WO2023032663A1 - Rubber composition and tire product - Google Patents

Rubber composition and tire product Download PDF

Info

Publication number
WO2023032663A1
WO2023032663A1 PCT/JP2022/031005 JP2022031005W WO2023032663A1 WO 2023032663 A1 WO2023032663 A1 WO 2023032663A1 JP 2022031005 W JP2022031005 W JP 2022031005W WO 2023032663 A1 WO2023032663 A1 WO 2023032663A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
rubber
integer
carbon atoms
hydrogen atom
Prior art date
Application number
PCT/JP2022/031005
Other languages
French (fr)
Japanese (ja)
Inventor
陽一 秋山
圭介 知野
誠 芦浦
将太郎 内澤
Original Assignee
Eneos株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eneos株式会社 filed Critical Eneos株式会社
Publication of WO2023032663A1 publication Critical patent/WO2023032663A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/34Introducing sulfur atoms or sulfur-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L57/00Compositions of unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to rubber compositions.
  • the present invention also relates to tire products manufactured using the rubber composition.
  • tires are manufactured from a rubber composition containing vulcanizing agents, fillers such as carbon black and silica, and anti-aging agents and waxes that suppress quality deterioration. has been done.
  • the cut resistance and chipping resistance of a tire are each important performance related to performance maintenance during use of the tire.
  • it is effective to increase the elongation at break and the strength at break.
  • Techniques for improving elongation at break include, for example, reducing the amount of fillers such as carbon black and silica.
  • such a method has the problem of lowering the hardness and impairing the steering stability.
  • it has been proposed to add a specific amount of carbon black or silica having a specific specific surface area to a rubber composition for tires (see Patent Document 1).
  • the present inventors have made intensive studies to solve the above problems, and as a result, surprisingly, the rubber component contains a rubber additive containing a sulfur-containing hydrocarbon polymer and an unsaturated double bond
  • the tire manufactured using the obtained rubber composition has a high tensile product, which is the product of breaking strength and breaking elongation, and as a result, cut resistance and chipping resistance It was found that the performance can be improved.
  • the present inventors have completed the present invention based on such findings.
  • the unsaturated double bond-containing silane compound has the following general formula (1): [In the formula, R 1 , R 2 and R 3 each independently represent a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom; L is a hydrocarbon group optionally containing at least one heteroatom selected from the group consisting of nitrogen, oxygen and sulfur; a is an integer of 0 or 1, b is an integer of 0 or 1, c is each independently an integer of 0 or 1, d is each independently an integer of 0 or 1, e is an integer from 0 to 5, R 4 , R 5 , R 6 and R 7 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 4 or R 5 and R
  • the rubber composition according to [1], comprising a compound represented by: [3]
  • the unsaturated double bond-containing silane compound has the following formula: [In the above formulas, R 1 , R 2 and R 3 each independently represent a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom.
  • the sulfur-containing hydrocarbon polymer is a reaction product of an unsaturated hydrocarbon polymer and sulfur, and the unsaturated hydrocarbon contains an alicyclic unsaturated compound [1] to [4 ]
  • the rubber composition of the present invention contains at least a rubber component, a rubber additive, and an unsaturated double bond-containing silane compound, and preferably further contains a filler.
  • the content of the rubber component is preferably 20% by mass or more and 80% by mass or less, more preferably 25% by mass or more and 75% by mass or less, and still more preferably 30% by mass, based on the total solid mass of the rubber composition. It is more than mass % and below 70 mass %.
  • the content of the rubber additive is preferably 1 part by mass or more and 30 parts by mass or less, more preferably 3 parts by mass or more and 25 parts by mass or less, and still more preferably 5 parts by mass with respect to 100 parts by mass of the rubber component.
  • the content of the unsaturated double bond-containing silane compound is preferably 1 part by mass or more and 20 parts by mass or less, more preferably 2 parts by mass or more and 10 parts by mass or less, relative to 100 parts by mass of the rubber component.
  • the rubber component is not particularly limited, it preferably contains a diene rubber.
  • aromatic vinyl-conjugated diene copolymer rubber As the diene rubber, it is preferable to use at least one of aromatic vinyl-conjugated diene copolymer rubber and conjugated diene (co)polymer rubber.
  • Aromatic vinyl-conjugated diene copolymer rubbers include styrene-butadiene rubber (SBR), styrene-isoprene-butadiene rubber, styrene-isoprene rubber, and styrene- ⁇ -methylstyrene-butadiene rubber.
  • Conjugated diene (co)polymer rubbers include butadiene rubber (BR), natural rubber (NR), isoprene rubber (IR), and the like.
  • diene rubbers include nitrile rubber (NBR), chloroprene rubber (CR), ethylene-propylene-diene terpolymer rubber (EPDM), butyl rubber (IIR), and the like. Modified diene rubbers of these diene rubbers can also be used. Modified diene rubbers include diene rubbers modified by modification techniques such as main chain modification, single terminal modification, both terminal modification, and hydrogenation.
  • the modified functional group of the modified synthetic diene rubber includes various functional groups such as an epoxy group, an amino group, an alkoxysilyl group, and a hydroxyl group. It may be contained in rubber.
  • the method for producing the diene rubber is not particularly limited, and examples thereof include emulsion polymerization, solution polymerization, radical polymerization, anionic polymerization and cationic polymerization.
  • natural rubber examples include natural rubber latex, technical grade rubber (TSR), smoked sheet (RSS), gutta-percha, Eucommia-derived natural rubber, guayule-derived natural rubber, Russian dandelion-derived natural rubber, plant component fermented rubber, and the like.
  • modified natural rubber such as epoxidized natural rubber, methacrylic acid-modified natural rubber, styrene-modified natural rubber, sulfonic acid-modified natural rubber, and zinc sulfonate-modified natural rubber, which are obtained by modifying these natural rubbers, are also included in natural rubber. .
  • the ratio of cis/trans/vinyl in the double bond portion of natural rubber and synthetic diene rubber is not particularly limited, and any ratio can be suitably used.
  • the number average molecular weight and molecular weight distribution of the diene rubber are not particularly limited, but the number average molecular weight is preferably 500 to 3,000,000 and the molecular weight distribution is preferably 1.5 to 15.
  • non-diene rubber may be blended in addition to diene rubber.
  • a wide range of known rubbers can be used as the non-diene rubber. Specific examples include olefin rubber such as ethylene/propylene rubber (EPM), chlorosulfonated polyethylene rubber (CSM), acrylic rubber (ACM), urethane rubber (U), and silicone rubber (VMQ, PVMQ, FVMQ). , fluororubber (FKM) and polysulfide rubber (T).
  • the rubber composition of the present invention can also contain an elastomer other than the above rubber components within a range that does not impair its functions.
  • Elastomers include polystyrenes such as styrene-isoprene-styrene triblock copolymer (SIS), styrene-butadiene-styrene triblock copolymer (SBS), and their hydrogenated products (SEBS, SEPS, SEEPS).
  • Thermoplastic elastomers selected from the group consisting of elastomeric polymers, polyolefin-based elastomers, polyvinyl chloride-based elastomers, polyurethane-based elastomers, polyester-based elastomers, and polyamide-based elastomers.
  • the content of the diene rubber is preferably 10% by mass or more, more preferably 30% by mass or more, and still more preferably 50% by mass, relative to the total amount of the rubber component.
  • the total content of the aromatic vinyl-conjugated diene copolymer rubber and the conjugated diene (co)polymer rubber in the rubber component is preferably 70% by mass or more, more preferably 70% by mass or more, based on the total amount of the rubber component. is 80% by mass or more, more preferably 90% by mass or more.
  • Rubber additives used in rubber compositions include the following sulfur-containing hydrocarbon polymers.
  • Sulfur-containing hydrocarbon polymers are reaction products of polymers of unsaturated hydrocarbons and sulfur.
  • the sulfur-containing hydrocarbon polymer is preferably a reaction product obtained by reacting an unsaturated bond of an unsaturated hydrocarbon polymer with sulfur.
  • the weight average molecular weight (Mw) of the sulfur-containing hydrocarbon polymer is preferably 500 or more and 4000 or less, and the lower limit is more preferably 600 or more, still more preferably 700 or more, and still more preferably 800 or more. Also, the upper limit is more preferably 3000 or less, still more preferably 2000 or less, and even more preferably 1500 or less. In particular, the weight average molecular weight (Mw) of the sulfur-containing hydrocarbon polymer is preferably 600 or more and 3000 or less, more preferably 700 or more and 2000 or less, still more preferably 800 or more and 1500 or less.
  • the sulfur-containing hydrocarbon polymer By reducing the weight average molecular weight of the sulfur-containing hydrocarbon polymer, the sulfur-containing hydrocarbon polymer is suppressed from binding to each other through sulfur, increasing the amount of sulfur that binds to the rubber component, and improving the tensile strength of the tire. product can be improved.
  • the molecular weight distribution (Mw/number average molecular weight (Mn)) of the sulfur-containing hydrocarbon polymer is preferably 1.0 or more and 5.0 or less, more preferably 1.0 or more and 4.0 or less, It is more preferably 1.0 or more and 3.0 or less, and still more preferably 1.0 or more and 2.5 or less.
  • the weight average molecular weight (Mw) and molecular weight distribution (Mw/Mn) can be measured by a conventionally known GPC (gel permeation chromatography) analysis method.
  • At least a hydrocarbon having an unsaturated bond for reacting with sulfur is used as a raw material for the polymer.
  • the unsaturated hydrocarbon preferably contains an alicyclic unsaturated compound, and the alicyclic unsaturated hydrocarbon is more preferably a compound having a norbornene skeleton. This is because the double bond structure of the norbornene skeleton is distorted and has good reactivity with sulfur.
  • the unsaturated bonds of the alicyclic unsaturated compound may remain after reaction with sulfur or may be completely consumed.
  • unsaturated bonds of alicyclic unsaturated compounds there are unsaturated bonds present in the norbornene skeleton and unsaturated bonds present in the cyclopentene skeleton. More preferably, all unsaturated bonds are consumed.
  • useful compounds such as ethylene, propylene and butadiene, among fractions obtained by thermal decomposition of naphtha, are used as unsaturated hydrocarbon polymers from the viewpoint of industrial production.
  • a resin (hereinafter referred to as “petroleum resin”) obtained by polymerizing the removed remaining fraction in a mixed state can be used.
  • Petroleum resins generally include aliphatic petroleum resins (C5 petroleum resins) obtained by (co)polymerizing C5 fractions, and (co)polymerizing C9 fractions obtained by pyrolysis of naphtha.
  • Aromatic petroleum resins obtained by the above, and copolymer petroleum resins (C5/C9 petroleum resins) obtained by copolymerizing the C5 fraction and the C9 fraction.
  • the petroleum resin has different properties depending on the olefin content in the raw material, but it is a transparent pale yellow to yellowish brown resin with a molecular weight of 200 to 8000 and a softening point of 5 to 180 ° C. is.
  • alicyclic unsaturated hydrocarbon petroleum resin a petroleum resin obtained by (co)polymerizing a fraction containing an alicyclic unsaturated hydrocarbon (hereinafter referred to as "alicyclic unsaturated hydrocarbon petroleum resin") is used. use.
  • the alicyclic unsaturated hydrocarbon petroleum resin is obtained, for example, by dimerizing the cyclopentadienes contained in the C5 fraction to obtain dicyclopentadienes, separating from the other C5 fractions by distillation, and heating. Including those polymerized by the Diels-Alder reaction.
  • Cyclopentadienes include, for example, cyclopentadiene, methylcyclopentadiene, and the like.
  • the dicyclopentadienes include, for example, dicyclopentadiene (DCPD), methyldicyclopentadiene, etc. Dicyclopentadiene is particularly preferred.
  • the alicyclic unsaturated hydrocarbon petroleum resin may contain C5 fractions and C9 fractions other than cyclopentadienes.
  • the C5 fraction generally uses a fraction with a boiling point range of about 20 to 110°C among the fractions obtained by thermal cracking of petroleum.
  • Examples of C5 fractions other than cyclopentadienes include olefinic hydrocarbons such as 1-pentene, 2-pentene, 2-methyl-1-butene, 2-methyl-2-butene, and 3-methyl-1-butene. , 2-methyl-1,3-butadiene, 1,2-pentadiene, 1,3-pentadiene, and 3-methyl-1,2-butadiene.
  • the C9 fraction is generally a fraction with a boiling point range of about 100 to 280°C among the fractions obtained by thermal cracking of petroleum.
  • Examples of the C9 fraction include styrene homologues such as ⁇ -methylstyrene, ⁇ -methylstyrene and ⁇ -methylstyrene, and indene homologues such as indene and coumarone.
  • Friedel-Crafts type catalyst is added in an amount of 0.01 to 5% by weight based on the raw material oil, and the polymerization reaction is carried out. After completion of the reaction, the Friedel-Crafts-type catalyst is decomposed and removed using alkali, and finally unreacted oil and low-molecular-weight polymer are removed by distillation or the like.
  • Friedel-Crafts-type catalysts generally include, for example, aluminum trichloride, aluminum tribromide, boron trifluoride or their phenol complexes, butanol complexes, and the like.
  • the polymerization temperature is preferably 0 to 100°C, particularly preferably 0 to 80°C.
  • the catalyst amount and the polymerization time are preferably 0.1 to 10 hours when the catalyst is 0.1 to 2.0 parts by mass with respect to 100 parts by mass of the raw material oil.
  • the reaction pressure is preferably atmospheric pressure to 1 MPa.
  • the petroleum resin may be partially polymerized with compounds having various functional groups.
  • functional groups include alcohol compounds and phenol compounds having hydroxyl groups.
  • alcohol compounds include alcohol compounds having double bonds such as allyl alcohol and 2-butene-1,4-diol.
  • phenolic compound alkylphenols such as phenol, cresol, xylenol, pt-butylphenol, p-octylphenol and p-nonylphenol can be used. These hydroxyl-containing compounds may be used alone, or two or more of them may be used in combination.
  • the hydroxyl group-containing petroleum resin can be obtained by thermally polymerizing a (meth)acrylic acid alkyl ester or the like together with a petroleum fraction to introduce an ester group into the petroleum resin, and then reducing the ester group. It can also be produced by a method of hydrating the introduced double bond.
  • the hydroxyl group-containing petroleum resin those obtained by the various methods described above can be used, but from the viewpoint of performance and production, it is preferable to use a phenol-modified petroleum resin or the like.
  • the phenol-modified petroleum resin is obtained by cationic polymerization of the C9 fraction in the presence of phenol, and is easy to modify.
  • the method of polymerization is not particularly limited, and is selected from, for example, the above-mentioned Diels-Alder reaction, a thermal polymerization reaction in which heating is performed at about 150 to 300 ° C. for about 1 to 10 hours, and the above-mentioned Friedel-Crafts-type reaction. can.
  • These resins described above preferably have a softening point of 200°C or less (measurement method: ASTM E28-58-T), more preferably 45 to 160°C.
  • a partially hydrogenated petroleum resin obtained by hydrogenating part of the double bonds in the above petroleum resin can also be used.
  • Hydrogenation conditions are arbitrary, but at least one solvent selected from saturated chain hydrocarbons, saturated alicyclic hydrocarbons and aromatic hydrocarbons having a boiling point of 140 to 280° C. at normal pressure and a petroleum resin and reaction using a general hydrogenation catalyst containing nickel, molybdenum, cobalt, palladium, platinum, etc., at a reaction temperature of 150 to 320 ° C., a reaction pressure of 3 to 30 MPa, and a reaction time of 1 to 10 hours. I do.
  • C5, C9, and C5/C9 petroleum resins having double bonds in the molecule include Neoresin EP-140 (softening point: 140°C) manufactured by ENEOS Corporation, and manufactured by Maruzen Petrochemical Co., Ltd. Marukaretsu M-890A (softening point: 105°C), Maruzen Petrochemical Co., Ltd.
  • Marukaretsu M-845A (softening point: 145°C), ENEOS T-REZ RB093 (softening point: 92°C), ENEOS ) T-REZ RB100 (softening point: 98°C), ENEOS T-REZ RC093 (softening point: 93°C), ENEOS T-REZ RC100 (softening point: 97°C), ENEOS ( T-REZ RC115 manufactured by ENEOS Corporation (softening point: 112°C), T-REZ RD104 manufactured by ENEOS Corporation (softening point: 102°C), T-REZ PR802 manufactured by ENEOS Corporation (softening point: 89°C), Japan Zeon Co., Ltd.
  • a sulfur-containing hydrocarbon polymer can be produced by reacting an unsaturated hydrocarbon with sulfur in a molten state while heating in the absence of a solvent. By conducting the heating reaction in the absence of a solvent rather than in a solvent, it is possible to reduce the weight average molecular weight of the sulfur-containing hydrocarbon polymer while reducing the variation in molecular weight.
  • the conditions for the heating reaction are not particularly limited and can be set as appropriate. is 0.5 to 10 hours, more preferably 1 to 8 hours. The weight average molecular weight of the sulfur-containing hydrocarbon polymer can be adjusted by adjusting the heating reaction conditions.
  • the amount of sulfur added to the petroleum resin is not particularly limited, but it is preferably 0.1 equivalent or more, preferably 0.3 to 5 equivalents, per unsaturated bond (double bond) of the unsaturated hydrocarbon.
  • a compound having a norbornene skeleton, particularly dicyclopentadiene, as the unsaturated alicyclic hydrocarbon it is preferable to use a compound having a norbornene skeleton, particularly dicyclopentadiene, as the unsaturated alicyclic hydrocarbon.
  • the double bond on the norbornene skeleton of the dicyclopentadiene reacts with sulfur, and more preferably only the double bond on the norbornene skeleton reacts with sulfur. It can be confirmed by 1 H-NMR that the double bond on the norbornene skeleton was consumed by reaction with sulfur.
  • a silane compound contained in the rubber composition can function as a silane coupling agent.
  • the rubber composition contains at least an unsaturated double bond-containing silane compound and may further contain other silane compounds having no unsaturated double bonds.
  • the content of the unsaturated double bond-containing silane compound is preferably 50% by mass or more, more preferably 70% by mass or more, and still more preferably 80% by mass or more, relative to the total amount of the silane compound. Moreover, it may be 100% by mass or less, preferably 100% by mass.
  • Preferred silane compounds are described below.
  • the unsaturated double bond-containing silane compound preferably has the following formula (1): [In the formula, R 1 , R 2 and R 3 each independently represent a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom; L is a hydrocarbon group optionally containing at least one heteroatom selected from the group consisting of nitrogen, oxygen and sulfur; a is an integer of 0 or 1, b is an integer of 0 or 1, c is each independently an integer of 0 or 1, d is each independently an integer of 0 or 1, e is an integer from 0 to 5, R 4 , R 5 , R 6 and R 7 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 4 or R 5 and R 6 or R 7 are —(CH 2 ) may form a crosslinked structure represented by f- , f is an integer from 1 to 5, R 8 , R 9 , R 10 and R
  • a is an integer of 0 or 1, preferably 1.
  • b is an integer of 0 or 1, preferably 1;
  • Each c is independently an integer of 0 or 1, preferably 1.
  • Each d is independently an integer of 0 or 1, preferably 1.
  • e is an integer of 0 to 5, preferably an integer of 0 to 3, more preferably an integer of 0 to 2, and still more preferably an integer of 0 or 1.
  • R 4 , R 5 , R 6 and R 7 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 4 or R 5 and R 6 or R 7 are - A crosslinked structure represented by (CH 2 ) f — may be formed.
  • f is an integer of 1 to 5, preferably an integer of 1 to 4, more preferably an integer of 1 to 3, and still more preferably 1.
  • R 8 , R 9 , R 10 and R 11 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 8 or R 9 and R 10 or R 11 are - A crosslinked structure represented by (CH 2 ) g — may be formed.
  • g is an integer of 1 to 5, preferably an integer of 1 to 4, more preferably an integer of 1 to 3, and still more preferably 1.
  • R 16 is a hydrogen atom, a methyl group or an alkyl group having 2 to 8 carbon atoms, preferably a hydrogen atom, a methyl group or an alkyl group having 2 or 3 carbon atoms, more preferably a hydrogen atom or a methyl group.
  • R 17 is a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, preferably a hydrogen atom, a methyl group or an alkyl group having 2 to 5 carbon atoms a group, more preferably a hydrogen atom or a methyl group, still more preferably a hydrogen atom, wherein R 12 and R 13 are bonded to each other to form a double bond, and R 14 , R 15 and R 18 are a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 14 and R 15 are bonded to each other to form a double bond, and R 12 , R 13 and R 18 is a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or, R 16 and R 17 are bonded together to form a 4- to 9-membered alicyclic hydrocarbon, preferably a 4- to 7-membered alicyclic
  • R 1 , R 2 and R 3 each independently represent a hydrocarbon group which may contain an oxygen atom or a nitrogen atom, or a hydrogen atom.
  • hydrocarbon groups include alkyl groups, aralkyl groups, and aryl groups.
  • alkyl group include methyl group, ethyl group, propyl group, butyl group, isopropyl group, tert-butyl group, 2-ethylhexyl group, cyclopentyl group, cyclohexyl group and the like, and the number of carbon atoms in the alkyl group is 1.
  • the aralkyl group includes, for example, a benzyl group, a phenethyl group, a naphthylmethyl group, a biphenylmethyl group and the like.
  • the number of carbon atoms in the aralkyl group is preferably 7-60, more preferably 7-20, even more preferably 7-14.
  • Aryl groups include phenyl, biphenyl, naphthyl, tolyl, and xylyl groups.
  • the number of carbon atoms in the aryl group is preferably 6-60, more preferably 6-24, even more preferably 6-12.
  • a hydrocarbon group containing an oxygen atom or a nitrogen atom is a group having a structure in which a carbon atom in the hydrocarbon group is replaced with an oxygen atom or a nitrogen atom.
  • the hydrocarbon group which may contain an oxygen atom or a nitrogen atom for R 1 , R 2 and R 3 is an alkoxy group, an amino group substituted with one or more alkyl groups, or an alkyl group. More preferably an alkoxy group having 1 to 30 carbon atoms, more preferably an alkoxy group having 1 to 20 carbon atoms, more preferably an amino group substituted with one or more alkyl groups having 1 to 30 carbon atoms, still more preferably one or more or an alkyl group having 1 to 30 carbon atoms, preferably an alkyl group having 1 to 20 carbon atoms.
  • alkoxy groups include methoxy, ethoxy, propoxy, isopropoxy, butoxy and isobutoxy groups, among which methoxy and ethoxy groups are preferred.
  • the amino group substituted with one or more alkyl groups includes N-methylamino group, N,N-dimethylamino group, N-ethylamino group, N,N-diethylamino group and N-isopropylamino group. Among these, an N-methylamino group or an N-ethylamino group is preferred.
  • alkyl group examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, cyclopentyl group, hexyl group and cyclohexyl group. Among them, a methyl group and an ethyl group are preferred.
  • L is a hydrocarbon group that may contain at least one heteroatom selected from the group consisting of nitrogen, oxygen and sulfur, preferably the number of carbon atoms in the hydrocarbon group is 1-30, more preferably 1-20, still more preferably 1-10.
  • L is particularly preferably a hydrocarbon group containing sulfur.
  • the total length of the linear portion connecting the silyl group and the alicyclic hydrocarbon portion in such a hydrocarbon group is preferably 3 to 8, more preferably 4 to 7, as the total number of atoms of carbon, nitrogen, oxygen or sulfur. , more preferably 4-6.
  • the unsaturated double bond-containing silane compound preferably has the formula (2): [In the formula, R 1 , R 2 and R 3 each independently represent a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom; h is an integer from 1 to 10, a is an integer of 0 or 1, b is an integer of 0 or 1, c is each independently an integer of 0 or 1, d is each independently an integer of 0 or 1, e is an integer from 0 to 5, R 4 , R 5 , R 6 and R 7 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 4 or R 5 and R 6 or R 7 are —(CH 2 ) may form a crosslinked structure represented by f- , f is an integer from 1 to 5, R 8 , R 9 , R 10 and R 11 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 8 or
  • h in the compound represented by the above formula (2) is an integer of 1 to 10, preferably 1 to 8, more preferably 2 to 7, still more preferably 3 to 6, still more preferably 3 to 5 It is an integer, particularly preferably 3. Further, a to g and R 1 to R 18 are as explained in formula (1) above.
  • the unsaturated double bond-containing silane compound more preferably has the formula (3): [In the formula, R 1 , R 2 and R 3 each independently represent a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom; h is an integer from 1 to 10, a is an integer of 0 or 1, b is an integer of 0 or 1, c is each independently an integer of 0 or 1, d is each independently an integer of 0 or 1, e is an integer from 0 to 5, R 4 , R 5 , R 6 and R 7 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 4 or R 5 and R 6 or R 7 are —(CH 2 ) may form a crosslinked structure represented by f- , f is an integer from 1 to 5, R 8 , R 9 , R 10 and R 11 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 8
  • a to g and R 1 to R 11 are as described in the above formula (1), and h is as described in the above formula (2). is.
  • R 31 in formula (3) is a hydrogen atom, a methyl group or an alkyl group having 2 to 8 carbon atoms, preferably a hydrogen atom, a methyl group or an alkyl group having 2 to 5 carbon atoms, more preferably a hydrogen atom , a methyl group or an alkyl group having 1 or 2 carbon atoms, more preferably a hydrogen atom.
  • the unsaturated double bond-containing silane compound more preferably has the formula (4): [In the formula, R 1 , R 2 and R 3 each independently represent a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom; h is an integer from 1 to 10, a is an integer of 0 or 1, b is an integer of 0 or 1, c is each independently an integer of 0 or 1, d is each independently an integer of 0 or 1, e is an integer from 0 to 5, R 4 , R 5 , R 6 and R 7 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 4 or R 5 and R 6 or R 7 are —(CH 2 ) may form a crosslinked structure represented by f- , f is an integer from 1 to 5, R 8 , R 9 , R 10 and R 11 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R
  • R 32 in formula (4) is a hydrogen atom, a methyl group or an alkyl group having 2 to 9 carbon atoms, preferably a methyl group or an alkyl group having 2 to 5 carbon atoms, more preferably a methyl group or an alkyl group having 2 to 5 carbon atoms. It is one or two alkyl groups, more preferably a methyl group.
  • the unsaturated double bond-containing silane compound more preferably has the formula (5): [In the formula, R 1 , R 2 and R 3 each independently represent a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom; h is an integer from 1 to 10, a is an integer of 0 or 1, b is an integer of 0 or 1, c is each independently an integer of 0 or 1, d is each independently an integer of 0 or 1, e is an integer from 0 to 5, R 4 , R 5 , R 6 and R 7 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 4 or R 5 and R 6 or R 7 are —(CH 2 ) may form a crosslinked structure represented by f- , f is an integer from 1 to 5, R 8 , R 9 , R 10 and R 11 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R
  • x in formula (5) is an integer of 0 to 5, preferably an integer of 0 to 3, more preferably 1 or 2, still more preferably 1.
  • the unsaturated double bond-containing silane compound is more preferably represented by formula (6): [In the formula, R 1 , R 2 and R 3 each independently represent a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom. ], or formula (7): [In the formula, R 1 , R 2 and R 3 each independently represent a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom. ], or formula (8): [In the formula, R 1 , R 2 and R 3 each independently represent a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom. ],or, Formula (9): [In the formula, R 1 , R 2 and R 3 each independently represent a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom. ] It is a compound represented by formula (6): [In the formula, R 1 , R 2 and R 3 each independently represent a hydrocarbon group
  • R 1 to R 3 are as explained for the above formula (1).
  • R 1 to R 3 are as explained in formula (1) above.
  • R 1 , R 2 and R 3 each independently represent a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom.
  • the R 1 R 2 R 3 Si group is represented by the formula (10): [In the formula, each R 19 is independently an alkoxy group or an amino group substituted with one or more alkyl groups; each R 20 is independently a hydrogen atom or an alkyl group; each L 1 is independently a hydrocarbon group optionally containing at least one heteroatom selected from the group consisting of nitrogen, oxygen and sulfur; each j is independently an integer of 0 or 1; k is an integer from 1 to 3, An asterisk (*) indicates a site bonded to a portion other than the silyl group of the silane compound. ] and a silane compound having the chemical structure of
  • each R 19 is independently an alkoxy group or an amino group substituted with one or more alkyl groups.
  • each R 19 is independently a hydrolyzable group, an alkoxy group, more preferably an alkoxy group having 1 to 30 carbon atoms, still more preferably an alkoxy group having 1 to 20 carbon atoms.
  • or an amino group substituted with one or more alkyl groups more preferably an amino group substituted with one or more alkyl groups having 1 to 30 carbon atoms, more preferably one or more alkyl groups having 1 to 20 carbon atoms. It is a substituted amino group.
  • the alkoxy group includes methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, etc. Among these, methoxy or ethoxy is preferred.
  • the amino group substituted with one or more alkyl groups includes N-methylamino group, N,N-dimethylamino group, N-ethylamino group, N,N-diethylamino group and N-isopropylamino group. Among these, an N-methylamino group or an N-ethylamino group is preferred.
  • the alkoxy group and amino group are bonded to silicon (Si) via a linking group consisting of a hydrocarbon group optionally containing at least one heteroatom selected from the group consisting of nitrogen, oxygen and sulfur.
  • a linking group consisting of a hydrocarbon group optionally containing at least one heteroatom selected from the group consisting of nitrogen, oxygen and sulfur.
  • Each R 20 is independently a hydrogen atom or an alkyl group, more preferably an alkyl group having 1 to 30 carbon atoms, more preferably an alkyl group having 1 to 20 carbon atoms, specifically, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, cyclopentyl, hexyl and cyclohexyl groups, among which methyl and ethyl groups are preferred.
  • each L 1 is independently a hydrocarbon group optionally containing at least one heteroatom selected from the group consisting of nitrogen, oxygen and sulfur, preferably nitrogen,
  • k is an integer of 1-3, preferably an integer of 2-3, more preferably 3.
  • Each j is independently an integer of 0 or 1, preferably 0.
  • the R 1 R 2 R 3 Si group is a triethoxysilyl group ((EtO) 3 Si group) or a trimethoxysilyl group in the above formulas (1) to (9).
  • Silane compounds are more preferred, and silane compounds in which the R 1 R 2 R 3 Si group is a triethoxysilyl group are even more preferred.
  • a particularly preferred embodiment of the unsaturated double bond-containing silane compound is a compound represented by the following formula.
  • the unsaturated double bond-containing silane compound is preferably its stereoisomer or any mixture of those stereoisomers.
  • unsaturated double bond-containing silane compounds have the formula (14): [In the formula, a is an integer of 0 or 1, b is an integer of 0 or 1, c is each independently an integer of 0 or 1, d is each independently an integer of 0 or 1, e is an integer from 0 to 5, R 4 , R 5 , R 6 and R 7 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 4 or R 5 and R 6 or R 7 are —(CH 2 ) may form a crosslinked structure represented by f- , f is an integer from 1 to 5, R 8 , R 9 , R 10 and R 11 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10
  • R 1 , R 2 and R 3 each independently represent a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom; Y is a hydrocarbon group optionally containing at least one heteroatom selected from the group consisting of nitrogen, oxygen and sulfur. ] It can be produced by reacting the compound represented by.
  • R 1 to R 18 and a to g are as explained for the unsaturated double bond-containing silane compound represented by formula (1).
  • Y is a hydrocarbon group optionally containing at least one heteroatom selected from the group consisting of nitrogen, oxygen and sulfur, preferably nitrogen having 1 to 30 carbon atoms.
  • a hydrocarbon group optionally containing at least one heteroatom selected from the group consisting of oxygen and sulfur more preferably nitrogen having 1 to 20 carbon atoms, at least one selected from the group consisting of oxygen and sulfur
  • It is a hydrocarbon group optionally containing a heteroatom, more preferably a hydrocarbon group optionally containing at least one heteroatom selected from the group consisting of nitrogen, oxygen and sulfur having 1 to 10 carbon atoms.
  • Y is particularly preferably a hydrocarbon group containing sulfur.
  • the total length of the straight chain portion connecting the silyl group and the alicyclic hydrocarbon moiety in such a hydrocarbon group is preferably 3 to 8, more preferably the total number of atoms of carbon, nitrogen, oxygen or sulfur. is 4-7, more preferably 4-6.
  • the compound represented by the formula (14) and the compound represented by the formula (15) are added. It can be synthesized by subjecting it to a reaction or a condensation reaction.
  • a radical addition reaction a conjugate addition reaction, a nucleophilic addition reaction, an electrophilic addition reaction, or the like can be used, and for example, reactions similar to pericyclic reactions, hydrosilylation reactions, hydroamination reactions, etc. can.
  • the condensation reaction for example, an esterification reaction, an amidation reaction, a thioesterification reaction, a thioamidation reaction, a Friedel-Crafts reaction, or the like can be used.
  • the compound represented by the above formula (14) is a Diels-Alder reaction between the same or different conjugated diene compounds, or a conjugated diene compound and an alkene compound, based on the knowledge already known to those skilled in the art. It can be synthesized by a Diels-Alder reaction with In addition, the compound represented by formula (14) can be prepared by optionally thermally denaturing and/or optionally purifying the compound synthesized by the Diels-Alder reaction. can.
  • the unsaturated double bond-containing silane compound represented by formula (2) is obtained by combining the compound represented by formula (14) above with formula (16): [In the formula, R 1 , R 2 and R 3 each independently represent a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom; h is an integer from 1 to 10; ] It can be produced by reacting the compound represented by.
  • R 1 to R 18 and a to g are as explained for the unsaturated double bond-containing silane compound represented by formula (1). Furthermore, h is as explained in the compound represented by formula (2).
  • Examples of compounds represented by the above formula (16) include alkoxysilane compounds having a mercapto group.
  • Alkoxysilane compounds having a mercapto group include mercaptotrimethoxysilane, mercaptotriethoxysilane, mercaptomethyltrimethoxysilane, mercaptomethyltriethoxysilane, mercaptomethyltripropoxysilane, 2-mercaptoethyltrimethoxysilane, and 2-mercaptoethyl.
  • triethoxysilane 3-mercaptopropyltrimethoxysilane, 4-mercaptobutyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 4-mercaptobutyltriethoxysilane, 2-mercaptoethyltripropoxysilane, 3-mercaptopropyltripropoxysilane Silane, 4-mercaptobutyltripropoxysilane, 2-mercaptoethylmethyldimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 4-mercaptobutylmethyldimethoxysilane, 2-mercaptoethylmethyldiethoxysilane, 3-mercaptopropylmethyldiethoxysilane silane, 4-mercaptobutylmethyldiethoxysilane, and the like.
  • Examples of unsaturated double bond-containing silane compounds other than the above include vinyl group-containing silanes and (meth)acrylic group-containing silanes.
  • Vinyl group-containing silanes include, for example, vinyltriethoxysilane and vinyltrimethoxysilane.
  • (Meth)acryl group-containing silanes include, for example, 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3 -Methacryloxypropylmethyldimethoxysilane and the like.
  • silane compounds include, for example, the following formula (11): [In the formula, each of R 1 , R 2 and R 3 independently represents a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom; each L is independently a hydrocarbon group optionally containing at least one heteroatom selected from the group consisting of nitrogen, oxygen and sulfur; a is an integer of 0 or 1, b is an integer of 0 or 1, c is each independently an integer of 0 or 1, d is each independently an integer of 0 or 1, e is an integer from 0 to 5, R 4 , R 5 , R 6 and R 7 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 4 or R 5 and R 6 or R 7 are —(CH 2 ) may form a crosslinked structure represented by f- , f is an integer from 1 to 5, R 8 , R 9 , R 10 and R
  • each of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 and R 11 is preferably ) is as described in .
  • preferred embodiments of each L are as described in the formula (1) above.
  • Preferred embodiments of a, b, c, d, and e are as described in formula (1) above.
  • R 26 , R 27 and R 28 each independently represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, preferably a hydrogen atom.
  • the other silane compound is preferably a sulfur-containing silane compound.
  • silane compounds represented by the above formula (11) are preferably represented by formula (12):
  • each of R 1 , R 2 and R 3 independently represents a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom; h is an integer from 1 to 10, m is an integer from 1 to 10, a is an integer of 0 or 1, b is an integer of 0 or 1, c is each independently an integer of 0 or 1, d is each independently an integer of 0 or 1, e is an integer from 0 to 5, R 4 , R 5 , R 6 and R 7 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 4 or R 5 and R 6 or R 7 are —(CH 2 ) may form a crosslinked structure represented by f- , f is an integer from 1 to 5, R 8 , R 9 , R 10 and R 11 each represent a hydrogen atom, a methyl group or an alkyl group having 2
  • each of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 26 , R 27 and R 28 Preferred embodiments are as described in formula (11) above.
  • preferred embodiments of each L are as described in the formula (11) above.
  • preferred embodiments of a, b, c, d, and e are as described in formula (11) above.
  • preferred embodiments of h are as described in the above formula (2).
  • m is an integer of 1 to 10, preferably 1 to 8, more preferably 1 to 6, still more preferably 1 to 4, still more preferably 1 to 3. be.
  • silane compounds are more preferably represented by formula (17): [In the formula, each of R 1 , R 2 and R 3 independently represents a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom. ], or formula (18): [In the formula, each of R 1 , R 2 and R 3 independently represents a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom. ] It is a compound represented by formula (17): [In the formula, each of R 1 , R 2 and R 3 independently represents a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom. ] It is a compound represented by formula (17): [In the formula, each of R 1 , R 2 and R 3 independently represents a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom. ] It is a compound represented by formula (17): [In the formula, each of R 1 , R 2 and R
  • Another more preferred embodiment of the other silane compound is a compound represented by the following formula.
  • R 1 to R 3 are as explained in formula (1) above.
  • an even more preferred embodiment of the other silane compound represented by formula (11) above is a silane compound in which the R 1 R 2 R 3 Si group has the chemical structure of formula (10) above.
  • the other silane compound is more preferably a silane compound in which the R 1 R 2 R 3 Si group is a triethoxysilyl group or a trimethoxysilyl group, and a silane compound in which the R 1 R 2 R 3 Si group is a triethoxysilyl group.
  • Compounds are even more preferred.
  • Particularly preferred embodiments of other silane compounds include compounds represented by the following formulas.
  • the other silane compound is preferably its stereoisomer or any mixture of those stereoisomers.
  • the compound represented by the above formula (14) and the compound represented by the above formula (15) can be synthesized by subjecting them to an addition reaction or a condensation reaction.
  • an addition reaction here, a radical addition reaction, a conjugate addition reaction, a nucleophilic addition reaction, an electrophilic addition reaction, or the like can be used, and for example, reactions similar to pericyclic reactions, hydrosilylation reactions, hydroamination reactions, etc. can.
  • the condensation reaction for example, an esterification reaction, an amidation reaction, a thioesterification reaction, a thioamidation reaction, a Friedel-Crafts reaction, or the like can be used.
  • the compound represented by the above formula (14) is a Diels-Alder reaction between the same or different conjugated diene compounds, or a conjugated diene compound and an alkene compound, based on the knowledge already known to those skilled in the art. It can be synthesized by a Diels-Alder reaction with In addition, the compound represented by the above formula (14) is prepared by thermally denaturing the compound synthesized by the Diels-Alder reaction, if necessary, and/or by purifying it, if necessary. can be done.
  • silane compounds can be produced by reacting the compound represented by the above formula (14) with the compound represented by the above formula (16).
  • Preferred embodiments of the above formula (16) are as described for the unsaturated double bond-containing silane compound.
  • silane compounds include the following formula (19): [In the formula, at least one or all of R 31 , R 32 and R 33 is —O—(R 35 —O) m —R 36 (R 35 is a divalent hydrocarbon group having 1 to 30 carbon atoms, R 36 is an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms or an aralkyl group having 7 to 30 carbon atoms, and m is an integer of 1 to 30.
  • R 31 , R 32 and R 33 are the above —O—(R 35 —O) m —R 36
  • the remaining groups are alkyl groups having 1 to 12 carbon atoms, —O —R 37 (R 37 is a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an aralkyl group having 7 to 30 carbon atoms.
  • R 31 , R 32 and R 33 may be the same or different;
  • R 34 is a divalent hydrocarbon group having 1 to 30 carbon atoms. ] can also be used.
  • the divalent hydrocarbon groups having 1 to 30 carbon atoms represented by R 34 and R 35 include, for example, aliphatic aromatic hydrocarbon groups; and combinations thereof.
  • alkyl groups having 1 to 30 carbon atoms, alkenyl groups having 2 to 30 carbon atoms, aryl groups having 6 to 30 carbon atoms, and aralkyl groups having 7 to 30 carbon atoms represented by R 36 and R 37 include: alkyl groups such as methyl group and ethyl group; alkenyl groups such as vinyl group and allyl group; aryl groups such as phenyl group and tolyl group; and aralkyl groups such as benzyl group and phenethyl group.
  • m is preferably an integer of 1-20, more preferably an integer of 2-15, even more preferably 3-10.
  • R 1 , R 2 and R 3 are the above -O-(R 35 -O) m -R 36 , the remaining group is an alkyl group having 1 to 12 carbon atoms, carbon Examples of aryl groups of numbers 6 to 30 include alkyl groups such as methyl group and ethyl group; and aryl groups such as phenyl group and tolyl group.
  • a preferred embodiment of the above formula (19) is that two of R 31 , R 32 and R 33 are —O—(C 2 H 4 —O) n —C 13 H 27 and the rest are —O—C 2 H 5 , the average number of n is 5, and R 34 is a trimethylene group.
  • Examples of the compound represented by formula (19) include Evonik's product name "Si363".
  • silane compounds include, for example, formula (13): [In the formula, t and v are each independently an integer from 0 to 10; u is an integer from 2 to 10, q and r are each independently an integer from 1 to 3; w and z are each independently an integer of 0 or 1; L 2 and L 3 are each independently a hydrocarbon group optionally containing at least one heteroatom selected from the group consisting of nitrogen, oxygen and sulfur; R 21 and R 23 are each independently an alkoxy group or an amino group substituted with one or more alkyl groups; R22 and R24 are each independently a hydrogen atom or an alkyl group. ]
  • a compound represented by can be used.
  • t and v are each independently an integer of 0 to 10, preferably an integer of 0 to 5, more preferably an integer of 1 to 3, more preferably 2 is.
  • u is an integer of 2 to 10, more preferably an integer of 2 to 8.
  • q and r are each independently an integer of 1 to 3, preferably an integer of 2 to 3, more preferably 3.
  • w and z are each independently an integer of 0 or 1, preferably 0.
  • L 2 and L 3 are each independently a hydrocarbon group optionally containing at least one heteroatom selected from the group consisting of nitrogen, oxygen and sulfur, preferably nitrogen, oxygen and A hydrocarbon group having 1 to 30 carbon atoms which may contain at least one heteroatom selected from the group consisting of sulfur, more preferably at least one heteroatom selected from the group consisting of nitrogen, oxygen and sulfur
  • R 21 and R 23 are each independently a hydrolyzable group, an alkoxy group, more preferably an alkoxy group having 1 to 30 carbon atoms, still more preferably an alkoxy group having 1 to 20 carbon atoms, or 1 an amino group substituted with one or more alkyl groups, more preferably an amino group substituted with one or more alkyl groups having 1 to 30 carbon atoms, more preferably one or more alkyl groups having 1 to 20 carbon atoms. It is an amino group.
  • the alkoxy group includes methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, etc. Among these, methoxy or ethoxy is preferred.
  • the amino group substituted with one or more alkyl groups includes N-methylamino group, N,N-dimethylamino group, N-ethylamino group, N,N-diethylamino group and N-isopropylamino group. Among these, an N-methylamino group or an N-ethylamino group is preferred.
  • the alkoxy group and amino group are bonded to silicon (Si) via a linking group consisting of a hydrocarbon group optionally containing at least one heteroatom selected from the group consisting of nitrogen, oxygen and sulfur. good too.
  • R 22 and R 24 are each independently a hydrogen atom or an alkyl group, more preferably an alkyl group having 1 to 30 carbon atoms, still more preferably an alkyl group having 1 to 20 carbon atoms, and specifically includes methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, cyclopentyl, hexyl and cyclohexyl groups, among which methyl and ethyl groups are preferred.
  • silane compounds in addition to the compounds represented by the above formula (13), compounds represented by the above formula (16), particularly silane compounds having the following structures can be used.
  • R 41 is a hydrogen atom or a monovalent hydrocarbon group containing up to 18 carbon atoms
  • R42 is a divalent hydrocarbon group containing up to 12 carbon atoms
  • Each of X 2 and X 3 is independently selected from the group consisting of the elements listed for R 44 and X 1 , wherein R 44 is a monovalent hydrocarbon group of up to 6 carbon atoms is).
  • a compound represented by can be used.
  • R 41 are hydrogen, methyl, ethyl, propyl, isopropyl, butyl, hexyl, 2-ethylhexyl, octyl, decyl, octadecyl, cyclohexyl, phenyl, benzyl and phenethyl. including.
  • R 42 include methylene, ethylene, propylene, isopropylene, butylene, hexylene, octylene, decylene, cyclohexylene and phenylene.
  • R 43 are hydrogen, methyl, ethyl, propyl, isopropyl, butyl, hexyl, 2-ethylhexyl, octyl, decyl, octadecyl, cyclohexyl, phenyl, benzyl, phenethyl , 3-oxabutyl and 4,7-dioxaoctyl.
  • R 44 include hydrogen, methyl, ethyl, propyl, isopropyl, butyl and phenyl.
  • representative, non-limiting examples of X 1 include methoxy, ethoxy, propoxy, isopropoxy, butoxy, phenoxy, benzyloxy, hydroxy and acetoxy.
  • Representative examples of X 2 and X 3 include methyl, ethyl, propyl, isopropyl, sec-butyl, phenyl, vinyl and cyclohexyl, as well as the representative examples of X 1 given above.
  • R 41 is an alkyl group containing 5 to 9 carbon atoms and is attached via a primary carbon atom to the carbonyl group and R 42 is methylene, ethylene or is propylene, X 1 is methoxy, ethoxy or propoxy, and X 2 and X 3 individually include representative examples of X 1 and methyl.
  • silane compound represented by the above formula (20) examples include triethoxysilylmethylthioformate, 2-triethoxysilylethylthioacetate, 3-triethoxysilylpropylthiopropanoate, 3-triethoxysilylpropylthio hexanoate, 3-octanoylthio-1-propyltriethoxysilane (3-triethoxysilylpropylthiooctanoate), 3-diethoxymethylsilylpropylthiooctanoate, 3-ethoxydimethylsilylpropylthiooctanoate, 3-triethoxysilylpropylthiododecanoate, 3-triethoxysilylpropylthiooctadodecanoate, 3-trimethoxysilylpropylthiooctanoate, 3-triacetoxysilylpropylthioacetate, 3-dipropoxymethylsilyl
  • 3-octanoylthio-1-propyltriethoxysilane (3-triethoxysilylpropylthiooctanoate), 3-diethoxymethylsilylpropylthiooctanoate, and 3-ethoxydimethylsilylpropylthiooctano is preferred, and 3-octanoylthio-1-propyltriethoxysilane (3-triethoxysilylpropylthiooctanoate) is more preferred.
  • Examples of the compound represented by (3-octanoylthio-1-propyltriethoxysilane (3-triethoxysilylpropylthiooctanoate)) include NXT silane (trade name) manufactured by Momentive.
  • a condensate of the silane compound represented by formula (20) may be used in place of the silane compound represented by formula (20) or together with the silane compound represented by formula (20).
  • Condensates of other silane compounds described above include, for example, the following formula (23): [In the formula, x:y is 1:99 to 99:1. ] It is a condensate represented by. Commercially available products may be used as such condensates. For example, NXT Z45 silane available from Momentive.
  • fillers examples include silica, carbon black, barium sulfate, calcium carbonate, titanium oxide, clay and talc. At least one of silica and carbon black is preferably used, and silica is more preferably used.
  • the content of the filler is preferably 1 part by mass or more and less than 300 parts by mass, more preferably 5 parts by mass or more and 200 parts by mass or less, and still more preferably 10 parts by mass or more with respect to 100 parts by mass of the rubber component. 180 parts by mass or less, more preferably 15 parts by mass or more and 160 parts by mass or less, particularly preferably 20 parts by mass or more and 160 parts by mass or less, and particularly preferably 30 parts by mass or more and 130 parts by mass or less. , and most preferably 40 parts by mass or more and 110 parts by mass or less.
  • silica examples include, but are not limited to, dry process silica, wet process silica, colloidal silica, and precipitated silica. Among these, wet-process silica containing hydrous silicic acid as a main component is preferable. These silicas can be used alone or in combination of two or more.
  • the specific surface area of silica is not particularly limited, but the nitrogen adsorption specific surface area (BET method) is usually in the range of 10 to 400 m 2 /g, preferably 20 to 300 m 2 /g, more preferably 120 to 190 m 2 /g. . If the specific surface area of silica is within the above numerical range, mechanical properties and the like can be improved.
  • the nitrogen adsorption specific surface area is a value measured by the BET method according to ASTM D3037-81.
  • the rubber composition of the present invention contains a vulcanizing agent, a vulcanization accelerator, an auxiliary vulcanization accelerator, an anti-aging agent, a softening agent, an antioxidant, a silanization reaction accelerator, and a coloring agent as long as the functions of the rubber composition are not impaired. agents, and other processing aids such as inorganic materials other than silica.
  • Vulcanizing agents include sulfur-based vulcanizing agents such as powdered sulfur, precipitated sulfur, highly dispersible sulfur, surface-treated sulfur, insoluble sulfur, dimorpholine disulfide, alkylphenol disulfide, zinc oxide, magnesium oxide, litharge, p -quinonedioxime, p-dibenzoylquinonedioxime, tetrachloro-p-benzoquinone, poly-p-dinitrobenzene, methylenedianiline, phenol resin, brominated alkylphenol resin, chlorinated alkylphenol resin and the like.
  • the content of the vulcanizing agent is preferably 0.1 to 10 parts by mass, more preferably 1 to 5 parts by mass, per 100 parts by mass of the rubber component.
  • Vulcanization accelerators include thiuram-based agents such as tetramethylthiuram disulfide (TMTD), tetraethylthiuram disulfide (TETD), tetramethylthiuram monosulfide (TMTM), aldehyde/ammonia-based agents such as hexamethylenetetramine, and diphenylguanidine (DPG).
  • TMTD tetramethylthiuram disulfide
  • TETD tetraethylthiuram disulfide
  • TMTM tetramethylthiuram monosulfide
  • DPG diphenylguanidine
  • guanidines such as 2-mercaptobenzothiazole (MBT), thiazoles such as dibenzothiazyldisulfide (DM), N-cyclohexyl-2-benzothiazylsulfenamide (CBS), Nt-butyl-2 -Sulfenamides such as benzothiazylsulfenamide (BBS), and dithiocarbamates such as zinc dimethyldithiocarbamate (ZnPDC).
  • the content of the vulcanization accelerator is preferably 0.1 to 10 parts by mass, more preferably 1 to 5 parts by mass, per 100 parts by mass of the rubber component.
  • vulcanization accelerators include fatty acids such as acetic acid, propionic acid, butyric acid, stearic acid, acrylic acid and maleic acid, zinc acetate, zinc propionate, zinc butyrate, zinc stearate, zinc acrylate, zinc maleate and the like.
  • Fatty acid zincs, fatty acid zinc salts which are salts thereof, zinc oxide, and the like can be mentioned.
  • the content of the vulcanization accelerator aid is preferably 0.1 to 10 parts by mass, more preferably 1 to 5 parts by mass, per 100 parts by mass of the rubber component.
  • anti-aging agents examples include compounds such as aliphatic and aromatic hindered amines and hindered phenols.
  • the content of the antioxidant is preferably 0.1 to 10 parts by mass, more preferably 1 to 5 parts by mass, per 100 parts by mass of the rubber component.
  • antioxidants examples include butylhydroxytoluene (BHT) and butylhydroxyanisole (BHA).
  • BHT butylhydroxytoluene
  • BHA butylhydroxyanisole
  • the content of the antioxidant is preferably 0.1 to 10 parts by mass, more preferably 1 to 5 parts by mass, per 100 parts by mass of the rubber component.
  • the softening agent conventionally known ones can be used, and it is not particularly limited, but petroleum-based softening agents such as aroma oil, paraffin oil, naphthenic oil, palm oil, castor oil, cottonseed oil, soybean oil, etc. and the like. At the time of use, one of these may be used singly or two or more may be appropriately selected and used.
  • a softening agent is contained, from the viewpoint of ease of handling, among the above softening agents, those that are liquid at room temperature such as 25 ° C., for example, petroleum softening agents such as aroma oil, paraffin oil, naphthenic oil is preferably contained, and aromatic oils are particularly preferred.
  • the softener content is preferably 10 to 200 parts by mass, more preferably 20 to 100 parts by mass, per 100 parts by mass of the rubber component.
  • silanization reaction accelerator Any silanization reaction accelerator may be used as long as it promotes the silanization reaction between silica and the silane coupling agent (the above silane compound).
  • the silanization reaction accelerator include carbamide compounds such as urea derivatives and thiourea; guanidine compounds such as guanidine hydrochloride, guanidinium thiocyanate, guanidine and diphenylguanidine. Any one type of these silanization reaction accelerators may be used, or two or more types may be used in combination.
  • Urea derivatives include, for example, urea, methylurea, ethylurea, propylurea, butylurea, pentylurea, hexylurea, cyclohexylurea, N,N'-dimethylurea, N,N'-diethylurea, N,N,N ',N'-tetramethylurea, N,N-dimethyl-N',N'-diphenylurea, diethylurea, dipropylurea, dibutylurea, dipentylurea, dihexylurea and salts thereof.
  • urea is excellent.
  • coloring agents include inorganic pigments such as titanium dioxide, zinc oxide, ultramarine, red iron oxide, lithopone, lead, cadmium, iron, cobalt, aluminum, hydrochlorides and sulfates, azo pigments, and copper phthalocyanine pigments.
  • the content of the coloring agent is preferably 0.1 to 10 parts by mass, more preferably 1 to 5 parts by mass, per 100 parts by mass of the rubber component.
  • processing aids can be kneaded with the rubber component using a known rubber kneader, such as a roll, Banbury mixer, kneader, etc., vulcanized under arbitrary conditions, and used as a rubber composition.
  • the amount of other processing aids to be added can be a conventional general content as long as it does not contradict the object of the present invention.
  • the method for producing the rubber composition of the present invention comprises at least the step of kneading the above rubber component, the above rubber additive, and the above unsaturated double bond-containing silane compound.
  • the method for producing the rubber composition may preferably further comprise the step of kneading the vulcanizing agent. More preferably, it may further comprise a step of kneading the vulcanizing agent and the vulcanization accelerator.
  • the other processing aids described above can be appropriately blended and kneaded within a range that does not impair the functions of the rubber composition.
  • a conventionally known kneading device can be used for the production of the rubber composition, and the kneading temperature, time, mixing order, etc. can be appropriately selected.
  • tire products can be produced by conventionally known methods and common technical knowledge widely known to those skilled in the art.
  • Tire products include tires and other related components.
  • the rubber composition is extruded, then molded using a tire molding machine, and then heated and pressurized using a vulcanizer to form crosslinks, whereby a tire can be manufactured.
  • a tire manufactured using the rubber composition of the present invention is excellent in tensile product.
  • tires for passenger cars there are no particular restrictions on the use of tires, and examples include tires for passenger cars, tires for heavy loads, tires for motorcycles (motorcycles), and studless tires. Among these, it can be suitably used for tires for passenger cars.
  • the shape, structure, size and material of the tire are not particularly limited and can be selected as appropriate according to the purpose.
  • the rubber composition of the present invention can be applied to each part of a tire.
  • the applicable portion of the tire is not particularly limited, and may be appropriately selected from the tread, carcass, sidewall, inner liner, undertread, belt portion, etc. of the tire according to the purpose.
  • Rubber product The rubber composition of the present invention can also be used to produce rubber products other than tire products.
  • Rubber products other than tires include automobile rubber parts (exterior, interior, weather strips, boots, mounts, seals, sealers, gaskets), hoses, belts, sheets, anti-vibration rubber, rollers, linings. , rubberized cloth, sealing materials, gloves, fenders, medical rubber (syringe gaskets, tubes, catheters), gaskets (for home appliances, construction), asphalt modifiers, grips, toys, shoes, sandals, keys Pads, gears, PET bottle cap liners and the like are included.
  • VNB 2-vinylnorbornene
  • the connection was sealed with silicon grease, the needle tip of the gas-tight syringe was introduced into the flask through the septum, the flask was immersed in an oil bath, and the bath temperature was gradually increased until the internal temperature reached 50°C. At that time, the metering pump was operated and mercaptopropyltriethoxysilane was added dropwise for reaction. Two hours after the dropping of the entire amount was completed, the flask was taken out from the oil bath and allowed to stand to room temperature. Excess VNB was then distilled off under reduced pressure to obtain 37.4 g of the target colorless and transparent liquid compound (VNB-SSi).
  • the obtained silane compound (VNB-SSi) was confirmed to have a silane introduction rate of 100% by 1 H-NMR measurement and 13 C-NMR measurement, and the double bond of the norbornene ring had disappeared. bottom.
  • the obtained silane compound (VNB-SSi) is a mixture of silane compounds (1A, 1B) represented by the following reaction formula.
  • mercaptopropyltriethoxysilane was added twice (first time: 0.10 g (0.85 mmol), second time: 0.26 g (2.13 mmol)), each at 70°C for 5 hours. After reacting for a period of time, the mixture was allowed to cool to room temperature to obtain 25.0 g of the objective colorless to pale yellow clear liquid.
  • the obtained silane compound (VNB-2SSi) is a mixture of silane compounds (2A, 2B) represented by the following reaction formula.
  • a syringe was then used to inject 11.9 g (0.0498 mol) of 3-mercaptopropyltriethoxysilane. Finally, 0.123 g (0.746 mmol) was added to azobisisobutyronitrile while flowing nitrogen, and nitrogen bubbling was performed for 20 minutes. The flask was immersed in an oil bath, and the temperature of the bath was gradually raised to 70° C. for reaction. Six hours after reaching 70°C, the flask was removed from the oil bath and allowed to stand until it reached room temperature (25°C).
  • Example 1 Each of the following components was kneaded using a 250 mL kneader (Laboplastomill manufactured by Toyo Seiki Co., Ltd.) to obtain a rubber composition. Details of the kneading operation performed are as follows (i) to (iii). (i) Mixer kneading: Put the rubber component into a closed pressure kneader heated to 130°C, masticate at 30 rpm for 1 minute, and then mix 1 of silica, zinc oxide, stearic acid, and anti-aging agent.
  • Example 2 A rubber composition was obtained in the same manner as in Example 1, except that 5.6 parts by mass of 3-acryloxypropyltriethoxysilane was added as the silane coupling agent instead of vinyltriethoxysilane.
  • Example 3 A rubber composition was obtained in the same manner as in Example 1, except that 5.6 parts by mass of an unsaturated double bond-containing silane compound A (VNB-SSi) was added as a silane coupling agent instead of vinyltriethoxysilane. .
  • VNB-SSi unsaturated double bond-containing silane compound A
  • Example 4 A rubber composition was obtained in the same manner as in Example 1, except that 5.6 parts by mass of the unsaturated double bond-containing silane compound C (ENB-SSi) was added as the silane coupling agent instead of vinyltriethoxysilane. .
  • Example 3 A rubber composition was obtained in the same manner as in Example 3, except that 15 parts by mass of hydrocarbon polymer E was added instead of sulfur-containing hydrocarbon polymer A, and the amount of sulfur added was changed to 3 parts by mass.
  • Example 5 Example 3 except that the amount of sulfur-containing hydrocarbon polymer A added was changed to 1.5 parts by mass, the amount of hydrocarbon polymer E added was 13.5 parts by mass, and the amount of sulfur added was changed to 3 parts by mass. A rubber composition was obtained in the same manner.
  • Example 6 Examples except that the amount of sulfur-containing hydrocarbon polymer A added was changed to 7.5 parts by mass, the amount of hydrocarbon polymer E added was changed to 7.5 parts by mass, and the amount of sulfur added was changed to 2.5 parts by mass A rubber composition was obtained in the same manner as in 3.
  • Example 7 Example 3 except that 0.8 parts by mass of the unsaturated double bond-containing silane compound A (VNB-SSi) as the silane coupling agent was replaced with the unsaturated double bond-containing silane compound B (VNB-2SSi) A rubber composition was obtained in the same manner as.
  • dumbbell-shaped test piece was punched out from each rubber sheet, and a tensile test was performed at a tensile speed of 500 mm / min in accordance with JIS K6251 (published in 2010), and 100% modulus [MPa] at room temperature (25 ° C.) measured by
  • the 100% modulus value which is an index of the crosslink density of each rubber sheet, was adjusted so as to be approximately close to each other, and then other physical properties were confirmed.
  • Table 1 shows the above measurement results.
  • the tensile product (index (%)) results of Examples 1 to 7 and Comparative Examples 2 and 3 are shown as relative values when each value in Comparative Example 1 is set to 100.
  • Example 8 A rubber composition was obtained in the same manner as in Example 3, except that 15 parts by mass of the sulfur-containing hydrocarbon polymer B was added instead of the sulfur-containing hydrocarbon polymer A.
  • Example 9 A rubber composition was obtained in the same manner as in Example 3, except that 15 parts by mass of sulfur-containing hydrocarbon polymer C was added instead of sulfur-containing hydrocarbon polymer A.
  • Example 10 A rubber composition was obtained in the same manner as in Example 3, except that 15 parts by mass of sulfur-containing hydrocarbon polymer D was added instead of sulfur-containing hydrocarbon polymer A.

Abstract

[Problem] To provide a rubber composition that can improve the cut resistance and chipping resistance of the tire. [Solution] This rubber composition includes a rubber component, a rubber additive that contains a sulfur-containing hydrocarbon polymer, and a silane compounds that contains an unsaturated double bond.

Description

ゴム組成物およびタイヤ製品Rubber compositions and tire products
 本発明は、ゴム組成物に関する。また、本発明は、該ゴム組成物を用いて製造されたタイヤ製品に関する。 The present invention relates to rubber compositions. The present invention also relates to tire products manufactured using the rubber composition.
 従来、タイヤは、加硫を担う加硫剤、カーボンブラックやシリカなどの充填剤、品質劣化を抑制する老化防止剤やワックスなどを含むゴム組成物から製造されており、それぞれの成分について改良がなされてきた。 Conventionally, tires are manufactured from a rubber composition containing vulcanizing agents, fillers such as carbon black and silica, and anti-aging agents and waxes that suppress quality deterioration. has been done.
 近年、タイヤには様々な性能が求められている。例えば、タイヤの耐カット性、耐チッピング性はそれぞれ、タイヤ使用時における性能維持に関する重要な性能である。タイヤの耐カット性、耐チッピング性を向上させるためには、破断伸び、破断強度を高めることが有効である。破断伸びを向上させるための手法としては、例えば、カーボンブラックやシリカのような充填剤の量を減らすことが挙げられる。しかし、このような手法では硬度が低下し、操縦安定性を損なうという課題がある。このような課題に対して、タイヤ用ゴム組成物に特定の比表面積を有するカーボンブラックやシリカを特定量で配合することが提案されている(特許文献1参照)。また、破断強度を高めるための手法としては、シリカを増量することが有効であるが、シリカの増量はシリカの分散不良を招き、好ましくない。シリカの分散性を改善するためにはシランカップリング剤の増量や架橋密度を上げる手法が有効であるが、シランカップリング剤の増量は破断伸びを悪化させる一因となる。このような課題に対して、タイヤ用ゴム組成物にシリカ、特定のテトラジン化合物、亜鉛または亜鉛化合物を特定量で配合することが提案されている(特許文献2参照)。しかし、依然として、タイヤの耐カット性、耐チッピング性を向上できる破断伸び、破断強度を高めたゴム組成物が求められている。 In recent years, various performances have been required for tires. For example, the cut resistance and chipping resistance of a tire are each important performance related to performance maintenance during use of the tire. In order to improve the cut resistance and chipping resistance of a tire, it is effective to increase the elongation at break and the strength at break. Techniques for improving elongation at break include, for example, reducing the amount of fillers such as carbon black and silica. However, such a method has the problem of lowering the hardness and impairing the steering stability. In order to solve such problems, it has been proposed to add a specific amount of carbon black or silica having a specific specific surface area to a rubber composition for tires (see Patent Document 1). As a technique for increasing the breaking strength, it is effective to increase the amount of silica, but increasing the amount of silica causes poor dispersion of silica, which is not preferable. In order to improve the dispersibility of silica, it is effective to increase the amount of the silane coupling agent or to increase the crosslink density, but the increase in the amount of the silane coupling agent is one of the causes of deterioration of elongation at break. In order to solve such problems, it has been proposed to add a specific amount of silica, a specific tetrazine compound, zinc or a zinc compound to a rubber composition for tires (see Patent Document 2). However, there is still a demand for a rubber composition with improved breaking elongation and breaking strength that can improve the cut resistance and chipping resistance of tires.
特開2021-70778号公報Japanese Patent Application Laid-Open No. 2021-70778 特開2020-176229号公報JP 2020-176229 A
 そこで、本発明者らは、上記課題を解決するために鋭意検討を行った結果、驚くべきことに、ゴム成分に、含硫黄炭化水素重合体を含むゴム用添加剤と、不飽和二重結合含有シラン化合物とを配合することで、得られたゴム組成物を用いて製造したタイヤは、破断強度と破断伸びとの積である抗張積が高くなり、その結果、耐カット性、耐チッピング性を向上できることを知見した。本発明者らは、かかる知見に基づいて、本発明を完成するに至った。 Therefore, the present inventors have made intensive studies to solve the above problems, and as a result, surprisingly, the rubber component contains a rubber additive containing a sulfur-containing hydrocarbon polymer and an unsaturated double bond By blending the containing silane compound, the tire manufactured using the obtained rubber composition has a high tensile product, which is the product of breaking strength and breaking elongation, and as a result, cut resistance and chipping resistance It was found that the performance can be improved. The present inventors have completed the present invention based on such findings.
 すなわち、本発明によれば、以下の発明が提供される。
[1] ゴム成分と、
 含硫黄炭化水素重合体を含むゴム用添加剤と、
 不飽和二重結合含有シラン化合物と、
を含む、ゴム組成物。
[2] 前記不飽和二重結合含有シラン化合物が、下記一般式(1):
Figure JPOXMLDOC01-appb-C000003
[式中、
 R、RおよびRは、それぞれ独立して、酸素原子または窒素原子を含んでいてもよい炭化水素基、あるいは水素原子を表し、
 Lは、窒素、酸素および硫黄からなる群から選択される少なくとも1つのヘテロ原子を含んでいてもよい炭化水素基であり、
 aは、0か1の整数であり、
 bは、0か1の整数であり、
 cは、それぞれ独立して、0か1の整数であり、
 dは、それぞれ独立して、0か1の整数であり、
 eは、0~5の整数であり、
 R、R、RおよびRは、水素原子、メチル基または炭素数2~10のアルキル基を表し、または、R若しくはRと、R若しくはRとが、-(CH-で表される架橋構造を形成してもよく、
 fは、1~5の整数であり、
 R、R、R10およびR11は、水素原子、メチル基または炭素数2~10のアルキル基を表し、または、R若しくはRとR10若しくはR11とが、-(CH-で表される架橋構造を形成してもよく、
 gは、1~5の整数であり、
 R16は、水素原子、メチル基または炭素数2~8のアルキル基であり、かつ、R17は、水素原子、メチル基または炭素数2~10のアルキル基であり、ここで、R12およびR13は、互いに結合して二重結合を形成し、かつ、R14、R15およびR18は水素原子、メチル基または炭素数2~10のアルキル基であり、若しくは、R14およびR15は、互いに結合して二重結合を形成し、かつ、R12、R13およびR18は水素原子、メチル基または炭素数2~10のアルキル基であり、
 または、
 R16およびR17は、互いに結合して4~9員の脂環式炭化水素を形成してもよく、ここで、R14およびR15は、互いに結合して二重結合を形成し、かつ、R12、R13およびR18は水素原子、メチル基または炭素数2~10のアルキル基である。]
で表される化合物を含む、[1]に記載のゴム組成物。
[3] 前記不飽和二重結合含有シラン化合物が、ノルボルネン骨格を有する化合物を含む、[1]または[2]に記載のゴム組成物。
[4] 前記不飽和二重結合含有シラン化合物が、下記式:
Figure JPOXMLDOC01-appb-C000004
[上記各式中、R、RおよびRは、それぞれ独立して、酸素原子または窒素原子を含んでいてもよい炭化水素基、あるいは水素原子を表す。]
で表される化合物の少なくとも1種を含む、[1]~[3]のいずれかに記載のゴム組成物。
[5] 前記含硫黄炭化水素重合体が、不飽和炭化水素の重合体と硫黄との反応生成物であり、前記不飽和炭化水素が脂環式不飽和化合物を含む、[1]~[4]のいずれかに記載のゴム組成物。
[6] 前記含硫黄炭化水素重合体の重量平均分子量が500以上4000以下である、[1]~[5]のいずれかに記載のゴム組成物。
[7] 前記ゴム成分が、芳香族ビニル-共役ジエン共重合体ゴムおよび共役ジエン(共)重合体ゴムからなる群から選択される少なくとも1種である、[1]~[6]のいずれかに記載のゴム組成物。
[8] 前記ゴム成分が、スチレン-ブタジエンゴム、ブタジエンゴム、天然ゴム、およびイソプレンゴムからなる群から選択される少なくとも1種を含む、[1]~[7]のいずれかに記載のゴム組成物。
[9] 充填剤をさらに含む、[1]~[8]のいずれかに記載のゴム組成物。
[10] 前記充填剤が、シリカおよびカーボンブラックからなる群から選択される少なくとも1種を含む、[9]に記載のゴム組成物。
[11] タイヤ製品用である、[1]~[10]のいずれかに記載のゴム組成物。
[12] [1]~[11]のいずれかに記載のゴム組成物を用いて製造されたタイヤ製品。
That is, according to the present invention, the following inventions are provided.
[1] a rubber component;
a rubber additive comprising a sulfur-containing hydrocarbon polymer;
an unsaturated double bond-containing silane compound;
A rubber composition comprising:
[2] The unsaturated double bond-containing silane compound has the following general formula (1):
Figure JPOXMLDOC01-appb-C000003
[In the formula,
R 1 , R 2 and R 3 each independently represent a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom;
L is a hydrocarbon group optionally containing at least one heteroatom selected from the group consisting of nitrogen, oxygen and sulfur;
a is an integer of 0 or 1,
b is an integer of 0 or 1,
c is each independently an integer of 0 or 1,
d is each independently an integer of 0 or 1,
e is an integer from 0 to 5,
R 4 , R 5 , R 6 and R 7 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 4 or R 5 and R 6 or R 7 are —(CH 2 ) may form a crosslinked structure represented by f- ,
f is an integer from 1 to 5,
R 8 , R 9 , R 10 and R 11 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 8 or R 9 and R 10 or R 11 are —(CH 2 ) may form a crosslinked structure represented by g- ,
g is an integer from 1 to 5,
R 16 is a hydrogen atom, a methyl group or an alkyl group having 2 to 8 carbon atoms, and R 17 is a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, wherein R 12 and R 13 are bonded to each other to form a double bond, and R 14 , R 15 and R 18 are a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 14 and R 15 are bonded to each other to form a double bond, and R 12 , R 13 and R 18 are a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms,
or,
R 16 and R 17 may be joined together to form a 4- to 9-membered alicyclic hydrocarbon, wherein R 14 and R 15 are joined together to form a double bond, and , R 12 , R 13 and R 18 are a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms. ]
The rubber composition according to [1], comprising a compound represented by:
[3] The rubber composition according to [1] or [2], wherein the unsaturated double bond-containing silane compound contains a compound having a norbornene skeleton.
[4] The unsaturated double bond-containing silane compound has the following formula:
Figure JPOXMLDOC01-appb-C000004
[In the above formulas, R 1 , R 2 and R 3 each independently represent a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom. ]
The rubber composition according to any one of [1] to [3], comprising at least one compound represented by
[5] The sulfur-containing hydrocarbon polymer is a reaction product of an unsaturated hydrocarbon polymer and sulfur, and the unsaturated hydrocarbon contains an alicyclic unsaturated compound [1] to [4 ] The rubber composition according to any one of the above.
[6] The rubber composition according to any one of [1] to [5], wherein the sulfur-containing hydrocarbon polymer has a weight average molecular weight of 500 or more and 4000 or less.
[7] Any one of [1] to [6], wherein the rubber component is at least one selected from the group consisting of aromatic vinyl-conjugated diene copolymer rubbers and conjugated diene (co)polymer rubbers. The rubber composition according to .
[8] The rubber composition according to any one of [1] to [7], wherein the rubber component contains at least one selected from the group consisting of styrene-butadiene rubber, butadiene rubber, natural rubber, and isoprene rubber. thing.
[9] The rubber composition according to any one of [1] to [8], further comprising a filler.
[10] The rubber composition according to [9], wherein the filler contains at least one selected from the group consisting of silica and carbon black.
[11] The rubber composition according to any one of [1] to [10], which is used for tire products.
[12] A tire product produced using the rubber composition according to any one of [1] to [11].
 本発明によれば、耐カット性、耐チッピング性に優れるタイヤを製造するためのゴム組成物を提供することができる。 According to the present invention, it is possible to provide a rubber composition for producing tires having excellent cut resistance and chipping resistance.
[ゴム組成物]
 本発明のゴム組成物は、少なくとも、ゴム成分と、ゴム用添加剤と、不飽和二重結合含有シラン化合物とを含み、充填剤をさらに含むことが好ましい。ゴム成分の含有量は、ゴム組成物の固形分質量全体に対して、好ましくは20質量%以上80質量%以下であり、より好ましくは25質量%以上75質量%以下であり、さらに好ましくは30質量%以上70質量%以下である。ゴム用添加剤の含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上30質量部以下であり、より好ましくは3質量部以上25質量部以下であり、さらに好ましくは5質量部以上20質量部以下である。不飽和二重結合含有シラン化合物の含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上20質量部以下であり、より好ましくは2質量部以上10質量部以下である。
[Rubber composition]
The rubber composition of the present invention contains at least a rubber component, a rubber additive, and an unsaturated double bond-containing silane compound, and preferably further contains a filler. The content of the rubber component is preferably 20% by mass or more and 80% by mass or less, more preferably 25% by mass or more and 75% by mass or less, and still more preferably 30% by mass, based on the total solid mass of the rubber composition. It is more than mass % and below 70 mass %. The content of the rubber additive is preferably 1 part by mass or more and 30 parts by mass or less, more preferably 3 parts by mass or more and 25 parts by mass or less, and still more preferably 5 parts by mass with respect to 100 parts by mass of the rubber component. parts or more and 20 parts by mass or less. The content of the unsaturated double bond-containing silane compound is preferably 1 part by mass or more and 20 parts by mass or less, more preferably 2 parts by mass or more and 10 parts by mass or less, relative to 100 parts by mass of the rubber component.
(ゴム成分)
 ゴム成分としては、特に限定されないが、ジエン系ゴムを含むことが好ましい。下記の含硫黄炭化水素重合体は、一般的な不飽和炭化水素重合体である不飽和石油樹脂(硫黄を含有しないもの)に比べて、ジエン系ゴムに対する反応性が高く、ゴム分子鎖に反応し易い。そのため、ジエン系ゴムを用いることで、タイヤの破断強度や破断伸びが高くなり、抗張積(=破断強度×破断伸び)を向上することができる。
(rubber component)
Although the rubber component is not particularly limited, it preferably contains a diene rubber. The following sulfur-containing hydrocarbon polymers have higher reactivity with diene-based rubbers than unsaturated petroleum resins (containing no sulfur), which are general unsaturated hydrocarbon polymers, and react with rubber molecular chains. easy to do Therefore, by using a diene rubber, the breaking strength and breaking elongation of the tire can be increased, and the tensile product (=breaking strength×breaking elongation) can be improved.
  ジエン系ゴムとしては、芳香族ビニル-共役ジエン共重合体ゴムおよび共役ジエン(共)重合体ゴムの少なくとも1種を用いることが好ましい。芳香族ビニル-共役ジエン共重合体ゴムとしては、スチレン-ブタジエンゴム(SBR)、スチレン-イソプレン-ブタジエンゴム、スチレン-イソプレンゴム、およびスチレン-α-メチルスチレン-ブタジエンゴム等が挙げられる。共役ジエン(共)重合体ゴムとしては、ブタジエンゴム(BR)、天然ゴム(NR)、およびイソプレンゴム(IR)等が挙げられる。また、これら以外のジエン系ゴムとしては、ニトリルゴム(NBR)、クロロプレンゴム(CR)、エチレン-プロピレン-ジエン三元共重合体ゴム(EPDM)、ブチルゴム(IIR)等が挙げられる。さらに、これらのジエン系ゴムの変性ジエン系ゴムを用いることもできる。変性ジエン系ゴムには、主鎖変性、片末端変性、両末端変性、水素添加等の変性手法によるジエン系ゴムが包含される。ここで、変性合成ジエン系ゴムの変性官能基としては、エポキシ基、アミノ基、アルコキシシリル基、水酸基等の各種官能基が挙げられ、これら官能基は1種又は2種以上が変性合成ジエン系ゴムに含まれていてもよい。これらの中でも、スチレン-ブタジエンゴム、ブタジエンゴム、天然ゴム、およびイソプレンゴムからなる群から選択される少なくとも1種を用いることが好ましく、スチレン-ブタジエンゴムおよびブタジエンゴムの1種以上を用いることがより好ましい。 As the diene rubber, it is preferable to use at least one of aromatic vinyl-conjugated diene copolymer rubber and conjugated diene (co)polymer rubber. Aromatic vinyl-conjugated diene copolymer rubbers include styrene-butadiene rubber (SBR), styrene-isoprene-butadiene rubber, styrene-isoprene rubber, and styrene-α-methylstyrene-butadiene rubber. Conjugated diene (co)polymer rubbers include butadiene rubber (BR), natural rubber (NR), isoprene rubber (IR), and the like. Other diene rubbers include nitrile rubber (NBR), chloroprene rubber (CR), ethylene-propylene-diene terpolymer rubber (EPDM), butyl rubber (IIR), and the like. Modified diene rubbers of these diene rubbers can also be used. Modified diene rubbers include diene rubbers modified by modification techniques such as main chain modification, single terminal modification, both terminal modification, and hydrogenation. Here, the modified functional group of the modified synthetic diene rubber includes various functional groups such as an epoxy group, an amino group, an alkoxysilyl group, and a hydroxyl group. It may be contained in rubber. Among these, it is preferable to use at least one selected from the group consisting of styrene-butadiene rubber, butadiene rubber, natural rubber, and isoprene rubber, and more preferably one or more of styrene-butadiene rubber and butadiene rubber. preferable.
  ジエン系ゴムの製造方法は、特に制限はなく、乳化重合、溶液重合、ラジカル重合、アニオン重合、カチオン重合等が挙げられる。 The method for producing the diene rubber is not particularly limited, and examples thereof include emulsion polymerization, solution polymerization, radical polymerization, anionic polymerization and cationic polymerization.
  天然ゴムとしては、天然ゴムラテックス、技術的格付けゴム(TSR)、スモークドシート(RSS)、ガタパーチャ、杜仲由来天然ゴム、グアユール由来天然ゴム、ロシアンタンポポ由来天然ゴム、植物成分発酵ゴム等が挙げられる。さらにこれらの天然ゴムを変性した、エポキシ化天然ゴム、メタクリル酸変性天然ゴム、スチレン変性天然ゴム、スルホン酸変性天然ゴム、スルホン酸亜鉛変性天然ゴム等の変性天然ゴム等も、天然ゴムに含まれる。 Examples of natural rubber include natural rubber latex, technical grade rubber (TSR), smoked sheet (RSS), gutta-percha, Eucommia-derived natural rubber, guayule-derived natural rubber, Russian dandelion-derived natural rubber, plant component fermented rubber, and the like. Furthermore, modified natural rubber such as epoxidized natural rubber, methacrylic acid-modified natural rubber, styrene-modified natural rubber, sulfonic acid-modified natural rubber, and zinc sulfonate-modified natural rubber, which are obtained by modifying these natural rubbers, are also included in natural rubber. .
  また、天然ゴムおよび合成ジエン系ゴムの二重結合部のシス/トランス/ビニルの比率は、特に制限はなく、いずれの比率においても好適に用いることができる。また、ジエン系ゴムの数平均分子量および分子量分布は、特に制限はないが、数平均分子量は500~3000000、分子量分布は1.5~15が好ましい。 Moreover, the ratio of cis/trans/vinyl in the double bond portion of natural rubber and synthetic diene rubber is not particularly limited, and any ratio can be suitably used. The number average molecular weight and molecular weight distribution of the diene rubber are not particularly limited, but the number average molecular weight is preferably 500 to 3,000,000 and the molecular weight distribution is preferably 1.5 to 15.
 ゴム成分としては、ジエン系ゴム以外にも非ジエン系ゴムを配合してもよい。非ジエン系ゴムとしては、公知のものを広く使用することができる。具体的な例としては、エチレン・プロピレンゴム(EPM)等のオレフィン系ゴム、クロロスルホン化ポリエチレンゴム(CSM)、アクリルゴム(ACM)、ウレタンゴム(U)、シリコーンゴム(VMQ、PVMQ、FVMQ)、フッ素ゴム(FKM)、多硫化ゴム(T)が挙げられる。 As the rubber component, non-diene rubber may be blended in addition to diene rubber. A wide range of known rubbers can be used as the non-diene rubber. Specific examples include olefin rubber such as ethylene/propylene rubber (EPM), chlorosulfonated polyethylene rubber (CSM), acrylic rubber (ACM), urethane rubber (U), and silicone rubber (VMQ, PVMQ, FVMQ). , fluororubber (FKM) and polysulfide rubber (T).
 また、本発明のゴム組成物には、その機能を損なわない範囲で、上記のゴム成分以外にもエラストマーを配合することもできる。エラストマーとしては、スチレン-イソプレン-スチレン三元ブロック共重合体(SIS)、スチレン-ブタジエン-スチレン三元ブロック共重合体(SBS)、それらの水添物(SEBS,SEPS,SEEPS)等のポリスチレン系エラストマー性ポリマー、ポリオレフィン系エラストマー、ポリ塩化ビニル系エラストマー、ポリウレタン系エラストマー、ポリエステル系エラストマー、及び、ポリアミド系エラストマーのからなる群より選択される熱可塑性エラストマーが挙げられる。 In addition, the rubber composition of the present invention can also contain an elastomer other than the above rubber components within a range that does not impair its functions. Elastomers include polystyrenes such as styrene-isoprene-styrene triblock copolymer (SIS), styrene-butadiene-styrene triblock copolymer (SBS), and their hydrogenated products (SEBS, SEPS, SEEPS). Thermoplastic elastomers selected from the group consisting of elastomeric polymers, polyolefin-based elastomers, polyvinyl chloride-based elastomers, polyurethane-based elastomers, polyester-based elastomers, and polyamide-based elastomers.
  ジエン系ゴムの含有量は、ゴム成分の全量に対して、好ましくは10質量%以上であり、より好ましくは30質量%以上であり、さらに好ましくは50質量%である。特に、ゴム成分中の芳香族ビニル-共役ジエン共重合体ゴムおよび共役ジエン(共)重合体ゴムの合計含有量は、ゴム成分の全量に対して、好ましくは70質量%以上であり、より好ましくは80質量%以上であり、さらに好ましくは90質量%以上である。 The content of the diene rubber is preferably 10% by mass or more, more preferably 30% by mass or more, and still more preferably 50% by mass, relative to the total amount of the rubber component. In particular, the total content of the aromatic vinyl-conjugated diene copolymer rubber and the conjugated diene (co)polymer rubber in the rubber component is preferably 70% by mass or more, more preferably 70% by mass or more, based on the total amount of the rubber component. is 80% by mass or more, more preferably 90% by mass or more.
(ゴム用添加剤)
 ゴム組成物に用いるゴム用添加剤は、下記の含硫黄炭化水素重合体を含む。本発明においては、ゴム成分に、下記の含硫黄炭化水素重合体を含むゴム用添加剤と、不飽和二重結合含有シラン化合物とを配合して得られたゴム組成物を用いて製造したタイヤは、抗張積(=破断強度×破断伸び)が高くなり、その結果、耐カット性、耐チッピング性を向上することができる。
(Additive for rubber)
Rubber additives used in rubber compositions include the following sulfur-containing hydrocarbon polymers. In the present invention, a tire produced using a rubber composition obtained by blending a rubber component with a rubber additive containing the following sulfur-containing hydrocarbon polymer and a silane compound containing an unsaturated double bond. , the tensile product (=breaking strength×breaking elongation) is increased, and as a result, cut resistance and chipping resistance can be improved.
(含硫黄炭化水素重合体)
 含硫黄炭化水素重合体は、不飽和炭化水素の重合体と硫黄との反応生成物である。具体的には、含硫黄炭化水素重合体は、不飽和炭化水素の重合体の不飽和結合に硫黄を反応させて得た反応生成物であることが好ましい。
(Sulfur-containing hydrocarbon polymer)
Sulfur-containing hydrocarbon polymers are reaction products of polymers of unsaturated hydrocarbons and sulfur. Specifically, the sulfur-containing hydrocarbon polymer is preferably a reaction product obtained by reacting an unsaturated bond of an unsaturated hydrocarbon polymer with sulfur.
 含硫黄炭化水素重合体の重量平均分子量(Mw)は、好ましくは500以上4000以下であり、下限値はより好ましくは600以上であり、さらに好ましくは700以上であり、さらにより好ましくは800以上であり、また、上限値はより好ましくは3000以下であり、さらに好ましくは2000以下であり、さらにより好ましくは1500以下である。特に、含硫黄炭化水素重合体の重量平均分子量(Mw)は、好ましくは600以上3000以下であり、より好ましくは700以上2000以下であり、さらに好ましくは800以上1500以下である。含硫黄炭化水素重合体の重量平均分子量を小さくすることで、含硫黄炭化水素重合体同士が硫黄を介して結合するのを抑制し、ゴム成分と結合する硫黄量を増大させ、タイヤの抗張積をより向上させることができる。
 また、含硫黄炭化水素重合体の分子量分布(Mw/数平均分子量(Mn))は、好ましくは1.0以上5.0以下であり、より好ましくは1.0以上4.0以下であり、さらに好ましくは1.0以上3.0以下であり、さらにより好ましくは1.0以上2.5以下である。
 なお、重量平均分子量(Mw)および分子量分布(Mw/Mn)は、従来公知のGPC(ゲルパーミエーションクロマトグラフィー)解析の方法によって測定することができる。
The weight average molecular weight (Mw) of the sulfur-containing hydrocarbon polymer is preferably 500 or more and 4000 or less, and the lower limit is more preferably 600 or more, still more preferably 700 or more, and still more preferably 800 or more. Also, the upper limit is more preferably 3000 or less, still more preferably 2000 or less, and even more preferably 1500 or less. In particular, the weight average molecular weight (Mw) of the sulfur-containing hydrocarbon polymer is preferably 600 or more and 3000 or less, more preferably 700 or more and 2000 or less, still more preferably 800 or more and 1500 or less. By reducing the weight average molecular weight of the sulfur-containing hydrocarbon polymer, the sulfur-containing hydrocarbon polymer is suppressed from binding to each other through sulfur, increasing the amount of sulfur that binds to the rubber component, and improving the tensile strength of the tire. product can be improved.
Further, the molecular weight distribution (Mw/number average molecular weight (Mn)) of the sulfur-containing hydrocarbon polymer is preferably 1.0 or more and 5.0 or less, more preferably 1.0 or more and 4.0 or less, It is more preferably 1.0 or more and 3.0 or less, and still more preferably 1.0 or more and 2.5 or less.
The weight average molecular weight (Mw) and molecular weight distribution (Mw/Mn) can be measured by a conventionally known GPC (gel permeation chromatography) analysis method.
 本発明においては、重合体の原料として、少なくとも、硫黄と反応させるための不飽和結合を有する炭化水素を用いる。不飽和炭化水素は脂環式不飽和化合物を含むものが好ましく、脂環式不飽和炭化水素はノルボルネン骨格を有する化合物であることがより好ましい。ノルボルネン骨格の二重結合の構造がひずみを持ち、硫黄との反応性が良いためである。脂環式不飽和化合物の不飽和結合は硫黄との反応後に残存してもよく、全て消費されてもよい。脂環式不飽和化合物の不飽和結合としては、ノルボルネン骨格に存在する不飽和結合とシクロペンテン骨格に存在する不飽和結合があるが、タイヤ用ゴムの抗張積向上の観点からは、ノルボルネン骨格の不飽和結合は全て消費されていることがより好ましい。 In the present invention, at least a hydrocarbon having an unsaturated bond for reacting with sulfur is used as a raw material for the polymer. The unsaturated hydrocarbon preferably contains an alicyclic unsaturated compound, and the alicyclic unsaturated hydrocarbon is more preferably a compound having a norbornene skeleton. This is because the double bond structure of the norbornene skeleton is distorted and has good reactivity with sulfur. The unsaturated bonds of the alicyclic unsaturated compound may remain after reaction with sulfur or may be completely consumed. As unsaturated bonds of alicyclic unsaturated compounds, there are unsaturated bonds present in the norbornene skeleton and unsaturated bonds present in the cyclopentene skeleton. More preferably, all unsaturated bonds are consumed.
 本発明の一実施形態においては、不飽和炭化水素の重合体として、工業的な製造の観点から、ナフサを熱分解して得た留分のうち、エチレン、プロピレンおよびブタジエン等の有用な化合物を取り去った残りの留分を、混合状態のまま重合して得られた樹脂(以下、「石油樹脂」という)を用いることができる。石油樹脂としては、一般的には、C5留分を(共)重合して得られる脂肪族系石油樹脂(C5系石油樹脂)、ナフサの熱分解によって得られるC9留分を(共)重合して得られる芳香族系石油樹脂(C9系石油樹脂)、前記C5留分とC9留分を共重合して得られる共重合系石油樹脂(C5/C9系石油樹脂)が挙げられる。なお、石油樹脂は、原料中のオレフィン含有量によって生成する樹脂の性質が異なるが、分子量200~8000、軟化点5~180℃の透明な淡黄色ないし黄褐色の松脂(まつやに)状の樹脂である。 In one embodiment of the present invention, useful compounds such as ethylene, propylene and butadiene, among fractions obtained by thermal decomposition of naphtha, are used as unsaturated hydrocarbon polymers from the viewpoint of industrial production. A resin (hereinafter referred to as “petroleum resin”) obtained by polymerizing the removed remaining fraction in a mixed state can be used. Petroleum resins generally include aliphatic petroleum resins (C5 petroleum resins) obtained by (co)polymerizing C5 fractions, and (co)polymerizing C9 fractions obtained by pyrolysis of naphtha. Aromatic petroleum resins (C9 petroleum resins) obtained by the above, and copolymer petroleum resins (C5/C9 petroleum resins) obtained by copolymerizing the C5 fraction and the C9 fraction. The petroleum resin has different properties depending on the olefin content in the raw material, but it is a transparent pale yellow to yellowish brown resin with a molecular weight of 200 to 8000 and a softening point of 5 to 180 ° C. is.
 本発明においては、石油樹脂の中でも、脂環式不飽和炭化水素を含む留分を(共)重合して得られる石油樹脂(以下、「脂環式不飽和炭化水素系石油樹脂」という)を用いる。脂環式不飽和炭化水素系石油樹脂は、例えば、C5留分中に含まれるシクロペンタジエン類を2量体化してジシクロペンタジエン類とし、蒸留して他のC5留分と分離し、加熱してディールス・アルダー反応により重合させたものを含む。シクロペンタジエン類とは、例えば、シクロペンタジエン、メチルシクロペンタジエン等が挙げられる。また、ジシクロペンタジエン類とは、例えば、ジシクロペンタジエン(DCPD)、メチルジシクロペンタジエン等があげられ、特にジシクロペンタジエンが好ましい。 In the present invention, among petroleum resins, a petroleum resin obtained by (co)polymerizing a fraction containing an alicyclic unsaturated hydrocarbon (hereinafter referred to as "alicyclic unsaturated hydrocarbon petroleum resin") is used. use. The alicyclic unsaturated hydrocarbon petroleum resin is obtained, for example, by dimerizing the cyclopentadienes contained in the C5 fraction to obtain dicyclopentadienes, separating from the other C5 fractions by distillation, and heating. Including those polymerized by the Diels-Alder reaction. Cyclopentadienes include, for example, cyclopentadiene, methylcyclopentadiene, and the like. The dicyclopentadienes include, for example, dicyclopentadiene (DCPD), methyldicyclopentadiene, etc. Dicyclopentadiene is particularly preferred.
 脂環式不飽和炭化水素系石油樹脂には、シクロペンタジエン類以外のC5留分やC9留分が含まれていてもよい。 The alicyclic unsaturated hydrocarbon petroleum resin may contain C5 fractions and C9 fractions other than cyclopentadienes.
 C5留分は、一般的には、石油類の熱分解により得られる留分のうち、沸点範囲が20~110℃程度の留分が用いられる。シクロペンタジエン類以外のC5留分としては、例えば、1-ペンテン、2-ペンテン、2-メチル-1-ブテン、2-メチル-2-ブテン、3-メチル-1-ブテン等のオレフィン系炭化水素、2-メチル-1,3-ブタジエン、1,2-ペンタジエン、1,3-ペンタジエン、3-メチル-1,2-ブタジエン等のジオレフィン系炭化水素が挙げられる。 The C5 fraction generally uses a fraction with a boiling point range of about 20 to 110°C among the fractions obtained by thermal cracking of petroleum. Examples of C5 fractions other than cyclopentadienes include olefinic hydrocarbons such as 1-pentene, 2-pentene, 2-methyl-1-butene, 2-methyl-2-butene, and 3-methyl-1-butene. , 2-methyl-1,3-butadiene, 1,2-pentadiene, 1,3-pentadiene, and 3-methyl-1,2-butadiene.
 C9留分は、一般的には、石油類の熱分解により得られる留分のうち、沸点範囲が100~280℃程度の留分が用いられる。C9留分としては、例えば、α-メチルスチレン、β-メチルスチレン、γ-メチルスチレン等のスチレン同族体やインデン、クマロン等のインデン同族体等が挙げられる。 The C9 fraction is generally a fraction with a boiling point range of about 100 to 280°C among the fractions obtained by thermal cracking of petroleum. Examples of the C9 fraction include styrene homologues such as α-methylstyrene, β-methylstyrene and γ-methylstyrene, and indene homologues such as indene and coumarone.
 一般的なC5系石油樹脂、C9系石油樹脂、C5/C9系石油樹脂の製造方法は以下の通りである。原料油に対して0.01~5重量%のフリーデルクラフツ型触媒を添加し、重合反応を行う。反応終了後、アルカリを用いてフリーデルクラフツ型触媒を分解除去し、最後に蒸留等により未反応油および低分子重合物を除去する。一般的にフリーデルクラフツ型触媒としては、例えば三塩化アルミニウム、三臭化アルミニウム、三フッ化ホウ素あるいはそのフェノール錯体、ブタノール錯体等が挙げられる。中でも三塩化アルミニウム、三フッ化ホウ素のフェノール錯体、三フッ化ホウ素のブタノール錯体が好ましい。重合温度は0~100℃が好ましく、特に好ましくは0~80℃である。また、触媒量及び重合時間は、原料油100質量部に対して触媒0.1~2.0質量部のとき、0.1~10時間であること好ましい。反応圧力は大気圧~1MPaが好ましい。 General methods for producing C5-based petroleum resin, C9-based petroleum resin, and C5/C9-based petroleum resin are as follows. A Friedel-Crafts type catalyst is added in an amount of 0.01 to 5% by weight based on the raw material oil, and the polymerization reaction is carried out. After completion of the reaction, the Friedel-Crafts-type catalyst is decomposed and removed using alkali, and finally unreacted oil and low-molecular-weight polymer are removed by distillation or the like. Friedel-Crafts-type catalysts generally include, for example, aluminum trichloride, aluminum tribromide, boron trifluoride or their phenol complexes, butanol complexes, and the like. Among them, aluminum trichloride, a phenol complex of boron trifluoride, and a butanol complex of boron trifluoride are preferable. The polymerization temperature is preferably 0 to 100°C, particularly preferably 0 to 80°C. Further, the catalyst amount and the polymerization time are preferably 0.1 to 10 hours when the catalyst is 0.1 to 2.0 parts by mass with respect to 100 parts by mass of the raw material oil. The reaction pressure is preferably atmospheric pressure to 1 MPa.
 石油樹脂は一部に種々の官能基を有する化合物が重合していてもよい。官能基の例としては、水酸基を有するアルコール化合物やフェノール化合物が挙げられる。アルコール化合物の具体例としては、アリルアルコール、2-ブテン-1,4-ジオール等の二重結合を有するアルコール化合物が挙げられる。フェノール化合物としては、フェノール、クレゾール、キシレノール、p-t-ブチルフェノール、p-オクチルフェノール、p-ノニルフェノール等のアルキルフェノール類を使用できる。これらの水酸基を有する化合物は、単独で用いてもよく、二種以上を併用してもよい。 The petroleum resin may be partially polymerized with compounds having various functional groups. Examples of functional groups include alcohol compounds and phenol compounds having hydroxyl groups. Specific examples of alcohol compounds include alcohol compounds having double bonds such as allyl alcohol and 2-butene-1,4-diol. As the phenolic compound, alkylphenols such as phenol, cresol, xylenol, pt-butylphenol, p-octylphenol and p-nonylphenol can be used. These hydroxyl-containing compounds may be used alone, or two or more of them may be used in combination.
 また、水酸基含有石油樹脂は、石油留分と共に(メタ)アクリル酸アルキルエステル等を熱重合して石油樹脂中にエステル基を導入した後、該エステル基を還元する方法、石油樹脂中に残存又は導入した二重結合を水和する方法等によっても製造できる。本発明では、水酸基含有石油樹脂として、上記のような各種方法により得られるものが使用できるが、性能及び製造の観点から、フェノール変性石油樹脂等を使用するのが好ましい。 In addition, the hydroxyl group-containing petroleum resin can be obtained by thermally polymerizing a (meth)acrylic acid alkyl ester or the like together with a petroleum fraction to introduce an ester group into the petroleum resin, and then reducing the ester group. It can also be produced by a method of hydrating the introduced double bond. In the present invention, as the hydroxyl group-containing petroleum resin, those obtained by the various methods described above can be used, but from the viewpoint of performance and production, it is preferable to use a phenol-modified petroleum resin or the like.
 該フェノール変性石油樹脂は、C9留分をフェノールの存在下でカチオン重合して得られ、変性が容易である。 The phenol-modified petroleum resin is obtained by cationic polymerization of the C9 fraction in the presence of phenol, and is easy to modify.
 重合の方法は、特に限定されず、例えば、上述のディールス・アルダー反応等の150~300℃程度で1~10時間程度の加熱を行う熱重合反応や、上述のフリーデルクラフツ型反応などから選択できる。 The method of polymerization is not particularly limited, and is selected from, for example, the above-mentioned Diels-Alder reaction, a thermal polymerization reaction in which heating is performed at about 150 to 300 ° C. for about 1 to 10 hours, and the above-mentioned Friedel-Crafts-type reaction. can.
 上述のこれらの樹脂は、軟化点が200℃以下(測定法:ASTM E28-58-T)であることが好ましく、更に好ましくは、45~160℃が望ましい。 These resins described above preferably have a softening point of 200°C or less (measurement method: ASTM E28-58-T), more preferably 45 to 160°C.
 本発明においては、上述の石油樹脂中の二重結合の一部を水素添加した部分水添石油樹脂を使用することもできる。水素添加の条件は任意であるが、常圧での沸点が140~280℃の飽和鎖状炭化水素、飽和脂環式炭化水素、芳香族炭化水素より選ばれた1種以上の溶剤と石油樹脂とを混合し、ニッケル、モリブデン、コバルト、パラジウム、白金等を含む一般的な水素化触媒を使用し、反応温度150~320℃、反応圧力3~30MPa、反応時間1~10時間の条件で反応を行う。 In the present invention, a partially hydrogenated petroleum resin obtained by hydrogenating part of the double bonds in the above petroleum resin can also be used. Hydrogenation conditions are arbitrary, but at least one solvent selected from saturated chain hydrocarbons, saturated alicyclic hydrocarbons and aromatic hydrocarbons having a boiling point of 140 to 280° C. at normal pressure and a petroleum resin and reaction using a general hydrogenation catalyst containing nickel, molybdenum, cobalt, palladium, platinum, etc., at a reaction temperature of 150 to 320 ° C., a reaction pressure of 3 to 30 MPa, and a reaction time of 1 to 10 hours. I do.
 分子内に二重結合を有するC5系、C9系、C5/C9系石油樹脂の市販品としては、ENEOS(株)製ネオレジンEP-140 (軟化点:140℃)、丸善石油化学(株)製マルカレッツM-890A (軟化点:105℃)、丸善石油化学(株)製マルカレッツM-845A (軟化点:145℃)ENEOS(株)製T-REZ RB093(軟化点:92℃)、ENEOS(株)製T-REZ RB100(軟化点:98℃)、ENEOS(株)製T-REZ RC093(軟化点:93℃)、ENEOS(株)製T-REZ RC100(軟化点:97℃)、ENEOS(株)製T-REZ RC115(軟化点:112℃)、ENEOS(株)製T-REZ RD104(軟化点:102℃)、ENEOS(株)製T-REZ PR802(軟化点:89℃)、日本ゼオン(株)製 Quintone B170(軟化点:70℃)、日本ゼオン(株)製 Quintone M100(軟化点:95℃)、日本ゼオン(株)製 Quintone R100(軟化点:96℃)、日本ゼオン(株)製 Quintone A100(軟化点:100℃)、日本ゼオン(株)製 Quintone RX110(軟化点:110℃)、Exxon Mobil Chemical製 Escorez 1102(軟化点:100℃)、Exxon Mobil Chemical製 Escorez 1304(軟化点:94℃)、Exxon Mobil Chemical製 Escorez 1310LC(軟化点:100℃)、Exxon Mobil Chemical製 Escorez 1315(軟化点:115℃)、KOLON Indutries製 HIKOREZ A-1100(軟化点:98℃)、KOLON Indutries製 HIKOREZ A-1115(軟化点:112℃)、KOLON Indutries製 HIKOREZ A-2115(軟化点:112℃)、KOLON Indutries製 HIKOREZ C-1100(軟化点:98℃)等が挙げられる。 Commercially available C5, C9, and C5/C9 petroleum resins having double bonds in the molecule include Neoresin EP-140 (softening point: 140°C) manufactured by ENEOS Corporation, and manufactured by Maruzen Petrochemical Co., Ltd. Marukaretsu M-890A (softening point: 105°C), Maruzen Petrochemical Co., Ltd. Marukaretsu M-845A (softening point: 145°C), ENEOS T-REZ RB093 (softening point: 92°C), ENEOS ) T-REZ RB100 (softening point: 98°C), ENEOS T-REZ RC093 (softening point: 93°C), ENEOS T-REZ RC100 (softening point: 97°C), ENEOS ( T-REZ RC115 manufactured by ENEOS Corporation (softening point: 112°C), T-REZ RD104 manufactured by ENEOS Corporation (softening point: 102°C), T-REZ PR802 manufactured by ENEOS Corporation (softening point: 89°C), Japan Zeon Co., Ltd. Quintone B170 (softening point: 70°C), Nippon Zeon Co., Ltd. Quintone M100 (softening point: 95°C), Zeon Co., Ltd. Quintone R100 (softening point: 96°C), Nippon Zeon ( Co., Ltd. Quintone A100 (softening point: 100°C), Nippon Zeon Co., Ltd. Quintone RX110 (softening point: 110°C), Exxon Mobil Chemical Escorez 1102 (softening point: 100°C), Exxon Mobil Chemical Escorez 1304 ( Softening point: 94°C), Exxon Mobil Chemical Escorez 1310LC (softening point: 100°C), Exxon Mobil Chemical Escorez 1315 (softening point: 115°C), KOLON Industries HIKOREZ A-1100 (softening point: 98°C), HIKOREZ A-1115 manufactured by KOLON Industries (softening point: 112°C), HIKOREZ A-2115 manufactured by KOLON Industries (softening point: 112°C), HIKOREZ C-1100 manufactured by KOLON Industries (softening point: 98°C), and the like.
(含硫黄炭化水素重合体の製造方法)
 含硫黄炭化水素重合体は、不飽和炭化水素を無溶媒下で加熱しながら溶融状態で硫黄と反応させることにより製造することができる。加熱反応を溶媒中ではなく無溶媒下で行うことで、含硫黄炭化水素重合体の重量平均分子量を小さくしながら、分子量のばらつきを小さくすることができる。また、加熱反応の条件は、特に限定されず適宜設定することができるが、好ましくは90~160℃で、より好ましくは100~150℃で、さらに好ましくは100~140℃で、反応時間は好ましくは0.5~10時間、より好ましくは1~8時間である。なお、加熱反応の条件を調節することで、含硫黄炭化水素重合体の重量平均分子量を調節することができる。
(Method for producing sulfur-containing hydrocarbon polymer)
A sulfur-containing hydrocarbon polymer can be produced by reacting an unsaturated hydrocarbon with sulfur in a molten state while heating in the absence of a solvent. By conducting the heating reaction in the absence of a solvent rather than in a solvent, it is possible to reduce the weight average molecular weight of the sulfur-containing hydrocarbon polymer while reducing the variation in molecular weight. In addition, the conditions for the heating reaction are not particularly limited and can be set as appropriate. is 0.5 to 10 hours, more preferably 1 to 8 hours. The weight average molecular weight of the sulfur-containing hydrocarbon polymer can be adjusted by adjusting the heating reaction conditions.
 上記の製造方法によれば、副反応を抑制することができるため、含硫黄炭化水素重合体の収率が向上し、精製工程を経ずにそのままゴム用組成物に配合することができる。 According to the above production method, side reactions can be suppressed, so the yield of the sulfur-containing hydrocarbon polymer is improved, and it can be blended into the rubber composition as it is without going through a purification process.
 石油樹脂に対する硫黄の添加量は特に限定されないが、不飽和炭化水素の不飽和結合(二重結合)当たり、0.1当量以上、好ましくは0.3~5当量の割合であることが好ましい。 The amount of sulfur added to the petroleum resin is not particularly limited, but it is preferably 0.1 equivalent or more, preferably 0.3 to 5 equivalents, per unsaturated bond (double bond) of the unsaturated hydrocarbon.
 本発明においては、不飽和脂環式炭化水素としてノルボルネン骨格を有する化合物、特にジシクロペンタジエンを用いることが好ましい。さらに、ジシクロペンタジエンのノルボルネン骨格上の二重結合が硫黄と反応することが好ましく、ノルボルネン骨格上の二重結合のみが硫黄と反応することがより好ましい。ノルボルネン骨格上の二重結合が硫黄と反応して消費されたことは、H-NMRにより確認することができる。 In the present invention, it is preferable to use a compound having a norbornene skeleton, particularly dicyclopentadiene, as the unsaturated alicyclic hydrocarbon. Furthermore, it is preferred that the double bond on the norbornene skeleton of the dicyclopentadiene reacts with sulfur, and more preferably only the double bond on the norbornene skeleton reacts with sulfur. It can be confirmed by 1 H-NMR that the double bond on the norbornene skeleton was consumed by reaction with sulfur.
(シラン化合物)
 ゴム組成物に含まれるシラン化合物は、シランカップリング剤としての機能を果たすことができる。ゴム組成物は、少なくとも、不飽和二重結合含有シラン化合物を含み、不飽和二重結合を有さないその他のシラン化合物をさらに含んでもよい。不飽和二重結合含有シラン化合物の含有量は、シラン化合物の全量に対して、好ましくは50質量%以上であり、より好ましくは70質量%以上であり、さらに好ましくは80質量%以上である。また、100質量%以下であり、好ましくは100質量%であってもよい。以下、好適なシラン化合物について説明する。
(Silane compound)
A silane compound contained in the rubber composition can function as a silane coupling agent. The rubber composition contains at least an unsaturated double bond-containing silane compound and may further contain other silane compounds having no unsaturated double bonds. The content of the unsaturated double bond-containing silane compound is preferably 50% by mass or more, more preferably 70% by mass or more, and still more preferably 80% by mass or more, relative to the total amount of the silane compound. Moreover, it may be 100% by mass or less, preferably 100% by mass. Preferred silane compounds are described below.
(不飽和二重結合含有シラン化合物)
 不飽和二重結合含有シラン化合物は、好ましくは、下記の式(1): 
Figure JPOXMLDOC01-appb-C000005
[式中、
 R、RおよびRは、それぞれ独立して、酸素原子または窒素原子を含んでいてもよい炭化水素基、あるいは水素原子を表し、
 Lは、窒素、酸素および硫黄からなる群から選択される少なくとも1つのヘテロ原子を含んでいてもよい炭化水素基であり、
 aは、0か1の整数であり、
 bは、0か1の整数であり、
 cは、それぞれ独立して、0か1の整数であり、
 dは、それぞれ独立して、0か1の整数であり、
 eは、0~5の整数であり、
 R、R、RおよびRは、水素原子、メチル基または炭素数2~10のアルキル基を表し、または、R若しくはRと、R若しくはRとが、-(CH-で表される架橋構造を形成してもよく、
 fは、1~5の整数であり、
 R、R、R10およびR11は、水素原子、メチル基または炭素数2~10のアルキル基を表し、または、R若しくはRと、R10若しくはR11とが、-(CH-で表される架橋構造を形成してもよく、
 gは、1~5の整数であり、
 R16は、水素原子、メチル基または炭素数2~8のアルキル基であり、かつ、R17は、水素原子、メチル基または炭素数2~10のアルキル基であり、ここで、R12およびR13は、互いに結合して二重結合を形成し、かつ、R14、R15およびR18は水素原子、メチル基または炭素数2~10のアルキル基であり、若しくは、R14およびR15は、互いに結合して二重結合を形成し、かつ、R12、R13およびR18は水素原子、メチル基または炭素数2~10のアルキル基であり、
 または、
 R16およびR17は、互いに結合して4~9員の脂環式炭化水素を形成してもよく、ここで、R14およびR15は、互いに結合して二重結合を形成し、かつ、R12、R13およびR18は水素原子、メチル基または炭素数2~10のアルキル基である。]
で表される化合物である。
(Unsaturated double bond-containing silane compound)
The unsaturated double bond-containing silane compound preferably has the following formula (1):
Figure JPOXMLDOC01-appb-C000005
[In the formula,
R 1 , R 2 and R 3 each independently represent a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom;
L is a hydrocarbon group optionally containing at least one heteroatom selected from the group consisting of nitrogen, oxygen and sulfur;
a is an integer of 0 or 1,
b is an integer of 0 or 1,
c is each independently an integer of 0 or 1,
d is each independently an integer of 0 or 1,
e is an integer from 0 to 5,
R 4 , R 5 , R 6 and R 7 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 4 or R 5 and R 6 or R 7 are —(CH 2 ) may form a crosslinked structure represented by f- ,
f is an integer from 1 to 5,
R 8 , R 9 , R 10 and R 11 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 8 or R 9 and R 10 or R 11 are —(CH 2 ) may form a crosslinked structure represented by g- ,
g is an integer from 1 to 5,
R 16 is a hydrogen atom, a methyl group or an alkyl group having 2 to 8 carbon atoms, and R 17 is a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, wherein R 12 and R 13 are bonded to each other to form a double bond, and R 14 , R 15 and R 18 are a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 14 and R 15 are bonded to each other to form a double bond, and R 12 , R 13 and R 18 are a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms,
or,
R 16 and R 17 may be joined together to form a 4- to 9-membered alicyclic hydrocarbon, wherein R 14 and R 15 are joined together to form a double bond, and , R 12 , R 13 and R 18 are a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms. ]
It is a compound represented by
 上記式(1)において、aは、0か1の整数であり、好ましくは1である。
 また、bは、0か1の整数であり、好ましくは1である。
 また、cは、それぞれ独立して、0か1の整数であり、好ましくは1である。
 また、dは、それぞれ独立して、0か1の整数であり、好ましくは1である。
 また、eは、0~5の整数であり、好ましくは0~3の整数、より好ましくは0~2の整数、さらに好ましくは0または1の整数である。
 また、R、R、RおよびRは、水素原子、メチル基または炭素数2~10のアルキル基を表し、または、R若しくはRと、R若しくはRとが、-(CH-で表される架橋構造を形成してもよい。
 また、fは、1~5の整数であり、好ましくは1~4の整数、より好ましくは1~3の整数、さらに好ましくは1である。
 また、R、R、R10およびR11は、水素原子、メチル基または炭素数2~10のアルキル基を表し、または、R若しくはRと、R10若しくはR11とが、-(CH-で表される架橋構造を形成してもよい。
 また、gは、1~5の整数であり、好ましくは1~4の整数、より好ましくは1~3の整数、さらに好ましくは1である。
 また、R16は、水素原子、メチル基または炭素数2~8のアルキル基であり、好ましくは、水素原子、メチル基または炭素数2または3のアルキル基、より好ましくは、水素原子またはメチル基、さらにより好ましくは、水素原子であり、かつ、R17は、水素原子、メチル基または炭素数2~10のアルキル基であり、好ましくは、水素原子、メチル基または炭素数2~5のアルキル基、より好ましくは、水素原子またはメチル基、さらにより好ましくは、水素原子であり、ここで、R12およびR13は、互いに結合して二重結合を形成し、かつ、R14、R15およびR18は水素原子、メチル基または炭素数2~10のアルキル基であり、若しくは、R14およびR15は、互いに結合して二重結合を形成し、かつ、R12、R13およびR18は水素原子、メチル基または炭素数2~10のアルキル基であり、
 または、
 R16およびR17は、互いに結合して4~9員の脂環式炭化水素、好ましくは4~7員の脂環式炭化水素、より好ましくは5員または6員の脂環式炭化水素、さらに好ましくは5員の脂環式炭化水素を形成してもよく、ここで、R14およびR15は、互いに結合して二重結合を形成し、かつ、R12、R13およびR18は水素原子、メチル基または炭素数2~10のアルキル基である。
In the above formula (1), a is an integer of 0 or 1, preferably 1.
b is an integer of 0 or 1, preferably 1;
Each c is independently an integer of 0 or 1, preferably 1.
Each d is independently an integer of 0 or 1, preferably 1.
Also, e is an integer of 0 to 5, preferably an integer of 0 to 3, more preferably an integer of 0 to 2, and still more preferably an integer of 0 or 1.
R 4 , R 5 , R 6 and R 7 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 4 or R 5 and R 6 or R 7 are - A crosslinked structure represented by (CH 2 ) f — may be formed.
In addition, f is an integer of 1 to 5, preferably an integer of 1 to 4, more preferably an integer of 1 to 3, and still more preferably 1.
R 8 , R 9 , R 10 and R 11 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 8 or R 9 and R 10 or R 11 are - A crosslinked structure represented by (CH 2 ) g — may be formed.
Also, g is an integer of 1 to 5, preferably an integer of 1 to 4, more preferably an integer of 1 to 3, and still more preferably 1.
R 16 is a hydrogen atom, a methyl group or an alkyl group having 2 to 8 carbon atoms, preferably a hydrogen atom, a methyl group or an alkyl group having 2 or 3 carbon atoms, more preferably a hydrogen atom or a methyl group. , still more preferably a hydrogen atom, and R 17 is a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, preferably a hydrogen atom, a methyl group or an alkyl group having 2 to 5 carbon atoms a group, more preferably a hydrogen atom or a methyl group, still more preferably a hydrogen atom, wherein R 12 and R 13 are bonded to each other to form a double bond, and R 14 , R 15 and R 18 are a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 14 and R 15 are bonded to each other to form a double bond, and R 12 , R 13 and R 18 is a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms,
or,
R 16 and R 17 are bonded together to form a 4- to 9-membered alicyclic hydrocarbon, preferably a 4- to 7-membered alicyclic hydrocarbon, more preferably a 5- or 6-membered alicyclic hydrocarbon; More preferably, it may form a 5-membered alicyclic hydrocarbon, wherein R 14 and R 15 are joined together to form a double bond, and R 12 , R 13 and R 18 are It is a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms.
 また、上記式(1)において、R、RおよびRは、それぞれ独立して、酸素原子または窒素原子を含んでいてもよい炭化水素基、あるいは水素原子を表す。炭化水素基は、例えば、アルキル基、アラルキル基またはアリール基などが挙げられる。
 アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、tert-ブチル基、2-エチルヘキシル基、シクロペンチル基、シクロヘキシル基等が挙げられ、アルキル基の炭素原子数は1~60が好ましく、1~30がより好ましく、中でもメチル基またはエチル基であることが好ましい。
 アラルキル基としては、例えば、ベンジル基、フェネチル基、ナフチルメチル基、ビフェニルメチル基等が挙げられる。アラルキル基の炭素原子数は7~60が好ましく、7~20がより好ましく、7~14がさらに好ましい。
 アリール基としては、フェニル基、ビフェニル基、ナフチル基、トリル基、キシリル基等が挙げられる。アリール基の炭素原子数は6~60が好ましく、6~24がより好ましく、6~12がさらに好ましい。
 酸素原子または窒素原子を含む炭化水素基とは、炭化水素基中の炭素原子が酸素原子または窒素原子で置き換えられた構造を有する基である。
In formula (1) above, R 1 , R 2 and R 3 each independently represent a hydrocarbon group which may contain an oxygen atom or a nitrogen atom, or a hydrogen atom. Examples of hydrocarbon groups include alkyl groups, aralkyl groups, and aryl groups.
Examples of the alkyl group include methyl group, ethyl group, propyl group, butyl group, isopropyl group, tert-butyl group, 2-ethylhexyl group, cyclopentyl group, cyclohexyl group and the like, and the number of carbon atoms in the alkyl group is 1. ~60 is preferable, 1 to 30 is more preferable, and a methyl group or an ethyl group is particularly preferable.
The aralkyl group includes, for example, a benzyl group, a phenethyl group, a naphthylmethyl group, a biphenylmethyl group and the like. The number of carbon atoms in the aralkyl group is preferably 7-60, more preferably 7-20, even more preferably 7-14.
Aryl groups include phenyl, biphenyl, naphthyl, tolyl, and xylyl groups. The number of carbon atoms in the aryl group is preferably 6-60, more preferably 6-24, even more preferably 6-12.
A hydrocarbon group containing an oxygen atom or a nitrogen atom is a group having a structure in which a carbon atom in the hydrocarbon group is replaced with an oxygen atom or a nitrogen atom.
 本発明のさらに好ましい実施態様において、上記R、RおよびRにおける酸素原子または窒素原子を含んでいてもよい炭化水素基は、アルコキシ基、1以上のアルキル基で置換されたアミノ基、またはアルキル基である。より好ましくは炭素数1~30のアルコキシ基、さらに好ましくは炭素数1~20のアルコキシ基、より好ましくは1以上の炭素数1~30のアルキル基で置換されたアミノ基、さらに好ましくは1以上の炭素数1~20のアルキル基で置換されたアミノ基、あるいは、より好ましくは炭素数1~30のアルキル基、さらに好ましくは炭素数1~20のアルキル基である。アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基およびイソブトキシ基等が挙げられ、これらの中でも、メトキシ基またはエトキシ基が好ましい。また、1以上のアルキル基で置換されたアミノ基としては、N-メチルアミノ基、N,N-ジメチルアミノ基、N-エチルアミノ基、N,N-ジエチルアミノ基およびN-イソプロピルアミノ基等が挙げられ、これらの中でも、N-メチルアミノ基またはN-エチルアミノ基が好ましい。また、アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、シクロペンチル基、へキシル基およびシクロへキシル基等が挙げられ、これらの中でも、メチル基およびエチル基が好ましい。 In a further preferred embodiment of the present invention, the hydrocarbon group which may contain an oxygen atom or a nitrogen atom for R 1 , R 2 and R 3 is an alkoxy group, an amino group substituted with one or more alkyl groups, or an alkyl group. more preferably an alkoxy group having 1 to 30 carbon atoms, more preferably an alkoxy group having 1 to 20 carbon atoms, more preferably an amino group substituted with one or more alkyl groups having 1 to 30 carbon atoms, still more preferably one or more or an alkyl group having 1 to 30 carbon atoms, preferably an alkyl group having 1 to 20 carbon atoms. Examples of alkoxy groups include methoxy, ethoxy, propoxy, isopropoxy, butoxy and isobutoxy groups, among which methoxy and ethoxy groups are preferred. Further, the amino group substituted with one or more alkyl groups includes N-methylamino group, N,N-dimethylamino group, N-ethylamino group, N,N-diethylamino group and N-isopropylamino group. Among these, an N-methylamino group or an N-ethylamino group is preferred. Examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, cyclopentyl group, hexyl group and cyclohexyl group. Among them, a methyl group and an ethyl group are preferred.
 また、上記式(1)において、Lは、窒素、酸素および硫黄からなる群から選択される少なくとも1つのヘテロ原子を含んでいてもよい炭化水素基であり、好ましくは、炭化水素基の炭素数は1~30、より好ましくは、1~20、さらに好ましくは、1~10である。その中でも、Lは、硫黄を含む炭化水素基であることが特に好ましい。かかる炭化水素基におけるシリル基と脂環式炭化水素部分をつなぐ直鎖部分の長さが、炭素、窒素、酸素または硫黄の原子数の総和として、好ましくは3~8、より好ましくは4~7、さらに好ましくは4~6である。 In the above formula (1), L is a hydrocarbon group that may contain at least one heteroatom selected from the group consisting of nitrogen, oxygen and sulfur, preferably the number of carbon atoms in the hydrocarbon group is 1-30, more preferably 1-20, still more preferably 1-10. Among them, L is particularly preferably a hydrocarbon group containing sulfur. The total length of the linear portion connecting the silyl group and the alicyclic hydrocarbon portion in such a hydrocarbon group is preferably 3 to 8, more preferably 4 to 7, as the total number of atoms of carbon, nitrogen, oxygen or sulfur. , more preferably 4-6.
 不飽和二重結合含有シラン化合物は、好ましくは、式(2):
Figure JPOXMLDOC01-appb-C000006
[式中、
 R、RおよびRは、それぞれ独立して、酸素原子または窒素原子を含んでいてもよい炭化水素基、あるいは水素原子を表し、
 hは、1~10の整数であり、
 aは、0か1の整数であり、
 bは、0か1の整数であり、
 cは、それぞれ独立して、0か1の整数であり、
 dは、それぞれ独立して、0か1の整数であり、
 eは、0~5の整数であり、
 R、R、RおよびRは、水素原子、メチル基または炭素数2~10のアルキル基を表し、または、R若しくはRと、R若しくはRとが、-(CH-で表される架橋構造を形成してもよく、
 fは、1~5の整数であり、
 R、R、R10およびR11は、水素原子、メチル基または炭素数2~10のアルキル基を表し、または、R若しくはRと、R10若しくはR11とが、-(CH-で表される架橋構造を形成してもよく、
 gは、1~5の整数であり、
 R16は、水素原子、メチル基または炭素数2~8のアルキル基であり、かつ、R17は、水素原子、メチル基または炭素数2~10のアルキル基であり、ここで、R12およびR13は、互いに結合して二重結合を形成し、かつ、R14、R15およびR18は水素原子、メチル基または炭素数2~10のアルキル基であり、若しくは、R14およびR15は、互いに結合して二重結合を形成し、かつ、R12、R13およびR18は水素原子、メチル基または炭素数2~10のアルキル基であり、
 または、
 R16およびR17は、互いに結合して4~9員の脂環式炭化水素を形成してもよく、ここで、R14およびR15は、互いに結合して二重結合を形成し、かつ、R12、R13およびR18は水素原子、メチル基または炭素数2~10のアルキル基である。]
で表される化合物である。
The unsaturated double bond-containing silane compound preferably has the formula (2):
Figure JPOXMLDOC01-appb-C000006
[In the formula,
R 1 , R 2 and R 3 each independently represent a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom;
h is an integer from 1 to 10,
a is an integer of 0 or 1,
b is an integer of 0 or 1,
c is each independently an integer of 0 or 1,
d is each independently an integer of 0 or 1,
e is an integer from 0 to 5,
R 4 , R 5 , R 6 and R 7 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 4 or R 5 and R 6 or R 7 are —(CH 2 ) may form a crosslinked structure represented by f- ,
f is an integer from 1 to 5,
R 8 , R 9 , R 10 and R 11 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 8 or R 9 and R 10 or R 11 are —(CH 2 ) may form a crosslinked structure represented by g- ,
g is an integer from 1 to 5,
R 16 is a hydrogen atom, a methyl group or an alkyl group having 2 to 8 carbon atoms, and R 17 is a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, wherein R 12 and R 13 are bonded to each other to form a double bond, and R 14 , R 15 and R 18 are a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 14 and R 15 are bonded to each other to form a double bond, and R 12 , R 13 and R 18 are a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms,
or,
R 16 and R 17 may be joined together to form a 4- to 9-membered alicyclic hydrocarbon, wherein R 14 and R 15 are joined together to form a double bond, and , R 12 , R 13 and R 18 are a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms. ]
It is a compound represented by
 上記式(2)で表される化合物におけるhは、1~10の整数であり、好ましくは1~8、より好ましくは2~7、さらに好ましくは3~6、さらにより好ましくは3~5の整数であり、特に好ましくは3である。また、a~gおよびR~R18については、上記式(1)において説明した通りである。 h in the compound represented by the above formula (2) is an integer of 1 to 10, preferably 1 to 8, more preferably 2 to 7, still more preferably 3 to 6, still more preferably 3 to 5 It is an integer, particularly preferably 3. Further, a to g and R 1 to R 18 are as explained in formula (1) above.
 不飽和二重結合含有シラン化合物は、より好ましくは、式(3):
Figure JPOXMLDOC01-appb-C000007
[式中、
 R、RおよびRは、それぞれ独立して、酸素原子または窒素原子を含んでいてもよい炭化水素基、あるいは水素原子を表し、
 hは、1~10の整数であり、
 aは、0か1の整数であり、
 bは、0か1の整数であり、
 cは、それぞれ独立して、0か1の整数であり、
 dは、それぞれ独立して、0か1の整数であり、
 eは、0~5の整数であり、
 R、R、RおよびRは、水素原子、メチル基または炭素数2~10のアルキル基を表し、または、R若しくはRと、R若しくはRとが、-(CH-で表される架橋構造を形成してもよく、
 fは、1~5の整数であり、
 R、R、R10およびR11は、水素原子、メチル基または炭素数2~10のアルキル基を表し、または、R若しくはRと、R10若しくはR11とが、-(CH-で表される架橋構造を形成してもよく、
 gは、1~5の整数であり、
 R31は、水素原子、メチル基または炭素数2~8のアルキル基である。]
で表される化合物である。
The unsaturated double bond-containing silane compound more preferably has the formula (3):
Figure JPOXMLDOC01-appb-C000007
[In the formula,
R 1 , R 2 and R 3 each independently represent a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom;
h is an integer from 1 to 10,
a is an integer of 0 or 1,
b is an integer of 0 or 1,
c is each independently an integer of 0 or 1,
d is each independently an integer of 0 or 1,
e is an integer from 0 to 5,
R 4 , R 5 , R 6 and R 7 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 4 or R 5 and R 6 or R 7 are —(CH 2 ) may form a crosslinked structure represented by f- ,
f is an integer from 1 to 5,
R 8 , R 9 , R 10 and R 11 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 8 or R 9 and R 10 or R 11 are —(CH 2 ) may form a crosslinked structure represented by g- ,
g is an integer from 1 to 5,
R 31 is a hydrogen atom, a methyl group or an alkyl group having 2 to 8 carbon atoms. ]
It is a compound represented by
 上記式(3)で表される化合物のうち、a~gおよびR~R11については、上記式(1)において説明した通りであり、hについては、上記式(2)で説明した通りである。 Among the compounds represented by the above formula (3), a to g and R 1 to R 11 are as described in the above formula (1), and h is as described in the above formula (2). is.
 式(3)におけるR31は、水素原子、メチル基または炭素数2~8のアルキル基であり、好ましくは、水素原子、メチル基または炭素数2~5のアルキル基、より好ましくは、水素原子、メチル基または炭素数1または2のアルキル基であり、さらに好ましくは水素原子である。 R 31 in formula (3) is a hydrogen atom, a methyl group or an alkyl group having 2 to 8 carbon atoms, preferably a hydrogen atom, a methyl group or an alkyl group having 2 to 5 carbon atoms, more preferably a hydrogen atom , a methyl group or an alkyl group having 1 or 2 carbon atoms, more preferably a hydrogen atom.
 不飽和二重結合含有シラン化合物は、より好ましくは、式(4):
Figure JPOXMLDOC01-appb-C000008
[式中、
 R、RおよびRは、それぞれ独立して、酸素原子または窒素原子を含んでいてもよい炭化水素基、あるいは水素原子を表し、
 hは、1~10の整数であり、
 aは、0か1の整数であり、
 bは、0か1の整数であり、
 cは、それぞれ独立して、0か1の整数であり、
 dは、それぞれ独立して、0か1の整数であり、
 eは、0~5の整数であり、
 R、R、RおよびRは、水素原子、メチル基または炭素数2~10のアルキル基を表し、または、R若しくはRと、R若しくはRとが、-(CH-で表される架橋構造を形成してもよく、
 fは、1~5の整数であり、
 R、R、R10およびR11は、水素原子、メチル基または炭素数2~10のアルキル基を表し、または、R若しくはRと、R10若しくはR11とが、-(CH-で表される架橋構造を形成してもよく、
 gは、1~5の整数であり、
 R32は、水素原子、メチル基または炭素数2~9のアルキル基である。]
で表される化合物である。
The unsaturated double bond-containing silane compound more preferably has the formula (4):
Figure JPOXMLDOC01-appb-C000008
[In the formula,
R 1 , R 2 and R 3 each independently represent a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom;
h is an integer from 1 to 10,
a is an integer of 0 or 1,
b is an integer of 0 or 1,
c is each independently an integer of 0 or 1,
d is each independently an integer of 0 or 1,
e is an integer from 0 to 5,
R 4 , R 5 , R 6 and R 7 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 4 or R 5 and R 6 or R 7 are —(CH 2 ) may form a crosslinked structure represented by f- ,
f is an integer from 1 to 5,
R 8 , R 9 , R 10 and R 11 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 8 or R 9 and R 10 or R 11 are —(CH 2 ) may form a crosslinked structure represented by g- ,
g is an integer from 1 to 5,
R 32 is a hydrogen atom, a methyl group or an alkyl group having 2 to 9 carbon atoms. ]
It is a compound represented by
 上記式(4)で表される化合物のうち、a~gおよびR~R11については、上記式(1)において説明した通りであり、hについては、上記式(2)で説明した通りである。 Among the compounds represented by the above formula (4), a to g and R 1 to R 11 are as described in the above formula (1), and h is as described in the above formula (2). is.
 式(4)におけるR32は、水素原子、メチル基または炭素数2~9のアルキル基であり、好ましくは、メチル基または炭素数2~5のアルキル基、より好ましくは、メチル基または炭素数1または2のアルキル基であり、さらに好ましくはメチル基である。 R 32 in formula (4) is a hydrogen atom, a methyl group or an alkyl group having 2 to 9 carbon atoms, preferably a methyl group or an alkyl group having 2 to 5 carbon atoms, more preferably a methyl group or an alkyl group having 2 to 5 carbon atoms. It is one or two alkyl groups, more preferably a methyl group.
 不飽和二重結合含有シラン化合物は、より好ましくは、式(5):
Figure JPOXMLDOC01-appb-C000009
[式中、
 R、RおよびRは、それぞれ独立して、酸素原子または窒素原子を含んでいてもよい炭化水素基、あるいは水素原子を表し、
 hは、1~10の整数であり、
 aは、0か1の整数であり、
 bは、0か1の整数であり、
 cは、それぞれ独立して、0か1の整数であり、
 dは、それぞれ独立して、0か1の整数であり、
 eは、0~5の整数であり、
 R、R、RおよびRは、水素原子、メチル基または炭素数2~10のアルキル基を表し、または、R若しくはRと、R若しくはRとが、-(CH-で表される架橋構造を形成してもよく、
 fは、1~5の整数であり、
 R、R、R10およびR11は、水素原子、メチル基または炭素数2~10のアルキル基を表し、または、R若しくはRと、R10若しくはR11とが、-(CH-で表される架橋構造を形成してもよく、
 gは、1~5の整数であり、
 xは、0~5の整数である。]
で表される化合物である。
The unsaturated double bond-containing silane compound more preferably has the formula (5):
Figure JPOXMLDOC01-appb-C000009
[In the formula,
R 1 , R 2 and R 3 each independently represent a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom;
h is an integer from 1 to 10,
a is an integer of 0 or 1,
b is an integer of 0 or 1,
c is each independently an integer of 0 or 1,
d is each independently an integer of 0 or 1,
e is an integer from 0 to 5,
R 4 , R 5 , R 6 and R 7 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 4 or R 5 and R 6 or R 7 are —(CH 2 ) may form a crosslinked structure represented by f- ,
f is an integer from 1 to 5,
R 8 , R 9 , R 10 and R 11 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 8 or R 9 and R 10 or R 11 are —(CH 2 ) may form a crosslinked structure represented by g- ,
g is an integer from 1 to 5,
x is an integer from 0 to 5; ]
It is a compound represented by
 上記式(5)で表される化合物のうち、a~gおよびR~R11については、上記式(1)において説明した通りであり、hについては、上記式(2)で説明した通りである。 Among the compounds represented by the above formula (5), a to g and R 1 to R 11 are as described in the above formula (1), and h is as described in the above formula (2). is.
 式(5)におけるxは、0~5の整数であり、好ましくは0~3の整数、より好ましくは1または2、さらに好ましくは1である。 x in formula (5) is an integer of 0 to 5, preferably an integer of 0 to 3, more preferably 1 or 2, still more preferably 1.
 不飽和二重結合含有シラン化合物は、さらに好ましくは、式(6):
Figure JPOXMLDOC01-appb-C000010
[式中、R、RおよびRは、それぞれ独立して、酸素原子または窒素原子を含んでいてもよい炭化水素基、あるいは水素原子を表す。]、または
式(7):
Figure JPOXMLDOC01-appb-C000011
[式中、R、RおよびRは、それぞれ独立して、酸素原子または窒素原子を含んでいてもよい炭化水素基、あるいは水素原子を表す。]、または
式(8):
Figure JPOXMLDOC01-appb-C000012
[式中、R、RおよびRは、それぞれ独立して、酸素原子または窒素原子を含んでいてもよい炭化水素基、あるいは水素原子を表す。]、または、
式(9):
Figure JPOXMLDOC01-appb-C000013
[式中、R、RおよびRは、それぞれ独立して、酸素原子または窒素原子を含んでいてもよい炭化水素基、あるいは水素原子を表す。]
で表される化合物である。
The unsaturated double bond-containing silane compound is more preferably represented by formula (6):
Figure JPOXMLDOC01-appb-C000010
[In the formula, R 1 , R 2 and R 3 each independently represent a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom. ], or formula (7):
Figure JPOXMLDOC01-appb-C000011
[In the formula, R 1 , R 2 and R 3 each independently represent a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom. ], or formula (8):
Figure JPOXMLDOC01-appb-C000012
[In the formula, R 1 , R 2 and R 3 each independently represent a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom. ],or,
Formula (9):
Figure JPOXMLDOC01-appb-C000013
[In the formula, R 1 , R 2 and R 3 each independently represent a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom. ]
It is a compound represented by
 上記式(6)~式(9)で表される化合物において、R~Rについては、上記式(1)において説明した通りである。 In the compounds represented by the above formulas (6) to (9), R 1 to R 3 are as explained for the above formula (1).
 不飽和二重結合含有シラン化合物の別のさらに好ましい態様としては、下記式で表される化合物が挙げられる。下記式で表される化合物において、R~Rについては、上記式(1)において説明した通りである。
Figure JPOXMLDOC01-appb-C000014
[各式中、R、RおよびRは、それぞれ独立して、酸素原子または窒素原子を含んでいてもよい炭化水素基、あるいは水素原子を表す。]
Another more preferred embodiment of the unsaturated double bond-containing silane compound is a compound represented by the following formula. In the compound represented by the following formula, R 1 to R 3 are as explained in formula (1) above.
Figure JPOXMLDOC01-appb-C000014
[In each formula, R 1 , R 2 and R 3 each independently represent a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom. ]
 不飽和二重結合含有シラン化合物のさらにより好ましい態様としては、上記式(1)~式(9)において、RSi基が、式(10):
Figure JPOXMLDOC01-appb-C000015
[式中、
 R19は、それぞれ独立して、アルコキシ基または1以上のアルキル基で置換されたアミノ基であり、
 R20は、それぞれ独立して、水素原子またはアルキル基であり、
 Lは、それぞれ独立して、窒素、酸素および硫黄からなる群から選択される少なくとも1つのヘテロ原子を含んでいてもよい炭化水素基であり、
 jは、それぞれ独立して、0か1の整数であり、
 kは、1~3の整数であり、
 アスタリスク(*)は、前記シラン化合物のシリル基以外の部分と結合している部位を示す。]
の化学構造を有するシラン化合物が挙げられる。
As a still more preferred embodiment of the unsaturated double bond-containing silane compound, in the above formulas (1) to (9), the R 1 R 2 R 3 Si group is represented by the formula (10):
Figure JPOXMLDOC01-appb-C000015
[In the formula,
each R 19 is independently an alkoxy group or an amino group substituted with one or more alkyl groups;
each R 20 is independently a hydrogen atom or an alkyl group;
each L 1 is independently a hydrocarbon group optionally containing at least one heteroatom selected from the group consisting of nitrogen, oxygen and sulfur;
each j is independently an integer of 0 or 1;
k is an integer from 1 to 3,
An asterisk (*) indicates a site bonded to a portion other than the silyl group of the silane compound. ]
and a silane compound having the chemical structure of
 上記式(10)において、R19は、それぞれ独立して、アルコキシ基または1以上のアルキル基で置換されたアミノ基である。好ましい一つの実施態様としては、R19は、それぞれ独立して、加水分解性基であり、アルコキシ基、より好ましくは炭素数1~30のアルコキシ基、さらに好ましくは炭素数1~20のアルコキシ基、または1以上のアルキル基で置換されたアミノ基、より好ましくは1以上の炭素数1~30のアルキル基で置換されたアミノ基、さらに好ましくは1以上の炭素数1~20のアルキル基で置換されたアミノ基である。具体的には、アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基およびイソブトキシ基等が挙げられ、これらの中でも、メトキシ基またはエトキシ基が好ましい。また、1以上のアルキル基で置換されたアミノ基としては、N-メチルアミノ基、N,N-ジメチルアミノ基、N-エチルアミノ基、N,N-ジエチルアミノ基およびN-イソプロピルアミノ基等が挙げられ、これらの中でも、N-メチルアミノ基またはN-エチルアミノ基が好ましい。なお、アルコキシ基およびアミノ基は、窒素、酸素および硫黄からなる群から選択される少なくとも1つのヘテロ原子を含んでいてもよい炭化水素基からなる連結基を介してケイ素(Si)と結合してもよい。
 また、R20は、それぞれ独立して、水素原子またはアルキル基であり、より好ましくは炭素数1~30のアルキル基、さらに好ましくは炭素数1~20のアルキル基であり、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、シクロペンチル基、へキシル基およびシクロへキシル基等が挙げられ、これらの中でも、メチル基およびエチル基が好ましい。
In formula (10) above, each R 19 is independently an alkoxy group or an amino group substituted with one or more alkyl groups. In one preferred embodiment, each R 19 is independently a hydrolyzable group, an alkoxy group, more preferably an alkoxy group having 1 to 30 carbon atoms, still more preferably an alkoxy group having 1 to 20 carbon atoms. , or an amino group substituted with one or more alkyl groups, more preferably an amino group substituted with one or more alkyl groups having 1 to 30 carbon atoms, more preferably one or more alkyl groups having 1 to 20 carbon atoms. It is a substituted amino group. Specifically, the alkoxy group includes methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, etc. Among these, methoxy or ethoxy is preferred. Further, the amino group substituted with one or more alkyl groups includes N-methylamino group, N,N-dimethylamino group, N-ethylamino group, N,N-diethylamino group and N-isopropylamino group. Among these, an N-methylamino group or an N-ethylamino group is preferred. The alkoxy group and amino group are bonded to silicon (Si) via a linking group consisting of a hydrocarbon group optionally containing at least one heteroatom selected from the group consisting of nitrogen, oxygen and sulfur. good too.
Each R 20 is independently a hydrogen atom or an alkyl group, more preferably an alkyl group having 1 to 30 carbon atoms, more preferably an alkyl group having 1 to 20 carbon atoms, specifically, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, cyclopentyl, hexyl and cyclohexyl groups, among which methyl and ethyl groups are preferred.
 上記式(10)において、Lは、それぞれ独立して、窒素、酸素および硫黄からなる群から選択される少なくとも1つのヘテロ原子を含んでいてもよい炭化水素基であり、好ましくは、窒素、酸素および硫黄からなる群から選択される少なくとも1つのヘテロ原子を含んでいてもよい、炭素数1~30の炭化水素基、より好ましくは、窒素、酸素および硫黄からなる群から選択される少なくとも1つのヘテロ原子を含んでいてもよい、炭素数1~20の炭化水素基、さらに好ましくは、窒素、酸素および硫黄からなる群から選択される少なくとも1つのヘテロ原子を含んでいてもよい、炭素数1~10の炭化水素基である。 In the above formula (10), each L 1 is independently a hydrocarbon group optionally containing at least one heteroatom selected from the group consisting of nitrogen, oxygen and sulfur, preferably nitrogen, A hydrocarbon group having 1 to 30 carbon atoms which may contain at least one heteroatom selected from the group consisting of oxygen and sulfur, more preferably at least one selected from the group consisting of nitrogen, oxygen and sulfur A hydrocarbon group having 1 to 20 carbon atoms which may contain one heteroatom, more preferably a carbon number which may contain at least one heteroatom selected from the group consisting of nitrogen, oxygen and sulfur 1 to 10 hydrocarbon groups.
 上記式(10)において、kは、1~3の整数であり、好ましくは2~3の整数、より好ましくは3である。
 また、jは、それぞれ独立して、0か1の整数であり、好ましくは0である。
In the above formula (10), k is an integer of 1-3, preferably an integer of 2-3, more preferably 3.
Each j is independently an integer of 0 or 1, preferably 0.
 不飽和二重結合含有シラン化合物は、上記式(1)~式(9)において、RSi基がトリエトキシシリル基((EtO)Si基)またはトリメトキシシリル基であるシラン化合物が一層好ましく、RSi基がトリエトキシシリル基であるシラン化合物がより一層好ましい。 In the unsaturated double bond-containing silane compound, the R 1 R 2 R 3 Si group is a triethoxysilyl group ((EtO) 3 Si group) or a trimethoxysilyl group in the above formulas (1) to (9). Silane compounds are more preferred, and silane compounds in which the R 1 R 2 R 3 Si group is a triethoxysilyl group are even more preferred.
 不飽和二重結合含有シラン化合物の特に好ましい実施態様としては、下記式で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000016
A particularly preferred embodiment of the unsaturated double bond-containing silane compound is a compound represented by the following formula.
Figure JPOXMLDOC01-appb-C000016
 不飽和二重結合含有シラン化合物は、好ましくは、その立体異性体、またはそれらの立体異性体の任意の混合物である。 The unsaturated double bond-containing silane compound is preferably its stereoisomer or any mixture of those stereoisomers.
(不飽和二重結合含有シラン化合物の製造方法)
 上記式(1)で表される不飽和二重結合含有シラン化合物の製造方法の一実施形態について説明するが、以下の製造方法に限定されるものではない。例えば、不飽和二重結合含有シラン化合物は、式(14):
Figure JPOXMLDOC01-appb-C000017
[式中、
 aは、0か1の整数であり、
 bは、0か1の整数であり、
 cは、それぞれ独立して、0か1の整数であり、
 dは、それぞれ独立して、0か1の整数であり、
 eは、0~5の整数であり、
 R、R、RおよびRは、水素原子、メチル基または炭素数2~10のアルキル基を表し、または、R若しくはRと、R若しくはRとが、-(CH-で表される架橋構造を形成してもよく、
 fは、1~5の整数であり、
 R、R、R10およびR11は、水素原子、メチル基または炭素数2~10のアルキル基を表し、または、R若しくはRと、R10若しくはR11とが、-(CH-で表される架橋構造を形成してもよく、
 gは、1~5の整数であり、
 R16は、水素原子、メチル基または炭素数2~8のアルキル基であり、かつ、R17は、水素原子、メチル基または炭素数2~10のアルキル基であり、ここで、R12およびR13は、互いに結合して二重結合を形成し、かつ、R14、R15およびR18は水素原子、メチル基または炭素数2~10のアルキル基であり、若しくは、R14およびR15は、互いに結合して二重結合を形成し、かつ、R12、R13およびR18は水素原子、メチル基または炭素数2~10のアルキル基であり、
 または、
 R16およびR17は、互いに結合して4~9員の脂環式炭化水素を形成してもよく、ここで、R14およびR15は、互いに結合して二重結合を形成し、かつ、R12、R13およびR18は水素原子、メチル基または炭素数2~10のアルキル基である。]
で表される化合物と、式(15):
Figure JPOXMLDOC01-appb-C000018
[式中、
 R、RおよびRは、それぞれ独立して、酸素原子または窒素原子を含んでいてもよい炭化水素基、あるいは水素原子を表し、
 Yは、窒素、酸素および硫黄からなる群から選択される少なくとも1つのヘテロ原子を含んでいてもよい炭化水素基である。]
で表される化合物を反応させることにより、製造することができる。
(Method for producing unsaturated double bond-containing silane compound)
An embodiment of the method for producing the unsaturated double bond-containing silane compound represented by the above formula (1) will be described, but the production method is not limited to the following. For example, unsaturated double bond-containing silane compounds have the formula (14):
Figure JPOXMLDOC01-appb-C000017
[In the formula,
a is an integer of 0 or 1,
b is an integer of 0 or 1,
c is each independently an integer of 0 or 1,
d is each independently an integer of 0 or 1,
e is an integer from 0 to 5,
R 4 , R 5 , R 6 and R 7 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 4 or R 5 and R 6 or R 7 are —(CH 2 ) may form a crosslinked structure represented by f- ,
f is an integer from 1 to 5,
R 8 , R 9 , R 10 and R 11 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 8 or R 9 and R 10 or R 11 are —(CH 2 ) may form a crosslinked structure represented by g- ,
g is an integer from 1 to 5,
R 16 is a hydrogen atom, a methyl group or an alkyl group having 2 to 8 carbon atoms, and R 17 is a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, wherein R 12 and R 13 are bonded to each other to form a double bond, and R 14 , R 15 and R 18 are a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 14 and R 15 are bonded to each other to form a double bond, and R 12 , R 13 and R 18 are a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms,
or,
R 16 and R 17 may be joined together to form a 4- to 9-membered alicyclic hydrocarbon, wherein R 14 and R 15 are joined together to form a double bond, and , R 12 , R 13 and R 18 are a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms. ]
and a compound represented by formula (15):
Figure JPOXMLDOC01-appb-C000018
[In the formula,
R 1 , R 2 and R 3 each independently represent a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom;
Y is a hydrocarbon group optionally containing at least one heteroatom selected from the group consisting of nitrogen, oxygen and sulfur. ]
It can be produced by reacting the compound represented by.
 上記式(14)および式(15)において、R~R18およびa~gは、式(1)で表される不飽和二重結合含有シラン化合物において説明した通りである。 In formulas (14) and (15) above, R 1 to R 18 and a to g are as explained for the unsaturated double bond-containing silane compound represented by formula (1).
 また、上記式(15)において、Yは、窒素、酸素および硫黄からなる群から選択される少なくとも1つのヘテロ原子を含んでいてもよい炭化水素基であり、好ましくは炭素数1~30の窒素、酸素および硫黄からなる群から選択される少なくとも1つのヘテロ原子を含んでいてもよい炭化水素基、より好ましくは炭素数1~20の窒素、酸素および硫黄からなる群から選択される少なくとも1つのヘテロ原子を含んでいてもよい炭化水素基、さらに好ましくは炭素数1~10の窒素、酸素および硫黄からなる群から選択される少なくとも1つのヘテロ原子を含んでいてもよい炭化水素基である。その中でも、Yは、硫黄を含む炭化水素基であることが特に好ましい。かかる炭化水素基におけるシリル基と脂環式炭化水素部分に結合する箇所をつなぐ直鎖部分の長さが、炭素、窒素、酸素または硫黄の原子数の総和として、好ましくは3~8、より好ましくは4~7、さらに好ましくは4~6とされる。 In the above formula (15), Y is a hydrocarbon group optionally containing at least one heteroatom selected from the group consisting of nitrogen, oxygen and sulfur, preferably nitrogen having 1 to 30 carbon atoms. , a hydrocarbon group optionally containing at least one heteroatom selected from the group consisting of oxygen and sulfur, more preferably nitrogen having 1 to 20 carbon atoms, at least one selected from the group consisting of oxygen and sulfur It is a hydrocarbon group optionally containing a heteroatom, more preferably a hydrocarbon group optionally containing at least one heteroatom selected from the group consisting of nitrogen, oxygen and sulfur having 1 to 10 carbon atoms. Among them, Y is particularly preferably a hydrocarbon group containing sulfur. The total length of the straight chain portion connecting the silyl group and the alicyclic hydrocarbon moiety in such a hydrocarbon group is preferably 3 to 8, more preferably the total number of atoms of carbon, nitrogen, oxygen or sulfur. is 4-7, more preferably 4-6.
 ここで、上記の式(1)で表される不飽和二重結合含有シラン化合物の製造においては、式(14)で表される化合物と、式(15)で表される化合物とを、付加反応または縮合反応に供することで合成することができる。ここにおける付加反応として、ラジカル付加反応、共役付加反応、求核付加反応、求電子付加反応などを用いることができ、例えばペリ環状反応に類する反応、ヒドロシリル化反応、ヒドロアミノ化反応などを用いることができる。縮合反応として、例えばエステル化反応、アミド化反応、チオエステル化反応、チオアミド化反応、フリーデルクラフツ反応等を用いることができる。 Here, in the production of the unsaturated double bond-containing silane compound represented by the above formula (1), the compound represented by the formula (14) and the compound represented by the formula (15) are added. It can be synthesized by subjecting it to a reaction or a condensation reaction. As the addition reaction here, a radical addition reaction, a conjugate addition reaction, a nucleophilic addition reaction, an electrophilic addition reaction, or the like can be used, and for example, reactions similar to pericyclic reactions, hydrosilylation reactions, hydroamination reactions, etc. can. As the condensation reaction, for example, an esterification reaction, an amidation reaction, a thioesterification reaction, a thioamidation reaction, a Friedel-Crafts reaction, or the like can be used.
 なお、上記式(14)で表される化合物は、当業者に既に知られた知識に基づいて、同一もしくは異なる共役ジエン類化合物同士によるディールズ・アルダー反応、あるいは、共役ジエン類化合物とアルケン類化合物とのディールズ・アルダー反応により合成することができる。また、式(14)で表される化合物は、当該ディールズ・アルダー反応により合成された化合物を、必要に応じて熱変性させることにより、および/または必要に応じて精製することにより調製することができる。 In addition, the compound represented by the above formula (14) is a Diels-Alder reaction between the same or different conjugated diene compounds, or a conjugated diene compound and an alkene compound, based on the knowledge already known to those skilled in the art. It can be synthesized by a Diels-Alder reaction with In addition, the compound represented by formula (14) can be prepared by optionally thermally denaturing and/or optionally purifying the compound synthesized by the Diels-Alder reaction. can.
 式(2)で表される不飽和二重結合含有シラン化合物は、上記式(14)で表される化合物と、式(16):
Figure JPOXMLDOC01-appb-C000019
[式中、
 R、RおよびRは、それぞれ独立して、酸素原子または窒素原子を含んでいてもよい炭化水素基、あるいは水素原子を表し、
 hは、1~10の整数である。]
で表される化合物を反応することにより、製造することができる。
The unsaturated double bond-containing silane compound represented by formula (2) is obtained by combining the compound represented by formula (14) above with formula (16):
Figure JPOXMLDOC01-appb-C000019
[In the formula,
R 1 , R 2 and R 3 each independently represent a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom;
h is an integer from 1 to 10; ]
It can be produced by reacting the compound represented by.
 上記式(14)および式(16)において、R~R18およびa~gは、式(1)で表される不飽和二重結合含有シラン化合物において説明した通りである。さらに、hは、式(2)で表される化合物において説明した通りである。 In formulas (14) and (16) above, R 1 to R 18 and a to g are as explained for the unsaturated double bond-containing silane compound represented by formula (1). Furthermore, h is as explained in the compound represented by formula (2).
 上記式(16)で表される化合物としては、たとえばメルカプト基を有するアルコキシシラン化合物が挙げられる。メルカプト基を有するアルコキシシラン化合物としては、メルカプトトリメトキシシラン、メルカプトトリエトキシシラン、メルカプトメチルトリメトキシシラン、メルカプトメチルトリエトキシシラン、メルカプトメチルトリプロポキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、4-メルカプトブチルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、4-メルカプトブチルトリエトキシシラン、2-メルカプトエチルトリプロポキシシラン、3-メルカプトプロピルトリプロポキシシラン、4-メルカプトブチルトリプロポキシシラン、2-メルカプトエチルメチルジメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、4-メルカプトブチルメチルジメトキシシラン、2-メルカプトエチルメチルジエトキシシラン、3-メルカプトプロピルメチルジエトキシシラン、4-メルカプトブチルメチルジエトキシシラン等が挙げられる。 Examples of compounds represented by the above formula (16) include alkoxysilane compounds having a mercapto group. Alkoxysilane compounds having a mercapto group include mercaptotrimethoxysilane, mercaptotriethoxysilane, mercaptomethyltrimethoxysilane, mercaptomethyltriethoxysilane, mercaptomethyltripropoxysilane, 2-mercaptoethyltrimethoxysilane, and 2-mercaptoethyl. triethoxysilane, 3-mercaptopropyltrimethoxysilane, 4-mercaptobutyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 4-mercaptobutyltriethoxysilane, 2-mercaptoethyltripropoxysilane, 3-mercaptopropyltripropoxysilane Silane, 4-mercaptobutyltripropoxysilane, 2-mercaptoethylmethyldimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 4-mercaptobutylmethyldimethoxysilane, 2-mercaptoethylmethyldiethoxysilane, 3-mercaptopropylmethyldiethoxysilane silane, 4-mercaptobutylmethyldiethoxysilane, and the like.
 上記以外の不飽和二重結合含有シラン化合物としては、例えば、ビニル基含有シランや(メタ)アクリル基含有シラン等が挙げられる。ビニル基含有シランとしては、例えば、ビニルトリエトキシシラン、ビニルトリメトキシシラン等が挙げられる。(メタ)アクリル基含有シランとしては、例えば、3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン等が挙げられる。 Examples of unsaturated double bond-containing silane compounds other than the above include vinyl group-containing silanes and (meth)acrylic group-containing silanes. Vinyl group-containing silanes include, for example, vinyltriethoxysilane and vinyltrimethoxysilane. (Meth)acryl group-containing silanes include, for example, 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3 -Methacryloxypropylmethyldimethoxysilane and the like.
(不飽和二重結合を有さないその他のシラン化合物)
 その他のシラン化合物としては、例えば、下記の式(11): 
Figure JPOXMLDOC01-appb-C000020
[式中、
 各R、RおよびRは、それぞれ独立して、酸素原子または窒素原子を含んでいてもよい炭化水素基、あるいは水素原子を表し、 
 各Lは、それぞれ独立して、窒素、酸素および硫黄からなる群から選択される少なくとも1つのヘテロ原子を含んでいてもよい炭化水素基であり、
 aは、0か1の整数であり、
 bは、0か1の整数であり、
 cは、それぞれ独立して、0か1の整数であり、
 dは、それぞれ独立して、0か1の整数であり、
 eは、0~5の整数であり、
 R、R、RおよびRは、水素原子、メチル基または炭素数2~10のアルキル基を表し、または、R若しくはRと、R若しくはRとが、-(CH-で表される架橋構造を形成してもよく、
 fは、1~5の整数であり、
 R、R、R10およびR11は、水素原子、メチル基または炭素数2~10のアルキル基を表し、または、R若しくはRと、R10若しくはR11とが、-(CH-で表される架橋構造を形成してもよく、
 gは、1~5の整数であり、
 R26、R27およびR28は、それぞれ独立して、水素原子、メチル基または炭素数2~10のアルキル基を表す。]
で表される化合物を使用することができる。
(Other silane compounds without unsaturated double bonds)
Other silane compounds include, for example, the following formula (11):
Figure JPOXMLDOC01-appb-C000020
[In the formula,
each of R 1 , R 2 and R 3 independently represents a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom;
each L is independently a hydrocarbon group optionally containing at least one heteroatom selected from the group consisting of nitrogen, oxygen and sulfur;
a is an integer of 0 or 1,
b is an integer of 0 or 1,
c is each independently an integer of 0 or 1,
d is each independently an integer of 0 or 1,
e is an integer from 0 to 5,
R 4 , R 5 , R 6 and R 7 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 4 or R 5 and R 6 or R 7 are —(CH 2 ) may form a crosslinked structure represented by f- ,
f is an integer from 1 to 5,
R 8 , R 9 , R 10 and R 11 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 8 or R 9 and R 10 or R 11 are —(CH 2 ) may form a crosslinked structure represented by g- ,
g is an integer from 1 to 5,
R 26 , R 27 and R 28 each independently represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms. ]
A compound represented by can be used.
 上記式(11)において、各R、R、R、R、R、R、R、R、R、R10、R11の好ましい実施態様は、上記式(1)で説明した通りである。
 また、各Lの好ましい実施態様は、上記式(1)で説明した通りである。
 また、a、b、c、d、eの好ましい態様は、上記式(1)で説明した通りである。
 R26、R27およびR28は、それぞれ独立して、水素原子、メチル基または炭素数2~10のアルキル基を表し、好ましくは水素原子である。
In the above formula (11), each of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 and R 11 is preferably ) is as described in .
Moreover, preferred embodiments of each L are as described in the formula (1) above.
Preferred embodiments of a, b, c, d, and e are as described in formula (1) above.
R 26 , R 27 and R 28 each independently represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, preferably a hydrogen atom.
 その他のシラン化合物は、好ましくは含硫黄シラン化合物である。 The other silane compound is preferably a sulfur-containing silane compound.
 上記式(11)で表されるその他のシラン化合物は、好ましくは、式(12):
Figure JPOXMLDOC01-appb-C000021
[式中、
 各R、RおよびRは、それぞれ独立して、酸素原子または窒素原子を含んでいてもよい炭化水素基、あるいは水素原子を表し、
 hは、1~10の整数であり、
 mは、1~10の整数であり、
 aは、0か1の整数であり、
 bは、0か1の整数であり、
 cは、それぞれ独立して、0か1の整数であり、
 dは、それぞれ独立して、0か1の整数であり、
 eは、0~5の整数であり、
 R、R、RおよびRは、水素原子、メチル基または炭素数2~10のアルキル基を表し、または、R若しくはRと、R若しくはRとが、-(CH-で表される架橋構造を形成してもよく、
 fは、1~5の整数であり、
 R、R、R10およびR11は、水素原子、メチル基または炭素数2~10のアルキル基を表し、または、R若しくはRと、R10若しくはR11とが、-(CH-で表される架橋構造を形成してもよく、
 gは、1~5の整数であり、
 R26、R27およびR28は、それぞれ独立して、水素原子、メチル基または炭素数2~10のアルキル基を表す。]
で表される化合物である。
Other silane compounds represented by the above formula (11) are preferably represented by formula (12):
Figure JPOXMLDOC01-appb-C000021
[In the formula,
each of R 1 , R 2 and R 3 independently represents a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom;
h is an integer from 1 to 10,
m is an integer from 1 to 10,
a is an integer of 0 or 1,
b is an integer of 0 or 1,
c is each independently an integer of 0 or 1,
d is each independently an integer of 0 or 1,
e is an integer from 0 to 5,
R 4 , R 5 , R 6 and R 7 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 4 or R 5 and R 6 or R 7 are —(CH 2 ) may form a crosslinked structure represented by f- ,
f is an integer from 1 to 5,
R 8 , R 9 , R 10 and R 11 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 8 or R 9 and R 10 or R 11 are —(CH 2 ) may form a crosslinked structure represented by g- ,
g is an integer from 1 to 5,
R 26 , R 27 and R 28 each independently represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms. ]
It is a compound represented by
 上記式(12)において、各R、R、R、R、R、R、R、R、R、R10、R11、R26、R27およびR28の好ましい実施態様は、上記式(11)で説明した通りである。
 また、各Lの好ましい実施態様は、上記式(11)で説明した通りである。
 また、a、b、c、d、eの好ましい態様は、上記式(11)で説明した通りである。
 また、hの好ましい実施態様は、上記式(2)で説明した通りである。
 また、上記式(12)において、mは、1~10の整数であり、好ましくは1~8、より好ましくは1~6、さらに好ましくは1~4、さらにより好ましくは1~3の整数である。
In the above formula (12), each of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 26 , R 27 and R 28 Preferred embodiments are as described in formula (11) above.
Moreover, preferred embodiments of each L are as described in the formula (11) above.
Further, preferred embodiments of a, b, c, d, and e are as described in formula (11) above.
Moreover, preferred embodiments of h are as described in the above formula (2).
Further, in the above formula (12), m is an integer of 1 to 10, preferably 1 to 8, more preferably 1 to 6, still more preferably 1 to 4, still more preferably 1 to 3. be.
 その他のシラン化合物は、さらに好ましくは、式(17):
Figure JPOXMLDOC01-appb-C000022
[式中、各R、RおよびRは、それぞれ独立して、酸素原子または窒素原子を含んでいてもよい炭化水素基、あるいは水素原子を表す。]、または
式(18):
Figure JPOXMLDOC01-appb-C000023
[式中、各R、RおよびRは、それぞれ独立して、酸素原子または窒素原子を含んでいてもよい炭化水素基、あるいは水素原子を表す。]
で表される化合物である。
Other silane compounds are more preferably represented by formula (17):
Figure JPOXMLDOC01-appb-C000022
[In the formula, each of R 1 , R 2 and R 3 independently represents a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom. ], or formula (18):
Figure JPOXMLDOC01-appb-C000023
[In the formula, each of R 1 , R 2 and R 3 independently represents a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom. ]
It is a compound represented by
 上記式(17)、式(18)で表される化合物において、各R、RおよびRについては、上記式(11)において説明した通りである。 In the compounds represented by the above formulas (17) and (18), R 1 , R 2 and R 3 are as explained for the above formula (11).
 その他のシラン化合物の別のさらに好ましい態様としては、下記式で表される化合物が挙げられる。下記式で表される化合物において、R~Rについては、上記式(1)において説明した通りである。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Another more preferred embodiment of the other silane compound is a compound represented by the following formula. In the compound represented by the following formula, R 1 to R 3 are as explained in formula (1) above.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 上記式(11)で表されるその他のシラン化合物のさらにより好ましい態様としては、RSi基が、上記式(10)の化学構造を有するシラン化合物が挙げられる。特に、その他のシラン化合物は、RSi基がトリエトキシシリル基またはトリメトキシシリル基であるシラン化合物が一層好ましく、RSi基がトリエトキシシリル基であるシラン化合物がより一層好ましい。 An even more preferred embodiment of the other silane compound represented by formula (11) above is a silane compound in which the R 1 R 2 R 3 Si group has the chemical structure of formula (10) above. In particular, the other silane compound is more preferably a silane compound in which the R 1 R 2 R 3 Si group is a triethoxysilyl group or a trimethoxysilyl group, and a silane compound in which the R 1 R 2 R 3 Si group is a triethoxysilyl group. Compounds are even more preferred.
 その他のシラン化合物の特に好ましい実施態様としては、下記式で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Particularly preferred embodiments of other silane compounds include compounds represented by the following formulas.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
 その他のシラン化合物は、好ましくは、その立体異性体、またはそれらの立体異性体の任意の混合物である。 The other silane compound is preferably its stereoisomer or any mixture of those stereoisomers.
(その他のシラン化合物の製造方法)
 式(11)で表されるその他のシラン化合物の製造方法の一実施形態について説明するが、以下の製造方法に限定されるものではない。例えば、その他のシラン化合物は、下記式(14):
Figure JPOXMLDOC01-appb-C000028
[式中、
 aは、0か1の整数であり、
 bは、0か1の整数であり、
 cは、それぞれ独立して、0か1の整数であり、
 dは、それぞれ独立して、0か1の整数であり、
 eは、0~5の整数であり、
 R、R、RおよびRは、水素原子、メチル基または炭素数2~10のアルキル基を表し、または、R若しくはRと、R若しくはRとが、-(CH-で表される架橋構造を形成してもよく、
 fは、1~5の整数であり、
 R、R、R10およびR11は、水素原子、メチル基または炭素数2~10のアルキル基を表し、または、R若しくはRと、R10若しくはR11とが、-(CH-で表される架橋構造を形成してもよく、
 gは、1~5の整数であり、
 R12、R13、R14、R15、R16、R17およびR18は、それぞれ独立して、水素原子、メチル基または炭素数2~10のアルキル基を表し、但し、R12およびR13は、互いに結合して二重結合を形成するか、あるいは、R14およびR15は互いに結合して二重結合を形成し、また、R16およびR17は、互いに結合して4~9員の脂環式炭化水素を形成してもよい。]
で表される化合物と、上記式(15)で表される化合物を反応させることにより、製造することができる。なお、上記式(14)および(15)の好ましい実施態様については、不飽和二重結合含有シラン化合物において説明した通りである。
(Method for producing other silane compounds)
An embodiment of the method for producing the other silane compound represented by formula (11) will be described, but the production method is not limited to the following. For example, other silane compounds have the following formula (14):
Figure JPOXMLDOC01-appb-C000028
[In the formula,
a is an integer of 0 or 1,
b is an integer of 0 or 1,
c is each independently an integer of 0 or 1,
d is each independently an integer of 0 or 1,
e is an integer from 0 to 5,
R 4 , R 5 , R 6 and R 7 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 4 or R 5 and R 6 or R 7 are —(CH 2 ) may form a crosslinked structure represented by f- ,
f is an integer from 1 to 5,
R 8 , R 9 , R 10 and R 11 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 8 or R 9 and R 10 or R 11 are —(CH 2 ) may form a crosslinked structure represented by g- ,
g is an integer from 1 to 5,
R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 each independently represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, provided that R 12 and R 13 is bonded to each other to form a double bond, or R 14 and R 15 are bonded to each other to form a double bond, and R 16 and R 17 are bonded to each other to form 4 to 9 may form a membered alicyclic hydrocarbon. ]
It can be produced by reacting a compound represented by with a compound represented by the above formula (15). Preferred embodiments of the above formulas (14) and (15) are as described for the unsaturated double bond-containing silane compound.
 ここで、その他のシラン化合物の製造においては、上記式(14)で表される化合物と、上記式(15)で表される化合物とを、付加反応または縮合反応に供することで合成することができる。ここにおける付加反応として、ラジカル付加反応、共役付加反応、求核付加反応、求電子付加反応などを用いることができ、例えばペリ環状反応に類する反応、ヒドロシリル化反応、ヒドロアミノ化反応などを用いることができる。縮合反応として、例えばエステル化反応、アミド化反応、チオエステル化反応、チオアミド化反応、フリーデルクラフツ反応等を用いることができる。 Here, in the production of other silane compounds, the compound represented by the above formula (14) and the compound represented by the above formula (15) can be synthesized by subjecting them to an addition reaction or a condensation reaction. can. As the addition reaction here, a radical addition reaction, a conjugate addition reaction, a nucleophilic addition reaction, an electrophilic addition reaction, or the like can be used, and for example, reactions similar to pericyclic reactions, hydrosilylation reactions, hydroamination reactions, etc. can. As the condensation reaction, for example, an esterification reaction, an amidation reaction, a thioesterification reaction, a thioamidation reaction, a Friedel-Crafts reaction, or the like can be used.
 なお、上記式(14)で表される化合物は、当業者に既に知られた知識に基づいて、同一もしくは異なる共役ジエン類化合物同士によるディールズ・アルダー反応、あるいは、共役ジエン類化合物とアルケン類化合物とのディールズ・アルダー反応により合成することができる。また、上記式(14)で表される化合物は、当該ディールズ・アルダー反応により合成された化合物を、必要に応じて熱変性させることにより、および/または必要に応じて精製することにより調製することができる。 In addition, the compound represented by the above formula (14) is a Diels-Alder reaction between the same or different conjugated diene compounds, or a conjugated diene compound and an alkene compound, based on the knowledge already known to those skilled in the art. It can be synthesized by a Diels-Alder reaction with In addition, the compound represented by the above formula (14) is prepared by thermally denaturing the compound synthesized by the Diels-Alder reaction, if necessary, and/or by purifying it, if necessary. can be done.
 また、その他のシラン化合物は、上記式(14)で表される化合物と、上記式(16)で表される化合物を反応することにより、製造することができる。なお、上記式(16)の好ましい実施態様については、不飽和二重結合含有シラン化合物において説明した通りである。 Further, other silane compounds can be produced by reacting the compound represented by the above formula (14) with the compound represented by the above formula (16). Preferred embodiments of the above formula (16) are as described for the unsaturated double bond-containing silane compound.
 その他のシラン化合物としては、下記の式(19): 
Figure JPOXMLDOC01-appb-C000029
[式中、
 R31、R32およびR33のうちの少なくとも1つまたは全部が-O-(R35-O)-R36(R35は、炭素数1~30の2価の炭化水素基であり、R36は炭素数1~30のアルキル基、炭素数2~30のアルケニル基、炭素数6~30のアリール基または炭素数7~30のアラルキル基であり、mは1~30の整数であり、Rが複数の場合、複数のRは同じかまたは異なってもよい。)であり、
 R31、R32およびR33のうちの1つまたは2つが前記-O-(R35-O)-R36である場合、残りの基を、炭素数1~12のアルキル基、-O-R37(R37は、水素原子、炭素数1~30のアルキル基、炭素数2~30のアルケニル基、炭素数6~30のアリール基、または炭素数7~30のアラルキル基である。)、水素原子または炭素数6~30のアリール基とすることができ、
 R31、R32およびR33は同じかまたは異なってもよく、
 R34は炭素数1~30の2価の炭化水素基である。]
で表されるものも使用することができる。
Other silane compounds include the following formula (19):
Figure JPOXMLDOC01-appb-C000029
[In the formula,
at least one or all of R 31 , R 32 and R 33 is —O—(R 35 —O) m —R 36 (R 35 is a divalent hydrocarbon group having 1 to 30 carbon atoms, R 36 is an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms or an aralkyl group having 7 to 30 carbon atoms, and m is an integer of 1 to 30. , when there are multiple R 5 , the multiple R 5 may be the same or different),
When one or two of R 31 , R 32 and R 33 are the above —O—(R 35 —O) m —R 36 , the remaining groups are alkyl groups having 1 to 12 carbon atoms, —O —R 37 (R 37 is a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an aralkyl group having 7 to 30 carbon atoms. ), a hydrogen atom or an aryl group having 6 to 30 carbon atoms,
R 31 , R 32 and R 33 may be the same or different;
R 34 is a divalent hydrocarbon group having 1 to 30 carbon atoms. ]
can also be used.
 上記式(19)中、R34、R35で表される、炭素数1~30の2価の炭化水素基としては、例えば、アルキレン基(例えばメチレン基、ジメチレン基、トリメチレン基)等の脂肪族炭化水素基;芳香族炭化水素基;これらの組み合わせが挙げられる。
 R36、R37で表される、炭素数1~30のアルキル基、炭素数2~30のアルケニル基、炭素数6~30のアリール基、炭素数7~30のアラルキル基としては、例えば、メチル基、エチル基等のアルキル基;ビニル基、アリル基等のアルケニル基;フェニル基、トリル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基が挙げられる。
 mは、1~20の整数であるのが好ましく、2~15の整数であるのがより好ましく、3~10であるのがさらに好ましい。
 R、RおよびRのうちの1つまたは2つが前記-O-(R35-O)-R36である場合、残りの基としての、炭素数1~12のアルキル基、炭素数6~30のアリール基としては、例えば、メチル基、エチル基等のアルキル基;フェニル基、トリル基等のアリール基が挙げられる。
In the above formula (19), the divalent hydrocarbon groups having 1 to 30 carbon atoms represented by R 34 and R 35 include, for example, aliphatic aromatic hydrocarbon groups; and combinations thereof.
Examples of alkyl groups having 1 to 30 carbon atoms, alkenyl groups having 2 to 30 carbon atoms, aryl groups having 6 to 30 carbon atoms, and aralkyl groups having 7 to 30 carbon atoms represented by R 36 and R 37 include: alkyl groups such as methyl group and ethyl group; alkenyl groups such as vinyl group and allyl group; aryl groups such as phenyl group and tolyl group; and aralkyl groups such as benzyl group and phenethyl group.
m is preferably an integer of 1-20, more preferably an integer of 2-15, even more preferably 3-10.
When one or two of R 1 , R 2 and R 3 are the above -O-(R 35 -O) m -R 36 , the remaining group is an alkyl group having 1 to 12 carbon atoms, carbon Examples of aryl groups of numbers 6 to 30 include alkyl groups such as methyl group and ethyl group; and aryl groups such as phenyl group and tolyl group.
 上記式(19)の好ましい態様は、R31、R32およびR33のうち2つは-O-(C-O)-C1327であり、残りは-O-Cであり、nの平均数は5であり、R34はトリメチレン基である。このような式(19)で表される化合物としては、エボニック社の商品名「Si363」が挙げられる。 A preferred embodiment of the above formula (19) is that two of R 31 , R 32 and R 33 are —O—(C 2 H 4 —O) n —C 13 H 27 and the rest are —O—C 2 H 5 , the average number of n is 5, and R 34 is a trimethylene group. Examples of the compound represented by formula (19) include Evonik's product name "Si363".
 他のシラン化合物として、例えば、式(13):
Figure JPOXMLDOC01-appb-C000030
[式中、
 tおよびvは、それぞれ独立して、0~10の整数であり、
 uは、2~10の整数であり、
 qおよびrは、それぞれ独立して、1~3の整数であり、
 wおよびzは、それぞれ独立して、0か1の整数であり、
 LおよびLは、それぞれ独立して、窒素、酸素および硫黄からなる群から選択される少なくとも1つのヘテロ原子を含んでいてもよい炭化水素基であり、
 R21およびR23は、それぞれ独立して、アルコキシ基または1以上のアルキル基で置換されたアミノ基であり、
 R22およびR24は、それぞれ独立して、水素原子またはアルキル基である。]
で表される化合物を使用することができる。
Other silane compounds include, for example, formula (13):
Figure JPOXMLDOC01-appb-C000030
[In the formula,
t and v are each independently an integer from 0 to 10;
u is an integer from 2 to 10,
q and r are each independently an integer from 1 to 3;
w and z are each independently an integer of 0 or 1;
L 2 and L 3 are each independently a hydrocarbon group optionally containing at least one heteroatom selected from the group consisting of nitrogen, oxygen and sulfur;
R 21 and R 23 are each independently an alkoxy group or an amino group substituted with one or more alkyl groups;
R22 and R24 are each independently a hydrogen atom or an alkyl group. ]
A compound represented by can be used.
 上記式(13)中、tおよびvは、それぞれ独立して、0~10の整数であり、好ましくは0~5の整数であり、より好ましくは1~3の整数であり、さらに好ましくは2である。
 また、uは、2~10の整数であり、より好ましくは、2~8の整数である。
 また、qおよびrは、それぞれ独立して、1~3の整数であり、好ましくは2~3の整数、より好ましくは3である。
 また、wおよびzは、それぞれ独立して、0か1の整数であり、好ましくは0である。
 また、LおよびLは、それぞれ独立して、窒素、酸素および硫黄からなる群から選択される少なくとも1つのヘテロ原子を含んでいてもよい炭化水素基であり、好ましくは、窒素、酸素および硫黄からなる群から選択される少なくとも1つのヘテロ原子を含んでいてもよい、炭素数1~30の炭化水素基、より好ましくは、窒素、酸素および硫黄からなる群から選択される少なくとも1つのヘテロ原子を含んでいてもよい、炭素数1~20の炭化水素基、さらに好ましくは、窒素、酸素および硫黄からなる群から選択される少なくとも1つのヘテロ原子を含んでいてもよい、炭素数1~10の炭化水素基である。
 また、R21およびR23は、それぞれ独立して、加水分解性基であり、アルコキシ基、より好ましくは炭素数1~30のアルコキシ基、さらに好ましくは炭素数1~20のアルコキシ基、または1以上のアルキル基で置換されたアミノ基、より好ましくは1以上の炭素数1~30のアルキル基で置換されたアミノ基、より好ましくは1以上の炭素数1~20のアルキル基で置換されたアミノ基である。具体的には、アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基およびイソブトキシ基等が挙げられ、これらの中でも、メトキシ基またはエトキシ基が好ましい。また、1以上のアルキル基で置換されたアミノ基としては、N-メチルアミノ基、N,N-ジメチルアミノ基、N-エチルアミノ基、N,N-ジエチルアミノ基およびN-イソプロピルアミノ基等が挙げられ、これらの中でも、N-メチルアミノ基またはN-エチルアミノ基が好ましい。なお、アルコキシ基およびアミノ基は、窒素、酸素および硫黄からなる群から選択される少なくとも1つのヘテロ原子を含んでいてもよい炭化水素基からなる連結基を介してケイ素(Si)と結合してもよい。
 また、R22およびR24は、それぞれ独立して、水素原子またはアルキル基であり、より好ましくは炭素数1~30のアルキル基、さらに好ましくは炭素数1~20のアルキル基であり、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、シクロペンチル基、へキシル基およびシクロへキシル基等が挙げられ、これらの中でも、メチル基およびエチル基が好ましい。
In the above formula (13), t and v are each independently an integer of 0 to 10, preferably an integer of 0 to 5, more preferably an integer of 1 to 3, more preferably 2 is.
Also, u is an integer of 2 to 10, more preferably an integer of 2 to 8.
Also, q and r are each independently an integer of 1 to 3, preferably an integer of 2 to 3, more preferably 3.
Also, w and z are each independently an integer of 0 or 1, preferably 0.
L 2 and L 3 are each independently a hydrocarbon group optionally containing at least one heteroatom selected from the group consisting of nitrogen, oxygen and sulfur, preferably nitrogen, oxygen and A hydrocarbon group having 1 to 30 carbon atoms which may contain at least one heteroatom selected from the group consisting of sulfur, more preferably at least one heteroatom selected from the group consisting of nitrogen, oxygen and sulfur A hydrocarbon group having 1 to 20 carbon atoms which may contain an atom, more preferably a C 1 to 20 carbon atom which may contain at least one heteroatom selected from the group consisting of nitrogen, oxygen and sulfur 10 hydrocarbon groups.
R 21 and R 23 are each independently a hydrolyzable group, an alkoxy group, more preferably an alkoxy group having 1 to 30 carbon atoms, still more preferably an alkoxy group having 1 to 20 carbon atoms, or 1 an amino group substituted with one or more alkyl groups, more preferably an amino group substituted with one or more alkyl groups having 1 to 30 carbon atoms, more preferably one or more alkyl groups having 1 to 20 carbon atoms. It is an amino group. Specifically, the alkoxy group includes methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, etc. Among these, methoxy or ethoxy is preferred. Further, the amino group substituted with one or more alkyl groups includes N-methylamino group, N,N-dimethylamino group, N-ethylamino group, N,N-diethylamino group and N-isopropylamino group. Among these, an N-methylamino group or an N-ethylamino group is preferred. The alkoxy group and amino group are bonded to silicon (Si) via a linking group consisting of a hydrocarbon group optionally containing at least one heteroatom selected from the group consisting of nitrogen, oxygen and sulfur. good too.
In addition, R 22 and R 24 are each independently a hydrogen atom or an alkyl group, more preferably an alkyl group having 1 to 30 carbon atoms, still more preferably an alkyl group having 1 to 20 carbon atoms, and specifically includes methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, cyclopentyl, hexyl and cyclohexyl groups, among which methyl and ethyl groups are preferred.
 上記式(13)で表される化合物のうち、ビス[3-(トリエトキシシリル)プロピル]テトラスルフィドは、市販されているものを使用してもよい。例えば、エボニック社製のSi-69が挙げられる。また、ビス[3-(トリエトキシシリル)プロピル]ジスルフィドについても、市販されているものを使用してもよい。例えば、エボニック社製のSi-75が挙げられる。 Of the compounds represented by formula (13) above, commercially available bis[3-(triethoxysilyl)propyl]tetrasulfide may be used. For example, Si-69 manufactured by Evonik may be mentioned. Also, commercially available bis[3-(triethoxysilyl)propyl]disulfide may be used. For example, Si-75 manufactured by Evonik may be mentioned.
 他のシラン化合物として、上記式(13)で表される化合物以外にも、上記式(16)で表される化合物、特に以下のような構造を有するシラン化合物を使用することができる。
Figure JPOXMLDOC01-appb-C000031
As other silane compounds, in addition to the compounds represented by the above formula (13), compounds represented by the above formula (16), particularly silane compounds having the following structures can be used.
Figure JPOXMLDOC01-appb-C000031
 他のシラン化合物として、例えば、下記式(20)
Figure JPOXMLDOC01-appb-C000032
[式中、
 R41は、水素原子または最大18の炭素原子を含む一価の炭化水素基であり、
 R42は、最大12の炭素原子を含む二価の炭化水素基であり、
 Xは、R43O-およびR43C(=O)O-からなる群より選択され(式中、R43は、水素原子、または最大18の炭素原子を含む一価の炭化水素基、または最大18の炭素原子および少なくとも一つの酸素原子を含む一価の炭化水素基である)、
 XおよびXの各々は、独立してR44およびXで挙げられている要素からなる群より選択される(式中、R44は、最大6の炭素原子の一価の炭化水素基である)。]
で表される化合物を使用することができる。
As another silane compound, for example, the following formula (20)
Figure JPOXMLDOC01-appb-C000032
[In the formula,
R 41 is a hydrogen atom or a monovalent hydrocarbon group containing up to 18 carbon atoms,
R42 is a divalent hydrocarbon group containing up to 12 carbon atoms,
X 1 is selected from the group consisting of R 43 O-- and R 43 C(=O)O--, wherein R 43 is a hydrogen atom or a monovalent hydrocarbon group containing up to 18 carbon atoms; or a monovalent hydrocarbon group containing up to 18 carbon atoms and at least one oxygen atom),
Each of X 2 and X 3 is independently selected from the group consisting of the elements listed for R 44 and X 1 , wherein R 44 is a monovalent hydrocarbon group of up to 6 carbon atoms is). ]
A compound represented by can be used.
 上記式(20)において、R41の代表的な、限定されない例示は、水素、メチル、エチル、プロピル、イソプロピル、ブチル、ヘキシル、2-エチルヘキシル、オクチル、デシル、オクタデシル、シクロヘキシル、フェニル、ベンジルおよびフェネチルを含む。 In formula (20) above, representative, non-limiting examples of R 41 are hydrogen, methyl, ethyl, propyl, isopropyl, butyl, hexyl, 2-ethylhexyl, octyl, decyl, octadecyl, cyclohexyl, phenyl, benzyl and phenethyl. including.
 上記式(20)において、R42の代表的な、限定されない例示は、メチレン、エチレン、プロピレン、イソプロピレン、ブチレン、ヘキシレン、オクチレン、デシレン、シクロヘキシレンおよびフェニレンを含む。 In formula (20) above, representative, non-limiting examples of R 42 include methylene, ethylene, propylene, isopropylene, butylene, hexylene, octylene, decylene, cyclohexylene and phenylene.
 上記式(20)において、R43の代表的な、限定されない例示は、水素、メチル、エチル、プロピル、イソプロピル、ブチル、ヘキシル、2-エチルヘキシル、オクチル、デシル、オクタデシル、シクロヘキシル、フェニル、ベンジル、フェネチル、3-オキサブチルおよび4,7-ジオキサオクチルを含む。 In formula (20) above, representative, non-limiting examples of R 43 are hydrogen, methyl, ethyl, propyl, isopropyl, butyl, hexyl, 2-ethylhexyl, octyl, decyl, octadecyl, cyclohexyl, phenyl, benzyl, phenethyl , 3-oxabutyl and 4,7-dioxaoctyl.
 上記式(20)において、R44の代表的な、限定されない例示は、水素、メチル、エチル、プロピル、イソプロピル、ブチルおよびフェニルを含む。 In formula (20) above, representative, non-limiting examples of R 44 include hydrogen, methyl, ethyl, propyl, isopropyl, butyl and phenyl.
 上記式(20)において、Xの代表的な、限定されない例示は、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、フェノキシ、ベンジルオキシ、ヒドロキシおよびアセトキシを含む。XおよびXの代表的な例示は、メチル、エチル、プロピル、イソプロピル、sec-ブチル、フェニル、ビニルおよびシクロヘキシルに加えて、上記に挙げられたXの代表的な例示を含む。 In formula (20) above, representative, non-limiting examples of X 1 include methoxy, ethoxy, propoxy, isopropoxy, butoxy, phenoxy, benzyloxy, hydroxy and acetoxy. Representative examples of X 2 and X 3 include methyl, ethyl, propyl, isopropyl, sec-butyl, phenyl, vinyl and cyclohexyl, as well as the representative examples of X 1 given above.
 本発明の更に他の実施態様において、R41は、5~9の炭素原子を含むアルキル基であって、第一級炭素原子を介してカルボニル基に結合し、R42は、メチレン、エチレンまたはプロピレンであり、Xは、メトキシ、エトキシまたはプロポキシであり、そして、XおよびXは、個々に、Xの代表的な例示およびメチルを含む。 In yet another embodiment of the present invention R 41 is an alkyl group containing 5 to 9 carbon atoms and is attached via a primary carbon atom to the carbonyl group and R 42 is methylene, ethylene or is propylene, X 1 is methoxy, ethoxy or propoxy, and X 2 and X 3 individually include representative examples of X 1 and methyl.
 上記式(20)で表されるシラン化合物としては、例えば、トリエトキシシリルメチルチオホルメート、2-トリエトキシシリルエチルチオアセテート、3-トリエトキシシリルプロピルチオプロパノエート、3-トリエトキシシリルプロピルチオヘキサノエート、3-オクタノイルチオ-1-プロピルトリエトキシシラン(3-トリエトキシシリルプロピルチオオクタノエート)、3-ジエトキシメチルシリルプロピルチオオクタノエート、3-エトキシジメチルシリルプロピルチオオクタノエート、3-トリエトキシシリルプロピルチオドデカノエート、3-トリエトキシシリルプロピルチオオクタドデカノエート、3-トリメトキシシリルプロピルチオオクタノエート、3-トリアセトキシシリルプロピルチオアセテート、3-ジプロポキシメチルシリルプロピルチオプロパノエート、4-オキサ-ヘキシルオキシジメチルシリルプロピルチオオクタノエート等が挙げられる。これらの中で、3-オクタノイルチオ-1-プロピルトリエトキシシラン(3-トリエトキシシリルプロピルチオオクタノエート)、3-ジエトキシメチルシリルプロピルチオオクタノエート、および3-エトキシジメチルシリルプロピルチオオクタノエートが好ましく、3-オクタノイルチオ-1-プロピルトリエトキシシラン(3-トリエトキシシリルプロピルチオオクタノエート)がより好ましい。 Examples of the silane compound represented by the above formula (20) include triethoxysilylmethylthioformate, 2-triethoxysilylethylthioacetate, 3-triethoxysilylpropylthiopropanoate, 3-triethoxysilylpropylthio hexanoate, 3-octanoylthio-1-propyltriethoxysilane (3-triethoxysilylpropylthiooctanoate), 3-diethoxymethylsilylpropylthiooctanoate, 3-ethoxydimethylsilylpropylthiooctanoate, 3-triethoxysilylpropylthiododecanoate, 3-triethoxysilylpropylthiooctadodecanoate, 3-trimethoxysilylpropylthiooctanoate, 3-triacetoxysilylpropylthioacetate, 3-dipropoxymethylsilylpropyl thiopropanoate, 4-oxa-hexyloxydimethylsilylpropylthiooctanoate and the like. Among these, 3-octanoylthio-1-propyltriethoxysilane (3-triethoxysilylpropylthiooctanoate), 3-diethoxymethylsilylpropylthiooctanoate, and 3-ethoxydimethylsilylpropylthiooctano is preferred, and 3-octanoylthio-1-propyltriethoxysilane (3-triethoxysilylpropylthiooctanoate) is more preferred.
 上記式(20)で表される化合物、市販されているものを使用してもよい。例えば、下記式(21):
Figure JPOXMLDOC01-appb-C000033
で表される化合物(3-オクタノイルチオ-1-プロピルトリエトキシシラン(3-トリエトキシシリルプロピルチオオクタノエート))としては、モメンティブ社製の商品名NXTシランが挙げられる。
Commercially available compounds may be used as the compound represented by the formula (20). For example, the following formula (21):
Figure JPOXMLDOC01-appb-C000033
Examples of the compound represented by (3-octanoylthio-1-propyltriethoxysilane (3-triethoxysilylpropylthiooctanoate)) include NXT silane (trade name) manufactured by Momentive.
 他のシラン化合物としては、上記式(20)で表されるシラン化合物に替えて、あるいは上記式(20)で表されるシラン化合物と共に、式(20)で表されるシラン化合物の縮合物を用いることができる。式(20)で表されるシラン化合物の縮合物は、式(20)で表されるシラン化合物単独で、もしくは式(22):
Figure JPOXMLDOC01-appb-C000034
[式中、R42、X、XおよびXは上記式(20)で定義した通りである。]
で表される化合物との共存下において、シリル基を部分的に加水分解した後、他の分子のシリル基と脱エタノールもしくは脱水を伴いながら重縮合させて、単独縮合物もしくは共縮合物として調製することができる。ただし、重縮合を起こすためには、X、XおよびXのうち、少なくとも2つ以上はR43O-もしくはR43C(=O)O-でなければならない。R43は上記式(20)で定義した通りである。
As the other silane compound, a condensate of the silane compound represented by formula (20) may be used in place of the silane compound represented by formula (20) or together with the silane compound represented by formula (20). can be used. The condensate of the silane compound represented by formula (20) is the silane compound represented by formula (20) alone, or the formula (22):
Figure JPOXMLDOC01-appb-C000034
[In the formula, R 42 , X 1 , X 2 and X 3 are as defined in formula (20) above. ]
After partial hydrolysis of the silyl group in the presence of the compound represented by, the silyl group of another molecule is polycondensed with ethanol removal or dehydration to prepare a homocondensate or cocondensate. can do. However, in order to cause polycondensation, at least two of X 1 , X 2 and X 3 must be R 43 O-- or R 43 C(=O)O--. R 43 is as defined in formula (20) above.
 上記の他のシラン化合物の縮合物としては、例えば、下記式(23):
Figure JPOXMLDOC01-appb-C000035
[式中、x:yは、1:99~99:1である。]
で表される縮合物である。このような縮合物は、市販されているものを使用してもよい。例えば、モメンティブ社製の商品名NXT Z45シランが挙げられる。
Condensates of other silane compounds described above include, for example, the following formula (23):
Figure JPOXMLDOC01-appb-C000035
[In the formula, x:y is 1:99 to 99:1. ]
It is a condensate represented by. Commercially available products may be used as such condensates. For example, NXT Z45 silane available from Momentive.
(充填剤)
 充填剤としては、シリカ、カーボンブラック、硫酸バリウム、炭酸カルシウム、酸化チタン、クレイおよびタルク等が挙げられ、シリカおよびカーボンブラックの少なくとも1種を用いることが好ましく、シリカを用いることがより好ましい。充填剤の含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上300質量部未満であり、より好ましくは5質量部以上200質量部以下であり、さらに好ましくは10質量部以上180質量部以下であり、さらにより好ましくは15質量部以上160質量部以下であり、特に好ましくは20質量部以上160質量部以下であり、特により好ましくは30質量部以上130質量部以下であり、最も好ましくは40質量部以上110質量部以下である。
(filler)
Examples of fillers include silica, carbon black, barium sulfate, calcium carbonate, titanium oxide, clay and talc. At least one of silica and carbon black is preferably used, and silica is more preferably used. The content of the filler is preferably 1 part by mass or more and less than 300 parts by mass, more preferably 5 parts by mass or more and 200 parts by mass or less, and still more preferably 10 parts by mass or more with respect to 100 parts by mass of the rubber component. 180 parts by mass or less, more preferably 15 parts by mass or more and 160 parts by mass or less, particularly preferably 20 parts by mass or more and 160 parts by mass or less, and particularly preferably 30 parts by mass or more and 130 parts by mass or less. , and most preferably 40 parts by mass or more and 110 parts by mass or less.
(シリカ)
 シリカとしては、特に限定されないが、例えば、乾式法シリカ、湿式法シリカ、コロイダルシリカ、および沈降シリカ等が挙げられる。これらの中でも、含水ケイ酸を主成分とする湿式法シリカが好ましい。これらのシリカは、それぞれ単独でまたは2種以上を組み合わせて用いることができる。
(silica)
Examples of silica include, but are not limited to, dry process silica, wet process silica, colloidal silica, and precipitated silica. Among these, wet-process silica containing hydrous silicic acid as a main component is preferable. These silicas can be used alone or in combination of two or more.
 シリカの比表面積は、特に制限されないが、窒素吸着比表面積(BET法)で通常10~400m/g、好ましくは20~300m/g、更に好ましくは120~190m/gの範囲である。シリカの比表面積が上記数値範囲内であれば、機械的特性等を向上させることができる。ここで、窒素吸着比表面積は、ASTM D3037-81に準じ、BET法で測定される値である。 The specific surface area of silica is not particularly limited, but the nitrogen adsorption specific surface area (BET method) is usually in the range of 10 to 400 m 2 /g, preferably 20 to 300 m 2 /g, more preferably 120 to 190 m 2 /g. . If the specific surface area of silica is within the above numerical range, mechanical properties and the like can be improved. Here, the nitrogen adsorption specific surface area is a value measured by the BET method according to ASTM D3037-81.
(その他の加工助剤)
 本発明のゴム組成物は、その機能を損なわない範囲で、加硫剤、加硫促進剤、加硫促進助剤、老化防止剤、軟化剤、酸化防止剤、シラニゼーション反応促進剤、着色剤、及びシリカ以外の無機材料等のその他の加工助剤を含んでいてもよい。
(Other processing aids)
The rubber composition of the present invention contains a vulcanizing agent, a vulcanization accelerator, an auxiliary vulcanization accelerator, an anti-aging agent, a softening agent, an antioxidant, a silanization reaction accelerator, and a coloring agent as long as the functions of the rubber composition are not impaired. agents, and other processing aids such as inorganic materials other than silica.
 加硫剤としては、粉末硫黄、沈降性硫黄、高分散性硫黄、表面処理硫黄、不溶性硫黄、ジモルフォリンジサルファイド、アルキルフェノールジサルファイド等の硫黄系加硫剤や酸化亜鉛、酸化マグネシウム、リサージ、p-キノンジオキシム、p-ジベンゾイルキノンジオキシム、テトラクロロ-p-ベンゾキノン、ポリ-p-ジニトロベンゼン、メチレンジアニリン、フェノール樹脂、臭素化アルキルフェノール樹脂、塩素化アルキルフェノール樹脂等が挙げられる。加硫剤の含有量は、ゴム成分100質量部に対して好ましくは0.1~10質量部であり、より好ましくは1~5質量部である。 Vulcanizing agents include sulfur-based vulcanizing agents such as powdered sulfur, precipitated sulfur, highly dispersible sulfur, surface-treated sulfur, insoluble sulfur, dimorpholine disulfide, alkylphenol disulfide, zinc oxide, magnesium oxide, litharge, p -quinonedioxime, p-dibenzoylquinonedioxime, tetrachloro-p-benzoquinone, poly-p-dinitrobenzene, methylenedianiline, phenol resin, brominated alkylphenol resin, chlorinated alkylphenol resin and the like. The content of the vulcanizing agent is preferably 0.1 to 10 parts by mass, more preferably 1 to 5 parts by mass, per 100 parts by mass of the rubber component.
 加硫促進剤としては、テトラメチルチウラムジスルフィド(TMTD)、テトラエチルチウラムジスルフィド(TETD)、テトラメチルチウラムモノスルフィド(TMTM)等のチウラム系、ヘキサメチレンテトラミン等のアルデヒド・アンモニア系、ジフェニルグアニジン(DPG)等のグアニジン系、2-メルカプトベンゾチアゾール(MBT)、ジベンゾチアジルジサルファイド(DM)等のチアゾール系、N-シクロヘキシル-2-ベンゾチアジルスルフェンアマイド(CBS)、N-t-ブチル-2-ベンゾチアジルスルフェンアマイド(BBS)等のスルフェンアミド系、ジメチルジチオカルバミン酸亜鉛(ZnPDC)等のジチオカルバミン酸塩系挙げられる。加硫促進剤の含有量は、ゴム成分100質量部に対して、好ましくは0.1~10質量部であり、より好ましくは1~5質量部である。 Vulcanization accelerators include thiuram-based agents such as tetramethylthiuram disulfide (TMTD), tetraethylthiuram disulfide (TETD), tetramethylthiuram monosulfide (TMTM), aldehyde/ammonia-based agents such as hexamethylenetetramine, and diphenylguanidine (DPG). guanidines such as 2-mercaptobenzothiazole (MBT), thiazoles such as dibenzothiazyldisulfide (DM), N-cyclohexyl-2-benzothiazylsulfenamide (CBS), Nt-butyl-2 -Sulfenamides such as benzothiazylsulfenamide (BBS), and dithiocarbamates such as zinc dimethyldithiocarbamate (ZnPDC). The content of the vulcanization accelerator is preferably 0.1 to 10 parts by mass, more preferably 1 to 5 parts by mass, per 100 parts by mass of the rubber component.
 加硫促進助剤としては、酢酸、プロピオン酸、酪酸、ステアリン酸、アクリル酸、マレイン酸等の脂肪酸、酢酸亜鉛、プロピオン酸亜鉛、酪酸亜鉛、ステアリン酸亜鉛、アクリル酸亜鉛、マレイン酸亜鉛等の脂肪酸亜鉛、およびそれらの塩である脂肪酸亜鉛塩、ならびに酸化亜鉛等が挙げられる。加硫促進助剤の含有量は、ゴム成分100質量部に対して、好ましくは0.1~10質量部であり、より好ましくは1~5質量部である。 Examples of vulcanization accelerators include fatty acids such as acetic acid, propionic acid, butyric acid, stearic acid, acrylic acid and maleic acid, zinc acetate, zinc propionate, zinc butyrate, zinc stearate, zinc acrylate, zinc maleate and the like. Fatty acid zincs, fatty acid zinc salts which are salts thereof, zinc oxide, and the like can be mentioned. The content of the vulcanization accelerator aid is preferably 0.1 to 10 parts by mass, more preferably 1 to 5 parts by mass, per 100 parts by mass of the rubber component.
 老化防止剤としては、例えば、脂肪族および芳香族のヒンダードアミン系、ヒンダードフェノール系等の化合物が挙げられる。老化防止剤の含有量は、ゴム成分100質量部に対して、好ましくは0.1~10質量部であり、より好ましくは1~5質量部である。 Examples of anti-aging agents include compounds such as aliphatic and aromatic hindered amines and hindered phenols. The content of the antioxidant is preferably 0.1 to 10 parts by mass, more preferably 1 to 5 parts by mass, per 100 parts by mass of the rubber component.
 酸化防止剤としては、例えば、ブチルヒドロキシトルエン(BHT)、ブチルヒドロキシアニソール(BHA)等が挙げられる。酸化防止剤の含有量は、ゴム成分100質量部に対して、好ましくは0.1~10質量部であり、より好ましくは1~5質量部である。 Examples of antioxidants include butylhydroxytoluene (BHT) and butylhydroxyanisole (BHA). The content of the antioxidant is preferably 0.1 to 10 parts by mass, more preferably 1 to 5 parts by mass, per 100 parts by mass of the rubber component.
 軟化剤としては、従来公知のものを用いることができ、特に制限されるものではないが、アロマオイル、パラフィンオイル、ナフテンオイル等の石油系軟化剤や、パーム油、ひまし油、綿実油、大豆油等の植物系軟化剤等が挙げられる。使用の際にはこれらの中から1種単独で又は2種以上を適宜選択使用すればよい。軟化剤を含有する場合には、取り扱い容易性の観点から、上述した軟化剤の中でも、25℃等の常温で液体であるもの、例えば、アロマオイル、パラフィンオイル、ナフテンオイル等の石油系軟化剤を含有することが好ましく、特にアロマオイルが好ましい。軟化剤の含有量は、ゴム成分100質量部に対して好ましくは10~200質量部であり、より好ましくは20~100質量部である。 As the softening agent, conventionally known ones can be used, and it is not particularly limited, but petroleum-based softening agents such as aroma oil, paraffin oil, naphthenic oil, palm oil, castor oil, cottonseed oil, soybean oil, etc. and the like. At the time of use, one of these may be used singly or two or more may be appropriately selected and used. When a softening agent is contained, from the viewpoint of ease of handling, among the above softening agents, those that are liquid at room temperature such as 25 ° C., for example, petroleum softening agents such as aroma oil, paraffin oil, naphthenic oil is preferably contained, and aromatic oils are particularly preferred. The softener content is preferably 10 to 200 parts by mass, more preferably 20 to 100 parts by mass, per 100 parts by mass of the rubber component.
 シラニゼーション反応促進剤としては、シリカとシランカップリング剤(上記のシラン化合物)のシラニゼーション反応を促進するものであればいかなるものであってもよい。シラニゼーション反応促進剤としては、尿素誘導体、チオ尿素等のカルバミド類化合物;グアニジン塩酸塩、チオシアン酸グアニジウム、グアニジン、ジフェニルグアニジン等のグアニジン類化合物等が挙げられる。これらのシラニゼーション反応促進剤は、いずれか1種類を使用してもよいし、2種類以上を併用してもよい。尿素誘導体としては、例えば尿素、メチル尿素、エチル尿素、プロピル尿素、ブチル尿素、ペンチル尿素、ヘキシル尿素、シクロヘキシル尿素、N,N’-ジメチル尿素、N,N’-ジエチル尿素、N,N,N’,N’-テトラメチル尿素、N,N-ジメチル-N’,N’-ジフェニル尿素、ジエチル尿素、ジプロピル尿素、ジブチル尿素、ジペンチル尿素、ジヘキシル尿素およびそれらの塩等があげられる。これらの中でも、尿素が優れる。 Any silanization reaction accelerator may be used as long as it promotes the silanization reaction between silica and the silane coupling agent (the above silane compound). Examples of the silanization reaction accelerator include carbamide compounds such as urea derivatives and thiourea; guanidine compounds such as guanidine hydrochloride, guanidinium thiocyanate, guanidine and diphenylguanidine. Any one type of these silanization reaction accelerators may be used, or two or more types may be used in combination. Urea derivatives include, for example, urea, methylurea, ethylurea, propylurea, butylurea, pentylurea, hexylurea, cyclohexylurea, N,N'-dimethylurea, N,N'-diethylurea, N,N,N ',N'-tetramethylurea, N,N-dimethyl-N',N'-diphenylurea, diethylurea, dipropylurea, dibutylurea, dipentylurea, dihexylurea and salts thereof. Among these, urea is excellent.
 着色剤としては、二酸化チタン、酸化亜鉛、群青、ベンガラ、リトポン、鉛、カドミウム、鉄、コバルト、アルミニウム、塩酸塩、硫酸塩等の無機顔料、アゾ顔料、銅フタロシアニン顔料等が挙げられる。着色剤の含有量は、ゴム成分100質量部に対して、好ましくは0.1~10質量部であり、より好ましくは1~5質量部である。 Examples of coloring agents include inorganic pigments such as titanium dioxide, zinc oxide, ultramarine, red iron oxide, lithopone, lead, cadmium, iron, cobalt, aluminum, hydrochlorides and sulfates, azo pigments, and copper phthalocyanine pigments. The content of the coloring agent is preferably 0.1 to 10 parts by mass, more preferably 1 to 5 parts by mass, per 100 parts by mass of the rubber component.
 その他の加工助剤は、公知のゴム用混練機、例えば、ロール、バンバリーミキサー、ニーダー等でゴム成分と混練し、任意の条件で加硫してゴム組成物として使用することができる。その他の加工助剤の添加量は、本発明の目的に反しない限り、従来の一般的な含有量とすることができる。 Other processing aids can be kneaded with the rubber component using a known rubber kneader, such as a roll, Banbury mixer, kneader, etc., vulcanized under arbitrary conditions, and used as a rubber composition. The amount of other processing aids to be added can be a conventional general content as long as it does not contradict the object of the present invention.
[ゴム組成物の製造方法]
 本発明のゴム組成物の製造方法は、少なくとも、上記のゴム成分と、上記のゴム用添加剤と、上記の不飽和二重結合含有シラン化合物とを混練する工程を含んでなる。ゴム組成物の製造方法は、好ましくは、さらに上記の加硫剤を混練する工程を含んでなるものであってもよい。より好ましくは、さらに該加硫剤と上記の加硫促進剤を混練する工程を含んでなるものであってもよい。
[Method for producing rubber composition]
The method for producing the rubber composition of the present invention comprises at least the step of kneading the above rubber component, the above rubber additive, and the above unsaturated double bond-containing silane compound. The method for producing the rubber composition may preferably further comprise the step of kneading the vulcanizing agent. More preferably, it may further comprise a step of kneading the vulcanizing agent and the vulcanization accelerator.
 また、ゴム組成物の製造方法は、ゴム組成物の機能を損なわない範囲で、上記のその他の加工助剤を適宜配合して、混練することができる。 In addition, in the method for producing the rubber composition, the other processing aids described above can be appropriately blended and kneaded within a range that does not impair the functions of the rubber composition.
 ゴム組成物の製造には、従来公知の混練装置を用いることができ、混練温度や時間、配合順序等を適宜選択することができる。 A conventionally known kneading device can be used for the production of the rubber composition, and the kneading temperature, time, mixing order, etc. can be appropriately selected.
[タイヤ製品]
 本発明のゴム組成物を用いて、従来公知の方法および当業者に広く知られた技術常識によりタイヤ製品を製造することができる。タイヤ製品としては、タイヤやその他の関連部材が挙げられる。例えば、ゴム組成物を押し出し、次いで、タイヤ成型機を用いて成形した後、加硫機を用いて加熱、加圧することにより架橋が形成され、タイヤを製造することができる。本発明のゴム組成物を用いて製造したタイヤは抗張積に優れる。
[Tire products]
Using the rubber composition of the present invention, tire products can be produced by conventionally known methods and common technical knowledge widely known to those skilled in the art. Tire products include tires and other related components. For example, the rubber composition is extruded, then molded using a tire molding machine, and then heated and pressurized using a vulcanizer to form crosslinks, whereby a tire can be manufactured. A tire manufactured using the rubber composition of the present invention is excellent in tensile product.
 タイヤの用途としては、特に制限はなく、例えば、乗用車用タイヤ、重荷重用タイヤ、モーターサイクル(自動二輪車)用タイヤ、スタッドレスタイヤ等が挙げられる。これらの中でも、乗用車用タイヤに好適に使用できる。 There are no particular restrictions on the use of tires, and examples include tires for passenger cars, tires for heavy loads, tires for motorcycles (motorcycles), and studless tires. Among these, it can be suitably used for tires for passenger cars.
 タイヤの形状、構造、大きさ及び材質としては、特に制限はなく、目的に応じて適宜選択することができる。また、本発明のゴム組成物はタイヤの各部に適用することができる。タイヤの適用部としては、特に制限はなく、タイヤのトレッド、カーカス、サイドウォール、インナーライナー、アンダートレッド、ベルト部など、目的に応じて適宜選択することができる。 The shape, structure, size and material of the tire are not particularly limited and can be selected as appropriate according to the purpose. Moreover, the rubber composition of the present invention can be applied to each part of a tire. The applicable portion of the tire is not particularly limited, and may be appropriately selected from the tread, carcass, sidewall, inner liner, undertread, belt portion, etc. of the tire according to the purpose.
[ゴム製品]
 本発明のゴム組成物を用いて、タイヤ製品以外のゴム製品を製造することもできる。タイヤ以外のゴム製品としては、自動車用ゴム部品(外装、内装、ウェザーストリップ類、ブーツ類、マウント類、シール類、シーラー類、ガスケット類)、ホース、ベルト、シート、防振ゴム、ローラー、ライニング、ゴム引布、シール材、手袋、防舷材、医療用ゴム(シリンジガスケット、チューブ、カテーテル)、ガスケット(家電用、建築用)、アスファルト改質剤、グリップ類、玩具、靴、サンダル、キーパッド、ギア、ペットボトルキャプライナー等が挙げられる。
[Rubber product]
The rubber composition of the present invention can also be used to produce rubber products other than tire products. Rubber products other than tires include automobile rubber parts (exterior, interior, weather strips, boots, mounts, seals, sealers, gaskets), hoses, belts, sheets, anti-vibration rubber, rollers, linings. , rubberized cloth, sealing materials, gloves, fenders, medical rubber (syringe gaskets, tubes, catheters), gaskets (for home appliances, construction), asphalt modifiers, grips, toys, shoes, sandals, keys Pads, gears, PET bottle cap liners and the like are included.
 以下に実施例および比較例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples.
[含硫黄炭化水素重合体の調製例]
(含硫黄炭化水素重合体Aの合成)
 300ml二口ナスフラスコに、石油樹脂A(Mw:810、Mw/Mn:1.74、軟化点85℃、ヨウ素価(JIS K0070準拠):185.0、DCPD含有不飽和炭化水素の重合体)90gを入れて、130℃に加熱し、溶融状態とした。次に、フラスコ内に硫黄8.7gを入れて、3時間撹拌した。反応完了後、反応物をアルミ皿に流し出し自然放冷した。
[Preparation example of sulfur-containing hydrocarbon polymer]
(Synthesis of sulfur-containing hydrocarbon polymer A)
Petroleum resin A (Mw: 810, Mw / Mn: 1.74, softening point 85 ° C., iodine value (JIS K0070 compliant): 185.0, DCPD-containing unsaturated hydrocarbon polymer) in a 300 ml two-necked eggplant flask 90 g was added and heated to 130° C. to form a molten state. Next, 8.7 g of sulfur was put into the flask and stirred for 3 hours. After completion of the reaction, the reactant was poured into an aluminum dish and allowed to cool naturally.
 その後、得られた反応物のH-NMR解析を行い、5.8ppm付近のノルボルネン骨格上の二重結合の消費を確認した。また、反応物をGPC解析した結果、Mw:1,220、Mw/Mn:2.10であった。元素分析の結果、硫黄量は8.9質量%であり、ノルボルネン骨格上の二重結合量当たり3.01個の硫黄分子の導入を確認した。 After that, 1 H-NMR analysis of the resulting reaction product was performed to confirm the consumption of the double bond on the norbornene skeleton at around 5.8 ppm. As a result of GPC analysis of the reaction product, Mw: 1,220 and Mw/Mn: 2.10. As a result of elemental analysis, the amount of sulfur was 8.9% by mass, confirming the introduction of 3.01 sulfur molecules per amount of double bonds on the norbornene skeleton.
(含硫黄炭化水素重合体Bの合成)
 上記の含硫黄炭化水素重合体Aの合成において、加熱温度を120℃に変更し、撹拌時間を1時間に変更した以外は同様にして、反応を行った。
(Synthesis of sulfur-containing hydrocarbon polymer B)
A reaction was carried out in the same manner as in the above synthesis of sulfur-containing hydrocarbon polymer A, except that the heating temperature was changed to 120° C. and the stirring time was changed to 1 hour.
 その後、得られた反応物のH-NMR解析を行い、5.8ppm付近のノルボルネン骨格上の二重結合の消費を確認した。また、反応物のGPC解析の結果、Mw:816、Mw/Mn:1.73であった。元素分析から硫黄量は9.0質量%であり、ノルボルネン骨格上の二重結合量当たり3.04個の硫黄分子の導入を確認した。 After that, 1 H-NMR analysis of the resulting reaction product was performed to confirm the consumption of the double bond on the norbornene skeleton at around 5.8 ppm. As a result of GPC analysis of the reaction product, Mw: 816 and Mw/Mn: 1.73. Elemental analysis revealed that the amount of sulfur was 9.0% by mass, and it was confirmed that 3.04 sulfur molecules were introduced per amount of double bonds on the norbornene skeleton.
(含硫黄炭化水素重合体Cの合成)
 上記の含硫黄炭化水素重合体Aの合成において、加熱温度を120℃に変更し、撹拌時間を6時間に変更した以外は同様にして、反応を行った。
(Synthesis of sulfur-containing hydrocarbon polymer C)
A reaction was carried out in the same manner as in the above synthesis of sulfur-containing hydrocarbon polymer A, except that the heating temperature was changed to 120° C. and the stirring time was changed to 6 hours.
 その後、得られた反応物のH-NMR解析を行い、5.8ppm付近のノルボルネン骨格上の二重結合の消費を確認した。また、反応物のGPC解析の結果、Mw:1,011、Mw/Mn:1.90であった。元素分析から硫黄量は8.9質量%であり、ノルボルネン骨格上の二重結合量当たり3.01個の硫黄分子の導入を確認した。 After that, 1 H-NMR analysis of the resulting reaction product was performed to confirm the consumption of the double bond on the norbornene skeleton at around 5.8 ppm. As a result of GPC analysis of the reactant, Mw: 1,011 and Mw/Mn: 1.90. Elemental analysis revealed a sulfur content of 8.9% by mass, confirming the introduction of 3.01 sulfur molecules per double bond content on the norbornene skeleton.
(含硫黄炭化水素重合体Dの合成)
 上記の含硫黄炭化水素重合体Aの合成において、撹拌時間を5時間に変更した以外は同様にして、反応を行った。
(Synthesis of sulfur-containing hydrocarbon polymer D)
A reaction was carried out in the same manner as in the above synthesis of the sulfur-containing hydrocarbon polymer A, except that the stirring time was changed to 5 hours.
 その後、得られた反応物のH-NMR解析を行い、5.8ppm付近のノルボルネン骨格上の二重結合の消費を確認した。また、反応物のGPC解析の結果、Mw:1,458、Mw/Mn:2.32であった。元素分析から硫黄量は8.9質量%であり、ノルボルネン骨格上の二重結合量当たり3.01個の硫黄分子の導入を確認した。 After that, 1 H-NMR analysis of the resulting reaction product was performed to confirm the consumption of the double bond on the norbornene skeleton at around 5.8 ppm. As a result of GPC analysis of the reaction product, Mw: 1,458 and Mw/Mn: 2.32. Elemental analysis revealed a sulfur content of 8.9% by mass, confirming the introduction of 3.01 sulfur molecules per double bond content on the norbornene skeleton.
(炭化水素重合体Eの合成)
 ナフサクラッカーから得られるC5留分およびC9留分を原料モノマーとして、酸触媒による重合工程、残触媒の中和工程、軽質分の除去工程を経て、芳香族分12%、軟化点90℃、Mw1300の石油樹脂を得た。
(Synthesis of hydrocarbon polymer E)
Using the C5 fraction and C9 fraction obtained from a naphtha cracker as raw material monomers, through the polymerization process with an acid catalyst, the neutralization process of the residual catalyst, and the process of removing light components, the aromatic content is 12%, the softening point is 90 ° C., and the Mw is 1300. of petroleum resin was obtained.
[不飽和二重結合含有シラン化合物の調製例]
(不飽和二重結合含有シラン化合物A(VNB-SSi)の合成)
 100mLの三口フラスコに玉栓、真空/ドライ窒素ラインを繋げた三方コック、セプタムを取り付けた後、スターラーバーを入れ、ドライヤーで加熱しながら、系内の脱気-窒素置換を10回繰り返し、常圧窒素雰囲気下とした。そのフラスコ内に、シリンジを用いて2-ビニルノルボルネン(VNB)27.5g(0.225mоl)を注入し、窒素雰囲気下でアゾビスイソブチロニトリル0.074g(0.45mmоl)を添加した後、窒素バブリングを20分行った。続いて、ガスタイトシリンジで10.7g(0.045mol)のメルカプトプロピルトリエトキシシランを吸引して定量ポンプに取り付け、3時間で全量が滴下されるよう設定した。最後に、シリコングリースで接続部を密閉し、ガスタイトシリンジの針先をセプタムを通じてフラスコに導入し、フラスコをオイルバスに浸漬し、バス温度を徐々に上昇させて、内温が50℃に到達した時点で定量ポンプを作動させ、メルカプトプロピルトリエトキシシランを滴下して反応させた。全量の滴下が完了してから2時間後にフラスコをオイルバスから取り出し、室温まで放置した。次に余剰のVNBを減圧留去した後、目的の無色透明の液状化合物(VNB-SSi)37.4gを得た。
[Preparation Example of Unsaturated Double Bond-Containing Silane Compound]
(Synthesis of unsaturated double bond-containing silane compound A (VNB-SSi))
After attaching a ball stopper, a three-way cock connected to a vacuum/dry nitrogen line, and a septum to a 100 mL three-necked flask, put a stirrer bar and repeat degassing and nitrogen replacement in the system 10 times while heating with a dryer. A pressurized nitrogen atmosphere was used. 27.5 g (0.225 mol) of 2-vinylnorbornene (VNB) was injected into the flask using a syringe, and 0.074 g (0.45 mmol) of azobisisobutyronitrile was added under a nitrogen atmosphere. , nitrogen bubbling was performed for 20 minutes. Subsequently, 10.7 g (0.045 mol) of mercaptopropyltriethoxysilane was sucked with a gas-tight syringe, attached to a metering pump, and set so that the entire amount would drop in 3 hours. Finally, the connection was sealed with silicon grease, the needle tip of the gas-tight syringe was introduced into the flask through the septum, the flask was immersed in an oil bath, and the bath temperature was gradually increased until the internal temperature reached 50°C. At that time, the metering pump was operated and mercaptopropyltriethoxysilane was added dropwise for reaction. Two hours after the dropping of the entire amount was completed, the flask was taken out from the oil bath and allowed to stand to room temperature. Excess VNB was then distilled off under reduced pressure to obtain 37.4 g of the target colorless and transparent liquid compound (VNB-SSi).
 得られたシラン化合物(VNB-SSi)は、H-NMRの測定および13C-NMRの測定によりシランの導入率は100%であり、ノルボルネン環の二重結合が消失していることを確認した。得られたシラン化合物(VNB-SSi)は、下記反応式で示したシラン化合物(1A、1B)の混合物である。
Figure JPOXMLDOC01-appb-C000036
The obtained silane compound (VNB-SSi) was confirmed to have a silane introduction rate of 100% by 1 H-NMR measurement and 13 C-NMR measurement, and the double bond of the norbornene ring had disappeared. bottom. The obtained silane compound (VNB-SSi) is a mixture of silane compounds (1A, 1B) represented by the following reaction formula.
Figure JPOXMLDOC01-appb-C000036
(不飽和二重結合含有シラン化合物B(VNB-2SSi)の合成)
 50mLの三口フラスコに玉栓、真空/ドライ窒素ラインを繋げた三方コック、セプタムを取り付けた後、スターラーバーを入れ、ドライヤーで加熱しながら、系内の脱気-窒素置換を10回繰り返し、常圧窒素雰囲気下とした。そのフラスコ内に、シリンジを用いて2-ビニルノルボルネン(VNB)5.2g(0.043mоl)、メルカプトプロピルトリエトキシシラン20.3g(0.085mol)を注入し、窒素雰囲気下でアゾビスイソブチロニトリル0.14g(0.85mmоl)を添加した後、窒素バブリングを20分行った。シリコングリースで接続部を密閉した後、フラスコをオイルバスに浸漬し、バス温度を50℃まで徐々に上昇させ、13時間反応させた後、さらに70℃に昇温して5時間反応させた。次にメルカプトプロピルトリエトキシシランについて、計2回の追加添加(1回目:0.10g(0.85 mmol)、2回目:0.26g(2.13 mmol))を行い、それぞれ70℃で5時間を反応させた後、室温まで放冷し、目的の無色~淡黄色澄明液体25.0gを得た。
(Synthesis of unsaturated double bond-containing silane compound B (VNB-2SSi))
After attaching a ball stopper, a three-way cock connected to a vacuum/dry nitrogen line, and a septum to a 50 mL three-necked flask, put a stirrer bar and repeat degassing and nitrogen replacement in the system 10 times while heating with a dryer. A pressurized nitrogen atmosphere was used. Using a syringe, 5.2 g (0.043 mol) of 2-vinylnorbornene (VNB) and 20.3 g (0.085 mol) of mercaptopropyltriethoxysilane were injected into the flask, and azobisisobutyl was added under a nitrogen atmosphere. After adding 0.14 g (0.85 mmol) of lonitrile, nitrogen bubbling was performed for 20 minutes. After the connection was sealed with silicone grease, the flask was immersed in an oil bath, the bath temperature was gradually increased to 50°C, and the mixture was reacted for 13 hours, then further heated to 70°C and reacted for 5 hours. Next, mercaptopropyltriethoxysilane was added twice (first time: 0.10 g (0.85 mmol), second time: 0.26 g (2.13 mmol)), each at 70°C for 5 hours. After reacting for a period of time, the mixture was allowed to cool to room temperature to obtain 25.0 g of the objective colorless to pale yellow clear liquid.
 得られた化合物は、H-NMRの測定によりシランの導入率は100%であり、ノルボルネン環およびビニル基の両方の二重結合が消失していることを確認した。得られたシラン化合物(VNB-2SSi)は、下記反応式で示したシラン化合物(2A、2B)の混合物である。
Figure JPOXMLDOC01-appb-C000037
It was confirmed by 1 H-NMR measurement that the obtained compound had a silane introduction rate of 100% and that the double bonds of both the norbornene ring and the vinyl group had disappeared. The obtained silane compound (VNB-2SSi) is a mixture of silane compounds (2A, 2B) represented by the following reaction formula.
Figure JPOXMLDOC01-appb-C000037
(不飽和二重結合含有シラン化合物C(ENB-SSi)の合成)
 100mLの2口フラスコに玉栓、および真空ラインを繋いだ3方コックを設置し、スターラーバーを入れ、真空ラインを用いて、ドライヤーで加熱しながら系内の脱気-窒素置換を10回繰り返し、常圧窒素雰囲気下とした。そのフラスコ内に、5-エチリデン-2-ノルボルネン(ENB)を6.73g(0.0551モル)を入れた後、4.33gのトルエン溶媒を、シリンジを用いて注入した。その後、スターラーを用いて撹拌し溶解させた。次に、シリンジを用いて、11.9g(0.0498モル)の3-メルカプトプロピルトリエトキシシランを注入した。最後にアゾビスイソブチロニトリルに0.123g(0.746ミリモル)を窒素を流しながら添加した後、窒素バブリングを20分間行った。フラスコをオイルバスに浸漬し、バス温度を70℃まで徐々に上昇させ反応させた。70℃になってから6時間後、フラスコをオイルバスから取り出し、室温(25℃)になるまで放置した。次に、トルエンおよび未反応の5-エチリデン-2-ノルボルネン(ENB)を減圧留去した後、17.1g(収率95%)の目的のシラン化合物(シラン変性5-エチリデン-2-ノルボルネン:ENB-SSi)を得た。ENB-SSiは、H-NMRおよび13C-NMRの測定により、シランの導入率は100%であり、ノルボルネン環の二重結合が消失していることを確認した。得られたシラン化合物(ENB-SSi)は、下記反応式で示した4種のシラン化合物の混合物である。
Figure JPOXMLDOC01-appb-C000038
(Synthesis of unsaturated double bond-containing silane compound C (ENB-SSi))
A ball stopper and a 3-way cock connected to a vacuum line are placed in a 100 mL two-necked flask, a stirrer bar is placed, and the vacuum line is used to heat the system with a dryer while degassing and nitrogen replacement are repeated 10 times. , under normal pressure nitrogen atmosphere. After 6.73 g (0.0551 mol) of 5-ethylidene-2-norbornene (ENB) was placed in the flask, 4.33 g of toluene solvent was injected using a syringe. After that, it was dissolved by stirring with a stirrer. A syringe was then used to inject 11.9 g (0.0498 mol) of 3-mercaptopropyltriethoxysilane. Finally, 0.123 g (0.746 mmol) was added to azobisisobutyronitrile while flowing nitrogen, and nitrogen bubbling was performed for 20 minutes. The flask was immersed in an oil bath, and the temperature of the bath was gradually raised to 70° C. for reaction. Six hours after reaching 70°C, the flask was removed from the oil bath and allowed to stand until it reached room temperature (25°C). Next, after toluene and unreacted 5-ethylidene-2-norbornene (ENB) were distilled off under reduced pressure, 17.1 g (yield 95%) of the desired silane compound (silane-modified 5-ethylidene-2-norbornene: ENB-SSi) was obtained. ENB-SSi confirmed by 1 H-NMR and 13 C-NMR measurements that the silane introduction rate was 100% and that the double bond of the norbornene ring had disappeared. The resulting silane compound (ENB-SSi) is a mixture of four silane compounds represented by the following reaction formulas.
Figure JPOXMLDOC01-appb-C000038
[実施例1]
 以下の各成分を、250mLニーダー(東洋精機社製ラボプラストミル)を用いて混練し、ゴム組成物を得た。実施した混練操作の詳細は以下の(i)~(iii)の通りである。
(i)ミキサー混練:130℃に加熱した密閉式加圧ニーダーへゴム成分を投入し、30rpmで1分間素練りを行った後、シリカ、酸化亜鉛、ステアリン酸、および老化防止剤の混合物の1/2量を測り取ったものと、シランカップリング剤の全量および含硫黄炭化水素重合体Aの全量を投入し、50rpmに回転数を上げて1分30秒間混練を行った。さらに残りの1/2量の前記シリカ、酸化亜鉛、ステアリン酸、および老化防止剤の混合物を加えて、5分30秒間混練を行い、放出した。
(ii)リミル:シリカの分散をよくするために、120℃に加熱した密閉式加圧ニーダーへ放出して十分温度が下がった混練物を、さらに50rpmで2分間混練を行った後、放出した。
(iii)ロール混練(加硫系添加):放出して十分温度が下がった後、2本ロールで上述の混練物に硫黄、加硫促進剤等を加え、混練し、ゴム組成物を得た。
・ゴム(SBR、旭化成社製、商品名:E581)   96.25質量部
 (ゴム成分70質量部、伸展油26.25質量部)
・ゴム(BR、日本ゼオン社製、商品名:1220 )    30質量部
・シリカAQ(東ソー社製、商品名:ニップシールAQ)   70質量部
・酸化亜鉛3号(東邦亜鉛社製、商品名:銀嶺R)       3質量部
・ステアリン酸(新日本理化製、商品名:ステアリン酸300) 1質量部
・老化防止剤(大内新興化学社製、商品名:ノクラック6C)  1質量部
・シランカップリング剤(ビニルトリエトキシシラン)   5.6質量部
・含硫黄炭化水素重合体A                 15質量部
・硫黄(細井化学社製、5%油処理硫黄)           2質量部
・加硫促進剤(大内新興化学社製、商品名:ノクセラーCZ)2.3質量部
・加硫促進剤(大内新興化学社製、商品名:ノクセラーD)   1質量部
[Example 1]
Each of the following components was kneaded using a 250 mL kneader (Laboplastomill manufactured by Toyo Seiki Co., Ltd.) to obtain a rubber composition. Details of the kneading operation performed are as follows (i) to (iii).
(i) Mixer kneading: Put the rubber component into a closed pressure kneader heated to 130°C, masticate at 30 rpm for 1 minute, and then mix 1 of silica, zinc oxide, stearic acid, and anti-aging agent. /2, the total amount of the silane coupling agent, and the total amount of the sulfur-containing hydrocarbon polymer A were added, and kneaded at 50 rpm for 1 minute and 30 seconds. The remaining 1/2 amount of the mixture of silica, zinc oxide, stearic acid, and anti-aging agent was added, kneaded for 5 minutes and 30 seconds, and discharged.
(ii) Remilling: In order to improve the dispersion of silica, the kneaded material was discharged to a closed pressure kneader heated to 120° C. and the temperature was sufficiently lowered. After further kneading at 50 rpm for 2 minutes, the mixture was discharged. .
(iii) Roll kneading (addition of vulcanization system): After discharging and the temperature was sufficiently lowered, sulfur, a vulcanization accelerator, etc. were added to the above kneaded product with two rolls and kneaded to obtain a rubber composition. .
・ Rubber (SBR, manufactured by Asahi Kasei Corporation, trade name: E581) 96.25 parts by mass (rubber component 70 parts by mass, extension oil 26.25 parts by mass)
・Rubber (BR, manufactured by Zeon Corporation, trade name: 1220) 30 parts by mass ・Silica AQ (manufactured by Tosoh Corporation, trade name: Nip Seal AQ) 70 parts by mass ・Zinc oxide No. 3 (manufactured by Toho Zinc Co., Ltd., trade name: Ginrei R) 3 parts by mass ・Stearic acid (manufactured by Shin Nippon Rika, trade name: stearic acid 300) 1 part by mass ・Antiaging agent (manufactured by Ouchi Shinko Kagaku Co., Ltd., trade name: Nocrac 6C) 1 part by mass ・Silane coupling agent (Vinyltriethoxysilane) 5.6 parts by mass Sulfur-containing hydrocarbon polymer A 15 parts by mass Sulfur (manufactured by Hosoi Chemical Co., Ltd., 5% oil treated sulfur) 2 parts by mass Vulcanization accelerator (Ouchi Shinko Kagaku Co., Ltd.) Product name: Noxcellar CZ) 2.3 parts by mass Vulcanization accelerator (manufactured by Ouchi Shinko Kagaku Co., Ltd., product name: Noxcellar D) 1 part by mass
[実施例2]
 シランカップリング剤としてビニルトリエトキシシランの代わりに3-アクリロキシプロピルトリエトキシシラン5.6質量部を添加した以外は実施例1と同様にして、ゴム組成物を得た。
[Example 2]
A rubber composition was obtained in the same manner as in Example 1, except that 5.6 parts by mass of 3-acryloxypropyltriethoxysilane was added as the silane coupling agent instead of vinyltriethoxysilane.
[比較例1]
 シランカップリング剤としてビニルトリエトキシシランの代わりにビス[3-(トリエトキシシリル)プロピル]テトラスルフィド(不飽和二重結合無し、エボニック社製、商品名:Si69)5.6質量部を添加し、含硫黄炭化水素重合体Aの代わりに炭化水素重合体E15質量部を添加し、硫黄の添加量を1.5質量部に変更した以外は実施例1と同様にして、ゴム組成物を得た。
[Comparative Example 1]
As a silane coupling agent, 5.6 parts by mass of bis[3-(triethoxysilyl)propyl]tetrasulfide (no unsaturated double bond, manufactured by Evonik, trade name: Si69) was added instead of vinyltriethoxysilane. A rubber composition was obtained in the same manner as in Example 1 except that 15 parts by mass of hydrocarbon polymer E was added instead of sulfur-containing hydrocarbon polymer A and the amount of sulfur added was changed to 1.5 parts by mass. rice field.
[比較例2]
 シランカップリング剤としてビニルトリエトキシシランの代わりにビス[3-(トリエトキシシリル)プロピル]テトラスルフィド(Si69)5.6質量部を添加し、硫黄の添加量を1質量部に変更した以外は実施例1と同様にして、ゴム組成物を得た。
[Comparative Example 2]
Except for adding 5.6 parts by mass of bis[3-(triethoxysilyl)propyl]tetrasulfide (Si69) instead of vinyltriethoxysilane as a silane coupling agent and changing the amount of sulfur added to 1 part by mass. A rubber composition was obtained in the same manner as in Example 1.
[実施例3]
 シランカップリング剤としてビニルトリエトキシシランの代わりに不飽和二重結合含有シラン化合物A(VNB-SSi)5.6質量部を添加した以外は実施例1と同様にして、ゴム組成物を得た。
[Example 3]
A rubber composition was obtained in the same manner as in Example 1, except that 5.6 parts by mass of an unsaturated double bond-containing silane compound A (VNB-SSi) was added as a silane coupling agent instead of vinyltriethoxysilane. .
[実施例4]
 シランカップリング剤としてビニルトリエトキシシランの代わりに不飽和二重結合含有シラン化合物C(ENB-SSi)5.6質量部を添加した以外は実施例1と同様にして、ゴム組成物を得た。
[Example 4]
A rubber composition was obtained in the same manner as in Example 1, except that 5.6 parts by mass of the unsaturated double bond-containing silane compound C (ENB-SSi) was added as the silane coupling agent instead of vinyltriethoxysilane. .
[比較例3]
 含硫黄炭化水素重合体Aの代わりに炭化水素重合体E15質量部を添加し、硫黄の添加量を3質量部に変更した以外は実施例3と同様にして、ゴム組成物を得た。
[Comparative Example 3]
A rubber composition was obtained in the same manner as in Example 3, except that 15 parts by mass of hydrocarbon polymer E was added instead of sulfur-containing hydrocarbon polymer A, and the amount of sulfur added was changed to 3 parts by mass.
[実施例5]
 含硫黄炭化水素重合体Aの添加量を1.5質量部に変更し、炭化水素重合体E13.5質量部を添加し、硫黄の添加量を3質量部に変更した以外は実施例3と同様にして、ゴム組成物を得た。
[Example 5]
Example 3 except that the amount of sulfur-containing hydrocarbon polymer A added was changed to 1.5 parts by mass, the amount of hydrocarbon polymer E added was 13.5 parts by mass, and the amount of sulfur added was changed to 3 parts by mass. A rubber composition was obtained in the same manner.
[実施例6]
 含硫黄炭化水素重合体Aの添加量を7.5質量部に変更し、炭化水素重合体E7.5質量部を添加し、硫黄の添加量を2.5質量部に変更した以外は実施例3と同様にして、ゴム組成物を得た。
[Example 6]
Examples except that the amount of sulfur-containing hydrocarbon polymer A added was changed to 7.5 parts by mass, the amount of hydrocarbon polymer E added was changed to 7.5 parts by mass, and the amount of sulfur added was changed to 2.5 parts by mass A rubber composition was obtained in the same manner as in 3.
[実施例7]
 シランカップリング剤として不飽和二重結合含有シラン化合物A(VNB-SSi)の内、0.8質量部分を不飽和二重結合含有シラン化合物B(VNB-2SSi)で置き換えた以外は実施例3と同様にして、ゴム組成物を得た。
[Example 7]
Example 3 except that 0.8 parts by mass of the unsaturated double bond-containing silane compound A (VNB-SSi) as the silane coupling agent was replaced with the unsaturated double bond-containing silane compound B (VNB-2SSi) A rubber composition was obtained in the same manner as.
[物性評価]
 実施例1~7および比較例1~3で得られたゴム組成物を用いて、下記の測定を行った。
[Evaluation of the physical properties]
The following measurements were performed using the rubber compositions obtained in Examples 1-7 and Comparative Examples 1-3.
(引張強度)
 各ゴム組成物42gを金型(150mm×150mm×1mm)に入れて、160℃、20MPaの条件で、40分間加熱加圧して、1mm厚のゴムシート(厚さ1mm、縦150mm、横150mm)を得た。各ゴムシートから3号ダンベル状の試験片を打ち抜き、引張速度500mm/分での引張試験をJIS K6251(2010年発行)に準拠して行い、100%モジュラス[MPa]を室温(25℃)にて測定した。なお、各実施例および各比較例では、各ゴムシートの架橋密度の指標である100%モジュラスの値を概ね近い値になるように調節した上で他の物性を確認した。
(tensile strength)
42 g of each rubber composition was placed in a mold (150 mm × 150 mm × 1 mm) and heated and pressed for 40 minutes at 160 ° C. and 20 MPa to form a 1 mm thick rubber sheet (thickness 1 mm, length 150 mm, width 150 mm). got A No. 3 dumbbell-shaped test piece was punched out from each rubber sheet, and a tensile test was performed at a tensile speed of 500 mm / min in accordance with JIS K6251 (published in 2010), and 100% modulus [MPa] at room temperature (25 ° C.) measured by In addition, in each example and each comparative example, the 100% modulus value, which is an index of the crosslink density of each rubber sheet, was adjusted so as to be approximately close to each other, and then other physical properties were confirmed.
(抗張積)
 上記の引張強度と同様にして、各ゴムシートから3号ダンベル状の試験片を打ち抜き、JIS K6251(2010年発行)に準拠して、温度20℃、引張速度500mm/分の条件で破断強度(MPa)および破断伸び(%)を測定した。これらの測定結果から、抗張積(=破断強度×破断伸び)を算出した。抗張積が高い方が、タイヤの耐カット性、耐チッピング性に優れることを示す。
(tensile product)
In the same manner as for the above tensile strength, a No. 3 dumbbell-shaped test piece was punched out from each rubber sheet, and the breaking strength ( MPa) and elongation at break (%) were measured. From these measurement results, the tensile product (=breaking strength×breaking elongation) was calculated. The higher the tensile product, the better the cut resistance and chipping resistance of the tire.
 以上の測定結果を表1に表す。なお、抗張積(指数(%))の結果について、実施例1~7および比較例2~3は比較例1における各値を100とした場合の相対値として記載した。 Table 1 shows the above measurement results. The tensile product (index (%)) results of Examples 1 to 7 and Comparative Examples 2 and 3 are shown as relative values when each value in Comparative Example 1 is set to 100.
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
 実施例1~7および比較例1~3の結果から、ゴム成分に対して含硫黄炭化水素重合体を含むゴム用添加剤と、不飽和二重結合含有シラン化合物とを添加して得られたゴム組成物を用いることで、得られたゴムシートは、抗張積が優れていた。よって、本発明のゴム組成物を用いることで、耐カット性、耐チッピング性に優れたタイヤを製造できることが判明した。 From the results of Examples 1 to 7 and Comparative Examples 1 to 3, rubber additives containing a sulfur-containing hydrocarbon polymer and an unsaturated double bond-containing silane compound were added to the rubber component. By using the rubber composition, the obtained rubber sheet was excellent in tensile product. Therefore, it was found that by using the rubber composition of the present invention, a tire excellent in cut resistance and chipping resistance can be produced.
(実施例8)
 含硫黄炭化水素重合体Aの代わりに含硫黄炭化水素重合体B15質量部を添加した以外は実施例3と同様にして、ゴム組成物を得た。
(Example 8)
A rubber composition was obtained in the same manner as in Example 3, except that 15 parts by mass of the sulfur-containing hydrocarbon polymer B was added instead of the sulfur-containing hydrocarbon polymer A.
(実施例9)
 含硫黄炭化水素重合体Aの代わりに含硫黄炭化水素重合体C15質量部を添加した以外は実施例3と同様にして、ゴム組成物を得た。
(Example 9)
A rubber composition was obtained in the same manner as in Example 3, except that 15 parts by mass of sulfur-containing hydrocarbon polymer C was added instead of sulfur-containing hydrocarbon polymer A.
(実施例10)
 含硫黄炭化水素重合体Aの代わりに含硫黄炭化水素重合体D15質量部を添加した以外は実施例3と同様にして、ゴム組成物を得た。
(Example 10)
A rubber composition was obtained in the same manner as in Example 3, except that 15 parts by mass of sulfur-containing hydrocarbon polymer D was added instead of sulfur-containing hydrocarbon polymer A.
[物性評価]
 実施例8~10で得られたゴム組成物を用いて、上記と同様にして引張強度および抗張積の測定を行った。測定結果を表2に表す。その結果、実施例8~10で得られたゴム組成物はいずれも、実施例3と同様に、耐カット性、耐チッピング性に優れたタイヤを製造できることが判明した。
[Evaluation of the physical properties]
Using the rubber compositions obtained in Examples 8 to 10, tensile strength and tensile product were measured in the same manner as described above. Table 2 shows the measurement results. As a result, it was found that all of the rubber compositions obtained in Examples 8 to 10, like Example 3, were capable of producing tires excellent in cut resistance and chipping resistance.
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040

Claims (12)

  1.  ゴム成分と、
     含硫黄炭化水素重合体を含むゴム用添加剤と、
     不飽和二重結合含有シラン化合物と、
    を含む、ゴム組成物。
    a rubber component;
    a rubber additive comprising a sulfur-containing hydrocarbon polymer;
    an unsaturated double bond-containing silane compound;
    A rubber composition comprising:
  2.  前記不飽和二重結合含有シラン化合物が、下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式中、
     R、RおよびRは、それぞれ独立して、酸素原子または窒素原子を含んでいてもよい炭化水素基、あるいは水素原子を表し、
     Lは、窒素、酸素および硫黄からなる群から選択される少なくとも1つのヘテロ原子を含んでいてもよい炭化水素基であり、
     aは、0か1の整数であり、
     bは、0か1の整数であり、
     cは、それぞれ独立して、0か1の整数であり、
     dは、それぞれ独立して、0か1の整数であり、
     eは、0~5の整数であり、
     R、R、RおよびRは、水素原子、メチル基または炭素数2~10のアルキル基を表し、または、R若しくはRと、R若しくはRとが、-(CH-で表される架橋構造を形成してもよく、
     fは、1~5の整数であり、
     R、R、R10およびR11は、水素原子、メチル基または炭素数2~10のアルキル基を表し、または、R若しくはRと、R10若しくはR11とが、-(CH-で表される架橋構造を形成してもよく、
     gは、1~5の整数であり、
     R16は、水素原子、メチル基または炭素数2~8のアルキル基であり、かつ、R17は、水素原子、メチル基または炭素数2~10のアルキル基であり、ここで、R12およびR13は、互いに結合して二重結合を形成し、かつ、R14、R15およびR18は水素原子、メチル基または炭素数2~10のアルキル基であり、若しくは、R14およびR15は、互いに結合して二重結合を形成し、かつ、R12、R13およびR18は水素原子、メチル基または炭素数2~10のアルキル基であり、
     または、
     R16およびR17は、互いに結合して4~9員の脂環式炭化水素を形成してもよく、ここで、R14およびR15は、互いに結合して二重結合を形成し、かつ、R12、R13およびR18は水素原子、メチル基または炭素数2~10のアルキル基である。]
    で表される化合物を含む、請求項1に記載のゴム組成物。
    The unsaturated double bond-containing silane compound has the following general formula (1):
    Figure JPOXMLDOC01-appb-C000001
    [In the formula,
    R 1 , R 2 and R 3 each independently represent a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom;
    L is a hydrocarbon group optionally containing at least one heteroatom selected from the group consisting of nitrogen, oxygen and sulfur;
    a is an integer of 0 or 1,
    b is an integer of 0 or 1,
    c is each independently an integer of 0 or 1,
    d is each independently an integer of 0 or 1,
    e is an integer from 0 to 5,
    R 4 , R 5 , R 6 and R 7 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 4 or R 5 and R 6 or R 7 are —(CH 2 ) may form a crosslinked structure represented by f- ,
    f is an integer from 1 to 5,
    R 8 , R 9 , R 10 and R 11 each represent a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 8 or R 9 and R 10 or R 11 are —(CH 2 ) may form a crosslinked structure represented by g- ,
    g is an integer from 1 to 5,
    R 16 is a hydrogen atom, a methyl group or an alkyl group having 2 to 8 carbon atoms, and R 17 is a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, wherein R 12 and R 13 are bonded to each other to form a double bond, and R 14 , R 15 and R 18 are a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms, or R 14 and R 15 are bonded to each other to form a double bond, and R 12 , R 13 and R 18 are a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms,
    or,
    R 16 and R 17 may be joined together to form a 4- to 9-membered alicyclic hydrocarbon, wherein R 14 and R 15 are joined together to form a double bond, and , R 12 , R 13 and R 18 are a hydrogen atom, a methyl group or an alkyl group having 2 to 10 carbon atoms. ]
    The rubber composition according to claim 1, comprising a compound represented by
  3.  前記不飽和二重結合含有シラン化合物が、ノルボルネン骨格を有する化合物を含む、請求項1に記載のゴム組成物。 The rubber composition according to claim 1, wherein the unsaturated double bond-containing silane compound contains a compound having a norbornene skeleton.
  4.  前記不飽和二重結合含有シラン化合物が、下記式:
    Figure JPOXMLDOC01-appb-C000002
    [上記各式中、R、RおよびRは、それぞれ独立して、酸素原子または窒素原子を含んでいてもよい炭化水素基、あるいは水素原子を表す。]
    で表される化合物の少なくとも1種を含む、請求項1に記載のゴム組成物。
    The unsaturated double bond-containing silane compound has the following formula:
    Figure JPOXMLDOC01-appb-C000002
    [In the above formulas, R 1 , R 2 and R 3 each independently represent a hydrocarbon group optionally containing an oxygen atom or a nitrogen atom, or a hydrogen atom. ]
    The rubber composition according to claim 1, comprising at least one compound represented by.
  5.  前記含硫黄炭化水素重合体が、不飽和炭化水素の重合体と硫黄との反応生成物であり、前記不飽和炭化水素が脂環式不飽和化合物を含む、請求項1に記載のゴム組成物。 The rubber composition according to claim 1, wherein the sulfur-containing hydrocarbon polymer is a reaction product of a polymer of unsaturated hydrocarbons and sulfur, and the unsaturated hydrocarbons contain an alicyclic unsaturated compound. .
  6.  前記含硫黄炭化水素重合体の重量平均分子量が500以上4000以下である、請求項1に記載のゴム組成物。 The rubber composition according to claim 1, wherein the sulfur-containing hydrocarbon polymer has a weight average molecular weight of 500 or more and 4000 or less.
  7.  前記ゴム成分が、芳香族ビニル-共役ジエン共重合体ゴムおよび共役ジエン(共)重合体ゴムからなる群から選択される少なくとも1種を含み、請求項1に記載のゴム組成物。 The rubber composition according to claim 1, wherein the rubber component contains at least one selected from the group consisting of aromatic vinyl-conjugated diene copolymer rubbers and conjugated diene (co)polymer rubbers.
  8.  前記ゴム成分が、スチレン-ブタジエンゴム、ブタジエンゴム、天然ゴム、およびイソプレンゴムからなる群から選択される少なくとも1種を含む、請求項1に記載のゴム組成物。 The rubber composition according to claim 1, wherein the rubber component contains at least one selected from the group consisting of styrene-butadiene rubber, butadiene rubber, natural rubber, and isoprene rubber.
  9.  充填剤をさらに含む、請求項1に記載のゴム組成物。 The rubber composition according to claim 1, further comprising a filler.
  10.  前記充填剤が、シリカおよびカーボンブラックからなる群から選択される少なくとも1種を含む、請求項9に記載のゴム組成物。 The rubber composition according to claim 9, wherein the filler contains at least one selected from the group consisting of silica and carbon black.
  11.  タイヤ製品用である、請求項1~10のいずれか一項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 10, which is used for tire products.
  12.  請求項1~10のいずれか一項に記載のゴム組成物を用いて製造されたタイヤ製品。 A tire product manufactured using the rubber composition according to any one of claims 1 to 10.
PCT/JP2022/031005 2021-08-30 2022-08-17 Rubber composition and tire product WO2023032663A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-140488 2021-08-30
JP2021140488 2021-08-30

Publications (1)

Publication Number Publication Date
WO2023032663A1 true WO2023032663A1 (en) 2023-03-09

Family

ID=85411106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031005 WO2023032663A1 (en) 2021-08-30 2022-08-17 Rubber composition and tire product

Country Status (2)

Country Link
TW (1) TW202319471A (en)
WO (1) WO2023032663A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116554560A (en) * 2023-06-27 2023-08-08 河北世派轮胎有限公司 Inflation-free tire and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020132822A (en) * 2019-02-25 2020-08-31 Eneos株式会社 Rubber composition containing silane compound and petroleum resin
WO2021033747A1 (en) * 2019-08-22 2021-02-25 Eneos株式会社 Sulfur-containing unsaturated hydrocarbon polymer, method for manufacturing same, additive for rubber, rubber composition, and tire
JP2021054992A (en) * 2019-09-30 2021-04-08 Eneos株式会社 Rubber composition for tires, and pneumatic tire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020132822A (en) * 2019-02-25 2020-08-31 Eneos株式会社 Rubber composition containing silane compound and petroleum resin
WO2021033747A1 (en) * 2019-08-22 2021-02-25 Eneos株式会社 Sulfur-containing unsaturated hydrocarbon polymer, method for manufacturing same, additive for rubber, rubber composition, and tire
JP2021054992A (en) * 2019-09-30 2021-04-08 Eneos株式会社 Rubber composition for tires, and pneumatic tire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116554560A (en) * 2023-06-27 2023-08-08 河北世派轮胎有限公司 Inflation-free tire and preparation method thereof

Also Published As

Publication number Publication date
TW202319471A (en) 2023-05-16

Similar Documents

Publication Publication Date Title
JP7346158B2 (en) Sulfur-containing unsaturated hydrocarbon polymer and its production method, rubber additive, rubber composition, and tire
TWI824674B (en) Rubber composition, manufacturing method and tire product
JP2020513060A (en) Functionalized resin with polar linker
KR102332756B1 (en) Silane compounds, rubber compositions and tires
CN113924334A (en) Silane coupling agent composition comprising silane compound and protein denaturing agent, and rubber composition comprising same
WO2023032663A1 (en) Rubber composition and tire product
JP2020132822A (en) Rubber composition containing silane compound and petroleum resin
KR20220069805A (en) A resin composition, method of preparing the same, and rubber composition including the same
JP2021054992A (en) Rubber composition for tires, and pneumatic tire
WO2022255360A1 (en) Silane coupling agent composition and rubber composition comprising same
WO2024038877A1 (en) Rubber composition, method for producing same, and tire product
EP4169735A1 (en) Silane coupling agent composition and rubber composition containing same
WO2024038876A1 (en) Rubber composition, production method therefor, and tire product
WO2024038878A1 (en) Rubber composition, method for producing same, and tire product
WO2024038880A1 (en) Rubber composition, production method therefor, and tire product
WO2024071407A1 (en) Silane compound and composition containing same
JP2021054998A (en) Rubber composition for tires, and pneumatic tire
WO2022124147A1 (en) Rubber composition, method for producing rubber composition, and tire
JP2021055000A (en) Rubber composition for tires, and pneumatic tire
WO2022249765A1 (en) Rubber composition for tires, tread rubber, and tire
WO2022249764A1 (en) Rubber composition for tire, tread rubber, and tire
KR20230012580A (en) Silane coupling agent composition and rubber composition containing the same
WO2022255314A1 (en) Petroleum resin, additive for rubber, uncrosslinked rubber composition, and crosslinked rubber
WO2022249637A1 (en) Rubber composition for tire, tread rubber, and tire
WO2023112364A1 (en) Tire rubber composition, tread rubber, and tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864248

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023545423

Country of ref document: JP