WO2023032803A1 - Resin composition, cured product, organic el display device, and method for producing cured product - Google Patents

Resin composition, cured product, organic el display device, and method for producing cured product Download PDF

Info

Publication number
WO2023032803A1
WO2023032803A1 PCT/JP2022/032018 JP2022032018W WO2023032803A1 WO 2023032803 A1 WO2023032803 A1 WO 2023032803A1 JP 2022032018 W JP2022032018 W JP 2022032018W WO 2023032803 A1 WO2023032803 A1 WO 2023032803A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
acid
resin composition
organic
weight
Prior art date
Application number
PCT/JP2022/032018
Other languages
French (fr)
Japanese (ja)
Inventor
北村友弘
山根麻央
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020247004156A priority Critical patent/KR20240051923A/en
Priority to CN202280056956.6A priority patent/CN117858921A/en
Publication of WO2023032803A1 publication Critical patent/WO2023032803A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/22Exposing sequentially with the same light pattern different positions of the same surface
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers

Definitions

  • the present invention relates to a resin composition, a cured product, an organic EL display device, and a method for manufacturing an organic EL display device.
  • insulating films for organic electroluminescence (hereinafter referred to as EL) elements flattening films for driving thin film transistor (hereinafter referred to as TFT) substrates of display devices using organic EL elements, wiring protection insulation for circuit substrates
  • TFT thin film transistor
  • the present invention relates to a resin composition suitable for applications such as films, on-chip microlenses for solid-state imaging devices, and flattening films for various displays and solid-state imaging devices.
  • an organic EL display device has a drive circuit, a planarizing layer, a first electrode, an insulating layer, a light-emitting layer and a second electrode on a substrate, and a voltage is applied between the first electrode and the second electrode facing each other. can be applied to emit light.
  • resin compositions that can be patterned by ultraviolet irradiation are generally used as the material for the flattening layer and the material for the insulating layer.
  • a resin composition using a polyimide-based resin is preferably used in that it can provide a highly reliable organic EL display device because the resin composition has high heat resistance and the gas component generated from the cured product is small. ing.
  • Resin compositions using polyimide-based resins that have been proposed so far include photosensitive resin compositions obtained by mixing a polyimide precursor with a photosensitive diazoquinone compound and a phenol novolac resin (see, for example, Patent Document 1), A positive photosensitive resin composition containing a resin having a phenolic hydroxyl group in a polyimide precursor or the like, a quinonediazide compound and a solvent (see, for example, Patent Document 2).
  • the materials proposed in the above patent documents have a problem that the long-term reliability of the organic EL display device is low. Organic light-emitting materials are generally vulnerable to gas components and moisture, and exposure to these causes a decrease in emission luminance and pixel shrinkage.
  • the term "pixel shrinkage” refers to a phenomenon in which the luminance of light emitted from the edge of a pixel decreases or the pixel does not light up.
  • it is necessary to improve the durability of the organic light-emitting material itself, as well as to improve the peripheral properties such as a flattening layer covering the drive circuit and an insulating layer formed on the first electrode. It is essential to improve the water absorption and outgassing properties of the material.
  • a positive photosensitive resin composition that does not cause a decrease in emission luminance or pixel shrinkage and has excellent long-term reliability has been proposed (see, for example, Patent Document 3).
  • such a positive photosensitive resin composition has a problem that the retention rate of emission luminance is insufficient in terms of long-term reliability, and the emission area ratio of pixels decreases over a long period of time.
  • the object of the present invention is to provide a resin composition with excellent long-term reliability that does not cause a decrease in emission luminance or pixel shrinkage and does not reduce the pixel emission area ratio even over a long period of time. .
  • the resin composition of the present invention has the following constitution. i.e. (1) Alkali-soluble resin (a) and novolac-type phenolic resin (b ), wherein the content of the novolac-type phenolic resin having a molecular weight of 1,000 or less in the novolac-type phenolic resin (b) is 0.1 to 20 in the novolac-type phenolic resin (b). Resin composition in weight percent.
  • the weight-average molecular weight (Mw) of the novolak-type phenolic resin (b) is 3,000 or more and 15,000 or less, and the dispersion ratio of the weight-average molecular weight (Mw) to the number-average molecular weight (Mn) ( The resin composition according to (1) above, wherein Mw)/(Mn) is from 1.1 to 3.5. (3) The resin composition according to (1) or (2) above, wherein the novolak-type phenolic resin (b) contains an m-cresol novolac resin. (4) The resin composition according to any one of (1) to (3), wherein the novolak-type phenolic resin (b) is 17 to 50 parts by weight per 100 parts by weight of the alkali-soluble resin (a).
  • (6) A cured product obtained by curing the resin composition according to any one of (1) to (5) above.
  • An organic EL display device having a drive circuit, a planarizing layer, a first electrode, an insulating layer, a light-emitting layer and a second electrode on a substrate, wherein the planarizing layer and/or the insulating layer are (6) ).
  • the resin composition and cured product of the present invention do not cause a decrease in emission luminance or pixel shrinkage, and have excellent long-term reliability.
  • an organic EL display device with excellent long-term reliability can be provided.
  • FIG. 1 is a cross-sectional view of an example of an organic EL display device
  • FIG. It is a schematic diagram of the manufacturing procedure of the organic EL display device in the example.
  • the resin composition of the present invention contains at least one selected from the group consisting of polyimide, polybenzoxazole, polyamideimide, precursors of any of these and copolymers thereof, and an alkali-soluble resin (a) and a novolac type phenolic resin (b), wherein the content of the novolac-type phenolic resin having a molecular weight of 1,000 or less in the novolac-type phenolic resin (b) is 0.1 to 20% by weight.
  • the weight average molecular weight means the polystyrene-equivalent weight-average molecular weight measured by GPC (gel permeation chromatography), and the number-average molecular weight measured by GPC (gel permeation chromatography) means the polystyrene-equivalent number average molecular weight.
  • the weight-average molecular weight or number-average molecular weight of the novolak-type phenolic resin (b) is the average molecular weight as a value representative of the entire novolac-type phenolic resin (b). This is the case of describing some molecules having that molecular weight in the novolac-type phenolic resin (b).
  • the "molecular weight” is also the polystyrene-equivalent molecular weight measured by GPC (gel permeation chromatography).
  • the resin composition of the present invention comprises an alkali-soluble resin (a) (hereinafter referred to as , sometimes simply referred to as “alkali-soluble resin (a)”).
  • the term “alkali-soluble” means that a solution obtained by dissolving a resin in ⁇ -butyrolactone is coated on a silicon wafer and prebaked at 120° C. for 4 minutes to form a prebaked film having a film thickness of 10 ⁇ m ⁇ 0.5 ⁇ m. After immersing the pre-baked film in a 2.38% by weight tetramethylammonium hydroxide aqueous solution (hereinafter sometimes referred to as an alkaline developer) at 23 ⁇ 1 ° C. for 1 minute, the film thickness reduction when rinsing with pure water It means that the desired dissolution rate is 50 nm/min or more.
  • the alkali-soluble resin (a) used in the present invention preferably has an acidic group in the structural unit of the resin and/or at the end of its main chain in order to impart alkali solubility.
  • acidic groups include carboxy groups, phenolic hydroxyl groups, and sulfonic acid groups.
  • the alkali-soluble resin (a) preferably contains a fluorine atom. This is because the presence of fluorine atoms makes the surface of the pre-baked film formed water-repellent, so that it is possible to prevent the alkali developer from permeating from the surface.
  • the alkali-soluble resin (a) used in the present invention more preferably contains a polyimide, a polyimide precursor, a polybenzoxazole precursor or a copolymer thereof, and from the viewpoint of further improving sensitivity, a polyimide precursor or More preferably, it contains a polybenzoxazole precursor.
  • the polyimide precursor refers to a resin that is converted to polyimide by heat treatment or chemical treatment, and examples thereof include polyamic acid and polyamic acid ester.
  • a polybenzoxazole precursor refers to a resin that is converted to polybenzoxazole by heat treatment or chemical treatment, and includes, for example, polyhydroxyamide.
  • the polyimide described above preferably has a structural unit represented by the following general formula (1), and the polyimide precursor and the polybenzoxazole precursor preferably have a structural unit represented by the following general formula (2). In such a case, two or more of these may be contained, or a resin obtained by copolymerizing a structural unit represented by general formula (1) and a structural unit represented by general formula (2) may be used.
  • R 11 represents a 4- to 10-valent organic group having 5 to 40 carbon atoms
  • R 12 represents a di- to 8-valent organic group having 5 to 40 carbon atoms
  • R 13 and R 14 each independently represent a carboxy group, a sulfonic acid group or a hydroxyl group.
  • p and q represent integers from 0 to 6, p+q>0.
  • R 15 and R 16 represent a divalent to octavalent organic group having 5 to 40 carbon atoms.
  • R 17 and R 18 each independently represent a phenolic hydroxyl group, a sulfonic acid group or COOR 19 , and may be a single group or a mixture of different groups.
  • R 19 represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • r and s represent integers from 0 to 6; However, r+s>0.
  • the polyimide, polyimide precursor, polybenzoxazole precursor or copolymer thereof preferably has 5 to 100,000 structural units represented by general formula (1) or general formula (2). Moreover, in addition to the structural unit represented by general formula (1) or general formula (2), it may have other structural units. In this case, the polyimide, polyimide precursor, polybenzoxazole precursor or copolymer thereof contains structural units represented by general formula (1) or general formula (2) in an amount of 50 mol% or more of all structural units. It is preferable to have
  • R 11 -(R 13 ) p represents an acid dianhydride residue.
  • R 11 is a tetravalent to decavalent organic group, preferably an organic group having 5 to 40 carbon atoms containing an aromatic ring or a cycloaliphatic group.
  • acid dianhydride residues include pyromellitic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 2,3,3′,4′- biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 2,2',3 ,3′-benzophenonetetracarboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(2,3-dicarboxyphenyl)propane dianhydride, 1,1-bis(3,4-dicarboxyphenyl)ethane dianhydride, 1,1-bis(2,3-dicarboxyphenyl)ethane dianhydride, bis(3,4-dicarboxyphenyl)methan
  • R20 represents an oxygen atom, C( CF3 ) 2 or C( CH3 ) 2 .
  • R21 and R22 represent a hydrogen atom or a hydroxyl group.
  • R 16 -(R 18 ) s represents an acid residue.
  • R 16 is a divalent to octavalent organic group having 5 to 40 carbon atoms, preferably an organic group having 5 to 40 carbon atoms containing an aromatic ring or a cycloaliphatic group.
  • Acid residues include residues derived from dicarboxylic acids such as terephthalic acid, isophthalic acid, diphenyletherdicarboxylic acid, bis(carboxyphenyl)hexafluoropropane, biphenyldicarboxylic acid, benzophenonedicarboxylic acid, triphenyldicarboxylic acid, trimellit residues derived from tricarboxylic acids such as acid, trimesic acid, diphenylethertricarboxylic acid, biphenyltricarboxylic acid, pyromellitic acid, 3,3′,4,4′-biphenyltetracarboxylic acid, 2,3,3′,4′ -biphenyltetracarboxylic acid, 2,2',3,3'-biphenyltetracarboxylic acid, 3,3',4,4'-benzophenonetetracarboxylic acid, 2,2',3,3'-benzophenonetetracar
  • R20 represents an oxygen atom, C( CF3 ) 2 or C( CH3 ) 2 .
  • R21 and R22 represent a hydrogen atom or a hydroxyl group.
  • one or two carboxy groups correspond to R 18 in general formula (2). More preferably, 1 to 4 hydrogen atoms bonded to carbon atoms in the dicarboxylic acids, tricarboxylic acids, and tetracarboxylic acids exemplified above are substituted with R 18 in the general formula (2), preferably hydroxyl groups.
  • R 12 -(R 14 ) q in the general formula (1) and R 15 -(R 17 ) r in the general formula (2) represent diamine residues.
  • R 12 and R 15 are divalent to octavalent organic groups having 5 to 40 carbon atoms, and organic groups having 5 to 40 carbon atoms containing an aromatic ring or a cycloaliphatic group are preferred.
  • Diamine residues include 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 1,4-bis(4-aminophenoxy) Benzene, benzidine, m-phenylenediamine, p-phenylenediamine, 1,5-naphthalenediamine, 2,6-naphthalenediamine, bis(4-aminophenoxy)biphenyl, bis ⁇ 4-(4-aminophenoxy)phenyl ⁇ ether , 1,4-bis(4-aminophenoxy)benzene, 2,2′-dimethyl-4,4′-diaminobiphenyl, 2,2′-diethyl-4,4′-diaminobiphenyl, 3,3′-dimethyl -4,4'-diaminobiphenyl, 3,3'-
  • Polyimides, polyimide precursors, polybenzoxazole precursors, or copolymers thereof may have two or more thereof.
  • R20 represents an oxygen atom, C( CF3 ) 2 or C( CH3 ) 2 .
  • R 21 to R 24 each independently represent a hydrogen atom or a hydroxyl group.
  • Preferred examples of monoamines having an acidic group include 5-amino-8-hydroxyquinoline, 1-hydroxy-7-aminonaphthalene, 1-hydroxy-6-aminonaphthalene, 1-hydroxy-5-aminonaphthalene, 1-hydroxy -4-aminonaphthalene, 2-hydroxy-7-aminonaphthalene, 2-hydroxy-6-aminonaphthalene, 2-hydroxy-5-aminonaphthalene, 1-carboxy-7-aminonaphthalene, 1-carboxy-6-aminonaphthalene , 1-carboxy-5-aminonaphthalene, 2-carboxy-7-aminonaphthalene, 2-carboxy-6-aminonaphthalene, 2-carboxy-5-aminonaphthalene, 2-aminobenzoic acid, 3-aminobenzoic acid, 4 -aminobenzoic acid, 4-aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid, 3-amino-4,6-
  • acid anhydrides include phthalic anhydride, maleic anhydride, nadic anhydride, cyclohexanedicarboxylic anhydride, and 3-hydroxyphthalic anhydride. You may use 2 or more types of these.
  • Preferred examples of monocarboxylic acids include 3-carboxyphenol, 4-carboxyphenol, 3-carboxythiophenol, 4-carboxythiophenol, 1-hydroxy-7-carboxynaphthalene, 1-hydroxy-6-carboxynaphthalene, 1 -hydroxy-5-carboxynaphthalene, 1-mercapto-7-carboxynaphthalene, 1-mercapto-6-carboxynaphthalene, 1-mercapto-5-carboxynaphthalene and the like. You may use 2 or more types of these.
  • acid chlorides include monoacid chloride compounds in which the carboxy group of the monocarboxylic acid is acid chloride, terephthalic acid, phthalic acid, maleic acid, cyclohexanedicarboxylic acid, 1,5-dicarboxynaphthalene, 1,6- Examples include monoacid chloride compounds in which only one carboxy group of dicarboxylic acids such as dicarboxynaphthalene, 1,7-dicarboxynaphthalene, and 2,6-dicarboxynaphthalene is acid chlorided. You may use 2 or more types of these.
  • active ester compounds include reaction products of the monoacid chloride compounds with N-hydroxybenzotriazole and N-hydroxy-5-norbornene-2,3-dicarboximide. You may use 2 or more types of these.
  • the terminal blocking agent introduced into the alkali-soluble resin (a) can be easily detected by the following method.
  • a resin into which a terminal blocking agent has been introduced is dissolved in an acidic solution, decomposed into an amine component and an acid component, which are the structural units of the resin, and subjected to gas chromatography (GC) or NMR measurement to determine the terminal
  • GC gas chromatography
  • NMR nuclear magnetic resonance
  • the encapsulant can be easily detected. It is also possible to detect the resin into which the terminal blocking agent has been introduced by pyrolysis gas chromatography (PGC), infrared spectrum, and 13 C-NMR spectrum measurement.
  • PPC pyrolysis gas chromatography
  • the alkali-soluble resin (a) used in the present invention is synthesized by a known method.
  • Methods for producing polyamic acid or polyamic acid ester, which are polyimide precursors include, for example, a method of reacting a tetracarboxylic dianhydride and a diamine compound at a low temperature, and a method of obtaining a diester with a tetracarboxylic dianhydride and an alcohol. , then a method of reacting with an amine in the presence of a condensing agent, a method of obtaining a diester with a tetracarboxylic dianhydride and an alcohol, followed by acid chloride of the remaining dicarboxylic acid and reaction with an amine, and the like. .
  • a method for producing polyhydroxyamide, which is a polybenzoxazole precursor includes, for example, a method of condensing a bisaminophenol compound and a dicarboxylic acid. Specifically, for example, a method of reacting a dehydration condensing agent such as dicyclohexylcarbodiimide (DCC) with an acid and then adding a bisaminophenol compound thereto, a method of adding a tertiary amine such as pyridine to a solution of a bisaminophenol compound and dicarboxylic acid. A method of dropping a solution of acid dichloride and the like can be mentioned.
  • a dehydration condensing agent such as dicyclohexylcarbodiimide (DCC)
  • DCC dicyclohexylcarbodiimide
  • a tertiary amine such as pyridine
  • Examples of methods for producing polyimide include dehydration and ring closure of the polyamic acid or polyamic acid ester obtained by the above method.
  • Methods for dehydration and ring closure include chemical treatment with an acid or base, heat treatment, and the like.
  • Examples of methods for producing polybenzoxazole include a method of dehydrating and ring-closing the polyhydroxyamide obtained by the above method.
  • Methods for dehydration and ring closure include chemical treatment with an acid or base, heat treatment, and the like.
  • Polyamideimide precursors include tricarboxylic acids, corresponding tricarboxylic acid anhydrides, and polymers of tricarboxylic acid anhydride halides and diamine compounds, preferably polymers of trimellitic anhydride chloride and aromatic diamine compounds.
  • Examples of the method for producing a polyamideimide precursor include a method of reacting a tricarboxylic acid, a corresponding tricarboxylic acid anhydride, a tricarboxylic acid anhydride halide, etc. with a diamine compound at a low temperature.
  • Examples of methods for producing polyamideimide include a method of reacting trimellitic anhydride and an aromatic diisocyanate, and a method of dehydrating and ring-closing the polyamideimide precursor obtained by the above method.
  • Methods for dehydration and ring closure include chemical treatment with an acid or base, heat treatment, and the like.
  • the resin composition of the present invention contains a novolak-type phenolic resin (b).
  • the novolak-type phenolic resin (b) can be obtained by a known method of heterogeneously reacting phenols and aldehydes in the presence of an acid catalyst.
  • the novolac-type phenolic resin (b) used in the present invention preferably contains an m-cresol novolak resin from the viewpoint of solubility in an alkaline developer.
  • the novolac-type phenolic resin (b) is generally produced using phenols as raw materials, and m-cresol novolac resins are resins having a structure obtained by using m-cresol in phenols.
  • the weight average molecular weight (Mw) is preferably 3,000 or more and 15,000 or less, preferably 7000 or more and 13,000 or less. is more preferable. Furthermore, since it exhibits moderate solubility in an alkaline developer, good sensitivity can be obtained.
  • phenols used as raw materials for the novolac-type phenolic resin (b) used in the present invention include phenol, o-cresol, p-cresol, 2,3-xylenol, 2,5-xylenol, 3,4-xylenol, 3,5-xylenol, 2,3,5-trimethylphenol, 3,4,5-trimethylphenol and the like can be mentioned.
  • aldehydes used as raw materials for the novolak-type phenolic resin (b) used in the present invention include formalin, paraformaldehyde, acetaldehyde, benzaldehyde, hydroxybenzaldehyde, chloroacetaldehyde, salicylaldehyde, and the like. .
  • formalin is particularly preferred. Two or more of these aldehydes may be combined.
  • the blending molar ratio (F/P) of the phenols (P) and the aldehydes (F) when producing the novolak-type phenolic resin (b) used in the present invention is preferably 0.33 to 1.20, It is more preferably 0.50 to 1.00.
  • the yield is good, and on the other hand, it is possible to prevent the dispersion ratio of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polystyrene equivalent weight average molecular weight from becoming large.
  • the condensation reaction of phenols and aldehydes is usually carried out using an acid catalyst.
  • acid catalysts that can be used include inorganic or organic acids such as phosphoric acid, oxalic acid, formic acid, acetic acid, p-toluenesulfonic acid, hydrochloric acid and sulfuric acid.
  • phosphoric acid is particularly preferred.
  • an aqueous solution of polyphosphoric acid such as metaphosphoric acid, pyrophosphoric acid, orthophosphoric acid, triphosphoric acid, and tetraphosphoric acid can be used. Since it plays a role of forming a field for a phase separation reaction with phenols in the presence thereof, aqueous solutions such as 75% by weight phosphoric acid and 89% by weight phosphoric acid are generally preferred.
  • Organic solvents include alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, butanediol, pentanediol, ethylene glycol, propylene glycol and diethylene glycol, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone.
  • Cellosolves such as , methyl cellosolve, ethyl cellosolve and butyl cellosolve, cellosolve esters such as methyl cellosolve acetate and ethyl cellosolve acetate, and cyclic ethers such as 1-4-dioxane are preferably used.
  • the amount of water in the reaction system affects the phase separation effect and production efficiency, but it is generally 40% or less on a weight basis. If the amount of water exceeds 40%, production efficiency may decrease.
  • reaction temperature between phenols and aldehydes is important for enhancing the phase separation effect, and is generally 40°C to reflux temperature, preferably 80°C to reflux temperature, more preferably reflux temperature.
  • the reaction time varies depending on, for example, the reaction temperature, raw material compounding ratio, acid catalyst compounding amount, etc., but is generally about 1 to 30 hours.
  • normal pressure is suitable, but if the heterogeneous reaction is maintained, the reaction may be carried out under increased pressure or reduced pressure.
  • the weight average molecular weight (Mw) of the novolak-type phenolic resin (b) is 3,000 or more and 15,000 or less, and the dispersion ratio (Mw)/ (Mn) is preferably 1.1 to 3.5, more preferably 1.8 to 2.8. Within this range, patterning workability of the flattening layer material and the insulating layer material by ultraviolet irradiation is excellent.
  • the content of the novolak-type phenolic resin (b) having a molecular weight of 1,000 or less is 0.1 to 20% by weight in the novolak-type phenolic resin (b). , preferably 0.1 to 10% by weight, more preferably 0.1 to 5% by weight. If the content of the novolak-type phenolic resin having a molecular weight of 1,000 or less exceeds 20 parts by weight in the (b) novolak-type phenolic resin, a large amount of outgassing is generated, causing deterioration in long-term reliability of the organic EL display device. On the other hand, if the content is less than 0.1% by weight, the production yield is lowered, which is not preferable.
  • the content of the novolak-type phenolic resin (b) is preferably 17-50 parts by weight, more preferably 25-40 parts by weight, relative to 100 parts by weight of the alkali-soluble resin (a).
  • the content of the novolak-type phenolic resin (b) is within the above preferred range with respect to 100 parts by weight of the alkali-soluble resin (a)
  • the sensitivity can be appropriately expressed, while the amount of outgassing is small, and the organic EL display device can be used. Less likely to cause deterioration of long-term reliability.
  • the resin composition of the present invention preferably contains a photosensitive compound (c). If the photosensitive compound (c) is contained, a resin composition having photosensitivity can be obtained, so that the exposure and development steps can be performed without applying a photoresist, and then the photoresist is removed. No need.
  • the photosensitive compound (c) include a photoacid generator (c1) and a photopolymerization initiator (c2).
  • the photoacid generator (c1) is a compound that generates an acid upon irradiation with light
  • the photopolymerization initiator (c2) is a compound that undergoes bond cleavage and/or reaction upon irradiation with light to generate radicals.
  • the content of the photosensitive compound (c) is preferably 0.01 to 100 parts by weight with respect to 100 parts by weight of the alkali-soluble resin (a). If the content of the photosensitive compound (c) is 0.01 parts by weight or more and 100 parts by weight or less, photosensitivity can be imparted while maintaining heat resistance, chemical resistance and mechanical properties of the cured product. .
  • the photoacid generator (c1) By containing the photoacid generator (c1), an acid is generated in the light-irradiated area and the solubility of the light-irradiated area in an alkaline aqueous solution increases, so that a positive relief pattern in which the light-irradiated area dissolves can be obtained. can. Further, by containing the photoacid generator (c1) and an epoxy compound or a thermal cross-linking agent described later, the acid generated in the light-irradiated portion accelerates the cross-linking reaction of the epoxy compound and the thermal cross-linking agent, and the light-irradiated portion becomes insoluble. A negative relief pattern can be obtained.
  • radical polymerization proceeds in the light-irradiated areas, and a negative relief pattern in which the light-irradiated areas become insoluble can be obtained.
  • Examples of the photoacid generator (c1) include quinonediazide compounds, sulfonium salts, phosphonium salts, diazonium salts, and iodonium salts. It is preferable to contain two or more kinds of photoacid generators (c1), and it is more preferable to contain one more kind of quinonediazide compound as an essential component, so that a highly sensitive photosensitive resin composition can be obtained.
  • a quinonediazide compound is particularly preferable as the photoacid generator (c1) from the viewpoint of light emission reliability when the cured product of the present invention, which will be described later, is used as a planarizing layer and/or an insulating layer of an organic EL display device.
  • quinonediazide compound a compound in which naphthoquinonediazide sulfonic acid is bonded to a compound having a phenolic hydroxyl group via an ester is preferable.
  • the compound having a phenolic hydroxyl group used here known compounds may be used, and those into which 4-naphthoquinonediazidesulfonic acid or 5-naphthoquinonediazidesulfonic acid is introduced via an ester bond are preferred. Examples can be given, but compounds other than these can also be used.
  • the affinity of the quinonediazide compound for an alkaline aqueous solution is lowered.
  • the solubility of the resin composition in the unexposed area in an alkaline aqueous solution is greatly reduced.
  • the quinonediazide sulfonyl group is converted to indenecarboxylic acid by exposure, and a high dissolution rate in an alkaline aqueous solution of the photosensitive resin composition in the exposed area can be obtained. That is, as a result, the dissolution rate ratio between the exposed area and the unexposed area of the composition can be increased, and a pattern with high resolution can be obtained.
  • a quinonediazide compound obtained by introducing 4-naphthoquinonediazide sulfonic acid through an ester bond has absorption in the i-line region of a mercury lamp and is suitable for i-line exposure.
  • a quinonediazide compound in which 5-naphthoquinonediazide sulfonic acid is introduced via an ester bond has absorption extending to the g-line region of a mercury lamp, and is suitable for g-line exposure.
  • sulfonium salts phosphonium salts, diazonium salts, and iodonium salts are preferable because they moderately stabilize the acid component generated by exposure.
  • sulfonium salts are preferred.
  • a sensitizer and the like can be contained as necessary.
  • the content of the photoacid generator (c1) is preferably 0.01 to 50 parts by weight with respect to 100 parts by weight of the alkali-soluble resin (a) from the viewpoint of increasing sensitivity.
  • the quinonediazide compound is preferably 3 to 40 parts by weight.
  • the total amount of sulfonium salt, phosphonium salt, diazonium salt and iodonium salt is preferably 0.5 to 20 parts by weight.
  • Examples of the photopolymerization initiator (c2) include benzyl ketal photopolymerization initiators, ⁇ -hydroxyketone photopolymerization initiators, ⁇ -aminoketone photopolymerization initiators, acylphosphine oxide photopolymerization initiators, and oxime esters.
  • Two or more photopolymerization initiators (c2) may be contained.
  • an ⁇ -aminoketone photopolymerization initiator it is more preferable to contain any of an ⁇ -aminoketone photopolymerization initiator, an acylphosphine oxide photopolymerization initiator, and an oxime ester photopolymerization initiator.
  • ⁇ -aminoketone-based photopolymerization initiators examples include 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4 -morpholinophenyl)-butan-1-one, 2-dimethylamino-2-(4-methylbenzyl)-1-(4-morpholinophenyl)-butan-1-one, 3,6-bis(2-methyl- 2-morpholinopropionyl)-9-octyl-9H-carbazole and the like.
  • acylphosphine oxide photopolymerization initiators include 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, and bis(2,6-dimethoxybenzoyl). )-(2,4,4-trimethylpentyl)phosphine oxide.
  • oxime ester photopolymerization initiators include 1-phenylpropane-1,2-dione-2-(O-ethoxycarbonyl)oxime, 1-phenylbutane-1,2-dione-2-(O-methoxy carbonyl)oxime, 1,3-diphenylpropane-1,2,3-trione-2-(O-ethoxycarbonyl)oxime, 1-[4-(phenylthio)phenyl]octane-1,2-dione-2-( O-benzoyl)oxime, 1-[4-[4-(carboxyphenyl)thio]phenyl]propane-1,2-dione-2-(O-acetyl)oxime, 1-[9-ethyl-6-(2 -methylbenzoyl)-9H-carbazol-3-yl]ethanone-1-(O-acetyl)oxime, 1-[9-ethyl-6-[2-methyl-4-[1-(2,2-di
  • the content of the photopolymerization initiator (c2) is 0.1 parts by weight with respect to a total of 100 parts by weight of the alkali-soluble resin (a) and the radically polymerizable compound described later, from the viewpoint of further improving sensitivity. 1 part by weight or more is preferable, and 1 part by weight or more is more preferable. On the other hand, from the viewpoint of further improving the resolution and reducing the taper angle, it is preferably 25 parts by weight or less, more preferably 15 parts by weight or less.
  • the resin composition of the present invention may further contain a radically polymerizable compound.
  • a radically polymerizable compound is a compound that has multiple ethylenically unsaturated double bonds in its molecule.
  • the radicals generated from the photopolymerization initiator (c2) described above promote radical polymerization of the radically polymerizable compound, and insolubilization of the light-irradiated portion can yield a negative pattern.
  • the photocuring of the light-irradiated portion is accelerated, and the sensitivity can be further improved.
  • the crosslink density after thermosetting is improved, the hardness of the cured product can be improved.
  • a compound having a (meth)acrylic group which facilitates the progress of radical polymerization, is preferable.
  • Compounds having two or more (meth)acrylic groups in the molecule are more preferable from the viewpoint of improving the sensitivity at the time of exposure and improving the hardness of the cured product.
  • the double bond equivalent of the radically polymerizable compound is preferably 80 to 400 g/mol from the viewpoint of improving the sensitivity during exposure and improving the hardness of the cured product.
  • radically polymerizable compounds include trimethylolpropane tri(meth)acrylate, ditrimethylolpropane tri(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, pentaerythritol tri(meth)acrylate, and pentaerythritol tetra(meth)acrylate.
  • acrylates dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, tripentaerythritol hepta(meth)acrylate, tripentaerythritol octa(meth)acrylate, 2,2-bis[4-(3-( meth)acryloxy-2-hydroxypropoxy)phenyl]propane, 1,3,5-tris((meth)acryloxyethyl)isocyanuric acid, 1,3-bis((meth)acryloxyethyl)isocyanuric acid, 9,9 -bis[4-(2-(meth)acryloxyethoxy)phenyl]fluorene, 9,9-bis[4-(3-(meth)acryloxypropoxy)phenyl]fluorene, 9,9-bis(4-( meth)acryloxyphenyl)fluorene or acid-modified products thereof, ethylene oxide-modified products,
  • the content of the radically polymerizable compound is 15% by weight with respect to the total 100% by weight of the alkali-soluble resin (a) and the radically polymerizable compound, from the viewpoint of further improving the sensitivity and reducing the taper angle.
  • the above is preferable, and 30% by weight or more is more preferable.
  • it is preferably 65% by weight or less, more preferably 50% by weight or less.
  • the resin composition of the present invention may contain a thermal cross-linking agent.
  • a thermal cross-linking agent refers to a compound having at least two thermally reactive functional groups such as an alkoxymethyl group, a methylol group, an epoxy group, and an oxetanyl group in the molecule.
  • a thermal cross-linking agent it is possible to cross-link the alkali-soluble resin (a) or other additive components and improve the heat resistance, chemical resistance and hardness of the film after thermal curing.
  • the amount of outgassing from the cured product can be further reduced, and the long-term reliability of the organic EL display device can be improved.
  • Preferred examples of compounds having at least two alkoxymethyl groups or methylol groups include DML-PC, DML-PEP, DML-OC, DML-OEP, DML-34X, DML-PTBP, DML-PCHP, DML-OCHP, DML-PFP, DML-PSBP, DML-POP, DML-MBOC, DML-MBPC, DML-MTrisPC, DML-BisOC-Z, DML-BisOCHP-Z, DML-BPC, DML-BisOC-P, DMO-PC, DMOM-PTBP, DMOM-MBPC, TriML-P, TriML-35XL, TML-HQ, TML-BP, TML-pp-BPF, TML-BPE, TML-BPA, TML-BPAF, TML-BPAP, TMOM-BP, TMOM-BPE, TMOM-BPA, TMOM-BPAF, TMOM-BPAP, HML-TPPHBA, H
  • Preferred examples of compounds having at least two epoxy groups include “Epolite” (registered trademark) 40E, “Epolite” 100E, “Epolite” 200E, “Epolite” 400E, “Epolite” 70P, “Epolite” 200P, “Epolite” “400P,” Epolite” 1500NP, “Epolite” 80MF, “Epolite” 4000, “Epolite” 3002 (manufactured by Kyoeisha Chemical Co., Ltd.), “Denacol” (registered trademark) EX-212L, “Denacol” EX-214L , “Denacol” EX-216L, “Denacol” EX-850L (manufactured by Nagase ChemteX Corporation), GAN, GOT (manufactured by Nippon Kayaku Co., Ltd.), “Epicort” (registered trademark) 828, "Epikote” 1002,
  • Preferable examples of compounds having at least two oxetanyl groups include Ethanacol EHO, Ethanacol OXBP, Ethanacol OXTP, Ethanacol OXMA (manufactured by Ube Industries, Ltd.), and oxetaneated phenol novolak.
  • the thermal cross-linking agent may be contained in combination of two or more.
  • the content of the thermal cross-linking agent is preferably 1% by weight or more and 30% by weight or less with respect to 100% by weight of the total amount of the resin composition excluding the organic solvent. If the content of the thermal cross-linking agent is 1% by weight or more, the chemical resistance and hardness of the cured product can be further enhanced. In addition, if the content of the thermal crosslinking agent is 30% by weight or less, the amount of outgassing from the cured product can be further reduced, the long-term reliability of the organic EL display device can be further improved, and the storage stability of the resin composition can be improved. Also excellent.
  • the resin composition of the present invention may contain an organic solvent. By containing an organic solvent, a varnish state can be obtained, and coatability can be improved.
  • Organic solvents include polar aprotic solvents such as ⁇ -butyrolactone, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-propyl ether, ethylene glycol mono-n-butyl ether, diethylene glycol monomethyl ether, diethylene glycol.
  • polar aprotic solvents such as ⁇ -butyrolactone, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-propyl ether, ethylene glycol mono-n-butyl ether, diethylene glycol monomethyl ether, diethylene glycol.
  • the content of the organic solvent is not particularly limited, it is preferably 100 to 3,000 parts by weight, more preferably 150 to 2,000 parts by weight, based on 100 parts by weight of the total resin composition excluding the organic solvent.
  • the ratio of the solvent having a boiling point of 180° C. or higher to the total amount of the organic solvent is preferably 20 parts by weight or less, more preferably 10 parts by weight or less.
  • Adhesion improvers include vinyltrimethoxysilane, vinyltriethoxysilane, epoxycyclohexylethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, Silane coupling agents such as 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, titanium chelating agents, aluminum chelating agents, aromatic amine compounds and alkoxy group-containing Examples thereof include compounds obtained by reacting silicon compounds.
  • the content of the adhesion improver is preferably 0.1 to 10% by weight with respect to 100% by weight of the total amount of the resin composition excluding the organic solvent.
  • the resin composition of the present invention may contain a surfactant as necessary to improve the wettability with the substrate.
  • surfactants include SH series, SD series, and ST series from Dow Corning Toray Co., Ltd., BYK series from BYK Chemie Japan Co., Ltd., KP series from Shin-Etsu Chemical Co., Ltd., and NOF Corporation.
  • Disform series of DIC Corporation "Megafac (registered trademark)” series of DIC Corporation, Florard series of Sumitomo 3M Limited, “Surflon (registered trademark)” series of Asahi Glass Co., Ltd., "Asahi Guard (registered trademark)” series of Asahi Glass Co., Ltd.
  • a methacrylic surfactant may be used.
  • the content of the surfactant is preferably 0.001 to 1% by weight with respect to 100% by weight of the total amount of the resin composition excluding the organic solvent.
  • the resin composition of the present invention may contain inorganic particles.
  • Preferred specific examples of inorganic particles include silicon oxide, titanium oxide, barium titanate, alumina, and talc.
  • the primary particle diameter of the inorganic particles is preferably 100 nm or less, more preferably 60 nm or less.
  • the content of the inorganic particles is preferably 5 to 90% by weight with respect to 100% by weight of the total amount of the resin composition excluding the organic solvent.
  • the resin composition of the present invention may contain a thermal acid generator within a range that does not impair the long-term reliability of the organic EL display device.
  • the thermal acid generator generates an acid when heated to accelerate the cross-linking reaction of the thermal cross-linking agent. It promotes cyclization and can further improve the mechanical properties of the cured product.
  • the thermal decomposition initiation temperature of the thermal acid generator used in the present invention is preferably 50°C to 270°C, more preferably 250°C or less.
  • no acid is generated when the resin composition of the present invention is applied to a substrate and then dried (prebaking: about 70 to 140° C.), and the final heating (curing: about 100 to 100° C.) after patterning by subsequent exposure and development. It is preferable to select one that generates an acid at 400° C.), because it can suppress a decrease in sensitivity during development.
  • the acid generated from the thermal acid generator used in the present invention is preferably a strong acid, and examples thereof include arylsulfonic acids such as p-toluenesulfonic acid and benzenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid and butanesulfonic acid. and haloalkylsulfonic acids such as trifluoromethylsulfonic acid and the like are preferred. They are used as salts such as onium salts or as covalent compounds such as imidosulfonates. You may contain 2 or more types of these.
  • the content of the thermal acid generator is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, relative to 100% by weight of the total amount of the resin composition excluding the organic solvent.
  • the thermal acid generator By containing 0.01% by weight or more of the thermal acid generator, the cross-linking reaction and cyclization of the unclosed ring structure of the resin are promoted, so that the mechanical properties and chemical resistance of the cured product can be further improved. From the viewpoint of long-term reliability of the organic EL display device, it is preferably 5% by weight or less, more preferably 2% by weight or less.
  • ⁇ Method for producing resin composition> an example of a preferable manufacturing method for obtaining the resin composition of the present invention will be described.
  • the components (a) to (c) and, if necessary, a coloring agent, a thermal cross-linking agent, an organic solvent, an adhesion improver, a surfactant, a compound having a phenolic hydroxyl group, an inorganic particle, a thermal acid generator, etc. are dissolved.
  • a resin composition can be obtained by allowing the Dissolution methods include stirring and heating. When heating, the heating temperature is preferably set within a range that does not impair the performance of the resin composition, and is usually room temperature to 80°C.
  • the order of dissolving each component is not particularly limited, and for example, a method of dissolving compounds in order of low solubility can be mentioned.
  • ingredients that tend to generate bubbles during stirring and dissolution such as surfactants and some adhesion improvers, by adding them at the end after dissolving the other ingredients, the other ingredients will not be dissolved due to the generation of bubbles. can be prevented.
  • the obtained resin composition is preferably filtered using a filtration filter to remove dust and particles.
  • filter pore sizes include, but are not limited to, 0.5 ⁇ m, 0.2 ⁇ m, 0.1 ⁇ m, 0.07 ⁇ m, 0.05 ⁇ m, 0.02 ⁇ m.
  • Materials for the filter include polypropylene (PP), polyethylene (PE), nylon (NY), polytetrafluoroethylene (PTFE), etc., and polyethylene and nylon are preferred.
  • the cured product of the present invention is a cured product obtained by curing the resin composition of the present invention.
  • the resin composition can be cured by heat treatment.
  • the heat treatment may be performed by selecting a certain temperature and increasing the temperature stepwise, or by selecting a certain temperature range and continuously increasing the temperature for 5 minutes to 5 hours. For example, heat treatment is performed at 150° C. and 250° C. for 30 minutes each. Alternatively, a method of linearly raising the temperature from room temperature to 300° C. over 2 hours can be used.
  • the heat treatment conditions in the present invention are preferably 300° C. or higher, more preferably 350° C. or higher, from the viewpoint of reducing the amount of outgas generated from the cured product.
  • the temperature is preferably 500° C. or lower, more preferably 450° C. or lower, from the viewpoint of imparting sufficient film toughness to the cured product.
  • the cured product of the present invention can be suitably used as a gate insulating layer or interlayer insulating layer of a thin film transistor.
  • the cured product of the present invention can be obtained by applying the resin composition to a substrate to form a resin film, drying the resin film as necessary, exposing the resin film to light, and developing the exposed resin film. and a step of heat-treating the developed resin film. Details of each step are described below.
  • the resin composition of the present invention is applied by a spin coating method, a slit coating method, a dip coating method, a spray coating method, a printing method, or the like to obtain a coating film of the resin composition.
  • the slit coating method is preferably used.
  • the slit coating method is advantageous in terms of cost reduction because it can be applied with a small amount of application liquid.
  • the amount of the coating liquid required for the slit coating method is, for example, about 1/5 to 1/10 of that for the spin coating method.
  • the slit nozzle used for coating is not particularly limited, and those marketed by multiple manufacturers can be used. Specifically, "Linear Coater" manufactured by Dainippon Screen Mfg.
  • the coating speed is generally in the range of 10 mm/sec to 400 mm/sec.
  • the film thickness of the coating film varies depending on the solid content concentration and viscosity of the resin composition, but it is usually applied so that the film thickness after drying is 0.1 to 10 ⁇ m, preferably 0.3 to 5 ⁇ m.
  • the base material to be coated with the resin composition may be pretreated with the above-described adhesion improver.
  • a solution obtained by dissolving 0.5 to 20% by weight of an adhesion improver in a solvent such as isopropanol, ethanol, methanol, water, tetrahydrofuran, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, ethyl lactate, and diethyl adipate is used. and a method of treating the substrate surface.
  • Methods for treating the substrate surface include spin coating, slit die coating, bar coating, dip coating, spray coating, vapor treatment, and the like.
  • the resin composition After applying the resin composition, dry it as necessary. It is common to dry under reduced pressure together with the substrate on which the coating film is formed. For example, a substrate having a coating film formed thereon is placed on proxy pins placed in a vacuum chamber, and dried under reduced pressure by reducing the pressure in the vacuum chamber. At this time, if the substrate and the top plate of the vacuum chamber are separated from each other, a large amount of air between the substrate and the top plate of the vacuum chamber flows during drying under reduced pressure, which tends to cause unevenness. Therefore, it is preferable to adjust the proxy pin height so as to narrow the gap.
  • the distance between the substrate and the top plate of the vacuum chamber is preferably about 2-20 mm, more preferably 2-10 mm.
  • the speed of drying under reduced pressure depends on the vacuum chamber volume, the vacuum pump capacity, the diameter of the pipe between the chamber and the pump, etc.
  • the pressure in the vacuum chamber is reduced to 40 Pa after 60 seconds. set and used.
  • a general vacuum drying time is often about 30 seconds to 100 seconds, and the ultimate pressure in the vacuum chamber at the end of the vacuum drying is usually 100 Pa or less with the coated substrate in place.
  • the surface of the coating film can be kept in a non-sticky and dry state, thereby suppressing surface contamination and generation of particles during subsequent substrate transport.
  • the coating film is generally dried by heating. This step is also called pre-baking.
  • Heat drying uses a hot plate, an oven, an infrared ray, or the like.
  • a hot plate is used for drying by heating, the coating film is held and heated directly on the plate or on a jig such as a proxy pin installed on the plate.
  • Materials for proxy pins include metal materials such as aluminum and stainless steel, and synthetic resins such as polyimide resin and "Teflon" (registered trademark). .
  • the height of the proxy pin varies depending on the size of the substrate, the type of coating film, the purpose of heating, etc., but is preferably about 0.1 to 10 mm.
  • the heating temperature varies depending on the type and purpose of the coating film, and is preferably in the range of 50° C. to 180° C. for 1 minute to several hours.
  • the step of forming a pattern from the obtained resin film that is, the step of exposing the resin film and the subsequent step of developing, will be described.
  • the photosensitive resin film is irradiated with actinic rays through a mask having a desired pattern.
  • Actinic rays used for exposure include ultraviolet rays, visible rays, electron beams, X-rays, etc.
  • the exposed portion dissolves in the developer.
  • the exposed areas are cured and rendered insoluble in the developer.
  • a desired pattern is formed by removing the exposed portion in the case of a positive type and the non-exposed portion in the case of a negative type using a developer.
  • a developer for both positive and negative types tetramethylammonium hydroxide, diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, methylamine, dimethylamine, Aqueous solutions of alkaline compounds such as dimethylaminoethyl acetate, dimethylaminoethanol, dimethylaminoethyl methacrylate, cyclohexylamine, ethylenediamine and hexamethylenediamine are preferred.
  • these alkaline aqueous solutions are added with a polar solvent such as N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, ⁇ -butyrolactone, dimethylacrylamide, methanol, ethanol, Alcohols such as isopropanol, esters such as ethyl lactate and propylene glycol monomethyl ether acetate, and ketones such as cyclopentanone, cyclohexanone, isobutyl ketone and methyl isobutyl ketone may be added alone or in combination. good.
  • a developing method methods such as spray, puddle, immersion, and ultrasonic waves are possible.
  • alcohols such as ethanol and isopropyl alcohol
  • esters such as ethyl lactate and propylene glycol monomethyl ether acetate may be added to the distilled water for rinsing.
  • heat treatment can remove components with low heat resistance, heat resistance and chemical resistance can be improved.
  • the resin composition of the present invention contains an alkali-soluble resin selected from polyimide precursors, polybenzoxazole precursors, copolymers thereof, or copolymers of them and polyimide
  • heat treatment Since it can form an imide ring or an oxazole ring, heat resistance and chemical resistance can be improved, and if it contains a compound having at least two alkoxymethyl groups, methylol groups, epoxy groups, or oxanyl groups, heat treatment is required.
  • the thermal cross-linking reaction can be progressed, and the heat resistance and chemical resistance can be improved.
  • a certain temperature is selected and the temperature is raised stepwise, or a certain temperature range is selected and the temperature is raised continuously for 5 minutes to 5 hours.
  • heat treatment is performed at 150° C. and 250° C. for 30 minutes each.
  • a method of linearly raising the temperature from room temperature to 300° C. over 2 hours can be used.
  • the heat treatment conditions in the present invention are preferably 300° C. or higher, more preferably 350° C. or higher, from the viewpoint of reducing the amount of outgas generated from the cured product.
  • the temperature is preferably 500° C. or lower, more preferably 450° C. or lower, from the viewpoint of imparting sufficient film toughness to the cured product.
  • the resin composition and cured product of the present invention can be used to flatten the insulating layer of an organic electroluminescence (EL) element and the driving thin film transistor (TFT) substrate of a display device using an organic EL element. It is suitable for use as a layer for protecting wiring on a circuit board, an insulating layer for protecting wiring on a circuit board, an on-chip microlens for a solid-state imaging device, and a flattening layer for various displays and solid-state imaging devices.
  • MRAM with low heat resistance polymer memory (Polymer Ferroelectric RAM: PFRAM) and phase change memory (Phase Change RAM: PCRAM, Ovonics Unified Memory: OUM), etc., which are promising as next-generation memories. preferred.
  • a display device including a first electrode formed on a substrate and a second electrode provided opposite to the first electrode, for example, a display device using an LCD, ECD, ELD, or an organic electroluminescence device (Organic electroluminescence device) It can also be used as an insulating layer.
  • An organic EL display device will be described below as an example.
  • the organic EL display device of the present invention has a drive circuit, a planarizing layer, a first electrode, an insulating layer, a light-emitting layer and a second electrode on a substrate, and the planarizing layer and/or the insulating layer are the above-described electrodes of the present invention.
  • Including hardened material Organic EL light-emitting materials are susceptible to deterioration due to moisture, and may have adverse effects such as a decrease in the area ratio of light-emitting portions to the area of light-emitting pixels. Luminescent properties are obtained.
  • a substrate made of glass, various plastics, or the like is provided with TFTs and wirings located on the sides of the TFTs and connected to the TFTs, and unevenness is covered thereon.
  • a planarization layer is thus provided, and a display element is provided on the planarization layer. The display element and the wiring are connected through a contact hole formed in the planarization layer.
  • the film thickness of the flattening layer in the organic EL display device of the present invention is preferably 1.0 to 5.0 ⁇ m, more preferably 2.0 ⁇ m or more.
  • the flatness of densely packed TFTs and wiring can be improved due to high definition.
  • the flattening layer is thickened, outgassing increases and causes deterioration of the light emission reliability of the organic EL display device.
  • the flattening layer is preferably multi-layered because TFTs and wiring can be arranged in the film thickness direction for high definition.
  • Fig. 1 shows a cross-sectional view of an example of an organic EL display device.
  • Bottom gate type or top gate type TFTs (thin film transistors) 1 are provided in a matrix on a substrate 6 , and a TFT insulating layer 3 is formed to cover the TFTs 1 .
  • a wiring 2 connected to the TFT 1 is provided on the TFT insulating layer 3 .
  • a flattening layer 4 is provided on the TFT insulating layer 3 so as to bury the wiring 2 therein.
  • a contact hole 7 reaching the wiring 2 is provided in the planarization layer 4 .
  • An ITO (transparent electrode) 5 is formed on the planarization layer 4 while being connected to the wiring 2 through the contact hole 7 .
  • the ITO 5 becomes an electrode of a display element (for example, an organic EL element).
  • An insulating layer 8 is formed so as to cover the periphery of the ITO 5 .
  • the organic EL element may be of a top emission type in which light is emitted from the side opposite to the substrate 6, or may be of a bottom emission type in which light is extracted from the substrate 6 side. In this manner, an active matrix type organic EL display device is obtained in which the TFTs 1 for driving the organic EL elements are connected to the respective organic EL elements.
  • the manufacturing method of the organic EL display device of the present invention having the TFT insulating layer 3, the planarizing layer 4 and/or the insulating layer 8 is formed from the resin composition on a substrate in the same manner as the above-described method of manufacturing the cured product. drying the resin film as necessary; exposing the resin film to light; developing the exposed resin film; and heat-treating the developed resin film.
  • the organic EL display device of the present invention can be obtained by a manufacturing method including these steps.
  • the film thickness was measured using Lambda Ace STM-602 manufactured by Dainippon Screen Mfg. Co., Ltd. under the condition of a refractive index of 1.63.
  • TMAH tetramethylammonium aqueous solution
  • the resulting pattern was observed with an FDP microscope MX61 (manufactured by Olympus Corporation) at a magnification of 20 times to measure the opening diameter of the contact hole.
  • the minimum exposure dose (mJ/cm 2 ) at which the opening diameter of the contact hole reached 10 ⁇ m was obtained and defined as the sensitivity.
  • the film thickness was measured using Lambda Ace STM-602 manufactured by Dainippon Screen Mfg. Co., Ltd. under the condition of a refractive index of 1.63.
  • the resulting pre-baked film is heated to 250° C. using an inert oven CLH-21CD-S (manufactured by Koyo Thermo Systems Co., Ltd.) at an oxygen concentration of 20 ppm by volume or less and a temperature increase of 5° C./min. Then, the resin composition was baked at 250° C. for 1 hour to prepare a cured product. 10 mg of the resulting cured product on a 6-inch silicon wafer was heated at 180° C. for 30 minutes using helium as a purge gas, and the desorbed components were collected on an adsorbent (Carbotrap 400) by a purge and trap method. bottom.
  • CLH-21CD-S manufactured by Koyo Thermo Systems Co., Ltd.
  • the amount of gas generated was calculated from a calibration curve prepared by GC-MS analysis under the same conditions as above using n-hexadecane as a standard substance.
  • FIG. 2 shows a schematic diagram of the manufacturing procedure of the organic EL display device.
  • an ITO transparent conductive film of 10 nm was formed on the entire surface of the alkali-free glass substrate 19 of 38 mm ⁇ 46 mm by sputtering, and etched as the first electrode (transparent electrode) 20 .
  • an auxiliary electrode 21 for taking out the second electrode was also formed. (Upper left figure)
  • the obtained substrate was ultrasonically cleaned for 10 minutes with Semico Clean 56 (trade name, manufactured by Furuuchi Chemical Co., Ltd.) and then cleaned with ultrapure water.
  • the entire surface of the substrate was coated with a resin composition shown in Table 3, which will be described later, by spin coating, and prebaked on a hot plate at 120° C. for 2 minutes.
  • This film was exposed to UV light through a photomask, developed with a 2.38% by weight TMAH aqueous solution to dissolve unnecessary portions, and rinsed with pure water.
  • the resulting resin pattern was heat-treated at 250° C. for 1 hour in a nitrogen atmosphere using a high-temperature inert gas oven (INH-9CD-S; manufactured by Koyo Thermo Systems Co., Ltd.).
  • the insulating layer 22 having a width of 70 ⁇ m and a length of 260 ⁇ m is arranged at a pitch of 155 ⁇ m in the width direction and a pitch of 465 ⁇ m in the length direction, and each opening exposes the first electrode. Formed only in the effective area.
  • the insulating layer 22 having an insulating layer aperture ratio of 25% was formed in the effective area of the substrate, which was a square with one side of 16 mm.
  • the thickness of the insulating layer was about 1.0 ⁇ m. (upper right figure)
  • an organic EL layer 23 including a light-emitting layer was formed by a vacuum deposition method (lower left figure).
  • the degree of vacuum during vapor deposition was 1 ⁇ 10 ⁇ 3 Pa or less, and the substrate was rotated with respect to the vapor deposition source during vapor deposition.
  • 10 nm of compound (HT-1) was deposited as a hole injection layer, and 50 nm of compound (HT-2) was deposited as a hole transport layer.
  • a compound (GH-1) as a host material and a compound (GD-1) as a dopant material were deposited on the light-emitting layer to a thickness of 40 nm with a doping concentration of 10%.
  • the compound (ET-1) and the compound (LiQ) as electron transport materials were laminated at a volume ratio of 1:1 to a thickness of 40 nm. Structures of compounds used in the organic EL layer are shown below.
  • a compound (LiQ) LiQ
  • Mg and Ag were vapor-deposited to a thickness of 10 nm at a volume ratio of 10:1 to form a second electrode (non-transparent electrode) 24 .
  • a cap-shaped glass plate was adhered with an epoxy resin-based adhesive under a low humidity nitrogen atmosphere for sealing.
  • the film thickness referred to here is a value displayed on a crystal oscillation type film thickness monitor.
  • the produced organic EL display device was placed on a hot plate heated to 80° C. with the light-emitting surface facing up, and irradiated with UV light having a wavelength of 365 nm and an illuminance of 0.6 mW/cm 2 .
  • the organic EL display device was driven to emit light by direct current driving at 0.625 mA, and the area ratio of the light emitting portion to the area of the light emitting pixel (pixel light emitting area ratio). was measured.
  • this evaluation method when the pixel emission area ratio after 1,000 hours has passed is 80% or more, it can be said that the long-term reliability is excellent, and when it is 90% or more, it is more preferable.
  • Synthesis Example 1 Synthesis of hydroxyl group-containing diamine compound ( ⁇ ) 18.3 g (0.05 mol) of 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (hereinafter referred to as BAHF) was added to 100 mL of acetone and propylene. It was dissolved in 17.4 g (0.3 mol) of oxide and cooled to -15°C. A solution prepared by dissolving 20.4 g (0.11 mol) of 3-nitrobenzoyl chloride in 100 mL of acetone was added dropwise thereto. After completion of the dropwise addition, the mixture was allowed to react at -15°C for 4 hours, and then returned to room temperature. The precipitated white solid was collected by filtration and vacuum dried at 50°C.
  • BAHF 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane
  • Synthesis Example 2 Synthesis of alkali-soluble resin (a-1) 44.4 g (0.10 mol) of 4,4'-(hexafluoroisopropylidene) diphthalic dianhydride (hereinafter referred to as 6FDA) was added to 500 g of NMP under a dry nitrogen stream. was dissolved in 4.46 g (0.05 mol) of 3-aminophenol as a terminal blocker was added together with 5 g of NMP, and reacted at 40° C. for 30 minutes.
  • 6FDA 4,4'-(hexafluoroisopropylidene) diphthalic dianhydride
  • Synthesis Example 3 Synthesis of alkali-soluble resin (a-2) Under dry nitrogen stream, 29.3 g (0.08 mol) of BAHF, 1.24 g (0.005 g) of 1,3-bis(3-aminopropyl)tetramethyldisiloxane mol), and as a terminal blocking agent, 3.27 g (0.03 mol) of 3-aminophenol was dissolved in 150 g of NMP. 3,3′,4,4′-Diphenylethertetracarboxylic dianhydride (hereinafter referred to as ODPA) 31.0 g (0.1 mol) was added together with NMP 50 g, stirred at 20° C. for 1 hour, and then stirred at 50° C.
  • ODPA 3,3′,4,4′-Diphenylethertetracarboxylic dianhydride
  • Synthesis Example 5 Synthesis of novolac-type phenolic resin (b-1) 100 g of m-cresol, 81.9 g of 37% formalin, 60 g of 89% phosphoric acid, and 100 g of ethylene glycol were charged, and then cloudy by stirring and mixing. Under these conditions, the temperature was gradually raised to the reflux temperature, and the condensation reaction was carried out at the same temperature for 22 hours, after which the reaction was stopped. Then, while stirring and mixing, 50 g of methyl isobutyl ketone was added to dissolve the condensate, and then the stirring was stopped and the content was transferred to a separating flask and allowed to stand. The aqueous phase (lower layer) was allowed to separate.
  • Synthesis Example 6 Synthesis of novolac-type phenolic resin (b-2) After charging 100 g of phenol, 81.9 g of 37% formalin, 1 g of oxalic acid dihydrate, and 100 g of ethylene glycol, cloudiness formed by stirring and mixing Under these conditions, the temperature was gradually raised to the reflux temperature, and the condensation reaction was carried out at the same temperature for 14 hours, after which the reaction was stopped. Then, while stirring and mixing, 50 g of methyl isobutyl ketone was added to dissolve the condensate, and then the stirring was stopped and the content was transferred into a separating flask and allowed to stand. The aqueous phase (lower layer) was allowed to separate.
  • Synthesis Example 7 Synthesis of Novolac Phenolic Resin (b-3) After charging 100 g of phenol, 81.9 g of 37% formalin, 60 g of 89% phosphoric acid, and 100 g of ethylene glycol, a cloudy state formed by stirring and mixing. Then, the temperature was gradually raised to the reflux temperature, and the condensation reaction was carried out at the same temperature for 10 hours, after which the reaction was stopped. Then, 50 g of methyl isobutyl ketone was added while stirring and mixing to dissolve the condensate, then the stirring was stopped and the content was transferred to a separating flask and allowed to stand. The aqueous phase (lower layer) was allowed to separate.
  • Synthesis Example 8 Synthesis of novolak-type phenol resin (b-4) 100 g of m-cresol, 81.9 g of 37% formalin, and 60 g of 89% phosphoric acid were charged, and then stirred and mixed to form a cloudy state. Then, the temperature was gradually raised to the reflux temperature, and the condensation reaction was carried out at the same temperature for 9 hours, after which the reaction was stopped. Then, while stirring and mixing, 50 g of methyl ethyl ketone was added to dissolve the condensate, and then the stirring was stopped and the contents were transferred to a separating flask and allowed to stand. lower layer).
  • Synthesis Example 9 Synthesis of novolak-type phenolic resin (b-5) 105 g of m-cresol, 81.9 g of 37% formalin, 60 g of 89% phosphoric acid, and 100 g of ethylene glycol are charged, and then cloudy by stirring and mixing. Under these conditions, the temperature was gradually raised to the reflux temperature, and the condensation reaction was carried out at the same temperature for 17 hours, after which the reaction was stopped. Next, 50 g of methyl isobutyl ketone was added while stirring and mixing to dissolve the condensate, then the stirring was stopped and the contents were transferred into a separating flask and allowed to stand. The aqueous acid phase (lower layer) was allowed to separate.
  • Synthesis Example 11 Synthesis of novolak-type phenolic resin (b-7) 100 g of m-cresol, 81.9 g of 37% formalin, 60 g of 89% phosphoric acid, and 100 g of ethylene glycol were charged, and then cloudy by stirring and mixing. Under these conditions, the temperature was gradually raised to the reflux temperature, and the condensation reaction was carried out at the same temperature for 24 hours, after which the reaction was stopped. Next, 50 g of methyl isobutyl ketone was added while stirring and mixing to dissolve the condensate, then the stirring was stopped and the contents were transferred into a separating flask and allowed to stand. The aqueous acid phase (lower layer) was allowed to separate.
  • Synthesis Example 12 Synthesis of novolac-type phenolic resin (b-8) After charging 100 g of phenol, 81.9 g of 37% formalin, 1 g of oxalic acid dihydrate, and 100 g of ethylene glycol, cloudiness formed by stirring and mixing. Under these conditions, the temperature was gradually raised to the reflux temperature, and the condensation reaction was carried out at the same temperature for 12 hours, after which the reaction was stopped. Then, while stirring and mixing, 50 g of methyl isobutyl ketone was added to dissolve the condensate, and then the stirring was stopped and the content was transferred into a separating flask and allowed to stand. The aqueous phase (lower layer) was allowed to separate.
  • Synthesis Example 13 Synthesis of novolac-type phenolic resin (b-9) After charging 100 g of phenol, 81.9 g of 37% formalin, 1 g of oxalic acid dihydrate, and 100 g of ethylene glycol, cloudiness formed by stirring and mixing. Under these conditions, the temperature was gradually raised to the reflux temperature, and the condensation reaction was carried out at the same temperature for 24 hours, after which the reaction was stopped. Then, while stirring and mixing, 50 g of methyl isobutyl ketone was added to dissolve the condensate, and then the stirring was stopped and the content was transferred into a separating flask and allowed to stand. The aqueous phase (lower layer) was allowed to separate.
  • phenol novolac resin 85 g was dissolved in a mixed solution of 50 g of methyl isobutyl ketone/350 g of methanol, 250 g of distilled water was added dropwise while stirring, and after sufficient stirring, the solution was allowed to stand to separate into a resin solution phase and an aqueous solution phase. Thereafter, the resin solution phase was taken out and the solvent was removed to obtain 45 g of phenol novolac resin (b-9), and the properties were evaluated. The results are also shown in Table 2.
  • Synthesis Example 14 Synthesis of novolak-type phenolic resin (b-10) After charging 100 g of p-cresol, 81.9 g of 37% formalin, 60 g of 89% phosphoric acid, and 100 g of ethylene glycol, cloudiness formed by stirring and mixing. Under these conditions, the temperature was gradually raised to the reflux temperature, and the condensation reaction was carried out at the same temperature for 9 hours, after which the reaction was stopped. Then, 50 g of methyl isobutyl ketone was added while stirring and mixing to dissolve the condensate, then the stirring was stopped and the content was transferred to a separating flask and allowed to stand. The aqueous phase (lower layer) was allowed to separate.
  • Synthesis Example 15 Synthesis of novolak-type phenolic resin (b-11) 100 g of p-cresol, 81.9 g of 37% formalin, 60 g of 89% phosphoric acid, and 100 g of ethylene glycol were charged, followed by stirring and mixing to form cloudiness. Under these conditions, the temperature was gradually raised to the reflux temperature, and the condensation reaction was carried out at the same temperature for 9 hours, after which the reaction was stopped. Then, 50 g of methyl isobutyl ketone was added while stirring and mixing to dissolve the condensate, then the stirring was stopped and the content was transferred to a separating flask and allowed to stand. The aqueous phase (lower layer) was allowed to separate.
  • Synthesis Example 16 Synthesis of novolac-type phenolic resin (b-12) 100 g of m-cresol, 81.9 g of 37% formalin, 60 g of 89% phosphoric acid, and 100 g of ethylene glycol were charged, followed by stirring and mixing to form cloudiness. Under these conditions, the temperature was gradually raised to the reflux temperature, and the condensation reaction was carried out at the same temperature for 8 hours, after which the reaction was stopped. Then, 50 g of methyl isobutyl ketone was added while stirring and mixing to dissolve the condensate, then the stirring was stopped and the content was transferred to a separating flask and allowed to stand. The aqueous phase (lower layer) was allowed to separate.
  • Synthesis Example 17 Synthesis of quinonediazide compound (c-1) TrisP-PA (trade name, manufactured by Honshu Kagaku Kogyo Co., Ltd.) 21.22 g (0.05 mol) and 5-naphthoquinonediazide sulfonyl chloride 36 under a stream of dry nitrogen. .27 g (0.135 mol) was dissolved in 450 g of 1,4-dioxane and brought to room temperature. To this, 15.18 g of triethylamine mixed with 50 g of 1,4-dioxane was added dropwise so that the inside of the system did not reach 35° C. or higher. After dropping, the mixture was stirred at 30°C for 2 hours.
  • TrisP-PA trade name, manufactured by Honshu Kagaku Kogyo Co., Ltd.
  • Example 1 10.0 g of alkali-soluble resin (a-1) and 3.5 g of m-cresol novolak resin (b-1) were added to 40 g of PGME to obtain a varnish of a resin composition. Using the obtained varnish, the outgassing of the cured product, the 5% weight loss temperature, and the long-term reliability of the organic EL display device were evaluated as described above.
  • Example 2 10.0 g of alkali-soluble resin (a-1), 3.0 g of m-cresol novolac resin (b-1), and 2.0 g of quinonediazide compound (c-1) were added to 40 g of PGME to prepare a varnish of a positive photosensitive resin composition. got Using the obtained varnish, the sensitivity, outgassing of the cured product, 5% weight loss temperature, and long-term reliability of the organic EL display device were evaluated as described above.
  • Example 3 10.0 g of an alkali-soluble resin (a-2), 1.8 g of a phenol novolac resin (b-2), and 2.0 g of a quinonediazide compound (c-1) were added to 40 g of PGME to obtain a varnish of a positive photosensitive resin composition. rice field. Using the obtained varnish, the sensitivity, outgassing of the cured product, 5% weight loss temperature, and long-term reliability of the organic EL display device were evaluated as described above.
  • Example 4 10.0 g of an alkali-soluble resin (a-3), 4.9 g of a phenol novolac resin (b-3), and 2.0 g of a quinonediazide compound (c-1) were added to 40 g of PGME to obtain a varnish of a positive photosensitive resin composition. rice field. Using the obtained varnish, the sensitivity, outgassing of the cured product, 5% weight loss temperature, and long-term reliability of the organic EL display device were evaluated as described above.
  • Example 5 10.0 g of alkali-soluble resin (a-1), 2.5 g of m-cresol novolac resin (b-4), and 2.0 g of quinonediazide compound (c-1) were added to 40 g of PGME to prepare a varnish of a positive photosensitive resin composition. got Using the obtained varnish, the sensitivity, outgassing of the cured product, 5% weight loss temperature, and long-term reliability of the organic EL display device were evaluated as described above.
  • Example 6 10.0 g of alkali-soluble resin (a-1), 3.1 g of m-cresol novolak resin (b-5), and 2.0 g of quinonediazide compound (c-1) were added to 40 g of PGME to prepare a varnish of a positive photosensitive resin composition. got Using the obtained varnish, the sensitivity, outgassing of the cured product, 5% weight loss temperature, and long-term reliability of the organic EL display device were evaluated as described above.
  • Example 7 10.0 g of alkali-soluble resin (a-1), 4.2 g of m-cresol novolac resin (b-6), and 2.0 g of quinonediazide compound (c-1) were added to 40 g of PGME to prepare a varnish of a positive photosensitive resin composition. got Using the obtained varnish, the sensitivity, outgassing of the cured product, 5% weight loss temperature, and long-term reliability of the organic EL display device were evaluated as described above.
  • Example 8 10.0 g of alkali-soluble resin (a-1), 2.2 g of m-cresol novolac resin (b-7), and 2.0 g of quinonediazide compound (c-1) were added to 40 g of PGME to prepare a varnish of a positive photosensitive resin composition. got Using the obtained varnish, the sensitivity, outgassing of the cured product, 5% weight loss temperature, and long-term reliability of the organic EL display device were evaluated as described above.
  • Example 9 10.0 g of alkali-soluble resin (a-1), 2.2 g of m-cresol novolak resin (b-12), and 2.0 g of quinonediazide compound (c-1) were added to 40 g of PGME to prepare a varnish of a positive photosensitive resin composition. got Using the obtained varnish, the sensitivity, outgassing of the cured product, 5% weight loss temperature, and long-term reliability of the organic EL display device were evaluated as described above.
  • Comparative example 1 10.0 g of alkali-soluble resin (a-1) and 5.5 g of phenol novolac resin (b-8) were added to 40 g of PGME to obtain a varnish of a resin composition. Using the obtained varnish, the outgassing of the cured product, the 5% weight loss temperature, and the long-term reliability of the organic EL display device were evaluated as described above.
  • Comparative example 2 10.0 g of an alkali-soluble resin (a-1), 5.5 g of a phenol novolac resin (b-8), and 2.0 g of a quinonediazide compound (c-1) were added to 40 g of PGME to obtain a varnish of a positive photosensitive resin composition. rice field. Using the obtained varnish, the sensitivity, outgassing of the cured product, 5% weight loss temperature, and long-term reliability of the organic EL display device were evaluated as described above.
  • Comparative example 3 10.0 g of alkali-soluble resin (a-1), 1.6 g of phenol novolac resin (b-9) and 2.0 g of quinonediazide compound (c-1) were added to 40 g of PGME to obtain a varnish of a positive photosensitive resin composition. rice field. Using the obtained varnish, the sensitivity, outgassing of the cured product, 5% weight loss temperature, and long-term reliability of the organic EL display device were evaluated as described above.
  • Comparative example 4 10.0 g of alkali-soluble resin (a-1), 5.1 g of p-cresol novolac resin (b-10), and 2.0 g of quinonediazide compound (c-1) were added to 40 g of PGME to prepare a varnish of a positive photosensitive resin composition. got Using the obtained varnish, the sensitivity, outgassing of the cured product, 5% weight loss temperature, and long-term reliability of the organic EL display device were evaluated as described above.
  • Comparative example 5 10.0 g of alkali-soluble resin (a-1), 5.2 g of p-cresol novolak resin (b-11), and 2.0 g of quinonediazide compound (c-1) were added to 40 g of PGME to prepare a varnish of a positive photosensitive resin composition. got Using the obtained varnish, the sensitivity, outgassing of the cured product, 5% weight loss temperature, and long-term reliability of the organic EL display device were evaluated as described above.
  • the resin composition and cured product of the present invention can be used for insulating layers of organic EL elements, flattening layers of thin TFT substrates for driving display devices using organic EL elements, wiring protection insulating layers of circuit boards, and solid-state imaging elements. It is suitably used for chip microlenses, various displays, and flattening layers for solid-state imaging devices. For example, it is suitable as a surface protective layer or an interlayer insulating layer for MRAM with low heat resistance, polymer memory (PFRAM) and phase change memory (PCRAM, OUM) that are promising as next-generation memory.
  • PFRAM polymer memory
  • PCRAM phase change memory
  • a display device including a first electrode formed on a substrate and a second electrode provided opposite to the first electrode, for example, a display device using an LCD, ECD, ELD, or an organic electroluminescence device (Organic electroluminescence device) It can also be preferably used as an insulating layer.

Abstract

The present invention addresses the problem of providing a resin composition which has excellent long-term reliability, does not cause luminous brightness or pixel shrinkage, and does not cause a reduced pixel luminous area ratio even over a long period of time. This resin composition comprises: an alkali-soluble resin (a) containing at least one selected from the group consisting of polyimides, polybenzoxazoles, polyamideimides, precursors of any of these, and copolymers thereof; and a novolac phenolic resin (b), wherein the content of the novolac phenolic resin having a molecular weight of 1,000 or less in the novolac phenolic resin (b) is 0.1-20 wt% in the novolac phenolic resin (b).

Description

樹脂組成物、硬化物、有機EL表示装置および硬化物の製造方法Resin composition, cured product, organic EL display device and method for producing cured product
 本発明は、樹脂組成物、硬化物、有機EL表示装置および有機EL表示装置の製造方法に関する。詳しくは有機エレクトロルミネッセンス(Electroluminescence:以下、EL)素子の絶縁膜、有機EL素子を用いた表示装置の駆動用薄膜トランジスタ(Thin Film Transistor:以下、TFT)基板の平坦化膜、回路基板の配線保護絶縁膜、固体撮像素子のオンチップマイクロレンズや各種ディスプレイ・固体撮像素子用平坦化膜などの用途に適した樹脂組成物に関する。 The present invention relates to a resin composition, a cured product, an organic EL display device, and a method for manufacturing an organic EL display device. Specifically, insulating films for organic electroluminescence (hereinafter referred to as EL) elements, flattening films for driving thin film transistor (hereinafter referred to as TFT) substrates of display devices using organic EL elements, wiring protection insulation for circuit substrates The present invention relates to a resin composition suitable for applications such as films, on-chip microlenses for solid-state imaging devices, and flattening films for various displays and solid-state imaging devices.
 スマートフォン、タブレットPC、テレビなど、薄型ディスプレイを有する表示装置において、有機エレクトロルミネッセンス(以下、「有機EL」)表示装置を用いた製品が多く開発されている。一般に、有機EL表示装置は、基板上に、駆動回路、平坦化層、第一電極、絶縁層、発光層および第二電極を有し、対向する第一電極と第二電極との間に電圧を印加することで発光することができる。これらのうち、平坦化層用材料および絶縁層用材料としては、紫外線照射によるパターニング可能な樹脂組成物が一般に用いられている。中でもポリイミド系の樹脂を用いた樹脂組成物は、樹脂の耐熱性が高く、硬化物から発生するガス成分が少ないため、高信頼性の有機EL表示装置を与えることができる点で好適に用いられている。 Many products using organic electroluminescence (hereinafter referred to as "organic EL") display devices have been developed for display devices with thin displays, such as smartphones, tablet PCs, and televisions. In general, an organic EL display device has a drive circuit, a planarizing layer, a first electrode, an insulating layer, a light-emitting layer and a second electrode on a substrate, and a voltage is applied between the first electrode and the second electrode facing each other. can be applied to emit light. Among these, resin compositions that can be patterned by ultraviolet irradiation are generally used as the material for the flattening layer and the material for the insulating layer. Among them, a resin composition using a polyimide-based resin is preferably used in that it can provide a highly reliable organic EL display device because the resin composition has high heat resistance and the gas component generated from the cured product is small. ing.
 これまでに提案されてきたポリイミド系の樹脂を用いた樹脂組成物としては、ポリイミド前駆体に感光性ジアゾキノン化合物、フェノールノボラック樹脂を混合した感光性樹脂組成物(例えば、特許文献1参照)や、ポリイミド前駆体等にフェノール性水酸基を有する樹脂、キノンジアジド化合物および溶剤を含有するポジ型感光性樹脂組成物(例えば、特許文献2参照)が挙げられる。しかしながら、上記に挙げた特許文献で提案された材料では、有機EL表示装置の長期信頼性が低いという課題があった。有機発光材料は一般的にガス成分や水分に弱く、これらに曝されることで発光輝度低下や画素シュリンクを引き起こす。ここで画素シュリンクとは、画素の端部から発光輝度低下する、もしくは不点灯となる現象を指す。こうした表示装置素子の長期信頼性を向上するためには、有機発光材料自身の耐久性を高めるのは勿論のこと、駆動回路を覆う平坦化層や第一電極上に形成された絶縁層といった周辺材料の吸水性、アウトガス特性向上が不可欠である。発光輝度低下や画素シュリンクを引き起さず、長期信頼性に優れたポジ型感光性樹脂組成物(例えば、特許文献3参照)が提案されている。しかしかかるポジ型感光性樹脂組成物では、長期信頼性において発光輝度の保持率が不充分であり、長時間での画素発光面積率が低下するといった課題があった。 Resin compositions using polyimide-based resins that have been proposed so far include photosensitive resin compositions obtained by mixing a polyimide precursor with a photosensitive diazoquinone compound and a phenol novolac resin (see, for example, Patent Document 1), A positive photosensitive resin composition containing a resin having a phenolic hydroxyl group in a polyimide precursor or the like, a quinonediazide compound and a solvent (see, for example, Patent Document 2). However, the materials proposed in the above patent documents have a problem that the long-term reliability of the organic EL display device is low. Organic light-emitting materials are generally vulnerable to gas components and moisture, and exposure to these causes a decrease in emission luminance and pixel shrinkage. Here, the term "pixel shrinkage" refers to a phenomenon in which the luminance of light emitted from the edge of a pixel decreases or the pixel does not light up. In order to improve the long-term reliability of such display device elements, it is necessary to improve the durability of the organic light-emitting material itself, as well as to improve the peripheral properties such as a flattening layer covering the drive circuit and an insulating layer formed on the first electrode. It is essential to improve the water absorption and outgassing properties of the material. A positive photosensitive resin composition that does not cause a decrease in emission luminance or pixel shrinkage and has excellent long-term reliability has been proposed (see, for example, Patent Document 3). However, such a positive photosensitive resin composition has a problem that the retention rate of emission luminance is insufficient in terms of long-term reliability, and the emission area ratio of pixels decreases over a long period of time.
特開平7-248626号公報JP-A-7-248626 特開2013-205553号公報JP 2013-205553 A 国際公開第2017/159476号WO2017/159476
 しかしながら、上記に挙げた特許文献で提案された材料は、平坦化層用材料および絶縁層用材料の紫外線照射によるパターニング加工性が優れている点で好ましいが、長期信頼性の観点で十分な性能を有するとは言い難い。本発明は、上記問題点を鑑み、発光輝度低下や画素シュリンクを引き起さず、長時間においても画素発光面積率が低下しない長期信頼性に優れた樹脂組成物を提供することを目的とする。 However, the materials proposed in the above-mentioned patent documents are preferable in terms of patterning processability by ultraviolet irradiation of the material for the flattening layer and the material for the insulating layer, but from the viewpoint of long-term reliability, sufficient performance It is difficult to say that it has SUMMARY OF THE INVENTION In view of the above problems, the object of the present invention is to provide a resin composition with excellent long-term reliability that does not cause a decrease in emission luminance or pixel shrinkage and does not reduce the pixel emission area ratio even over a long period of time. .
 上記課題を解決するため、本発明の樹脂組成物は、次の構成を有する。すなわち、
(1)ポリイミド、ポリベンゾオキサゾール、ポリアミドイミド、これらのいずれかの前駆体およびそれらの共重合体からなる群より選択される1種以上を含むアルカリ可溶性樹脂(a)およびノボラック型フェノール樹脂(b)を含む樹脂組成物であって、該ノボラック型フェノール樹脂(b)中の分子量1,000以下のノボラック型フェノール樹脂の含有量が、該ノボラック型フェノール樹脂(b)中の0.1~20重量%である樹脂組成物。
(2)前記ノボラック型フェノール樹脂(b)の重量平均分子量(Mw)が、3,000以上15,000以下であり、かつ重量平均分子量(Mw)と数平均分子量(Mn)との分散比(Mw)/(Mn)が、1.1~3.5である前記(1)に記載の樹脂組成物。
(3)前記ノボラック型フェノール樹脂(b)が、m-クレゾールノボラック樹脂を含む前記(1)または(2)に記載の樹脂組成物。
(4)前記アルカリ可溶性樹脂(a)100重量部に対し、前記ノボラック型フェノール樹脂(b)が17~50重量部である前記(1)~(3)のいずれかに記載の樹脂組成物。
(5)さらに感光性化合物(c)を含む、前記(1)~(4)のいずれかに記載の樹脂組成物。
(6)前記(1)~(5)のいずれかに記載の樹脂組成物を硬化した硬化物。
(7)基板上に、駆動回路、平坦化層、第1電極、絶縁層、発光層および第2電極を有する有機EL表示装置であって、該平坦化層および/または絶縁層が前記(6)に記載の硬化物を含む有機EL表示装置。
(8)基板上に、前記(1)~(5)のいずれかに記載の樹脂組成物を塗布し樹脂膜を形成する工程、前記樹脂膜を露光する工程、露光した樹脂膜を現像する工程、および、現像した樹脂膜を加熱処理する工程を含む硬化物の製造方法。
In order to solve the above problems, the resin composition of the present invention has the following constitution. i.e.
(1) Alkali-soluble resin (a) and novolac-type phenolic resin (b ), wherein the content of the novolac-type phenolic resin having a molecular weight of 1,000 or less in the novolac-type phenolic resin (b) is 0.1 to 20 in the novolac-type phenolic resin (b). Resin composition in weight percent.
(2) The weight-average molecular weight (Mw) of the novolak-type phenolic resin (b) is 3,000 or more and 15,000 or less, and the dispersion ratio of the weight-average molecular weight (Mw) to the number-average molecular weight (Mn) ( The resin composition according to (1) above, wherein Mw)/(Mn) is from 1.1 to 3.5.
(3) The resin composition according to (1) or (2) above, wherein the novolak-type phenolic resin (b) contains an m-cresol novolac resin.
(4) The resin composition according to any one of (1) to (3), wherein the novolak-type phenolic resin (b) is 17 to 50 parts by weight per 100 parts by weight of the alkali-soluble resin (a).
(5) The resin composition according to any one of (1) to (4) above, further comprising a photosensitive compound (c).
(6) A cured product obtained by curing the resin composition according to any one of (1) to (5) above.
(7) An organic EL display device having a drive circuit, a planarizing layer, a first electrode, an insulating layer, a light-emitting layer and a second electrode on a substrate, wherein the planarizing layer and/or the insulating layer are (6) ).
(8) A step of applying the resin composition according to any one of (1) to (5) on a substrate to form a resin film, a step of exposing the resin film, and a step of developing the exposed resin film. and a method for producing a cured product, comprising the step of heat-treating the developed resin film.
 本発明の樹脂組成物および硬化物は、発光輝度低下や画素シュリンクを引き起さず、長期信頼性に優れる。この樹脂組成物を用いることにより長期信頼性に優れた有機EL表示装置を提供することができる。 The resin composition and cured product of the present invention do not cause a decrease in emission luminance or pixel shrinkage, and have excellent long-term reliability. By using this resin composition, an organic EL display device with excellent long-term reliability can be provided.
有機EL表示装置の一例の断面図である。1 is a cross-sectional view of an example of an organic EL display device; FIG. 実施例における有機EL表示装置の作製手順の概略図である。It is a schematic diagram of the manufacturing procedure of the organic EL display device in the example.
 本発明の実施の形態について詳細に説明する。 An embodiment of the present invention will be described in detail.
 本発明の樹脂組成物は、ポリイミド、ポリベンゾオキサゾール、ポリアミドイミド、これらのいずれかの前駆体およびそれらの共重合体からなる群より選択される1種以上を含むアルカリ可溶性樹脂(a)およびノボラック型フェノール樹脂(b)を含む樹脂組成物であって、該ノボラック型フェノール樹脂(b)中の分子量1,000以下のノボラック型フェノール樹脂の含有量が、該ノボラック型フェノール樹脂(b)中の0.1~20重量%である。 The resin composition of the present invention contains at least one selected from the group consisting of polyimide, polybenzoxazole, polyamideimide, precursors of any of these and copolymers thereof, and an alkali-soluble resin (a) and a novolac type phenolic resin (b), wherein the content of the novolac-type phenolic resin having a molecular weight of 1,000 or less in the novolac-type phenolic resin (b) is 0.1 to 20% by weight.
 なお、本発明において、重量平均分子量はGPC(ゲルパーミエーションクロマトグラフィー)測定によるポリスチレン換算の重量平均分子量、GPC(ゲルパーミエーションクロマトグラフィー)測定による数平均分子量はポリスチレン換算の数平均分子量を意味する。ここで、ノボラック型フェノール樹脂(b)の重量平均分子量または数平均分子量は、ノボラック型フェノール樹脂(b)全体を代表する値としての平均分子量であり、単に「分子量」という文言を用いるときは、ノボラック型フェノール樹脂(b)における、その分子量を有する一部の分子について述べる場合である。なお、この場合の、「分子量」もGPC(ゲルパーミエーションクロマトグラフィー)測定によるポリスチレン換算の分子量を用いるものとする。 In the present invention, the weight average molecular weight means the polystyrene-equivalent weight-average molecular weight measured by GPC (gel permeation chromatography), and the number-average molecular weight measured by GPC (gel permeation chromatography) means the polystyrene-equivalent number average molecular weight. . Here, the weight-average molecular weight or number-average molecular weight of the novolak-type phenolic resin (b) is the average molecular weight as a value representative of the entire novolac-type phenolic resin (b). This is the case of describing some molecules having that molecular weight in the novolac-type phenolic resin (b). In this case, the "molecular weight" is also the polystyrene-equivalent molecular weight measured by GPC (gel permeation chromatography).
 <アルカリ可溶性樹脂(a)>
 本発明の樹脂組成物は、ポリイミド、ポリベンゾオキサゾール、ポリアミドイミド、これらのいずれかの前駆体およびそれらの共重合体からなる群より選択される1種以上を含むアルカリ可溶性樹脂(a)(以下、単に「アルカリ可溶性樹脂(a)」と記載する場合がある)を含有する。
<Alkali-soluble resin (a)>
The resin composition of the present invention comprises an alkali-soluble resin (a) (hereinafter referred to as , sometimes simply referred to as “alkali-soluble resin (a)”).
 本発明の樹脂組成物はアルカリ可溶性樹脂(a)を含有することにより、パターン加工性を有し、耐熱性に優れた樹脂組成物を得ることができる。本発明において、アルカリ可溶性とは、樹脂をγ-ブチロラクトンに溶解した溶液をシリコンウエハ上に塗布し、120℃で4分間プリベークを行って膜厚10μm±0.5μmのプリベーク膜を形成し、該プリベーク膜を23±1℃の2.38重量%テトラメチルアンモニウムヒドロキシド水溶液(以降、アルカリ現像液と称することもある)に1分間浸漬した後、純水でリンス処理したときの膜厚減少から求められる溶解速度が50nm/分以上であることをいう。 By including the alkali-soluble resin (a) in the resin composition of the present invention, it is possible to obtain a resin composition that has pattern workability and excellent heat resistance. In the present invention, the term “alkali-soluble” means that a solution obtained by dissolving a resin in γ-butyrolactone is coated on a silicon wafer and prebaked at 120° C. for 4 minutes to form a prebaked film having a film thickness of 10 μm±0.5 μm. After immersing the pre-baked film in a 2.38% by weight tetramethylammonium hydroxide aqueous solution (hereinafter sometimes referred to as an alkaline developer) at 23 ± 1 ° C. for 1 minute, the film thickness reduction when rinsing with pure water It means that the desired dissolution rate is 50 nm/min or more.
 本発明に用いるアルカリ可溶性樹脂(a)は、アルカリ可溶性を付与するため、樹脂の構造単位中および/またはその主鎖末端に酸性基を有することが好ましい。酸性基としては、例えば、カルボキシ基、フェノール性水酸基、スルホン酸基などが挙げられる。また、アルカリ可溶性樹脂(a)はフッ素原子を含有することが好ましい。フッ素原子を含有することで、形成したプリベーク膜の表面に撥水性を有するのものとなるため、アルカリ現像液が表面からしみこむことなどを抑えることができるためである。 The alkali-soluble resin (a) used in the present invention preferably has an acidic group in the structural unit of the resin and/or at the end of its main chain in order to impart alkali solubility. Examples of acidic groups include carboxy groups, phenolic hydroxyl groups, and sulfonic acid groups. Also, the alkali-soluble resin (a) preferably contains a fluorine atom. This is because the presence of fluorine atoms makes the surface of the pre-baked film formed water-repellent, so that it is possible to prevent the alkali developer from permeating from the surface.
 本発明に用いるアルカリ可溶性樹脂(a)としては、ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール前駆体またはそれらの共重合体を含有することがより好ましく、感度をより向上させる観点から、ポリイミド前駆体またはポリベンゾオキサゾール前駆体を含有することがさらに好ましい。ここで、ポリイミド前駆体とは、加熱処理や化学処理によりポリイミドに変換される樹脂を指し、例えば、ポリアミド酸、ポリアミド酸エステルなどが挙げられる。ポリベンゾオキサゾール前駆体とは、加熱処理や化学処理によりポリベンゾオキサゾールに変換される樹脂を指し、例えば、ポリヒドロキシアミドなどが挙げられる。 The alkali-soluble resin (a) used in the present invention more preferably contains a polyimide, a polyimide precursor, a polybenzoxazole precursor or a copolymer thereof, and from the viewpoint of further improving sensitivity, a polyimide precursor or More preferably, it contains a polybenzoxazole precursor. Here, the polyimide precursor refers to a resin that is converted to polyimide by heat treatment or chemical treatment, and examples thereof include polyamic acid and polyamic acid ester. A polybenzoxazole precursor refers to a resin that is converted to polybenzoxazole by heat treatment or chemical treatment, and includes, for example, polyhydroxyamide.
 上述のポリイミドは下記一般式(1)で表される構造単位を有し、ポリイミド前駆体およびポリベンゾオキサゾール前駆体は下記一般式(2)で表される構造単位を有することが好ましい。かかる場合、これらを2種以上含有してもよいし、一般式(1)で表される構造単位および一般式(2)で表される構造単位を共重合した樹脂を用いてもよい。 The polyimide described above preferably has a structural unit represented by the following general formula (1), and the polyimide precursor and the polybenzoxazole precursor preferably have a structural unit represented by the following general formula (2). In such a case, two or more of these may be contained, or a resin obtained by copolymerizing a structural unit represented by general formula (1) and a structural unit represented by general formula (2) may be used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(1)中、R11は炭素原子数5~40の4~10価の有機基、R12は炭素原子数5~40の2~8価の有機基を表す。R13およびR14は、それぞれ独立に、カルボキシ基、スルホン酸基または水酸基を表す。pおよびqは0~6の整数を表し、p+q>0である。 In general formula (1), R 11 represents a 4- to 10-valent organic group having 5 to 40 carbon atoms, and R 12 represents a di- to 8-valent organic group having 5 to 40 carbon atoms. R 13 and R 14 each independently represent a carboxy group, a sulfonic acid group or a hydroxyl group. p and q represent integers from 0 to 6, p+q>0.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 一般式(2)中、R15およびR16は炭素原子数5~40の2~8価の有機基を表す。R17およびR18は、それぞれ独立に、フェノール性水酸基、スルホン酸基またはCOOR19を表し、それぞれ単一のものであっても異なるものが混在していてもよい。R19は水素原子または炭素原子数1~20の1価の炭化水素基を示す。rおよびsは0~6の整数を表す。ただしr+s>0である。 In general formula (2), R 15 and R 16 represent a divalent to octavalent organic group having 5 to 40 carbon atoms. R 17 and R 18 each independently represent a phenolic hydroxyl group, a sulfonic acid group or COOR 19 , and may be a single group or a mixture of different groups. R 19 represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms. r and s represent integers from 0 to 6; However, r+s>0.
 ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール前駆体またはそれらの共重合体は、一般式(1)または一般式(2)で表される構造単位を5~100,000有することが好ましい。また、一般式(1)または一般式(2)で表される構造単位に加えて、他の構造単位を有してもよい。この場合、ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール前駆体またはそれらの共重合体は、一般式(1)または一般式(2)で表される構造単位を、全構造単位のうち50モル%以上有することが好ましい。 The polyimide, polyimide precursor, polybenzoxazole precursor or copolymer thereof preferably has 5 to 100,000 structural units represented by general formula (1) or general formula (2). Moreover, in addition to the structural unit represented by general formula (1) or general formula (2), it may have other structural units. In this case, the polyimide, polyimide precursor, polybenzoxazole precursor or copolymer thereof contains structural units represented by general formula (1) or general formula (2) in an amount of 50 mol% or more of all structural units. It is preferable to have
 上記一般式(1)中、R11-(R13は酸二無水物の残基を表す。R11は4価~10価の有機基であり、なかでも芳香族環または環状脂肪族基を含有する炭素原子数5~40の有機基が好ましい。 In general formula (1) above, R 11 -(R 13 ) p represents an acid dianhydride residue. R 11 is a tetravalent to decavalent organic group, preferably an organic group having 5 to 40 carbon atoms containing an aromatic ring or a cycloaliphatic group.
 酸二無水物の残基としては、具体的には、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、9,9-ビス(3,4-ジカルボキシフェニル)フルオレンの酸二無水物、9,9-ビス{4-(3,4-ジカルボキシフェノキシ)フェニル}フルオレンの酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、2,3,5,6-ピリジンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパンの酸二無水物、および下記一般式(3)、一般式(4)に示した構造の酸二無水物などの芳香族テトラカルボン酸二無水物に由来する残基や、ブタンテトラカルボン酸二無水物などの脂肪族テトラカルボン酸二無水物に由来する残基、1,2,3,4-シクロペンタンテトラカルボン酸二無水物などの環状脂肪族基を含有する脂肪族テトラカルボン酸二無水物に由来する残基などを挙げることができる。ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール前駆体またはそれらの共重合体は、これらを2種以上有してもよい。 Specific examples of acid dianhydride residues include pyromellitic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 2,3,3′,4′- biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 2,2',3 ,3′-benzophenonetetracarboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(2,3-dicarboxyphenyl)propane dianhydride, 1,1-bis(3,4-dicarboxyphenyl)ethane dianhydride, 1,1-bis(2,3-dicarboxyphenyl)ethane dianhydride, bis(3,4-dicarboxyphenyl)methane dianhydride anhydride, bis(2,3-dicarboxyphenyl)methane dianhydride, bis(3,4-dicarboxyphenyl)ether dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 9 ,9-bis(3,4-dicarboxyphenyl)fluorene dianhydride, 9,9-bis{4-(3,4-dicarboxyphenoxy)phenyl}fluorene dianhydride, 2,3, 6,7-naphthalenetetracarboxylic dianhydride, 2,3,5,6-pyridinetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 2,2-bis ( 3,4-dicarboxyphenyl)hexafluoropropane, and aromatic tetracarboxylic dianhydrides such as acid dianhydrides having the structures shown in the following general formulas (3) and (4) Residues derived from, residues derived from aliphatic tetracarboxylic dianhydrides such as butanetetracarboxylic dianhydride, cyclic aliphatic such as 1,2,3,4-cyclopentanetetracarboxylic dianhydride Examples include residues derived from aliphatic tetracarboxylic dianhydride containing groups. Polyimides, polyimide precursors, polybenzoxazole precursors, or copolymers thereof may have two or more thereof.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 R20は酸素原子、C(CFまたはC(CHを表す。R21およびR22は水素原子または水酸基を表す。 R20 represents an oxygen atom, C( CF3 ) 2 or C( CH3 ) 2 . R21 and R22 represent a hydrogen atom or a hydroxyl group.
 上記一般式(2)中、R16-(R18は酸の残基を表す。R16は炭素原子数5~40の2価~8価の有機基であり、なかでも芳香族環または環状脂肪族基を含有する炭素原子数5~40の有機基が好ましい。 In general formula (2) above, R 16 -(R 18 ) s represents an acid residue. R 16 is a divalent to octavalent organic group having 5 to 40 carbon atoms, preferably an organic group having 5 to 40 carbon atoms containing an aromatic ring or a cycloaliphatic group.
 酸の残基としては、テレフタル酸、イソフタル酸、ジフェニルエーテルジカルボン酸、ビス(カルボキシフェニル)ヘキサフルオロプロパン、ビフェニルジカルボン酸、ベンゾフェノンジカルボン酸、トリフェニルジカルボン酸などのジカルボン酸に由来する残基、トリメリット酸、トリメシン酸、ジフェニルエーテルトリカルボン酸、ビフェニルトリカルボン酸などのトリカルボン酸に由来する残基、ピロメリット酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、2,2’,3,3’-ビフェニルテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、2,2’,3,3’-ベンゾフェノンテトラカルボン酸、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン、2,2-ビス(2,3-ジカルボキシフェニル)ヘキサフルオロプロパン、1,1-ビス(3,4-ジカルボキシフェニル)エタン、1,1-ビス(2,3-ジカルボキシフェニル)エタン、ビス(3,4-ジカルボキシフェニル)メタン、ビス(2,3-ジカルボキシフェニル)メタン、ビス(3,4-ジカルボキシフェニル)エーテル、1,2,5,6-ナフタレンテトラカルボン酸、2,3,6,7-ナフタレンテトラカルボン酸、2,3,5,6-ピリジンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸および下記一般式(5)、一般式(6)に示した構造の芳香族テトラカルボン酸に由来する残基や、ブタンテトラカルボン酸などの脂肪族テトラカルボン酸の残基、1,2,3,4-シクロペンタンテトラカルボン酸などの環状脂肪族基を含有する脂肪族テトラカルボン酸に由来する残基などのテトラカルボン酸に由来する残基などを挙げることができる。ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール前駆体またはそれらの共重合体は、これらを2種以上有してもよい。 Acid residues include residues derived from dicarboxylic acids such as terephthalic acid, isophthalic acid, diphenyletherdicarboxylic acid, bis(carboxyphenyl)hexafluoropropane, biphenyldicarboxylic acid, benzophenonedicarboxylic acid, triphenyldicarboxylic acid, trimellit residues derived from tricarboxylic acids such as acid, trimesic acid, diphenylethertricarboxylic acid, biphenyltricarboxylic acid, pyromellitic acid, 3,3′,4,4′-biphenyltetracarboxylic acid, 2,3,3′,4′ -biphenyltetracarboxylic acid, 2,2',3,3'-biphenyltetracarboxylic acid, 3,3',4,4'-benzophenonetetracarboxylic acid, 2,2',3,3'-benzophenonetetracarboxylic acid , 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane, 2,2-bis(2,3-dicarboxyphenyl)hexafluoropropane, 1,1-bis(3,4-dicarboxyphenyl ) ethane, 1,1-bis(2,3-dicarboxyphenyl)ethane, bis(3,4-dicarboxyphenyl)methane, bis(2,3-dicarboxyphenyl)methane, bis(3,4-di carboxyphenyl)ether, 1,2,5,6-naphthalenetetracarboxylic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 2,3,5,6-pyridinetetracarboxylic acid, 3,4,9, Residues derived from 10-perylenetetracarboxylic acid and aromatic tetracarboxylic acids having the structures shown in the following general formulas (5) and (6), and residues of aliphatic tetracarboxylic acids such as butanetetracarboxylic acid and residues derived from tetracarboxylic acids such as residues derived from aliphatic tetracarboxylic acids containing cycloaliphatic groups such as 1,2,3,4-cyclopentanetetracarboxylic acid. Polyimides, polyimide precursors, polybenzoxazole precursors, or copolymers thereof may have two or more thereof.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 R20は酸素原子、C(CFまたはC(CHを表す。R21およびR22は水素原子または水酸基を表す。 R20 represents an oxygen atom, C( CF3 ) 2 or C( CH3 ) 2 . R21 and R22 represent a hydrogen atom or a hydroxyl group.
 これらのうち、トリカルボン酸、テトラカルボン酸では1つまたは2つのカルボキシ基が一般式(2)におけるR18に相当する。また、上に例示したジカルボン酸、トリカルボン酸、テトラカルボン酸において炭素に結合した水素原子を、一般式(2)におけるR18、好ましくは水酸基で1~4個置換したものがより好ましい。 Among these, in tricarboxylic acids and tetracarboxylic acids, one or two carboxy groups correspond to R 18 in general formula (2). More preferably, 1 to 4 hydrogen atoms bonded to carbon atoms in the dicarboxylic acids, tricarboxylic acids, and tetracarboxylic acids exemplified above are substituted with R 18 in the general formula (2), preferably hydroxyl groups.
 上記一般式(1)のR12-(R14および上記一般式(2)のR15-(R17はジアミンの残基を表す。R12およびR15は、炭素原子数5~40の2~8価の有機基であり、なかでも芳香族環または環状脂肪族基を含有する炭素原子数5~40の有機基が好ましい。 R 12 -(R 14 ) q in the general formula (1) and R 15 -(R 17 ) r in the general formula (2) represent diamine residues. R 12 and R 15 are divalent to octavalent organic groups having 5 to 40 carbon atoms, and organic groups having 5 to 40 carbon atoms containing an aromatic ring or a cycloaliphatic group are preferred.
 ジアミンの残基としては、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ベンジジン、m-フェニレンジアミン、p-フェニレンジアミン、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、ビス(4-アミノフェノキシ)ビフェニル、ビス{4-(4-アミノフェノキシ)フェニル}エーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジエチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジエチル-4,4’-ジアミノビフェニル、2,2’,3,3’-テトラメチル-4,4’-ジアミノビフェニル、3,3’,4,4’-テトラメチル-4,4’-ジアミノビフェニル、2,2’-ジ(トリフルオロメチル)-4,4’-ジアミノビフェニル、9,9-ビス(4-アミノフェニル)フルオレン、2,2’-ビス(トリフルオロメチル)-5,5’-ジヒドロキシベンジジン、これらの芳香族環の水素原子の少なくとも一部をアルキル基やハロゲン原子で置換した化合物などの芳香族ジアミンに由来する残基、シクロヘキシルジアミン、メチレンビスシクロヘキシルアミンなどの環状脂肪族基を含有する脂肪族ジアミンに由来する残基および下記一般式(7)~(12)に示した構造のジアミンに由来する残基などが挙げられる。ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール前駆体またはそれらの共重合体は、これらを2種以上有してもよい。 Diamine residues include 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 1,4-bis(4-aminophenoxy) Benzene, benzidine, m-phenylenediamine, p-phenylenediamine, 1,5-naphthalenediamine, 2,6-naphthalenediamine, bis(4-aminophenoxy)biphenyl, bis{4-(4-aminophenoxy)phenyl}ether , 1,4-bis(4-aminophenoxy)benzene, 2,2′-dimethyl-4,4′-diaminobiphenyl, 2,2′-diethyl-4,4′-diaminobiphenyl, 3,3′-dimethyl -4,4'-diaminobiphenyl, 3,3'-diethyl-4,4'-diaminobiphenyl, 2,2',3,3'-tetramethyl-4,4'-diaminobiphenyl, 3,3', 4,4'-tetramethyl-4,4'-diaminobiphenyl, 2,2'-di(trifluoromethyl)-4,4'-diaminobiphenyl, 9,9-bis(4-aminophenyl)fluorene, 2 ,2'-bis(trifluoromethyl)-5,5'-dihydroxybenzidine, residues derived from aromatic diamines such as compounds in which at least part of the hydrogen atoms of these aromatic rings are substituted with alkyl groups or halogen atoms. groups, residues derived from aliphatic diamines containing cycloaliphatic groups such as cyclohexyldiamine and methylenebiscyclohexylamine, residues derived from diamines having structures shown in the following general formulas (7) to (12), etc. mentioned. Polyimides, polyimide precursors, polybenzoxazole precursors, or copolymers thereof may have two or more thereof.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 R20は酸素原子、C(CFまたはC(CHを表す。R21~R24はそれぞれ独立に水素原子または水酸基を表す。 R20 represents an oxygen atom, C( CF3 ) 2 or C( CH3 ) 2 . R 21 to R 24 each independently represent a hydrogen atom or a hydroxyl group.
 また、これらの樹脂の末端を、酸性基を有するモノアミン、酸無水物、酸クロリド、モノカルボン酸、活性エステル化合物により封止することにより、主鎖末端に酸性基を有する樹脂を得ることができる。 In addition, by blocking the terminal of these resins with a monoamine, acid anhydride, acid chloride, monocarboxylic acid, or active ester compound having an acidic group, a resin having an acidic group at the main chain terminal can be obtained. .
 酸性基を有するモノアミンの好ましい例としては、5-アミノ-8-ヒドロキシキノリン、1-ヒドロキシ-7-アミノナフタレン、1-ヒドロキシ-6-アミノナフタレン、1-ヒドロキシ-5-アミノナフタレン、1-ヒドロキシ-4-アミノナフタレン、2-ヒドロキシ-7-アミノナフタレン、2-ヒドロキシ-6-アミノナフタレン、2-ヒドロキシ-5-アミノナフタレン、1-カルボキシ-7-アミノナフタレン、1-カルボキシ-6-アミノナフタレン、1-カルボキシ-5-アミノナフタレン、2-カルボキシ-7-アミノナフタレン、2-カルボキシ-6-アミノナフタレン、2-カルボキシ-5-アミノナフタレン、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、3-アミノ-4,6-ジヒドロキシピリミジン、2-アミノフェノール、3-アミノフェノール、4-アミノフェノール、2-アミノチオフェノール、3-アミノチオフェノール、4-アミノチオフェノールなどが挙げられる。これらを2種以上用いてもよい。 Preferred examples of monoamines having an acidic group include 5-amino-8-hydroxyquinoline, 1-hydroxy-7-aminonaphthalene, 1-hydroxy-6-aminonaphthalene, 1-hydroxy-5-aminonaphthalene, 1-hydroxy -4-aminonaphthalene, 2-hydroxy-7-aminonaphthalene, 2-hydroxy-6-aminonaphthalene, 2-hydroxy-5-aminonaphthalene, 1-carboxy-7-aminonaphthalene, 1-carboxy-6-aminonaphthalene , 1-carboxy-5-aminonaphthalene, 2-carboxy-7-aminonaphthalene, 2-carboxy-6-aminonaphthalene, 2-carboxy-5-aminonaphthalene, 2-aminobenzoic acid, 3-aminobenzoic acid, 4 -aminobenzoic acid, 4-aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid, 3-amino-4,6-dihydroxypyrimidine, 2-aminophenol, 3-aminophenol, 4-aminophenol, 2-aminothio Phenol, 3-aminothiophenol, 4-aminothiophenol and the like can be mentioned. You may use 2 or more types of these.
 酸無水物の好ましい例としては、無水フタル酸、無水マレイン酸、ナジック酸無水物、シクロヘキサンジカルボン酸無水物、3-ヒドロキシフタル酸無水物などが挙げられる。これらを2種以上用いてもよい。 Preferable examples of acid anhydrides include phthalic anhydride, maleic anhydride, nadic anhydride, cyclohexanedicarboxylic anhydride, and 3-hydroxyphthalic anhydride. You may use 2 or more types of these.
 モノカルボン酸の好ましい例としては、3-カルボキシフェノール、4-カルボキシフェノール、3-カルボキシチオフェノール、4-カルボキシチオフェノール、1-ヒドロキシ-7-カルボキシナフタレン、1-ヒドロキシ-6-カルボキシナフタレン、1-ヒドロキシ-5-カルボキシナフタレン、1-メルカプト-7-カルボキシナフタレン、1-メルカプト-6-カルボキシナフタレン、1-メルカプト-5-カルボキシナフタレンなどが挙げられる。これらを2種以上用いてもよい。 Preferred examples of monocarboxylic acids include 3-carboxyphenol, 4-carboxyphenol, 3-carboxythiophenol, 4-carboxythiophenol, 1-hydroxy-7-carboxynaphthalene, 1-hydroxy-6-carboxynaphthalene, 1 -hydroxy-5-carboxynaphthalene, 1-mercapto-7-carboxynaphthalene, 1-mercapto-6-carboxynaphthalene, 1-mercapto-5-carboxynaphthalene and the like. You may use 2 or more types of these.
 酸クロリドの好ましい例としては、前記モノカルボン酸のカルボキシ基が酸クロリド化したモノ酸クロリド化合物、テレフタル酸、フタル酸、マレイン酸、シクロヘキサンジカルボン酸、1,5-ジカルボキシナフタレン、1,6-ジカルボキシナフタレン、1,7-ジカルボキシナフタレン、2,6-ジカルボキシナフタレンなどのジカルボン酸類の1つのカルボキシ基だけが酸クロリド化したモノ酸クロリド化合物などが挙げられる。これらを2種以上用いてもよい。 Preferred examples of acid chlorides include monoacid chloride compounds in which the carboxy group of the monocarboxylic acid is acid chloride, terephthalic acid, phthalic acid, maleic acid, cyclohexanedicarboxylic acid, 1,5-dicarboxynaphthalene, 1,6- Examples include monoacid chloride compounds in which only one carboxy group of dicarboxylic acids such as dicarboxynaphthalene, 1,7-dicarboxynaphthalene, and 2,6-dicarboxynaphthalene is acid chlorided. You may use 2 or more types of these.
 活性エステル化合物の好ましい例としては、前記モノ酸クロリド化合物とN-ヒドロキシベンゾトリアゾールやN-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミドとの反応物などが挙げられる。これらを2種以上用いてもよい。 Preferred examples of active ester compounds include reaction products of the monoacid chloride compounds with N-hydroxybenzotriazole and N-hydroxy-5-norbornene-2,3-dicarboximide. You may use 2 or more types of these.
 アルカリ可溶性樹脂(a)中に導入された末端封止剤は、以下の方法で容易に検出できる。例えば、末端封止剤が導入された樹脂を、酸性溶液に溶解し、樹脂の構成単位であるアミン成分と酸成分に分解し、これをガスクロマトグラフ(GC)や、NMR測定することにより、末端封止剤を容易に検出できる。また、末端封止剤が導入された樹脂を、熱分解ガスクロマトグラフ(PGC)や、赤外スペクトル及び13C-NMRスペクトル測定することよっても検出することが可能である。 The terminal blocking agent introduced into the alkali-soluble resin (a) can be easily detected by the following method. For example, a resin into which a terminal blocking agent has been introduced is dissolved in an acidic solution, decomposed into an amine component and an acid component, which are the structural units of the resin, and subjected to gas chromatography (GC) or NMR measurement to determine the terminal The encapsulant can be easily detected. It is also possible to detect the resin into which the terminal blocking agent has been introduced by pyrolysis gas chromatography (PGC), infrared spectrum, and 13 C-NMR spectrum measurement.
 本発明に用いるアルカリ可溶性樹脂(a)は、公知の方法により合成される。 The alkali-soluble resin (a) used in the present invention is synthesized by a known method.
 ポリイミド前駆体であるポリアミド酸またはポリアミド酸エステルの製造方法としては、例えば、低温中でテトラカルボン酸二無水物とジアミン化合物を反応させる方法、テトラカルボン酸二無水物とアルコールとによりジエステルを得て、その後、縮合剤の存在下でアミンと反応させる方法、テトラカルボン酸二無水物とアルコールとによりジエステルを得て、その後、残りのジカルボン酸を酸クロリド化し、アミンと反応させる方法などが挙げられる。 Methods for producing polyamic acid or polyamic acid ester, which are polyimide precursors, include, for example, a method of reacting a tetracarboxylic dianhydride and a diamine compound at a low temperature, and a method of obtaining a diester with a tetracarboxylic dianhydride and an alcohol. , then a method of reacting with an amine in the presence of a condensing agent, a method of obtaining a diester with a tetracarboxylic dianhydride and an alcohol, followed by acid chloride of the remaining dicarboxylic acid and reaction with an amine, and the like. .
 ポリベンゾオキサゾール前駆体であるポリヒドロキシアミドの製造方法としては、例えば、ビスアミノフェノール化合物とジカルボン酸を縮合反応させる方法が挙げられる。具体的には、例えば、ジシクロヘキシルカルボジイミド(DCC)などの脱水縮合剤と酸を反応させ、ここにビスアミノフェノール化合物を加える方法、ピリジンなどの3級アミンを加えたビスアミノフェノール化合物の溶液にジカルボン酸ジクロリドの溶液を滴下する方法などが挙げられる。 A method for producing polyhydroxyamide, which is a polybenzoxazole precursor, includes, for example, a method of condensing a bisaminophenol compound and a dicarboxylic acid. Specifically, for example, a method of reacting a dehydration condensing agent such as dicyclohexylcarbodiimide (DCC) with an acid and then adding a bisaminophenol compound thereto, a method of adding a tertiary amine such as pyridine to a solution of a bisaminophenol compound and dicarboxylic acid. A method of dropping a solution of acid dichloride and the like can be mentioned.
 ポリイミドの製造方法としては、例えば、前述の方法で得られたポリアミド酸またはポリアミド酸エステルを脱水閉環する方法などが挙げられる。脱水閉環の方法としては、酸や塩基などによる化学処理、加熱処理などが挙げられる。 Examples of methods for producing polyimide include dehydration and ring closure of the polyamic acid or polyamic acid ester obtained by the above method. Methods for dehydration and ring closure include chemical treatment with an acid or base, heat treatment, and the like.
 ポリベンゾオキサゾールの製造方法としては、例えば、前述の方法で得られたポリヒドロキシアミドを脱水閉環する方法などが挙げられる。脱水閉環の方法としては、酸や塩基などによる化学処理、加熱処理などが挙げられる。 Examples of methods for producing polybenzoxazole include a method of dehydrating and ring-closing the polyhydroxyamide obtained by the above method. Methods for dehydration and ring closure include chemical treatment with an acid or base, heat treatment, and the like.
 ポリアミドイミド前駆体としては、トリカルボン酸、対応するトリカルボン酸無水物、トリカルボン酸無水物ハライドとジアミン化合物との重合体が挙げられ、無水トリメリット酸クロライドと芳香族ジアミン化合物との重合体が好ましい。ポリアミドイミド前駆体の製造方法としては、例えば、低温中でトリカルボン酸、対応するトリカルボン酸無水物、トリカルボン酸無水物ハライドなどとジアミン化合物を反応させる方法などが挙げられる。 Polyamideimide precursors include tricarboxylic acids, corresponding tricarboxylic acid anhydrides, and polymers of tricarboxylic acid anhydride halides and diamine compounds, preferably polymers of trimellitic anhydride chloride and aromatic diamine compounds. Examples of the method for producing a polyamideimide precursor include a method of reacting a tricarboxylic acid, a corresponding tricarboxylic acid anhydride, a tricarboxylic acid anhydride halide, etc. with a diamine compound at a low temperature.
 ポリアミドイミドの製造方法としては、例えば、無水トリメリット酸と芳香族ジイソシアネートを反応させる方法、前述の方法で得られたポリアミドイミド前駆体を脱水閉環する方法などが挙げられる。脱水閉環の方法としては、酸や塩基などによる化学処理、加熱処理などが挙げられる。 Examples of methods for producing polyamideimide include a method of reacting trimellitic anhydride and an aromatic diisocyanate, and a method of dehydrating and ring-closing the polyamideimide precursor obtained by the above method. Methods for dehydration and ring closure include chemical treatment with an acid or base, heat treatment, and the like.
 <ノボラック型フェノール樹脂(b)>
 本発明の樹脂組成物はノボラック型フェノール樹脂(b)を含有する。ノボラック型フェノール樹脂(b)は、フェノール類とアルデヒド類とを酸触媒の存在下で不均一反応させる公知の方法によって得られる。
<Novolak-type phenolic resin (b)>
The resin composition of the present invention contains a novolak-type phenolic resin (b). The novolak-type phenolic resin (b) can be obtained by a known method of heterogeneously reacting phenols and aldehydes in the presence of an acid catalyst.
 本発明に用いるノボラック型フェノール樹脂(b)が、m-クレゾールノボラック樹脂を含むことがアルカリ現像液に対する溶解性の観点から、好ましい。ノボラック型フェノール樹脂(b)は一般的にフェノール類を原料として製造されるが、フェノール類にm-クレゾールを用いて得られる構造を有する樹脂が、m-クレゾールノボラック樹脂である。ノボラック型フェノール樹脂にm-クレゾールノボラック樹脂を含むノボラック型フェノール樹脂を用いた場合、重量平均分子量(Mw)が3,000以上15,000以下の高分子量化を進めるために好ましく、7000以上13000以下であることがより好ましい。更にアルカリ現像液への適度な溶解性を示すので良好な感度が得られる。 The novolac-type phenolic resin (b) used in the present invention preferably contains an m-cresol novolak resin from the viewpoint of solubility in an alkaline developer. The novolac-type phenolic resin (b) is generally produced using phenols as raw materials, and m-cresol novolac resins are resins having a structure obtained by using m-cresol in phenols. When a novolac-type phenolic resin containing m-cresol novolac resin is used as the novolac-type phenolic resin, the weight average molecular weight (Mw) is preferably 3,000 or more and 15,000 or less, preferably 7000 or more and 13,000 or less. is more preferable. Furthermore, since it exhibits moderate solubility in an alkaline developer, good sensitivity can be obtained.
 本発明に用いられるノボラック型フェノール樹脂(b)の原料として用いられる、その他のフェノール類の好ましい例としては、フェノール、o-クレゾール、p-クレゾール、2,3-キシレノール、2,5-キシレノール、3,4-キシレノール、3,5-キシレノール、2,3,5-トリメチルフェノール、3,4,5-トリメチルフェノール等を挙げることができる。 Preferable examples of other phenols used as raw materials for the novolac-type phenolic resin (b) used in the present invention include phenol, o-cresol, p-cresol, 2,3-xylenol, 2,5-xylenol, 3,4-xylenol, 3,5-xylenol, 2,3,5-trimethylphenol, 3,4,5-trimethylphenol and the like can be mentioned.
 また、本発明に用いられるノボラック型フェノール樹脂(b)の原料として用いられるアルデヒド類の好ましい例としては、ホルマリン、パラホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、ヒドロキシベンズアルデヒド、クロロアセトアルデヒド、サリチルアルデヒド等を挙げることができる。これらのうち、ホルマリンが特に好ましい。これらのアルデヒド類を2種類以上組み合わせてもよい。 Preferable examples of aldehydes used as raw materials for the novolak-type phenolic resin (b) used in the present invention include formalin, paraformaldehyde, acetaldehyde, benzaldehyde, hydroxybenzaldehyde, chloroacetaldehyde, salicylaldehyde, and the like. . Among these, formalin is particularly preferred. Two or more of these aldehydes may be combined.
 本発明に用いられるノボラック型フェノール樹脂(b)を製造する際のフェノール類(P)とアルデヒド類(F)との配合モル比(F/P)は、好ましくは0.33~1.20、より好ましくは0.50~1.00である。配合比が上記好ましい範囲であると、収率が良好で、一方、ポリスチレン換算重量平均分子量の重量平均分子量(Mw)と数平均分子量(Mn)の分散比が大きくなるのを防止できる。 The blending molar ratio (F/P) of the phenols (P) and the aldehydes (F) when producing the novolak-type phenolic resin (b) used in the present invention is preferably 0.33 to 1.20, It is more preferably 0.50 to 1.00. When the compounding ratio is within the above preferable range, the yield is good, and on the other hand, it is possible to prevent the dispersion ratio of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polystyrene equivalent weight average molecular weight from becoming large.
 フェノール類とアルデヒド類の縮合反応は通例、酸触媒を用いて行われる。酸触媒の例としてリン酸、シュウ酸、ギ酸、酢酸、p-トルエンスルホン酸、塩酸、硫酸などの無機あるいは有機酸を用いることができる。これらのうち、リン酸が特に好ましい。具体的には、フェノール類とアルデヒド類との相分離反応の場を形成するため、例えばメタリン酸、ピロリン酸、オルトリン酸、三リン酸、四リン酸等のポリリン酸水溶液が挙げられ、水の存在下、フェノール類との間で相分離反応の場を形成する役割を果すものであるため、好ましくは水溶液タイプ、例えば75重量%リン酸、89重量%リン酸等が一般に挙げられる。 The condensation reaction of phenols and aldehydes is usually carried out using an acid catalyst. Examples of acid catalysts that can be used include inorganic or organic acids such as phosphoric acid, oxalic acid, formic acid, acetic acid, p-toluenesulfonic acid, hydrochloric acid and sulfuric acid. Of these, phosphoric acid is particularly preferred. Specifically, in order to form a site for a phase separation reaction between phenols and aldehydes, for example, an aqueous solution of polyphosphoric acid such as metaphosphoric acid, pyrophosphoric acid, orthophosphoric acid, triphosphoric acid, and tetraphosphoric acid can be used. Since it plays a role of forming a field for a phase separation reaction with phenols in the presence thereof, aqueous solutions such as 75% by weight phosphoric acid and 89% by weight phosphoric acid are generally preferred.
 縮合反応は、無溶媒、もしくは有機溶媒中で行われる。有機溶媒としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、ブタンジオール、ペンタンジオール、エチレングリコール、プロピレングリコール、ジエチレングリコールなどのアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブなどのセロソルブ類、メチルセロソルブアセテート、エチルセロソルブアセテートなどのセロソルブエステル類、1-4-ジオキサンなどの環状エーテル類などが好ましく使用される。 The condensation reaction is carried out without solvent or in an organic solvent. Organic solvents include alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, butanediol, pentanediol, ethylene glycol, propylene glycol and diethylene glycol, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone. Cellosolves such as , methyl cellosolve, ethyl cellosolve and butyl cellosolve, cellosolve esters such as methyl cellosolve acetate and ethyl cellosolve acetate, and cyclic ethers such as 1-4-dioxane are preferably used.
 反応系中の水の量は、相分離効果、生産効率に影響を与えるが、一般的には重量基準で40%以下である。水の量が40%を超えると生産効率が低下する可能性がある。 The amount of water in the reaction system affects the phase separation effect and production efficiency, but it is generally 40% or less on a weight basis. If the amount of water exceeds 40%, production efficiency may decrease.
 また、フェノール類とアルデヒド類との反応温度は、相分離効果を高める上で重要あり、一般的には40℃~還流温度、好ましくは80℃~還流温度、より好ましくは還流温度である。また、反応時間は、例えば反応温度、原料配合比、酸触媒配合量等により異なるが、一般的には1~30時間程度である。また、反応環境としては常圧が好適であるが、不均一系反応を維持するならば、加圧下または減圧下で反応を行ってもよい。 In addition, the reaction temperature between phenols and aldehydes is important for enhancing the phase separation effect, and is generally 40°C to reflux temperature, preferably 80°C to reflux temperature, more preferably reflux temperature. The reaction time varies depending on, for example, the reaction temperature, raw material compounding ratio, acid catalyst compounding amount, etc., but is generally about 1 to 30 hours. As the reaction environment, normal pressure is suitable, but if the heterogeneous reaction is maintained, the reaction may be carried out under increased pressure or reduced pressure.
 本発明において、ノボラック型フェノール樹脂(b)の重量平均分子量(Mw)は3,000以上15,000以下、かつ重量平均分子量(Mw)と数平均分子量(Mn)との分散比(Mw)/(Mn)は、1.1~3.5であることが好ましく、1.8~2.8であることがより好ましい。この範囲であれば、平坦化層用材料および絶縁層用材料の紫外線照射によるパターニング加工性が優れる。 In the present invention, the weight average molecular weight (Mw) of the novolak-type phenolic resin (b) is 3,000 or more and 15,000 or less, and the dispersion ratio (Mw)/ (Mn) is preferably 1.1 to 3.5, more preferably 1.8 to 2.8. Within this range, patterning workability of the flattening layer material and the insulating layer material by ultraviolet irradiation is excellent.
 本発明の樹脂組成物は、ノボラック型フェノール樹脂(b)の分子量1,000以下のノボラック型フェノール樹脂の含有量が、該(b)ノボラック型フェノール樹脂中の0.1~20重量%であり、0.1~10重量%が好ましく、0.1~5重量%がより好ましい。分子量1,000以下のノボラック型フェノール樹脂の含有量が、該(b)ノボラック型フェノール樹脂中の20重量部を超えると、アウトガス発生量が多く、有機EL表示装置の長期信頼性低下を引き起こす。一方、上記含有量を0.1重量%未満とすることは製造時の収率が低下するため好ましくない。 In the resin composition of the present invention, the content of the novolak-type phenolic resin (b) having a molecular weight of 1,000 or less is 0.1 to 20% by weight in the novolak-type phenolic resin (b). , preferably 0.1 to 10% by weight, more preferably 0.1 to 5% by weight. If the content of the novolak-type phenolic resin having a molecular weight of 1,000 or less exceeds 20 parts by weight in the (b) novolak-type phenolic resin, a large amount of outgassing is generated, causing deterioration in long-term reliability of the organic EL display device. On the other hand, if the content is less than 0.1% by weight, the production yield is lowered, which is not preferable.
 アルカリ可溶性樹脂(a)100重量部に対して、ノボラック型フェノール樹脂(b)の含有量は、好ましくは17~50重量部、より好ましくは25~40重量部である。アルカリ可溶性樹脂(a)100重量部に対して、ノボラック型フェノール樹脂(b)の含有量が上記好ましい範囲であると、感度を適切に発現できる一方、アウトガス発生量が少なく、有機EL表示装置の長期信頼性低下を引き起こしにくい。 The content of the novolak-type phenolic resin (b) is preferably 17-50 parts by weight, more preferably 25-40 parts by weight, relative to 100 parts by weight of the alkali-soluble resin (a). When the content of the novolak-type phenolic resin (b) is within the above preferred range with respect to 100 parts by weight of the alkali-soluble resin (a), the sensitivity can be appropriately expressed, while the amount of outgassing is small, and the organic EL display device can be used. Less likely to cause deterioration of long-term reliability.
 <感光性化合物(c)>
 本発明の樹脂組成物は、感光性化合物(c)を含有することが好ましい。感光性化合物(c)を含有すれば、感光性を有する樹脂組成物とすることができるので、フォトレジストを塗布せずとも露光・現像工程に供することができ、その後にフォトレジストの剥離を行う必要はない。感光性化合物(c)としては、光酸発生剤(c1)や、光重合開始剤(c2)などが挙げられる。光酸発生剤(c1)は、光照射により酸を発生する化合物であり、光重合開始剤(c2)は、光照射により結合開裂および/または反応し、ラジカルを発生する化合物である。
<Photosensitive compound (c)>
The resin composition of the present invention preferably contains a photosensitive compound (c). If the photosensitive compound (c) is contained, a resin composition having photosensitivity can be obtained, so that the exposure and development steps can be performed without applying a photoresist, and then the photoresist is removed. No need. Examples of the photosensitive compound (c) include a photoacid generator (c1) and a photopolymerization initiator (c2). The photoacid generator (c1) is a compound that generates an acid upon irradiation with light, and the photopolymerization initiator (c2) is a compound that undergoes bond cleavage and/or reaction upon irradiation with light to generate radicals.
 感光性化合物(c)の含有量は、アルカリ可溶性樹脂(a)100重量部に対して0.01~100重量部が好ましい。感光性化合物(c)の含有量が0.01重量部以上100重量部以下であれば、硬化物の耐熱性熱、耐薬品性および機械特性を維持しつつ、感光性を付与することができる。 The content of the photosensitive compound (c) is preferably 0.01 to 100 parts by weight with respect to 100 parts by weight of the alkali-soluble resin (a). If the content of the photosensitive compound (c) is 0.01 parts by weight or more and 100 parts by weight or less, photosensitivity can be imparted while maintaining heat resistance, chemical resistance and mechanical properties of the cured product. .
 光酸発生剤(c1)を含有することにより、光照射部に酸が発生して光照射部のアルカリ水溶液に対する溶解性が増大し、光照射部が溶解するポジ型のレリーフパターンを得ることができる。また、光酸発生剤(c1)とエポキシ化合物または後述する熱架橋剤を含有することにより、光照射部に発生した酸がエポキシ化合物や熱架橋剤の架橋反応を促進し、光照射部が不溶化するネガ型のレリーフパターンを得ることができる。一方、光重合開始剤(c2)および後述するラジカル重合性化合物を含有することにより、光照射部においてラジカル重合が進行し、光照射部が不溶化するネガ型のレリーフパターンを得ることができる。 By containing the photoacid generator (c1), an acid is generated in the light-irradiated area and the solubility of the light-irradiated area in an alkaline aqueous solution increases, so that a positive relief pattern in which the light-irradiated area dissolves can be obtained. can. Further, by containing the photoacid generator (c1) and an epoxy compound or a thermal cross-linking agent described later, the acid generated in the light-irradiated portion accelerates the cross-linking reaction of the epoxy compound and the thermal cross-linking agent, and the light-irradiated portion becomes insoluble. A negative relief pattern can be obtained. On the other hand, by containing a photopolymerization initiator (c2) and a radically polymerizable compound described later, radical polymerization proceeds in the light-irradiated areas, and a negative relief pattern in which the light-irradiated areas become insoluble can be obtained.
 光酸発生剤(c1)としては、例えば、キノンジアジド化合物、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩、ヨードニウム塩などが挙げられる。光酸発生剤(c1)を2種以上含有することが好ましく、キノンジアジド化合物を必須として、もう1種含むことがより好ましく、高感度な感光性樹脂組成物を得ることができる。後述する本発明の硬化物を有機EL表示装置の平坦化層および/または絶縁層としたときの発光信頼性の観点から、光酸発生剤(c1)としては特にキノンジアジド化合物が好ましい。 Examples of the photoacid generator (c1) include quinonediazide compounds, sulfonium salts, phosphonium salts, diazonium salts, and iodonium salts. It is preferable to contain two or more kinds of photoacid generators (c1), and it is more preferable to contain one more kind of quinonediazide compound as an essential component, so that a highly sensitive photosensitive resin composition can be obtained. A quinonediazide compound is particularly preferable as the photoacid generator (c1) from the viewpoint of light emission reliability when the cured product of the present invention, which will be described later, is used as a planarizing layer and/or an insulating layer of an organic EL display device.
 キノンジアジド化合物としては、フェノール性水酸基を有した化合物にナフトキノンジアジドスルホン酸がエステルで結合した化合物が好ましい。ここで用いられるフェノール 性水酸基を有する化合物としては、公知のものを使用してもよく、それらに4-ナフトキ ノンジアジドスルホン酸あるいは5-ナフトキノンジアジドスルホン酸をエステル結合で 導入したものが好ましいものとして例示することができるが、これ以外の化合物を使用す ることもできる。また、フェノール性水酸基を有した化合物の官能基全体の50モル%以上がキノンジアジドで置換されていることが好ましい。50モル%以上置換されているキノンジアジド化合物を使用することで、キノンジアジド化合物のアルカリ水溶液に対する親和性が低下する 。その結果、未露光部の樹脂組成物のアルカリ水溶液に対する溶解性は大きく低下する。 さらに、露光によりキノンジアジドスルホニル基がインデンカルボン酸に変化し、露光部の感光性樹脂組成物のアルカリ水溶液に対する大きな溶解速度を得ることができる。すなわち、結果として組成物の露光部と未露光部の溶解速度比を大きくして、高い解像度でパターンを得ることができる。 As the quinonediazide compound, a compound in which naphthoquinonediazide sulfonic acid is bonded to a compound having a phenolic hydroxyl group via an ester is preferable. As the compound having a phenolic hydroxyl group used here, known compounds may be used, and those into which 4-naphthoquinonediazidesulfonic acid or 5-naphthoquinonediazidesulfonic acid is introduced via an ester bond are preferred. Examples can be given, but compounds other than these can also be used. Moreover, it is preferable that 50 mol % or more of all the functional groups of the compound having a phenolic hydroxyl group are substituted with quinonediazide. By using a quinonediazide compound substituted by 50 mol % or more, the affinity of the quinonediazide compound for an alkaline aqueous solution is lowered. As a result, the solubility of the resin composition in the unexposed area in an alkaline aqueous solution is greatly reduced. Further, the quinonediazide sulfonyl group is converted to indenecarboxylic acid by exposure, and a high dissolution rate in an alkaline aqueous solution of the photosensitive resin composition in the exposed area can be obtained. That is, as a result, the dissolution rate ratio between the exposed area and the unexposed area of the composition can be increased, and a pattern with high resolution can be obtained.
 4-ナフトキノンジアジドスルホン酸をエステル結合で導入したキノンジアジド化合物は水銀灯のi線領域に吸収を持っており、i線露光に適している。5-ナフトキノンジアジドスルホン酸をエステル結合で導入したキノンジアジド化合物は水銀灯のg線領域まで吸収が伸びており、g線露光に適している。本発明においては、露光する波長によって4-ナフトキノンジアジドスルホニルエステル化合物、5-ナフトキノンジアジドスルホニルエステル化合物を選択することが好ましい。 A quinonediazide compound obtained by introducing 4-naphthoquinonediazide sulfonic acid through an ester bond has absorption in the i-line region of a mercury lamp and is suitable for i-line exposure. A quinonediazide compound in which 5-naphthoquinonediazide sulfonic acid is introduced via an ester bond has absorption extending to the g-line region of a mercury lamp, and is suitable for g-line exposure. In the present invention, it is preferable to select a 4-naphthoquinonediazide sulfonyl ester compound or a 5-naphthoquinone diazidesulfonyl ester compound depending on the exposure wavelength.
 これらのキノンジアジド化合物を使用することにより、解像度、感度、残膜率がより向上する。 By using these quinone diazide compounds, the resolution, sensitivity, and film retention rate are further improved.
 光酸発生剤(c1)のうち、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩、ヨードニウム塩は、露光によって発生した酸成分を適度に安定化させるため好ましい。中でもスルホニウム塩が好ましい。さらに増感剤などを必要に応じて含有することもできる。 Among the photoacid generators (c1), sulfonium salts, phosphonium salts, diazonium salts, and iodonium salts are preferable because they moderately stabilize the acid component generated by exposure. Among them, sulfonium salts are preferred. Furthermore, a sensitizer and the like can be contained as necessary.
 本発明において、光酸発生剤(c1)の含有量は、高感度化の観点から、アルカリ可溶性樹脂(a)100重量部に対して0.01~50重量部が好ましい。このうち、キノンジアジド化合物は3~40重量部が好ましい。また、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩、ヨードニウム塩の総量は0.5~20重量部が好ましい。 In the present invention, the content of the photoacid generator (c1) is preferably 0.01 to 50 parts by weight with respect to 100 parts by weight of the alkali-soluble resin (a) from the viewpoint of increasing sensitivity. Among them, the quinonediazide compound is preferably 3 to 40 parts by weight. The total amount of sulfonium salt, phosphonium salt, diazonium salt and iodonium salt is preferably 0.5 to 20 parts by weight.
 光重合開始剤(c2)としては、例えば、ベンジルケタール系光重合開始剤、α-ヒドロキシケトン系光重合開始剤、α-アミノケトン系光重合開始剤、アシルホスフィンオキシド系光重合開始剤、オキシムエステル系光重合開始剤、アクリジン系光重合開始剤、チタノセン系光重合開始剤、ベンゾフェノン系光重合開始剤、アセトフェノン系光重合開始剤、芳香族ケトエステル系光重合開始剤、安息香酸エステル系光重合開始剤などが挙げられる。光重合開始剤(c2)を2種以上含有してもよい。感度をより向上させる観点から、α-アミノケトン系光重合開始剤、アシルホスフィンオキシド系光重合開始剤、オキシムエステル系光重合開始剤のいずれかを含むことがさらに好ましい。 Examples of the photopolymerization initiator (c2) include benzyl ketal photopolymerization initiators, α-hydroxyketone photopolymerization initiators, α-aminoketone photopolymerization initiators, acylphosphine oxide photopolymerization initiators, and oxime esters. photoinitiator, acridine photoinitiator, titanocene photoinitiator, benzophenone photoinitiator, acetophenone photoinitiator, aromatic ketoester photoinitiator, benzoic acid ester photoinitiator agents and the like. Two or more photopolymerization initiators (c2) may be contained. From the viewpoint of further improving sensitivity, it is more preferable to contain any of an α-aminoketone photopolymerization initiator, an acylphosphine oxide photopolymerization initiator, and an oxime ester photopolymerization initiator.
 α-アミノケトン系光重合開始剤としては、例えば、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタン-1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルホリノフェニル)-ブタン-1-オン、3,6-ビス(2-メチル-2-モルホリノプロピオニル)-9-オクチル-9H-カルバゾールなどが挙げられる。 Examples of α-aminoketone-based photopolymerization initiators include 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4 -morpholinophenyl)-butan-1-one, 2-dimethylamino-2-(4-methylbenzyl)-1-(4-morpholinophenyl)-butan-1-one, 3,6-bis(2-methyl- 2-morpholinopropionyl)-9-octyl-9H-carbazole and the like.
 アシルホスフィンオキシド系光重合開始剤としては、例えば、2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキシド、ビス(2,6-ジメトキシベンゾイル)-(2,4,4-トリメチルペンチル)ホスフィンオキシドなどが挙げられる。 Examples of acylphosphine oxide photopolymerization initiators include 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, and bis(2,6-dimethoxybenzoyl). )-(2,4,4-trimethylpentyl)phosphine oxide.
 オキシムエステル系光重合開始剤としては、例えば、1-フェニルプロパン-1,2-ジオン-2-(O-エトキシカルボニル)オキシム、1-フェニルブタン-1,2-ジオン-2-(O-メトキシカルボニル)オキシム、1,3-ジフェニルプロパン-1,2,3-トリオン-2-(O-エトキシカルボニル)オキシム、1-[4-(フェニルチオ)フェニル]オクタン-1,2-ジオン-2-(O-ベンゾイル)オキシム、1-[4-[4-(カルボキシフェニル)チオ]フェニル]プロパン-1,2-ジオン-2-(O-アセチル)オキシム、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン-1-(O-アセチル)オキシム、1-[9-エチル-6-[2-メチル-4-[1-(2,2-ジメチル-1,3-ジオキソラン-4-イル)メチルオキシ]ベンゾイル]-9H-カルバゾール-3-イル]エタノン-1-(O-アセチル)オキシム又は1-(9-エチル-6-ニトロ-9H-カルバゾール-3-イル)-1-[2-メチル-4-(1-メトキシプロパン-2-イルオキシ)フェニル]メタノン-1-(O-アセチル)オキシムなどが挙げられる。 Examples of oxime ester photopolymerization initiators include 1-phenylpropane-1,2-dione-2-(O-ethoxycarbonyl)oxime, 1-phenylbutane-1,2-dione-2-(O-methoxy carbonyl)oxime, 1,3-diphenylpropane-1,2,3-trione-2-(O-ethoxycarbonyl)oxime, 1-[4-(phenylthio)phenyl]octane-1,2-dione-2-( O-benzoyl)oxime, 1-[4-[4-(carboxyphenyl)thio]phenyl]propane-1,2-dione-2-(O-acetyl)oxime, 1-[9-ethyl-6-(2 -methylbenzoyl)-9H-carbazol-3-yl]ethanone-1-(O-acetyl)oxime, 1-[9-ethyl-6-[2-methyl-4-[1-(2,2-dimethyl- 1,3-dioxolan-4-yl)methyloxy]benzoyl]-9H-carbazol-3-yl]ethanone-1-(O-acetyl)oxime or 1-(9-ethyl-6-nitro-9H-carbazole- 3-yl)-1-[2-methyl-4-(1-methoxypropan-2-yloxy)phenyl]methanone-1-(O-acetyl)oxime and the like.
 本発明において、光重合開始剤(c2)の含有量は、感度をより向上させる観点から、アルカリ可溶性樹脂(a)および後述のラジカル重合性化合物の合計100重量部に対して、0.1重量部以上が好ましく、1重量部以上がより好ましい。一方、解像度をより向上させ、テーパー角度を低減する観点から、25重量部以下が好ましく、15重量部以下がより好ましい。
<ラジカル重合性化合物>
 本発明の樹脂組成物は、さらに、ラジカル重合性化合物を含有してもよい。
In the present invention, the content of the photopolymerization initiator (c2) is 0.1 parts by weight with respect to a total of 100 parts by weight of the alkali-soluble resin (a) and the radically polymerizable compound described later, from the viewpoint of further improving sensitivity. 1 part by weight or more is preferable, and 1 part by weight or more is more preferable. On the other hand, from the viewpoint of further improving the resolution and reducing the taper angle, it is preferably 25 parts by weight or less, more preferably 15 parts by weight or less.
<Radical polymerizable compound>
The resin composition of the present invention may further contain a radically polymerizable compound.
 ラジカル重合性化合物とは、分子中に複数のエチレン性不飽和二重結合を有する化合物をいう。露光時、前述の光重合開始剤(c2)から発生するラジカルによって、ラジカル重合性化合物のラジカル重合が進行し、光照射部が不溶化することにより、ネガ型のパターンを得ることができる。さらにラジカル重合性化合物を含有することにより、光照射部の光硬化が促進されて、感度をより向上させることができる。加えて、熱硬化後の架橋密度が向上することから、硬化物の硬度を向上させることができる。 A radically polymerizable compound is a compound that has multiple ethylenically unsaturated double bonds in its molecule. During exposure, the radicals generated from the photopolymerization initiator (c2) described above promote radical polymerization of the radically polymerizable compound, and insolubilization of the light-irradiated portion can yield a negative pattern. Furthermore, by containing a radically polymerizable compound, the photocuring of the light-irradiated portion is accelerated, and the sensitivity can be further improved. In addition, since the crosslink density after thermosetting is improved, the hardness of the cured product can be improved.
 ラジカル重合性化合物としては、ラジカル重合の進行しやすい、(メタ)アクリル基を有する化合物が好ましい。露光時の感度向上及び硬化物の硬度向上の観点から、(メタ)アクリル基を分子内に二つ以上有する化合物がより好ましい。ラジカル重合性化合物の二重結合当量としては、露光時の感度向上及び硬化物の硬度向上の観点から、80~400g/molが好ましい。 As the radically polymerizable compound, a compound having a (meth)acrylic group, which facilitates the progress of radical polymerization, is preferable. Compounds having two or more (meth)acrylic groups in the molecule are more preferable from the viewpoint of improving the sensitivity at the time of exposure and improving the hardness of the cured product. The double bond equivalent of the radically polymerizable compound is preferably 80 to 400 g/mol from the viewpoint of improving the sensitivity during exposure and improving the hardness of the cured product.
 ラジカル重合性化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールヘプタ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、2,2-ビス[4-(3-(メタ)アクリロキシ-2-ヒドロキシプロポキシ)フェニル]プロパン、1,3,5-トリス((メタ)アクリロキシエチル)イソシアヌル酸、1,3-ビス((メタ)アクリロキシエチル)イソシアヌル酸、9,9-ビス[4-(2-(メタ)アクリロキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(3-(メタ)アクリロキシプロポキシ)フェニル]フルオレン、9,9-ビス(4-(メタ)アクリロキシフェニル)フルオレンまたはそれらの酸変性体、エチレンオキシド変性体、プロピレンオキシド変性体などが挙げられる。 Examples of radically polymerizable compounds include trimethylolpropane tri(meth)acrylate, ditrimethylolpropane tri(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, pentaerythritol tri(meth)acrylate, and pentaerythritol tetra(meth)acrylate. acrylates, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, tripentaerythritol hepta(meth)acrylate, tripentaerythritol octa(meth)acrylate, 2,2-bis[4-(3-( meth)acryloxy-2-hydroxypropoxy)phenyl]propane, 1,3,5-tris((meth)acryloxyethyl)isocyanuric acid, 1,3-bis((meth)acryloxyethyl)isocyanuric acid, 9,9 -bis[4-(2-(meth)acryloxyethoxy)phenyl]fluorene, 9,9-bis[4-(3-(meth)acryloxypropoxy)phenyl]fluorene, 9,9-bis(4-( meth)acryloxyphenyl)fluorene or acid-modified products thereof, ethylene oxide-modified products, propylene oxide-modified products, and the like.
 本発明において、ラジカル重合性化合物の含有量は、感度をより向上させ、テーパー角度を低減する観点から、アルカリ可溶性樹脂(a)およびラジカル重合性化合物の合計100重量%に対して、15重量%以上が好ましく、30重量%以上がより好ましい。一方、硬化物の耐熱性をより向上させ、テーパー角度を低減する観点から、65重量%以下が好ましく、50重量%以下がより好ましい。 In the present invention, the content of the radically polymerizable compound is 15% by weight with respect to the total 100% by weight of the alkali-soluble resin (a) and the radically polymerizable compound, from the viewpoint of further improving the sensitivity and reducing the taper angle. The above is preferable, and 30% by weight or more is more preferable. On the other hand, from the viewpoint of further improving the heat resistance of the cured product and reducing the taper angle, it is preferably 65% by weight or less, more preferably 50% by weight or less.
 <熱架橋剤>
 本発明の樹脂組成物は、熱架橋剤を含有してもよい。熱架橋剤とは、アルコキシメチル基、メチロール基、エポキシ基、オキセタニル基などの熱反応性の官能基を分子内に少なくとも2つ有する化合物を指す。熱架橋剤を含有することによりアルカリ可溶性樹脂(a)またはその他添加成分を架橋し、熱硬化後の膜の耐熱性、耐薬品性および硬度を向上させることができる。また、硬化物からのアウトガス量をより低減し、有機EL表示装置の長期信頼性を向上させることができる。
<Thermal cross-linking agent>
The resin composition of the present invention may contain a thermal cross-linking agent. A thermal cross-linking agent refers to a compound having at least two thermally reactive functional groups such as an alkoxymethyl group, a methylol group, an epoxy group, and an oxetanyl group in the molecule. By containing a thermal cross-linking agent, it is possible to cross-link the alkali-soluble resin (a) or other additive components and improve the heat resistance, chemical resistance and hardness of the film after thermal curing. In addition, the amount of outgassing from the cured product can be further reduced, and the long-term reliability of the organic EL display device can be improved.
 アルコキシメチル基またはメチロール基を少なくとも2つ有する化合物の好ましい例としては、DML-PC、DML-PEP、DML-OC、DML-OEP、DML-34X、DML-PTBP、DML-PCHP、DML-OCHP、DML-PFP、DML-PSBP、DML-POP、DML-MBOC、DML-MBPC、DML-MTrisPC、DML-BisOC-Z、DML-BisOCHP-Z、DML-BPC、DML-BisOC-P、DMOM-PC、DMOM-PTBP、DMOM-MBPC、TriML-P、TriML-35XL、TML-HQ、TML-BP、TML-pp-BPF、TML-BPE、TML-BPA、TML-BPAF、TML-BPAP、TMOM-BP、TMOM-BPE、TMOM-BPA、TMOM-BPAF、TMOM-BPAP、HML-TPPHBA、HML-TPHAP、HMOM-TPPHBA、HMOM-TPHAP(以上、商品名、本州化学工業(株)製)、“NIKALAC”(登録商標)MX-290、“NIKALAC”MX-280、“NIKALAC”MX-270、“NIKALAC”MX-279、“NIKALAC”MW-100LM、“NIKALAC”MX-750LM(以上、商品名、(株)三和ケミカル製)が挙げられる。 Preferred examples of compounds having at least two alkoxymethyl groups or methylol groups include DML-PC, DML-PEP, DML-OC, DML-OEP, DML-34X, DML-PTBP, DML-PCHP, DML-OCHP, DML-PFP, DML-PSBP, DML-POP, DML-MBOC, DML-MBPC, DML-MTrisPC, DML-BisOC-Z, DML-BisOCHP-Z, DML-BPC, DML-BisOC-P, DMO-PC, DMOM-PTBP, DMOM-MBPC, TriML-P, TriML-35XL, TML-HQ, TML-BP, TML-pp-BPF, TML-BPE, TML-BPA, TML-BPAF, TML-BPAP, TMOM-BP, TMOM-BPE, TMOM-BPA, TMOM-BPAF, TMOM-BPAP, HML-TPPHBA, HML-TPHAP, HMOM-TPPHBA, HMOM-TPHAP (all trade names, manufactured by Honshu Chemical Industry Co., Ltd.), "NIKALAC" ( Registered trademark) MX-290, “NIKALAC” MX-280, “NIKALAC” MX-270, “NIKALAC” MX-279, “NIKALAC” MW-100LM, “NIKALAC” MX-750LM manufactured by Sanwa Chemical).
 エポキシ基を少なくとも2つ有する化合物の好ましい例としては、“エポライト”(登録商標)40E、“エポライト”100E、“エポライト”200E、“エポライト”400E、“エポライト”70P、“エポライト”200P、“エポライト”400P、“エポライト”1500NP、“エポライト”80MF、“エポライト”4000、“エポライト”3002(以上、共栄社化学(株)製)、“デナコール”(登録商標)EX-212L、“デナコール”EX-214L、“デナコール”EX-216L、“デナコール”EX-850L(以上、ナガセケムテックス(株)製)、GAN、GOT(以上、日本化薬(株)製)、“エピコート”(登録商標)828、“エピコート”1002、“エピコート”1750、“エピコート”1007、YX8100-BH30、E1256、E4250、E4275(以上、ジャパンエポキシレジン(株)製)、“エピクロン”(登録商標)EXA-9583、HP4032(以上、DIC(株)製)、VG3101(三井化学(株)製)、“テピック”(登録商標)S、“テピック”G、“テピック”P(以上、日産化学工業(株)製)、“デナコール”EX-321L(ナガセケムテックス(株)製)、NC6000(日本化薬(株)製)、“エポトート”(登録商標)YH-434L(東都化成(株)製)、EPPN502H、NC3000(日本化薬(株)製)、“エピクロン”(登録商標)N695、HP7200(以上、DIC(株)製)などが挙げられる。 Preferred examples of compounds having at least two epoxy groups include "Epolite" (registered trademark) 40E, "Epolite" 100E, "Epolite" 200E, "Epolite" 400E, "Epolite" 70P, "Epolite" 200P, "Epolite" "400P," Epolite" 1500NP, "Epolite" 80MF, "Epolite" 4000, "Epolite" 3002 (manufactured by Kyoeisha Chemical Co., Ltd.), "Denacol" (registered trademark) EX-212L, "Denacol" EX-214L , “Denacol” EX-216L, “Denacol” EX-850L (manufactured by Nagase ChemteX Corporation), GAN, GOT (manufactured by Nippon Kayaku Co., Ltd.), “Epicort” (registered trademark) 828, "Epikote" 1002, "Epikote" 1750, "Epikote" 1007, YX8100-BH30, E1256, E4250, E4275 (manufactured by Japan Epoxy Resin Co., Ltd.), "Epiclon" (registered trademark) EXA-9583, HP4032 (above) , manufactured by DIC Corporation), VG3101 (manufactured by Mitsui Chemicals, Inc.), “Tepic” (registered trademark) S, “Tepic” G, “Tepic” P (manufactured by Nissan Chemical Industries, Ltd.), “Denacol "EX-321L (manufactured by Nagase ChemteX Co., Ltd.), NC6000 (manufactured by Nippon Kayaku Co., Ltd.), "Epotato" (registered trademark) YH-434L (manufactured by Tohto Kasei Co., Ltd.), EPPN502H, NC3000 (Nippon Kasei Co., Ltd.) manufactured by Yaku Co., Ltd.), "Epiclon" (registered trademark) N695, HP7200 (manufactured by DIC Corporation), and the like.
 オキセタニル基を少なくとも2つ有する化合物の好ましい例としては、例えば、エタナコールEHO、エタナコールOXBP、エタナコールOXTP、エタナコールOXMA(以上、宇部興産(株)製)、オキセタン化フェノールノボラックなどが挙げられる。 Preferable examples of compounds having at least two oxetanyl groups include Ethanacol EHO, Ethanacol OXBP, Ethanacol OXTP, Ethanacol OXMA (manufactured by Ube Industries, Ltd.), and oxetaneated phenol novolak.
 熱架橋剤は2種類以上を組み合わせて含有してもよい。 The thermal cross-linking agent may be contained in combination of two or more.
 熱架橋剤の含有量は、有機溶剤を除く樹脂組成物全量100重量%に対して、1重量%以上30重量%以下が好ましい。熱架橋剤の含有量が1重量%以上であれば、硬化物の耐薬品性および硬度をより高めることができる。また、熱架橋剤の含有量が30重量%以下であれば、硬化物からのアウトガス量をより低減し、有機EL表示装置の長期信頼性をより高めることができ、樹脂組成物の保存安定性にも優れる。 The content of the thermal cross-linking agent is preferably 1% by weight or more and 30% by weight or less with respect to 100% by weight of the total amount of the resin composition excluding the organic solvent. If the content of the thermal cross-linking agent is 1% by weight or more, the chemical resistance and hardness of the cured product can be further enhanced. In addition, if the content of the thermal crosslinking agent is 30% by weight or less, the amount of outgassing from the cured product can be further reduced, the long-term reliability of the organic EL display device can be further improved, and the storage stability of the resin composition can be improved. Also excellent.
 <有機溶剤>
 本発明の樹脂組成物は、有機溶剤を含有してもよい。有機溶剤を含有することにより、ワニスの状態にすることができ、塗布性を向上させることができる。
<Organic solvent>
The resin composition of the present invention may contain an organic solvent. By containing an organic solvent, a varnish state can be obtained, and coatability can be improved.
 有機溶剤としては、γ-ブチロラクトンなどの極性の非プロトン性溶剤、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ-n-プロピルエーテル、エチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-プロピルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-プロピルエーテル、プロピレングリコールモノ-n-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノ-n-プロピルエーテル、ジプロピレングリコールモノ-n-ブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、アセトン、メチルエチルケトン、ジイソブチルケトン、シクロヘキサノン、2-ヘプタノン、3-ヘプタノン、ジアセトンアルコールなどのケトン類、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、乳酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、3-メチル-3-メトキシブチルプロピオネート、酢酸エチル、酢酸n-プロピル、酢酸i-プロピル、酢酸n-ブチル、酢酸i-ブチル、ぎ酸n-ペンチル、酢酸i-ペンチル、プロピオン酸n-ブチル、酪酸エチル、酪酸n-プロピル、酪酸i-プロピル、酪酸n-ブチル、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸n-プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソブタン酸エチル等のエステル類、トルエン、キシレンなどの芳香族炭化水素類、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルプロピオンアミド、3-メトキシ-N,N-ジメチルプロピオンアミド、N,N-ジメチルアセトアミド等のアミド類などが挙げられる。これらを2種以上含有してもよい。 Organic solvents include polar aprotic solvents such as γ-butyrolactone, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-propyl ether, ethylene glycol mono-n-butyl ether, diethylene glycol monomethyl ether, diethylene glycol. Monoethyl ether, diethylene glycol mono-n-propyl ether, diethylene glycol mono-n-butyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-n-propyl Ether, propylene glycol mono-n-butyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol mono-n-propyl ether, dipropylene glycol mono-n-butyl ether, tripropylene glycol monomethyl ether, tripropylene Ethers such as glycol monoethyl ether, tetrahydrofuran, and dioxane, ketones such as acetone, methyl ethyl ketone, diisobutyl ketone, cyclohexanone, 2-heptanone, 3-heptanone, and diacetone alcohol, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate , diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, ethyl lactate, ethyl 2-hydroxy-2-methylpropionate, methyl 3-methoxypropionate, 3-methoxypropionate ethyl acetate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, ethyl ethoxyacetate, ethyl hydroxyacetate, methyl 2-hydroxy-3-methylbutanoate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate , 3-methyl-3-methoxybutyl propionate, ethyl acetate, n-propyl acetate, i-propyl acetate, n-butyl acetate, i-butyl acetate, n-pentyl formate, i-pentyl acetate, n-propionate -butyl, ethyl butyrate, n-propyl butyrate, i-propyl butyrate, n-butyrate Esters such as butyl, methyl pyruvate, ethyl pyruvate, n-propyl pyruvate, methyl acetoacetate, ethyl acetoacetate, ethyl 2-oxobutanoate, aromatic hydrocarbons such as toluene and xylene, N-methylpyrrolidone, Amides such as N,N-dimethylformamide, N,N-dimethylpropionamide, 3-methoxy-N,N-dimethylpropionamide, N,N-dimethylacetamide, and the like are included. You may contain 2 or more types of these.
 有機溶剤の含有量は、特に限定されないが、有機溶剤を除く樹脂組成物全量100重量部に対して、100~3,000重量部が好ましく、150~2,000重量部がさらに好ましい。また、有機溶剤全量に対する沸点180℃以上の溶剤が占める割合は、20重量部以下が好ましく、10重量部以下がさらに好ましい。沸点180℃以上の溶剤の割合を20重量部以下にすることにより、熱硬化後のアウトガス量をより低減することができ、結果として有機EL装置の長期信頼性をより高めることができる。 Although the content of the organic solvent is not particularly limited, it is preferably 100 to 3,000 parts by weight, more preferably 150 to 2,000 parts by weight, based on 100 parts by weight of the total resin composition excluding the organic solvent. The ratio of the solvent having a boiling point of 180° C. or higher to the total amount of the organic solvent is preferably 20 parts by weight or less, more preferably 10 parts by weight or less. By setting the proportion of the solvent having a boiling point of 180° C. or higher to 20 parts by weight or less, the amount of outgassing after heat curing can be further reduced, and as a result, the long-term reliability of the organic EL device can be further improved.
 <密着改良剤>
 本発明の樹脂組成物は、密着改良剤を含有してもよい。密着改良剤としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、エポキシシクロヘキシルエチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシランなどのシランカップリング剤、チタンキレート剤、アルミキレート剤、芳香族アミン化合物とアルコキシ基含有ケイ素化合物を反応させて得られる化合物などが挙げられる。これらを2種以上含有してもよい。これらの密着改良剤を含有することにより、樹脂膜を現像する場合などに、シリコンウエハ、ITO、SiO、窒化ケイ素などの下地基材との密着性を高めることができる。また、洗浄などに用いられる酸素プラズマ、UVオゾン処理に対する耐性を高めることができる。密着改良剤の含有量は、有機溶剤を除く樹脂組成物全量100重量%に対して、0.1~10重量%が好ましい。
<Adhesion improver>
The resin composition of the present invention may contain an adhesion improver. Adhesion improvers include vinyltrimethoxysilane, vinyltriethoxysilane, epoxycyclohexylethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, Silane coupling agents such as 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, titanium chelating agents, aluminum chelating agents, aromatic amine compounds and alkoxy group-containing Examples thereof include compounds obtained by reacting silicon compounds. You may contain 2 or more types of these. By containing these adhesion improvers, it is possible to improve the adhesion to a base material such as a silicon wafer, ITO, SiO 2 , or silicon nitride when developing a resin film. In addition, resistance to oxygen plasma and UV ozone treatment used for cleaning can be enhanced. The content of the adhesion improver is preferably 0.1 to 10% by weight with respect to 100% by weight of the total amount of the resin composition excluding the organic solvent.
 <界面活性剤>
 本発明の樹脂組成物は、必要に応じて界面活性剤を含有してもよく、基板との濡れ性を向上させることができる。界面活性剤としては、例えば、東レ・ダウコーニング(株)のSHシリーズ、SDシリーズ、STシリーズ、ビックケミー・ジャパン(株)のBYKシリーズ、信越化学工業(株)のKPシリーズ、日油(株)のディスフォームシリーズ、DIC(株)の“メガファック(登録商標)”シリーズ、住友スリーエム(株)のフロラードシリーズ、旭硝子(株)の“サーフロン(登録商標)”シリーズ、“アサヒガード(登録商標)”シリーズ、オムノヴァ・ソルーション社のポリフォックスシリーズなどのフッ素系界面活性剤、共栄社化学(株)のポリフローシリーズ、楠本化成(株)の“ディスパロン(登録商標)”シリーズなどのアクリル系および/またはメタクリル系の界面活性剤などが挙げられる。
<Surfactant>
The resin composition of the present invention may contain a surfactant as necessary to improve the wettability with the substrate. Examples of surfactants include SH series, SD series, and ST series from Dow Corning Toray Co., Ltd., BYK series from BYK Chemie Japan Co., Ltd., KP series from Shin-Etsu Chemical Co., Ltd., and NOF Corporation. Disform series of DIC Corporation, "Megafac (registered trademark)" series of DIC Corporation, Florard series of Sumitomo 3M Limited, "Surflon (registered trademark)" series of Asahi Glass Co., Ltd., "Asahi Guard (registered trademark)" series of Asahi Glass Co., Ltd. )" series, Omnova Solution's Polyfox series, etc., Kyoeisha Chemical Co., Ltd.'s Polyflow series, Kusumoto Kasei Co., Ltd.'s "Disparon (registered trademark)" series, etc. Alternatively, a methacrylic surfactant may be used.
 界面活性剤の含有量は、有機溶剤を除く樹脂組成物全量100重量%に対して、好ましくは0.001~1重量%である。 The content of the surfactant is preferably 0.001 to 1% by weight with respect to 100% by weight of the total amount of the resin composition excluding the organic solvent.
 <無機粒子>
 本発明の樹脂組成物は、無機粒子を含有してもよい。無機粒子の好ましい具体例としては、例えば、酸化珪素、酸化チタン、チタン酸バリウム、アルミナ、タルクなどが挙げられる。無機粒子の一次粒子径は100nm以下が好ましく、60nm以下がより好ましい。
<Inorganic particles>
The resin composition of the present invention may contain inorganic particles. Preferred specific examples of inorganic particles include silicon oxide, titanium oxide, barium titanate, alumina, and talc. The primary particle diameter of the inorganic particles is preferably 100 nm or less, more preferably 60 nm or less.
 無機粒子の含有量は、有機溶剤を除く樹脂組成物全量100重量%に対して、好ましくは5~90重量%である。 The content of the inorganic particles is preferably 5 to 90% by weight with respect to 100% by weight of the total amount of the resin composition excluding the organic solvent.
 <熱酸発生剤>
 本発明の樹脂組成物は、有機EL表示装置の長期信頼性を損なわない範囲で熱酸発生剤を含有してもよい。熱酸発生剤は、加熱により酸を発生し、熱架橋剤の架橋反応を促進する他、(a)成分の樹脂に未閉環のイミド環構造、オキサゾール環構造を有している場合はこれらの環化を促進し、硬化物の機械特性をより向上させることができる。
<Thermal acid generator>
The resin composition of the present invention may contain a thermal acid generator within a range that does not impair the long-term reliability of the organic EL display device. The thermal acid generator generates an acid when heated to accelerate the cross-linking reaction of the thermal cross-linking agent. It promotes cyclization and can further improve the mechanical properties of the cured product.
 本発明に用いられる熱酸発生剤の熱分解開始温度は、50℃~270℃が好ましく、250℃以下がより好ましい。また、本発明の樹脂組成物を基板に塗布した後の乾燥(プリベーク:約70~140℃)時には酸を発生せず、その後の露光、現像でパターニングした後の最終加熱(キュア:約100~400℃)時に酸を発生するものを選択すると、現像時の感度低下を抑制できるため好ましい。 The thermal decomposition initiation temperature of the thermal acid generator used in the present invention is preferably 50°C to 270°C, more preferably 250°C or less. In addition, no acid is generated when the resin composition of the present invention is applied to a substrate and then dried (prebaking: about 70 to 140° C.), and the final heating (curing: about 100 to 100° C.) after patterning by subsequent exposure and development. It is preferable to select one that generates an acid at 400° C.), because it can suppress a decrease in sensitivity during development.
 本発明に用いられる熱酸発生剤から発生する酸は強酸が好ましく、例えば、p-トルエンスルホン酸、ベンゼンスルホン酸などのアリールスルホン酸、メタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、ブタンスルホン酸などのアルキルスルホン酸やトリフルオロメチルスルホン酸などのハロアルキルスルホン酸などが好ましい。これらはオニウム塩などの塩として、またはイミドスルホナートなどの共有結合化合物として用いられる。これらを2種以上含有してもよい。 The acid generated from the thermal acid generator used in the present invention is preferably a strong acid, and examples thereof include arylsulfonic acids such as p-toluenesulfonic acid and benzenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid and butanesulfonic acid. and haloalkylsulfonic acids such as trifluoromethylsulfonic acid and the like are preferred. They are used as salts such as onium salts or as covalent compounds such as imidosulfonates. You may contain 2 or more types of these.
 熱酸発生剤の含有量は、有機溶剤を除く樹脂組成物全量100重量%に対して、0.01重量%以上が好ましく、0.1重量%以上がより好ましい。熱酸発生剤を0.01重量%以上含有することにより、架橋反応および樹脂の未閉環構造の環化が促進されるため、硬化物の機械特性および耐薬品性をより向上させることができる。また、有機EL表示装置の長期信頼性の観点から、5重量%以下が好ましく、2重量%以下がより好ましい。 The content of the thermal acid generator is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, relative to 100% by weight of the total amount of the resin composition excluding the organic solvent. By containing 0.01% by weight or more of the thermal acid generator, the cross-linking reaction and cyclization of the unclosed ring structure of the resin are promoted, so that the mechanical properties and chemical resistance of the cured product can be further improved. From the viewpoint of long-term reliability of the organic EL display device, it is preferably 5% by weight or less, more preferably 2% by weight or less.
 <樹脂組成物の製造方法>
 次に、本発明の樹脂組成物を得るための好ましい製造方法の例について説明する。例えば、前記(a)~(c)成分と、必要により着色剤、熱架橋剤、有機溶剤、密着改良剤、界面活性剤、フェノール性水酸基を有する化合物、無機粒子、熱酸発生剤などを溶解させることにより、樹脂組成物を得ることができる。溶解方法としては、撹拌や加熱が挙げられる。加熱する場合、加熱温度は樹脂組成物の性能を損なわない範囲で設定することが好ましく、通常、室温~80℃である。また、各成分の溶解順序は特に限定されず、例えば、溶解性の低い化合物から順次溶解させる方法が挙げられる。また、界面活性剤や一部の密着改良剤など、撹拌溶解時に気泡を発生しやすい成分については、他の成分を溶解してから最後に添加することにより、気泡の発生による他成分の溶解不良を防ぐことができる。得られた樹脂組成物は、濾過フィルターを用いて濾過し、ゴミや粒子を除去することが好ましい。フィルター孔径は、例えば0.5μm、0.2μm、0.1μm、0.07μm、0.05μm、0.02μmなどがあるが、これらに限定されない。濾過フィルターの材質には、ポリプロピレン(PP)、ポリエチレン(PE)、ナイロン(NY)、ポリテトラフルオロエチエレン(PTFE)などがあり、ポリエチレンやナイロンが好ましい。
<Method for producing resin composition>
Next, an example of a preferable manufacturing method for obtaining the resin composition of the present invention will be described. For example, the components (a) to (c) and, if necessary, a coloring agent, a thermal cross-linking agent, an organic solvent, an adhesion improver, a surfactant, a compound having a phenolic hydroxyl group, an inorganic particle, a thermal acid generator, etc. are dissolved. A resin composition can be obtained by allowing the Dissolution methods include stirring and heating. When heating, the heating temperature is preferably set within a range that does not impair the performance of the resin composition, and is usually room temperature to 80°C. In addition, the order of dissolving each component is not particularly limited, and for example, a method of dissolving compounds in order of low solubility can be mentioned. In addition, for ingredients that tend to generate bubbles during stirring and dissolution, such as surfactants and some adhesion improvers, by adding them at the end after dissolving the other ingredients, the other ingredients will not be dissolved due to the generation of bubbles. can be prevented. The obtained resin composition is preferably filtered using a filtration filter to remove dust and particles. Examples of filter pore sizes include, but are not limited to, 0.5 μm, 0.2 μm, 0.1 μm, 0.07 μm, 0.05 μm, 0.02 μm. Materials for the filter include polypropylene (PP), polyethylene (PE), nylon (NY), polytetrafluoroethylene (PTFE), etc., and polyethylene and nylon are preferred.
 <硬化物>
 次に、本発明の硬化物について詳しく説明する。
<Cured product>
Next, the cured product of the present invention will be described in detail.
 本発明の硬化物は、本発明の樹脂組成物を硬化した硬化物である。 The cured product of the present invention is a cured product obtained by curing the resin composition of the present invention.
 樹脂組成物の硬化は、加熱処理によって硬化することができる。加熱処理は、ある温度を選び、段階的に昇温するか、ある温度範囲を選び連続的に昇温しながら5分間~5時間実施すればよい。一例としては、150℃、250℃で各30分ずつ熱処理する。あるいは室温より300℃まで2時間かけて直線的に昇温するなどの方法が挙げられる。本発明においての加熱処理条件としては、硬化物から発生するアウトガス量を低減させる点で300℃以上が好ましく、350℃以上がより好ましい。また硬化物に十分な膜靭性を与える点で500℃以下が好ましく、450℃以下がより好ましい。 The resin composition can be cured by heat treatment. The heat treatment may be performed by selecting a certain temperature and increasing the temperature stepwise, or by selecting a certain temperature range and continuously increasing the temperature for 5 minutes to 5 hours. For example, heat treatment is performed at 150° C. and 250° C. for 30 minutes each. Alternatively, a method of linearly raising the temperature from room temperature to 300° C. over 2 hours can be used. The heat treatment conditions in the present invention are preferably 300° C. or higher, more preferably 350° C. or higher, from the viewpoint of reducing the amount of outgas generated from the cured product. The temperature is preferably 500° C. or lower, more preferably 450° C. or lower, from the viewpoint of imparting sufficient film toughness to the cured product.
 本発明の硬化物は薄膜トランジスタのゲート絶縁層または層間絶縁層として好適に用いることができる。 The cured product of the present invention can be suitably used as a gate insulating layer or interlayer insulating layer of a thin film transistor.
 <硬化物の製造方法>
 本発明の硬化物は、基板上に前記樹脂組成物を塗布し樹脂膜を形成する工程、必要に応じて該樹脂膜を乾燥する工程、該樹脂膜を露光する工程、露光した樹脂膜を現像する工程、および、現像した樹脂膜を加熱処理する工程を含む製造方法により得ることができる。以下に各工程の詳細について述べる。
<Method for producing cured product>
The cured product of the present invention can be obtained by applying the resin composition to a substrate to form a resin film, drying the resin film as necessary, exposing the resin film to light, and developing the exposed resin film. and a step of heat-treating the developed resin film. Details of each step are described below.
 まず、基板上に前記樹脂組成物を塗布し樹脂膜を形成する工程について説明する。 First, the process of applying the resin composition on a substrate to form a resin film will be described.
 本発明の樹脂組成物をスピンコート法、スリットコート法、ディップコート法、スプレーコート法、印刷法などで塗布し、樹脂組成物の塗布膜を得る。これらの中でスリットコート法が好ましく用いられる。スリットコート法は、少量の塗布液で塗布を行うことができるため、コスト低減に有利である。スリットコート法に必要とされる塗布液の量は、例えば、スピンコート法と比較すると、1/5~1/10程度である。塗布に用いるスリットノズルについては特に制限はなく、複数のメーカーから上市されているものを用いることができる。具体的には、大日本スクリーン製造(株)製「リニアコーター」、東京応化工業(株)製「スピンレス」、東レエンジニアリング(株)製「TSコーター」、中外炉工業(株)製「テーブルコータ」、東京エレクトロン(株)製「CSシリーズ」「CLシリーズ」、サーマトロニクス貿易(株)製「インライン型スリットコーター」、平田機工(株)製「ヘッドコーターHCシリーズ」などが挙げられる。塗布速度は10mm/秒~400mm/秒の範囲が一般的である。塗布膜の膜厚は、樹脂組成物の固形分濃度、粘度などによって異なるが、通常、乾燥後の膜厚が0.1~10μm、好ましくは0.3~5μmになるように塗布される。 The resin composition of the present invention is applied by a spin coating method, a slit coating method, a dip coating method, a spray coating method, a printing method, or the like to obtain a coating film of the resin composition. Among these, the slit coating method is preferably used. The slit coating method is advantageous in terms of cost reduction because it can be applied with a small amount of application liquid. The amount of the coating liquid required for the slit coating method is, for example, about 1/5 to 1/10 of that for the spin coating method. The slit nozzle used for coating is not particularly limited, and those marketed by multiple manufacturers can be used. Specifically, "Linear Coater" manufactured by Dainippon Screen Mfg. Co., Ltd., "Spinless" manufactured by Tokyo Ohka Kogyo Co., Ltd., "TS Coater" manufactured by Toray Engineering Co., Ltd., "Table Coater" manufactured by Chugai Ro Co., Ltd. , "CS Series" and "CL Series" manufactured by Tokyo Electron Ltd., "Inline Slit Coater" manufactured by Thermatronics Trading Co., Ltd., and "Head Coater HC Series" manufactured by Hirata Corporation. The coating speed is generally in the range of 10 mm/sec to 400 mm/sec. The film thickness of the coating film varies depending on the solid content concentration and viscosity of the resin composition, but it is usually applied so that the film thickness after drying is 0.1 to 10 μm, preferably 0.3 to 5 μm.
 樹脂組成物を塗布するのに先立ち、樹脂組成物を塗布する基材を予め前述した密着改良剤で前処理してもよい。例えば、密着改良剤をイソプロパノール、エタノール、メタノール、水、テトラヒドロフラン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、乳酸エチル、アジピン酸ジエチルなどの溶媒に0.5~20重量%溶解させた溶液を用いて、基材表面を処理する方法が挙げられる。基材表面の処理方法としては、スピンコート、スリットダイコート、バーコート、ディップコート、スプレーコート、蒸気処理などの方法が挙げられる。 Prior to applying the resin composition, the base material to be coated with the resin composition may be pretreated with the above-described adhesion improver. For example, a solution obtained by dissolving 0.5 to 20% by weight of an adhesion improver in a solvent such as isopropanol, ethanol, methanol, water, tetrahydrofuran, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, ethyl lactate, and diethyl adipate is used. and a method of treating the substrate surface. Methods for treating the substrate surface include spin coating, slit die coating, bar coating, dip coating, spray coating, vapor treatment, and the like.
 樹脂組成物を塗布した後、必要に応じて乾燥処理を施す。塗布膜を形成した基板ごと減圧乾燥することが一般的である。例えば、真空チャンバー内に配置されたプロキシピン上に塗布膜を形成した基板を置き、真空チャンバー内を減圧することで減圧乾燥する。この時基板と真空チャンバー天板との間隔が離れていると、基板と真空チャンバー天板との間に位置する空気が、減圧乾燥に伴い多量に流動しモヤムラを発生しやすくなる。そのため間隔を狭めるようにプロキシピン高さを調整することが好ましい。基板と真空チャンバー天板との距離は2~20mm程度が好ましく、2~10mmがより好ましい。 After applying the resin composition, dry it as necessary. It is common to dry under reduced pressure together with the substrate on which the coating film is formed. For example, a substrate having a coating film formed thereon is placed on proxy pins placed in a vacuum chamber, and dried under reduced pressure by reducing the pressure in the vacuum chamber. At this time, if the substrate and the top plate of the vacuum chamber are separated from each other, a large amount of air between the substrate and the top plate of the vacuum chamber flows during drying under reduced pressure, which tends to cause unevenness. Therefore, it is preferable to adjust the proxy pin height so as to narrow the gap. The distance between the substrate and the top plate of the vacuum chamber is preferably about 2-20 mm, more preferably 2-10 mm.
 減圧乾燥速度は、真空チャンバー容積、真空ポンプ能力やチャンバーとポンプ間の配管径等にもよるが、例えば塗布基板のない状態で、真空チャンバー内が60秒経過後40Paまで減圧される条件等に設定して使用される。一般的な減圧乾燥時間は、30秒から100秒程度であることが多く、減圧乾燥終了時の真空チャンバー内到達圧力は塗布基板のある状態で通常100Pa以下である。到達圧を100Pa以下にすることで塗布膜表面をべた付きの無い乾燥状態にすることができ、これにより続く基板搬送において表面汚染やパーティクルの発生を抑制することができる。 The speed of drying under reduced pressure depends on the vacuum chamber volume, the vacuum pump capacity, the diameter of the pipe between the chamber and the pump, etc. For example, in the state where there is no coated substrate, the pressure in the vacuum chamber is reduced to 40 Pa after 60 seconds. set and used. A general vacuum drying time is often about 30 seconds to 100 seconds, and the ultimate pressure in the vacuum chamber at the end of the vacuum drying is usually 100 Pa or less with the coated substrate in place. By setting the ultimate pressure to 100 Pa or less, the surface of the coating film can be kept in a non-sticky and dry state, thereby suppressing surface contamination and generation of particles during subsequent substrate transport.
 樹脂組成物を塗布した後または塗布した樹脂組成物を減圧乾燥した後、塗布膜を加熱乾燥するのが一般的である。この工程をプリベークとも言う。加熱乾燥はホットプレート、オーブン、赤外線などを使用する。加熱乾燥にホットプレートを用いる場合、プレート上に直接、もしくは、プレート上に設置したプロキシピン等の治具上に塗布膜を保持して加熱する。プロキシピンの材質としては、アルミニウムやステンレス等の金属材料、あるいはポリイミド樹脂や“テフロン”(登録商標)等の合成樹脂があり、耐熱性があればいずれの材質のプロキシピンを用いてもかまわない。プロキシピンの高さは、基板のサイズ、塗布膜の種類、加熱の目的等により様々であるが、0.1~10mm程度が好ましい。加熱温度は塗布膜の種類や目的により様々であり、50℃から180℃の範囲で1分間~数時間行うことが好ましい。 After applying the resin composition or drying the applied resin composition under reduced pressure, the coating film is generally dried by heating. This step is also called pre-baking. Heat drying uses a hot plate, an oven, an infrared ray, or the like. When a hot plate is used for drying by heating, the coating film is held and heated directly on the plate or on a jig such as a proxy pin installed on the plate. Materials for proxy pins include metal materials such as aluminum and stainless steel, and synthetic resins such as polyimide resin and "Teflon" (registered trademark). . The height of the proxy pin varies depending on the size of the substrate, the type of coating film, the purpose of heating, etc., but is preferably about 0.1 to 10 mm. The heating temperature varies depending on the type and purpose of the coating film, and is preferably in the range of 50° C. to 180° C. for 1 minute to several hours.
 次に、得られた樹脂膜からパターンを形成する段階、すなわち、樹脂膜を露光する工程と、それに引き続いて行われる、現像する工程について説明する。 Next, the step of forming a pattern from the obtained resin film, that is, the step of exposing the resin film and the subsequent step of developing, will be described.
 樹脂膜を露光する工程では、感光性樹脂膜上に所望のパターンを有するマスクを通して化学線を照射し、露光する。露光に用いられる化学線としては紫外線、可視光線、電子線、X線などがあるが、本発明では水銀灯のi線(365nm)、h線(405nm)、g線(436nm)を用いることが好ましい。ポジ型の感光性を有する場合、露光部が現像液に溶解する。ネガ型の感光性を有する場合、露光部が硬化し、現像液に不溶化する。 In the process of exposing the resin film, the photosensitive resin film is irradiated with actinic rays through a mask having a desired pattern. Actinic rays used for exposure include ultraviolet rays, visible rays, electron beams, X-rays, etc. In the present invention, it is preferable to use i-rays (365 nm), h-rays (405 nm) and g-rays (436 nm) of a mercury lamp. . In the case of positive photosensitivity, the exposed portion dissolves in the developer. In the case of negative photosensitivity, the exposed areas are cured and rendered insoluble in the developer.
 露光した樹脂膜を現像する工程では、露光後、現像液を用いてポジ型の場合は露光部を、またネガ型の場合は非露光部を除去することによって所望のパターンを形成する。現像液としては、ポジ型とネガ型のいずれの場合もテトラメチルアンモニウムヒドロキシド、ジエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ジエチルアミン、メチルアミン、ジメチルアミン、酢酸ジメチルアミノエチル、ジメチルアミノエタノール、ジメチルアミノエチルメタクリレート、シクロヘキシルアミン、エチレンジアミン、ヘキサメチレンジアミンなどのアルカリ性を示す化合物の水溶液が好ましい。また場合によっては、これらのアルカリ水溶液にN-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、γ-ブチロラクトン、ジメチルアクリルアミドなどの極性溶媒、メタノール、エタノール、イソプロパノールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類、シクロペンタノン、シクロヘキサノン、イソブチルケトン、メチルイソブチルケトンなどのケトン類などを単独あるいは数種を組み合わせたものを添加してもよい。現像方式としては、スプレー、パドル、浸漬、超音波等の方式が可能である。 In the process of developing the exposed resin film, after exposure, a desired pattern is formed by removing the exposed portion in the case of a positive type and the non-exposed portion in the case of a negative type using a developer. As a developer for both positive and negative types, tetramethylammonium hydroxide, diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, methylamine, dimethylamine, Aqueous solutions of alkaline compounds such as dimethylaminoethyl acetate, dimethylaminoethanol, dimethylaminoethyl methacrylate, cyclohexylamine, ethylenediamine and hexamethylenediamine are preferred. In some cases, these alkaline aqueous solutions are added with a polar solvent such as N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, γ-butyrolactone, dimethylacrylamide, methanol, ethanol, Alcohols such as isopropanol, esters such as ethyl lactate and propylene glycol monomethyl ether acetate, and ketones such as cyclopentanone, cyclohexanone, isobutyl ketone and methyl isobutyl ketone may be added alone or in combination. good. As a developing method, methods such as spray, puddle, immersion, and ultrasonic waves are possible.
 感光性化合物を含まない樹脂組成物のパターン加工は、樹脂組成物を塗布したあと、フォトレジストを塗布し、露光したのちに現像して、フォトレジストの剥離を行う方法がある。 For pattern processing of a resin composition that does not contain a photosensitive compound, there is a method in which the resin composition is applied, a photoresist is applied, exposed, developed, and the photoresist is peeled off.
 次に、現像によって形成したパターンを蒸留水にてリンス処理をすることが好ましい。ここでもエタノール、イソプロピルアルコールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類などを蒸留水に加えてリンス処理をしてもよい。 Next, it is preferable to rinse the pattern formed by development with distilled water. Also here, alcohols such as ethanol and isopropyl alcohol, and esters such as ethyl lactate and propylene glycol monomethyl ether acetate may be added to the distilled water for rinsing.
 次に現像した樹脂膜を加熱処理する工程について説明する。加熱処理により耐熱性の低い成分を除去できるため、耐熱性および耐薬品性を向上させることができる。特に、本発明の樹脂組成物が、ポリイミド前駆体、ポリベンゾオキサゾール前駆体の中から選ばれるアルカリ可溶性樹脂、それらの共重合体またはそれらとポリイミドとの共重合体を含む場合は、加熱処理によりイミド環、オキサゾール環を形成できるため、耐熱性および耐薬品性を向上させることができ、また、アルコキシメチル基、メチロール基、エポキシ基またはオキタニル基を少なくとも2つ有する化合物を含む場合は、加熱処理により熱架橋反応を進行させることができ、耐熱性および耐薬品性を向上させることができる。この加熱処理は、ある温度を選び、段階的に昇温するか、ある温度範囲を選び連続的に昇温しながら5分間~5時間実施する。一例としては、150℃、250℃で各30分ずつ熱処理する。あるいは室温より300℃まで2時間かけて直線的に昇温するなどの方法が挙げられる。本発明においての加熱処理条件としては、硬化物から発生するアウトガス量を低減させる点で300℃以上が好ましく、350℃以上がより好ましい。また硬化物に十分な膜靭性を与える点で500℃以下が好ましく、450℃以下がより好ましい。 Next, the process of heat-treating the developed resin film will be explained. Since heat treatment can remove components with low heat resistance, heat resistance and chemical resistance can be improved. In particular, when the resin composition of the present invention contains an alkali-soluble resin selected from polyimide precursors, polybenzoxazole precursors, copolymers thereof, or copolymers of them and polyimide, heat treatment Since it can form an imide ring or an oxazole ring, heat resistance and chemical resistance can be improved, and if it contains a compound having at least two alkoxymethyl groups, methylol groups, epoxy groups, or oxanyl groups, heat treatment is required. The thermal cross-linking reaction can be progressed, and the heat resistance and chemical resistance can be improved. For this heat treatment, a certain temperature is selected and the temperature is raised stepwise, or a certain temperature range is selected and the temperature is raised continuously for 5 minutes to 5 hours. For example, heat treatment is performed at 150° C. and 250° C. for 30 minutes each. Alternatively, a method of linearly raising the temperature from room temperature to 300° C. over 2 hours can be used. The heat treatment conditions in the present invention are preferably 300° C. or higher, more preferably 350° C. or higher, from the viewpoint of reducing the amount of outgas generated from the cured product. The temperature is preferably 500° C. or lower, more preferably 450° C. or lower, from the viewpoint of imparting sufficient film toughness to the cured product.
 本発明の樹脂組成物および硬化物は、有機エレクトロルミネッセンス(Electroluminescence:以下、EL)素子の絶縁層、有機EL素子を用いた表示装置の駆動用薄膜トランジスタ(Thin Film Transistor:以下、TFT)基板の平坦化層、回路基板の配線保護絶縁層、固体撮像素子のオンチップマイクロレンズや各種ディスプレイ・固体撮像素子用平坦化層に好適に用いられる。例えば、耐熱性の低いMRAM、次世代メモリとして有望なポリマーメモリ(Polymer Ferroelectric RAM:PFRAM)や相変化メモリ(Phase Change RAM:PCRAM、Ovonics Unified Memory:OUM)などの表面保護層や層間絶縁層として好適である。また、基板上に形成された第一電極と、前記第一電極に対向して設けられた第二電極とを含む表示装置、例えば、LCD、ECD、ELD、有機電界発光素子を用いた表示装置(有機電界発光装置)などの絶縁層にも用いることができる。以下、有機EL表示装置を例に説明する。 The resin composition and cured product of the present invention can be used to flatten the insulating layer of an organic electroluminescence (EL) element and the driving thin film transistor (TFT) substrate of a display device using an organic EL element. It is suitable for use as a layer for protecting wiring on a circuit board, an insulating layer for protecting wiring on a circuit board, an on-chip microlens for a solid-state imaging device, and a flattening layer for various displays and solid-state imaging devices. For example, MRAM with low heat resistance, polymer memory (Polymer Ferroelectric RAM: PFRAM) and phase change memory (Phase Change RAM: PCRAM, Ovonics Unified Memory: OUM), etc., which are promising as next-generation memories. preferred. Further, a display device including a first electrode formed on a substrate and a second electrode provided opposite to the first electrode, for example, a display device using an LCD, ECD, ELD, or an organic electroluminescence device (Organic electroluminescence device) It can also be used as an insulating layer. An organic EL display device will be described below as an example.
 <有機EL表示装置>
 本発明の有機EL表示装置は、基板上に、駆動回路、平坦化層、第1電極、絶縁層、発光層および第2電極を有し、平坦化層および/または絶縁層が本発明の前記硬化物を含む。有機EL発光材料は水分による劣化を受けやすく、発光画素の面積に対する発光部の面積率低下など、悪影響を与える場合があるが、本発明の前記硬化物は吸水率が低いため、安定した駆動および発光特性が得られる。アクティブマトリックス型の表示装置を例に挙げると、ガラスや各種プラスチックなどの基板上に、TFTと、TFTの側方部に位置しTFTと接続された配線とを有し、その上に凹凸を覆うようにして平坦化層を有し、さらに平坦化層上に表示素子が設けられている。表示素子と配線とは、平坦化層に形成されたコンタクトホールを介して接続される。
<Organic EL display device>
The organic EL display device of the present invention has a drive circuit, a planarizing layer, a first electrode, an insulating layer, a light-emitting layer and a second electrode on a substrate, and the planarizing layer and/or the insulating layer are the above-described electrodes of the present invention. Including hardened material. Organic EL light-emitting materials are susceptible to deterioration due to moisture, and may have adverse effects such as a decrease in the area ratio of light-emitting portions to the area of light-emitting pixels. Luminescent properties are obtained. Taking an example of an active-matrix display device, a substrate made of glass, various plastics, or the like is provided with TFTs and wirings located on the sides of the TFTs and connected to the TFTs, and unevenness is covered thereon. A planarization layer is thus provided, and a display element is provided on the planarization layer. The display element and the wiring are connected through a contact hole formed in the planarization layer.
 本発明の有機EL表示装置における前記平坦化層の膜厚は、1.0~5.0μmが好ましく、より好ましくは2.0μm以上である。平坦化層を前述の範囲内とすることで、高精細化により密集したTFTや配線の平坦度を向上させることができる。平坦化層が厚膜化すると、アウトガスが増加し、有機EL表示装置の発光信頼性が低下する原因となるが、本発明の硬化物はアウトガスが少ないため、高い発光信頼性が得られる。また高精細化のため、TFTや配線を膜厚方向にも配置できることから、前記平坦化層は多層であることが好ましい。 The film thickness of the flattening layer in the organic EL display device of the present invention is preferably 1.0 to 5.0 μm, more preferably 2.0 μm or more. By setting the thickness of the flattening layer within the range described above, the flatness of densely packed TFTs and wiring can be improved due to high definition. When the flattening layer is thickened, outgassing increases and causes deterioration of the light emission reliability of the organic EL display device. Further, the flattening layer is preferably multi-layered because TFTs and wiring can be arranged in the film thickness direction for high definition.
 図1に有機EL表示装置の一例の断面図を示す。基板6上に、ボトムゲート型またはトップゲート型のTFT(薄膜トランジスタ)1が行列状に設けられており、このTFT1を覆う状態でTFT絶縁層3が形成されている。また、このTFT絶縁層3上にTFT1に接続された配線2が設けられている。さらにTFT絶縁層3上には、配線2を埋め込む状態で平坦化層4が設けられている。平坦化層4には、配線2に達するコンタクトホール7が設けられている。そして、このコンタクトホール7を介して、配線2に接続された状態で、平坦化層4上にITO(透明電極)5が形成されている。ここで、ITO5は、表示素子(例えば有機EL素子)の電極となる。そしてITO5の周縁を覆うように絶縁層8が形成される。有機EL素子は、基板6と反対側から発光光を放出するトップエミッション型でもよいし、基板6側から光を取り出すボトムエミッション型でもよい。このようにして、各有機EL素子にこれを駆動するためのTFT1を接続したアクティブマトリックス型の有機EL表示装置が得られる。 Fig. 1 shows a cross-sectional view of an example of an organic EL display device. Bottom gate type or top gate type TFTs (thin film transistors) 1 are provided in a matrix on a substrate 6 , and a TFT insulating layer 3 is formed to cover the TFTs 1 . A wiring 2 connected to the TFT 1 is provided on the TFT insulating layer 3 . Further, a flattening layer 4 is provided on the TFT insulating layer 3 so as to bury the wiring 2 therein. A contact hole 7 reaching the wiring 2 is provided in the planarization layer 4 . An ITO (transparent electrode) 5 is formed on the planarization layer 4 while being connected to the wiring 2 through the contact hole 7 . Here, the ITO 5 becomes an electrode of a display element (for example, an organic EL element). An insulating layer 8 is formed so as to cover the periphery of the ITO 5 . The organic EL element may be of a top emission type in which light is emitted from the side opposite to the substrate 6, or may be of a bottom emission type in which light is extracted from the substrate 6 side. In this manner, an active matrix type organic EL display device is obtained in which the TFTs 1 for driving the organic EL elements are connected to the respective organic EL elements.
 かかるTFT絶縁層3、平坦化層4および/または絶縁層8を有する本発明の有機EL表示装置の製造方法は、前述の硬化物の製造方法と同様、基板上に、前記樹脂組成物から形成された樹脂膜を形成する工程、必要に応じて該樹脂膜を乾燥する工程、前記樹脂膜を露光する工程、露光した樹脂膜を現像する工程および現像した樹脂膜を加熱処理する工程を含む。これらの工程を含む製造方法により、本発明の有機EL表示装置を得ることができる。 The manufacturing method of the organic EL display device of the present invention having the TFT insulating layer 3, the planarizing layer 4 and/or the insulating layer 8 is formed from the resin composition on a substrate in the same manner as the above-described method of manufacturing the cured product. drying the resin film as necessary; exposing the resin film to light; developing the exposed resin film; and heat-treating the developed resin film. The organic EL display device of the present invention can be obtained by a manufacturing method including these steps.
 以下、実施例等をあげて本発明を説明するが、本発明はこれらの例によって限定されるものではない。なお、実施例中の樹脂組成物の評価は以下の方法により行った。 The present invention will be described below with reference to examples, etc., but the present invention is not limited to these examples. The resin compositions in the examples were evaluated by the following methods.
 (1)感度
 各実施例および比較例により得られたワニスを、塗布現像装置ACT-8(東京エレクトロン(株)製)を用いて、8インチシリコンウェハー上にスピンコート法により塗布し、120℃で3分間ベークをして膜厚3.0μmのプリベーク膜を作製した。
(1) Sensitivity The varnish obtained in each example and comparative example was applied to an 8-inch silicon wafer by spin coating using a coating and developing apparatus ACT-8 (manufactured by Tokyo Electron Co., Ltd.) at 120°C. was baked for 3 minutes to prepare a prebaked film having a film thickness of 3.0 μm.
 膜厚は、大日本スクリーン製造(株)製ラムダエースSTM-602を用いて、屈折率1.63の条件で測定した。 The film thickness was measured using Lambda Ace STM-602 manufactured by Dainippon Screen Mfg. Co., Ltd. under the condition of a refractive index of 1.63.
 その後、露光機i線ステッパーNSR-2005i9C(ニコン社製)を用いて、10μmのコンタクトホールのパターンを有するマスクを介して、露光量50~300mJ/cmの範囲で5mJ/cm毎に露光した。露光後、前記ACT-8の現像装置を用いて、2.38重量%のテトラメチルアンモニウム水溶液(以下、TMAH;多摩化学工業(株)製)を現像液として、膜減り量が0.5μmになるまで現像した後、蒸留水でリンスを行い、振り切り乾燥し、パターンを得た。 After that, using an exposure machine i-line stepper NSR-2005i9C (manufactured by Nikon Corporation), through a mask having a pattern of 10 μm contact holes, exposure dose ranged from 50 to 300 mJ/cm 2 every 5 mJ/cm 2 . bottom. After exposure, the ACT-8 developing device was used to reduce the film thickness to 0.5 μm by using a 2.38% by weight tetramethylammonium aqueous solution (hereinafter referred to as TMAH; manufactured by Tama Kagaku Kogyo Co., Ltd.) as a developer. After the development was completed, the film was rinsed with distilled water, shaken off and dried to obtain a pattern.
 得られたパターンをFDP顕微鏡MX61(オリンパス(株)製)を用いて倍率20倍で観察し、コンタクトホールの開口径を測定した。コンタクトホールの開口径が10μmに達した最低露光量(mJ/cm)を求め、これを感度とした。 The resulting pattern was observed with an FDP microscope MX61 (manufactured by Olympus Corporation) at a magnification of 20 times to measure the opening diameter of the contact hole. The minimum exposure dose (mJ/cm 2 ) at which the opening diameter of the contact hole reached 10 μm was obtained and defined as the sensitivity.
 (2)硬化物のアウトガス
 各実施例および比較例により得られたワニスを、スピンコーター(MS-A100;ミカサ(株)製)を用いて、6インチシリコンウェハー上にスピンコーティング法により塗布した後、ホットプレート(SCW-636;大日本スクリーン製造(株)製)を用いて120℃で120秒間プリベークし、膜厚約3.0μmのプリベーク膜を作製した。
(2) Outgassing of cured product After applying the varnish obtained in each example and comparative example to a 6-inch silicon wafer by a spin coating method using a spin coater (MS-A100; manufactured by Mikasa Co., Ltd.) , a hot plate (SCW-636; manufactured by Dainippon Screen Mfg. Co., Ltd.) and prebaked at 120° C. for 120 seconds to prepare a prebaked film having a thickness of about 3.0 μm.
 膜厚は、大日本スクリーン製造(株)製ラムダエースSTM-602を用いて、屈折率1.63の条件で測定した。 The film thickness was measured using Lambda Ace STM-602 manufactured by Dainippon Screen Mfg. Co., Ltd. under the condition of a refractive index of 1.63.
 得られたプリベーク膜をイナートオーブンCLH-21CD-S(光洋サーモシステム(株)製)を用いて、酸素濃度20体積ppm以下で5℃/分の昇温条件で250℃まで昇温しながら加熱し、さらに250℃で1時間焼成を行い、樹脂組成物を硬化した硬化物を作製した。得られた6インチシリコンウェハー上の硬化物のうち10mgを、パージガスとしてヘリウムを用いて180℃で30分間加熱し、パージ・アンド・トラップ法により脱離した成分を吸着剤(Carbotrap400)に捕集した。 The resulting pre-baked film is heated to 250° C. using an inert oven CLH-21CD-S (manufactured by Koyo Thermo Systems Co., Ltd.) at an oxygen concentration of 20 ppm by volume or less and a temperature increase of 5° C./min. Then, the resin composition was baked at 250° C. for 1 hour to prepare a cured product. 10 mg of the resulting cured product on a 6-inch silicon wafer was heated at 180° C. for 30 minutes using helium as a purge gas, and the desorbed components were collected on an adsorbent (Carbotrap 400) by a purge and trap method. bottom.
 捕集した成分を280℃で5分間熱脱離させ、次いで、GC-MS装置6890/5973N(Agilent社製)を用い、カラム温度:40~300℃、キャリアガス:ヘリウム(1.5mL/min)、スキャン範囲:m/Z=29~600の条件で、GC-MS分析を実施した。n-ヘキサデカンを標準物質として上記と同一条件でGC-MS分析することにより作成した検量線から、ガス発生量(重量ppm)を算出した。 The collected components were thermally desorbed at 280° C. for 5 minutes, then using GC-MS apparatus 6890/5973N (manufactured by Agilent), column temperature: 40 to 300° C., carrier gas: helium (1.5 mL/min ), scanning range: GC-MS analysis was performed under the conditions of m / Z = 29 to 600. The amount of gas generated (weight ppm) was calculated from a calibration curve prepared by GC-MS analysis under the same conditions as above using n-hexadecane as a standard substance.
 (3)5%重量減少温度
 (2)と同様の方法により硬化後の膜厚が10μmとなるように6インチシリコンウェハー上に樹脂組成物の硬化物を作製し、45重量%のフッ化水素酸に5分間浸漬することにより、ウエハより硬化物を剥離した。得られた硬化物を純水で充分に洗浄した後、60℃のオーブンで5時間乾燥してフィルムを得た。得られたフィルム10mgを熱重量分析装置TGA-50(島津製作所(株)製)に入れ、窒素雰囲気下、室温から100℃まで昇温した後、さらに100℃にて30分間保持し、重量を測定した。その後、昇温速度10℃/分の条件で400℃まで昇温しながら重量を測定し、100℃30分間保持後の重量に対して5%減少した時の温度を測定した。
(3) 5% weight loss temperature A cured product of the resin composition was prepared on a 6-inch silicon wafer by the same method as in (2) so that the film thickness after curing was 10 μm, and 45% by weight of hydrogen fluoride was added. The cured product was peeled off from the wafer by immersion in acid for 5 minutes. After thoroughly washing the resulting cured product with pure water, it was dried in an oven at 60° C. for 5 hours to obtain a film. 10 mg of the obtained film was placed in a thermogravimetric analyzer TGA-50 (manufactured by Shimadzu Corporation), heated from room temperature to 100°C under a nitrogen atmosphere, then held at 100°C for 30 minutes, and weighed. It was measured. After that, the weight was measured while the temperature was raised to 400° C. at a heating rate of 10° C./min, and the temperature was measured when the weight decreased by 5% after holding at 100° C. for 30 minutes.
 (4)有機EL表示装置の長期信頼性評価
 図2に有機機EL表示装置の作製手順の概略図を示す。
(4) Long-Term Reliability Evaluation of Organic EL Display Device FIG. 2 shows a schematic diagram of the manufacturing procedure of the organic EL display device.
 まず、38mmmm×46mmの無アルカリガラス基板19に、ITO透明導電膜10nmをスパッタ法により基板全面に形成し、第一電極(透明電極)20としてエッチングした。また同時に、第二電極を取り出すための補助電極21も形成した。(左上図)
 得られた基板をセミコクリーン56(商品名、フルウチ化学(株)製)で10分間超音波洗浄してから、超純水で洗浄した。
First, an ITO transparent conductive film of 10 nm was formed on the entire surface of the alkali-free glass substrate 19 of 38 mm×46 mm by sputtering, and etched as the first electrode (transparent electrode) 20 . At the same time, an auxiliary electrode 21 for taking out the second electrode was also formed. (Upper left figure)
The obtained substrate was ultrasonically cleaned for 10 minutes with Semico Clean 56 (trade name, manufactured by Furuuchi Chemical Co., Ltd.) and then cleaned with ultrapure water.
 次にこの基板全面に、後述する表3に示す樹脂組成物をスピンコート法により塗布し、120℃のホットプレート上で2分間プリベークした。この膜にフォトマスクを介してUV露光した後、2.38重量%TMAH水溶液で現像し、不要な部分を溶解させ、純水でリンスした。得られた樹脂パターンを、高温イナートガスオーブン(INH-9CD-S;光洋サーモシステム(株)製)を用いて窒素雰囲気下250℃で1時間加熱処理した。このようにして、幅70μm、長さ260μmの開口部が幅方向にピッチ155μm、長さ方向にピッチ465μmで配置され、それぞれの開口部が第一電極を露出せしめる形状の絶縁層22を、基板有効エリアに限定して形成した。このようにして、1辺が16mmの四角形である基板有効エリアに絶縁層開口率25%の絶縁層22を形成した。絶縁層の厚さは約1.0μmであった。(右上図)
 次に、前処理として窒素プラズマ処理を行った後、真空蒸着法により発光層を含む有機EL層23を形成した(左下図)。なお、蒸着時の真空度は1×10-3Pa以下であり、蒸着中は蒸着源に対して基板を回転させた。まず、正孔注入層として化合物(HT-1)を10nm、正孔輸送層として化合物(HT-2)を50nm蒸着した。次に発光層に、ホスト材料としての化合物(GH-1)とドーパント材料としての化合物(GD-1)を、ドープ濃度が10%になるようにして40nmの厚さに蒸着した。次に、電子輸送材料として化合物(ET-1)と化合物(LiQ)を体積比1:1で40nmの厚さに積層した。有機EL層で用いた化合物の構造を以下に示す。
Next, the entire surface of the substrate was coated with a resin composition shown in Table 3, which will be described later, by spin coating, and prebaked on a hot plate at 120° C. for 2 minutes. This film was exposed to UV light through a photomask, developed with a 2.38% by weight TMAH aqueous solution to dissolve unnecessary portions, and rinsed with pure water. The resulting resin pattern was heat-treated at 250° C. for 1 hour in a nitrogen atmosphere using a high-temperature inert gas oven (INH-9CD-S; manufactured by Koyo Thermo Systems Co., Ltd.). In this manner, the insulating layer 22 having a width of 70 μm and a length of 260 μm is arranged at a pitch of 155 μm in the width direction and a pitch of 465 μm in the length direction, and each opening exposes the first electrode. Formed only in the effective area. In this manner, the insulating layer 22 having an insulating layer aperture ratio of 25% was formed in the effective area of the substrate, which was a square with one side of 16 mm. The thickness of the insulating layer was about 1.0 μm. (upper right figure)
Next, after performing a nitrogen plasma treatment as a pretreatment, an organic EL layer 23 including a light-emitting layer was formed by a vacuum deposition method (lower left figure). The degree of vacuum during vapor deposition was 1×10 −3 Pa or less, and the substrate was rotated with respect to the vapor deposition source during vapor deposition. First, 10 nm of compound (HT-1) was deposited as a hole injection layer, and 50 nm of compound (HT-2) was deposited as a hole transport layer. Next, a compound (GH-1) as a host material and a compound (GD-1) as a dopant material were deposited on the light-emitting layer to a thickness of 40 nm with a doping concentration of 10%. Next, the compound (ET-1) and the compound (LiQ) as electron transport materials were laminated at a volume ratio of 1:1 to a thickness of 40 nm. Structures of compounds used in the organic EL layer are shown below.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 次に、化合物(LiQ)を2nm蒸着した後、MgおよびAgを体積比10:1で10nm蒸着して第二電極(非透明電極)24とした。(右下図)
 最後に、低湿窒素雰囲気下でキャップ状ガラス板をエポキシ樹脂系接着剤を用いて接着することで封止をし、1枚の基板上に1辺が5mmの四角形であるトップエミッション方式の有機EL表示装置を4つ作製した。なお、ここで言う膜厚は水晶発振式膜厚モニターにおける表示値である。
Next, after vapor-depositing a compound (LiQ) to a thickness of 2 nm, Mg and Ag were vapor-deposited to a thickness of 10 nm at a volume ratio of 10:1 to form a second electrode (non-transparent electrode) 24 . (bottom right figure)
Finally, a cap-shaped glass plate was adhered with an epoxy resin-based adhesive under a low humidity nitrogen atmosphere for sealing. Four display devices were produced. Incidentally, the film thickness referred to here is a value displayed on a crystal oscillation type film thickness monitor.
 作製した有機EL表示装置を、発光面を上にして80℃に加熱したホットプレートに載せ、波長365nm、照度0.6mW/cmのUV光を照射した。照射直後(0時間)、250時間、500時間、1,000時間経過後に、有機EL表示装置0.625mAの直流駆動により発光させ、発光画素の面積に対する発光部の面積率(画素発光面積率)を測定した。この評価方法による1,000時間経過後の画素発光面積率として、80%以上であれば長期信頼性が優れていると言え、90%以上であればより好ましい。 The produced organic EL display device was placed on a hot plate heated to 80° C. with the light-emitting surface facing up, and irradiated with UV light having a wavelength of 365 nm and an illuminance of 0.6 mW/cm 2 . Immediately after irradiation (0 hour), 250 hours, 500 hours, and 1,000 hours later, the organic EL display device was driven to emit light by direct current driving at 0.625 mA, and the area ratio of the light emitting portion to the area of the light emitting pixel (pixel light emitting area ratio). was measured. According to this evaluation method, when the pixel emission area ratio after 1,000 hours has passed is 80% or more, it can be said that the long-term reliability is excellent, and when it is 90% or more, it is more preferable.
 (5)ノボラック型フェノール樹脂の重量平均分子量および分散比について
 合成例5~16により得られた樹脂について、GPC(ゲルパーミエーションクロマトグラフィー)装置Waters2690-996(日本ウォーターズ(株)製)を用いて、展開溶媒をN-メチル-2-ピロリドン(以下、NMP)として、ポリスチレン換算の重量平均分子量(Mw)及びポリスチレン換算の数平均分子量(Mn)を求めて、分散比(Mw/Mn)を算出した。
(5) Weight-average molecular weight and dispersion ratio of novolac-type phenolic resin The resins obtained in Synthesis Examples 5 to 16 were analyzed using a GPC (gel permeation chromatography) apparatus Waters 2690-996 (manufactured by Japan Waters Co., Ltd.). , Using N-methyl-2-pyrrolidone (hereinafter, NMP) as a developing solvent, the polystyrene-equivalent weight-average molecular weight (Mw) and polystyrene-equivalent number-average molecular weight (Mn) are obtained, and the dispersion ratio (Mw/Mn) is calculated. bottom.
 (6)ノボラック型フェノール樹脂の分子量1,000以下の含有量について
 前記(5)と同様に、合成例5~16により得られた樹脂について、GPC(ゲルパーミエーションクロマトグラフィー)装置Waters2690-996(日本ウォーターズ(株)製)を用いて、展開溶媒をNMPとして、Empower3ソフトウェア(日本ウォーターズ(株)製)を用いて、縦軸に重量分率(%)、横軸にポリスチレン換算の分子量をプロットした分子量分布曲線から、ポリスチレン換算の分子量1,000以下のノボラック型フェノール樹脂の含有量を求めた。
(6) Regarding the content of the novolac-type phenolic resin having a molecular weight of 1,000 or less In the same manner as in (5) above, the resins obtained in Synthesis Examples 5 to 16 were subjected to GPC (gel permeation chromatography) apparatus Waters 2690-996 ( NMP as the developing solvent, Empower3 software (manufactured by Nippon Waters Co., Ltd.) is used to plot the weight fraction (%) on the vertical axis and the polystyrene-equivalent molecular weight on the horizontal axis. From the obtained molecular weight distribution curve, the content of the novolak type phenolic resin having a polystyrene-equivalent molecular weight of 1,000 or less was obtained.
 合成例1 ヒドロキシル基含有ジアミン化合物(α)の合成
 2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン(以下、BAHF)18.3g(0.05モル)をアセトン100mL、プロピレンオキシド17.4g(0.3モル)に溶解させ、-15℃に冷却した。ここに3-ニトロベンゾイルクロリド20.4g(0.11モル)をアセトン100mLに溶解させた溶液を滴下した。滴下終了後、-15℃で4時間反応させ、その後室温に戻した。析出した白色固体をろ別し、50℃で真空乾燥した。
Synthesis Example 1 Synthesis of hydroxyl group-containing diamine compound (α) 18.3 g (0.05 mol) of 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (hereinafter referred to as BAHF) was added to 100 mL of acetone and propylene. It was dissolved in 17.4 g (0.3 mol) of oxide and cooled to -15°C. A solution prepared by dissolving 20.4 g (0.11 mol) of 3-nitrobenzoyl chloride in 100 mL of acetone was added dropwise thereto. After completion of the dropwise addition, the mixture was allowed to react at -15°C for 4 hours, and then returned to room temperature. The precipitated white solid was collected by filtration and vacuum dried at 50°C.
 固体30gを300mLのステンレスオートクレーブに入れ、メチルセロソルブ250mLに分散させ、5%パラジウム-炭素を2g加えた。ここに水素を風船で導入して、還元反応を室温で行った。約2時間後、風船がこれ以上しぼまないことを確認して反応を終了させた。反応終了後、濾過して触媒であるパラジウム化合物を除き、ロータリーエバポレーターで濃縮し、下記式で表されるヒドロキシル基含有ジアミン化合物(α)を得た。 30 g of the solid was placed in a 300 mL stainless steel autoclave, dispersed in 250 mL of methyl cellosolve, and 2 g of 5% palladium-carbon was added. Hydrogen was introduced here with a balloon, and the reduction reaction was carried out at room temperature. After about 2 hours, the reaction was terminated after confirming that the balloon did not deflate any more. After completion of the reaction, the palladium compound as a catalyst was removed by filtration and concentrated with a rotary evaporator to obtain a hydroxyl group-containing diamine compound (α) represented by the following formula.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 合成例2 アルカリ可溶性樹脂(a-1)の合成
 乾燥窒素気流下、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(以下、6FDA)44.4g(0.10モル)をNMP500gに溶解させた。ここに末端封止剤として3-アミノフェノール4.46g(0.05モル)をNMP5gとともに加え、40℃で30分間反応させた。ここに合成例1で得られたヒドロキシル基含有ジアミン化合物(α)30.2g(0.05モル)、BAHF7.32g(0.02モル)と1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン1.24g(0.005モル)をNMP50gとともに加え、40℃で2時間反応させた。その後、N,N-ジメチルホルムアミドジメチルアセタール28.6g(0.24モル)をNMP50gで希釈した溶液を投入した。投入後、40℃で3時間撹拌した。撹拌終了後、溶液を室温まで冷却した後、溶液を水3Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、80℃の真空乾燥機で24時間乾燥し、アルカリ可溶性樹脂(a-1)として用いるポリイミド前駆体を得た。
Synthesis Example 2 Synthesis of alkali-soluble resin (a-1) 44.4 g (0.10 mol) of 4,4'-(hexafluoroisopropylidene) diphthalic dianhydride (hereinafter referred to as 6FDA) was added to 500 g of NMP under a dry nitrogen stream. was dissolved in 4.46 g (0.05 mol) of 3-aminophenol as a terminal blocker was added together with 5 g of NMP, and reacted at 40° C. for 30 minutes. Here, 30.2 g (0.05 mol) of the hydroxyl group-containing diamine compound (α) obtained in Synthesis Example 1, 7.32 g (0.02 mol) of BAHF and 1,3-bis(3-aminopropyl)tetramethyl 1.24 g (0.005 mol) of disiloxane was added along with 50 g of NMP and allowed to react at 40° C. for 2 hours. Then, a solution prepared by diluting 28.6 g (0.24 mol) of N,N-dimethylformamide dimethylacetal with 50 g of NMP was added. After charging, the mixture was stirred at 40°C for 3 hours. After the stirring was completed, the solution was cooled to room temperature and then poured into 3 L of water to obtain a white precipitate. This precipitate was collected by filtration, washed with water three times, and dried in a vacuum dryer at 80° C. for 24 hours to obtain a polyimide precursor used as an alkali-soluble resin (a-1).
 合成例3 アルカリ可溶性樹脂(a-2)の合成
 乾燥窒素気流下、BAHF29.3g(0.08モル)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン1.24g(0.005モル)、末端封止剤として、3-アミノフェノール3.27g(0.03モル)をNMP150gに溶解した。ここに3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物(以下、ODPA)31.0g(0.1モル)をNMP50gとともに加えて、20℃で1時間撹拌し、次いで50℃で4時間撹拌した。その後、キシレンを15g添加し、水をキシレンとともに共沸しながら、150℃で5時間撹拌した。撹拌終了後、溶液を水3Lに投入して白色沈殿を集めた。この沈殿をろ過で集めて、水で3回洗浄した後、80℃の真空乾燥機で24時間乾燥し、アルカリ可溶性樹脂(a-2)として用いるポリイミドを得た。
Synthesis Example 3 Synthesis of alkali-soluble resin (a-2) Under dry nitrogen stream, 29.3 g (0.08 mol) of BAHF, 1.24 g (0.005 g) of 1,3-bis(3-aminopropyl)tetramethyldisiloxane mol), and as a terminal blocking agent, 3.27 g (0.03 mol) of 3-aminophenol was dissolved in 150 g of NMP. 3,3′,4,4′-Diphenylethertetracarboxylic dianhydride (hereinafter referred to as ODPA) 31.0 g (0.1 mol) was added together with NMP 50 g, stirred at 20° C. for 1 hour, and then stirred at 50° C. and stirred for 4 hours. After that, 15 g of xylene was added, and the mixture was stirred at 150° C. for 5 hours while azeotroping water with the xylene. After the stirring was completed, the solution was poured into 3 L of water and a white precipitate was collected. This precipitate was collected by filtration, washed with water three times, and dried in a vacuum dryer at 80° C. for 24 hours to obtain a polyimide used as an alkali-soluble resin (a-2).
 合成例4 アルカリ可溶性樹脂(a-3)の合成
 乾燥窒素気流下、BAHF18.3g(0.05モル)をNMP50g、グリシジルメチルエーテル26.4g(0.3モル)に溶解させ、溶液の温度を-15℃まで冷却した。ここにジフェニルエーテルジカルボン酸ジクロリド(日本農薬(株)製)7.4g(0.025モル)、イソフタル酸クロリド(東京化成(株)製)5.1g(0.025モル)をγ-ブチロラクトン(GBL)25gに溶解させた溶液を内部の温度が0℃を越えないように滴下した。滴下終了後、-15℃で6時間撹拌を続けた。反応終了後、メタノールを10重量%含んだ水3Lに溶液を投入して白色の沈殿を集めた。この沈殿を濾過で集めて、水で3回洗浄した後、80℃の真空乾燥機で24時間乾燥し、アルカリ可溶性樹脂(a-3)として用いるポリベンゾオキサゾール前駆体を得た。
Synthesis Example 4 Synthesis of alkali-soluble resin (a-3) Under a dry nitrogen stream, 18.3 g (0.05 mol) of BAHF was dissolved in 50 g of NMP and 26.4 g (0.3 mol) of glycidyl methyl ether, and the temperature of the solution was adjusted to Cool to -15°C. Here, 7.4 g (0.025 mol) of diphenyl ether dicarboxylic acid dichloride (manufactured by Nihon Nohyaku Co., Ltd.) and 5.1 g (0.025 mol) of isophthalic acid chloride (manufactured by Tokyo Kasei Co., Ltd.) are mixed with γ-butyrolactone (GBL ) was added dropwise so that the internal temperature did not exceed 0°C. After the dropwise addition was completed, stirring was continued at -15°C for 6 hours. After completion of the reaction, the solution was poured into 3 L of water containing 10% by weight of methanol to collect a white precipitate. This precipitate was collected by filtration, washed with water three times, and dried in a vacuum dryer at 80° C. for 24 hours to obtain a polybenzoxazole precursor used as an alkali-soluble resin (a-3).
 合成例5 ノボラック型フェノール樹脂(b-1)の合成
 m-クレゾールを100g、37%ホルマリンを81.9g、89%リン酸を60g、エチレングリコールを100g仕込んだ後、攪拌混合により形成される白濁状態のもとで、徐々に還流温度まで昇温し、さらに同温度で22時間縮合反応を行ってから反応を停止した。次いで攪拌混合しながらメチルイソブチルケトン50gを添加して縮合物を溶解させた後、攪拌を停止して内容物を分液フラスコ内に移して静置し、メチルイソブチル溶液相(上層)とリン酸水溶液相(下層)に分離させた。次いで、リン酸水溶液を除去し、メチルイソブチルケトン溶液を数回水洗してリン酸を除去した後、再び内容物を反応容器内に戻し、10KPaの減圧蒸留で4時間処理しメチルイソブチルケトンを除去してm-クレゾールノボラック樹脂110gを得た。
Synthesis Example 5 Synthesis of novolac-type phenolic resin (b-1) 100 g of m-cresol, 81.9 g of 37% formalin, 60 g of 89% phosphoric acid, and 100 g of ethylene glycol were charged, and then cloudy by stirring and mixing. Under these conditions, the temperature was gradually raised to the reflux temperature, and the condensation reaction was carried out at the same temperature for 22 hours, after which the reaction was stopped. Then, while stirring and mixing, 50 g of methyl isobutyl ketone was added to dissolve the condensate, and then the stirring was stopped and the content was transferred to a separating flask and allowed to stand. The aqueous phase (lower layer) was allowed to separate. Next, the aqueous solution of phosphoric acid is removed, and the methyl isobutyl ketone solution is washed with water several times to remove the phosphoric acid, and then the contents are returned to the reaction vessel and subjected to distillation under reduced pressure of 10 KPa for 4 hours to remove methyl isobutyl ketone. 110 g of m-cresol novolac resin was obtained.
 キシレン1000gを攪拌させながら、得られたm-クレゾールノボラック樹脂100gをメチルイソブチルケトン50gに溶解させた樹脂溶液150gを滴下し、充分に攪拌した後、静置することで沈殿層を生じさせた。その後、沈殿層を取り出し、脱溶媒することでm-クレゾールノボラック樹脂(b-1)95gを得、特性を評価した。結果を表1に示す。 While stirring 1000 g of xylene, 150 g of a resin solution obtained by dissolving 100 g of the obtained m-cresol novolak resin in 50 g of methyl isobutyl ketone was added dropwise, and after sufficient stirring, the mixture was allowed to stand to form a sediment layer. After that, the sediment layer was taken out and the solvent was removed to obtain 95 g of m-cresol novolak resin (b-1), and the properties were evaluated. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 合成例6 ノボラック型フェノール樹脂(b-2)の合成
 フェノールを100g、37%ホルマリンを81.9g、シュウ酸二水和物を1g、エチレングリコールを100g仕込んだ後、攪拌混合により形成される白濁状態のもとで、徐々に還流温度まで昇温し、さらに同温度で14時間縮合反応を行ってから反応を停止した。次いで攪拌混合しながらメチルイソブチルケトン50gを添加して縮合物を溶解させた後、攪拌を停止して内容物を分液フラスコ内に移して静置し、メチルイソブチル溶液相(上層)とシュウ酸水溶液相(下層)に分離させた。次いで、シュウ酸水溶液を除去し、メチルイソブチルケトン溶液を数回水洗してシュウ酸を除去した後、再び内容物を反応容器内に戻し、大気圧下で150℃まで加熱し、メチルイソブチルケトンを除去して、フェノールノボラック樹脂95gを得た。
Synthesis Example 6 Synthesis of novolac-type phenolic resin (b-2) After charging 100 g of phenol, 81.9 g of 37% formalin, 1 g of oxalic acid dihydrate, and 100 g of ethylene glycol, cloudiness formed by stirring and mixing Under these conditions, the temperature was gradually raised to the reflux temperature, and the condensation reaction was carried out at the same temperature for 14 hours, after which the reaction was stopped. Then, while stirring and mixing, 50 g of methyl isobutyl ketone was added to dissolve the condensate, and then the stirring was stopped and the content was transferred into a separating flask and allowed to stand. The aqueous phase (lower layer) was allowed to separate. Next, the aqueous oxalic acid solution is removed, and the methyl isobutyl ketone solution is washed with water several times to remove oxalic acid, and then the contents are returned to the reaction vessel and heated to 150° C. under atmospheric pressure to remove methyl isobutyl ketone. Removal yielded 95 g of phenolic novolac resin.
 フェノールノボラック樹脂90gをメチルイソブチルケトン50g/メタノール350g混合溶液に溶解させ、攪拌しながら蒸留水350gを滴下し、充分に攪拌した後、静置することで、樹脂溶液相と水溶液相に分離した。その後、樹脂溶液相を取り出し、脱溶媒することでフェノールノボラック樹脂(b-2)55gを得、特性を評価した。結果を表1に併せて示す。 90 g of phenol novolac resin was dissolved in a mixed solution of 50 g of methyl isobutyl ketone/350 g of methanol, 350 g of distilled water was added dropwise while stirring, and after sufficient stirring, the solution was allowed to stand to separate into a resin solution phase and an aqueous solution phase. After that, the resin solution phase was taken out and the solvent was removed to obtain 55 g of phenol novolac resin (b-2), and the properties were evaluated. The results are also shown in Table 1.
 合成例7 ノボラック型フェノール樹脂(b-3)の合成
 フェノールを100g、37%ホルマリンを81.9g、89%リン酸を60g、エチレングリコールを100g仕込んだ後、攪拌混合により形成される白濁状態のもとで、徐々に還流温度まで昇温し、さらに同温度で10時間縮合反応を行ってから反応を停止した。次いで攪拌混合しながらメチルイソブチルケトンを50g添加して縮合物を溶解させた後、攪拌を停止して内容物を分液フラスコ内に移して静置し、メチルイソブチル溶液相(上層)とリン酸水溶液相(下層)に分離させた。次いで、リン酸水溶液を除去し、メチルイソブチルケトン溶液を数回水洗してリン酸を除去した後、再び内容物を反応容器内に戻し、25KPaの減圧蒸留で4時間処理し、メチルイソブチルケトンを除去してフェノールノボラック樹脂95gを得た。
Synthesis Example 7 Synthesis of Novolac Phenolic Resin (b-3) After charging 100 g of phenol, 81.9 g of 37% formalin, 60 g of 89% phosphoric acid, and 100 g of ethylene glycol, a cloudy state formed by stirring and mixing. Then, the temperature was gradually raised to the reflux temperature, and the condensation reaction was carried out at the same temperature for 10 hours, after which the reaction was stopped. Then, 50 g of methyl isobutyl ketone was added while stirring and mixing to dissolve the condensate, then the stirring was stopped and the content was transferred to a separating flask and allowed to stand. The aqueous phase (lower layer) was allowed to separate. Next, the aqueous solution of phosphoric acid was removed, and the methyl isobutyl ketone solution was washed with water several times to remove the phosphoric acid. After that, the contents were returned to the reaction vessel and subjected to distillation under reduced pressure of 25 KPa for 4 hours to remove methyl isobutyl ketone. Removal yielded 95 g of phenolic novolak resin.
 フェノールノボラック樹脂90gをメチルイソブチルケトン50g/メタノール300g混合溶液に溶解させ、攪拌しながら蒸留水150gを滴下し、充分に攪拌した後、静置することで、樹脂溶液相と水溶液相に分離した。その後、樹脂溶液相を取り出し、脱溶媒することでフェノールノボラック樹脂(b-3)85gを得、特性を評価した。結果を表1に併せて示す。 90 g of phenol novolac resin was dissolved in a mixed solution of 50 g of methyl isobutyl ketone/300 g of methanol, 150 g of distilled water was added dropwise while stirring, and after sufficient stirring, the solution was allowed to stand to separate into a resin solution phase and an aqueous solution phase. After that, the resin solution phase was taken out and the solvent was removed to obtain 85 g of phenol novolac resin (b-3), and the properties were evaluated. The results are also shown in Table 1.
 合成例8 ノボラック型フェノール樹脂(b-4)の合成
 m-クレゾールを100g、37%ホルマリンを81.9g、89%リン酸を60g、仕込んだ後、攪拌混合により形成される白濁状態のもとで、徐々に還流温度まで昇温し、さらに同温度で9時間縮合反応を行ってから反応を停止した。次いで攪拌混合しながらメチルエチルケトンを50g添加して縮合物を溶解させた後、攪拌を停止して内容物を分液フラスコ内に移して静置し、メチルエチルケトン溶液相(上層)とリン酸水溶液相(下層)に分離させた。次いで、リン酸水溶液を除去し、メチルエチルケトン溶液を数回水洗してリン酸を除去した後、再び内容物を反応容器内に戻し、大気圧下で150℃まで加熱してメチルエチルケトンを除去してm-クレゾールノボラック樹脂95gを得た。
Synthesis Example 8 Synthesis of novolak-type phenol resin (b-4) 100 g of m-cresol, 81.9 g of 37% formalin, and 60 g of 89% phosphoric acid were charged, and then stirred and mixed to form a cloudy state. Then, the temperature was gradually raised to the reflux temperature, and the condensation reaction was carried out at the same temperature for 9 hours, after which the reaction was stopped. Then, while stirring and mixing, 50 g of methyl ethyl ketone was added to dissolve the condensate, and then the stirring was stopped and the contents were transferred to a separating flask and allowed to stand. lower layer). Next, the aqueous solution of phosphoric acid is removed, and the methyl ethyl ketone solution is washed with water several times to remove the phosphoric acid, and then the contents are returned to the reaction vessel and heated to 150° C. under atmospheric pressure to remove the methyl ethyl ketone. - 95 g of cresol novolac resin were obtained.
 m-クレゾールノボラック樹脂90gをメチルエチルケトン50g/メタノール300g混合溶液に溶解させ、攪拌しながら蒸留水120gを滴下し、充分に攪拌した後、静置することで、樹脂溶液相と水溶液相に分離した。その後、樹脂溶液相を取り出し、脱溶媒することでm-クレゾールノボラック樹脂(b-4)85gを得、特性を評価した。結果を表1に併せて示す。 90 g of m-cresol novolak resin was dissolved in a mixed solution of 50 g of methyl ethyl ketone and 300 g of methanol, 120 g of distilled water was added dropwise while stirring, and after sufficient stirring, the mixture was allowed to stand to separate into a resin solution phase and an aqueous solution phase. Thereafter, the resin solution phase was taken out and the solvent was removed to obtain 85 g of m-cresol novolac resin (b-4), and the properties were evaluated. The results are also shown in Table 1.
 合成例9 ノボラック型フェノール樹脂(b-5)の合成
 m-クレゾールを105g、37%ホルマリンを81.9g、89%リン酸を60g、エチレングリコールを100g仕込んだ後、攪拌混合により形成される白濁状態のもとで、徐々に還流温度まで昇温し、さらに同温度で17時間縮合反応を行ってから反応を停止した。次いで攪拌混合しながらメチルイソブチルケトンを50g添加して縮合物を溶解させた後、攪拌を停止して内容物を分液フラスコ内に移して静置し、メチルイソブチルケトン溶液相(上層)とリン酸水溶液相(下層)に分離させた。次いで、リン酸水溶液を除去し、メチルイソブチルケトン溶液を数回水洗してリン酸を除去した後、再び内容物を反応容器内に戻し、大気圧下で150℃まで加熱してメチルイソブチルケトンを除去してm-クレゾールノボラック樹脂100gを得た。
Synthesis Example 9 Synthesis of novolak-type phenolic resin (b-5) 105 g of m-cresol, 81.9 g of 37% formalin, 60 g of 89% phosphoric acid, and 100 g of ethylene glycol are charged, and then cloudy by stirring and mixing. Under these conditions, the temperature was gradually raised to the reflux temperature, and the condensation reaction was carried out at the same temperature for 17 hours, after which the reaction was stopped. Next, 50 g of methyl isobutyl ketone was added while stirring and mixing to dissolve the condensate, then the stirring was stopped and the contents were transferred into a separating flask and allowed to stand. The aqueous acid phase (lower layer) was allowed to separate. Next, the aqueous solution of phosphoric acid is removed, and the methyl isobutyl ketone solution is washed with water several times to remove the phosphoric acid, and then the contents are returned to the reaction vessel and heated to 150° C. under atmospheric pressure to remove methyl isobutyl ketone. Removal gave 100 g of m-cresol novolac resin.
 m-クレゾールノボラック樹脂95gをメチルイソブチルケトン100g/キシレン1,000g混合溶液に溶解させ、充分に攪拌した後、静置することで樹脂相を分離し、ろ過・脱溶媒することでm-クレゾールノボラック樹脂(b-5)90gを得、特性を評価した。結果を表1に併せて示す。 95 g of m-cresol novolac resin is dissolved in a mixed solution of 100 g of methyl isobutyl ketone and 1,000 g of xylene, and after sufficiently stirring, the resin phase is separated by allowing to stand still, followed by filtering and removing the solvent to obtain m-cresol novolak. 90 g of resin (b-5) was obtained and its properties were evaluated. The results are also shown in Table 1.
 合成例10 ノボラック型フェノール樹脂(b-6)の合成
 m-クレゾールを105g、37%ホルマリンを81.9g、89%リン酸を60g、仕込んだ後、攪拌混合により形成される白濁状態のもとで、徐々に還流温度まで昇温し、さらに同温度で13時間縮合反応を行ってから反応を停止した。次いで攪拌混合しながらメチルイソブチルケトンを50g添加して縮合物を溶解させた後、攪拌を停止して内容物を分液フラスコ内に移して静置し、メチルイソブチルケトン溶液相(上層)とリン酸水溶液相(下層)に分離させた。次いで、リン酸水溶液を除去し、メチルイソブチルケトン溶液を数回水洗してリン酸を除去した後、再び内容物を反応容器内に戻し、5KPa以下の減圧蒸留下で4時間処理し、メチルイソブチルケトンを除去して、m-クレゾールノボラック樹脂100gを得た。
Synthesis Example 10 Synthesis of Novolac Phenolic Resin (b-6) 105 g of m-cresol, 81.9 g of 37% formalin, and 60 g of 89% phosphoric acid were charged, and then stirred and mixed to form a cloudy state. Then, the temperature was gradually raised to the reflux temperature, and after the condensation reaction was carried out at the same temperature for 13 hours, the reaction was stopped. Next, 50 g of methyl isobutyl ketone was added while stirring and mixing to dissolve the condensate, then the stirring was stopped and the contents were transferred into a separating flask and allowed to stand. The aqueous acid phase (lower layer) was allowed to separate. Next, the aqueous solution of phosphoric acid was removed, and the methyl isobutyl ketone solution was washed with water several times to remove the phosphoric acid. The ketone was removed to obtain 100 g of m-cresol novolak resin.
 m-クレゾールノボラック樹脂95gをメチルイソブチルケトン100g/キシレン1,000g混合溶液に溶解させ、充分に攪拌した後、静置することで樹脂相を分離し、ろ過・脱溶媒することでm-クレゾールノボラック樹脂(b-6)60gを得、特性を評価した。結果を表1に併せて示す。 95 g of m-cresol novolac resin is dissolved in a mixed solution of 100 g of methyl isobutyl ketone and 1,000 g of xylene, and after sufficiently stirring, the resin phase is separated by allowing to stand still, followed by filtering and removing the solvent to obtain m-cresol novolak. 60 g of resin (b-6) was obtained and its properties were evaluated. The results are also shown in Table 1.
 合成例11 ノボラック型フェノール樹脂(b-7)の合成
 m-クレゾールを100g、37%ホルマリンを81.9g、89%リン酸を60g、エチレングリコールを100g仕込んだ後、攪拌混合により形成される白濁状態のもとで、徐々に還流温度まで昇温し、さらに同温度で24時間縮合反応を行ってから反応を停止した。次いで攪拌混合しながらメチルイソブチルケトンを50g添加して縮合物を溶解させた後、攪拌を停止して内容物を分液フラスコ内に移して静置し、メチルイソブチルケトン溶液相(上層)とリン酸水溶液相(下層)に分離させた。次いで、リン酸水溶液を除去し、メチルイソブチルケトン溶液を数回水洗してリン酸を除去した後、再び内容物を反応容器内に戻し、20KPaの減圧蒸留で4時間処理しメチルイソブチルケトンを除去して、m-クレゾールノボラック樹脂100gを得た。
Synthesis Example 11 Synthesis of novolak-type phenolic resin (b-7) 100 g of m-cresol, 81.9 g of 37% formalin, 60 g of 89% phosphoric acid, and 100 g of ethylene glycol were charged, and then cloudy by stirring and mixing. Under these conditions, the temperature was gradually raised to the reflux temperature, and the condensation reaction was carried out at the same temperature for 24 hours, after which the reaction was stopped. Next, 50 g of methyl isobutyl ketone was added while stirring and mixing to dissolve the condensate, then the stirring was stopped and the contents were transferred into a separating flask and allowed to stand. The aqueous acid phase (lower layer) was allowed to separate. Next, the aqueous solution of phosphoric acid is removed, and the methyl isobutyl ketone solution is washed with water several times to remove the phosphoric acid. After that, the content is returned to the reaction vessel and subjected to distillation under reduced pressure of 20 KPa for 4 hours to remove the methyl isobutyl ketone. Thus, 100 g of m-cresol novolac resin was obtained.
 m-クレゾールノボラック樹脂95gをメチルイソブチルケトン100g/キシレン1,000g混合溶液に溶解させ、充分に攪拌した後、静置することで樹脂相を分離し、ろ過・脱溶媒することでm-クレゾールノボラック樹脂(b-7)50gを得、特性を評価した。結果を表1に併せて示す。 95 g of m-cresol novolac resin is dissolved in a mixed solution of 100 g of methyl isobutyl ketone and 1,000 g of xylene, and after sufficiently stirring, the resin phase is separated by allowing to stand still, followed by filtering and removing the solvent to obtain m-cresol novolak. 50 g of resin (b-7) was obtained and its properties were evaluated. The results are also shown in Table 1.
 合成例12 ノボラック型フェノール樹脂(b-8)の合成
 フェノールを100g、37%ホルマリンを81.9g、シュウ酸二水和物を1g、エチレングリコールを100g仕込んだ後、攪拌混合により形成される白濁状態のもとで、徐々に還流温度まで昇温し、さらに同温度で12時間縮合反応を行ってから反応を停止した。次いで攪拌混合しながらメチルイソブチルケトン50gを添加して縮合物を溶解させた後、攪拌を停止して内容物を分液フラスコ内に移して静置し、メチルイソブチル溶液相(上層)とシュウ酸水溶液相(下層)に分離させた。次いで、シュウ酸水溶液を除去し、メチルイソブチルケトン溶液を数回水洗してシュウ酸を除去した後、再び内容物を反応容器内に戻し、大気圧下で150℃まで加熱し、メチルイソブチルケトンを除去して、フェノールノボラック樹脂95gを得た。
Synthesis Example 12 Synthesis of novolac-type phenolic resin (b-8) After charging 100 g of phenol, 81.9 g of 37% formalin, 1 g of oxalic acid dihydrate, and 100 g of ethylene glycol, cloudiness formed by stirring and mixing. Under these conditions, the temperature was gradually raised to the reflux temperature, and the condensation reaction was carried out at the same temperature for 12 hours, after which the reaction was stopped. Then, while stirring and mixing, 50 g of methyl isobutyl ketone was added to dissolve the condensate, and then the stirring was stopped and the content was transferred into a separating flask and allowed to stand. The aqueous phase (lower layer) was allowed to separate. Next, the aqueous oxalic acid solution is removed, and the methyl isobutyl ketone solution is washed with water several times to remove oxalic acid, and then the contents are returned to the reaction vessel and heated to 150° C. under atmospheric pressure to remove methyl isobutyl ketone. Removal yielded 95 g of phenolic novolac resin.
 フェノールノボラック樹脂90gをメチルイソブチルケトン50g/メタノール350g混合溶液に溶解させ、攪拌しながら蒸留水250gを滴下し、充分に攪拌した後、静置することで、樹脂溶液相と水溶液相に分離した。その後、樹脂溶液相を取り出し、脱溶媒することでフェノールノボラック樹脂(b-8)55gを得、特性を評価した。結果を表2に示す。 90 g of phenol novolac resin was dissolved in a mixed solution of 50 g of methyl isobutyl ketone/350 g of methanol, 250 g of distilled water was added dropwise while stirring, and after sufficient stirring, the solution was allowed to stand to separate into a resin solution phase and an aqueous solution phase. Thereafter, the resin solution phase was taken out and the solvent was removed to obtain 55 g of phenol novolac resin (b-8), and the properties were evaluated. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 合成例13 ノボラック型フェノール樹脂(b-9)の合成
 フェノールを100g、37%ホルマリンを81.9g、シュウ酸二水和物を1g、エチレングリコールを100g仕込んだ後、攪拌混合により形成される白濁状態のもとで、徐々に還流温度まで昇温し、さらに同温度で24時間縮合反応を行ってから反応を停止した。次いで攪拌混合しながらメチルイソブチルケトン50gを添加して縮合物を溶解させた後、攪拌を停止して内容物を分液フラスコ内に移して静置し、メチルイソブチル溶液相(上層)とシュウ酸水溶液相(下層)に分離させた。次いで、シュウ酸水溶液を除去し、メチルイソブチルケトン溶液を数回水洗してシュウ酸を除去した後、再び内容物を反応容器内に戻し、25KPaの減圧蒸留で10時間処理し、メチルイソブチルケトンを除去して、フェノールノボラック樹脂95gを得た。
Synthesis Example 13 Synthesis of novolac-type phenolic resin (b-9) After charging 100 g of phenol, 81.9 g of 37% formalin, 1 g of oxalic acid dihydrate, and 100 g of ethylene glycol, cloudiness formed by stirring and mixing. Under these conditions, the temperature was gradually raised to the reflux temperature, and the condensation reaction was carried out at the same temperature for 24 hours, after which the reaction was stopped. Then, while stirring and mixing, 50 g of methyl isobutyl ketone was added to dissolve the condensate, and then the stirring was stopped and the content was transferred into a separating flask and allowed to stand. The aqueous phase (lower layer) was allowed to separate. Next, the aqueous oxalic acid solution was removed, and the methyl isobutyl ketone solution was washed with water several times to remove the oxalic acid. After that, the content was returned to the reaction vessel and subjected to distillation under reduced pressure of 25 KPa for 10 hours to remove methyl isobutyl ketone. Removal yielded 95 g of phenolic novolac resin.
 フェノールノボラック樹脂85gをメチルイソブチルケトン50g/メタノール350g混合溶液に溶解させ、攪拌しながら蒸留水250gを滴下し、充分に攪拌した後、静置することで、樹脂溶液相と水溶液相に分離した。その後、樹脂溶液相を取り出し、脱溶媒することでフェノールノボラック樹脂(b-9)45gを得、特性を評価した。結果を表2に併せて示す。 85 g of phenol novolac resin was dissolved in a mixed solution of 50 g of methyl isobutyl ketone/350 g of methanol, 250 g of distilled water was added dropwise while stirring, and after sufficient stirring, the solution was allowed to stand to separate into a resin solution phase and an aqueous solution phase. Thereafter, the resin solution phase was taken out and the solvent was removed to obtain 45 g of phenol novolac resin (b-9), and the properties were evaluated. The results are also shown in Table 2.
 合成例14 ノボラック型フェノール樹脂(b-10)の合成
 p-クレゾールを100g、37%ホルマリンを81.9g、89%リン酸を60g、エチレングリコールを100g仕込んだ後、攪拌混合により形成される白濁状態のもとで、徐々に還流温度まで昇温し、さらに同温度で9時間縮合反応を行ってから反応を停止した。次いで攪拌混合しながらメチルイソブチルケトンを50g添加して縮合物を溶解させた後、攪拌を停止して内容物を分液フラスコ内に移して静置し、メチルイソブチル溶液相(上層)とリン酸水溶液相(下層)に分離させた。次いで、リン酸水溶液を除去し、メチルイソブチルケトン溶液を数回水洗してリン酸を除去した後、再び内容物を反応容器内に戻し、25KPaの減圧蒸留で8時間処理し、メチルイソブチルケトンを除去してp-クレゾールノボラック樹脂95gを得た。
Synthesis Example 14 Synthesis of novolak-type phenolic resin (b-10) After charging 100 g of p-cresol, 81.9 g of 37% formalin, 60 g of 89% phosphoric acid, and 100 g of ethylene glycol, cloudiness formed by stirring and mixing. Under these conditions, the temperature was gradually raised to the reflux temperature, and the condensation reaction was carried out at the same temperature for 9 hours, after which the reaction was stopped. Then, 50 g of methyl isobutyl ketone was added while stirring and mixing to dissolve the condensate, then the stirring was stopped and the content was transferred to a separating flask and allowed to stand. The aqueous phase (lower layer) was allowed to separate. Next, the aqueous solution of phosphoric acid was removed, and the methyl isobutyl ketone solution was washed with water several times to remove the phosphoric acid. After that, the contents were returned to the reaction vessel and subjected to distillation under reduced pressure of 25 KPa for 8 hours to remove methyl isobutyl ketone. Removal yielded 95 g of p-cresol novolac resin.
 p-クレゾールノボラック樹脂90gをメチルイソブチルケトン50g/メタノール300g混合溶液に溶解させ、攪拌しながら蒸留水200gを滴下し、充分に攪拌した後、静置することで、樹脂溶液相と水溶液相に分離した。その後、樹脂溶液相を取り出し、脱溶媒することでp-クレゾールノボラック樹脂(b-10)45gを得、特性を評価した。結果を表2に併せて示す。 90 g of p-cresol novolac resin is dissolved in a mixed solution of 50 g of methyl isobutyl ketone/300 g of methanol, 200 g of distilled water is added dropwise while stirring, and after sufficient stirring, the solution is allowed to stand to separate into a resin solution phase and an aqueous solution phase. bottom. After that, the resin solution phase was taken out and the solvent was removed to obtain 45 g of p-cresol novolac resin (b-10), and the properties were evaluated. The results are also shown in Table 2.
 合成例15 ノボラック型フェノール樹脂(b-11)の合成
 p-クレゾールを100g、37%ホルマリンを81.9g、89%リン酸を60g、エチレングリコールを100g仕込んだ後、攪拌混合により形成される白濁状態のもとで、徐々に還流温度まで昇温し、さらに同温度で9時間縮合反応を行ってから反応を停止した。次いで攪拌混合しながらメチルイソブチルケトンを50g添加して縮合物を溶解させた後、攪拌を停止して内容物を分液フラスコ内に移して静置し、メチルイソブチル溶液相(上層)とリン酸水溶液相(下層)に分離させた。次いで、リン酸水溶液を除去し、メチルイソブチルケトン溶液を数回水洗してリン酸を除去した後、再び内容物を反応容器内に戻し、大気圧下で150℃まで加熱し、メチルイソブチルケトンを除去してp-クレゾールノボラック樹脂95gを得た。
Synthesis Example 15 Synthesis of novolak-type phenolic resin (b-11) 100 g of p-cresol, 81.9 g of 37% formalin, 60 g of 89% phosphoric acid, and 100 g of ethylene glycol were charged, followed by stirring and mixing to form cloudiness. Under these conditions, the temperature was gradually raised to the reflux temperature, and the condensation reaction was carried out at the same temperature for 9 hours, after which the reaction was stopped. Then, 50 g of methyl isobutyl ketone was added while stirring and mixing to dissolve the condensate, then the stirring was stopped and the content was transferred to a separating flask and allowed to stand. The aqueous phase (lower layer) was allowed to separate. Next, the aqueous phosphoric acid solution is removed, and the methyl isobutyl ketone solution is washed with water several times to remove the phosphoric acid, and then the contents are returned to the reaction vessel and heated to 150° C. under atmospheric pressure to remove methyl isobutyl ketone. Removal yielded 95 g of p-cresol novolak resin.
 p-クレゾールノボラック樹脂90gをメチルイソブチルケトン50g/メタノール350g混合溶液に溶解させ、攪拌しながら蒸留水300gを滴下し、充分に攪拌した後、静置することで、樹脂溶液相と水溶液相に分離した。その後、樹脂溶液相を取り出し、脱溶媒することでp-クレゾールノボラック樹脂(b-11)85gを得、特性を評価した。結果を表2に併せて示す。 90 g of p-cresol novolac resin is dissolved in a mixed solution of 50 g of methyl isobutyl ketone/350 g of methanol, 300 g of distilled water is added dropwise while stirring, and after sufficient stirring, the mixture is allowed to stand to separate into a resin solution phase and an aqueous solution phase. bottom. After that, the resin solution phase was taken out and the solvent was removed to obtain 85 g of p-cresol novolac resin (b-11), and the properties were evaluated. The results are also shown in Table 2.
 合成例16 ノボラック型フェノール樹脂(b-12)の合成
 m-クレゾールを100g、37%ホルマリンを81.9g、89%リン酸を60g、エチレングリコールを100g仕込んだ後、攪拌混合により形成される白濁状態のもとで、徐々に還流温度まで昇温し、さらに同温度で8時間縮合反応を行ってから反応を停止した。次いで攪拌混合しながらメチルイソブチルケトンを50g添加して縮合物を溶解させた後、攪拌を停止して内容物を分液フラスコ内に移して静置し、メチルイソブチル溶液相(上層)とリン酸水溶液相(下層)に分離させた。次いで、リン酸水溶液を除去し、メチルイソブチルケトン溶液を数回水洗してリン酸を除去した後、再び内容物を反応容器内に戻し、25KPaの減圧蒸留で8時間処理し、メチルイソブチルケトンを除去してm-クレゾールノボラック樹脂95gを得た。
Synthesis Example 16 Synthesis of novolac-type phenolic resin (b-12) 100 g of m-cresol, 81.9 g of 37% formalin, 60 g of 89% phosphoric acid, and 100 g of ethylene glycol were charged, followed by stirring and mixing to form cloudiness. Under these conditions, the temperature was gradually raised to the reflux temperature, and the condensation reaction was carried out at the same temperature for 8 hours, after which the reaction was stopped. Then, 50 g of methyl isobutyl ketone was added while stirring and mixing to dissolve the condensate, then the stirring was stopped and the content was transferred to a separating flask and allowed to stand. The aqueous phase (lower layer) was allowed to separate. Next, the aqueous solution of phosphoric acid was removed, and the methyl isobutyl ketone solution was washed with water several times to remove the phosphoric acid. After that, the contents were returned to the reaction vessel and subjected to distillation under reduced pressure of 25 KPa for 8 hours to remove methyl isobutyl ketone. Removal gave 95 g of m-cresol novolac resin.
 m-クレゾールノボラック樹脂90gをメチルイソブチルケトン50g/メタノール350g混合溶液に溶解させ、攪拌しながら蒸留水100gを滴下し、充分に攪拌した後、静置することで、樹脂溶液相と水溶液相に分離した。その後、樹脂溶液相を取り出し、脱溶媒することでm-クレゾールノボラック樹脂(b-12)45gを得、特性を評価した。結果を表2に併せて示す。 90 g of m-cresol novolac resin is dissolved in a mixed solution of 50 g of methyl isobutyl ketone/350 g of methanol, 100 g of distilled water is added dropwise while stirring, and after sufficient stirring, the mixture is allowed to stand to separate into a resin solution phase and an aqueous solution phase. bottom. After that, the resin solution phase was taken out and the solvent was removed to obtain 45 g of m-cresol novolak resin (b-12), and the properties were evaluated. The results are also shown in Table 2.
 合成例17 キノンジアジド化合物(c-1)の合成
 乾燥窒素気流下、TrisP-PA(商品名、本州化学工業(株)製)21.22g(0.05モル)と5-ナフトキノンジアジドスルホニル酸クロリド36.27g(0.135モル)を1,4-ジオキサン450gに溶解させ、室温にした。ここに、1,4-ジオキサン50gと混合したトリエチルアミン15.18gを系内が35℃以上にならないように滴下した。滴下後30℃で2時間攪拌した。トリエチルアミン塩をろ過し、ろ液を水に投入した。その後、析出した沈殿をろ過で集めた。この沈殿を真空乾燥機で乾燥させ、下記式で表されるキノンジアジド化合物(c-1)を得た。
Synthesis Example 17 Synthesis of quinonediazide compound (c-1) TrisP-PA (trade name, manufactured by Honshu Kagaku Kogyo Co., Ltd.) 21.22 g (0.05 mol) and 5-naphthoquinonediazide sulfonyl chloride 36 under a stream of dry nitrogen. .27 g (0.135 mol) was dissolved in 450 g of 1,4-dioxane and brought to room temperature. To this, 15.18 g of triethylamine mixed with 50 g of 1,4-dioxane was added dropwise so that the inside of the system did not reach 35° C. or higher. After dropping, the mixture was stirred at 30°C for 2 hours. The triethylamine salt was filtered and the filtrate was poured into water. After that, the deposited precipitate was collected by filtration. This precipitate was dried in a vacuum dryer to obtain a quinonediazide compound (c-1) represented by the following formula.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 実施例1
 アルカリ可溶性樹脂(a-1)10.0g、m-クレゾールノボラック樹脂(b-1)3.5gをPGME40gに加えて樹脂組成物のワニスを得た。得られたワニスを用いて前記のように、硬化物のアウトガス、5%重量減少温度、有機EL表示装置の長期信頼性の評価を行った。
Example 1
10.0 g of alkali-soluble resin (a-1) and 3.5 g of m-cresol novolak resin (b-1) were added to 40 g of PGME to obtain a varnish of a resin composition. Using the obtained varnish, the outgassing of the cured product, the 5% weight loss temperature, and the long-term reliability of the organic EL display device were evaluated as described above.
 実施例2
 アルカリ可溶性樹脂(a-1)10.0g、m-クレゾールノボラック樹脂(b-1)3.0g、キノンジアジド化合物(c-1)2.0gをPGME40gに加えてポジ型感光性樹脂組成物のワニスを得た。得られたワニスを用いて前記のように、感度、硬化物のアウトガス、5%重量減少温度、有機EL表示装置の長期信頼性の評価を行った。
Example 2
10.0 g of alkali-soluble resin (a-1), 3.0 g of m-cresol novolac resin (b-1), and 2.0 g of quinonediazide compound (c-1) were added to 40 g of PGME to prepare a varnish of a positive photosensitive resin composition. got Using the obtained varnish, the sensitivity, outgassing of the cured product, 5% weight loss temperature, and long-term reliability of the organic EL display device were evaluated as described above.
 実施例3
 アルカリ可溶性樹脂(a-2)10.0g、フェノールノボラック樹脂(b-2)1.8g、キノンジアジド化合物(c-1)2.0gをPGME40gに加えてポジ型感光性樹脂組成物のワニスを得た。得られたワニスを用いて前記のように、感度、硬化物のアウトガス、5%重量減少温度、有機EL表示装置の長期信頼性の評価を行った。
Example 3
10.0 g of an alkali-soluble resin (a-2), 1.8 g of a phenol novolac resin (b-2), and 2.0 g of a quinonediazide compound (c-1) were added to 40 g of PGME to obtain a varnish of a positive photosensitive resin composition. rice field. Using the obtained varnish, the sensitivity, outgassing of the cured product, 5% weight loss temperature, and long-term reliability of the organic EL display device were evaluated as described above.
 実施例4
 アルカリ可溶性樹脂(a-3)10.0g、フェノールノボラック樹脂(b-3)4.9g、キノンジアジド化合物(c-1)2.0gをPGME40gに加えてポジ型感光性樹脂組成物のワニスを得た。得られたワニスを用いて前記のように、感度、硬化物のアウトガス、5%重量減少温度、有機EL表示装置の長期信頼性の評価を行った。
Example 4
10.0 g of an alkali-soluble resin (a-3), 4.9 g of a phenol novolac resin (b-3), and 2.0 g of a quinonediazide compound (c-1) were added to 40 g of PGME to obtain a varnish of a positive photosensitive resin composition. rice field. Using the obtained varnish, the sensitivity, outgassing of the cured product, 5% weight loss temperature, and long-term reliability of the organic EL display device were evaluated as described above.
 実施例5
 アルカリ可溶性樹脂(a-1)10.0g、m-クレゾールノボラック樹脂(b-4)2.5g、キノンジアジド化合物(c-1)2.0gをPGME40gに加えてポジ型感光性樹脂組成物のワニスを得た。得られたワニスを用いて前記のように、感度、硬化物のアウトガス、5%重量減少温度、有機EL表示装置の長期信頼性の評価を行った。
Example 5
10.0 g of alkali-soluble resin (a-1), 2.5 g of m-cresol novolac resin (b-4), and 2.0 g of quinonediazide compound (c-1) were added to 40 g of PGME to prepare a varnish of a positive photosensitive resin composition. got Using the obtained varnish, the sensitivity, outgassing of the cured product, 5% weight loss temperature, and long-term reliability of the organic EL display device were evaluated as described above.
 実施例6
 アルカリ可溶性樹脂(a-1)10.0g、m-クレゾールノボラック樹脂(b-5)3.1g、キノンジアジド化合物(c-1)2.0gをPGME40gに加えてポジ型感光性樹脂組成物のワニスを得た。得られたワニスを用いて前記のように、感度、硬化物のアウトガス、5%重量減少温度、有機EL表示装置の長期信頼性の評価を行った。
Example 6
10.0 g of alkali-soluble resin (a-1), 3.1 g of m-cresol novolak resin (b-5), and 2.0 g of quinonediazide compound (c-1) were added to 40 g of PGME to prepare a varnish of a positive photosensitive resin composition. got Using the obtained varnish, the sensitivity, outgassing of the cured product, 5% weight loss temperature, and long-term reliability of the organic EL display device were evaluated as described above.
 実施例7
 アルカリ可溶性樹脂(a-1)10.0g、m-クレゾールノボラック樹脂(b-6)4.2g、キノンジアジド化合物(c-1)2.0gをPGME40gに加えてポジ型感光性樹脂組成物のワニスを得た。得られたワニスを用いて前記のように、感度、硬化物のアウトガス、5%重量減少温度、有機EL表示装置の長期信頼性の評価を行った。
Example 7
10.0 g of alkali-soluble resin (a-1), 4.2 g of m-cresol novolac resin (b-6), and 2.0 g of quinonediazide compound (c-1) were added to 40 g of PGME to prepare a varnish of a positive photosensitive resin composition. got Using the obtained varnish, the sensitivity, outgassing of the cured product, 5% weight loss temperature, and long-term reliability of the organic EL display device were evaluated as described above.
 実施例8
 アルカリ可溶性樹脂(a-1)10.0g、m-クレゾールノボラック樹脂(b-7)2.2g、キノンジアジド化合物(c-1)2.0gをPGME40gに加えてポジ型感光性樹脂組成物のワニスを得た。得られたワニスを用いて前記のように、感度、硬化物のアウトガス、5%重量減少温度、有機EL表示装置の長期信頼性の評価を行った。
Example 8
10.0 g of alkali-soluble resin (a-1), 2.2 g of m-cresol novolac resin (b-7), and 2.0 g of quinonediazide compound (c-1) were added to 40 g of PGME to prepare a varnish of a positive photosensitive resin composition. got Using the obtained varnish, the sensitivity, outgassing of the cured product, 5% weight loss temperature, and long-term reliability of the organic EL display device were evaluated as described above.
 実施例9
 アルカリ可溶性樹脂(a-1)10.0g、m-クレゾールノボラック樹脂(b-12)2.2g、キノンジアジド化合物(c-1)2.0gをPGME40gに加えてポジ型感光性樹脂組成物のワニスを得た。得られたワニスを用いて前記のように、感度、硬化物のアウトガス、5%重量減少温度、有機EL表示装置の長期信頼性の評価を行った。
Example 9
10.0 g of alkali-soluble resin (a-1), 2.2 g of m-cresol novolak resin (b-12), and 2.0 g of quinonediazide compound (c-1) were added to 40 g of PGME to prepare a varnish of a positive photosensitive resin composition. got Using the obtained varnish, the sensitivity, outgassing of the cured product, 5% weight loss temperature, and long-term reliability of the organic EL display device were evaluated as described above.
 比較例1
 アルカリ可溶性樹脂(a-1)10.0g、フェノールノボラック樹脂(b-8)5.5gをPGME40gに加えて樹脂組成物のワニスを得た。得られたワニスを用いて前記のように、硬化物のアウトガス、5%重量減少温度、有機EL表示装置の長期信頼性の評価を行った。
Comparative example 1
10.0 g of alkali-soluble resin (a-1) and 5.5 g of phenol novolac resin (b-8) were added to 40 g of PGME to obtain a varnish of a resin composition. Using the obtained varnish, the outgassing of the cured product, the 5% weight loss temperature, and the long-term reliability of the organic EL display device were evaluated as described above.
 比較例2
 アルカリ可溶性樹脂(a-1)10.0g、フェノールノボラック樹脂(b-8)5.5g、キノンジアジド化合物(c-1)2.0gをPGME40gに加えてポジ型感光性樹脂組成物のワニスを得た。得られたワニスを用いて前記のように、感度、硬化物のアウトガス、5%重量減少温度、有機EL表示装置の長期信頼性の評価を行った。
Comparative example 2
10.0 g of an alkali-soluble resin (a-1), 5.5 g of a phenol novolac resin (b-8), and 2.0 g of a quinonediazide compound (c-1) were added to 40 g of PGME to obtain a varnish of a positive photosensitive resin composition. rice field. Using the obtained varnish, the sensitivity, outgassing of the cured product, 5% weight loss temperature, and long-term reliability of the organic EL display device were evaluated as described above.
 比較例3
 アルカリ可溶性樹脂(a-1)10.0g、フェノールノボラック樹脂(b-9)1.6g、キノンジアジド化合物(c-1)2.0gをPGME40gに加えてポジ型感光性樹脂組成物のワニスを得た。得られたワニスを用いて前記のように、感度、硬化物のアウトガス、5%重量減少温度、有機EL表示装置の長期信頼性の評価を行った。
Comparative example 3
10.0 g of alkali-soluble resin (a-1), 1.6 g of phenol novolac resin (b-9) and 2.0 g of quinonediazide compound (c-1) were added to 40 g of PGME to obtain a varnish of a positive photosensitive resin composition. rice field. Using the obtained varnish, the sensitivity, outgassing of the cured product, 5% weight loss temperature, and long-term reliability of the organic EL display device were evaluated as described above.
 比較例4
 アルカリ可溶性樹脂(a-1)10.0g、p-クレゾールノボラック樹脂(b-10)5.1g、キノンジアジド化合物(c-1)2.0gをPGME40gに加えてポジ型感光性樹脂組成物のワニスを得た。得られたワニスを用いて前記のように、感度、硬化物のアウトガス、5%重量減少温度、有機EL表示装置の長期信頼性の評価を行った。
Comparative example 4
10.0 g of alkali-soluble resin (a-1), 5.1 g of p-cresol novolac resin (b-10), and 2.0 g of quinonediazide compound (c-1) were added to 40 g of PGME to prepare a varnish of a positive photosensitive resin composition. got Using the obtained varnish, the sensitivity, outgassing of the cured product, 5% weight loss temperature, and long-term reliability of the organic EL display device were evaluated as described above.
 比較例5
 アルカリ可溶性樹脂(a-1)10.0g、p-クレゾールノボラック樹脂(b-11)5.2g、キノンジアジド化合物(c-1)2.0gをPGME40gに加えてポジ型感光性樹脂組成物のワニスを得た。得られたワニスを用いて前記のように、感度、硬化物のアウトガス、5%重量減少温度、有機EL表示装置の長期信頼性の評価を行った。
Comparative example 5
10.0 g of alkali-soluble resin (a-1), 5.2 g of p-cresol novolak resin (b-11), and 2.0 g of quinonediazide compound (c-1) were added to 40 g of PGME to prepare a varnish of a positive photosensitive resin composition. got Using the obtained varnish, the sensitivity, outgassing of the cured product, 5% weight loss temperature, and long-term reliability of the organic EL display device were evaluated as described above.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 本発明の樹脂組成物、硬化物は、有機EL素子の絶縁層、有機EL素子を用いた表示装置の駆動用薄膜TFT基板の平坦化層、回路基板の配線保護絶縁層、固体撮像素子のオンチップマイクロレンズや各種ディスプレイ・固体撮像素子用平坦化層に好適に用いられる。例えば、耐熱性の低いMRAM、次世代メモリとして有望なポリマーメモリ(PFRAM)や相変化メモリ(PCRAM、OUM)などの表面保護層や層間絶縁層として好適である。また、基板上に形成された第一電極と、前記第一電極に対向して設けられた第二電極とを含む表示装置、例えば、LCD、ECD、ELD、有機電界発光素子を用いた表示装置(有機電界発光装置)などの絶縁層にも好ましく用いることができる。 The resin composition and cured product of the present invention can be used for insulating layers of organic EL elements, flattening layers of thin TFT substrates for driving display devices using organic EL elements, wiring protection insulating layers of circuit boards, and solid-state imaging elements. It is suitably used for chip microlenses, various displays, and flattening layers for solid-state imaging devices. For example, it is suitable as a surface protective layer or an interlayer insulating layer for MRAM with low heat resistance, polymer memory (PFRAM) and phase change memory (PCRAM, OUM) that are promising as next-generation memory. Further, a display device including a first electrode formed on a substrate and a second electrode provided opposite to the first electrode, for example, a display device using an LCD, ECD, ELD, or an organic electroluminescence device (Organic electroluminescence device) It can also be preferably used as an insulating layer.
1 TFT
2 配線
3 TFT絶縁層
4 平坦化層
5 ITO
6 基板
7 コンタクトホール
8 絶縁層
19 無アルカリガラス基板
20 第一電極(透明電極)
21 補助電極2
22 絶縁層
23 有機EL層
24 第二電極(非透明電極)
1 TFT
2 wiring 3 TFT insulating layer 4 planarization layer 5 ITO
6 substrate 7 contact hole 8 insulating layer 19 alkali-free glass substrate 20 first electrode (transparent electrode)
21 auxiliary electrode 2
22 insulating layer 23 organic EL layer 24 second electrode (non-transparent electrode)

Claims (8)

  1. ポリイミド、ポリベンゾオキサゾール、ポリアミドイミド、これらのいずれかの前駆体およびそれらの共重合体からなる群より選択される1種以上を含むアルカリ可溶性樹脂(a)およびノボラック型フェノール樹脂(b)を含む樹脂組成物であって、該ノボラック型フェノール樹脂(b)中の分子量1,000以下のノボラック型フェノール樹脂の含有量が、該ノボラック型フェノール樹脂(b)中の0.1~20重量%である樹脂組成物。 Alkali-soluble resin (a) containing one or more selected from the group consisting of polyimide, polybenzoxazole, polyamideimide, precursors of any of these and copolymers thereof, and novolac-type phenolic resin (b) A resin composition, wherein the content of the novolak-type phenolic resin (b) having a molecular weight of 1,000 or less is 0.1 to 20% by weight of the novolak-type phenolic resin (b). A certain resin composition.
  2. 前記ノボラック型フェノール樹脂(b)の重量平均分子量(Mw)が、3,000以上15,000以下であり、かつ重量平均分子量(Mw)と数平均分子量(Mn)との分散比(Mw)/(Mn)が、1.1~3.5である請求項1に記載の樹脂組成物。 The weight average molecular weight (Mw) of the novolak-type phenol resin (b) is 3,000 or more and 15,000 or less, and the dispersion ratio (Mw)/ 2. The resin composition according to claim 1, wherein (Mn) is from 1.1 to 3.5.
  3. 前記ノボラック型フェノール樹脂(b)が、m-クレゾールノボラック樹脂を含む請求項1または2に記載の樹脂組成物。 3. The resin composition according to claim 1, wherein the novolac-type phenolic resin (b) contains an m-cresol novolak resin.
  4. 前記アルカリ可溶性樹脂(a)100重量部に対し、前記ノボラック型フェノール樹脂(b)が17~50重量部である請求項1に記載の樹脂組成物。 2. The resin composition according to claim 1, wherein the novolak-type phenolic resin (b) is 17 to 50 parts by weight per 100 parts by weight of the alkali-soluble resin (a).
  5. さらに感光性化合物(c)を含む、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, further comprising a photosensitive compound (c).
  6. 請求項1に記載の樹脂組成物を硬化した硬化物。 A cured product obtained by curing the resin composition according to claim 1 .
  7. 基板上に、駆動回路、平坦化層、第1電極、絶縁層、発光層および第2電極を有する有機EL表示装置であって、該平坦化層および/または絶縁層が請求項6に記載の硬化物を含む有機EL表示装置。 7. An organic EL display device having a drive circuit, a planarizing layer, a first electrode, an insulating layer, a light-emitting layer and a second electrode on a substrate, wherein the planarizing layer and/or the insulating layer are according to claim 6. An organic EL display device containing a cured product.
  8. 基板上に、請求項1~5のいずれかに記載の樹脂組成物を塗布し樹脂膜を形成する工程、前記樹脂膜を露光する工程、露光した樹脂膜を現像する工程、および、現像した樹脂膜を加熱処理する工程を含む硬化物の製造方法。 A step of applying the resin composition according to any one of claims 1 to 5 on a substrate to form a resin film, a step of exposing the resin film, a step of developing the exposed resin film, and a developed resin A method for producing a cured product, comprising the step of heat-treating a film.
PCT/JP2022/032018 2021-08-30 2022-08-25 Resin composition, cured product, organic el display device, and method for producing cured product WO2023032803A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247004156A KR20240051923A (en) 2021-08-30 2022-08-25 Resin composition, cured product, organic EL display device, and method for producing the cured product
CN202280056956.6A CN117858921A (en) 2021-08-30 2022-08-25 Resin composition, cured product, organic EL display device, and method for producing cured product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-139681 2021-08-30
JP2021139681 2021-08-30

Publications (1)

Publication Number Publication Date
WO2023032803A1 true WO2023032803A1 (en) 2023-03-09

Family

ID=85412644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032018 WO2023032803A1 (en) 2021-08-30 2022-08-25 Resin composition, cured product, organic el display device, and method for producing cured product

Country Status (4)

Country Link
KR (1) KR20240051923A (en)
CN (1) CN117858921A (en)
TW (1) TW202323342A (en)
WO (1) WO2023032803A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113251A (en) * 1981-12-26 1983-07-06 Nitto Electric Ind Co Ltd Thermosetting resin composition for semiconductor sealing
JP2005250160A (en) * 2004-03-04 2005-09-15 Kyocera Chemical Corp Positive photosensitive resin composition and cured object thereof
JP2011521295A (en) * 2008-05-22 2011-07-21 エルジー・ケム・リミテッド Photosensitive resin composition containing polyimide and novolac resin
WO2018084149A1 (en) * 2016-11-02 2018-05-11 東レ株式会社 Resin composition, resin sheet, cured film, organic el display device, semiconductor electronic component, semiconductor device, and method for producing organic el display device
WO2020059485A1 (en) * 2018-09-18 2020-03-26 東レ株式会社 Photosensitive resin composition, resin sheet, cured film, organic el display device, semiconductor electronic component, semiconductor device, and method for producing organic el display device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3369344B2 (en) 1994-01-21 2003-01-20 信越化学工業株式会社 Photosensitive resin composition
JP2013205553A (en) 2012-03-28 2013-10-07 Toray Ind Inc Positive photosensitive resin composition
CN108604061B (en) 2016-03-18 2021-07-16 东丽株式会社 Cured film and positive photosensitive resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113251A (en) * 1981-12-26 1983-07-06 Nitto Electric Ind Co Ltd Thermosetting resin composition for semiconductor sealing
JP2005250160A (en) * 2004-03-04 2005-09-15 Kyocera Chemical Corp Positive photosensitive resin composition and cured object thereof
JP2011521295A (en) * 2008-05-22 2011-07-21 エルジー・ケム・リミテッド Photosensitive resin composition containing polyimide and novolac resin
WO2018084149A1 (en) * 2016-11-02 2018-05-11 東レ株式会社 Resin composition, resin sheet, cured film, organic el display device, semiconductor electronic component, semiconductor device, and method for producing organic el display device
WO2020059485A1 (en) * 2018-09-18 2020-03-26 東レ株式会社 Photosensitive resin composition, resin sheet, cured film, organic el display device, semiconductor electronic component, semiconductor device, and method for producing organic el display device

Also Published As

Publication number Publication date
CN117858921A (en) 2024-04-09
KR20240051923A (en) 2024-04-22
TW202323342A (en) 2023-06-16

Similar Documents

Publication Publication Date Title
KR102367407B1 (en) resin composition
KR102341494B1 (en) A resin composition, a resin sheet, a cured film, an organic electroluminescent display apparatus, a semiconductor electronic component, a semiconductor device, and the manufacturing method of an organic electroluminescent display apparatus
JP7013872B2 (en) Resin compositions, cured films, semiconductor devices and methods for manufacturing them
TWI685099B (en) Organic EL display device
JP6958351B2 (en) Hardened film and positive photosensitive resin composition
JP2023153197A (en) Resin composition, resin sheet and cured film
JP7210999B2 (en) Resin composition, resin sheet, cured film, method for producing cured film, semiconductor device, and display device
WO2022181350A1 (en) Photosensitive resin composition, cured object, layered product, display device, and method for producing display device
JP7272268B2 (en) Photosensitive resin composition, resin sheet, cured film, organic EL display device, semiconductor electronic component, semiconductor device, and method for manufacturing organic EL display device
WO2023032803A1 (en) Resin composition, cured product, organic el display device, and method for producing cured product
WO2022181351A1 (en) Multilayer body, display device and method for producing display device
WO2023095785A1 (en) Photosensitive resin composition, cured article, organic el display device, semiconductor device, and method for producing cured article

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022552149

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE