様子を示してある。 また、図10には、矢印を用いて、タイヤ212の回転方向を示してある。
 ここで、タイヤ212は、タイヤ51の一例である。
 図10の例では、タイヤ212における接地点Z11が、新たに地面111に接地する点を表しており、また、タイヤ212における接地点Z12が、これから地面111から離れる点を表している。つまり、図10の例では、タイヤ212における接地点Z11が地面111に接地するとともに接地点Z12が地面111から離れる瞬間の様子を示してある。
 接地点Z11と接地点Z12との間の距離222は、タイヤ212の同じ点(例えば、接地点Z11、あるいは、接地点Z12など)が地面111に接地している時間(接地時間)に応じた大きさとなっている。
FIG. 10 is a diagram showing an example of a situation in which the contact time of the tire according to the embodiment is short. FIG. 10 shows how the tire 212 is in contact with the ground 111 and is rotating. 10 also shows the direction of rotation of the tire 212 using an arrow.
Here, the tire 212 is an example of the tire 51 .
In the example of FIG. 10, the ground contact point Z11 of the tire 212 represents a new contact point with the ground 111, and the ground contact point Z12 of the tire 212 represents a point leaving the ground 111 from now on. In other words, the example of FIG. 10 shows the moment when the contact point Z11 of the tire 212 touches the ground 111 and the contact point Z12 separates from the ground 111. FIG.
The distance 222 between the contact point Z11 and the contact point Z12 depends on the time (contact time) during which the same point of the tire 212 (for example, the contact point Z11 or the contact point Z12) is in contact with the ground 111. The size is.
 ここで、図9の例では、図10の例と比べて、タイヤ211(例えば、タイヤ51)にかかる荷重が大きい場合、または、タイヤ211(例えば、タイヤ51)の空気圧が低い場合を示してあり、これらの場合、距離221および接地時間は長くなる。
 一方、図10の例では、図9の例と比べて、タイヤ212(例えば、タイヤ51)にかかる荷重が小さい場合、または、タイヤ212(例えば、タイヤ51)の空気圧が高い場合を示してあり、これらの場合、距離222および接地時間は短くなる。
Here, the example of FIG. 9 shows a case where the load applied to the tire 211 (for example, the tire 51) is larger or the air pressure of the tire 211 (for example, the tire 51) is lower than the example shown in FIG. Yes, and in these cases the distance 221 and contact time will be longer.
On the other hand, the example of FIG. 10 shows a case where the load applied to the tire 212 (eg, the tire 51) is smaller than the example of FIG. 9, or the case where the air pressure of the tire 212 (eg, the tire 51) is high. , in these cases the distance 222 and ground contact time are reduced.
 図11は、実施形態に係る歪みセンサの検出値(歪み信号)の一例を示す図である。 図11に示されるグラフにおいて、横軸は時間[msec]を表しており、縦軸は歪みセンサの出力(検出値)[V]を表している。
 そして、当該グラフに、荷重が大きいタイヤ(例えば、図9に示される状態のタイヤ)について検出された歪み信号1411の一例と、荷重が小さいタイヤ(例えば、図10に示される状態のタイヤ)について検出された歪み信号1412の一例を示してある。
FIG. 11 is a diagram illustrating an example of a detection value (distortion signal) of the distortion sensor according to the embodiment; In the graph shown in FIG. 11, the horizontal axis represents time [msec], and the vertical axis represents the output (detected value) [V] of the strain sensor.
The graph shows an example of the strain signal 1411 detected for a tire with a large load (for example, the tire in the state shown in FIG. 9) and a tire with a small load (for example, the tire in the state shown in FIG. 10). An example of a detected distortion signal 1412 is shown.
 ここで、図11の例では、歪み信号1411において正のピークが発生する時間T11、歪み信号1412において正のピークが発生する時間T12、歪み信号1412において負のピークが発生する時間T13、歪み信号1411において負のピークが発生する時間T14を示してある。
 歪み信号1411および歪み信号1412において、正のピークが発生する瞬間は、タイヤの所定箇所が地面に接地する瞬間(または、その付近)を表している。また、歪み信号1411および歪み信号1412において、負のピークが発生する瞬間は、タイヤの所定箇所が地面から離れる瞬間(または、その付近)を表している。
 一般に、車両の走行時に、タイヤにおける歪みセンサの位置に対応する所定箇所が
地面に接地する瞬間、および、当該所定箇所が地面から離れる瞬間に、歪みセンサの検出値(歪みセンサからの出力)が大きく変化する。
Here, in the example of FIG. 11, the time T11 at which the positive peak occurs in the distortion signal 1411, the time T12 at which the positive peak occurs in the distortion signal 1412, the time T13 at which the negative peak occurs in the distortion signal 1412, the distortion signal The time T14 at which the negative peak occurs at 1411 is shown.
The moment when the positive peak occurs in the strain signal 1411 and the strain signal 1412 represents the moment (or the vicinity thereof) when a predetermined portion of the tire touches the ground. Moreover, the moment when the negative peak occurs in the strain signal 1411 and the strain signal 1412 represents the moment (or the vicinity thereof) when a predetermined portion of the tire leaves the ground.
In general, when the vehicle is running, the strain sensor detects a value (output from the strain sensor) at the moment when a predetermined portion of the tire corresponding to the position of the strain sensor touches the ground and at the moment when the predetermined portion is separated from the ground. change greatly.
 荷重が大きいタイヤについて検出された歪み信号1411から推定される接地時間1421は、荷重が小さいタイヤについて検出された歪み信号1412から推定される接地時間1422よりも大きい。
 図11の例では、歪み信号1411から推定される接地時間1421は、時間T11と時間T14との間の期間に相当する。また、歪み信号1412から推定される接地時間1422は、時間T12と時間T13との間の期間に相当する。
 そして、荷重が大きいタイヤの接地時間1421における接地開始の時間T11は、荷重が小さいタイヤの接地時間1422における接地開始の時間T12よりも早い。また、荷重が大きいタイヤの接地時間1421における接地終了の時間T14は、荷重が小さいタイヤの接地時間1422における接地終了の時間T13よりも遅い。
The contact time 1421 estimated from the detected strain signal 1411 for the heavily loaded tire is greater than the contact time 1422 estimated from the detected strain signal 1412 for the lightly loaded tire.
In the example of FIG. 11, the contact time 1421 estimated from the distortion signal 1411 corresponds to the period between time T11 and time T14. Further, the contact time 1422 estimated from the distortion signal 1412 corresponds to the period between time T12 and time T13.
The contact start time T11 in the contact time 1421 of the tire with a large load is earlier than the contact start time T12 in the contact time 1422 of the tire with a small load. In addition, the contact end time T14 in the contact time 1421 of the tire with a large load is later than the contact end time T13 in the contact time 1422 of the tire with a small load.
 ここで、図11の例では、荷重が大きいタイヤ(例えば、図9に示される状態のタイヤ)について検出された歪み信号1411と、荷重が小さいタイヤ(例えば、図10に示される状態のタイヤ)について検出された歪み信号1412と、の傾向を示して説明したが、空気圧が低いタイヤについて検出された歪み信号と、空気圧が高いタイヤについて検出された歪み信号と、についても同様な傾向がある。 Here, in the example of FIG. 11, the strain signal 1411 detected for a tire with a large load (for example, the tire in the state shown in FIG. 9) and a tire with a small load (for example, the tire in the state shown in FIG. 10) Although the trends in the detected strain signal 1412 for , and the strain signals detected for low-inflated tires and high-inflated tires have similar trends.
 一般に、タイヤ51が劣化すると、タイヤ51のゴム部が硬化する。このため、タイヤ51が劣化すると、ゴム部が変形しづらくなり、接地時間が短くなると予測される。
 このように、一般に、新しいタイヤの方が、古いタイヤと比べて、ゴムが柔らかいため、接地時間が長くなる。つまり、タイヤが劣化するほど、タイヤの変形量が小さくなる。
In general, when the tire 51 deteriorates, the rubber portion of the tire 51 hardens. Therefore, when the tire 51 deteriorates, the rubber portion becomes difficult to deform, and it is predicted that the contact time will be shortened.
Thus, in general, a new tire has a longer contact time than an old tire because the rubber is softer. In other words, the more the tire deteriorates, the smaller the amount of deformation of the tire.
 そして、本例では、データ解析装置21により行われる解析において、測定条件の情報となる荷重または空気圧が変化したときに、新しいタイヤの方が、古いタイヤと比べて、歪み信号から得られる接地時間の変化量が大きくなる。本実施形態では、このような傾向を利用して、評価情報が取得されてもよい。
 本例では、タイヤ51の接地時間の変化量に基づいて、タイヤ51の劣化度を評価する。
In this example, in the analysis performed by the data analysis device 21, when the load or air pressure, which is the information of the measurement conditions, changes, the contact time obtained from the strain signal is greater for the new tire than for the old tire. becomes larger. In this embodiment, evaluation information may be acquired using such a tendency.
In this example, the degree of deterioration of the tire 51 is evaluated based on the amount of change in contact time of the tire 51 .
 ここで、例えば、タイヤの内面に取り付けられた歪みセンサの検出値(例えば、振幅)の大きさ、または、一定の測定条件における当該検出値の大きさの変化に基づいてタイヤの劣化度が評価される場合には、センサの感度によって、歪みセンサの検出値(例えば、振幅)の大きさ、または、その大きさの変化にバラツキが生じ得るため、評価の精度が低下することが考えられる。
 これに対して、本実施形態では、センサの感度によって変わらない情報(異なる測定条件におけるタイヤ情報の比較結果)を抽出(取得)し、当該情報に基づいてタイヤの劣化度などを評価することにより、センサの個々のバラツキの影響を受けない精度の良い評価が可能である。
Here, for example, the degree of deterioration of the tire is evaluated based on the magnitude of the detected value (e.g., amplitude) of the strain sensor attached to the inner surface of the tire, or the change in the magnitude of the detected value under certain measurement conditions. If this is the case, the magnitude of the strain sensor detection value (e.g., amplitude) or changes in the magnitude may vary depending on the sensitivity of the sensor, which may reduce the accuracy of the evaluation.
On the other hand, in the present embodiment, by extracting (acquiring) information that does not change depending on the sensitivity of the sensor (comparison results of tire information under different measurement conditions) and evaluating the degree of tire deterioration based on the information, , it is possible to perform highly accurate evaluations that are not affected by individual variations in sensors.
 <ノイズを比較する場合の例>
 データ解析装置21においてノイズを比較する場合の例を示す。
 本例では、比較対象は、タイヤ特性取得用センサ11の検出値に含まれるノイズであり、例えば、高周波成分のノイズである。
 本例では、タイヤ特性取得用センサ11は、歪みセンサである。他の例として、タイヤ特性取得用センサ11は、加速度センサ、あるいは、圧力センサであってもよい。
 本例では、測定条件取得用センサ12は、速度センサである。
<Example of comparing noise>
An example of noise comparison in the data analysis device 21 is shown.
In this example, the object of comparison is noise included in the detection value of the tire characteristic acquisition sensor 11, for example, noise of high-frequency components.
In this example, the tire characteristic acquisition sensor 11 is a strain sensor. As another example, the tire characteristic acquisition sensor 11 may be an acceleration sensor or a pressure sensor.
In this example, the measurement condition acquisition sensor 12 is a speed sensor.
 ここで、一般的に、タイヤが使用されて劣化していくと、新品のタイヤと比べて、タイヤのゴムが固くなり、クッション性が低下する。このため、タイヤが使用されて劣化していくと、新品のタイヤと比べて、高速走行時にタイヤ特性取得用センサ11によって検出される検出値に含まれるノイズ(本例では、高周波成分)が大きくなると考えられる。 Here, in general, when a tire is used and deteriorated, the rubber of the tire becomes harder and the cushioning property is reduced compared to a new tire. Therefore, as the tire deteriorates due to use, the noise (in this example, high-frequency components) included in the detection values detected by the tire characteristic acquisition sensor 11 during high-speed driving is greater than that of a new tire. It is considered to be.
 本例では、データ解析装置21により行われる解析において、測定条件となる速度(車速)が変化したときに、古いタイヤの方が、新しいタイヤと比べて、タイヤ特性取得用センサ11によって検出される検出値に含まれるノイズ(本例では、高周波成分)の変化量が大きくなる。本実施形態では、このような傾向を利用して、評価情報が取得されてもよい。 In this example, in the analysis performed by the data analysis device 21, when the speed (vehicle speed) that is the measurement condition changes, the old tire is detected by the tire characteristic acquisition sensor 11 more than the new tire. The amount of change in noise (in this example, high frequency components) included in the detected value increases. In this embodiment, evaluation information may be acquired using such a tendency.
 このように、本実施形態では、センサの感度によって変わらない情報(異なる測定条件におけるタイヤ情報の比較結果)を抽出し、当該情報に基づいてタイヤの劣化度などを評価することにより、センサの個々のバラツキの影響を受けない精度の良い評価が可能である。 As described above, in the present embodiment, information that does not change depending on the sensitivity of the sensor (comparison results of tire information under different measurement conditions) is extracted, and the degree of deterioration of the tire is evaluated based on the information, so that individual sensors can be measured. Accurate evaluation is possible without being affected by variations in
 なお、本実施形態では、説明を簡易化するために、2つの異なる測定条件におけるタイヤ情報を比較する場合の例を示したが、3つ以上の異なる測定条件におけるタイヤ情報を比較することが行われてもよい。 In the present embodiment, an example of comparing tire information under two different measurement conditions is shown for the sake of simplification of explanation, but it is possible to compare tire information under three or more different measurement conditions. may be broken.
 以上のように、本実施形態に係る情報処理装置1では、タイヤ51に関する情報(検出値)を検出するセンサ(本実施形態では、タイヤ特性取得用センサ11)に個々のバラツキがあっても、タイヤ51に関する評価情報を精度良く取得することができる。 As described above, in the information processing apparatus 1 according to the present embodiment, even if there is individual variation in the sensor (in the present embodiment, the tire characteristic acquisition sensor 11) that detects information (detection value) regarding the tire 51, Evaluation information regarding the tire 51 can be obtained with high accuracy.
 本実施形態に係る情報処理装置1では、複数の異なる測定条件におけるタイヤ情報を比較することで、センサ(本実施形態では、タイヤ特性取得用センサ11)の個々のバラツキの影響を受けずに(または、低減して)、評価情報を取得することができる。これにより、本実施形態に係る情報処理装置1では、センサ(本実施形態では、タイヤ特性取得用センサ11)の個々のバラツキを較正するためのキャリブレーションを不要とすることが可能である。 In the information processing apparatus 1 according to this embodiment, by comparing tire information under a plurality of different measurement conditions, the sensor (in this embodiment, the tire characteristic acquisition sensor 11) is not affected by individual variations ( or reduced) to obtain the evaluation information. Accordingly, in the information processing apparatus 1 according to this embodiment, it is possible to eliminate the need for calibration for calibrating individual variations in the sensors (in this embodiment, the tire characteristic acquisition sensor 11).
 例えば、常に同じ測定条件(例えば、時速20kmのときの条件)でタイヤの特性を表す波形(検出値)をセンサで検出し、当該波形の正負のピーク間のレベルの差分(絶対値)に基づいてタイヤの劣化度を判定する手法(以下で、説明の便宜上、手法A1と呼ぶ。)も考えられるが、この場合、当該センサに個々のバラツキがあってキャリブレーションされていないと、タイヤの劣化度の判定の精度が低下してしまう。
 これに対して、本実施形態では、複数の異なる条件(例えば、時速20kmと時速40km)で得られた複数のタイヤ情報を比較して、これら複数のタイヤ情報の相対的な関係を反映した評価情報を取得することで、センサに個々のバラツキがあってキャリブレーションされていなくても、評価の精度を高くすることができる。
 なお、本実施形態に係る情報処理装置1では、このように複数の異なる測定条件におけるタイヤ情報に基づく評価情報を取得するが、これとともに、上記のように同じ測定条件(例えば、時速20kmのときの条件)におけるタイヤ情報に基づく判定(上記した手法A1の判定)が併用されてもよい。また、本実施形態に係る情報処理装置1では、他の任意の評価手法が併用されてもよい。
For example, a sensor detects a waveform (detection value) representing tire characteristics under the same measurement conditions (for example, a condition at a speed of 20 km/h), and the level difference (absolute value) between the positive and negative peaks of the waveform is used. A method for determining the degree of tire deterioration by using the sensor (hereinafter referred to as method A1 for convenience of explanation) is also conceivable. The accuracy of determination of the degree is lowered.
On the other hand, in the present embodiment, a plurality of tire information obtained under a plurality of different conditions (for example, 20 km/h and 40 km/h) are compared, and the evaluation reflects the relative relationship between the plurality of tire information. Acquiring the information can improve the accuracy of the evaluation even if the sensor has individual variations and is not calibrated.
Note that the information processing apparatus 1 according to the present embodiment acquires evaluation information based on tire information under a plurality of different measurement conditions as described above. condition) based on the tire information (determination of method A1 described above) may be used together. Moreover, in the information processing apparatus 1 according to the present embodiment, any other evaluation method may be used together.
 ここで、本実施形態では、1個のタイヤ特性取得用センサ11が用いられる場合を示したが、他の構成例として、複数個のタイヤ特性取得用センサ11が用いられてもよい。 この場合、これら複数個のタイヤ特性取得用センサ11は、例えば、それぞれ異なる物理量の検出値を検出するセンサであってもよい。また、データ解析装置21は、それぞれのタイヤ特性取得用センサ11ごとに、タイヤ特性取得用センサ11の検出値に基づく解析を行ってもよく、あるいは、2個以上のタイヤ特性取得用センサ11の検出値に基づく解析を行ってもよい。 Here, in this embodiment, the case where one tire characteristic acquisition sensor 11 is used is shown, but as another configuration example, a plurality of tire characteristic acquisition sensors 11 may be used. In this case, the plurality of tire characteristic acquisition sensors 11 may be, for example, sensors that detect detection values of different physical quantities. In addition, the data analysis device 21 may perform analysis based on the detection value of the tire characteristic acquisition sensor 11 for each tire characteristic acquisition sensor 11, or may perform analysis based on the detection values of two or more tire characteristic acquisition sensors 11. Analysis based on detected values may be performed.
 例えば、1個のタイヤ(共通のタイヤ)に関する情報(検出値)を検出する複数個のタイヤ特性取得用センサ11が備えられる場合、データ解析装置21は、これら複数個のタイヤ特性取得用センサ11の検出値のそれぞれごとに評価情報を取得してもよく、あるいは、2個以上のタイヤ特性取得用センサ11の検出値を用いて、これらの検出値の組み合わせについて評価情報を取得してもよい。 For example, when a plurality of tire characteristic acquisition sensors 11 that detect information (detected values) about one tire (common tire) are provided, the data analysis device 21 detects the tire characteristic acquisition sensors 11 Alternatively, evaluation information may be acquired for a combination of these detection values using the detection values of two or more tire characteristic acquisition sensors 11. .
 ここで、同じ物理量の検出値を検出する2個以上のタイヤ特性取得用センサ11の検出値を用いる態様としては、例えば、これら2個以上のタイヤ特性取得用センサ11の検出値(または、当該検出値に基づく情報)の平均値などを用いる態様であってもよく、これら2個以上のタイヤ特性取得用センサ11の検出値(または、当該検出値に基づく情報)のうちの1つ(例えば、中央値など)を選択して採用する態様であってもよい。
 また、異なる物理量の検出値を検出する2個以上のタイヤ特性取得用センサ11の検出値を用いる態様としては、例えば、これら2個以上のタイヤ特性取得用センサ11の検出値(または、当該検出値に基づく情報)に基づいて、1つの評価情報(共通の評価情報)を演算等する態様であってもよい。
Here, as a mode of using the detection values of two or more tire characteristic acquisition sensors 11 that detect the same physical quantity detection value, for example, the detection values of these two or more tire characteristic acquisition sensors 11 (or Information based on detected values) may be used, and one of the detected values (or information based on the detected values) of these two or more tire characteristic acquisition sensors 11 (for example, , median, etc.) may be selected and adopted.
Further, as a mode using the detection values of two or more tire characteristic acquisition sensors 11 that detect detection values of different physical quantities, for example, the detection values of these two or more tire characteristic acquisition sensors 11 (or the detection Information based on values) may be used to calculate one piece of evaluation information (common evaluation information).
 なお、1個の車両に複数のタイヤが備えられる場合には、例えば、それぞれのタイヤごとに、データ解析装置21は、当該タイヤに設置されたタイヤ特性取得用センサ11の検出値に基づいて評価情報を取得する。すなわち、通常は、複数のタイヤの各々の特性は独立している。
 ただし、1個の車両に複数のタイヤが備えられる場合に、データ解析装置21が、2個以上のタイヤに設置されたタイヤ特性取得用センサ11の検出値に基づいて評価情報を取得する構成が用いられてもよい。例えば、データ解析装置21が、2個以上のタイヤに設置されたタイヤ特性取得用センサ11の検出値に基づいて、車両全体に関する評価情報を取得する構成が用いられてもよい。
When one vehicle is equipped with a plurality of tires, for example, for each tire, the data analysis device 21 evaluates based on the detection value of the tire characteristic acquisition sensor 11 installed on the tire. Get information. That is, the characteristics of each of the plurality of tires are usually independent.
However, when one vehicle is equipped with a plurality of tires, there is a configuration in which the data analysis device 21 acquires evaluation information based on the detection values of the tire characteristic acquisition sensors 11 installed on two or more tires. may be used. For example, a configuration may be used in which the data analysis device 21 acquires evaluation information regarding the entire vehicle based on the detection values of the tire characteristic acquisition sensors 11 installed on two or more tires.
 また、本実施形態では、1個の測定条件取得用センサ12が用いられる場合を示したが、他の構成例として、複数個の測定条件取得用センサ12が用いられてもよい。
 この場合、これら複数個の測定条件取得用センサ12は、例えば、それぞれ異なる物理量の検出値を検出するセンサであってもよい。また、データ解析装置21は、それぞれの測定条件取得用センサ12ごとに、測定条件取得用センサ12の検出値に基づく測定条件を使用してもよく、あるいは、2個以上の測定条件取得用センサ12の検出値を用いて、これらの検出値の組み合わせに基づく測定条件を使用してもよい。
Also, in this embodiment, a case where one measurement condition acquisition sensor 12 is used has been shown, but as another configuration example, a plurality of measurement condition acquisition sensors 12 may be used.
In this case, the plurality of measurement condition acquisition sensors 12 may be, for example, sensors that detect different physical quantities. The data analysis device 21 may use measurement conditions based on the detection values of the measurement condition acquisition sensors 12 for each measurement condition acquisition sensor 12, or may use two or more measurement condition acquisition sensors. With 12 detection values, measurement conditions based on combinations of these detection values may be used.
 ここで、同じ物理量の検出値を検出する2個以上の測定条件取得用センサ12の検出値を用いる態様としては、例えば、これら2個以上の測定条件取得用センサ12の検出値(または、当該検出値に基づく情報)の平均値などを用いる態様であってもよく、これら2個以上の測定条件取得用センサ12の検出値(または、当該検出値に基づく情報)のうちの1つ(例えば、中央値など)を選択して採用する態様であってもよい。
 また、異なる物理量の検出値を検出する2個以上の測定条件取得用センサ12の検出値を用いる態様としては、例えば、これら2個以上の測定条件取得用センサ12の検出値(または、当該検出値に基づく情報)に基づいて、1つの測定条件情報(共通の測定条件情報)を演算等する態様であってもよい。
Here, as a mode of using the detection values of two or more measurement condition acquisition sensors 12 that detect the detection value of the same physical quantity, for example, the detection values of these two or more measurement condition acquisition sensors 12 (or Information based on detected values) may be used, and one of the detected values (or information based on the detected values) of these two or more measurement condition acquisition sensors 12 (for example, , median, etc.) may be selected and adopted.
Further, as an embodiment using the detection values of two or more measurement condition acquisition sensors 12 that detect detection values of different physical quantities, for example, the detection values of these two or more measurement condition acquisition sensors 12 (or the detection Information based on values) may be used to calculate a piece of measurement condition information (common measurement condition information).
 [情報処理装置の構成例]
 情報処理装置1は、例えば、タイヤ特性取得用センサ11を有する第1装置と、測定条件取得用センサ12を有する第2装置と、データ解析装置21を有する第3装置と、が別々の装置として構成されてもよい。
 一構成例として、第1装置は、タイヤ特性取得用センサ11と、第1データ取得部と、第1送信部と、を備える。第2装置は、測定条件取得用センサ12と、第2データ取得部と、第2送信部と、を備える。第3装置は、第1データ受信部と、第2データ受信部と、情報処理部と、を備える。
 当該情報処理部は、図1に示されるデータ解析装置21の機能を有しており、本実施形態では、測定条件決定部31、比較データ選択部32、データ解析部33、および、記憶部34の機能を有する。
[Configuration example of information processing device]
The information processing device 1 includes, for example, a first device having a tire characteristic acquisition sensor 11, a second device having a measurement condition acquisition sensor 12, and a third device having a data analysis device 21 as separate devices. may be configured.
As one configuration example, the first device includes a tire characteristic acquisition sensor 11, a first data acquisition section, and a first transmission section. The second device includes a measurement condition acquisition sensor 12, a second data acquisition section, and a second transmission section. The third device includes a first data receiver, a second data receiver, and an information processor.
The information processing section has the functions of the data analysis device 21 shown in FIG. has the function of
 この構成例では、第1装置において、タイヤ特性取得用センサ11が検出値を検出し、第1データ取得部が当該検出値のデータを取得し、第1送信部が当該データを無線または有線で送信する。第2装置において、測定条件取得用センサ12が検出値を検出し、第2データ取得部が当該検出値のデータを取得し、第2送信部が当該データを無線または有線で送信する。第3装置において、第1データ受信部が第1装置から送信されるデータを受信し、第2データ受信部が第2装置から送信されるデータを受信し、情報処理部が第1データ受信部により受信されたデータおよび第2データ受信部により受信されたデータに基づいて処理を行う。 In this configuration example, in the first device, the tire characteristic acquisition sensor 11 detects a detection value, the first data acquisition unit acquires the data of the detection value, and the first transmission unit transmits the data wirelessly or by wire. Send. In the second device, the measurement condition acquisition sensor 12 detects the detection value, the second data acquisition section acquires the data of the detection value, and the second transmission section transmits the data wirelessly or by wire. In the third device, the first data receiving section receives data transmitted from the first device, the second data receiving section receives data transmitted from the second device, and the information processing section receives the first data receiving section. and the data received by the second data receiving unit.
 なお、第3装置において、第1データ受信部と第2データ受信部とは共通化されてもよい。
 また、タイヤ特性取得用センサ11と測定条件取得用センサ12とが共通化される場合には、第1装置と第2装置とは共通化される。この場合、第3装置において、第1データ受信部と第2データ受信部とは共通化される。
In addition, in the third device, the first data receiving section and the second data receiving section may be shared.
Further, when the tire characteristic acquisition sensor 11 and the measurement condition acquisition sensor 12 are shared, the first device and the second device are shared. In this case, in the third device, the first data receiving section and the second data receiving section are shared.
 ここで、第3装置は、例えば、タイヤ51および車両(ここでは、タイヤ以外の部分)以外の場所に備えられてもよく、例えば、第3装置は、インターネットなどのネットワークに接続されたサーバー装置に備えられてもよい。この構成では、第1装置および第2装置からそれぞれの検出値に関する情報をサーバー装置(第3装置)に送信して、サーバー装置において各種の情報処理を行うことが可能である。 Here, for example, the third device may be provided in a place other than the tire 51 and the vehicle (here, a portion other than the tire). For example, the third device is a server device connected to a network such as the Internet. may be provided for. In this configuration, it is possible to transmit information about the respective detected values from the first device and the second device to the server device (the third device), and perform various information processing in the server device.
 <以上の実施形態に係る構成例>
 一構成例として、情報処理装置(図1の例では、情報処理装置1)は、車両に備えられてホイール(図3(A)の例では、ホイール131)とゴム部(図3(A)の例では、ゴム部132)を有するタイヤ(図1の例では、タイヤ51)に関する第1検出値(図1の例では、タイヤ特性取得用センサ11により検出される値)を検出する第1センサ(図1の例では、タイヤ特性取得用センサ11)によって検出された第1検出値に基づくタイヤ情報であって、所定事象に関する2以上の異なる条件(図1の例では、測定条件決定部31により決定される測定条件)のそれぞれに対応する2以上のタイヤ情報に基づいて、タイヤに関する評価情報を取得する情報処理部(図1の例では、例えば、測定条件決定部31、比較データ選択部32、データ解析部33、記憶部34)を備える、情報処理装置である。
<Configuration example according to the above embodiment>
As one configuration example, an information processing device (information processing device 1 in the example of FIG. 1) is provided in a vehicle and includes a wheel (wheel 131 in the example of FIG. 3A) and a rubber portion (FIG. 3A). In the example of , the first detection value (the value detected by the tire characteristic acquisition sensor 11 in the example of FIG. 1) related to the tire (tire 51 in the example of FIG. 1) having the rubber portion 132) is detected. Tire information based on the first detection value detected by the sensor (in the example of FIG. 1, the tire characteristic acquisition sensor 11), two or more different conditions related to the predetermined event (in the example of FIG. 1, the measurement condition determination unit 31) based on two or more pieces of tire information corresponding to each of the measurement conditions determined by the information processing unit (in the example of FIG. 1, for example, the measurement condition determination unit 31, comparison data selection 32, a data analysis unit 33, and a storage unit 34).
 一構成例として、情報処理装置において、所定事象は、タイヤの回転の速度、タイヤにかかる荷重、タイヤの空気圧、または、タイヤの温度のうちの1以上である。
 一構成例として、情報処理装置において、第1センサによって検出される第1検出値は、歪み、加速度、または、圧力のうちの1以上である。
 一構成例として、情報処理装置において、評価情報は、タイヤの劣化に関する情報、タイヤの異常に関する情報、タイヤが接する路面の状態に関する情報、または、タイヤが接する路面とタイヤとの間のグリップ力に関する情報のうちの1以上を含む。
 一構成例として、情報処理装置において、タイヤの劣化に関する情報は、タイヤの硬度の変化を表す情報、または、タイヤのトレッド部の摩耗度を表す情報のうちの1以上を含む。
As one configuration example, in the information processing device, the predetermined event is one or more of tire rotation speed, tire load, tire air pressure, and tire temperature.
As one configuration example, in the information processing device, the first detection value detected by the first sensor is one or more of strain, acceleration, and pressure.
As one configuration example, in the information processing device, the evaluation information is information about tire deterioration, information about tire abnormality, information about the condition of the road surface that the tire contacts, or information about the grip force between the tire and the road surface that the tire contacts. Contains one or more of information.
As one configuration example, in the information processing device, the information on tire deterioration includes one or more of information representing changes in tire hardness and information representing the degree of wear of the tread portion of the tire.
 一構成例として、情報処理装置において、所定事象に関する条件は、タイヤまたは車両に関する第2検出値(図1の例では、測定条件取得用センサ12により検出される値)を検出する第2センサ(図1の例では、測定条件取得用センサ12)によって検出された第2検出値に基づく所定事象に関する情報である所定事象情報に基づく条件である。
 一構成例として、情報処理装置において、第1センサと第2センサとのうちの一方または両方を備える。
 一構成例として、情報処理装置において、第1センサと第2センサとは共通のセンサであり、第1検出値と第2検出値とは共通の検出値であり、タイヤ情報と所定事象情報とは、共通の検出値に基づく異なる情報である。
As one configuration example, in the information processing device, the condition regarding the predetermined event is the second sensor (value detected by the measurement condition acquisition sensor 12 in the example of FIG. 1) that detects the second detection value regarding the tire or the vehicle. In the example of FIG. 1, the condition is based on predetermined event information, which is information about a predetermined event based on the second detection value detected by the measurement condition acquisition sensor 12).
As one configuration example, an information processing apparatus includes one or both of a first sensor and a second sensor.
As one configuration example, in an information processing device, the first sensor and the second sensor are common sensors, the first detection value and the second detection value are common detection values, and tire information and predetermined event information are are different information based on common detection values.
 また、情報処理装置により実行される処理を実現するプログラムを提供することも可能である。
 一構成例として、プログラムは、コンピューター(図1の例では、情報処理装置1を構成するコンピューター)に、車両に備えられてホイールとゴム部を有するタイヤに関する第1検出値を検出する第1センサによって検出された第1検出値に基づくタイヤ情報であって、所定事象に関する2以上の異なる条件のそれぞれに対応する2以上のタイヤ情報に基づいて、タイヤに関する評価情報を取得するステップを実行させるためのプログラムである。
It is also possible to provide a program that realizes the processing executed by the information processing device.
As one configuration example, the program is provided in a computer (in the example of FIG. 1, the computer constituting the information processing device 1), a first sensor that detects a first detection value related to a tire that is provided in a vehicle and has a wheel and a rubber portion for executing a step of acquiring evaluation information about a tire based on two or more pieces of tire information based on the first detection value detected by and corresponding to two or more different conditions relating to a predetermined event. program.
 なお、以上に説明した任意の装置(例えば、情報処理装置1など)における任意の構成部の機能を実現するためのプログラムを、コンピューター読み取り可能な記録媒体に記録し、そのプログラムをコンピューターシステムに読み込ませて実行するようにしてもよい。なお、ここでいう「コンピューターシステム」とは、オペレーティングシステムあるいは周辺機器等のハードウェアを含むものとする。また、「コンピューター読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD(Compact Disc)-ROM(Read Only Memory)等の可搬媒体、コンピューターシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピューター読み取り可能な記録媒体」とは、インターネット等のネットワークあるいは電話回線等の通信回線を介してプログラムが送信された場合のサーバーあるいはクライアントとなるコンピューターシステム内部の揮発性メモリーのように、一定時間プログラムを保持しているものも含むものとする。当該揮発性メモリーは、例えば、RAM(Random Access Memory)であってもよい。記録媒体は、例えば、非一時的記録媒体であってもよい。 It should be noted that a program for realizing the functions of any component in any device (for example, the information processing device 1) described above is recorded on a computer-readable recording medium, and the program is read into a computer system. You can also set it to execute. The term "computer system" as used herein includes an operating system and hardware such as peripheral devices. In addition, "computer-readable recording medium" means portable media such as flexible discs, magneto-optical discs, ROM, CD (Compact Disc)-ROM (Read Only Memory), and storage such as hard disks built into computer systems. It refers to equipment. In addition, "computer-readable recording medium" means a certain amount of memory, such as volatile memory inside a computer system that acts as a server or client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. It also includes those holding time programs. The volatile memory may be, for example, RAM (Random Access Memory). The recording medium may be, for example, a non-transitory recording medium.
 また、上記のプログラムは、このプログラムを記憶装置等に格納したコンピューターシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピューターシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワークあるいは電話回線等の通信回線のように情報を伝送する機能を有する媒体のことをいう。
 また、上記のプログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、上記のプログラムは、前述した機能をコンピューターシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイルであってもよい。差分ファイルは、差分プログラムと呼ばれてもよい。
Moreover, the above program may be transmitted from a computer system storing this program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in a transmission medium. Here, the "transmission medium" for transmitting the program means a medium having a function of transmitting information, such as a network such as the Internet or a communication line such as a telephone line.
Also, the above program may be for realizing part of the functions described above. Furthermore, the above program may be a so-called difference file, which can realize the functions described above in combination with a program already recorded in the computer system. A difference file may be referred to as a difference program.
 また、以上に説明した任意の装置(例えば、情報処理装置1など)における任意の構成部の機能は、プロセッサーにより実現されてもよい。例えば、実施形態における各処理は、プログラム等の情報に基づき動作するプロセッサーと、プログラム等の情報を記憶するコンピューター読み取り可能な記録媒体により実現されてもよい。ここで、プロセッサーは、例えば、各部の機能が個別のハードウェアで実現されてもよく、あるいは、各部の機能が一体のハードウェアで実現されてもよい。例えば、プロセッサーはハードウェアを含み、当該ハードウェアは、デジタル信号を処理する回路およびアナログ信号を処理する回路のうちの少なくとも一方を含んでもよい。例えば、プロセッサーは、回路基板に実装された1または複数の回路装置、あるいは、1または複数の回路素子のうちの一方または両方を用いて、構成されてもよい。回路装置としてはIC(Integrated Circuit)などが用いられてもよく、回路素子としては抵抗あるいはキャパシターなどが用いられてもよい。 Also, the function of any component in any device (for example, the information processing device 1, etc.) described above may be implemented by a processor. For example, each process in the embodiment may be implemented by a processor that operates based on information such as a program and a computer-readable recording medium that stores information such as the program. Here, for the processor, for example, the function of each section may be implemented by separate hardware, or the function of each section may be implemented by integrated hardware. For example, a processor includes hardware, which may include at least one of circuitry that processes digital signals and circuitry that processes analog signals. For example, a processor may be configured using one or more circuit devices and/or one or more circuit elements mounted on a circuit board. An IC (Integrated Circuit) or the like may be used as the circuit device, and a resistor, capacitor, or the like may be used as the circuit element.
 ここで、プロセッサーは、例えば、CPUであってもよい。ただし、プロセッサーは、CPUに限定されるものではなく、例えば、GPU(Graphics Processing Unit)、あるいは、DSP(Digital Signal Processor)等のような、各種のプロセッサーが用いられてもよい。また、プロセッサーは、例えば、ASIC(Application Specific Integrated Circuit)によるハードウェア回路であってもよい。また、プロセッサーは、例えば、複数のCPUにより構成されていてもよく、あるいは、複数のASICによるハードウェア回路により構成されていてもよい。また、プロセッサーは、例えば、複数のCPUと、複数のASICによるハードウェア回路と、の組み合わせにより構成されていてもよい。また、プロセッサーは、例えば、アナログ信号を処理するアンプ回路あるいはフィルター回路等のうちの1以上を含んでもよい。 Here, the processor may be, for example, a CPU. However, the processor is not limited to the CPU, and various processors such as GPU (Graphics Processing Unit) or DSP (Digital Signal Processor) may be used. Also, the processor may be, for example, a hardware circuit based on ASIC (Application Specific Integrated Circuit). Also, the processor may be composed of, for example, a plurality of CPUs, or may be composed of a plurality of ASIC hardware circuits. Also, the processor may be configured by, for example, a combination of multiple CPUs and multiple ASIC hardware circuits. The processor may also include one or more of, for example, amplifier circuits or filter circuits that process analog signals.
 以上、この開示の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この開示の要旨を逸脱しない範囲の設計等も含まれる。 Although the embodiment of this disclosure has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and includes design etc. that do not deviate from the gist of this disclosure.
1 情報処理装置
11 タイヤ特性取得用センサ
12 測定条件取得用センサ
21 データ解析装置
31 測定条件決定部
32 比較データ選択部
33 データ解析部
34 記憶部
51、211、212 タイヤ
52 測定条件取得対象
111 地面
121、132 ゴム部
123 内面
131 ホイール
221、222 距離
1011、1111、1112、1121、1122、1411、1412 歪み信号
1021 一回転周期
1113、1123 差分
1211、1212、1311 特性
1321 閾値
1421、1422 接地時間
Z1、Z2、Z11、Z12 接地点
1 information processing device 11 tire characteristic acquisition sensor 12 measurement condition acquisition sensor 21 data analysis device 31 measurement condition determination unit 32 comparison data selection unit 33 data analysis unit 34 storage unit 51, 211, 212 tire 52 measurement condition acquisition target 111 ground 121, 132 Rubber portion 123 Inner surface 131 Wheels 221, 222 Distances 1011, 1111, 1112, 1121, 1122, 1411, 1412 Distortion signal 1021 One rotation period 1113, 1123 Differences 1211, 1212, 1311 Characteristics 1321 Thresholds 1421, 1422 Contact time Z1 , Z2, Z11, Z12 Ground point

Claims (9)

  1.  車両に備えられてホイールとゴム部を有するタイヤに関する第1検出値を検出する第1センサによって検出された前記第1検出値に基づくタイヤ情報であって、所定事象に関する2以上の異なる条件のそれぞれに対応する2以上の前記タイヤ情報に基づいて、前記タイヤに関する評価情報を取得する情報処理部を備える、
     情報処理装置。
    Tire information based on a first detection value detected by a first sensor provided in a vehicle and detecting a first detection value regarding a tire having a wheel and a rubber portion, each of two or more different conditions relating to a predetermined event. An information processing unit that acquires evaluation information about the tire based on the two or more pieces of tire information corresponding to
    Information processing equipment.
  2.  前記所定事象は、前記タイヤの回転の速度、前記タイヤにかかる荷重、前記タイヤの空気圧、または、前記タイヤの温度のうちの1以上である、
     請求項1に記載の情報処理装置。
    The predetermined event is one or more of the speed of rotation of the tire, the load applied to the tire, the air pressure of the tire, or the temperature of the tire.
    The information processing device according to claim 1 .
  3.  前記第1センサによって検出される前記第1検出値は、歪み、加速度、または、圧力のうちの1以上である、
     請求項1または請求項2に記載の情報処理装置。
    The first detection value detected by the first sensor is one or more of strain, acceleration, or pressure.
    The information processing apparatus according to claim 1 or 2.
  4.  前記評価情報は、前記タイヤの劣化に関する情報、前記タイヤの異常に関する情報、前記タイヤが接する路面の状態に関する情報、または、前記タイヤが接する路面と前記タイヤとの間のグリップ力に関する情報のうちの1以上を含む、
     請求項1から請求項3のいずれか1項に記載の情報処理装置。
    The evaluation information is information on deterioration of the tire, information on abnormality of the tire, information on the condition of the road surface in contact with the tire, or information on the grip force between the road surface on which the tire contacts and the tire. including one or more
    The information processing apparatus according to any one of claims 1 to 3.
  5.  前記タイヤの劣化に関する情報は、前記タイヤの硬度の変化を表す情報、または、前記タイヤのトレッド部の摩耗度を表す情報のうちの1以上を含む、
     請求項4に記載の情報処理装置。
    The information on the deterioration of the tire includes one or more of information representing changes in the hardness of the tire, or information representing the degree of wear of the tread portion of the tire,
    The information processing apparatus according to claim 4.
  6.  前記所定事象に関する前記条件は、前記タイヤまたは前記車両に関する第2検出値を検出する第2センサによって検出された前記第2検出値に基づく前記所定事象に関する情報である所定事象情報に基づく条件である、
     請求項1から請求項5のいずれか1項に記載の情報処理装置。
    The condition regarding the predetermined event is a condition based on predetermined event information, which is information regarding the predetermined event based on the second detection value detected by a second sensor that detects a second detection value regarding the tire or the vehicle. ,
    The information processing apparatus according to any one of claims 1 to 5.
  7.  前記第1センサと前記第2センサとのうちの一方または両方を備える、
     請求項6に記載の情報処理装置。
    one or both of the first sensor and the second sensor;
    The information processing device according to claim 6 .
  8.  前記第1センサと前記第2センサとは共通のセンサであり、
     前記第1検出値と前記第2検出値とは共通の検出値であり、
     前記タイヤ情報と前記所定事象情報とは、前記共通の検出値に基づく異なる情報である、
     請求項6または請求項7に記載の情報処理装置。
    The first sensor and the second sensor are common sensors,
    The first detection value and the second detection value are common detection values,
    The tire information and the predetermined event information are different information based on the common detection value,
    The information processing apparatus according to claim 6 or 7.
  9.  コンピューターに、
     車両に備えられてホイールとゴム部を有するタイヤに関する第1検出値を検出する第1センサによって検出された前記第1検出値に基づくタイヤ情報であって、所定事象に関する2以上の異なる条件のそれぞれに対応する2以上の前記タイヤ情報に基づいて、前記タイヤに関する評価情報を取得するステップを実行させるためのプログラム。
    to the computer,
    Tire information based on a first detection value detected by a first sensor provided in a vehicle and detecting a first detection value regarding a tire having a wheel and a rubber portion, each of two or more different conditions relating to a predetermined event. A program for executing a step of acquiring evaluation information about the tire based on two or more pieces of tire information corresponding to .
PCT/JP2022/032385 2021-08-31 2022-08-29 Information processing device for tires, and program WO2023032907A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021141403A JP2023034916A (en) 2021-08-31 2021-08-31 Information processing device and program
JP2021-141403 2021-08-31

Publications (1)

Publication Number Publication Date
WO2023032907A1 true WO2023032907A1 (en) 2023-03-09

Family

ID=85412750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032385 WO2023032907A1 (en) 2021-08-31 2022-08-29 Information processing device for tires, and program

Country Status (2)

Country Link
JP (1) JP2023034916A (en)
WO (1) WO2023032907A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007153034A (en) * 2005-12-01 2007-06-21 Toyota Motor Corp Tire abrasion state judging device
JP2007253677A (en) * 2006-03-22 2007-10-04 Toyota Motor Corp Tire condition treating device
JP2009061917A (en) * 2007-09-06 2009-03-26 Bridgestone Corp Tire abrasion estimation method and tire abrasion estimation device
JP2010159031A (en) * 2009-01-09 2010-07-22 Bridgestone Corp Tire running state estimation method, regular running state estimation device, and tire wear estimation method and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007153034A (en) * 2005-12-01 2007-06-21 Toyota Motor Corp Tire abrasion state judging device
JP2007253677A (en) * 2006-03-22 2007-10-04 Toyota Motor Corp Tire condition treating device
JP2009061917A (en) * 2007-09-06 2009-03-26 Bridgestone Corp Tire abrasion estimation method and tire abrasion estimation device
JP2010159031A (en) * 2009-01-09 2010-07-22 Bridgestone Corp Tire running state estimation method, regular running state estimation device, and tire wear estimation method and device

Also Published As

Publication number Publication date
JP2023034916A (en) 2023-03-13

Similar Documents

Publication Publication Date Title
US7672772B2 (en) Apparatus and method for evaluating a degree of a safety in traveling of a vehicle
US9841359B2 (en) Extraction of tire characteristics combining direct TPMS and tire resonance analysis
JP5111505B2 (en) Tire wear estimation method
US7673504B2 (en) Apparatus and method for detecting an internal mechanical failure occurring in a tire
JP5620268B2 (en) Tire wear estimation method and tire wear estimation apparatus
US7918131B2 (en) Tire slip state detecting method and tire slip state detecting apparatus
US7469578B2 (en) Method and apparatus for evaluating a cornering stability of a wheel
US20140372006A1 (en) Indirect tire pressure monitoring systems and methods using multidimensional resonance frequency analysis
JP4479992B2 (en) Method for determining tire characteristics from stress.
JP2015036296A (en) Tire wear state estimating system of torsional mode and method
JP5806278B2 (en) Tire uneven wear estimation method and tire uneven wear estimation apparatus
JP7425579B2 (en) Tire wear amount estimation system, tire wear amount estimation program, and tire wear amount estimation method
US20090043517A1 (en) Method and device for calculating magnitude of cornering force generated in wheel
JP2013136297A (en) Method and device for detecting uneven wear of tire
JP4629756B2 (en) Road surface state estimation method and road surface state estimation device
JP4030572B2 (en) Vehicle braking distance prediction device and vehicle braking distance prediction method
US20180114379A1 (en) Method of locating the position of wheels of an automotive vehicle
US7487044B2 (en) Apparatus and method for predicting a breaking distance of a vehicle
WO2023032907A1 (en) Information processing device for tires, and program
US11541860B2 (en) System and method for sensing brake judder in vehicle
US20110153264A1 (en) Location determination for individual tires of a multi-tire
WO2023032912A1 (en) Device for processing information pertaining to tire, and program
JP4073476B2 (en) Vehicle travel safety evaluation device and vehicle travel safety evaluation method
JP4946174B2 (en) Tire contact length calculation method and tire contact length calculation device
KR101330645B1 (en) Device for measuring the tire bead slip or vibration relative to Rim

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE