WO2023032686A1 - Culture medium for hydroponics, method for producing culture medium for hydroponics, hydroponic method using culture medium for hydroponics, and dispersion liquid for suppressing occurrence of algae - Google Patents

Culture medium for hydroponics, method for producing culture medium for hydroponics, hydroponic method using culture medium for hydroponics, and dispersion liquid for suppressing occurrence of algae Download PDF

Info

Publication number
WO2023032686A1
WO2023032686A1 PCT/JP2022/031156 JP2022031156W WO2023032686A1 WO 2023032686 A1 WO2023032686 A1 WO 2023032686A1 JP 2022031156 W JP2022031156 W JP 2022031156W WO 2023032686 A1 WO2023032686 A1 WO 2023032686A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture medium
dispersion
titanium oxide
algae
growth
Prior art date
Application number
PCT/JP2022/031156
Other languages
French (fr)
Japanese (ja)
Inventor
厚 中村
幸介 藤田
美代 坂井
俊介 河中
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to CN202280053463.7A priority Critical patent/CN117794645A/en
Priority to JP2023545436A priority patent/JP7477053B2/en
Publication of WO2023032686A1 publication Critical patent/WO2023032686A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/10Growth substrates; Culture media; Apparatus or methods therefor based on or containing inorganic material
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/30Growth substrates; Culture media; Apparatus or methods therefor based on or containing synthetic organic compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/40Growth substrates; Culture media; Apparatus or methods therefor characterised by their structure
    • A01G24/44Growth substrates; Culture media; Apparatus or methods therefor characterised by their structure in block, mat or sheet form
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/40Growth substrates; Culture media; Apparatus or methods therefor characterised by their structure
    • A01G24/48Growth substrates; Culture media; Apparatus or methods therefor characterised by their structure containing foam or presenting a foam structure
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/36Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30
    • B01J35/56
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing

Definitions

  • the present invention relates to a hydroponic culture medium, a method for producing a hydroponic culture medium, a hydroponic culture method using the hydroponic culture medium, and a dispersion liquid for suppressing the growth of algae.
  • Hydroponics is a cultivation method in which crops are grown in a "culture solution” using raw water and liquid fertilizer. Hydroponics is a cultivation method that does not require work such as soiling and fertilization, is less affected by the geographical environment, and has high utility value.
  • a problem unique to cultivation that uses water is the occurrence of algae. Since algae grow as long as they have light and nutrients, the occurrence of algae is inevitable in hydroponics. When a large amount of algae grows, it changes the balance of components in the culture solution. If the culture solution becomes alkaline, the roots of crops will be damaged.
  • Non-Patent Documents 1 and 2 It has been reported that the use of silver that exhibits bactericidal activity can suppress the growth of algae in hydroponics (see, for example, Non-Patent Documents 1 and 2).
  • Non-Patent Documents 1 and 2 above, algae control measures using silver can suppress the growth of algae, but if a certain amount of silver is used to achieve the effect, the growth of plants is also inhibited. I know it will be suppressed. Therefore, it has been desired to provide a hydroponic cultivation method that suppresses the growth of algae and does not inhibit the growth of plants.
  • the purpose of the present invention is to provide a hydroponic culture medium for use in a hydroponic culture method that suppresses the growth of algae and does not inhibit the growth of plants.
  • the inventors have made intensive studies to solve the above problems, and as a result, a hydroponic culture medium in which a photocatalyst composition in which a metal is supported on a titanium oxide composition is supported on a porous material is provided. can be solved, and the present invention has been completed.
  • the present invention includes the following aspects.
  • the photocatalyst composition (B) is a hydroponic culture medium, which is a photocatalyst composition in which a metal is supported on a titanium oxide composition.
  • the hydroponic culture medium according to [6] wherein the porous material (A) is urethane foam with a density of 10 to 30 g/m 3 .
  • the dispersion (E) further contains a wetting and dispersing agent (F), Production of a hydroponic culture medium according to [10] or [11], wherein the wetting and dispersing agent (F) is a copolymer having an ammonium base or a copolymer having an acid value of 10 mg KOH/g or more having a free fatty acid group.
  • Method. [13] A hydroponic cultivation method using the hydroponic cultivation medium according to any one of [1] to [9] and light irradiation means.
  • a dispersion for suppressing the growth of algae used in hydroponics contains at least a medium (D) and a photocatalyst composition (B),
  • the photocatalyst composition (B) is a dispersion liquid for suppressing the growth of algae, which is a photocatalyst composition in which a metal is supported on a titanium oxide composition.
  • the binder resin (C) is a urethane resin or an acrylic resin.
  • the dispersion (E) further contains a wetting and dispersing agent (F),
  • the wetting and dispersing agent (F) is a copolymer having an ammonium base or a copolymer having an acid value of 10 mg KOH/g or more having a free fatty acid group, suppressing algae growth according to any one of [14] to [20].
  • a hydroponic cultivation medium for use in a hydroponic cultivation method that suppresses the growth of algae and does not inhibit the growth of plants.
  • FIG. 1 shows the results of the follow-up observation of the growth of algae in the bat and the growth of lettuce with or without sowing lettuce seeds in Example 1, Comparative Example 1, and Comparative Example 2, and the observation results on the 7th day.
  • FIG. 2 shows the results of the follow-up observation of the state of algal growth and the state of lettuce growth in the bat with and without sowing lettuce seeds in Example 1, Comparative Example 1, and Comparative Example 2, and the observation results on the 14th day.
  • FIG. 3 shows the results of the follow-up observation of the growth of algae in the bat and the growth of lettuce with or without sowing lettuce seeds in Example 1, Comparative Example 1, and Comparative Example 2, and the observation results on the 21st day.
  • FIG. 4 is a schematic diagram showing an example of a hydroponic cultivation apparatus for carrying out the hydroponic cultivation method.
  • FIG. 5 is a schematic diagram showing an example of a hydroponic cultivation apparatus for carrying out the hydroponic cultivation method.
  • the photocatalyst composition (B) is supported on the porous material (A).
  • the porous material (A) is not particularly limited as long as it is a substrate having a large number of pores and can support the photocatalyst composition (B), and can be appropriately selected according to the purpose.
  • Examples include rockwool, vermiculite, and foams containing cellular structures.
  • foams include synthetic resin foams such as polyurethane, polystyrene, polyethylene, and polypropylene, as well as pulp- and cotton-derived cellulose sponges, sponge-derived natural sponges, and plant-derived fiber porous bodies such as luffa.
  • a biodegradable porous material is preferable because it is discarded after being used for a short period of about one month.
  • a foam having an open-cell structure is suitable as a sponge for hydroponic cultivation because the cells are connected, so that moisture and air can easily pass through the foam.
  • a preferred embodiment of the porous material (A) is a urethane foam porous material.
  • urethane foam is obtained by, for example, using polyol and polyisocyanate as raw materials, stirring and mixing a foaming agent, a foam stabilizer, a catalyst, etc., and simultaneously performing a foaming reaction and a resinification reaction. , refers to plastic foam.
  • urethane foam porous materials a urethane foam porous body having a density of 10 to 30 g/m 3 is more preferable.
  • the density here means the mass per unit volume of a sample containing both air-permeable and air-impermeable cells (here, a porous urethane foam material), ie, the so-called apparent density.
  • This apparent density can be determined according to JIS K 7222:2005 (Foamed plastics and rubber-Determination of apparent density).
  • the photocatalyst composition (B) is a composition exhibiting visible light responsiveness due to the metal being supported on the titanium oxide composition.
  • the titanium oxide composition of the present invention must contain at least titanium oxide, but may contain metal elements other than titanium oxide.
  • a preferred embodiment of the titanium oxide composition of the present invention includes, for example, a titanium oxide composition substantially containing at least one metal element selected from the group consisting of zirconium and niobium.
  • the titanium oxide in the titanium oxide composition preferably contains rutile-type titanium oxide.
  • titanium oxide may also contain anatase-type titanium oxide, brookite-type titanium oxide, and the like.
  • the content of rutile-type titanium oxide in titanium oxide (rutilization rate) is preferably 15 mol% or more from the viewpoint of satisfying excellent anti-algae properties, plant growth, and visible light responsiveness.
  • Titanium oxide produced by either a vapor phase method or a liquid phase method can be used, but it is preferable to use one produced by a liquid phase method.
  • a liquid phase method and a gas phase method are generally known as methods for producing a titanium oxide composition.
  • the liquid phase method is a method of obtaining titanium oxide by hydrolyzing or neutralizing titanyl sulfate obtained from a liquid in which raw ore such as ilmenite ore is dissolved.
  • the vapor phase method is a method of obtaining titanium oxide through a vapor phase reaction between oxygen and titanium tetrachloride obtained by chlorinating raw material ore such as rutile ore.
  • ilmenite ore may be used as the raw material ore for titanium oxide, or titanium slag obtained by metallurgically treating ilmenite ore to increase the purity of titanium may be used.
  • the BET specific surface area of titanium oxide in the titanium oxide composition is preferably in the range of 1 to 200 m 2 /g, preferably 3 to 100 m, from the viewpoint of satisfying excellent anti-algae properties, plant growth, and visible light responsiveness. 2 /g, more preferably 4 to 70 m 2 /g, even more preferably 4 to 50 m 2 /g. A range of 2 /g is particularly preferred.
  • the method for measuring the BET specific surface area of titanium oxide will be described later in Examples.
  • the primary particle size of titanium oxide in the titanium oxide composition is preferably in the range of 0.01 to 0.5 ⁇ m from the viewpoint of satisfying excellent anti-algae properties, plant growth, and visible light responsiveness. A range of 0.03 to 0.35 ⁇ m is more preferable, and a range of 0.06 to 0.35 ⁇ m is even more preferable.
  • the method for measuring the primary particle size of titanium oxide indicates a value measured by a method of directly measuring the size of primary particles from an electron micrograph using a transmission electron microscope (TEM).
  • each primary particle of titanium oxide is measured, the average is taken as the particle diameter of the primary particles, and then for 100 or more titanium oxide particles, each particle The volume (weight) of is approximated to a cube of the determined particle size, and the volume average particle size can be taken as the average primary particle size.
  • the titanium oxide composition of the present invention is preferably a titanium oxide composition substantially containing at least one metal element selected from the group consisting of zirconium and niobium.
  • the content ratio of zirconium to titanium 100 (Zr/Ti ratio) in the titanium oxide composition is preferably 0.03 or more, more preferably 0.04 or more, still more preferably 0.05 or more, and preferably 0. 0.8 or less, more preferably 0.5 or less, and still more preferably 0.3 or less. Any combination of these upper and lower limits may be used.
  • the content ratio of zirconium to titanium 100 (Zr/Ti ratio) in the titanium oxide composition is preferably 0.03 to 0.8, more preferably 0.04 to 0.5, still more preferably 0.05 to 0.5. 3.
  • the content ratio of niobium to titanium 100 (Nb/Ti ratio) in the titanium oxide composition is preferably 0.05 or more, more preferably 0.08 or more, still more preferably 0.1 or more, and preferably 0. 0.8 or less, more preferably 0.5 or less, and still more preferably 0.3 or less. Any combination of these upper and lower limits may be used.
  • the content ratio of niobium to titanium 100 (Nb/Ti ratio) in the titanium oxide composition is preferably 0.05 to 0.8, more preferably 0.08 to 0.5, still more preferably 0.10 to 0.5. 3.
  • titanium oxide substantially contains a metal element means that the content ratio of the metal element in titanium oxide is 0.02 or more to 100 of titanium.
  • Titanium oxide substantially containing a metal element is a titanium oxide composition substantially containing a metal element (zirconium and/or niobium).
  • Titanium oxide which substantially contains a metal element (zirconium and/or niobium), has a small cohesive force with respect to the specific surface area (BET value) due to the primary particles, and can suppress the viscosity of the mixed liquid. , and is presumed to contribute to the improvement of the concentration of titanium oxide.
  • a method for producing the titanium oxide composition it can be produced by the general sulfuric acid method based on the liquid phase method described above, or the general chlorine method based on the vapor phase method described above.
  • a titanium oxide composition can be produced as follows. a) According to a general sulfuric acid method, sulfuric acid, water, and iron are added to and dissolved in ilmenite ore to obtain a solution containing titanium sulfate and iron sulfate as main components. Next, impurities such as iron sulfate are removed, followed by thermal hydrolysis to obtain a hydrous titanium hydroxide composition. Next, the titanium hydroxide composition is washed, sintered at a temperature in the range of 400° C. to 1,600° C., and the obtained solids are pulverized. Thereby, a titanium oxide composition can be obtained.
  • a titanium oxide composition can be produced as follows. b) According to a general chlorine method, rutile ore, coke and chlorine are reacted to obtain titanium tetrachloride. Titanium tetrachloride is distilled to remove impurities, subjected to combustion treatment under oxygen at a temperature range of 700° C. to 1,600° C., and after cooling, the resulting solid is pulverized. Thereby, a titanium oxide composition can be obtained.
  • the titanium oxide composition when producing a titanium oxide composition substantially containing at least one metal element selected from the group consisting of zirconium and niobium, for example, the titanium oxide composition is prepared as follows. can be manufactured. c) According to a general sulfuric acid method, sulfuric acid, water, and iron are added to and dissolved in a mixture of ilmenite ore, niobium pentoxide, and zirconium oxide to obtain a solution containing titanium sulfate and iron sulfate as main components. . Next, impurities such as iron sulfate are removed, followed by thermal hydrolysis to obtain a hydrous titanium hydroxide composition.
  • the titanium hydroxide composition is washed, sintered at a temperature in the range of 400° C. to 1,600° C., and the obtained solids are pulverized. Thereby, a titanium oxide composition substantially containing at least one metal element selected from the group consisting of zirconium and niobium can be obtained.
  • the above-mentioned Surface treatments such as inorganic substance treatment and organic substance treatment may be arbitrarily combined with respect to the titanium oxide composition.
  • inorganic treatment include surface treatment with inorganic metal hydrous oxides such as alumina, silica, zinc oxide, zirconia, titania, tin oxide and antimony oxide.
  • Surface treatment with compounds such as polyols, alkanolamines, and silicones can be used as the organic treatment.
  • a surface treatment method a known method used for titanium oxide, such as surface treatment of alumina of titanium oxide pigment, surface treatment of silane coupling agent, and the like can be used.
  • a metal is supported on the titanium oxide composition to form a photocatalyst composition (B).
  • the metal may be in the form of a metal element, an alloy, or a compound containing metal ions or metal elements.
  • Compounds containing metal elements include, for example, metal chlorides, bromides, iodides, oxides, suboxides, sulfides, cyanides, hydroxides, fluorides, sulfate compounds, sulfite compounds, nitrate compounds, Nitrate compounds, phosphate compounds, phosphite compounds, carbonate compounds, etc. are included, and organometallic compounds are not included.
  • the metal supported on titanium oxide works as an active site, promotes multi-electron reactions by accumulating charges, and functions as a co-catalyst such as promoting charge separation, thereby improving the visible light range of the photocatalyst composition.
  • Photocatalytic activity can be improved.
  • various functions can be imparted to the photocatalyst composition by supporting the metal, and in particular, the photocatalyst composition of the present invention can satisfy both the effects of suppressing the growth of algae and promoting the growth of plants.
  • the supported metal is preferably insoluble or sparingly soluble in water, and in the hydroponic culture medium of the present invention, the metal is eluted as metal ions from the porous material (A). Therefore, plants can be cultivated safely.
  • the photocatalyst composition of the present invention is also excellent in antibacterial effect.
  • the metal element of the metal supported on the photocatalyst composition (B) may be a typical metal or a transition metal. Not included. Specifically, for example, transition metals such as copper, iron, tungsten, zirconium, molybdenum, cobalt, manganese, neodymium, nickel, palladium, platinum and gold, and typical metals such as zinc, aluminum, antimony, tin and bismuth. It can be used preferably.
  • copper is preferred, and divalent copper is more preferred, from the viewpoint of satisfying excellent anti-algae properties, plant growth, visible light responsiveness, and the like.
  • divalent copper compounds examples include copper sulfate, copper nitrate, copper iodate, copper perchlorate, copper oxalate, copper tetraborate, copper ammonium sulfate, copper amidosulfate, copper ammonium chloride, copper pyrophosphate, and carbonate.
  • Inorganic acid salts of divalent copper such as copper; halides of divalent copper such as copper chloride, copper fluoride and copper bromide; copper oxide, copper sulfide, azurite, malachite, copper azide and the like can be used. These compounds may be used alone or in combination of two or more.
  • CuX2 (In formula (1), X represents a halogen atom, CH 3 COO, NO 3 , or (SO 4 ) 1/2 .)
  • X in the above formula (1) is more preferably a halogen atom, more preferably a chlorine atom.
  • a processing method for supporting the support (the metal) on the photocatalyst composition (B) a known method can be used as long as it is a wet method. Examples thereof include a method of adsorbing with a mixed solution of a titanium oxide composition suspended in an aqueous solution of a support and a solvent, and a method of reacting a titanium oxide composition with a mixed solution of a support, a solvent and an alkaline substance. Make a mixture for processing. The mixture contains at least a titanium oxide composition and a solvent.
  • the concentration of the titanium oxide composition in the mixed solution is preferably in the range of 3 to 40% by mass.
  • the amount of the support raw material used in the mixed solution is preferably in the range of 0.01 to 20 parts by mass, more preferably in the range of 0.1 to 15 parts by mass, with respect to 100 parts by mass of titanium oxide. 0.3 to 10 parts by mass is more preferable.
  • the solvent only water may be used, or a mixed solvent of water and an organic solvent may be used.
  • a mixed solvent an aqueous solvent containing water as a main component is preferred.
  • the aqueous solvent containing water as a main component refers to a solvent having the highest water content in the total amount of the solvent, preferably 50% by mass or more of water.
  • the composition of the organic solvent is determined according to the properties of the desired mixed liquid. From the viewpoint of reducing environmental load and improving safety, the mixed solvent preferably contains an organic solvent in an amount of 30% by mass or less, preferably 5% by mass or less in the total amount of the solvent.
  • organic solvent that can be used as the solvent is not particularly limited, but for example, an organic solvent that is miscible with water is preferably used.
  • Organic solvents that can be used as solvents include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, isobutanol, 1-pentanol, 2-methyl-2-pentanol, and 3-methyl-3-pentane.
  • monofunctional alcohols such as tanol, Ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decane Diol, 1,12-dodecanediol, propylene glycol, 1,2-butanediol, 3-methyl-1,3-butanediol, 1,2-pentanediol, 2-methyl-1,3-propanediol, 1,2 -
  • diols such as hexanediol, dipropylene glycol and diethylene glycol
  • polyhydric alcohols such as glycerin
  • ketones such as methyl ethyl ketone and methyl isobutyl ketone
  • dimethylformamide tetrahydrofuran
  • 1-butanol, isobutanol, 1-pentanol, 2-methyl-2-pentanol, 3-methyl-3-pentanol, methyl ethyl ketone, methanol, ethanol, n-propyl alcohol (NPA), isopropyl alcohol (IPA ), propylene glycol, propylene glycol monomethyl ether (1-methoxy-2-propanol) (PGM), and ethylene glycol are preferred.
  • alkaline substance examples include sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, tetrabutylammonium hydroxide, triethylamine, trimethylamine, ammonia, basic surfactants, and the like. It is preferable to use
  • the alkaline substance is preferably added in the form of a solution, since the reaction can be easily controlled.
  • a range of L is more preferred, and a range of 0.5 to 3 mol/L is even more preferred.
  • a more preferred embodiment of the method for producing the photocatalyst composition (B) includes a production method for obtaining the photocatalyst composition (B) by supporting a divalent copper compound on a titanium oxide composition.
  • a method for supporting a divalent copper compound on a titanium oxide composition will be described in detail below.
  • the mixed solution may be obtained by mixing the titanium oxide composition, the divalent copper compound raw material, the solvent, and the alkaline substance.
  • a method of mixing raw materials of a valent copper compound, stirring, and then adding an alkaline substance and stirring may be used.
  • the divalent copper compound derived from the divalent copper compound raw material is supported on the titanium oxide composition.
  • the total stirring time for the mixed solution is, for example, 5 to 120 minutes, preferably 10 to 60 minutes.
  • the reaction temperature of the mixed solution is, for example, in the range of room temperature to 70°C.
  • the titanium oxide composition, the divalent copper compound raw material, and water are mixed and stirred, and then the alkaline substance is mixed and stirred.
  • the pH of the mixed solution is preferably in the range of 8 to 11, more preferably in the range of 9.0 to 10.5.
  • the solid content can be separated.
  • the method for separation include filtration, sedimentation, centrifugation, and evaporation drying, with filtration being preferred.
  • the separated solid content may then be washed with water, pulverized, classified, etc., if necessary.
  • the solid content is heat-treated from the viewpoint that the divalent copper compound derived from the divalent copper compound raw material and supported on the titanium oxide composition can be more strongly bonded.
  • the heat treatment temperature is preferably in the range of 150 to 600°C, more preferably in the range of 250 to 450°C.
  • the heat treatment time is preferably 1 to 10 hours, more preferably 2 to 5 hours.
  • a photocatalyst composition (B) in which a divalent copper compound is supported on a titanium oxide composition can be obtained.
  • the amount of the bivalent copper compound supported by the titanium oxide composition is in the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of titanium oxide. It is preferable from the viewpoint of satisfying plant growth and visible light responsiveness.
  • the amount of the divalent copper compound supported can be adjusted by adjusting the amount of the divalent copper compound raw material used in the mixed solution. A method for measuring the supported amount of the divalent copper compound will be described later in Examples.
  • the mixed solution may contain other ingredients as long as the effects of the present invention can be obtained.
  • Other components include pigments, leveling agents, antifoaming agents, plasticizers, infrared absorbers, ultraviolet absorbers, fragrances, flame retardants and the like.
  • the content of the photocatalyst composition (B) in the porous material (A) is is preferably 0.1 kg/m 3 to 2 kg/m 3 .
  • a preferable embodiment of the hydroponic culture medium includes a hydroponic culture medium in which the photocatalyst composition (B) is supported on the porous material (A) via the binder resin (C).
  • the binder resin (C) include urethane-based resins and acrylic-based resins.
  • the urethane-based resin include polyester-polyurethane resin, polyether-polyurethane resin, polycarbonate-polyurethane resin, and the like.
  • a water-dispersible polyurethane resin having an alkylene oxide chain in the molecule can be used.
  • the molecule may contain a hydrophilic group such as a carboxylic acid or a sulfonic acid.
  • a hydrophilic group such as a carboxylic acid or a sulfonic acid.
  • examples of commercially available water-dispersible polyurethane resins containing an alkylene oxide chain in the molecule include "Hydran” (trade name) manufactured by DIC Corporation and “Impranil” (trade name) manufactured by Covestro. , "Permaline” (trade name) manufactured by Sanyo Chemical Industries, Ltd., and the like.
  • a water-dispersible resin of polycarbonate-polyurethane resin for example, Hydlan WLS-210, a commercially available product, can also be used.
  • the acrylic resin is obtained by polymerizing a polymerizable monomer containing an acrylic monomer as an essential component. Moreover, in order to improve solubility or dispersion in an aqueous medium, it is preferable to use a polymerizable monomer having a carboxyl group.
  • acrylic monomers include polyethylene glycol mono (meth) acrylate, stearoxy polypropylene glycol mono (meth) acrylate, allyloxy polyethylene glycol mono (meth) acrylate, allyloxy polypropylene glycol mono (meth) acrylate, nonylphenoxy polyethylene glycol mono (meth) acrylate.
  • Alkyl group-terminated polyalkylene glycol mono(meth)acrylates such as (meth)acrylates and nonylphenoxypolypropylene glycol mono(meth)acrylate; silane-based (meth)acrylates such as trimethylsiloxyethyl (meth)acrylate; 3-(meth)acryloyl (Meth)acryloyloxyalkyls such as oxypropyltrimethoxysilane, 3-(meth)acryloyloxypropylmethyldimethoxysilane, 3-(meth)acryloyloxypropyltriethoxysilane, 3-(meth)acryloyloxypropylmethyldiethoxysilane, etc.
  • Silane compounds fluorine-based (meth)acrylates such as perfluoroalkylethyl (meth)acrylate; glycidyl (meth)acrylate, epoxy (meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, tetramethylene glycol tetra(meth)acrylate, 2-hydroxy-1,3-diacryloxypropane, 2,2-bis[4-(acryloxymethoxy)phenyl]propane, 2,2-bis [4-(Acryloxyethoxy)phenyl]propane, dicyclopentenyl (meth)acrylate tricyclodecanyl (meth)acrylate, tris (acryloxyethyl) isocyanurate, urethane (meth)acrylate and other (meth)acrylate compounds; Examples thereof include (meth)acrylates having an alkylamino group such as dimethyla
  • (meth)acrylate refers to one or both of methacrylate and acrylate
  • (meth)acryloyl refers to one or both of methacryloyl and acryloyl
  • (meth)acrylic acid refers to one or both of methacrylic acid and acrylic acid.
  • the raw materials include, for example, (meth)acrylic acid, itaconic acid, crotonic acid, fumaric acid, maleic acid, maleic anhydride, polymerization having a carboxyl group such as citraconic acid can be used.
  • These polymerizable monomers can be used alone or in combination of two or more.
  • part or all of the carboxyl group is replaced with a metal hydroxide such as potassium hydroxide or sodium hydroxide. ; it may be neutralized with a base such as ammonia, an organic substance such as triethylamine.
  • polymerizable monomers examples include styrene, styrene derivatives ( ⁇ -methylstyrene, p-dimethylsilylstyrene, (p-vinylphenyl)methylsulfide, p-hexynylstyrene, p-methoxystyrene, p-tert-butyl dimethylsiloxystyrene, o-methylstyrene, p-methylstyrene, p-tert-butylstyrene, ⁇ -methylstyrene, etc.), aromatic vinyl compounds such as vinylnaphthalene, vinylanthracene, 1,1-diphenylethylene; acrylamide, N,N-dimethylacrylamide, isopropylacrylamide, diacetoneacrylamide and other polymerizable monomers.
  • the polymerizable monomer examples include styrene, styrene derivatives ( ⁇ -methyls
  • a known emulsion polymerization method can be used as a method for producing the acrylic resin.
  • the dispersion liquid used for manufacturing the hydroponic culture medium will be described in detail below.
  • the binder resin (C) will also be described in detail.
  • the photocatalyst composition (B) By supporting the photocatalyst composition (B) on the porous material (A) via the binder resin (C), the photocatalyst composition (B) is more firmly supported on the porous material (A). , detachment of the photocatalyst composition (B) from the porous material (A) can be prevented. Therefore, even if water is circulated, the photocatalyst composition (B) can be prevented from falling off, and a medium suitable for hydroponics can be provided. A method for producing a hydroponic culture medium in which the photocatalyst composition (B) is supported on the porous material (A) via the binder resin (C) will be described later.
  • the method for producing a hydroponic culture medium of the present invention comprises: (I) step: a step of dispersing the photocatalyst composition (B) in the medium (D) to obtain a dispersion (E); (II) step: a step of impregnating the porous material (A) with the dispersion (E); (III) step: a step of drying and removing the medium (D) from the porous material (A); have
  • the photocatalyst composition (B) when the photocatalyst composition (B) is supported on the porous material (A) via the binder resin (C), the photocatalyst composition (B) is more likely to be absorbed by the porous material (A).
  • the following production method can be mentioned, since a firmly supported hydroponic culture medium can be obtained.
  • step a step of dispersing the photocatalyst composition (B) and the binder resin (C) in the medium (D) to obtain a dispersion (E);
  • step a step of impregnating the porous material (A) with the dispersion (E);
  • step a step of drying and removing the medium (D) from the porous material (A);
  • the photocatalyst composition (B) is dispersed in the medium (D) to obtain a dispersion (E).
  • the medium (D) is provided with the photocatalyst composition (B) and the binder resin (C). Disperse to obtain a dispersion (E).
  • the photocatalyst composition (B) is as described in the section ⁇ Photocatalyst composition (B)> above.
  • the binder resin (C) is as described in the section ⁇ preferred embodiment of hydroponic culture medium>>.
  • Medium (D) contains water.
  • the medium (D) is an aqueous medium containing water as a main component and may contain an organic solvent.
  • an organic solvent In the present invention, only water may be used, or a mixture of water and an organic solvent may be used, but from the viewpoint of reducing environmental load and improving safety, the amount of organic solvent used is preferably as small as possible.
  • the medium (D) preferably contains the organic solvent in an amount of 30% by mass or less, preferably 5% by mass or less.
  • the organic solvent that can be used is not particularly limited. - monofunctional alcohols such as pentanol, methyl ethyl ketone, methanol, ethanol, n-propyl alcohol (hereinafter also referred to as NPA) and isopropyl alcohol (hereinafter also referred to as IPA), various diols, polyhydric alcohols such as glycerin, ethylene Glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol , 1,12-dodecanediol, propylene glycol, 1,2-butanediol, 3-methyl-1,3-butanediol, 1,2-pentanediol, 2-methyl-1,3-propanedio
  • Bisphenol A aromatic diols which are adducts of alkylene oxides having 2 or 3 carbon atoms (average addition mole number of 1 to 16) of bisphenol A, alicyclic diols such as hydrogenated bisphenol A, polyoxypropylene-2,2- Bis(4-hydroxyphenyl)propane, polyoxyethylene-2,2-bis(4-hydroxyphenyl)propane, cyclohexanediol, ethylene glycol monomethyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monoisobutyl ether , diethylene glycol monomethyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, diethylene glycol monoisobutyl ether, propylene glycol monomethyl ether, propylene glycol monopropyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, diethylene glycol
  • the dispersion (E) may further contain a wetting and dispersing agent (F).
  • a wetting and dispersing agent (F) any dispersing agent can be used as long as it is effective in improving the wettability and dispersibility of the metal oxide.
  • Copolymers having free fatty acid groups and having an acid value of 10 mg KOH/g or more are included.
  • the wetting and dispersing agents (F) dispersing agents having an acid value are preferably used.
  • the above copolymer preferably has a relatively high molecular weight.
  • the molecular weight of the copolymer is preferably 500 to 200,000, more preferably 1,000 to 150,000.
  • copolymers having an ammonium base for example, polyfunctional polymers and acrylic copolymers are preferred. If the molecular weight of the copolymer is within the above range, the dispersibility is improved.
  • polyfunctional polymers include polymers having, as structural units, plural types of polymerizable monomers having functional groups such as amine groups, carboxyl groups, ether groups, and silyl groups.
  • acrylic copolymers include copolymers having acrylic polymerizable monomers, such as methacrylic acid and acrylic acid, as constitutional units.
  • Ammonium bases include, for example, alkylolamine salts.
  • the free fatty acid group can be obtained by using a polymerizable monomer having a carboxyl group such as (meth)acrylic acid, itaconic acid, crotonic acid, fumaric acid, maleic anhydride, or citraconic acid as a structural unit. be.
  • the acid value of the copolymer having a free fatty acid group is 10 mg KOH/g or more, preferably 20 mg KOH/g or more, and usually 150 mg KOH/g or less, preferably 100 mg KOH/g or less.
  • the acid value of the copolymer having free fatty acid groups may be 10 mg KOH/g or more and 150 mg KOH/g or less, may be 10 mg KOH/g or more and 100 mg KOH/g or less, may be 20 mg KOH/g or more and 150 mg KOH/g or less, and may be 20 mg. KOH/g or more and 100 mg KOH/g or less may be sufficient.
  • Acid number is defined as milligrams of potassium hydroxide required to neutralize free fatty acids contained in 1 g.
  • wetting and dispersing agent (A) falling within the above range include BYK-154, DISPERBYK180, DISPERBYK181, DISPERBYK190, DISPERBYK191, and DISPERBYK194N manufactured by BYK-Chemie Japan.
  • the dispersion liquid (E) contains the above-described components
  • the mixing method can be appropriately selected in consideration of the type of each component to be used.
  • the method for producing the dispersion (E) described below can be mentioned.
  • An example in which the dispersion (E) also contains the wetting and dispersing agent (F) will be described below.
  • the photocatalyst composition (B), the wetting and dispersing agent (F) and the medium (D) are mixed and stirred.
  • the mixing ratio of the photocatalyst dispersing element (G) and the binder resin (C) in the dispersion (E) is preferably 10:90 to 90:10 in solid content ratio.
  • the porous material (A) is impregnated with the dispersion (E).
  • the porous material (A) can be impregnated with the dispersion (E) by placing the dispersion (E) in an impregnation tank and supplying the porous material (A) into this bath.
  • the medium (D) is removed by drying from the porous material (A).
  • the medium (D) is dried and removed from the porous material (A) using squeeze rolls or a drying oven. More specifically, for example, after the impregnation in the step (II), the porous material (A) is squeezed with a squeeze roll to adjust the adhesion amount of the dispersion (E) in the porous material (A).
  • the squeezing roll interval is adjusted so that the dispersion liquid (E) in an amount such that the dry weight of the dispersion liquid (E) is 0.1 kg/m 3 to 3 kg/m 3 adheres to the porous material (A). do.
  • the porous material (A) is passed through the squeezing rolls. After passing through the squeezing rolls, the porous material (A) is passed through a drying furnace set at 60°C to 160°C and dried with hot air. Thereby, the hydroponic culture medium of the present invention can be obtained.
  • dispersion liquid As described above, the dispersion liquid (E) is prepared in order to support the photocatalyst composition (B) on the porous material (A) when producing the hydroponic culture medium.
  • Dispersion (E) contains medium (D) and photocatalyst composition (B).
  • a preferred embodiment of the dispersion (E) further contains a binder resin (C).
  • the dispersion liquid (E) can be used for medium processing to produce a hydroponic culture medium.
  • the dispersion liquid (E) according to the present invention is applicable not only to the production of culture media, but also to hydroponics in general where suppression of algae growth is desired.
  • it can be applied to a water tank for hydroponics (also called a cultivation container (bat)), a hydroponic panel (also called a cultivation board), etc., as a dispersion for suppressing the growth of algae used in hydroponics.
  • a water tank for hydroponics also called a cultivation container (bat)
  • a hydroponic panel also called a cultivation board
  • a dispersion for suppressing the growth of algae used in hydroponics .
  • More specifically, for example, application to cultivation vessels (bats), growth boards, culture solution circulation tanks, filtering devices, filters, piping, and the like can be mentioned.
  • hydroponic cultivation devices it is preferably applied to a portion in contact with the culture medium, near the site where algae are generated, and more preferably applied to the site irradiated with light. Therefore, it is particularly preferable to apply the dispersion (E) according to the present invention to hydroponic culture media, cultivation containers (bats), growth boards, and the like.
  • the binder resin (C) contained in the dispersion (E) is desirably selected from resin solutions, resin dispersions, and curable liquid resins that can impart adhesiveness to the application member.
  • the binder resin (C) include acrylic resins, urethane resins, polyester resins, epoxy resins, alkyd resins, biodegradable resins such as cellulose, which are used as resins for coating agents and adhesives, UV curable ( A meth)acrylate resin or the like can be used. These resins may be used in combination as appropriate. Water, an organic solvent, or the like can be appropriately used as a diluent for the dispersion (E).
  • the dispersion (E) may be a solventless type such as a UV curable or thermosetting resin. An aqueous dispersion is preferred from the viewpoint of environmental friendliness and safety of coating workers.
  • the hydroponic culture medium of the present invention plants are grown using the hydroponic culture medium of the present invention. More specifically, the hydroponic culture medium of the present invention, a light irradiation means for irradiating the hydroponic culture medium with visible light, and more preferably a vessel for holding the culture solution and a circulation means for circulating the culture solution. and are used to grow plants.
  • the culture solution a culture solution generally used in hydroponics can be used, and examples thereof include an aqueous solution containing plant nutrients.
  • Nutrients for plants include nutrients containing nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, boron, iron, manganese, zinc, molybdenum, and the like.
  • Nutrients for plants include inorganic nutrients and organic nutrients containing these elements.
  • the nutrient composition of the plant in the culture solution is selected according to the growing plant and the growth state of the plant.
  • the light irradiating means is, for example, means for irradiating the growing plant and the hydroponic culture medium with visible light (for example, a device arranged at a position where the portion irradiated with light is above the container).
  • the light irradiating means may be a device that irradiates at least the hydroponic culture medium with visible light.
  • the light irradiation means is preferably a device that irradiates the plants and the hydroponic culture medium with visible light. .
  • the light irradiation means has a light source that emits visible light.
  • the light source include an LED (Light Emitting Diode) unit, a laser unit, a fluorescent lamp, etc. Among them, an LED lighting means is preferable.
  • the irradiation time of the light irradiation means in hydroponics can be appropriately selected according to the type of growing plant, but for example, the irradiation time per day is 16 hours (8 hours in a dark place). be able to.
  • the photocatalyst composition (B) according to the present invention when a copper compound is used as the metal, the photocatalyst composition (B) supporting the copper compound is also excellent in dark place activity. is effective in suppressing
  • a hydroponic cultivation apparatus (10) shown in FIGS. 4 and 5 is an apparatus for growing a plant (11) supported on a culture medium (14) using a culture solution (12).
  • the hydroponic cultivation apparatus has a cultivation container (13), a culture solution circulation filtration pump (16), light irradiation means (20), and a light source (21).
  • the cultivation medium (14) includes a plant support portion (14a) for supporting the plant (11) and the plant support portion (14a). and a holding portion (14b) for holding. In the holding part (14b), if the opening for inserting the plant support part (14a) is narrow and the plant is held by the holding part even if the plant is directly inserted into the opening, The plant support portion (14a) may not be provided.
  • the dispersion liquid (E) according to the present invention to hydroponic culture media, cultivation containers (bats), cultivation boards, and the like in which algae easily grow by light irradiation.
  • Porous material A1 A soft urethane foam (open cell type) with a thickness of 28 mm is cut so that one block can be separated into 23 mm squares, and a cross cut is made in the center of each block for seed planting. Used as material A1. The apparent density of the porous material A1 was 13 kg/m 3 .
  • Titanium oxide composition b According to a general sulfuric acid method, sulfuric acid, water, and iron were added and dissolved in a mixture of ilmenite ore, niobium pentoxide, and zirconium oxide to obtain a solution containing titanium sulfate and iron sulfate as main components. Impurities such as iron sulfate were removed, followed by thermal hydrolysis to obtain a hydrous titanium hydroxide composition. The titanium hydroxide composition was washed, calcined at 900° C., and the obtained solid was pulverized to obtain a titanium oxide composition b having the following characteristics.
  • Photocatalyst dispersion G1 25 parts of photocatalyst composition B1, 75 parts of water, and 8 parts of wetting and dispersing agent F1 (acid value 75 mgKOH/g, BYK-Chemie Co., Ltd. "DISPERBYK-194N") are mixed and stirred, and 100 parts of 1.0 mm ⁇ ceramic beads are mixed. was added and ground in a sand grinder for 4 hours. After grinding, the beads were separated from the dispersion liquid to obtain a photocatalyst dispersion G1.
  • Dispersion E1 Water 561 parts by mass, photocatalyst dispersion G1 (solid content 25% by mass) 20 parts by mass, polycarbonate-polyurethane resin water dispersion C1 ("Hydran WLS-210" manufactured by DIC Corporation) 19 parts by mass (total 600 parts by mass) were uniformly mixed using a dispersion stirrer (TK Homodisper manufactured by Tokushu Kika Kogyo Co., Ltd.) to obtain a dispersion E1 for processing the medium.
  • the solid content of this dispersion was 19.2% by mass, and the solid content ratio of the photocatalyst composition B1 and the binder resin C1 was 44:56.
  • Example 1 Preparation of hydroponic culture medium>
  • a hydroponic culture medium in which the photocatalyst composition was supported on the porous material was produced. That is, the above dispersion E1 was placed in an impregnation tank, 28 mm thick flexible urethane foam A1 was supplied into the bath, and the squeezing roll interval was adjusted so that the dry weight of the dispersion was 0.6 kg/m 3 .
  • the soft urethane foam A1 was passed through a squeezing roll and dried with hot air in a drying furnace set at 120° C. to obtain the target hydroponic culture medium.
  • the hydroponic culture medium the growth of algae and the growth of lettuce were evaluated by the methods described below.
  • the porous material As the porous material, the flexible polyurethane foam described in Japanese Patent No. 2813693 was used as a reference.
  • the hydroponic culture medium is a commercially available antibacterial sponge that is a soft urethane foam containing a silver-based antibacterial agent (Crypika Sponge Ag antibacterial product manufactured by Kikuron Co., Ltd.; apparent density 30 kg/m 3 ) processed to the same dimensions as the porous material A1.
  • a silver-based antibacterial agent Cosmetic Sponge Ag antibacterial product manufactured by Kikuron Co., Ltd.; apparent density 30 kg/m 3
  • algae generation and lettuce growth conditions were evaluated, except that the conditions were as follows.
  • Titanium oxide was completely dissolved in a hydrofluoric acid solution, and the extract was analyzed by an ICP emission spectrometer to quantify the supported amount (parts by mass) of the divalent copper compound with respect to 100 parts by mass of titanium oxide.
  • FIG. 1 is a photograph showing the observation results on the 7th day
  • FIG. 2 is a photograph showing the observation results on the 14th day
  • FIG. 3 is a photograph showing the observation results on the 21st day.
  • Example 1, Comparative Example 1, and Comparative Example 2 the observation results of the state of algae generation in the bat with and without seeding of lettuce seeds and the state of lettuce growth were evaluated according to the above evaluation criteria, and the results are shown in the table below. 1.
  • Example 1 suppresses the generation of algae as compared with Comparative Example 1.
  • Comparative Example 2 algae growth was greatly suppressed, but the growth of lettuce was significantly inhibited. It was confirmed that hydroponics using a medium supporting the photocatalyst composition of the present invention can achieve both the contradictory effects of less inhibition of crop growth and suppression of algae growth.

Abstract

The present invention provides a culture medium for hydroponics, in which a photocatalyst composition (B) is supported on a porous material (A), wherein the photocatalyst composition (B) is a photocatalyst composition in which a metal is supported on a titanium oxide composition. This culture medium for hydroponics is for use in a hydroponic method which suppresses the occurrence of algae and does not inhibit the growth of plants.

Description

水耕栽培用培地、水耕栽培用培地の製造方法、水耕栽培用培地を用いた水耕栽培方法、及び藻の発生抑制用の分散液Hydroponic culture medium, method for producing hydroponic culture medium, hydroponic culture method using hydroponic culture medium, and dispersion for suppressing algae growth
 本発明は、水耕栽培用培地、水耕栽培用培地の製造方法、水耕栽培用培地を用いた水耕栽培方法、及び藻の発生抑制用の分散液に関する。 The present invention relates to a hydroponic culture medium, a method for producing a hydroponic culture medium, a hydroponic culture method using the hydroponic culture medium, and a dispersion liquid for suppressing the growth of algae.
 近年、土壌を使わない「水耕栽培」が注目されている。水耕栽培は、原水と液体肥料を用いた「培養液」で農作物を育てる栽培方法である。水耕栽培は土寄せや施肥などの作業を必要とせず、地理的環境に影響されにくい栽培方法であり、利用価値は高い。
 しかし、水を使う栽培ならではの問題として、「藻の発生」がある。藻は、光と栄養さえあれば増殖するため、水耕栽培において藻の発生は避けられない。
 藻が大量に発生すると、培養液の成分バランスを変えてしまう。培養液がアルカリ性に傾くと、農作物の根がダメージを受ける。また、藻の大量発生により発生する粘液状の酸性多糖類が農作物の根の周辺を覆ってしまうと、農作物が養分や酸素を吸収するのを妨げてしまう。
 したがって、水耕栽培において、藻の発生を防止する防藻対策が望まれる。
In recent years, hydroponics, which does not use soil, has attracted attention. Hydroponics is a cultivation method in which crops are grown in a "culture solution" using raw water and liquid fertilizer. Hydroponics is a cultivation method that does not require work such as soiling and fertilization, is less affected by the geographical environment, and has high utility value.
However, a problem unique to cultivation that uses water is the occurrence of algae. Since algae grow as long as they have light and nutrients, the occurrence of algae is inevitable in hydroponics.
When a large amount of algae grows, it changes the balance of components in the culture solution. If the culture solution becomes alkaline, the roots of crops will be damaged. In addition, when mucus-like acidic polysaccharides generated by a large amount of algae cover the roots of agricultural crops, they prevent the crops from absorbing nutrients and oxygen.
Therefore, in hydroponics, an anti-algae measure for preventing the generation of algae is desired.
 殺菌活性を示す銀を利用すると、水耕栽培における藻の繁殖を抑えられることが報告されている(例えば、非特許文献1及び2参照)。 It has been reported that the use of silver that exhibits bactericidal activity can suppress the growth of algae in hydroponics (see, for example, Non-Patent Documents 1 and 2).
 しかし、上記非特許文献1及び2の記載によると、銀を利用した防藻対策では、藻の繁殖は抑えられるが、その効果を達成しようとそれなりの量の銀を使用すると、植物の育成も抑制されてしまうことがわかる。
 そこで、藻の発生は抑制しつつ、かつ植物の生育阻害は生じさせない水耕栽培方法の提供が望まれていた。
However, according to the descriptions of Non-Patent Documents 1 and 2 above, algae control measures using silver can suppress the growth of algae, but if a certain amount of silver is used to achieve the effect, the growth of plants is also inhibited. I know it will be suppressed.
Therefore, it has been desired to provide a hydroponic cultivation method that suppresses the growth of algae and does not inhibit the growth of plants.
 本発明は、藻の発生は抑制しつつ、かつ植物の生育阻害は生じさせない水耕栽培方法に用いるための水耕栽培用培地を提供することを目的とする。 The purpose of the present invention is to provide a hydroponic culture medium for use in a hydroponic culture method that suppresses the growth of algae and does not inhibit the growth of plants.
 発明者らは、上記課題を解決するために鋭意研究を重ねた結果、酸化チタン組成物に金属が担持された光触媒組成物を多孔質材に担持してなる水耕栽培用培地が、上記課題を解決できることを見出し、本発明を完成するに至った。 The inventors have made intensive studies to solve the above problems, and as a result, a hydroponic culture medium in which a photocatalyst composition in which a metal is supported on a titanium oxide composition is supported on a porous material is provided. can be solved, and the present invention has been completed.
 すなわち、本発明は、以下の態様を包含するものである。
[1]多孔質材(A)に光触媒組成物(B)を担持した水耕栽培用培地であって、
 前記光触媒組成物(B)は、酸化チタン組成物に金属が担持された光触媒組成物である、水耕栽培用培地。
[2]前記酸化チタン組成物は、ルチル型酸化チタンを含む、[1]に記載の水耕栽培用培地。
[3]前記金属が、遷移金属または典型金属である、[1]又は[2]に記載の水耕栽培用培地。
[4]前記酸化チタン組成物は、ジルコニウム及びニオブからなる群から選ばれる少なくとも1種の金属元素を実質的に含む、[1]~[3]のいずれかに記載の水耕栽培用培地。
[5]前記多孔質材(A)が、連続気泡構造を含む発泡体である、[1]~[4]のいずれかに記載の水耕栽培用培地。
[6]前記多孔質材(A)が、ウレタンフォームである、[5]に記載の水耕栽培用培地。
[7]前記多孔質材(A)が、密度10~30g/mのウレタンフォームである、[6]に記載の水耕栽培用培地。
[8]前記多孔質材(A)に、前記光触媒組成物(B)がバインダー樹脂(C)を介して担持されている、[1]~[7]のいずれかに記載の水耕栽培用培地。
[9]前記バインダー樹脂(C)が、ウレタン系樹脂、又はアクリル系樹脂である、[8]に記載の水耕栽培用培地。
[10][1]~[9]のいずれかに記載の水耕栽培用培地を製造する水耕栽培用培地の製造方法であって、
 媒質(D)に、前記光触媒組成物(B)とバインダー樹脂(C)を分散し、分散液(E)を得る工程と、
 前記多孔質材(A)に、前記分散液(E)を含浸する工程と、
 前記多孔質材(A)から前記媒質(D)を乾燥除去する工程と、
を有する水耕栽培用培地の製造方法。
[11]前記媒質(D)が、水を含む、[10]に記載の水耕栽培用培地の製造方法。
[12]前記分散液(E)は、さらに湿潤分散剤(F)を含有し、
 前記湿潤分散剤(F)は、アンモニウム塩基を有するコポリマー、又は遊離脂肪酸基を有する酸価10mg KOH/g以上のコポリマーである、[10]又は[11]に記載の水耕栽培用培地の製造方法。
[13][1]~[9]のいずれかに記載の水耕栽培用培地と光照射手段とを使用する、水耕栽培方法。
[14]
 水耕栽培に使用する藻の発生抑制用の分散液であって、
 前記藻の発生抑制用の分散液である分散液(E)は、少なくとも、媒質(D)、及び光触媒組成物(B)を含有し、
 前記光触媒組成物(B)は、酸化チタン組成物に金属が担持された光触媒組成物である、藻の発生抑制用の分散液。
[15]前記酸化チタン組成物は、ルチル型酸化チタンを含む、[14]に記載の藻の発生抑制用の分散液。
[16]前記金属が、遷移金属または典型金属である、[14]又は[15]に記載の藻の発生抑制用の分散液。
[17]前記酸化チタン組成物は、ジルコニウム及びニオブからなる群から選ばれる少なくとも1種の金属元素を実質的に含む、[14]~[16]のいずれかに記載の藻の発生抑制用の分散液。
[18]さらにバインダー樹脂(C)を含有する、[14]~[17]のいずれかに記載の藻の発生抑制用の分散液。
[19]前記バインダー樹脂(C)が、ウレタン系樹脂、又はアクリル系樹脂である、[18]記載の藻の発生抑制用の分散液。
[20]前記媒質(D)が、水を含む、[14]~[19]のいずれかに記載の藻の発生抑制用の分散液。
[21]前記分散液(E)は、さらに湿潤分散剤(F)を含有し、
 前記湿潤分散剤(F)は、アンモニウム塩基を有するコポリマー、又は遊離脂肪酸基を有する酸価10mg KOH/g以上のコポリマーである、[14]~[20]のいずれかに記載の藻の発生抑制用の分散液。
That is, the present invention includes the following aspects.
[1] A hydroponic culture medium in which a photocatalyst composition (B) is supported on a porous material (A),
The photocatalyst composition (B) is a hydroponic culture medium, which is a photocatalyst composition in which a metal is supported on a titanium oxide composition.
[2] The hydroponic culture medium according to [1], wherein the titanium oxide composition contains rutile-type titanium oxide.
[3] The hydroponic culture medium according to [1] or [2], wherein the metal is a transition metal or a typical metal.
[4] The hydroponic culture medium according to any one of [1] to [3], wherein the titanium oxide composition substantially contains at least one metal element selected from the group consisting of zirconium and niobium.
[5] The hydroponic culture medium according to any one of [1] to [4], wherein the porous material (A) is a foam containing an open cell structure.
[6] The hydroponic culture medium according to [5], wherein the porous material (A) is urethane foam.
[7] The hydroponic culture medium according to [6], wherein the porous material (A) is urethane foam with a density of 10 to 30 g/m 3 .
[8] For hydroponics according to any one of [1] to [7], wherein the photocatalyst composition (B) is supported on the porous material (A) via a binder resin (C). Culture medium.
[9] The hydroponic culture medium according to [8], wherein the binder resin (C) is a urethane resin or an acrylic resin.
[10] A method for producing a hydroponic culture medium for producing the hydroponic culture medium according to any one of [1] to [9],
a step of dispersing the photocatalyst composition (B) and the binder resin (C) in the medium (D) to obtain a dispersion (E);
a step of impregnating the porous material (A) with the dispersion (E);
a step of drying and removing the medium (D) from the porous material (A);
A method for producing a hydroponic culture medium having
[11] The method for producing a hydroponic culture medium according to [10], wherein the medium (D) contains water.
[12] The dispersion (E) further contains a wetting and dispersing agent (F),
Production of a hydroponic culture medium according to [10] or [11], wherein the wetting and dispersing agent (F) is a copolymer having an ammonium base or a copolymer having an acid value of 10 mg KOH/g or more having a free fatty acid group. Method.
[13] A hydroponic cultivation method using the hydroponic cultivation medium according to any one of [1] to [9] and light irradiation means.
[14]
A dispersion for suppressing the growth of algae used in hydroponics,
The dispersion (E), which is a dispersion for suppressing the growth of algae, contains at least a medium (D) and a photocatalyst composition (B),
The photocatalyst composition (B) is a dispersion liquid for suppressing the growth of algae, which is a photocatalyst composition in which a metal is supported on a titanium oxide composition.
[15] The dispersion for suppressing the growth of algae according to [14], wherein the titanium oxide composition contains rutile-type titanium oxide.
[16] The dispersion for suppressing the growth of algae according to [14] or [15], wherein the metal is a transition metal or a typical metal.
[17] The algae growth inhibitor according to any one of [14] to [16], wherein the titanium oxide composition substantially contains at least one metal element selected from the group consisting of zirconium and niobium. dispersion.
[18] The dispersion for suppressing the growth of algae according to any one of [14] to [17], further containing a binder resin (C).
[19] The dispersion for suppressing the growth of algae according to [18], wherein the binder resin (C) is a urethane resin or an acrylic resin.
[20] The dispersion for suppressing the growth of algae according to any one of [14] to [19], wherein the medium (D) contains water.
[21] The dispersion (E) further contains a wetting and dispersing agent (F),
The wetting and dispersing agent (F) is a copolymer having an ammonium base or a copolymer having an acid value of 10 mg KOH/g or more having a free fatty acid group, suppressing algae growth according to any one of [14] to [20]. dispersion for
 本発明により、藻の発生は抑制しつつ、かつ植物の生育阻害は生じさせない水耕栽培方法に用いるための水耕栽培用培地を提供することができる。 According to the present invention, it is possible to provide a hydroponic cultivation medium for use in a hydroponic cultivation method that suppresses the growth of algae and does not inhibit the growth of plants.
図1は、実施例1、比較例1、及び比較例2における、レタス種子の播種有無でのバット内の藻の発生状況とレタスの育成状況とを経過観察した結果、7日目の観察結果を示す写真である。FIG. 1 shows the results of the follow-up observation of the growth of algae in the bat and the growth of lettuce with or without sowing lettuce seeds in Example 1, Comparative Example 1, and Comparative Example 2, and the observation results on the 7th day. is a photograph showing 図2は、実施例1、比較例1、及び比較例2における、レタス種子の播種有無でのバット内の藻の発生状況とレタスの育成状況とを経過観察した結果、14日目の観察結果を示す写真である。FIG. 2 shows the results of the follow-up observation of the state of algal growth and the state of lettuce growth in the bat with and without sowing lettuce seeds in Example 1, Comparative Example 1, and Comparative Example 2, and the observation results on the 14th day. is a photograph showing 図3は、実施例1、比較例1、及び比較例2における、レタス種子の播種有無でのバット内の藻の発生状況とレタスの育成状況とを経過観察した結果、21日目の観察結果を示す写真である。FIG. 3 shows the results of the follow-up observation of the growth of algae in the bat and the growth of lettuce with or without sowing lettuce seeds in Example 1, Comparative Example 1, and Comparative Example 2, and the observation results on the 21st day. is a photograph showing 図4は、水耕栽培方法を実施するための水耕栽培装置の一例を示す概略図である。FIG. 4 is a schematic diagram showing an example of a hydroponic cultivation apparatus for carrying out the hydroponic cultivation method. 図5は、水耕栽培方法を実施するための水耕栽培装置の一例を示す概略図である。FIG. 5 is a schematic diagram showing an example of a hydroponic cultivation apparatus for carrying out the hydroponic cultivation method.
 以下、本発明について詳細に説明する。なお、以下に記載する構成要件の説明は、本発明を説明するための例示であり、本発明はこれらの内容に限定されるものではない。 The present invention will be described in detail below. It should be noted that the description of the constituent elements described below is an example for describing the present invention, and the present invention is not limited to these contents.
(水耕栽培用培地)
 水耕栽培用培地は、多孔質材(A)に光触媒組成物(B)が担持されている。
(Medium for hydroponics)
In the hydroponic culture medium, the photocatalyst composition (B) is supported on the porous material (A).
<多孔質材(A)>
 多孔質材(A)としては、細孔が非常に多く空いている基材であって、光触媒組成物(B)を担持することができれば、特に制限はなく、目的に応じて適宜選択することができるが、例えば、ロックウールやバーミキュライト、気泡構造を含む発泡体が挙げられる。発泡体としては、ポリウレタン、ポリスチレン、ポリエチレン、ポリプロピレン等の合成樹脂発泡体の他、パルプや綿由来のセルローススポンジ、海綿動物由来の天然スポンジ、へちま等の植物由来繊維多孔質体も含む。水耕栽培用培地としては1か月程度の短期間の使用で廃棄されることから、生分解性材料の多孔質材が好ましい。
 気泡構造を含む発泡体の中でも、連続気泡構造の発泡体が好ましい。連続気泡構造の発泡体は、気泡が繋がっているため、水分や空気を通しやすく、水耕栽培用のスポンジとして好適である。
 多孔質材(A)の好ましい実施態様としては、ウレタンフォームの多孔質材が挙げられる。ここで、ウレタンフォームとは、例えば、原料としてポリオールとポリイソシアネートを使用して、発泡剤、整泡剤、触媒などを撹拌混合して、泡化反応と樹脂化反応を同時に行わせて得られる、プラスチック発泡体をいう。
 ウレタンフォームの多孔質材の中でも、密度が10~30g/mのウレタンフォームの多孔質体がより好ましい。ここでいう密度とは、通気性及び非通気性気泡の双方を含む試料(ここでは、ウレタンフォームの多孔質材)の単位体積当たりの質量のこと、いわゆる見かけ密度をいう。この見かけ密度は、JIS K 7222:2005(発泡プラスチック及びゴム-見掛け密度の求め方)によって求めることができる。
<Porous material (A)>
The porous material (A) is not particularly limited as long as it is a substrate having a large number of pores and can support the photocatalyst composition (B), and can be appropriately selected according to the purpose. Examples include rockwool, vermiculite, and foams containing cellular structures. Examples of foams include synthetic resin foams such as polyurethane, polystyrene, polyethylene, and polypropylene, as well as pulp- and cotton-derived cellulose sponges, sponge-derived natural sponges, and plant-derived fiber porous bodies such as luffa. As a medium for hydroponics, a biodegradable porous material is preferable because it is discarded after being used for a short period of about one month.
Among foams containing cell structures, foams with an open cell structure are preferred. A foam having an open-cell structure is suitable as a sponge for hydroponic cultivation because the cells are connected, so that moisture and air can easily pass through the foam.
A preferred embodiment of the porous material (A) is a urethane foam porous material. Here, urethane foam is obtained by, for example, using polyol and polyisocyanate as raw materials, stirring and mixing a foaming agent, a foam stabilizer, a catalyst, etc., and simultaneously performing a foaming reaction and a resinification reaction. , refers to plastic foam.
Among urethane foam porous materials, a urethane foam porous body having a density of 10 to 30 g/m 3 is more preferable. The density here means the mass per unit volume of a sample containing both air-permeable and air-impermeable cells (here, a porous urethane foam material), ie, the so-called apparent density. This apparent density can be determined according to JIS K 7222:2005 (Foamed plastics and rubber-Determination of apparent density).
<光触媒組成物(B)>
 光触媒組成物(B)は、酸化チタン組成物に金属が担持されることにより可視光応答性を示す組成物である。
<Photocatalytic composition (B)>
The photocatalyst composition (B) is a composition exhibiting visible light responsiveness due to the metal being supported on the titanium oxide composition.
<<酸化チタン組成物>>
 本発明の酸化チタン組成物には、少なくとも酸化チタンが含まれている必要があるが、酸化チタン以外の他の金属元素が含まれていてもよい。
 本発明の酸化チタン組成物の好ましい実施態様としては、例えば、ジルコニウム及びニオブからなる群から選ばれる少なくとも1種の金属元素を実質的に含む酸化チタン組成物が挙げられる。
 酸化チタン組成物における酸化チタンは、ルチル型酸化チタンを含むものであるとよい。また、酸化チタンは、ルチル型酸化チタン以外に、アナターゼ型酸化チタン、ブルッカイト型酸化チタン等が含まれていてもよい。
 酸化チタンにおけるルチル型酸化チタンの含有率(ルチル化率)としては、優れた防藻性、植物育成、及び可視光応答性等を満足させるという観点から、15モル%以上であることが好ましく、50モル%以上あることがより好ましく、90モル%以上がさらに好ましい。
 酸化チタンは、気相法及び液相法いずれの方法で製造されたものでも用いることができるが、液相法により製造されたものを用いることが好ましい。
<<Titanium oxide composition>>
The titanium oxide composition of the present invention must contain at least titanium oxide, but may contain metal elements other than titanium oxide.
A preferred embodiment of the titanium oxide composition of the present invention includes, for example, a titanium oxide composition substantially containing at least one metal element selected from the group consisting of zirconium and niobium.
The titanium oxide in the titanium oxide composition preferably contains rutile-type titanium oxide. In addition to rutile-type titanium oxide, titanium oxide may also contain anatase-type titanium oxide, brookite-type titanium oxide, and the like.
The content of rutile-type titanium oxide in titanium oxide (rutilization rate) is preferably 15 mol% or more from the viewpoint of satisfying excellent anti-algae properties, plant growth, and visible light responsiveness. It is more preferably 50 mol % or more, and even more preferably 90 mol % or more.
Titanium oxide produced by either a vapor phase method or a liquid phase method can be used, but it is preferable to use one produced by a liquid phase method.
 酸化チタン組成物の製造方法としては、一般的に、液相法と気相法とが知られている。液相法とは、イルメナイト鉱などの原料鉱石を溶解した液から得られる硫酸チタニルを、加水分解又は中和して酸化チタンを得る方法である。また、気相法とは、ルチル鉱などの原料鉱石を塩素化して得られる四塩化チタンと、酸素との気相反応により酸化チタンを得る方法である。
 液相法を用いる場合、酸化チタンの原料鉱石としてはイルメナイト鉱石を用いてもよいし、イルメナイト鉱石を冶金処理してチタン純度を高めたチタンスラグを用いてもよい。
A liquid phase method and a gas phase method are generally known as methods for producing a titanium oxide composition. The liquid phase method is a method of obtaining titanium oxide by hydrolyzing or neutralizing titanyl sulfate obtained from a liquid in which raw ore such as ilmenite ore is dissolved. The vapor phase method is a method of obtaining titanium oxide through a vapor phase reaction between oxygen and titanium tetrachloride obtained by chlorinating raw material ore such as rutile ore.
When the liquid phase method is used, ilmenite ore may be used as the raw material ore for titanium oxide, or titanium slag obtained by metallurgically treating ilmenite ore to increase the purity of titanium may be used.
 酸化チタン組成物における酸化チタンのBET比表面積としては、優れた防藻性、植物育成、及び可視光応答性等を満足させるという観点から、1~200m/gの範囲が好ましく、3~100m/gの範囲がより好ましく、4~70m/gの範囲がさらに好ましく、4~50m/gの範囲がさらにより好ましく、生産性をより一層高めることができるという観点から、6~20m/gの範囲であることが特に好ましい。なお、酸化チタンのBET比表面積の測定方法は、後述する実施例にて記載する。 The BET specific surface area of titanium oxide in the titanium oxide composition is preferably in the range of 1 to 200 m 2 /g, preferably 3 to 100 m, from the viewpoint of satisfying excellent anti-algae properties, plant growth, and visible light responsiveness. 2 /g, more preferably 4 to 70 m 2 /g, even more preferably 4 to 50 m 2 /g. A range of 2 /g is particularly preferred. The method for measuring the BET specific surface area of titanium oxide will be described later in Examples.
 酸化チタン組成物における酸化チタンの1次粒子径としては、優れた防藻性、植物育成、及び可視光応答性等を満足させるという観点から、0.01~0.5μmの範囲が好ましく、0.03~0.35μmの範囲がより好ましく0.06~0.35μmの範囲がさらに好ましい。なお、酸化チタンの1次粒子径の測定方法は、透過型電子顕微鏡(TEM)を使用して、電子顕微鏡写真から一次粒子の大きさを直接計測する方法で測定した値を示す。具体的には、個々の酸化チタンの1次粒子の短軸径と長軸径を計測し、平均をその1次粒子の粒子径とし、次に100個以上の酸化チタン粒子について、それぞれの粒子の体積(重量)を、求めた粒子径の立方体と近似して求め、体積平均粒径を平均1次粒子径とすることができる。 The primary particle size of titanium oxide in the titanium oxide composition is preferably in the range of 0.01 to 0.5 μm from the viewpoint of satisfying excellent anti-algae properties, plant growth, and visible light responsiveness. A range of 0.03 to 0.35 μm is more preferable, and a range of 0.06 to 0.35 μm is even more preferable. In addition, the method for measuring the primary particle size of titanium oxide indicates a value measured by a method of directly measuring the size of primary particles from an electron micrograph using a transmission electron microscope (TEM). Specifically, the minor axis diameter and major axis diameter of each primary particle of titanium oxide are measured, the average is taken as the particle diameter of the primary particles, and then for 100 or more titanium oxide particles, each particle The volume (weight) of is approximated to a cube of the determined particle size, and the volume average particle size can be taken as the average primary particle size.
 上述したように、本発明の酸化チタン組成物は、ジルコニウム及びニオブからなる群から選ばれる少なくとも1種の金属元素を実質的に含む酸化チタン組成物であることが好ましい。
 酸化チタン組成物におけるチタン100に対するジルコニウムの含有比(Zr/Ti比)は、好ましくは0.03以上、より好ましくは0.04以上、さらに好ましくは0.05以上であり、また、好ましくは0.8以下、より好ましくは0.5以下、さらに好ましくは0.3以下である。これらの上限及び下限はいずれの組み合わせでもよい。酸化チタン組成物におけるチタン100に対するジルコニウムの含有比(Zr/Ti比)は、好ましくは0.03~0.8、より好ましくは0.04~0.5、さらに好ましくは0.05~0.3である。
 酸化チタン組成物におけるチタン100に対するニオブの含有比(Nb/Ti比)は、好ましくは0.05以上、より好ましくは0.08以上、さらに好ましくは0.1以上であり、また、好ましくは0.8以下、より好ましくは0.5以下、さらに好ましくは0.3以下である。これらの上限及び下限はいずれの組み合わせでもよい。酸化チタン組成物におけるチタン100に対するニオブの含有比(Nb/Ti比)は、好ましくは0.05~0.8、より好ましくは0.08~0.5、さらに好ましくは0.10~0.3である。
 酸化チタン組成物中に含有されるジルコニウム及びニオブが、上記範囲内の酸化チタン組成物であれば、溶媒への分散性が高く酸化チタンの濃度を高めても混合液の取扱いが良好である。
 酸化チタンが金属元素(ジルコニウム及び/又はニオブ)を実質的に含むとは、酸化チタンにおける金属元素の含有比がチタン100に対して0.02以上であることを意味する。金属元素(ジルコニウム及び/又はニオブ)を実質的に含む酸化チタンは、金属元素(ジルコニウム及び/又はニオブ)を実質的に含む酸化チタン組成物である。
 金属元素(ジルコニウム及び/又はニオブ)を実質的に含む酸化チタンは、1次粒子に起因する比表面積(BET値)に対して、凝集力は少なく混合液の粘度を抑制することが可能であり、酸化チタンの濃度向上に貢献していると推察される。
As described above, the titanium oxide composition of the present invention is preferably a titanium oxide composition substantially containing at least one metal element selected from the group consisting of zirconium and niobium.
The content ratio of zirconium to titanium 100 (Zr/Ti ratio) in the titanium oxide composition is preferably 0.03 or more, more preferably 0.04 or more, still more preferably 0.05 or more, and preferably 0. 0.8 or less, more preferably 0.5 or less, and still more preferably 0.3 or less. Any combination of these upper and lower limits may be used. The content ratio of zirconium to titanium 100 (Zr/Ti ratio) in the titanium oxide composition is preferably 0.03 to 0.8, more preferably 0.04 to 0.5, still more preferably 0.05 to 0.5. 3.
The content ratio of niobium to titanium 100 (Nb/Ti ratio) in the titanium oxide composition is preferably 0.05 or more, more preferably 0.08 or more, still more preferably 0.1 or more, and preferably 0. 0.8 or less, more preferably 0.5 or less, and still more preferably 0.3 or less. Any combination of these upper and lower limits may be used. The content ratio of niobium to titanium 100 (Nb/Ti ratio) in the titanium oxide composition is preferably 0.05 to 0.8, more preferably 0.08 to 0.5, still more preferably 0.10 to 0.5. 3.
If the zirconium and niobium contained in the titanium oxide composition are within the above range, the dispersibility in the solvent is high, and even if the concentration of titanium oxide is increased, the mixed solution can be handled satisfactorily.
That titanium oxide substantially contains a metal element (zirconium and/or niobium) means that the content ratio of the metal element in titanium oxide is 0.02 or more to 100 of titanium. Titanium oxide substantially containing a metal element (zirconium and/or niobium) is a titanium oxide composition substantially containing a metal element (zirconium and/or niobium).
Titanium oxide, which substantially contains a metal element (zirconium and/or niobium), has a small cohesive force with respect to the specific surface area (BET value) due to the primary particles, and can suppress the viscosity of the mixed liquid. , and is presumed to contribute to the improvement of the concentration of titanium oxide.
<<<酸化チタン組成物の製造方法>>>
 酸化チタン組成物を製造する方法としては、上述した液相法による一般的な硫酸法や、上述した気相法による一般的な塩素法により製造することができる。
 例えば、以下のようにして酸化チタン組成物を製造することができる。
 a)一般的な硫酸法に準じ、イルメナイト鉱に、硫酸と水、鉄を添加して溶解し、チタン硫酸塩と硫酸鉄を主成分とする溶液を得る。次に、硫酸鉄などの不純物を取除き、熱加水分解し、含水水酸化チタン組成物を得る。次に、水酸化チタン組成物を洗浄し、400℃~1,600℃の温度範囲で焼成処理を行い、得られた固形物を粉砕する。これにより、酸化チタン組成物を得ることができる。
<<<Method for Producing Titanium Oxide Composition>>>
As a method for producing the titanium oxide composition, it can be produced by the general sulfuric acid method based on the liquid phase method described above, or the general chlorine method based on the vapor phase method described above.
For example, a titanium oxide composition can be produced as follows.
a) According to a general sulfuric acid method, sulfuric acid, water, and iron are added to and dissolved in ilmenite ore to obtain a solution containing titanium sulfate and iron sulfate as main components. Next, impurities such as iron sulfate are removed, followed by thermal hydrolysis to obtain a hydrous titanium hydroxide composition. Next, the titanium hydroxide composition is washed, sintered at a temperature in the range of 400° C. to 1,600° C., and the obtained solids are pulverized. Thereby, a titanium oxide composition can be obtained.
 または、以下のようにして酸化チタン組成物を製造することもできる。
 b)一般的な塩素法に準じ、ルチル鉱とコークスと塩素を反応させ、四塩化チタンを得る。四塩化チタンを蒸留により、不純物を取り除き、酸素下で700℃~1,600℃の温度範囲で燃焼処理を行い、冷却後、得られた固形物を粉砕する。これにより、酸化チタン組成物を得ることができる。
Alternatively, a titanium oxide composition can be produced as follows.
b) According to a general chlorine method, rutile ore, coke and chlorine are reacted to obtain titanium tetrachloride. Titanium tetrachloride is distilled to remove impurities, subjected to combustion treatment under oxygen at a temperature range of 700° C. to 1,600° C., and after cooling, the resulting solid is pulverized. Thereby, a titanium oxide composition can be obtained.
 また、好ましい実施態様として、ジルコニウム及びニオブからなる群から選ばれる少なくとも1種の金属元素を実質的に含む酸化チタン組成物を製造する場合には、例えば、以下のようにして酸化チタン組成物を製造することができる。
 c)一般的な硫酸法に準じ、イルメナイト鉱と五酸化ニオブと酸化ジルコニウムとの混合物に、硫酸と水、鉄を添加して溶解し、チタン硫酸塩と硫酸鉄を主成分とする溶液を得る。次に、硫酸鉄などの不純物を取除き、熱加水分解し、含水水酸化チタン組成物を得る。次に、水酸化チタン組成物を洗浄し、400℃~1,600℃の温度範囲で焼成処理を行い、得られた固形物を粉砕する。これにより、ジルコニウム及びニオブからなる群から選ばれる少なくとも1種の金属元素を実質的に含む酸化チタン組成物を得ることができる。
Further, as a preferred embodiment, when producing a titanium oxide composition substantially containing at least one metal element selected from the group consisting of zirconium and niobium, for example, the titanium oxide composition is prepared as follows. can be manufactured.
c) According to a general sulfuric acid method, sulfuric acid, water, and iron are added to and dissolved in a mixture of ilmenite ore, niobium pentoxide, and zirconium oxide to obtain a solution containing titanium sulfate and iron sulfate as main components. . Next, impurities such as iron sulfate are removed, followed by thermal hydrolysis to obtain a hydrous titanium hydroxide composition. Next, the titanium hydroxide composition is washed, sintered at a temperature in the range of 400° C. to 1,600° C., and the obtained solids are pulverized. Thereby, a titanium oxide composition substantially containing at least one metal element selected from the group consisting of zirconium and niobium can be obtained.
 また、本発明の光触媒組成物(B)を形成する為の金属の担持の工程とは別に、分散性、耐候性等の特性を付与する目的や粉砕工程の作業性を向上する目的で、上記酸化チタン組成物に対して無機物処理、有機物処理といった表面処理を任意に組み合わせて行ってもよい。無機物処理としてはアルミナ、シリカ、酸化亜鉛、ジルコニア、チタニア、酸化スズ、酸化アンチモン等の無機金属含水酸化物による表面処理が挙げられる。有機物処理としてはポリオール系、アルカノールアミン系、シリコーン系等の化合物による表面処理を挙げることができる。表面処理を行う方法として酸化チタンに用いられる公知の方法、例えば酸化チタン顔料のアルミナの表面処理、シランカップリング剤の表面処理等の方法を用いることができる。 In addition to the step of supporting a metal for forming the photocatalyst composition (B) of the present invention, the above-mentioned Surface treatments such as inorganic substance treatment and organic substance treatment may be arbitrarily combined with respect to the titanium oxide composition. Examples of inorganic treatment include surface treatment with inorganic metal hydrous oxides such as alumina, silica, zinc oxide, zirconia, titania, tin oxide and antimony oxide. Surface treatment with compounds such as polyols, alkanolamines, and silicones can be used as the organic treatment. As a surface treatment method, a known method used for titanium oxide, such as surface treatment of alumina of titanium oxide pigment, surface treatment of silane coupling agent, and the like can be used.
<<金属>>
 金属は、上記酸化チタン組成物に担持されて、光触媒組成物(B)を形成する。
 前記金属は、金属単体や合金の他、金属イオンまたは金属元素を含む化合物の形態であってもよい。金属元素を含む化合物には、例えば、金属の塩化物、臭化物、ヨウ化物、酸化物、亜酸化物、硫化物、シアン化物、水酸化物、フッ化物、硫酸化合物、亜硫酸化合物、硝酸化合物、亜硝酸化合物、リン酸化合物、亜リン酸化合物、炭酸化合物などが含まれ、有機金属化合物は含まない。
 酸化チタンに担持された金属は、活性サイトとして働いたり、電荷の蓄積により多電子反応を促進したり、電荷分離を促進するなどの助触媒として機能することにより、光触媒組成物の可視光領域における光触媒活性を向上することができる。また、金属の担持により、様々な機能を光触媒組成物に付与することができ、特に本発明の光触媒組成物は、藻の発生の抑制と、植物の生育促進の両方の効果を満足することができる。
 担持金属は、好ましくは水に不溶性、または難溶性であるものを適宜選択することにより、本発明の水耕栽培用培地においては、多孔質材(A)から上記金属が金属イオンとして溶出されることはなく、金属イオンが植物に取り込まれることはないため、安全に植物を栽培することができる。また、酸化チタンに光があたると、この酸化チタンの光触媒の表面近くにある水や酸素が活性酸素に変えられ、この活性酸素が藻に対して成長抑制効果を発揮するものと推察される。
 また、本発明の光触媒組成物は、抗菌効果にも優れている。
<<Metal>>
A metal is supported on the titanium oxide composition to form a photocatalyst composition (B).
The metal may be in the form of a metal element, an alloy, or a compound containing metal ions or metal elements. Compounds containing metal elements include, for example, metal chlorides, bromides, iodides, oxides, suboxides, sulfides, cyanides, hydroxides, fluorides, sulfate compounds, sulfite compounds, nitrate compounds, Nitrate compounds, phosphate compounds, phosphite compounds, carbonate compounds, etc. are included, and organometallic compounds are not included.
The metal supported on titanium oxide works as an active site, promotes multi-electron reactions by accumulating charges, and functions as a co-catalyst such as promoting charge separation, thereby improving the visible light range of the photocatalyst composition. Photocatalytic activity can be improved. In addition, various functions can be imparted to the photocatalyst composition by supporting the metal, and in particular, the photocatalyst composition of the present invention can satisfy both the effects of suppressing the growth of algae and promoting the growth of plants. can.
The supported metal is preferably insoluble or sparingly soluble in water, and in the hydroponic culture medium of the present invention, the metal is eluted as metal ions from the porous material (A). Therefore, plants can be cultivated safely. In addition, when titanium oxide is exposed to light, water and oxygen near the surface of the titanium oxide photocatalyst are converted into active oxygen, and it is presumed that this active oxygen exerts an effect of inhibiting the growth of algae.
Moreover, the photocatalyst composition of the present invention is also excellent in antibacterial effect.
 光触媒組成物(B)に担持される金属の金属元素としては、典型金属であっても、遷移金属であっても良く、ホウ素、ケイ素、ゲルマニウム、ヒ素、アンチモン、テルルの半金属と非金属は含まれない。具体的には、例えば、銅、鉄、タングステン、ジルコニウム、モリブデン、コバルト、マンガン、ネオジウム、ニッケル、パラジウム、白金、金等の遷移金属、及び亜鉛、アルミニウム、アンチモン、スズ、ビスマス等の典型金属が好適に用いることができる。 The metal element of the metal supported on the photocatalyst composition (B) may be a typical metal or a transition metal. Not included. Specifically, for example, transition metals such as copper, iron, tungsten, zirconium, molybdenum, cobalt, manganese, neodymium, nickel, palladium, platinum and gold, and typical metals such as zinc, aluminum, antimony, tin and bismuth. It can be used preferably.
 光触媒組成物(B)に担持される上記金属の中でも、優れた防藻性、植物育成、及び可視光応答性等を満足させるという観点から、銅が好ましく、2価銅がより好ましい。 Among the metals supported by the photocatalyst composition (B), copper is preferred, and divalent copper is more preferred, from the viewpoint of satisfying excellent anti-algae properties, plant growth, visible light responsiveness, and the like.
 2価銅の化合物としては、例えば、硫酸銅、硝酸銅、沃素酸銅、過塩素酸銅、シュウ酸銅、四ホウ酸銅、硫酸アンモニウム銅、アミド硫酸銅、塩化アンモニウム銅、ピロリン酸銅、炭酸銅等の2価銅の無機酸塩;塩化銅、フッ化銅、臭化銅等の2価銅のハロゲン化物;酸化銅、硫化銅、アズライト、マラカイト、アジ化銅などを用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。 Examples of divalent copper compounds include copper sulfate, copper nitrate, copper iodate, copper perchlorate, copper oxalate, copper tetraborate, copper ammonium sulfate, copper amidosulfate, copper ammonium chloride, copper pyrophosphate, and carbonate. Inorganic acid salts of divalent copper such as copper; halides of divalent copper such as copper chloride, copper fluoride and copper bromide; copper oxide, copper sulfide, azurite, malachite, copper azide and the like can be used. These compounds may be used alone or in combination of two or more.
 2価銅化合物原料としては、上記したものの中でも、下記一般式(1)で示されるものを用いることが好ましい。
  CuX  (1)
(式(1)において、Xは、ハロゲン原子、CHCOO、NO、又は、(SO1/2を示す。)
As the divalent copper compound raw material, it is preferable to use one represented by the following general formula (1) among those mentioned above.
CuX2 (1)
(In formula (1), X represents a halogen atom, CH 3 COO, NO 3 , or (SO 4 ) 1/2 .)
 上記式(1)におけるXとしては、ハロゲン原子であることがより好ましく、塩素原子がさらに好ましい。 X in the above formula (1) is more preferably a halogen atom, more preferably a chlorine atom.
<<光触媒組成物(B)の製造方法>>
 光触媒組成物(B)に担持物(上記金属)を担持させる加工方法としては、湿式であれば公知の手法を用いることができる。
 例えば、担持物と溶媒の水溶液中に酸化チタン組成物を懸濁した混合液で吸着させる方法、酸化チタン組成物と担持物と溶媒とアルカリ性物質との混合液で反応させる方法等が挙げられる。加工の際は混合液を作る。混合液は、少なくとも酸化チタン組成物と溶媒を含むものである。
<<Method for producing photocatalyst composition (B)>>
As a processing method for supporting the support (the metal) on the photocatalyst composition (B), a known method can be used as long as it is a wet method.
Examples thereof include a method of adsorbing with a mixed solution of a titanium oxide composition suspended in an aqueous solution of a support and a solvent, and a method of reacting a titanium oxide composition with a mixed solution of a support, a solvent and an alkaline substance. Make a mixture for processing. The mixture contains at least a titanium oxide composition and a solvent.
 上記混合液における酸化チタン組成物の濃度としては、3~40質量%の範囲が好ましい。なお、本発明においては、液相法により製造された酸化チタンを用いることが好ましく、酸化チタンの濃度を高めても取扱いの良好な混合液で反応を行うことができる。具体的には、酸化チタン組成物の濃度が、25質量%を超えて40質量%以下の範囲でも良好な混合液での反応を行うことができる。 The concentration of the titanium oxide composition in the mixed solution is preferably in the range of 3 to 40% by mass. In addition, in the present invention, it is preferable to use titanium oxide produced by a liquid phase method, and even if the concentration of titanium oxide is increased, the reaction can be performed with a mixed solution that is easy to handle. Specifically, even when the concentration of the titanium oxide composition is in the range of more than 25% by mass to 40% by mass or less, the reaction can be carried out in a favorable mixed solution.
 混合液における担持物原料の使用量としては、酸化チタン100質量部に対して、0.01~20質量部の範囲であることが好ましく、0.1~15質量部の範囲がより好ましく、0.3~10質量部の範囲がさらに好ましい。 The amount of the support raw material used in the mixed solution is preferably in the range of 0.01 to 20 parts by mass, more preferably in the range of 0.1 to 15 parts by mass, with respect to 100 parts by mass of titanium oxide. 0.3 to 10 parts by mass is more preferable.
 溶媒は、水のみを用いてもよく、また水と有機溶剤との混合溶媒を用いてもよい。混合溶媒の場合、水を主成分とする水性溶媒が好ましい。ここで水を主成分とする水性溶媒とは、溶媒全量において水の含有量が最も多いものをいい、50質量%以上が水であることが好ましい。
 有機溶剤を含有する混合溶媒の場合は、所望の混合液の性質に応じて有機溶剤の組成を決定する。混合溶媒は、環境負荷低減と安全性向上の観点から、有機溶剤を溶媒全量中30質量%以下で含有することが好ましく、5質量%以下で含有することが好ましい。
As the solvent, only water may be used, or a mixed solvent of water and an organic solvent may be used. In the case of a mixed solvent, an aqueous solvent containing water as a main component is preferred. Here, the aqueous solvent containing water as a main component refers to a solvent having the highest water content in the total amount of the solvent, preferably 50% by mass or more of water.
In the case of a mixed solvent containing an organic solvent, the composition of the organic solvent is determined according to the properties of the desired mixed liquid. From the viewpoint of reducing environmental load and improving safety, the mixed solvent preferably contains an organic solvent in an amount of 30% by mass or less, preferably 5% by mass or less in the total amount of the solvent.
 溶媒に使用可能な有機溶剤としては特に限定はないが、例えば、水と混和する有機溶剤が好ましく用いられる。溶媒に使用可能な有機溶剤としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、イソブタノール、1-ペンタノール、2-メチル-2-ペンタノール、3-メチル-3-ペンタノール等の単官能アルコール、
 エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-ドデカンジオール、プロピレングリコール、1,2-ブタンジオール、3-メチル-1,3ブタンジオール、1,2-ペンタンジオール、2-メチル-1,3-プロパンジオール、1,2-ヘキサンジオール、ジプロピレングリコール、ジエチレングリコール等の各種ジオール、グリセリン等の多価アルコール、
 メチルエチルケトン、メチルイソブチルケトン等のケトン、ジメチルホルムアミド、テトラヒドロフラン、
 ビスフェノールA、ビスフェノールAの炭素数2又は3のアルキレンオキサイド(平均付加モル数1以上16以下)付加物である芳香族ジオール、水素添加ビスフェノールA等の脂環式ジオールポリオキシプロピレン-2,2-ビス(4-ヒドロキシフェニル)プロパン、ポリオキシエチレン-2,2-ビス(4-ヒドロキシフェニル)プロパン、シクロヘキサンジオール、エチレングリコールモノメチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノイソブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノイソブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル、エチルカルビトール、γ-ブチロラクトン、等が挙げられる。これらは1種で使用してもよく2種以上混合して使用してもよく限定はない。
The organic solvent that can be used as the solvent is not particularly limited, but for example, an organic solvent that is miscible with water is preferably used. Organic solvents that can be used as solvents include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, isobutanol, 1-pentanol, 2-methyl-2-pentanol, and 3-methyl-3-pentane. monofunctional alcohols such as tanol,
Ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decane Diol, 1,12-dodecanediol, propylene glycol, 1,2-butanediol, 3-methyl-1,3-butanediol, 1,2-pentanediol, 2-methyl-1,3-propanediol, 1,2 - Various diols such as hexanediol, dipropylene glycol and diethylene glycol, polyhydric alcohols such as glycerin,
ketones such as methyl ethyl ketone and methyl isobutyl ketone, dimethylformamide, tetrahydrofuran,
Bisphenol A, aromatic diols which are adducts of alkylene oxides having 2 or 3 carbon atoms (average addition mole number of 1 to 16) of bisphenol A, alicyclic diols such as hydrogenated bisphenol A, polyoxypropylene-2,2- Bis(4-hydroxyphenyl)propane, polyoxyethylene-2,2-bis(4-hydroxyphenyl)propane, cyclohexanediol, ethylene glycol monomethyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monoisobutyl ether , diethylene glycol monomethyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, diethylene glycol monoisobutyl ether, propylene glycol monomethyl ether, propylene glycol monopropyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, diethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, ethyl carbitol, γ-butyrolactone, and the like. These may be used singly or in combination of two or more, with no limitation.
 中でも、1-ブタノール、イソブタノール、1-ペンタノール、2-メチル-2-ペンタノール、3-メチル-3-ペンタノール、メチルエチルケトン、メタノール、エタノール、n-プロピルアルコール(NPA)、イソプロピルアルコール(IPA)、プロピレングリコール、プロピレングリコールモノメチルエーテル(1-メトキシ2-プロパノール)(PGM)、エチレングリコールが好ましい。 Among others, 1-butanol, isobutanol, 1-pentanol, 2-methyl-2-pentanol, 3-methyl-3-pentanol, methyl ethyl ketone, methanol, ethanol, n-propyl alcohol (NPA), isopropyl alcohol (IPA ), propylene glycol, propylene glycol monomethyl ether (1-methoxy-2-propanol) (PGM), and ethylene glycol are preferred.
 上記アルカリ性物質としては、例えば、水酸化ナトリウム、水酸化カリウム、テトラメチルアンモニウムハイドロオキサイド、テトラブチルアンモニウムヒドロキシド、トリエチルアミン、トリメチルアミン、アンモニア、塩基性界面活性剤等を用いることができ、水酸化ナトリウムを用いることが好ましい。 Examples of the alkaline substance include sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, tetrabutylammonium hydroxide, triethylamine, trimethylamine, ammonia, basic surfactants, and the like. It is preferable to use
 アルカリ性物質は、反応を制御しやすい点から、溶液として添加するのが好ましく、添加するアルカリ溶液の濃度としては、0.1~5mol/Lの範囲であることが好ましく、0.3~4mol/Lの範囲がより好ましく、0.5~3mol/Lの範囲がさらに好ましい。 The alkaline substance is preferably added in the form of a solution, since the reaction can be easily controlled. A range of L is more preferred, and a range of 0.5 to 3 mol/L is even more preferred.
<<<光触媒組成物(B)の製造方法の実施態様>>>
 光触媒組成物(B)の製造方法のより好ましい実施態様として、酸化チタン組成物に2価銅化合物を担持して光触媒組成物(B)を得る製造方法が挙げられる。
 以下、酸化チタン組成物に2価銅化合物を担持する方法について詳しく説明する。
<<<embodiment of method for producing photocatalyst composition (B)>>>
A more preferred embodiment of the method for producing the photocatalyst composition (B) includes a production method for obtaining the photocatalyst composition (B) by supporting a divalent copper compound on a titanium oxide composition.
A method for supporting a divalent copper compound on a titanium oxide composition will be described in detail below.
 混合液は、酸化チタン組成物、2価銅化合物原料、溶媒、及び、アルカリ性物質を混合すればよく、例えば、まず水に酸化チタン組成物を混合するとともに必要に応じて撹拌し、次いで、2価銅化合物原料を混合し、撹拌し、その後、アルカリ性物質を添加して撹拌する方法が挙げられる。この混合液により、2価銅化合物原料由来の2価銅化合物が酸化チタン組成物に担持されることとなる。 The mixed solution may be obtained by mixing the titanium oxide composition, the divalent copper compound raw material, the solvent, and the alkaline substance. A method of mixing raw materials of a valent copper compound, stirring, and then adding an alkaline substance and stirring may be used. With this mixed solution, the divalent copper compound derived from the divalent copper compound raw material is supported on the titanium oxide composition.
 上記混合液における全体の撹拌時間としては、例えば、5~120分間が挙げられ、好ましくは10~60分間である。混合液の反応温度としては、例えば、室温~70℃の範囲が挙げられる。 The total stirring time for the mixed solution is, for example, 5 to 120 minutes, preferably 10 to 60 minutes. The reaction temperature of the mixed solution is, for example, in the range of room temperature to 70°C.
 酸化チタン組成物への2価銅化合物の担持が良好であるという観点から、酸化チタン組成物、2価銅化合物原料、及び、水を混合・撹拌し、その後アルカリ性物質を混合・撹拌した後の混合液のpHとしては、好ましくは8~11の範囲であり、より好ましくは9.0~10.5の範囲である。 From the viewpoint that the divalent copper compound is well supported on the titanium oxide composition, the titanium oxide composition, the divalent copper compound raw material, and water are mixed and stirred, and then the alkaline substance is mixed and stirred. The pH of the mixed solution is preferably in the range of 8 to 11, more preferably in the range of 9.0 to 10.5.
 混合液での反応が終了した後には、固形分を分離することができる。分離を行う方法としては、例えば、濾過、沈降分離、遠心分離、蒸発乾燥等が挙げられるが、濾過が好ましい。分離した固形分は、その後必要に応じて、水洗、解砕、分級等を行ってもよい。 After the reaction in the mixed liquid is completed, the solid content can be separated. Examples of the method for separation include filtration, sedimentation, centrifugation, and evaporation drying, with filtration being preferred. The separated solid content may then be washed with water, pulverized, classified, etc., if necessary.
 上記固形分を得た後には、酸化チタン組成物上に担持された上記2価銅化合物原料由来の2価銅化合物を、より強固に結合することができるという観点から、固形分を熱処理することが好ましい。熱処理温度としては、好ましくは150~600℃の範囲であり、より好ましくは250~450℃の範囲である。また、熱処理時間は、好ましくは1~10時間であり、より好ましくは、2~5時間である。 After obtaining the solid content, the solid content is heat-treated from the viewpoint that the divalent copper compound derived from the divalent copper compound raw material and supported on the titanium oxide composition can be more strongly bonded. is preferred. The heat treatment temperature is preferably in the range of 150 to 600°C, more preferably in the range of 250 to 450°C. The heat treatment time is preferably 1 to 10 hours, more preferably 2 to 5 hours.
 以上の方法によって、酸化チタン組成物に2価銅化合物が担持された、光触媒組成物(B)を得ることができる。
 酸化チタン組成物に担持された2価銅化合物の担持量としては、酸化チタン100質量部に対して、2価銅化合物が0.01~20質量部の範囲であることが、防藻性、植物育成、及び可視光応答性等を満足させるという観点から好ましい。2価銅化合物の担持量は、上記混合液における2価銅化合物原料の使用量によって調整することができる。なお、2価銅化合物の担持量の測定方法は、後述する実施例にて記載する。
By the above method, a photocatalyst composition (B) in which a divalent copper compound is supported on a titanium oxide composition can be obtained.
The amount of the bivalent copper compound supported by the titanium oxide composition is in the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of titanium oxide. It is preferable from the viewpoint of satisfying plant growth and visible light responsiveness. The amount of the divalent copper compound supported can be adjusted by adjusting the amount of the divalent copper compound raw material used in the mixed solution. A method for measuring the supported amount of the divalent copper compound will be described later in Examples.
 混合液は、本発明の効果を得られる限り、他の成分を含んでいてもよい。他の成分としては、顔料、レベリング剤、消泡剤、可塑剤、赤外線吸収剤、紫外線吸収剤、芳香剤、難燃剤等が挙げられる。 The mixed solution may contain other ingredients as long as the effects of the present invention can be obtained. Other components include pigments, leveling agents, antifoaming agents, plasticizers, infrared absorbers, ultraviolet absorbers, fragrances, flame retardants and the like.
<水耕栽培用培地の好ましい態様>
 水耕栽培用培地の好ましい実施態様として、優れた防藻性、植物育成、及び可視光応答性等を満足させるという観点から、多孔質材(A)中の光触媒組成物(B)の含有量としては、0.1kg/m~2kg/mであることが好ましい。
<Preferred embodiment of hydroponic culture medium>
As a preferred embodiment of the hydroponic culture medium, the content of the photocatalyst composition (B) in the porous material (A) is is preferably 0.1 kg/m 3 to 2 kg/m 3 .
 また、水耕栽培用培地の好ましい実施態様としては、多孔質材(A)に、光触媒組成物(B)がバインダー樹脂(C)を介して担持されている水耕栽培用培地が挙げられる。
 ここで、バインダー樹脂(C)としては、例えば、ウレタン系樹脂、又はアクリル系樹脂が挙げられる。
 上記ウレタン系樹脂としては、例えば、ポリエステル-ポリウレタン樹脂、ポリエーテル-ポリウレタン樹脂、ポリカーボネート-ポリウレタン樹脂等が挙げられる。
 また、上記ウレタン系樹脂としては、分子中にアルキレンオキサイド鎖を有するポリウレタン樹脂の水分散性樹脂を使用することができる。またアルキレンオキサイド鎖の他に親水性基、例えばカルボン酸やスルフォン酸を分子中に含有していてもかまわない。
 分子中にアルキレンオキサイド鎖を含有する、ポリウレタン樹脂の水分散性樹脂の市販品としては、例えばDIC株式会社製の「ハイドラン」(商品名)や、コベストロ社製の「インプラニール」(商品名)、三洋化成工業株式会社製の「パーマリン」(商品名)等が該当する。
 ポリカーボネート-ポリウレタン樹脂の水分散性樹脂として、例えば、ハイドランWLS-210の市販品を用いることもできる。
A preferable embodiment of the hydroponic culture medium includes a hydroponic culture medium in which the photocatalyst composition (B) is supported on the porous material (A) via the binder resin (C).
Here, examples of the binder resin (C) include urethane-based resins and acrylic-based resins.
Examples of the urethane-based resin include polyester-polyurethane resin, polyether-polyurethane resin, polycarbonate-polyurethane resin, and the like.
As the urethane-based resin, a water-dispersible polyurethane resin having an alkylene oxide chain in the molecule can be used. In addition to the alkylene oxide chain, the molecule may contain a hydrophilic group such as a carboxylic acid or a sulfonic acid.
Examples of commercially available water-dispersible polyurethane resins containing an alkylene oxide chain in the molecule include "Hydran" (trade name) manufactured by DIC Corporation and "Impranil" (trade name) manufactured by Covestro. , "Permaline" (trade name) manufactured by Sanyo Chemical Industries, Ltd., and the like.
As a water-dispersible resin of polycarbonate-polyurethane resin, for example, Hydlan WLS-210, a commercially available product, can also be used.
 また上記アクリル系樹脂は、アクリル単量体を必須成分とした重合性単量体を重合したものである。また、水性媒体への溶解ないし分散を良好とするため、カルボキシル基を有する重合性単量体を用いたものが好ましい。
 アクリル単量体としては、ポリエチレングリコールモノ(メタ)アクリレート、ステアロキシポリプロピレングリコールモノ(メタ)アクリレート、アリロキシポリエチレングリコールモノ(メタ)アクリレート、アリロキシポリプロピレングリコールモノ(メタ)アクリレート、ノニルフェノキシポリエチレングリコールモノ(メタ)アクリレート、ノニルフェノキシポリプロピレングリコールモノ(メタ)アクリレート等のアルキル基末端ポリアルキレングリコールモノ(メタ)アクリレート;トリメチルシロキシエチル(メタ)アクリレート等のシラン系(メタ)アクリレート;3-(メタ)アクリロイルオキシプロピルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルメチルジメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリエトキシシラン、3-(メタ)アクリロイルオキシプロピルメチルジエトキシシラン等の(メタ)アクリロイルオキシアルキルシラン化合物;パーフルオロアルキルエチル(メタ)アクリレート等のフッ素系(メタ)アクリレート;グリシジル(メタ)アクリレート、エポキシ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチレングリコールテトラ(メタ)アクリレート、2-ヒドロキシ-1,3-ジアクリロキシプロパン、2,2-ビス[4-(アクリロキシメトキシ)フェニル]プロパン、2,2-ビス[4-(アクリロキシエトキシ)フェニル]プロパン、ジシクロペンテニル(メタ)アクリレートトリシクロデカニル(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、ウレタン(メタ)アクリレート等の(メタ)アクリレート化合物;ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート等のアルキルアミノ基を有する(メタ)アクリレートなどが挙げられる。これらの(メタ)アクリレート化合物は、1種で用いることも2種以上併用することもできる。
The acrylic resin is obtained by polymerizing a polymerizable monomer containing an acrylic monomer as an essential component. Moreover, in order to improve solubility or dispersion in an aqueous medium, it is preferable to use a polymerizable monomer having a carboxyl group.
Examples of acrylic monomers include polyethylene glycol mono (meth) acrylate, stearoxy polypropylene glycol mono (meth) acrylate, allyloxy polyethylene glycol mono (meth) acrylate, allyloxy polypropylene glycol mono (meth) acrylate, nonylphenoxy polyethylene glycol mono (meth) acrylate. Alkyl group-terminated polyalkylene glycol mono(meth)acrylates such as (meth)acrylates and nonylphenoxypolypropylene glycol mono(meth)acrylate; silane-based (meth)acrylates such as trimethylsiloxyethyl (meth)acrylate; 3-(meth)acryloyl (Meth)acryloyloxyalkyls such as oxypropyltrimethoxysilane, 3-(meth)acryloyloxypropylmethyldimethoxysilane, 3-(meth)acryloyloxypropyltriethoxysilane, 3-(meth)acryloyloxypropylmethyldiethoxysilane, etc. Silane compounds; fluorine-based (meth)acrylates such as perfluoroalkylethyl (meth)acrylate; glycidyl (meth)acrylate, epoxy (meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, tetramethylene glycol tetra(meth)acrylate, 2-hydroxy-1,3-diacryloxypropane, 2,2-bis[4-(acryloxymethoxy)phenyl]propane, 2,2-bis [4-(Acryloxyethoxy)phenyl]propane, dicyclopentenyl (meth)acrylate tricyclodecanyl (meth)acrylate, tris (acryloxyethyl) isocyanurate, urethane (meth)acrylate and other (meth)acrylate compounds; Examples thereof include (meth)acrylates having an alkylamino group such as dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, and dimethylaminopropyl (meth)acrylate. These (meth)acrylate compounds can be used alone or in combination of two or more.
 なお、本発明において、「(メタ)アクリレート」とは、メタクリレートとアクリレートの一方又は両方をいい、「(メタ)アクリロイル」とは、メタクリロイルとアクリロイルの一方又は両方をいい、「(メタ)アクリル酸」とは、メタクリル酸とアクリル酸の一方又は両方をいう。 In the present invention, "(meth)acrylate" refers to one or both of methacrylate and acrylate, "(meth)acryloyl" refers to one or both of methacryloyl and acryloyl, and "(meth)acrylic acid ” refers to one or both of methacrylic acid and acrylic acid.
 また、上記アクリル樹脂にカルボキシル基を導入する場合、その原料として、例えば、(メタ)アクリル酸、イタコン酸、クロトン酸、フマル酸、マレイン酸、無水マレイン酸、シトラコン酸等のカルボキシル基を有する重合性単量体を用いることができる。これらの重合性単量体は、1種で用いることも2種以上併用することもできる。また、これらのカルボキシル基を有する重合性単量体を用いて、上記アクリル樹脂にカルボキシル基を導入した後、当該カルボキシル基の一部又は全部を水酸化カリウム、水酸化ナトリウム等の金属水酸化物;アンモニア、トリエチルアミン等の有機物などの塩基で中和してもよい。 In the case of introducing a carboxyl group into the acrylic resin, the raw materials include, for example, (meth)acrylic acid, itaconic acid, crotonic acid, fumaric acid, maleic acid, maleic anhydride, polymerization having a carboxyl group such as citraconic acid can be used. These polymerizable monomers can be used alone or in combination of two or more. Further, after introducing a carboxyl group into the acrylic resin using these polymerizable monomers having a carboxyl group, part or all of the carboxyl group is replaced with a metal hydroxide such as potassium hydroxide or sodium hydroxide. ; it may be neutralized with a base such as ammonia, an organic substance such as triethylamine.
 さらに、上記アクリル樹脂の原料として、上記アクリル単量体以外の重合性単量体として、その他の重合性単量体を用いてもよい。上記重合性単量体としては、スチレン、スチレン誘導体(α-メチルスチレン、p-ジメチルシリルスチレン、(p-ビニルフェニル)メチルスルフィド、p-ヘキシニルスチレン、p-メトキシスチレン、p-tert-ブチルジメチルシロキシスチレン、o-メチルスチレン、p-メチルスチレン、p-tert-ブチルスチレン、α-メチルスチレン等)、ビニルナフタレン、ビニルアントラセン、1,1-ジフェニルエチレン等の芳香族ビニル化合物;(メタ)アクリルアミド、N,N-ジメチルアクリルアミド、イソプロピルアクリルアミド、ダイアセトンアクリルアミド等のアクリルアミド化合物;2-ビニルピリジン、4-ビニルピリジン、ナフチルビニルピリジン等のビニルピリジン化合物;1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、1,3-シクロヘキサジエン等の共役ジエンなどが挙げられる。これらの重合性単量体は、1種で用いることも2種以上併用することもできる。 Furthermore, as a raw material for the acrylic resin, other polymerizable monomers may be used as polymerizable monomers other than the acrylic monomers. Examples of the polymerizable monomer include styrene, styrene derivatives (α-methylstyrene, p-dimethylsilylstyrene, (p-vinylphenyl)methylsulfide, p-hexynylstyrene, p-methoxystyrene, p-tert-butyl dimethylsiloxystyrene, o-methylstyrene, p-methylstyrene, p-tert-butylstyrene, α-methylstyrene, etc.), aromatic vinyl compounds such as vinylnaphthalene, vinylanthracene, 1,1-diphenylethylene; acrylamide, N,N-dimethylacrylamide, isopropylacrylamide, diacetoneacrylamide and other acrylamide compounds; 2-vinylpyridine, 4-vinylpyridine, naphthylvinylpyridine and other vinylpyridine compounds; 1,3-butadiene, 2-methyl-1 ,3-butadiene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, 1,3-cyclohexadiene and other conjugated dienes. These polymerizable monomers can be used alone or in combination of two or more.
 上記アクリル樹脂の製造方法としては、例えば、公知の乳化重合法を用いることができる。 As a method for producing the acrylic resin, for example, a known emulsion polymerization method can be used.
 なお、水耕栽培用培地の製造に用いる分散液については、以下で詳しく説明する。その際、バインダー樹脂(C)についても、詳しく説明する。 The dispersion liquid used for manufacturing the hydroponic culture medium will be described in detail below. At that time, the binder resin (C) will also be described in detail.
 光触媒組成物(B)がバインダー樹脂(C)を介して多孔質材(A)に担持されていることで、多孔質材(A)に光触媒組成物(B)がより強固に担持されており、多孔質材(A)からの光触媒組成物(B)の脱離を防止することができる。そのため、水を循環しても、光触媒組成物(B)の脱落を防止することができ、水耕栽培に適した培地を提供することができる。
 多孔質材(A)に、バインダー樹脂(C)を介して光触媒組成物(B)を担持させる水耕栽培用培地の製造方法については、後述する。
By supporting the photocatalyst composition (B) on the porous material (A) via the binder resin (C), the photocatalyst composition (B) is more firmly supported on the porous material (A). , detachment of the photocatalyst composition (B) from the porous material (A) can be prevented. Therefore, even if water is circulated, the photocatalyst composition (B) can be prevented from falling off, and a medium suitable for hydroponics can be provided.
A method for producing a hydroponic culture medium in which the photocatalyst composition (B) is supported on the porous material (A) via the binder resin (C) will be described later.
(水耕栽培用培地の製造方法)
 本発明の水耕栽培用培地の製造方法は、
 (I)工程:媒質(D)に、上記光触媒組成物(B)を分散し、分散液(E)を得る工程と、
 (II)工程:上記多孔質材(A)に、上記分散液(E)を含浸する工程と、
 (III)工程:上記多孔質材(A)から上記媒質(D)を乾燥除去する工程と、
を有する。
(Method for producing hydroponic culture medium)
The method for producing a hydroponic culture medium of the present invention comprises:
(I) step: a step of dispersing the photocatalyst composition (B) in the medium (D) to obtain a dispersion (E);
(II) step: a step of impregnating the porous material (A) with the dispersion (E);
(III) step: a step of drying and removing the medium (D) from the porous material (A);
have
 尚、上述したように、光触媒組成物(B)がバインダー樹脂(C)を介して多孔質材(A)に担持されていると、多孔質材(A)に光触媒組成物(B)がより強固に担持された水耕栽培用培地が得られるため、水耕栽培用培地の製造方法のより好ましい実施態様として、以下の製造方法が挙げられる。
 (I’)工程:媒質(D)に、上記光触媒組成物(B)と上記バインダー樹脂(C)を分散し、分散液(E)を得る工程と、
 (II)工程:上記多孔質材(A)に、上記分散液(E)を含浸する工程と、
 (III)工程:上記多孔質材(A)から上記媒質(D)を乾燥除去する工程と、
を有する。
As described above, when the photocatalyst composition (B) is supported on the porous material (A) via the binder resin (C), the photocatalyst composition (B) is more likely to be absorbed by the porous material (A). As a more preferable embodiment of the method for producing a hydroponic culture medium, the following production method can be mentioned, since a firmly supported hydroponic culture medium can be obtained.
(I') step: a step of dispersing the photocatalyst composition (B) and the binder resin (C) in the medium (D) to obtain a dispersion (E);
(II) step: a step of impregnating the porous material (A) with the dispersion (E);
(III) step: a step of drying and removing the medium (D) from the porous material (A);
have
 上記(I)工程と上記(I’)工程(上記(I)工程と上記(I’)工程とをまとめて(I)工程ともいう)、上記(II)工程、及び上記(III)工程について、以下詳しく説明する。 About the above step (I) and the above step (I′) (the above step (I) and the above step (I′) are collectively referred to as the (I) step), the above step (II), and the above step (III) , which will be described in detail below.
<(I)工程>
 媒質(D)に、上記光触媒組成物(B)を分散し、分散液(E)を得る。
 光触媒組成物(B)をバインダー樹脂(C)を介して多孔質材(A)に担持させる場合には、媒質(D)に、上記光触媒組成物(B)と上記バインダー樹脂(C)とを分散し、分散液(E)を得る。
 ここで、光触媒組成物(B)は、上記<光触媒組成物(B)>の欄で記載したとおりである。また、バインダー樹脂(C)は、上記<<水耕栽培用培地の好ましい態様>>の欄で記載したとおりである。
 媒質(D)は、水を含む。
 媒質(D)としては、水を主成分とする水性媒体であり、有機溶剤を含有してもよい。本発明では、水のみを用いても良く、また水及び有機溶剤との混合物を用いても良いが、環境負荷低減と安全性向上の観点から、有機溶剤の使用量はできる限り少ないことが好ましい。
 有機溶剤を含有する場合は、媒質(D)中、有機溶剤を30質量%以下で含有することが好ましく、5質量%以下で含有することが好ましい。
<(I) Step>
The photocatalyst composition (B) is dispersed in the medium (D) to obtain a dispersion (E).
When the photocatalyst composition (B) is supported on the porous material (A) via the binder resin (C), the medium (D) is provided with the photocatalyst composition (B) and the binder resin (C). Disperse to obtain a dispersion (E).
Here, the photocatalyst composition (B) is as described in the section <Photocatalyst composition (B)> above. In addition, the binder resin (C) is as described in the section <<preferred embodiment of hydroponic culture medium>>.
Medium (D) contains water.
The medium (D) is an aqueous medium containing water as a main component and may contain an organic solvent. In the present invention, only water may be used, or a mixture of water and an organic solvent may be used, but from the viewpoint of reducing environmental load and improving safety, the amount of organic solvent used is preferably as small as possible. .
When an organic solvent is contained, the medium (D) preferably contains the organic solvent in an amount of 30% by mass or less, preferably 5% by mass or less.
 使用可能な有機溶剤としては特に限定はないが、例えば、水と混和する有機溶剤が好ましく、1-ブタノール、イソブタノール、1-ペンタノール、2-メチル-2-ペンタノール、3-メチル-3-ペンタノール、メチルエチルケトン、メタノール、エタノール、n-プロピルアルコール(以下、NPAとも記載する)、イソプロピルアルコール(以下、IPAとも記載する)等の単官能アルコール、各種ジオール、グリセリン等の多価アルコール、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-ドデカンジオール、プロピレングリコール、1,2ブタンジオール、3-メチル-1,3ブタンジオール、1、2ペンタンジオール、2-メチル-1,3プロパンジオール、1,2ヘキサンジオール、ジプロピレングリコール、ジエチレングリコール等のジオール、 The organic solvent that can be used is not particularly limited. - monofunctional alcohols such as pentanol, methyl ethyl ketone, methanol, ethanol, n-propyl alcohol (hereinafter also referred to as NPA) and isopropyl alcohol (hereinafter also referred to as IPA), various diols, polyhydric alcohols such as glycerin, ethylene Glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol , 1,12-dodecanediol, propylene glycol, 1,2-butanediol, 3-methyl-1,3-butanediol, 1,2-pentanediol, 2-methyl-1,3-propanediol, 1,2-hexanediol, di Diols such as propylene glycol and diethylene glycol,
 ビスフェノールA、ビスフェノールAの炭素数2又は3のアルキレンオキサイド(平均付加モル数1以上16以下)付加物である芳香族ジオール、水素添加ビスフェノールA等の脂環式ジオールポリオキシプロピレン-2,2-ビス(4-ヒドロキシフェニル)プロパン、ポリオキシエチレン-2,2-ビス(4-ヒドロキシフェニル)プロパン、シクロヘキサンジオール、エチレングリコールモノメチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノイソブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノイソブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル、エチルカルビトール、γ-ブチロラクトン、等が挙げられる。これらは1種で使用してもよく複数種混合して使用してもよく限定はない。
 中でも、1-ブタノール、イソブタノール、1-ペンタノール、2-メチル-2-ペンタノール、3-メチル-3-ペンタノール、メチルエチルケトン、メタノール、エタノール、n-プロピルアルコール(以下、NPAとも記載する)、イソプロピルアルコール(以下、IPAとも記載する)、プロピレングリコール、プロピレングリコールモノメチルエーテル(1-メトキシ2-プロパノール)(PGMとも記載する)、エチレングリコールが好ましい。
Bisphenol A, aromatic diols which are adducts of alkylene oxides having 2 or 3 carbon atoms (average addition mole number of 1 to 16) of bisphenol A, alicyclic diols such as hydrogenated bisphenol A, polyoxypropylene-2,2- Bis(4-hydroxyphenyl)propane, polyoxyethylene-2,2-bis(4-hydroxyphenyl)propane, cyclohexanediol, ethylene glycol monomethyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monoisobutyl ether , diethylene glycol monomethyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, diethylene glycol monoisobutyl ether, propylene glycol monomethyl ether, propylene glycol monopropyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, diethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, ethyl carbitol, γ-butyrolactone, and the like. These may be used singly or as a mixture of two or more kinds, and there is no limitation.
Among them, 1-butanol, isobutanol, 1-pentanol, 2-methyl-2-pentanol, 3-methyl-3-pentanol, methyl ethyl ketone, methanol, ethanol, n-propyl alcohol (hereinafter also referred to as NPA) , isopropyl alcohol (hereinafter also referred to as IPA), propylene glycol, propylene glycol monomethyl ether (1-methoxy-2-propanol) (also referred to as PGM), and ethylene glycol are preferable.
 上記分散液(E)は、さらに湿潤分散剤(F)を含有してもよい。
 湿潤分散剤(F)としては、金属酸化物の濡れ性や分散性の向上に有効なものであれば、如何なる分散剤を使用することも可能であるが、例えば、アンモニウム塩基を有するコポリマー、又は遊離脂肪酸基を有する酸価10mg KOH/g以上のコポリマー等が挙げられる。
 湿潤分散剤(F)の中でも酸価を有する分散剤が、好ましく用いられる。
 上記コポリマーは、比較的高分子のものが好ましく用いられ、例えばコポリマーの分子量として500~200,000が好ましく1,000~150,000がより好ましい。アンモニウム塩基を有するコポリマーとしては、例えば多官能ポリマー、アクリル系共重合物が好ましい。コポリマーの分子量が上記範囲内であれば、分散性が向上する。
The dispersion (E) may further contain a wetting and dispersing agent (F).
As the wetting and dispersing agent (F), any dispersing agent can be used as long as it is effective in improving the wettability and dispersibility of the metal oxide. Copolymers having free fatty acid groups and having an acid value of 10 mg KOH/g or more are included.
Among the wetting and dispersing agents (F), dispersing agents having an acid value are preferably used.
The above copolymer preferably has a relatively high molecular weight. For example, the molecular weight of the copolymer is preferably 500 to 200,000, more preferably 1,000 to 150,000. As copolymers having an ammonium base, for example, polyfunctional polymers and acrylic copolymers are preferred. If the molecular weight of the copolymer is within the above range, the dispersibility is improved.
 多官能ポリマーとしては、例えば、アミン基、カルボキシル基、エーテル基、シリル基等、官能基を有する重合性単量体を複数種、構成単位に持つポリマーが挙げられる。
 アクリル系共重合物としては、アクリル系の重合性単量体、例えばメタクリル酸とアクリル酸などを構成単位にもつ共重合物が挙げられる。
 アンモニウム塩基とは、例えばアルキロールアミン塩が挙げられる。
 遊離脂肪酸基としては、例えば(メタ)アクリル酸、イタコン酸、クロトン酸、フマル酸、無水マレイン酸、シトラコン酸等のカルボキシル基を有する重合性単量体を構成単位とすることで得ること可能である。
Examples of polyfunctional polymers include polymers having, as structural units, plural types of polymerizable monomers having functional groups such as amine groups, carboxyl groups, ether groups, and silyl groups.
Examples of acrylic copolymers include copolymers having acrylic polymerizable monomers, such as methacrylic acid and acrylic acid, as constitutional units.
Ammonium bases include, for example, alkylolamine salts.
The free fatty acid group can be obtained by using a polymerizable monomer having a carboxyl group such as (meth)acrylic acid, itaconic acid, crotonic acid, fumaric acid, maleic anhydride, or citraconic acid as a structural unit. be.
 遊離脂肪酸基を有するコポリマーの酸価としては、10mg KOH/g以上であり、好ましくは20mg KOH/g以上であり、また、通常150mg KOH/g以下であり、好ましくは100mg KOH/g以下である。遊離脂肪酸基を有するコポリマーの酸価は10mg KOH/g以上150mg KOH/g以下でもよく、10mg KOH/g以上100mg KOH/g以下でもよく、20mg KOH/g以上150mg KOH/g以下でもよく、20mg KOH/g以上100mg KOH/g以下でもよい。
 酸価とは、1g中に含まれる遊離脂肪酸を中和するのに要する水酸化カリウムのミリグラム数で定義される。
The acid value of the copolymer having a free fatty acid group is 10 mg KOH/g or more, preferably 20 mg KOH/g or more, and usually 150 mg KOH/g or less, preferably 100 mg KOH/g or less. . The acid value of the copolymer having free fatty acid groups may be 10 mg KOH/g or more and 150 mg KOH/g or less, may be 10 mg KOH/g or more and 100 mg KOH/g or less, may be 20 mg KOH/g or more and 150 mg KOH/g or less, and may be 20 mg. KOH/g or more and 100 mg KOH/g or less may be sufficient.
Acid number is defined as milligrams of potassium hydroxide required to neutralize free fatty acids contained in 1 g.
 上記範囲に該当する湿潤分散剤(A)としては、ビックケミー・ジャパン社製、BYK-154、DISPERBYK180、DISPERBYK181、DISPERBYK190、DISPERBYK191、DISPERBYK194Nなどが具体的に挙げられる。 Specific examples of the wetting and dispersing agent (A) falling within the above range include BYK-154, DISPERBYK180, DISPERBYK181, DISPERBYK190, DISPERBYK191, and DISPERBYK194N manufactured by BYK-Chemie Japan.
 分散液(E)は、上述した各成分を含有していれば、各成分の混合方法や混合する順番に特に制限はなく、用いる各成分の種類を考慮し、適宜混合方法を選択することができるが、例えば、より具体的には、以下に記載する分散液(E)の製造方法が挙げられる。
 分散液(E)が湿潤分散剤(F)も含有する場合を例に以下説明する。
 (i)光触媒組成物(B)と湿潤分散剤(F)と媒質(D)とを混合撹拌する。その際、混合液にビーズを加え、ビーズミルで粉体と液体の混合物であるスラリーとビーズを撹拌することにより、砕料粒子を磨砕するとよい。磨砕終了後、混合液からビーズを分離して、光触媒分散体(G)を得る。
 (ii)上記光触媒分散体(G)と、バインダー樹脂(C)と、媒質(D)とを混合し、分散液(E)を得る。
 ここで、分散液(E)中の光触媒分散体(G)とバインダー樹脂(C)との混合割合は、固形分比率で、例えば、10:90~90:10であるとよい。
As long as the dispersion liquid (E) contains the above-described components, there is no particular limitation on the mixing method or mixing order of each component, and the mixing method can be appropriately selected in consideration of the type of each component to be used. However, more specifically, for example, the method for producing the dispersion (E) described below can be mentioned.
An example in which the dispersion (E) also contains the wetting and dispersing agent (F) will be described below.
(i) The photocatalyst composition (B), the wetting and dispersing agent (F) and the medium (D) are mixed and stirred. At that time, it is preferable to add beads to the mixed liquid and stir the slurry, which is a mixture of powder and liquid, and the beads in a bead mill to grind the crushed material particles. After grinding, the beads are separated from the mixture to obtain a photocatalyst dispersion (G).
(ii) The photocatalyst dispersion (G), the binder resin (C), and the medium (D) are mixed to obtain a dispersion (E).
Here, the mixing ratio of the photocatalyst dispersing element (G) and the binder resin (C) in the dispersion (E) is preferably 10:90 to 90:10 in solid content ratio.
<(II)工程>
 上記多孔質材(A)に、上記分散液(E)を含浸する。
 例えば、分散液(E)を含浸槽に入れ、この浴中に多孔質材(A)を供給することにより、多孔質材(A)に分散液(E)を含浸させることができる。
<(II) step>
The porous material (A) is impregnated with the dispersion (E).
For example, the porous material (A) can be impregnated with the dispersion (E) by placing the dispersion (E) in an impregnation tank and supplying the porous material (A) into this bath.
<(III)工程>
 上記多孔質材(A)から上記媒質(D)を乾燥除去する。
 例えば、絞りロールや乾燥炉を用いて、多孔質材(A)から上記媒質(D)を乾燥除去する。より具体的には、例えば、上記(II)工程による含浸後、絞りロールにより多孔質材(A)を絞り、多孔質材(A)中の分散液(E)の付着量を調整する。例えば、分散液(E)の乾燥重量が0.1kg/m~3kg/mを示す量の分散液(E)が、多孔質材(A)中に付着するように絞りロール間隔を調整する。そして、多孔質材(A)をその絞りロールに通す。絞りロールを通した後は、多孔質材(A)を60℃~160℃に設定した乾燥炉に通して熱風乾燥する。これにより、本発明の水耕栽培用培地を得ることができる。
<(III) step>
The medium (D) is removed by drying from the porous material (A).
For example, the medium (D) is dried and removed from the porous material (A) using squeeze rolls or a drying oven. More specifically, for example, after the impregnation in the step (II), the porous material (A) is squeezed with a squeeze roll to adjust the adhesion amount of the dispersion (E) in the porous material (A). For example, the squeezing roll interval is adjusted so that the dispersion liquid (E) in an amount such that the dry weight of the dispersion liquid (E) is 0.1 kg/m 3 to 3 kg/m 3 adheres to the porous material (A). do. Then, the porous material (A) is passed through the squeezing rolls. After passing through the squeezing rolls, the porous material (A) is passed through a drying furnace set at 60°C to 160°C and dried with hot air. Thereby, the hydroponic culture medium of the present invention can be obtained.
(分散液)
 上述したように、水耕栽培用培地を製造する際に、多孔質材(A)に光触媒組成物(B)を担持させるため、分散液(E)を用意する。
 分散液(E)は、媒質(D)、及び光触媒組成物(B)を含有する。分散液(E)の好ましい態様として、さらにバインダー樹脂(C)を含有する。
(dispersion liquid)
As described above, the dispersion liquid (E) is prepared in order to support the photocatalyst composition (B) on the porous material (A) when producing the hydroponic culture medium.
Dispersion (E) contains medium (D) and photocatalyst composition (B). A preferred embodiment of the dispersion (E) further contains a binder resin (C).
 分散液(E)は、水耕栽培用培地を製造するために培地加工用として使用することができる。
 但し、本発明に係る分散液(E)は、培地の製造のみに適用されるだけでなく、水耕栽培に関する、藻の発生抑制が望まれるもの全般に適用することができる。例えば、水耕栽培に使用する藻の発生抑制用の分散液として、水耕栽培用の水槽(栽培容器(バット)ともいう)や水耕パネル(育成ボードともいう)等に適用することができる。より具体的には、例えば、栽培容器(バット)、育成ボード、培養液循環槽、ろ過装置、フィルター、配管などへの適用が挙げられる。
 水耕栽培用の装置の中でも、培養液と接触する部分であって、藻の発生部位の近くへの適用が好ましく、光の照射される部位への適用がより好ましい。したがって、本発明に係る分散液(E)は、水耕栽培用培地、栽培容器(バット)、及び育成ボードなどへ適用するのが特に好ましい。
The dispersion liquid (E) can be used for medium processing to produce a hydroponic culture medium.
However, the dispersion liquid (E) according to the present invention is applicable not only to the production of culture media, but also to hydroponics in general where suppression of algae growth is desired. For example, it can be applied to a water tank for hydroponics (also called a cultivation container (bat)), a hydroponic panel (also called a cultivation board), etc., as a dispersion for suppressing the growth of algae used in hydroponics. . More specifically, for example, application to cultivation vessels (bats), growth boards, culture solution circulation tanks, filtering devices, filters, piping, and the like can be mentioned.
Among hydroponic cultivation devices, it is preferably applied to a portion in contact with the culture medium, near the site where algae are generated, and more preferably applied to the site irradiated with light. Therefore, it is particularly preferable to apply the dispersion (E) according to the present invention to hydroponic culture media, cultivation containers (bats), growth boards, and the like.
 分散液(E)に含有されるバインダー樹脂(C)としては、適用部材に接着性を与えることができる樹脂溶液、樹脂分散液、あるいは硬化性液状樹脂から選択されることが望ましい。例えば、バインダー樹脂(C)としては、コーティング剤用樹脂や接着剤用樹脂として利用されるアクリル樹脂、ウレタン樹脂、ポリエステル樹脂、エポキシ樹脂、アルキッド樹脂、セルロース等の生分解性樹脂、UV硬化型(メタ)アクリレート樹脂等が使用できる。これらの樹脂は適宜組み合わせて使用されてもよい。
 分散液(E)は、水、有機溶剤等を希釈剤として適宜使用することができる。分散液(E)は、UV硬化型や熱硬化型樹脂のように無溶剤型であってもよい。環境対応や塗装作業者の安全面への観点からは、水性分散液であることが好ましい。
The binder resin (C) contained in the dispersion (E) is desirably selected from resin solutions, resin dispersions, and curable liquid resins that can impart adhesiveness to the application member. Examples of the binder resin (C) include acrylic resins, urethane resins, polyester resins, epoxy resins, alkyd resins, biodegradable resins such as cellulose, which are used as resins for coating agents and adhesives, UV curable ( A meth)acrylate resin or the like can be used. These resins may be used in combination as appropriate.
Water, an organic solvent, or the like can be appropriately used as a diluent for the dispersion (E). The dispersion (E) may be a solventless type such as a UV curable or thermosetting resin. An aqueous dispersion is preferred from the viewpoint of environmental friendliness and safety of coating workers.
(水耕栽培方法)
 本発明の水耕栽培方法は、上述した本発明の水耕栽培用培地を用いて、植物を生育する。より具体的には、本発明の水耕栽培用培地と該水耕栽培用培地に可視光を照射する光照射手段と、さらに好ましくは培養液を保持する容器や該培養液を循環する循環手段とを用いて、植物を生育する。
 ここで、培養液としては、一般に水耕栽培で用いられている培養液を使用することができ、例えば、植物の養分を含む水溶液が挙げられる。植物の養分として、窒素、リン、カリウム、カルシウム、マグネシウム、硫黄、ホウ素、鉄、マンガン、亜鉛、モリブデン等を含む養分が挙げられる。植物の養分には、これら元素を含む、無機系養分、および有機系養分がある。
 そして、培養液中の植物の養分の組成は、生育する植物及び植物の生育状態に応じて、選択される。
(Hydroponic cultivation method)
In the hydroponic cultivation method of the present invention, plants are grown using the hydroponic culture medium of the present invention. More specifically, the hydroponic culture medium of the present invention, a light irradiation means for irradiating the hydroponic culture medium with visible light, and more preferably a vessel for holding the culture solution and a circulation means for circulating the culture solution. and are used to grow plants.
Here, as the culture solution, a culture solution generally used in hydroponics can be used, and examples thereof include an aqueous solution containing plant nutrients. Nutrients for plants include nutrients containing nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, boron, iron, manganese, zinc, molybdenum, and the like. Nutrients for plants include inorganic nutrients and organic nutrients containing these elements.
The nutrient composition of the plant in the culture solution is selected according to the growing plant and the growth state of the plant.
 光照射手段は、例えば、生育する植物及び水耕栽培用培地に可視光を照射する手段(例えば、光を照射する部位が容器の上方となる位置に配置された装置)である。
 ただし、光照射手段は、少なくとも、水耕栽培用培地に可視光を照射する装置であればよい。一方で、水耕栽培装置を、太陽光が到達しない又は到達し難い屋内に設置する場合には、光照射手段は、植物及び水耕栽培用培地に可視光を照射する装置であることがよい。
The light irradiating means is, for example, means for irradiating the growing plant and the hydroponic culture medium with visible light (for example, a device arranged at a position where the portion irradiated with light is above the container).
However, the light irradiating means may be a device that irradiates at least the hydroponic culture medium with visible light. On the other hand, when the hydroponic cultivation apparatus is installed indoors where sunlight does not reach or is difficult to reach, the light irradiation means is preferably a device that irradiates the plants and the hydroponic culture medium with visible light. .
 光照射手段は、可視光を発する光源を有している。光源としては、LED(Light Emitting Diode)ユニット、レーザーユニット、蛍光灯等が挙げられるが、中でもLEDの照明手段が好ましい。 The light irradiation means has a light source that emits visible light. Examples of the light source include an LED (Light Emitting Diode) unit, a laser unit, a fluorescent lamp, etc. Among them, an LED lighting means is preferable.
 水耕栽培における光照射手段の照射時間は、生育する植物の種類に応じて適宜選択することができるが、例えば、1日の照射時間は、16時間とする(8時間を暗所とする)ことができる。
 尚、本発明に係る光触媒組成物(B)において、金属として銅化合物を用いた場合、銅化合物を担持してなる光触媒組成物(B)は、暗所活性にも優れているため、より藻の抑制に効果的である。
The irradiation time of the light irradiation means in hydroponics can be appropriately selected according to the type of growing plant, but for example, the irradiation time per day is 16 hours (8 hours in a dark place). be able to.
In addition, in the photocatalyst composition (B) according to the present invention, when a copper compound is used as the metal, the photocatalyst composition (B) supporting the copper compound is also excellent in dark place activity. is effective in suppressing
<水耕栽培装置>
 本発明の水耕栽培方法を実施するため、例えば、図4及び図5で示す水耕栽培装置を用いて植物を栽培することができる。
 図4及び図5で示す水耕栽培装置(10)は、栽培用培地(14)上に支持された植物(11)を培養液(12)用いて育成させる装置である。該水耕栽培装置は、栽培容器(13)、培養液循環濾過ポンプ(16)、光照射手段(20)、光源(21)を有している。
 また、図4及び図5で示す水耕栽培装置(10)において、栽培用培地(14)は、植物(11)を支持するための植物支持部(14a)と該植物支持部(14a)を保持するための保持部(14b)とから形成されている。なお、保持部(14b)において、植物支持部(14a)を挿入するための開口部が狭く、その開口部に植物を直接挿入させても、植物が保持部に保持されるようであれば、植物支持部(14a)は設けなくてもよい。
<Hydroponic equipment>
In order to carry out the hydroponic cultivation method of the present invention, for example, plants can be cultivated using the hydroponic cultivation apparatus shown in FIGS.
A hydroponic cultivation apparatus (10) shown in FIGS. 4 and 5 is an apparatus for growing a plant (11) supported on a culture medium (14) using a culture solution (12). The hydroponic cultivation apparatus has a cultivation container (13), a culture solution circulation filtration pump (16), light irradiation means (20), and a light source (21).
In the hydroponic cultivation apparatus (10) shown in FIGS. 4 and 5, the cultivation medium (14) includes a plant support portion (14a) for supporting the plant (11) and the plant support portion (14a). and a holding portion (14b) for holding. In the holding part (14b), if the opening for inserting the plant support part (14a) is narrow and the plant is held by the holding part even if the plant is directly inserted into the opening, The plant support portion (14a) may not be provided.
 水耕栽培装置において、培養液と接する部分は、藻の発生が特に懸念される。したがって、そのような場所に本発明に係る分散液を適用するのが好ましい。特に、光照射により藻が成長しやすい水耕栽培用培地、栽培容器(バット)、及び育成ボードなどへ本発明に係る分散液(E)を適用するのが好ましい。 In the hydroponic cultivation system, there is a particular concern about the growth of algae in the areas that come into contact with the culture solution. It is therefore preferred to apply the dispersion according to the invention to such locations. In particular, it is preferable to apply the dispersion liquid (E) according to the present invention to hydroponic culture media, cultivation containers (bats), cultivation boards, and the like in which algae easily grow by light irradiation.
 以下に、本発明の内容および効果を実施例により更に詳細に説明するが、本発明はこれらに限定されるわけではない。なお下記に示す「部」とは「質量部」を表す。 The contents and effects of the present invention will be described in more detail below by way of examples, but the present invention is not limited to these. In addition, "parts" shown below represent "parts by mass".
<多孔質材>
(1)多孔質材A1
 28mm厚みの軟質ウレタンフォーム(連続気泡タイプ)を、1ブロックが23mm角に切り離しが可能となるように切れ込みを入れ、さらに、各ブロックの中央に種植え付け用に十字切れ込みを入れたものを多孔質材A1として使用した。
 多孔質材A1の見かけ密度は、13kg/mであった。
<Porous material>
(1) Porous material A1
A soft urethane foam (open cell type) with a thickness of 28 mm is cut so that one block can be separated into 23 mm squares, and a cross cut is made in the center of each block for seed planting. Used as material A1.
The apparent density of the porous material A1 was 13 kg/m 3 .
<光触媒組成物>
(1)酸化チタン組成物b
 一般的な硫酸法に準じ、イルメナイト鉱と五酸化ニオブと酸化ジルコニウムとの混合物に、硫酸と水、鉄を添加して溶解し、チタン硫酸塩と硫酸鉄を主成分とする溶液を得た。
 硫酸鉄などの不純物を取除き、熱加水分解し、含水水酸化チタン組成物を得た。上記水酸化チタン組成物を洗浄し、900℃で焼成処理を行い、得られた固形物を粉砕し、以下の特徴を持つ酸化チタン組成物bを得た。
  a)結晶性ルチル型酸化チタン
  b)物性値
  ・BET比表面積:9.0m/g
  ・ルチル化率:95.4%
  ・1次粒子径:0.18μm
  ・Zr/Ti比:0.05
  ・Nb/Ti比:0.17
<Photocatalytic composition>
(1) Titanium oxide composition b
According to a general sulfuric acid method, sulfuric acid, water, and iron were added and dissolved in a mixture of ilmenite ore, niobium pentoxide, and zirconium oxide to obtain a solution containing titanium sulfate and iron sulfate as main components.
Impurities such as iron sulfate were removed, followed by thermal hydrolysis to obtain a hydrous titanium hydroxide composition. The titanium hydroxide composition was washed, calcined at 900° C., and the obtained solid was pulverized to obtain a titanium oxide composition b having the following characteristics.
a) Crystalline rutile-type titanium oxide b) Physical properties ・BET specific surface area: 9.0 m 2 /g
・Rutilization rate: 95.4%
・Primary particle size: 0.18 μm
・Zr/Ti ratio: 0.05
・Nb/Ti ratio: 0.17
(2)光触媒組成物B1
 a)混合工程(反応工程)
 上記酸化チタン組成物b600質量部、塩化銅(ii)二水和物8質量部、水900質量部をステンレス容器中に混合した。次いで、混合物を撹拌機(特殊機化工業株式会社製「ロボミクス」)で撹拌し、1mol/Lの水酸化ナトリウム水溶液を混合液のpHが10になるまで滴下した。
 b)脱水工程
 定性濾紙(5C)により減圧濾過をおこない、混合液から固形分を分離し、更にイオン交換水で洗浄を実施した。次いで、洗浄後の固形物を120℃で12時間乾燥し、水分を除去した。乾燥後、ミル(イワタニ産業株式会社製「ミルサー」)で粉状の酸化チタン組成物を得た。
 c)熱処理工程
 上記b)の脱水工程で得られた粉状の酸化チタン組成物に対して、精密恒温器(ヤマト科学株式会社製「DH650」)を用いて酸素存在下で450℃、3時間熱処理し、2価銅化合物が担持された酸化チタンを含有する光触媒組成物B1を得た。
 なお、上記2価銅化合物が担持された酸化チタンにおける、2価銅化合物の担持量は酸化チタンに対して0.5質量%であった。
(2) Photocatalyst composition B1
a) Mixing step (reaction step)
600 parts by mass of the titanium oxide composition b, 8 parts by mass of copper (ii) chloride dihydrate, and 900 parts by mass of water were mixed in a stainless container. Next, the mixture was stirred with a stirrer (“Robomix” manufactured by Tokushu Kika Kogyo Co., Ltd.), and a 1 mol/L sodium hydroxide aqueous solution was added dropwise until the pH of the mixture reached 10.
b) Dehydration step Filtration under reduced pressure was performed with a qualitative filter paper (5C) to separate the solid content from the mixed solution, and the solid content was washed with ion-exchanged water. The washed solid was then dried at 120° C. for 12 hours to remove moisture. After drying, a powdery titanium oxide composition was obtained with a mill ("Milcer" manufactured by Iwatani Sangyo Co., Ltd.).
c) Heat treatment step The powdery titanium oxide composition obtained in the dehydration step b) above is heated at 450°C for 3 hours in the presence of oxygen using a precision thermostat ("DH650" manufactured by Yamato Scientific Co., Ltd.). After heat treatment, a photocatalyst composition B1 containing titanium oxide on which a divalent copper compound was supported was obtained.
The amount of the divalent copper compound supported in the titanium oxide on which the divalent copper compound was supported was 0.5% by mass with respect to the titanium oxide.
<光触媒分散体>
(1)光触媒分散体G1
 光触媒組成物B1の25部と、水75部と、湿潤分散剤F1(酸価75mgKOH/g、ビックケミー株式会社製「DISPERBYK-194N」)8部とを混合撹拌し、1.0mmφセラミックビーズ100部を加えたのち、サンドグラインダーで4時間磨砕した。磨砕終了後、上記ビーズを分散液から分離して、光触媒分散体G1を得た。
<Photocatalyst dispersion>
(1) Photocatalyst dispersion G1
25 parts of photocatalyst composition B1, 75 parts of water, and 8 parts of wetting and dispersing agent F1 (acid value 75 mgKOH/g, BYK-Chemie Co., Ltd. "DISPERBYK-194N") are mixed and stirred, and 100 parts of 1.0 mmφ ceramic beads are mixed. was added and ground in a sand grinder for 4 hours. After grinding, the beads were separated from the dispersion liquid to obtain a photocatalyst dispersion G1.
<分散液>
(1)分散液E1
 水561質量部、光触媒分散体G1(固形分25質量%)20質量部、ポリカーボネート-ポリウレタン樹脂の水分散体C1(DIC株式会社製「ハイドランWLS-210」)19質量部(合計600質量部)を分散撹拌機(特殊機化工業製 TKホモディスパー)を用いて均一に混合して培地加工用の分散液E1を得た。
 この分散液の固形分は19.2質量%、光触媒組成物B1とバインダー樹脂C1の固形分比は44:56であった。
<Dispersion>
(1) Dispersion E1
Water 561 parts by mass, photocatalyst dispersion G1 (solid content 25% by mass) 20 parts by mass, polycarbonate-polyurethane resin water dispersion C1 ("Hydran WLS-210" manufactured by DIC Corporation) 19 parts by mass (total 600 parts by mass) were uniformly mixed using a dispersion stirrer (TK Homodisper manufactured by Tokushu Kika Kogyo Co., Ltd.) to obtain a dispersion E1 for processing the medium.
The solid content of this dispersion was 19.2% by mass, and the solid content ratio of the photocatalyst composition B1 and the binder resin C1 was 44:56.
(実施例1)
<水耕栽培用培地の作製>
 含浸槽、絞りロール、乾燥炉を用いて、多孔質材A1に分散液E1を含浸、乾燥させることで、多孔質材に光触媒組成物を担持した水耕栽培用培地を作製した。
 すなわち、上記分散液E1を含浸槽に入れ、この浴中に28mm厚みの軟質ウレタンフォームA1を供給し、分散液乾燥重量が0.6kg/m付着するように絞りロール間隔を調整した。ついで、軟質ウレタンフォームA1を絞りロールに通したのち、120℃に設定した乾燥炉を通して熱風乾燥し、目的とする水耕栽培用培地を得た。
 該水耕栽培用培地を用いて、以下に記載の方法にて、藻の発生とレタスの育成状況を評価した。
(Example 1)
<Preparation of hydroponic culture medium>
By impregnating the porous material A1 with the dispersion E1 using an impregnation tank, a squeeze roll, and a drying oven, and drying the porous material A1, a hydroponic culture medium in which the photocatalyst composition was supported on the porous material was produced.
That is, the above dispersion E1 was placed in an impregnation tank, 28 mm thick flexible urethane foam A1 was supplied into the bath, and the squeezing roll interval was adjusted so that the dry weight of the dispersion was 0.6 kg/m 3 . Next, the soft urethane foam A1 was passed through a squeezing roll and dried with hot air in a drying furnace set at 120° C. to obtain the target hydroponic culture medium.
Using the hydroponic culture medium, the growth of algae and the growth of lettuce were evaluated by the methods described below.
(比較例1)
 水耕栽培用培地を、光触媒組成物未担持の多孔質材A1をそのまま使用した以外は、実施例1と同様にして、藻の発生とレタスの育成状況を評価した。
(Comparative example 1)
Algae generation and lettuce growth were evaluated in the same manner as in Example 1, except that the photocatalyst composition-unsupported porous material A1 was used as the hydroponic culture medium.
(比較例2)
 多孔質材として、特許2813693号公報に記載の軟質ポリウレタンフォームを参考にした。
 水耕栽培用培地を、銀系抗菌剤を含有した軟質ウレタンフォームである市販の抗菌スポンジ(キクロン社製クリピカ スポンジAg抗菌;見かけ密度30kg/m)を多孔質材A1と同様の寸法に加工したものとした以外は、実施例1と同様にして、藻の発生とレタスの育成状況を評価した。
(Comparative example 2)
As the porous material, the flexible polyurethane foam described in Japanese Patent No. 2813693 was used as a reference.
The hydroponic culture medium is a commercially available antibacterial sponge that is a soft urethane foam containing a silver-based antibacterial agent (Crypika Sponge Ag antibacterial product manufactured by Kikuron Co., Ltd.; apparent density 30 kg/m 3 ) processed to the same dimensions as the porous material A1. In the same manner as in Example 1, algae generation and lettuce growth conditions were evaluated, except that the conditions were as follows.
<評価方法>
[酸化チタンのBET比表面積の測定方法]
 株式会社マウンテック製全自動BET比表面積測定装置「MacSORBHM model-1208」を使用して、比表面積測定(BET1点法)による測定を行った。
<Evaluation method>
[Method for measuring BET specific surface area of titanium oxide]
Using a fully automatic BET specific surface area measuring device "MacSORBHM model-1208" manufactured by Mountec Co., Ltd., measurement was performed by specific surface area measurement (BET 1-point method).
[酸化チタンのルチル化率の測定方法]
 島津製作所株式会社製X線回折装置「XRD-6100」を使用して、ルチル型結晶に対応するピーク高さ割合を酸化チタン全体の結晶(ルチル型、ブルッカイト型、アナターゼ型)に対応するピーク高さから算出した。
[Method for measuring rutilization rate of titanium oxide]
Using an X-ray diffractometer "XRD-6100" manufactured by Shimadzu Corporation, the ratio of the peak height corresponding to the rutile type crystal was compared to the peak height corresponding to the entire titanium oxide crystal (rutile type, brookite type, anatase type). calculated from
[酸化チタンのZr/Ti比、Nb/Ti比の算出方法]
 セイコーインスツル株式会社製蛍光X線分析装置「SEA1200VX」を使用して、バルクファンダメンタルパラメータ(バルクFP)法による金属元素組成分析を行った。
 酸化チタン試料を測定して得られた、各金属元素の蛍光強度(cps:count per second)について、チタンの蛍光強度(cps)を100としたときのジルコニウムまたはニオブの蛍光強度(cps)の強度比を、それぞれZr/Ti比、またはNb/Ti比として算出した。
[Calculation method of Zr/Ti ratio and Nb/Ti ratio of titanium oxide]
Using a fluorescent X-ray analyzer "SEA1200VX" manufactured by Seiko Instruments Inc., a metal elemental composition analysis was performed by a bulk fundamental parameter (bulk FP) method.
Regarding the fluorescence intensity (cps: count per second) of each metal element obtained by measuring the titanium oxide sample, the intensity of the fluorescence intensity (cps) of zirconium or niobium when the fluorescence intensity (cps) of titanium is taken as 100 The ratios were calculated as Zr/Ti ratios or Nb/Ti ratios, respectively.
[酸化チタンへの2価銅化合物の担持量の測定方法]
 酸化チタンを、フッ酸溶液で全溶解し、抽出液をICP発光分光分析装置により分析して、酸化チタン100質量部に対する2価銅化合物の担持量(質量部)を定量した。
[Method for measuring amount of divalent copper compound supported on titanium oxide]
Titanium oxide was completely dissolved in a hydrofluoric acid solution, and the extract was analyzed by an ICP emission spectrometer to quantify the supported amount (parts by mass) of the divalent copper compound with respect to 100 parts by mass of titanium oxide.
[防藻性の評価]
 水道水10リットルに、肥料としてOATアグリオ製OATハウス1号を11g、同2号を7.5g、同5号を0.5g溶かし入れ、植物培養液とした。試験中の培養液のEC値は、1.0~2.0mS/cmを維持した。
 育苗用バットに約15mm程度の水深となるように培養液を入れ、4×10個の培地マットを浸した。LED照明照射時間16時間/日、育成環境温度22℃でレタス種子の播種有無でのバット内の藻の発生状況を経過観察した。評価は以下のように行った。
 -評価基準-
  5:藻の発生無し
  4:藻がわずかに発生
  3:藻が全体の1/4以上覆う
  2:藻が全体の1/2以上覆う
  1:藻が全面を覆う
[Evaluation of algae resistance]
As fertilizers, 11 g of OAT House No. 1, 7.5 g of OAT House No. 2, and 0.5 g of OAT House No. 5 were dissolved in 10 liters of tap water to prepare a plant culture solution. The EC value of the medium during testing remained between 1.0 and 2.0 mS/cm.
The culture solution was placed in a seedling-growing bat to a water depth of about 15 mm, and 4×10 medium mats were immersed. The growth of algae in the vat was observed with and without sowing lettuce seeds under an LED lighting irradiation time of 16 hours/day and a growth environment temperature of 22°C. Evaluation was performed as follows.
-Evaluation criteria-
5: No algae 4: Slight algae 3: More than 1/4 covered by algae 2: More than 1/2 covered by algae 1: Entirely covered by algae
[レタスの育成状況の評価]
 防藻性評価に用いたレタス種子の播種バットのレタスの育成状況を、比較例1を基準に経過観察し、以下のように評価を行った。
 -評価基準-
  5:比較例1よりも成長が早い
  4:比較例1と同等に成長
  3:比較例1に比べ1週間以内の成長の遅れ
  2:比較例1に比べ1週間以上の成長の遅れ
  1:ほぼ成長しない
[Evaluation of growing status of lettuce]
The state of growth of lettuce in the seeding bat of lettuce seeds used for evaluation of algae resistance was observed based on Comparative Example 1, and evaluated as follows.
-Evaluation criteria-
5: Faster growth than Comparative Example 1 4: Equivalent growth to Comparative Example 1 3: Less than 1 week delay in growth compared to Comparative Example 1 2: More than 1 week delay in growth compared to Comparative Example 1 1: Nearly do not grow
(評価結果)
 実施例1、比較例1、及び比較例2における、レタス種子の播種有無でのバット内の藻の発生状況とレタスの育成状況とを経過観察した結果を図1~図3に示す。図1は、7日目の観察結果を示す写真、図2は、14日目の観察結果を示す写真、図3は、21日目の観察結果を示す写真である。また、実施例1、比較例1、及び比較例2における、レタス種子の播種有無でのバット内の藻の発生状況とレタスの育成状況との観察結果を上記評価基準により評価した結果を下記表1に示す。
(Evaluation results)
1 to 3 show the results of follow-up observation of the state of algal growth in the bat and the state of lettuce growth in Example 1, Comparative Example 1, and Comparative Example 2 with or without sowing lettuce seeds. FIG. 1 is a photograph showing the observation results on the 7th day, FIG. 2 is a photograph showing the observation results on the 14th day, and FIG. 3 is a photograph showing the observation results on the 21st day. In addition, in Example 1, Comparative Example 1, and Comparative Example 2, the observation results of the state of algae generation in the bat with and without seeding of lettuce seeds and the state of lettuce growth were evaluated according to the above evaluation criteria, and the results are shown in the table below. 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1が比較例1に比べ、藻の発生を抑制していることが分かる。一方、比較例2では藻の発生を高度に抑制しているものの、レタスの成長を著しく阻害していることが分かる。
 本発明の光触媒組成物を担持した培地を用いた水耕栽培では、作物の生育阻害が少なく、かつ、藻の発生を抑制するという相反する効果を両立できることが確認できた。
It can be seen that Example 1 suppresses the generation of algae as compared with Comparative Example 1. On the other hand, in Comparative Example 2, algae growth was greatly suppressed, but the growth of lettuce was significantly inhibited.
It was confirmed that hydroponics using a medium supporting the photocatalyst composition of the present invention can achieve both the contradictory effects of less inhibition of crop growth and suppression of algae growth.

Claims (21)

  1.  多孔質材(A)に光触媒組成物(B)を担持した水耕栽培用培地であって、
     前記光触媒組成物(B)は、酸化チタン組成物に金属が担持された光触媒組成物である、水耕栽培用培地。
    A hydroponic culture medium in which a photocatalyst composition (B) is supported on a porous material (A),
    The photocatalyst composition (B) is a hydroponic culture medium, which is a photocatalyst composition in which a metal is supported on a titanium oxide composition.
  2.  前記酸化チタン組成物は、ルチル型酸化チタンを含む、請求項1に記載の水耕栽培用培地。 The hydroponic culture medium according to claim 1, wherein the titanium oxide composition contains rutile-type titanium oxide.
  3.  前記金属が、遷移金属または典型金属である、請求項1又は2に記載の水耕栽培用培地。 The hydroponic culture medium according to claim 1 or 2, wherein the metal is a transition metal or a typical metal.
  4.  前記酸化チタン組成物は、ジルコニウム及びニオブからなる群から選ばれる少なくとも1種の金属元素を実質的に含む、請求項1~3のいずれか一項に記載の水耕栽培用培地。 The hydroponic culture medium according to any one of claims 1 to 3, wherein the titanium oxide composition substantially contains at least one metal element selected from the group consisting of zirconium and niobium.
  5.  前記多孔質材(A)が、連続気泡構造を含む発泡体である、請求項1~4のいずれか一項に記載の水耕栽培用培地。 The hydroponic culture medium according to any one of claims 1 to 4, wherein the porous material (A) is a foam containing an open cell structure.
  6.  前記多孔質材(A)が、ウレタンフォームである、請求項5に記載の水耕栽培用培地。 The hydroponic culture medium according to claim 5, wherein the porous material (A) is urethane foam.
  7.  前記多孔質材(A)が、密度10~30g/mのウレタンフォームである、請求項6に記載の水耕栽培用培地。 7. The hydroponic culture medium according to claim 6, wherein said porous material (A) is urethane foam having a density of 10 to 30 g/m 3 .
  8.  前記多孔質材(A)に、前記光触媒組成物(B)がバインダー樹脂(C)を介して担持されている、請求項1~7のいずれか一項に記載の水耕栽培用培地。 The hydroponic culture medium according to any one of claims 1 to 7, wherein the photocatalyst composition (B) is supported on the porous material (A) via a binder resin (C).
  9.  前記バインダー樹脂(C)が、ウレタン系樹脂、又はアクリル系樹脂である、請求項8に記載の水耕栽培用培地。 The hydroponic culture medium according to claim 8, wherein the binder resin (C) is a urethane resin or an acrylic resin.
  10.  請求項1~9のいずれか一項に記載の水耕栽培用培地を製造する水耕栽培用培地の製造方法であって、
     媒質(D)に、前記光触媒組成物(B)とバインダー樹脂(C)を分散し、分散液(E)を得る工程と、
     前記多孔質材(A)に、前記分散液(E)を含浸する工程と、
     前記多孔質材(A)から前記媒質(D)を乾燥除去する工程と、
    を有する水耕栽培用培地の製造方法。
    A method for producing a hydroponic culture medium for producing the hydroponic culture medium according to any one of claims 1 to 9,
    a step of dispersing the photocatalyst composition (B) and the binder resin (C) in the medium (D) to obtain a dispersion (E);
    a step of impregnating the porous material (A) with the dispersion (E);
    a step of drying and removing the medium (D) from the porous material (A);
    A method for producing a hydroponic culture medium having
  11.  前記媒質(D)が、水を含む、請求項10に記載の水耕栽培用培地の製造方法。 The method for producing a hydroponic culture medium according to claim 10, wherein the medium (D) contains water.
  12.  前記分散液(E)は、さらに湿潤分散剤(F)を含有し、
     前記湿潤分散剤(F)は、アンモニウム塩基を有するコポリマー、又は遊離脂肪酸基を有する酸価10mg KOH/g以上のコポリマーである、請求項10又は11に記載の水耕栽培用培地の製造方法。
    The dispersion (E) further contains a wetting and dispersing agent (F),
    The method for producing a hydroponic culture medium according to claim 10 or 11, wherein the wetting and dispersing agent (F) is a copolymer having an ammonium base or a copolymer having a free fatty acid group and an acid value of 10 mg KOH/g or more.
  13.  請求項1~9のいずれか一項に記載の水耕栽培用培地と光照射手段とを使用する、水耕栽培方法。 A hydroponic cultivation method using the hydroponic cultivation medium according to any one of claims 1 to 9 and light irradiation means.
  14.  水耕栽培に使用する藻の発生抑制用の分散液であって、
     前記藻の発生抑制用の分散液である分散液(E)は、少なくとも、媒質(D)、及び光触媒組成物(B)を含有し、
     前記光触媒組成物(B)は、酸化チタン組成物に金属が担持された光触媒組成物である、藻の発生抑制用の分散液。
    A dispersion for suppressing the growth of algae used in hydroponics,
    The dispersion (E), which is a dispersion for suppressing the growth of algae, contains at least a medium (D) and a photocatalyst composition (B),
    The photocatalyst composition (B) is a dispersion liquid for suppressing the growth of algae, which is a photocatalyst composition in which a metal is supported on a titanium oxide composition.
  15.  前記酸化チタン組成物は、ルチル型酸化チタンを含む、請求項14に記載の藻の発生抑制用の分散液。 The dispersion for suppressing the growth of algae according to claim 14, wherein the titanium oxide composition contains rutile-type titanium oxide.
  16.  前記金属が、遷移金属または典型金属である、請求項14又は15に記載の藻の発生抑制用の分散液。 The dispersion for suppressing the growth of algae according to claim 14 or 15, wherein the metal is a transition metal or a typical metal.
  17.  前記酸化チタン組成物は、ジルコニウム及びニオブからなる群から選ばれる少なくとも1種の金属元素を実質的に含む、請求項14~16のいずれか一項に記載の藻の発生抑制用の分散液。 The dispersion for suppressing the growth of algae according to any one of claims 14 to 16, wherein the titanium oxide composition substantially contains at least one metal element selected from the group consisting of zirconium and niobium.
  18.  さらにバインダー樹脂(C)を含有する、請求項14~17のいずれか一項に記載の藻の発生抑制用の分散液。 The dispersion for suppressing the growth of algae according to any one of claims 14 to 17, further comprising a binder resin (C).
  19.  前記バインダー樹脂(C)が、ウレタン系樹脂、又はアクリル系樹脂である、請求項18に記載の藻の発生抑制用の分散液。 The dispersion liquid for suppressing the growth of algae according to claim 18, wherein the binder resin (C) is a urethane resin or an acrylic resin.
  20.  前記媒質(D)が、水を含む、請求項14~19のいずれか一項に記載の藻の発生抑制用の分散液。 The dispersion for suppressing the growth of algae according to any one of claims 14 to 19, wherein the medium (D) contains water.
  21.  前記分散液(E)は、さらに湿潤分散剤(F)を含有し、
     前記湿潤分散剤(F)は、アンモニウム塩基を有するコポリマー、又は遊離脂肪酸基を有する酸価10mg KOH/g以上のコポリマーである、請求項14~20のいずれか一項に記載の藻の発生抑制用の分散液。
    The dispersion (E) further contains a wetting and dispersing agent (F),
    The wetting and dispersing agent (F) is a copolymer having an ammonium base, or a copolymer having an acid value of 10 mg KOH / g or more having a free fatty acid group, suppression of algae growth according to any one of claims 14 to 20 dispersion for
PCT/JP2022/031156 2021-09-01 2022-08-18 Culture medium for hydroponics, method for producing culture medium for hydroponics, hydroponic method using culture medium for hydroponics, and dispersion liquid for suppressing occurrence of algae WO2023032686A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280053463.7A CN117794645A (en) 2021-09-01 2022-08-18 Culture medium for hydroponics, method for producing culture medium for hydroponics, hydroponics method using culture medium for hydroponics, and dispersion for inhibiting algae production
JP2023545436A JP7477053B2 (en) 2021-09-01 2022-08-18 Hydroponic culture medium, method for producing hydroponic culture medium, hydroponic culture method using hydroponic culture medium, and dispersion liquid for inhibiting algae growth

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021142681 2021-09-01
JP2021-142681 2021-09-01

Publications (1)

Publication Number Publication Date
WO2023032686A1 true WO2023032686A1 (en) 2023-03-09

Family

ID=85411136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031156 WO2023032686A1 (en) 2021-09-01 2022-08-18 Culture medium for hydroponics, method for producing culture medium for hydroponics, hydroponic method using culture medium for hydroponics, and dispersion liquid for suppressing occurrence of algae

Country Status (2)

Country Link
CN (1) CN117794645A (en)
WO (1) WO2023032686A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10108564A (en) * 1996-10-04 1998-04-28 Takagi Ind Co Ltd Cultivating substrate and cultivating device
JP2005313055A (en) * 2004-04-28 2005-11-10 Toagosei Co Ltd Functional dispersion
JP2005329360A (en) * 2004-05-21 2005-12-02 Noritake Co Ltd Cleaning material and its manufacturing method
JP2011518094A (en) * 2007-12-19 2011-06-23 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ Co-doped titanium oxide foam and water sterilizer
JP2011172539A (en) * 2010-02-25 2011-09-08 Chugoku Electric Power Co Inc:The Cultivation device
JP2015019653A (en) * 2013-07-23 2015-02-02 東洋ゴム工業株式会社 Artificial soil particles
JP2017039784A (en) * 2015-08-17 2017-02-23 Toto株式会社 Coating material composition and coated body
JP2017155368A (en) * 2016-03-03 2017-09-07 Dic株式会社 Resin composition for fiber processing and fabric using the same
JP2017184622A (en) * 2016-03-31 2017-10-12 前澤化成工業株式会社 Water culture mat
JP2020146013A (en) * 2019-03-15 2020-09-17 富士ゼロックス株式会社 Culture medium for hydroponic cultivation, and hydroponic cultivation device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10108564A (en) * 1996-10-04 1998-04-28 Takagi Ind Co Ltd Cultivating substrate and cultivating device
JP2005313055A (en) * 2004-04-28 2005-11-10 Toagosei Co Ltd Functional dispersion
JP2005329360A (en) * 2004-05-21 2005-12-02 Noritake Co Ltd Cleaning material and its manufacturing method
JP2011518094A (en) * 2007-12-19 2011-06-23 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ Co-doped titanium oxide foam and water sterilizer
JP2011172539A (en) * 2010-02-25 2011-09-08 Chugoku Electric Power Co Inc:The Cultivation device
JP2015019653A (en) * 2013-07-23 2015-02-02 東洋ゴム工業株式会社 Artificial soil particles
JP2017039784A (en) * 2015-08-17 2017-02-23 Toto株式会社 Coating material composition and coated body
JP2017155368A (en) * 2016-03-03 2017-09-07 Dic株式会社 Resin composition for fiber processing and fabric using the same
JP2017184622A (en) * 2016-03-31 2017-10-12 前澤化成工業株式会社 Water culture mat
JP2020146013A (en) * 2019-03-15 2020-09-17 富士ゼロックス株式会社 Culture medium for hydroponic cultivation, and hydroponic cultivation device

Also Published As

Publication number Publication date
CN117794645A (en) 2024-03-29
JPWO2023032686A1 (en) 2023-03-09

Similar Documents

Publication Publication Date Title
Beig et al. Nanotechnology-based controlled release of sustainable fertilizers. A review
Kaegi et al. Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant
Zhou et al. Fabrication of a high-performance fertilizer to control the loss of water and nutrient using micro/nano networks
Korake et al. Highly active lanthanum doped ZnO nanorods for photodegradation of metasystox
KR101968367B1 (en) Neutral, stable and transparent photocatalytic titanium dioxide sols
US9315676B2 (en) Green approach in metal nanoparticle-embedded antimicrobial coatings from vegetable oils and oil-based materials
Mahmoodzadeh et al. Effect on germination and early growth characteristics in wheat plants (Triticumaestivum L.) seeds exposed to TiO2 nanoparticles
Wang et al. Risk of silver transfer from soil to the food chain is low after long-term (20 years) field applications of sewage sludge
Yin et al. Effects of graphene oxide and/or Cd 2+ on seed germination, seedling growth, and uptake to Cd 2+ in solution culture
JP6024972B2 (en) Breeding body covering, cultivation method, and method for producing breeding body covering
Balapure et al. Highly dispersed nanocomposite of AgBr in g-C3N4 matrix exhibiting efficient antibacterial effect on drought-resistant pseudomonas putida under dark and light conditions
CN104661961A (en) Method for preparing zirconium phosphate particles coated by antibiotic, and zirconium phosphate particles prepared thereby
CN101232816B (en) Preparation containing a photocatalytically active metal oxide powder and a wetting agent
DE102013114575A1 (en) A method of making an antimicrobial composite and antimicrobial composite
Song et al. Antimicrobial efficiency and surface interactions of quaternary ammonium compound absorbed on dielectric barrier discharge (DBD) plasma treated fiber-based wiping materials
Wang et al. Novel candy-like Cu4O3 microstructure: facile wet chemical synthesis, formation mechanism, and good long-term antibacterial activities
WO2023032686A1 (en) Culture medium for hydroponics, method for producing culture medium for hydroponics, hydroponic method using culture medium for hydroponics, and dispersion liquid for suppressing occurrence of algae
JP7477053B2 (en) Hydroponic culture medium, method for producing hydroponic culture medium, hydroponic culture method using hydroponic culture medium, and dispersion liquid for inhibiting algae growth
CN105794841A (en) Antibacterial composite material and manufacturing method thereof
JP4203302B2 (en) Antibacterial coating liquid, method for producing the same, and coating method
CN1306999C (en) Method for forming photocatalyst apatite film
Kalyani et al. Use of novel biosorbent mimusops elengi for removing zinc ions from aqueous solutions—Process optimization using central composite design
Loyal et al. Titanium Oxide Nanoparticles: Plant Response, Interaction, Phytotoxicity, and Defence Mechanisms
JP4807916B2 (en) Antibacterial and antifungal composition
CN105076206A (en) Magnetic porous nano silver antibacterial material, preparation method and application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864271

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023545436

Country of ref document: JP