WO2023032606A1 - Resin composition, molded article, and method for producing resin composition - Google Patents

Resin composition, molded article, and method for producing resin composition Download PDF

Info

Publication number
WO2023032606A1
WO2023032606A1 PCT/JP2022/030285 JP2022030285W WO2023032606A1 WO 2023032606 A1 WO2023032606 A1 WO 2023032606A1 JP 2022030285 W JP2022030285 W JP 2022030285W WO 2023032606 A1 WO2023032606 A1 WO 2023032606A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
mass
parts
olefin polymer
less
Prior art date
Application number
PCT/JP2022/030285
Other languages
French (fr)
Japanese (ja)
Inventor
崇 石井
麻希子 大島
Original Assignee
三菱エンジニアリングプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱エンジニアリングプラスチックス株式会社 filed Critical 三菱エンジニアリングプラスチックス株式会社
Priority to CN202280058012.2A priority Critical patent/CN117897447A/en
Publication of WO2023032606A1 publication Critical patent/WO2023032606A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/215Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase at least one additive being also premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L59/00Compositions of polyacetals; Compositions of derivatives of polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • C08L91/06Waxes

Definitions

  • the present invention relates to a resin composition, a molded product, and a method for producing a resin composition.
  • Polyacetal resin has well-balanced mechanical properties, and is excellent in friction/wear resistance, chemical resistance, heat resistance, electrical properties, etc., so it is widely used in the fields of automobiles, electrical and electronic products, etc. .
  • a sliding member is known as one of the forms of utilization of polyacetal resin.
  • Patent document 1 and patent document 2 are mentioned as an example using polyacetal resin as a sliding member.
  • Patent Documents 1 and 2 are materials having excellent slidability, but in Patent Documents 1 and 2, the resin composition is produced after masterbatching a silicone compound I needed it. Therefore, the present inventors have considered using silicone oil as a silicone compound that does not require masterbatching. However, even if the polyacetal resin is blended with silicone oil, the slidability is not necessarily sufficient, and the moldability is poor. That is, when a resin composition is molded by, for example, injection molding, the molten resin composition is weighed and then injected into a mold for molding, which takes a very long time.
  • An object of the present invention is to solve such problems, and to provide a resin composition having excellent slidability of the resulting molded product and excellent moldability, a molded product, and a method for producing the resin composition. intended to provide
  • the present inventors have conducted studies and found that by blending a polyacetal resin with a silicone oil having a predetermined kinematic viscosity, an olefin polymer, and a hydrocarbon wax in a predetermined ratio, the above problems can be solved. found a solution. Specifically, the above problems have been solved by the following means.
  • ⁇ 3> The resin composition according to ⁇ 1> or ⁇ 2>, wherein the (B) olefin polymer is selected from the group consisting of polyethylene, polypropylene, ethylene-propylene copolymers, and ethylene-butene copolymers. thing.
  • ⁇ 4> The resin composition according to ⁇ 1> or ⁇ 2>, wherein the (B) olefin polymer comprises an ethylene-butene copolymer.
  • ⁇ 5> The resin composition according to any one of ⁇ 1> to ⁇ 4>, wherein the (B) olefin polymer has a Vicat softening temperature according to JIS K7206 of 30° C. or higher.
  • ⁇ 6> Any one of ⁇ 1> to ⁇ 5>, wherein the content of the (B) olefin polymer is 0.1 to 3.0 parts by mass with respect to 100 parts by mass of the (A) polyacetal resin
  • ⁇ 7> Any one of ⁇ 1> to ⁇ 6>, wherein the content of the (C) silicone oil is 0.5 to 5.0 parts by mass with respect to 100 parts by mass of the (A) polyacetal resin.
  • the resin composition according to . ⁇ 8> Any one of ⁇ 1> to ⁇ 7>, wherein (B)/(C), which is the mass ratio of (B) the olefin polymer and (C) the silicone oil, is 0.80 or less. Resin composition.
  • ⁇ 13> A molded article formed from the resin composition according to any one of ⁇ 1> to ⁇ 11>.
  • ⁇ 14> A molded article formed from the pellets according to ⁇ 12>.
  • ⁇ 15> The molded article according to ⁇ 13> or ⁇ 14>, which is a sliding member.
  • ⁇ 16> A method for producing a resin composition according to any one of ⁇ 1> to ⁇ 11>, (A) a polyacetal resin, (B) an olefin polymer, and (D) a hydrocarbon wax are introduced from the supply port of an extruder and kneaded, and then from a liquid supply pump, (C) the kinematic viscosity at 25 ° C.
  • a method for producing a resin composition comprising adding a silicone oil of 1,000 to 55,000 cSt and further kneading.
  • the present invention it has become possible to provide a resin composition, a molded product, and a method for producing a resin composition, in which the obtained molded product has excellent slidability and excellent moldability.
  • FIG. 1 is a schematic illustration of an example of an extruder used in the method for producing a resin composition of the present embodiment.
  • the resin composition of the present embodiment comprises (A) 100 parts by mass of polyacetal resin, (B) 0.1 to 30.0 parts by mass of olefin polymer, and (C) kinematic viscosity at 25 ° C. of 1,000 to 0.1 to 30.0 parts by mass of a silicone oil of 55,000 cSt, and (D) 0.1 to 15.0 parts by mass of a hydrocarbon wax, wherein the (B) olefin polymer and (C) the silicone oil (B)/(C), which is the mass ratio of , is 2.00 or less.
  • the resulting molded article has excellent slidability, and a resin composition having excellent moldability can be obtained.
  • the resin composition of this embodiment contains a polyacetal resin.
  • a polyacetal resin By containing the polyacetal resin, a molded article having excellent slidability and mechanical strength can be obtained.
  • the polyacetal resin used in the present embodiment is a polymer having an acetal structure -(-O-CRH-) n - (wherein R represents a hydrogen atom or an organic group) in a repeating structure, and usually R is It has an oxymethylene group (--CH 2 O--), which is a hydrogen atom, as a main structural unit.
  • the polyacetal resin used in the present embodiment includes, in addition to the acetal homopolymer consisting only of this repeating structure, copolymers (including block copolymers) and terpolymers containing one or more structural units other than the oxymethylene group, and further. It may have not only a linear structure but also a branched or crosslinked structure.
  • Examples of structural units other than the oxymethylene group include an oxyethylene group ( --CH.sub.2CH.sub.2O-- ), an oxypropylene group ( --CH.sub.2CH.sub.2CH.sub.2O-- ), and an oxybutylene group ( --CH.sub.2CH.sub.2CH . 2 CH 2 O—) and other optionally branched oxyalkylene groups having 2 to 10 carbon atoms, among which optionally branched oxyalkylene groups having 2 to 4 carbon atoms are preferred; An oxyethylene group is particularly preferred.
  • the content of such oxyalkylene structural units other than oxymethylene groups is preferably 0.1 mol % or more and 20 mol % or less, and 0.1 mol % or more and 15 mol % or less in the polyacetal resin. is more preferable.
  • the method for producing the polyacetal resin used in this embodiment is arbitrary, and it may be produced by any conventionally known method.
  • an oxymethylene group such as a trimer (trioxane) or a tetramer (tetraoxane) of formaldehyde and a cyclic oligomer containing an oxyalkylene group having 2 to 4 carbon atoms such as ethylene oxide, 1,3-dioxolane, 1,3,6-trioxocane, 1,3-dioxepane, etc.
  • an oxymethylene group such as a trimer (trioxane) or a tetramer (tetraoxane) of formaldehyde
  • a cyclic oligomer containing an oxyalkylene group having 2 to 4 carbon atoms such as ethylene oxide, 1,3-dioxolane, 1,3,6-trioxocane, 1,3-dioxepane, etc.
  • the polyacetal resin used in the present invention is preferably a copolymer of a cyclic oligomer such as trioxane or tetraoxane and ethylene oxide and/or 1,3-dioxolane, particularly a copolymer of trioxane and 1,3-dioxolane.
  • a copolymer is preferred.
  • the total content of ethylene oxide and/or 1,3-dioxolane is preferably 1 to 20% by mass with respect to 80 to 99% by mass of the cyclic oligomer.
  • the melt flow rate (MFR) of the polyacetal resin is arbitrary, but according to ASTM-D1238, the value measured at 190 ° C.
  • the MFR is usually 150 g/10 minutes or less, preferably 100 g/10 minutes or less, more preferably 70 g/10 minutes or less, and even more preferably 60 g/10 minutes or less. , 50 g/10 minutes or less.
  • the MFR of the mixture preferably satisfies the above range.
  • the resin composition of the present embodiment preferably contains a polyacetal resin in a proportion of 80% by mass or more of the resin composition, more preferably 85% by mass or more, and more preferably 90% by mass or more. is more preferred.
  • the upper limit is the amount in which the total amount other than (B) the olefin polymer, (C) the silicone oil, and (D) the hydrocarbon wax becomes a polyacetal resin.
  • the resin composition of the present embodiment may contain only one type of polyacetal resin, or may contain two or more types. When two or more kinds are included, the total amount is preferably within the above range.
  • the resin composition of the present embodiment contains (B) the olefin polymer in a proportion of 0.1 to 30.0 parts by mass with respect to 100 parts by mass of the (A) polyacetal resin.
  • a molded article having excellent slidability can be obtained.
  • a resin composition having excellent moldability can be obtained.
  • a known olefin polymer can be used as the olefin polymer used in the present embodiment.
  • the olefin polymer is preferably selected from the group consisting of polyethylene, polypropylene, ethylene-propylene copolymer and ethylene-butene copolymer, and more preferably contains ethylene-butene copolymer.
  • These olefin polymers are intended to include acid-modified polyolefin polymers having the polyolefin skeleton. That is, for example, polyethylene is intended to include both acid-unmodified polyethylene and acid-modified polyethylene.
  • the olefin polymer in the present embodiment preferably has a number average molecular weight of 1 ⁇ 10 4 or more, more preferably 2 ⁇ 10 4 or more, and preferably 50 ⁇ 10 4 or less.
  • melt flow rate measured at 190 ° C.
  • a load of 2.16 kg is preferably 70 g / 10 minutes or less, more preferably 50 g / 10 minutes or less, and 25 g / 10 minutes or less, more preferably 15 g/10 minutes or less.
  • the lower limit of the melt flow rate (MFR) can be, for example, 0.1 g/10 minutes or more. When the content is at least the above lower limit, uniform dispersion can be achieved by shearing during kneading, and deterioration of mechanical properties can be effectively suppressed.
  • the resin composition of the present embodiment contains two or more polyolefin polymers, the MFR of the mixture is used.
  • the olefin polymer in this embodiment preferably has a Vicat softening temperature of 30°C or higher according to JIS K7206.
  • the Vicat softening temperature is a measure of the temperature at which a thermoplastic begins to soften rapidly, and is an indicator of short-term heat resistance. In this embodiment, by using such an olefin polymer, excellent heat resistance during sliding can be obtained.
  • the Vicat softening temperature is the Vicat softening temperature at a load of 50 N and a heating rate of 50° C./hour.
  • the upper limit of the Vicat softening temperature is not particularly defined, it is usually lower than the melting point of the polyacetal resin, preferably 150° C. or lower.
  • the olefin polymer in the present embodiment may be an acid-modified polyolefin polymer as described above, an olefin polymer modified with at least one of an unsaturated carboxylic acid and its anhydride, or an unsaturated It may be an olefin polymer modified with at least one carboxylic acid anhydride (preferably maleic anhydride).
  • unsaturated carboxylic acids include maleic acid, acrylic acid, methacrylic acid, maleic acid, citraconic acid, itaconic acid, tetrahydrophthalic acid, nadic acid, methylnadic acid, and allylsuccinic acid, with maleic acid being preferred.
  • Details of the modified olefin polymer modified with at least one of an unsaturated carboxylic acid and its anhydride can be referred to paragraph 0005 of JP-A-10-130458, the contents of which are incorporated herein.
  • the acid value of the acid-modified olefin polymer may be 0 mgKOH/g, may be 2.0 mgKOH/g or more, or may be 5.0 mgKOH/g or more.
  • the acid value of the acid-modified olefin polymer is, for example, 70.0 mgKOH/g or less, may be 30.0 mgKOH/g or less, or may be 20.0 mgKOH/g or less. By making it equal to or less than the above upper limit, there is a tendency that the tensile fracture nominal strain is further improved.
  • the acid value here is the sum of the values obtained by multiplying the acid value of each olefin polymer by the blending amount (mass) fraction of each olefin polymer.
  • the content of the olefin polymer in the resin composition of the present embodiment is 0.1 parts by mass or more, preferably 0.4 parts by mass or more, and 0.8 parts by mass with respect to 100 parts by mass of the polyacetal resin. It is more preferable to be above. When the content is at least the above lower limit, the resulting molded article tends to be more excellent in slidability and moldability. Further, the content of the olefin polymer in the resin composition of the present embodiment is 30.0 parts by mass or less, preferably 20.0 parts by mass or less with respect to 100 parts by mass of the polyacetal resin, and 10.0 parts by mass or less.
  • the resin composition of the present embodiment may contain only one type of olefin polymer, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
  • the resin composition of the present embodiment comprises (A) 100 parts by mass of polyacetal resin and (C) 0.1 to 30.0 parts by mass of silicone oil having a kinematic viscosity at 25° C. of 1,000 to 55,000 cSt. included in the ratio of By including silicone oil, a molded article having excellent slidability can be obtained. Furthermore, unlike conventional slidability improvers, it can be compounded with polyacetal resin or the like without being masterbatched, facilitating the production of resin compositions.
  • the silicone oil used in the present embodiment has a kinematic viscosity at 25° C. of 1,000 cSt or more, preferably 2,000 cSt or more, more preferably 4,000 cSt or more, and 6,000 cSt or more. is more preferably 8,000 cSt or more.
  • the kinematic viscosity of the silicone oil at 25° C. is also 55,000 cSt or less, preferably 45,000 cSt or less, more preferably 35,000 cSt or less, and further preferably 25,000 cSt or less.
  • the mixing ratio is determined as follows so as to achieve the desired kinematic viscosity.
  • the kinematic viscosity is plotted on a logarithmic scale on the vertical axis and the percentage of use is plotted on the horizontal axis.
  • a vertical line is drawn from the intersection of the horizontal line passing through the memory of the desired kinematic viscosity and the preceding straight line, and the usage amounts of the upper and lower viscosities are read to determine the amount to be added.
  • silicone oil can be used as the silicone oil used in this embodiment.
  • some or all of the methyl groups in polydimethylsiloxane are hydrogen, alkyl groups having 2 or more carbon atoms, phenyl groups, halogenated phenyl groups, and esters. substituted silicone oils substituted with groups, halogenated ester groups such as fluorine, polyether groups, etc.; modified silicone oils having epoxy groups, amino groups, alcoholic hydroxyl groups, polyether groups, etc.
  • dimethyl Alkylaralkylsilicone oils containing siloxane units and phenylmethylsiloxane units Alkylaralkylpolyether-modified silicones containing siloxane units and phenylmethylsiloxane units having a structure in which a portion of the methyl groups of the dimethylsiloxane units are substituted with polyether oils; and the like.
  • Preferred among these are polymers of dimethylsiloxane and copolymers of dimethylsiloxane and methylphenylsiloxane.
  • the content of (C) silicone oil in the resin composition of the present embodiment is 0.1 parts by mass or more, preferably 0.5 parts by mass or more, relative to 100 parts by mass of (A) polyacetal resin. It is more preferably 1.0 parts by mass or more, still more preferably 1.5 parts by mass or more, and even more preferably 2.1 parts by mass or more. By making it more than the said lower limit, there exists a tendency for slidability to improve more.
  • the content of (C) silicone oil in the resin composition of the present embodiment is 30.0 parts by mass or less and 20.0 parts by mass or less with respect to 100 parts by mass of (A) polyacetal resin.
  • the resin composition of the present embodiment may contain only one type of (C) silicone oil, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
  • the resin composition of the present embodiment preferably does not substantially contain silicone oils other than those having a kinematic viscosity of 1,000 to 55,000 cSt at 25°C.
  • “Substantially free” means that the content of the silicone oil other than the silicone oil having a kinematic viscosity at 25°C of 1,000 to 55,000 cSt is a silicone having a kinematic viscosity at 25°C of 1,000 to 55,000 cSt. It is 5% by mass or less of the oil content, preferably 1% by mass or less.
  • (B)/(C) which is the mass ratio of (B) the olefin polymer and (C) the silicone oil, is 2.00 or less. With such a configuration, slidability can be improved.
  • the (B)/(C) is preferably 1.50 or less, more preferably 1.00 or less, further preferably 0.80 or less, and 0.60 or less. It is more preferably 0.50 or less, even more preferably 0.45 or less.
  • the lower limit of (B)/(C) is preferably 0.10 or more, more preferably 0.15 or more.
  • the resin composition of the present embodiment contains 0.1 to 15.0 parts by mass of (D) hydrocarbon wax with respect to 100 parts by mass of (A) polyacetal resin. Containing the hydrocarbon wax tends to further improve the slidability of the obtained molded article.
  • hydrocarbon waxes if they can also correspond to the above olefin polymers, those having a Vicat softening temperature of 30° C. or higher are considered to correspond to the above olefin polymers. Those whose softening temperature cannot be measured shall be regarded as hydrocarbon waxes. Examples of those for which the Vicat softening temperature cannot be measured include those for which a test piece for measuring the Vicat softening temperature cannot be molded.
  • hydrocarbon waxes cannot be made into test specimens for measuring the Vicat softening temperature.
  • a hydrocarbon wax is a wax containing a hydrocarbon as a main component, and may have a functional group such as an acid group.
  • the hydrocarbon wax used in the present embodiment preferably has a molecular weight of 1,000 or more, more preferably 1,500 or more, even more preferably 2,000 or more, and may be 2,500 or more as determined by the viscosity method.
  • the upper limit of the molecular weight determined by the viscosity method is preferably 7,000 or less, more preferably 6,000 or less, and may be 5,500 or less.
  • Hydrocarbon waxes include paraffin waxes, polyolefin waxes, and Fischer-Tropsch waxes. In the present embodiment, polyolefin wax is preferred, and polyethylene wax is more preferred. Examples of hydrocarbon waxes include FT-100 and FT-0070 sold by Nippon Seiro, and Paraflint manufactured by SASOL. In particular, examples of polyolefin waxes include Hiwax (manufactured by Mitsui Chemicals), Sanwax (manufactured by Sanyo Chemical Industries), Epolen (manufactured by Eastman Chemical), and Allied Wax (manufactured by Allied Signals).
  • the polyethylene wax used in this embodiment is preferably modified polyethylene wax obtained by acid-modifying low-molecular-weight polyethylene or low-molecular-weight polyethylene copolymer.
  • the acid modification treatment may be carried out by treating the wax with an inorganic acid, an organic acid, an unsaturated carboxylic acid, or the like in the presence of peroxide or oxygen, if necessary, to introduce a polar group such as a carboxyl group or a sulfonic acid group.
  • the polyethylene wax used in the present embodiment preferably has an acid value of 5 mgKOH/g or more, more preferably 10 mgKOH/g or more, and may be 26 mgKOH/g or more.
  • the upper limit of the acid value of the polyethylene wax is preferably 60 mgKOH/g or less, more preferably 50 mgKOH/g or less, even more preferably 40 mgKOH/g or less, and 37 mgKOH/g or less. More preferably, it may be 35 mgKOH/g or less, or 30 mgKOH/g or less. By setting it as such a range, high frictional characteristics and wear resistance can be achieved.
  • the acid value is measured according to the description in the examples below.
  • the content of the (D) hydrocarbon wax in the resin composition of the present embodiment is 0.1 parts by mass or more, preferably 0.5 parts by mass or more, relative to 100 parts by mass of the (A) polyacetal resin. , more preferably 0.8 parts by mass or more, more preferably 1.0 parts by mass or more, still more preferably 1.2 parts by mass or more, and preferably 1.3 parts by mass or more Even more preferable. By making it more than the said lower limit, there exists a tendency for slidability to improve more.
  • the content of the (D) hydrocarbon wax is 15.0 parts by mass or less, preferably 10.0 parts by mass or less, and 5.0 parts by mass with respect to 100 parts by mass of the (A) polyacetal resin.
  • the resin composition of the present embodiment may contain only one type of (D) hydrocarbon wax, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
  • (D)/(C) which is the mass ratio of (D) hydrocarbon wax and (C) silicone oil, is preferably 1.0 or less, and is 0.9 or less. is more preferably 0.8 or less, even more preferably 0.7 or less, and even more preferably 0.65 or less. It is practical that the lower limit of (D)/(C) is 0.1 or more.
  • additives and fillers may be added to the resin composition of the present embodiment as long as the objects of the present invention are not impaired.
  • Specific examples of additives and fillers that can be used in the present embodiment include known thermoplastic polymers, antistatic agents, ultraviolet absorbers, light stabilizers, carbon fibers, glass fibers, glass flakes, and talc. , mica, calcium carbonate, potassium titanate whiskers, and the like.
  • the total content of these components is preferably 10 mass % or less of the resin composition.
  • the resin composition of the present embodiment comprises (A) a polyacetal resin, (B) an olefin polymer, (C) a silicone oil having a kinematic viscosity at 25° C. of 1,000 to 55,000 cSt, and (D) a hydrocarbon wax.
  • the total content of the resin composition is preferably 90% by mass or more, more preferably 95% by mass or more, and may be 99% by mass or more.
  • the limit PV value of the resin composition of the present embodiment is preferably 10.0 or more, more preferably 11.0 or more.
  • a practical upper limit of the limit PV value is, for example, 25.0 or less.
  • the limiting PV values were obtained by forming a cylindrical thrust test piece, and applying a surface pressure of 0.15, 0.25, 0.49, 0.74, 0.98, 1.0 in an atmosphere of 23° C. and 50% humidity. It is a value obtained by multiplying the surface pressure immediately before the surface pressure at which the test piece melted or abnormally worn and the linear velocity by increasing the pressure to 23 and 1.47 MPa every 3 minutes.
  • the resin composition of the present embodiment has a dynamic friction coefficient of 0.17 when molded into a cylindrical thrust test piece and measured at a surface pressure of 0.49 MPa and a linear velocity of 0.1 m / sec at a temperature of 23 ° C. and a humidity of 50%. It is preferably 0.15 or less, more preferably 0.14 or less, and even more preferably 0.13 or less. A practical lower limit is, for example, 0.01 or more.
  • the limit PV value and dynamic friction coefficient are measured according to the description of the examples below.
  • the resin composition of the present embodiment is easily prepared by a known method generally used as a method for preparing conventional thermoplastic resin compositions. For example, (1) a method of mixing all the components that make up the composition, feeding this to an extruder and melt-kneading to obtain a pellet-like composition, (2) a method of obtaining a pellet-like composition, A method of obtaining a composition in the form of pellets by supplying the remaining components from the main feed port of the extruder and melt-kneading them from the side feed port. It is also possible to adopt a method of adjusting the composition to a predetermined composition.
  • kneaders examples include kneaders, Banbury mixers, and extruders.
  • Various conditions and devices for mixing and kneading are not particularly limited, and may be determined by appropriately selecting from conventionally known arbitrary conditions.
  • the kneading is preferably performed at a temperature higher than the melting temperature of the polyacetal resin, specifically at a temperature higher than the melting temperature of the polyacetal resin (generally 180° C. or higher).
  • FIG. 1 is a schematic illustration of an example of an extruder used in the method for producing a resin composition of the present embodiment.
  • This extruder 1 is composed of a raw material supply port 2 , a resin melting section 3 , a kneading and dispersing section 4 , a liquid supply pump 5 , an extrusion section 6 and a take-out section 7 .
  • a polyacetal resin (B) an olefin polymer, (D) a hydrocarbon wax, and, if necessary, other components are supplied from a raw material supply port 2 provided in a resin melting section 3 .
  • (C) silicone oil is not supplied.
  • these are sent to the kneading and dispersing section 4 and uniformly mixed.
  • silicone oil is introduced from the liquid supply pump 5 and further kneaded.
  • the resin composition is extruded from the extruding section 6, cooled, taken out from the take-out section 7, and cut after cooling to obtain a resin composition in the form of pellets.
  • the molded article of this embodiment is formed from the resin composition of this embodiment. Pellets obtained by pelletizing the resin composition of the present embodiment are molded by various molding methods to obtain molded articles. Alternatively, the resin composition melted and kneaded by an extruder can be directly molded into a molded product without going through pellets.
  • the shape of the molded product is not particularly limited and can be appropriately selected according to the use and purpose of the molded product. Circular, elliptical, gear-shaped, polygonal, odd-shaped, hollow, frame-shaped, box-shaped, panel-shaped and the like can be mentioned.
  • the molded product of this embodiment may be a finished product or a part.
  • the method for molding the molded article is not particularly limited, and conventionally known molding methods can be employed, such as injection molding, injection compression molding, extrusion molding, profile extrusion, transfer molding, blow molding, Gas-assisted blow molding, blow molding, extrusion blow molding, IMC (in-mold coating molding) molding, rotational molding, multi-layer molding, two-color molding, insert molding, sandwich molding, foam molding, additive A compression molding method and the like can be mentioned.
  • the resin composition of the present embodiment is preferably used for forming sliding members. Therefore, the molded article formed from the resin composition of this embodiment is preferably used as a sliding member (sliding part).
  • sliding members include gears, rotary shafts, bearings, gears, End face materials for cams and mechanical seals, valve seats for valves, sealing members such as V-rings, rod packings, piston rings and rider rings, rotating shafts for compressors, rotating sleeves, pistons, impellers, rollers and other sliding members mentioned.
  • the sliding member of the present embodiment can be used not only with the sliding members of the present embodiment, but also with other resin sliding members, fiber-reinforced resin sliding members, ceramics, and metal sliding members. It can also be used as a member.
  • A-1 Polyacetal resin (MFR: 45) Mitsubishi Engineering-Plastics Iupital F40-03, melt flow rate (MFR) (measured at 190 ° C., load 2.16 kg, hereinafter the same for MFR of polyacetal resin): 52 g / 10 minutes
  • MFR melt flow rate
  • A-2 Polyacetal resin (MFR :30) Iupital F30-03 manufactured by Mitsubishi Engineering-Plastics, melt flow rate (MFR): 27 g/10 minutes
  • A-3 polyacetal resin (MFR: 12) Iupital A25-03 manufactured by Mitsubishi Engineering-Plastics, melt flow rate (MFR): 14 g/10 minutes
  • C-1 Silicone oil 1000cSt Manufacturer: Shin-Etsu Chemical Co., Ltd., KF-96H-1,000 cs, kinematic viscosity at 25 ° C. is 1000 cSt C-2: Silicone oil 6000cSt Manufacturer: Shin-Etsu Chemical Co., Ltd., KF-96H-6,000cs, kinematic viscosity at 25 ° C. is 6000cSt C-3: Silicone oil 10000cSt Manufacturer: Shin-Etsu Chemical Co., Ltd., KF-96H-10,000cs, kinematic viscosity at 25 ° C.
  • D-1 Paraffin wax 155F Manufacturer: Nihon Seiro Co., Ltd.
  • Vicat Softening temperature Unmeasurable, molecular weight (viscosity method) 300-550
  • D-2 High wax 720P Low molecular weight polyethylene, Vicat softening temperature: not measurable, molecular weight (viscosity method) 2700, Mitsui Chemicals
  • D-3 Sanwax 151P Sanyo Kasei Co., Ltd., low molecular weight polyethylene, Vicat softening temperature: not measurable, number average molecular weight: 2000
  • the mass of potassium hydroxide required for neutralizing 1 g of a sample was measured and taken as the acid value. Specifically, it was measured by neutralization titration according to JIS K0070. 1 g of the sample was precisely weighed and dissolved in 100 mL of xylene with stirring at about 120°C. After complete dissolution, a phenolphthalein solution was added, and neutralization titration was performed using a 0.1 mol/L potassium hydroxide ethanol solution whose exact concentration had been determined in advance.
  • the mixture was put into a twin-screw extruder with a diameter of 26 mm (manufactured by Shibaura Kikai Co., Ltd.) from the root, and after melting, silicone oil was supplied using a liquid supply pump to prepare resin pellets.
  • Extrusion temperature was 190° C.
  • screw rotation speed was 120 rpm
  • bend vacuum pressure was ⁇ 0.08 MPa
  • discharge rate was 12 kg/hr.
  • the following evaluation was performed using the obtained resin composition.
  • Cylindrical thrust test pieces were produced by injection molding at a cylinder temperature of 200°C and a mold temperature of 80°C. Using a thrust type friction wear tester manufactured by Orientec Co., Ltd., the surface pressure is 0.15, 0.25, 0.49, 0.74, 0.98, 1.23 in an atmosphere of 23 ° C. and 50% humidity. , and 1.47 MPa every 3 minutes, and the value obtained by multiplying the surface pressure immediately before the surface pressure at which the test piece was melted or abnormally worn by the linear velocity was defined as the limit PV.
  • Cylindrical thrust test pieces were produced by injection molding at a cylinder temperature of 200°C and a mold temperature of 80°C. Using a thrust-type friction wear tester manufactured by Orientec Co., Ltd., the measurement was performed at a temperature of 23° C. and a humidity of 50% at a surface pressure of 0.49 MPa and a linear velocity of 0.1 m/sec.
  • Cylindrical thrust test pieces were produced by injection molding at a cylinder temperature of 200°C and a mold temperature of 80°C. Using an Orientec thrust type friction wear tester, the temperature is 23 ° C., the humidity is 50%, the surface pressure is 0.15 MPa, the linear velocity is 0.3 m / sec. Calculated.
  • ⁇ Moldability> Using an injection molding machine, the cylinder temperature is set to 200 ° C., the mold temperature is set to 80 ° C., the injection time is 45 seconds, and the cooling time is 20 seconds. A compact was obtained. Moldability was evaluated by the time required for weighing. A: Within 15 seconds B: Within 18 seconds C: More than 18 seconds
  • the resin composition of the present invention was excellent in slidability and moldability (Examples 1 to 11).
  • the kinematic viscosity of the silicone oil was high (Comparative Example 1)
  • silicone oil was not contained (Comparative Example 2)
  • the slidability was inferior.
  • the hydrocarbon wax was not contained (Comparative Example 3)
  • the slidability was poor.
  • the mass ratio of (B)/(C) exceeded 2.0
  • the slidability was poor.
  • the olefin polymer was not contained (Comparative Example 5)
  • the moldability was inferior.

Abstract

Provided are: a resin composition from which a molded article having excellent slidability is obtained and which has excellent moldability; a molded article; and a method for producing a resin composition. This resin composition comprises, with respect to 100 parts by mass of (A) a polyacetal resin, 0.1-30.0 parts by mass of (B) an olefin polymer, 0.1-30.0 parts by mass of (C) a silicone oil having a kinematic viscosity of 1,000-55,000 cSt at 25°C, and 0.1-15.0 parts by mass of (D) a hydrocarbon wax, wherein (B)/(C), which is the mass ratio of the (B) olefin polymer to the (C) silicone oil, is at most 2.00.

Description

樹脂組成物、成形品および樹脂組成物の製造方法RESIN COMPOSITION, MOLDED PRODUCT AND METHOD FOR MANUFACTURING RESIN COMPOSITION
 本発明は、樹脂組成物、成形品および樹脂組成物の製造方法に関する。 The present invention relates to a resin composition, a molded product, and a method for producing a resin composition.
 ポリアセタール樹脂は、バランスのとれた機械的性質を有し、耐摩擦・摩耗特性、耐薬品性、耐熱性、電気特性等に優れるため、自動車、電気・電子製品等の分野で広く利用されている。
 そして、ポリアセタール樹脂の利用形態の1つとして、摺動部材が知られている。ポリアセタール樹脂を摺動部材として用いた例としては、特許文献1、特許文献2が挙げられる。
Polyacetal resin has well-balanced mechanical properties, and is excellent in friction/wear resistance, chemical resistance, heat resistance, electrical properties, etc., so it is widely used in the fields of automobiles, electrical and electronic products, etc. .
A sliding member is known as one of the forms of utilization of polyacetal resin. Patent document 1 and patent document 2 are mentioned as an example using polyacetal resin as a sliding member.
特開2008-214490号公報JP 2008-214490 A 国際公開第2018/230389号WO2018/230389
 上記特許文献1および特許文献2に記載の樹脂組成物は摺動性に優れた材料であるが、特許文献1および特許文献2においては、シリコーン化合物をマスターバッチ化してから樹脂組成物を製造する必要があった。そこで、本発明者は、マスターバッチ化が不要なシリコーン化合物として、シリコーンオイルを用いることを検討した。しかしながら、ポリアセタール樹脂にシリコーンオイルを配合しても、摺動性が必ずしも十分とは言えず、また、成形性が劣っていた。すなわち、樹脂組成物を、例えば、射出成形にて成形する際、溶融した樹脂組成物を計量し、その後、金型に注入して成形するが、計量に非常に時間がかかってしまった。
 本発明はかかる課題を解決することを目的とするものであって、得られる成形品の摺動性に優れ、かつ、成形性に優れた樹脂組成物、成形品および樹脂組成物の製造方法を提供することを目的とする。
The resin compositions described in Patent Documents 1 and 2 are materials having excellent slidability, but in Patent Documents 1 and 2, the resin composition is produced after masterbatching a silicone compound I needed it. Therefore, the present inventors have considered using silicone oil as a silicone compound that does not require masterbatching. However, even if the polyacetal resin is blended with silicone oil, the slidability is not necessarily sufficient, and the moldability is poor. That is, when a resin composition is molded by, for example, injection molding, the molten resin composition is weighed and then injected into a mold for molding, which takes a very long time.
An object of the present invention is to solve such problems, and to provide a resin composition having excellent slidability of the resulting molded product and excellent moldability, a molded product, and a method for producing the resin composition. intended to provide
 上記課題のもと、本発明者が検討を行った結果、ポリアセタール樹脂に、所定の動粘度のシリコーンオイルと、オレフィン重合体と、炭化水素ワックスとを所定の割合で配合することにより、上記課題が解決しうることを見出した。
 具体的には、下記手段により、上記課題は解決された。
<1>(A)ポリアセタール樹脂100質量部に対し、(B)オレフィン重合体0.1~30.0質量部と、(C)25℃における動粘度が1,000~55,000cStであるシリコーンオイル0.1~30.0質量部と、(D)炭化水素ワックス0.1~15.0質量部とを含み、前記(B)オレフィン重合体と(C)シリコーンオイルの質量比率である(B)/(C)が2.00以下である、樹脂組成物。
<2>前記(B)オレフィン重合体と(C)シリコーンオイルの質量比率である(B)/(C)が0.10以上である、<1>に記載の樹脂組成物。
<3>前記(B)オレフィン重合体が、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、および、エチレン-ブテン共重合体からなる群より選ばれる、<1>または<2>に記載の樹脂組成物。
<4>前記(B)オレフィン重合体が、エチレン-ブテン共重合体を含む、<1>または<2>に記載の樹脂組成物。
<5>前記(B)オレフィン重合体のJIS K7206に従ったビカット軟化温度が30℃以上である、<1>~<4>のいずれか1つに記載の樹脂組成物。
<6>前記(B)オレフィン重合体の含有量が、前記(A)ポリアセタール樹脂100質量部に対し、0.1~3.0質量部である、<1>~<5>のいずれか1つに記載の樹脂組成物。
<7>前記(C)シリコーンオイルの含有量が、前記(A)ポリアセタール樹脂100質量部に対し、0.5~5.0質量部である、<1>~<6>のいずれか1つに記載の樹脂組成物。
<8>(B)オレフィン重合体と(C)シリコーンオイルの質量比率である(B)/(C)が0.80以下である、<1>~<7>のいずれか1つに記載の樹脂組成物。
<9>前記(B)オレフィン重合体と(C)シリコーンオイルの質量比率である(B)/(C)が0.50以下である、<1>~<8>のいずれか1つに記載の樹脂組成物。
<10>前記(D)炭化水素ワックスと(C)シリコーンオイルの質量比率である(D)/(C)が1.0以下である、<1>~<9>のいずれか1つに記載の樹脂組成物。
<11>摺動部材形成用である、<1>~<9>のいずれか1つに記載の樹脂組成物。
<12><1>~<11>のいずれか1つに記載の樹脂組成物のペレット。
<13><1>~<11>のいずれか1つに記載の樹脂組成物から形成される成形品。
<14><12>に記載のペレットから形成される成形品。
<15>摺動部材である、<13>または<14>に記載の成形品。
<16><1>~<11>のいずれか1つに記載の樹脂組成物の製造方法であって、
(A)ポリアセタール樹脂と、(B)オレフィン重合体と、(D)炭化水素ワックスとを押出機の供給口から投入し、混練した後、液体供給ポンプから、(C)25℃における動粘度が1,000~55,000cStであるシリコーンオイルを投入して、さらに混練することを含む、樹脂組成物の製造方法。
Based on the above problems, the present inventors have conducted studies and found that by blending a polyacetal resin with a silicone oil having a predetermined kinematic viscosity, an olefin polymer, and a hydrocarbon wax in a predetermined ratio, the above problems can be solved. found a solution.
Specifically, the above problems have been solved by the following means.
<1> (A) 100 parts by mass of polyacetal resin, (B) 0.1 to 30.0 parts by mass of olefin polymer, and (C) silicone having a kinematic viscosity at 25°C of 1,000 to 55,000 cSt It contains 0.1 to 30.0 parts by mass of oil and 0.1 to 15.0 parts by mass of (D) hydrocarbon wax, and the mass ratio of (B) olefin polymer and (C) silicone oil is ( A resin composition in which B)/(C) is 2.00 or less.
<2> The resin composition according to <1>, wherein (B)/(C), which is the mass ratio of (B) the olefin polymer and (C) the silicone oil, is 0.10 or more.
<3> The resin composition according to <1> or <2>, wherein the (B) olefin polymer is selected from the group consisting of polyethylene, polypropylene, ethylene-propylene copolymers, and ethylene-butene copolymers. thing.
<4> The resin composition according to <1> or <2>, wherein the (B) olefin polymer comprises an ethylene-butene copolymer.
<5> The resin composition according to any one of <1> to <4>, wherein the (B) olefin polymer has a Vicat softening temperature according to JIS K7206 of 30° C. or higher.
<6> Any one of <1> to <5>, wherein the content of the (B) olefin polymer is 0.1 to 3.0 parts by mass with respect to 100 parts by mass of the (A) polyacetal resin The resin composition according to 1.
<7> Any one of <1> to <6>, wherein the content of the (C) silicone oil is 0.5 to 5.0 parts by mass with respect to 100 parts by mass of the (A) polyacetal resin. The resin composition according to .
<8> Any one of <1> to <7>, wherein (B)/(C), which is the mass ratio of (B) the olefin polymer and (C) the silicone oil, is 0.80 or less. Resin composition.
<9> Any one of <1> to <8>, wherein (B)/(C), which is the mass ratio of (B) the olefin polymer and (C) the silicone oil, is 0.50 or less. of the resin composition.
<10> Any one of <1> to <9>, wherein (D)/(C), which is the mass ratio of (D) hydrocarbon wax and (C) silicone oil, is 1.0 or less. of the resin composition.
<11> The resin composition according to any one of <1> to <9>, which is used for forming a sliding member.
<12> A pellet of the resin composition according to any one of <1> to <11>.
<13> A molded article formed from the resin composition according to any one of <1> to <11>.
<14> A molded article formed from the pellets according to <12>.
<15> The molded article according to <13> or <14>, which is a sliding member.
<16> A method for producing a resin composition according to any one of <1> to <11>,
(A) a polyacetal resin, (B) an olefin polymer, and (D) a hydrocarbon wax are introduced from the supply port of an extruder and kneaded, and then from a liquid supply pump, (C) the kinematic viscosity at 25 ° C. A method for producing a resin composition, comprising adding a silicone oil of 1,000 to 55,000 cSt and further kneading.
 本発明により、得られる成形品の摺動性に優れ、かつ、成形性に優れた樹脂組成物、成形品および樹脂組成物の製造方法を提供可能になった。 According to the present invention, it has become possible to provide a resin composition, a molded product, and a method for producing a resin composition, in which the obtained molded product has excellent slidability and excellent moldability.
図1は本実施形態の樹脂組成物の製造方法で使用する押出機の一例の模式的説明図である。FIG. 1 is a schematic illustration of an example of an extruder used in the method for producing a resin composition of the present embodiment.
 以下、本発明を実施するための形態(以下、単に「本実施形態」という)について詳細に説明する。なお、以下の本実施形態は、本発明を説明するための例示であり、本発明は本実施形態のみに限定されない。
 なお、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本明細書において、各種物性値および特性値は、特に述べない限り、23℃におけるものとする。
 本明細書で示す規格が年度によって、測定方法等が異なる場合、特に述べない限り、2021年1月1日時点における規格に基づくものとする。
EMBODIMENT OF THE INVENTION Hereinafter, the form (only henceforth "this embodiment") for implementing this invention is demonstrated in detail. In addition, the following embodiment is an example for explaining the present invention, and the present invention is not limited only to this embodiment.
In this specification, the term "~" is used to mean that the numerical values before and after it are included as the lower limit and the upper limit.
In this specification, various physical property values and characteristic values are at 23° C. unless otherwise specified.
If the standards shown in this specification differ from year to year in terms of measurement methods, etc., the standards as of January 1, 2021 shall be used unless otherwise specified.
 本実施形態の樹脂組成物は、(A)ポリアセタール樹脂100質量部に対し、(B)オレフィン重合体0.1~30.0質量部と、(C)25℃における動粘度が1,000~55,000cStであるシリコーンオイル0.1~30.0質量部と、(D)炭化水素ワックス0.1~15.0質量部とを含み、前記(B)オレフィン重合体と(C)シリコーンオイルの質量比率である(B)/(C)が2.00以下であることを特徴とする。このような構成とすることにより、得られる成形品の摺動性に優れ、かつ、成形性に優れた樹脂組成物が得られる。 The resin composition of the present embodiment comprises (A) 100 parts by mass of polyacetal resin, (B) 0.1 to 30.0 parts by mass of olefin polymer, and (C) kinematic viscosity at 25 ° C. of 1,000 to 0.1 to 30.0 parts by mass of a silicone oil of 55,000 cSt, and (D) 0.1 to 15.0 parts by mass of a hydrocarbon wax, wherein the (B) olefin polymer and (C) the silicone oil (B)/(C), which is the mass ratio of , is 2.00 or less. With such a configuration, the resulting molded article has excellent slidability, and a resin composition having excellent moldability can be obtained.
<(A)ポリアセタール樹脂>
 本実施形態の樹脂組成物は、ポリアセタール樹脂を含む。ポリアセタール樹脂を含むことにより、摺動性と機械的強度に優れた成形品が得られる。
 本実施形態で用いるポリアセタール樹脂は、アセタール構造-(-O-CRH-)-(但し、Rは、水素原子または有機基を示す。)を繰り返し構造に有する高分子であり、通常はRが水素原子であるオキシメチレン基(-CHO-)を主たる構成単位とするものである。本実施形態で用いるポリアセタール樹脂は、この繰り返し構造のみからなるアセタールホモポリマー以外に、前記オキシメチレン基以外の構成単位を1種以上含むコポリマー(ブロックコポリマーを含む)やターポリマー等も含み、さらには線状構造のみならず分岐、架橋構造を有していてもよい。
<(A) Polyacetal resin>
The resin composition of this embodiment contains a polyacetal resin. By containing the polyacetal resin, a molded article having excellent slidability and mechanical strength can be obtained.
The polyacetal resin used in the present embodiment is a polymer having an acetal structure -(-O-CRH-) n - (wherein R represents a hydrogen atom or an organic group) in a repeating structure, and usually R is It has an oxymethylene group (--CH 2 O--), which is a hydrogen atom, as a main structural unit. The polyacetal resin used in the present embodiment includes, in addition to the acetal homopolymer consisting only of this repeating structure, copolymers (including block copolymers) and terpolymers containing one or more structural units other than the oxymethylene group, and further. It may have not only a linear structure but also a branched or crosslinked structure.
 前記オキシメチレン基以外の構成単位としては例えば、オキシエチレン基(-CHCHO-)、オキシプロピレン基(-CHCHCHO-)、オキシブチレン基(-CHCHCHCHO-)等の炭素数2以上10以下の、分岐していてもよいオキシアルキレン基が挙げられ、中でも炭素数2以上4以下の、分岐していてもよいオキシアルキレン基が好ましく、特にオキシエチレン基が好ましい。また、この様な、オキシメチレン基以外のオキシアルキレン構成単位の含有量としては、ポリアセタール樹脂中において、0.1mol%以上20mol%以下であることが好ましく、0.1mol%以上15mol%以下であることがより好ましい。 Examples of structural units other than the oxymethylene group include an oxyethylene group ( --CH.sub.2CH.sub.2O-- ), an oxypropylene group ( --CH.sub.2CH.sub.2CH.sub.2O-- ), and an oxybutylene group ( --CH.sub.2CH.sub.2CH . 2 CH 2 O—) and other optionally branched oxyalkylene groups having 2 to 10 carbon atoms, among which optionally branched oxyalkylene groups having 2 to 4 carbon atoms are preferred; An oxyethylene group is particularly preferred. In addition, the content of such oxyalkylene structural units other than oxymethylene groups is preferably 0.1 mol % or more and 20 mol % or less, and 0.1 mol % or more and 15 mol % or less in the polyacetal resin. is more preferable.
 本実施形態で用いるポリアセタール樹脂の製造方法は任意であり、従来公知の任意の方法によって製造すればよい。例えば、オキシメチレン基と、炭素数2以上4以下のオキシアルキレン基を構成単位とするポリアセタール樹脂の製造方法としては、ホルムアルデヒドの3量体(トリオキサン)や4量体(テトラオキサン)等のオキシメチレン基の環状オリゴマーと、エチレンオキサイド、1,3-ジオキソラン、1,3,6-トリオキソカン、1,3-ジオキセパン等の炭素数2以上4以下のオキシアルキレン基を含む環状オリゴマーとを共重合することによって製造することができる。 The method for producing the polyacetal resin used in this embodiment is arbitrary, and it may be produced by any conventionally known method. For example, as a method for producing a polyacetal resin having an oxymethylene group and an oxyalkylene group having 2 to 4 carbon atoms as a structural unit, an oxymethylene group such as a trimer (trioxane) or a tetramer (tetraoxane) of formaldehyde and a cyclic oligomer containing an oxyalkylene group having 2 to 4 carbon atoms such as ethylene oxide, 1,3-dioxolane, 1,3,6-trioxocane, 1,3-dioxepane, etc. can be manufactured.
 中でも本発明に用いるポリアセタール樹脂としては、トリオキサンやテトラオキサン等の環状オリゴマーと、エチレンオキサイドおよび/または1,3-ジオキソランとの共重合体であることが好ましく、特にトリオキサンと1,3-ジオキソランとの共重合体であることが好ましい。この場合、環状オリゴマー80~99質量%に対し、エチレンオキサイドおよび/または1,3-ジオキソランの合計が1~20質量%であることが好ましい。
 ポリアセタール樹脂のメルトフローレート(MFR)は任意だが、ASTM-D1238に従い、190℃、2.16kg荷重下で測定した値が、通常、1g/10分以上であり、10g/10分以上であることが好ましく、13g/10分以上であることがより好ましく、20g/10分以上であることがさらに好ましく、32g/10分以上であることが一層好ましく、35g/10分以上であることがより一層好ましく、40g/10分以上であることがさらに一層好ましい。また、前記MFRは、通常、150g/10分以下であり、100g/10分以下であることが好ましく、70g/10分以下であることがより好ましく、60g/10分以下であることがさらに好ましく、50g/10分以下であることが一層好ましい。
 本実施形態の樹脂組成物がポリアセタール樹脂を2種以上含む場合、混合物のMFRが上記範囲を満たすことが好ましい。
Among them, the polyacetal resin used in the present invention is preferably a copolymer of a cyclic oligomer such as trioxane or tetraoxane and ethylene oxide and/or 1,3-dioxolane, particularly a copolymer of trioxane and 1,3-dioxolane. A copolymer is preferred. In this case, the total content of ethylene oxide and/or 1,3-dioxolane is preferably 1 to 20% by mass with respect to 80 to 99% by mass of the cyclic oligomer.
The melt flow rate (MFR) of the polyacetal resin is arbitrary, but according to ASTM-D1238, the value measured at 190 ° C. under a load of 2.16 kg is usually 1 g / 10 minutes or more, and 10 g / 10 minutes or more. is preferably 13 g/10 min or more, more preferably 20 g/10 min or more, still more preferably 32 g/10 min or more, and even more preferably 35 g/10 min or more. Preferably, it is still more preferably 40 g/10 minutes or more. The MFR is usually 150 g/10 minutes or less, preferably 100 g/10 minutes or less, more preferably 70 g/10 minutes or less, and even more preferably 60 g/10 minutes or less. , 50 g/10 minutes or less.
When the resin composition of the present embodiment contains two or more polyacetal resins, the MFR of the mixture preferably satisfies the above range.
 本実施形態の樹脂組成物は、ポリアセタール樹脂を樹脂組成物の80質量%以上の割合で含むことが好ましく、85質量%以上の割合で含むことがより好ましく、90質量%以上の割合で含むことがさらに好ましい。上限は、(B)オレフィン重合体と、(C)シリコーンオイルと、(D)炭化水素ワックス以外の全量がポリアセタール樹脂となる量である。
 本実施形態の樹脂組成物は、ポリアセタール樹脂を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合は、合計量が上記範囲となることが好ましい。
The resin composition of the present embodiment preferably contains a polyacetal resin in a proportion of 80% by mass or more of the resin composition, more preferably 85% by mass or more, and more preferably 90% by mass or more. is more preferred. The upper limit is the amount in which the total amount other than (B) the olefin polymer, (C) the silicone oil, and (D) the hydrocarbon wax becomes a polyacetal resin.
The resin composition of the present embodiment may contain only one type of polyacetal resin, or may contain two or more types. When two or more kinds are included, the total amount is preferably within the above range.
<(B)オレフィン重合体>
 本実施形態の樹脂組成物は、(B)オレフィン重合体を(A)ポリアセタール樹脂100質量部に対し、0.1~30.0質量部の割合で含む。オレフィン重合体を含むことにより、摺動性に優れた成形品が得られる。さらに、成形性に優れた樹脂組成物が得られる。また、機械的強度に優れた成形品が得られる傾向にある。
 本実施形態で用いるオレフィン重合体は、公知のものを用いることができる。前記オレフィン重合体は、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、および、エチレン-ブテン共重合体からなる群より選ばれることが好ましく、エチレン-ブテン共重合体を含むことがより好ましい。これらのオレフィン重合体は、前記ポリオレフィン骨格を有する酸変性ポリオレフィン重合体を含む趣旨である。すなわち、例えば、ポリエチレンとは、酸未変性のポリエチレンと酸変性ポリエチレンの両方を含む趣旨である。
 本実施形態におけるオレフィン重合体は、数平均分子量が1×10以上であることが好ましく、2×10以上であることがより好ましく、また、50×10以下であることが好ましい。前記下限値以上の数平均分子量のものを用いることにより、より硬い成形品を形成することができ、得られる成形品の摺動性をより向上させることができる。また、上記上限値以下の数平均分子量のものを用いることにより、混練時のせん断で均一に分散することができ、機械物性の低下を抑制できる傾向にある。
 また、ASTM-D1238に従い、190℃、荷重2.16kgで測定したメルトフローレート(MFR)が70g/10分以下であることが好ましく、50g/10分以下であることがより好ましく、25g/10分以下であることがさらに好ましく、15g/10分以下であることが一層好ましい。前記上限値以下とすることにより、より硬い成形品を形成することができ、得られる成形品の摺動性がより向上する傾向にある。前記メルトフローレート(MFR)の下限値は、例えば、0.1g/10分以上とすることができる。前記下限値以上とすることにより、混練時のせん断で均一に分散することができ、機械物性の低下を効果的に抑制できる。
 本実施形態の樹脂組成物が2種以上のポリオレフィン重合体を含む場合、混合物のMFRとする。
<(B) Olefin polymer>
The resin composition of the present embodiment contains (B) the olefin polymer in a proportion of 0.1 to 30.0 parts by mass with respect to 100 parts by mass of the (A) polyacetal resin. By including an olefin polymer, a molded article having excellent slidability can be obtained. Furthermore, a resin composition having excellent moldability can be obtained. In addition, there is a tendency to obtain molded articles having excellent mechanical strength.
A known olefin polymer can be used as the olefin polymer used in the present embodiment. The olefin polymer is preferably selected from the group consisting of polyethylene, polypropylene, ethylene-propylene copolymer and ethylene-butene copolymer, and more preferably contains ethylene-butene copolymer. These olefin polymers are intended to include acid-modified polyolefin polymers having the polyolefin skeleton. That is, for example, polyethylene is intended to include both acid-unmodified polyethylene and acid-modified polyethylene.
The olefin polymer in the present embodiment preferably has a number average molecular weight of 1×10 4 or more, more preferably 2×10 4 or more, and preferably 50×10 4 or less. By using one having a number average molecular weight equal to or higher than the lower limit, a harder molded article can be formed, and the slidability of the resulting molded article can be further improved. Further, by using one having a number average molecular weight of not more than the above upper limit, it is possible to disperse uniformly by shearing during kneading, and there is a tendency that deterioration of mechanical properties can be suppressed.
In addition, according to ASTM-D1238, the melt flow rate (MFR) measured at 190 ° C. and a load of 2.16 kg is preferably 70 g / 10 minutes or less, more preferably 50 g / 10 minutes or less, and 25 g / 10 minutes or less, more preferably 15 g/10 minutes or less. By making it equal to or less than the above upper limit, a harder molded article can be formed, and the slidability of the obtained molded article tends to be further improved. The lower limit of the melt flow rate (MFR) can be, for example, 0.1 g/10 minutes or more. When the content is at least the above lower limit, uniform dispersion can be achieved by shearing during kneading, and deterioration of mechanical properties can be effectively suppressed.
When the resin composition of the present embodiment contains two or more polyolefin polymers, the MFR of the mixture is used.
 本実施形態におけるオレフィン重合体は、JIS K7206に従ったビカット軟化温度が30℃以上であることが好ましい。ビカット軟化温度は、熱可塑性プラスチックが急速に軟化し始める温度の目安となるものであり、短期的な耐熱性を示す指標である。本実施形態では、このようなオレフィン重合体を用いることにより、摺動時の耐熱性に優れたものとなる。本実施形態においては、ビカット軟化温度は、荷重50N、昇温速度50℃/時間のときのビカット軟化温度とする。ビカット軟化温度の上限は、特に定めるものではないが、通常、ポリアセタール樹脂の融点未満であり、好ましくは150℃以下である。 The olefin polymer in this embodiment preferably has a Vicat softening temperature of 30°C or higher according to JIS K7206. The Vicat softening temperature is a measure of the temperature at which a thermoplastic begins to soften rapidly, and is an indicator of short-term heat resistance. In this embodiment, by using such an olefin polymer, excellent heat resistance during sliding can be obtained. In this embodiment, the Vicat softening temperature is the Vicat softening temperature at a load of 50 N and a heating rate of 50° C./hour. Although the upper limit of the Vicat softening temperature is not particularly defined, it is usually lower than the melting point of the polyacetal resin, preferably 150° C. or lower.
 本実施形態におけるオレフィン重合体は、上述の通り酸変性したポリオレフィン重合体であってもよく、不飽和カルボン酸およびその無水物の少なくとも1種で変性したオレフィン重合体であってもよく、不飽和カルボン酸の無水物の少なくとも1種(好ましくは無水マレイン酸)で変性したオレフィン重合体であってもよい。不飽和カルボン酸としては、マレイン酸、アクリル酸、メタクリル酸、マレイン酸、シトラコン酸、イタコン酸、テトラヒドロフタル酸、ナジック酸、メチルナジック酸、アリルコハク酸が例示され、マレイン酸が好ましい。
 不飽和カルボン酸およびその無水物の少なくとも1種で変性した変性オレフィン重合体の詳細は、特開平10-130458号公報の段落0005の記載を参酌でき、これらの内容は本明細書に組み込まれる。
The olefin polymer in the present embodiment may be an acid-modified polyolefin polymer as described above, an olefin polymer modified with at least one of an unsaturated carboxylic acid and its anhydride, or an unsaturated It may be an olefin polymer modified with at least one carboxylic acid anhydride (preferably maleic anhydride). Examples of unsaturated carboxylic acids include maleic acid, acrylic acid, methacrylic acid, maleic acid, citraconic acid, itaconic acid, tetrahydrophthalic acid, nadic acid, methylnadic acid, and allylsuccinic acid, with maleic acid being preferred.
Details of the modified olefin polymer modified with at least one of an unsaturated carboxylic acid and its anhydride can be referred to paragraph 0005 of JP-A-10-130458, the contents of which are incorporated herein.
 前記酸変性オレフィン重合体における酸価は、0mgKOH/gであってもよいが、2.0mgKOH/g以上であってもよく、さらには5.0mgKOH/g以上であってもよい。また、酸変性オレフィン重合体における酸価は、例えば、70.0mgKOH/g以下であり、30.0mgKOH/g以下であってもよく、20.0mgKOH/g以下であってもよい。前記上限値以下とすることにより、引張破壊呼び歪がより向上する傾向にある。
 ここでの酸価は、オレフィン重合体を2種以上含む場合、各オレフィン重合体の酸価に各オレフィン重合体の配合量(質量)分率をかけた値の和とする。
The acid value of the acid-modified olefin polymer may be 0 mgKOH/g, may be 2.0 mgKOH/g or more, or may be 5.0 mgKOH/g or more. The acid value of the acid-modified olefin polymer is, for example, 70.0 mgKOH/g or less, may be 30.0 mgKOH/g or less, or may be 20.0 mgKOH/g or less. By making it equal to or less than the above upper limit, there is a tendency that the tensile fracture nominal strain is further improved.
When two or more kinds of olefin polymers are included, the acid value here is the sum of the values obtained by multiplying the acid value of each olefin polymer by the blending amount (mass) fraction of each olefin polymer.
 本実施形態の樹脂組成物におけるオレフィン重合体の含有量は、ポリアセタール樹脂100質量部に対し、0.1質量部以上であり、0.4質量部以上であることが好ましく、0.8質量部以上であることがより好ましい。前記下限値以上とすることにより、得られる成形品がより摺動性および成形性がより優れる傾向にある。また、本実施形態の樹脂組成物におけるオレフィン重合体の含有量は、ポリアセタール樹脂100質量部に対し、30.0質量部以下であり、20.0質量部以下であることが好ましく、10.0質量部以下であることがより好ましく、5.0質量部以下であることがさらに好ましく、3.0質量部以下であることが一層好ましく、2.5質量部以下であることがより一層好ましく、1.5質量部以下であることがさらに一層好ましい。前記上限値以下とすることにより、得られる成形品の引張破壊呼び歪がより向上する傾向にある。
 本実施形態の樹脂組成物は、オレフィン重合体を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
The content of the olefin polymer in the resin composition of the present embodiment is 0.1 parts by mass or more, preferably 0.4 parts by mass or more, and 0.8 parts by mass with respect to 100 parts by mass of the polyacetal resin. It is more preferable to be above. When the content is at least the above lower limit, the resulting molded article tends to be more excellent in slidability and moldability. Further, the content of the olefin polymer in the resin composition of the present embodiment is 30.0 parts by mass or less, preferably 20.0 parts by mass or less with respect to 100 parts by mass of the polyacetal resin, and 10.0 parts by mass or less. It is more preferably not more than 5.0 parts by mass, even more preferably not more than 3.0 parts by mass, and even more preferably not more than 2.5 parts by mass. It is even more preferable that it is 1.5 parts by mass or less. By making it equal to or less than the above upper limit, there is a tendency that the nominal strain at break of the resulting molded product is further improved.
The resin composition of the present embodiment may contain only one type of olefin polymer, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
<(C)シリコーンオイル>
 本実施形態の樹脂組成物は、(A)ポリアセタール樹脂100質量部に対し、(C)25℃における動粘度が1,000~55,000cStであるシリコーンオイルを0.1~30.0質量部の割合で含む。シリコーンオイルを含むことにより、摺動性に優れた成形品が得られる。さらに、従来の摺動性改良剤と異なり、マスターバッチ化することなく、ポリアセタール樹脂等とコンパウンドすることができ、樹脂組成物の製造が容易になる。
<(C) Silicone oil>
The resin composition of the present embodiment comprises (A) 100 parts by mass of polyacetal resin and (C) 0.1 to 30.0 parts by mass of silicone oil having a kinematic viscosity at 25° C. of 1,000 to 55,000 cSt. included in the ratio of By including silicone oil, a molded article having excellent slidability can be obtained. Furthermore, unlike conventional slidability improvers, it can be compounded with polyacetal resin or the like without being masterbatched, facilitating the production of resin compositions.
 本実施形態で用いるシリコーンオイルは、25℃における動粘度が1,000cSt以上のシリコーンオイルであり、2,000cSt以上であることが好ましく、4,000cSt以上であることがさらに好ましく、6,000cSt以上であることが一層好ましく、8,000cSt以上であることがより一層好ましい。前記下限値以上とすることにより、成形性(計量性)がより向上する傾向にある。前記シリコーンオイルの25℃における動粘度は、また、55,000cSt以下であり、45,000cSt以下であることが好ましく、35,000cSt以下であることがより好ましく、25,000cSt以下であることがさらに好ましく、15,000cSt以下であることが一層好ましく、12,000cSt以下であることがより一層好ましい。前記上限値以下とすることにより、限界PVが向上する傾向にある。
 本実施形態の樹脂組成物が2種以上のシリコーンオイルを含む場合、所望の動粘度となるよう、以下のように混合比を決定する。縦軸に動粘度を対数目盛で取り、横軸に使用%を示したグラフで、左軸に一方の動粘度、右軸にもう一方の動粘度をとって、両点を直線で結ぶ。所望の動粘度のメモリを通る水平線と先の直線の交点から垂線を下ろし、上下の粘度の使用量を読み取り、添加量を決定する。
The silicone oil used in the present embodiment has a kinematic viscosity at 25° C. of 1,000 cSt or more, preferably 2,000 cSt or more, more preferably 4,000 cSt or more, and 6,000 cSt or more. is more preferably 8,000 cSt or more. When the content is at least the above lower limit, the moldability (measurability) tends to be further improved. The kinematic viscosity of the silicone oil at 25° C. is also 55,000 cSt or less, preferably 45,000 cSt or less, more preferably 35,000 cSt or less, and further preferably 25,000 cSt or less. It is preferably 15,000 cSt or less, and even more preferably 12,000 cSt or less. Limit PV tends to be improved by making it equal to or less than the upper limit.
When the resin composition of the present embodiment contains two or more types of silicone oils, the mixing ratio is determined as follows so as to achieve the desired kinematic viscosity. In the graph, the kinematic viscosity is plotted on a logarithmic scale on the vertical axis and the percentage of use is plotted on the horizontal axis. A vertical line is drawn from the intersection of the horizontal line passing through the memory of the desired kinematic viscosity and the preceding straight line, and the usage amounts of the upper and lower viscosities are read to determine the amount to be added.
 本実施形態で用いるシリコーンオイルとしては、従来公知の任意のものを使用できる。具体的には例えば、ポリジメチルシロキサンからなるシリコーンオイルの他、ポリジメチルシロキサンにおけるメチル基の一部または全部が、水素、炭素原子数が2以上のアルキル基、フェニル基、ハロゲン化フェニル基、エステル基、フッ素等のハロゲン化エステル基、ポリエーテル基等で置換された置換シリコーンオイル類;ポリジメチルシロキサンにさらにエポキシ基、アミノ基、アルコール性水酸基、ポリエーテル基等を有する変性シリコーンオイル類;ジメチルシロキサン単位とフェニルメチルシロキサン単位を含むアルキルアラルキルシリコーンオイル類;ジメチルシロキサン単位のメチル基の一部がポリエーテルで置換された構造を有するシロキサン単位とフェニルメチルシロキサン単位とを有するアルキルアラルキルポリエーテル変性シリコーンオイル類;などが挙げられる。これらの中で好ましいのは、ジメチルシロキサンの重合物、およびジメチルシロキサンとメチルフェニルシロキサンとの共重合物である。 Any conventionally known silicone oil can be used as the silicone oil used in this embodiment. Specifically, for example, in addition to silicone oil made of polydimethylsiloxane, some or all of the methyl groups in polydimethylsiloxane are hydrogen, alkyl groups having 2 or more carbon atoms, phenyl groups, halogenated phenyl groups, and esters. substituted silicone oils substituted with groups, halogenated ester groups such as fluorine, polyether groups, etc.; modified silicone oils having epoxy groups, amino groups, alcoholic hydroxyl groups, polyether groups, etc. in addition to polydimethylsiloxane; dimethyl Alkylaralkylsilicone oils containing siloxane units and phenylmethylsiloxane units; Alkylaralkylpolyether-modified silicones containing siloxane units and phenylmethylsiloxane units having a structure in which a portion of the methyl groups of the dimethylsiloxane units are substituted with polyether oils; and the like. Preferred among these are polymers of dimethylsiloxane and copolymers of dimethylsiloxane and methylphenylsiloxane.
 本実施形態の樹脂組成物における(C)シリコーンオイルの含有量は、(A)ポリアセタール樹脂100質量部に対し、0.1質量部以上であり、0.5質量部以上であることが好ましく、1.0質量部以上であることがより好ましく、1.5質量部以上であることがさらに好ましく、2.1質量部以上であることが一層好ましい。前記下限値以上とすることにより、摺動性がより向上する傾向にある。また、本実施形態の樹脂組成物における(C)シリコーンオイルの含有量は、(A)ポリアセタール樹脂100質量部に対し、30.0質量部以下であり、20.0質量部以下であることが好ましく、10.0質量部以下であることがより好ましく、5.0質量部以下であることがさらに好ましく、3.0質量部以下であることが一層好ましい。前記上限値以下とすることにより、成形性がより向上する傾向にある。
 本実施形態の樹脂組成物は、(C)シリコーンオイルを1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
The content of (C) silicone oil in the resin composition of the present embodiment is 0.1 parts by mass or more, preferably 0.5 parts by mass or more, relative to 100 parts by mass of (A) polyacetal resin. It is more preferably 1.0 parts by mass or more, still more preferably 1.5 parts by mass or more, and even more preferably 2.1 parts by mass or more. By making it more than the said lower limit, there exists a tendency for slidability to improve more. In addition, the content of (C) silicone oil in the resin composition of the present embodiment is 30.0 parts by mass or less and 20.0 parts by mass or less with respect to 100 parts by mass of (A) polyacetal resin. It is preferably 10.0 parts by mass or less, more preferably 5.0 parts by mass or less, and even more preferably 3.0 parts by mass or less. Formability tends to be further improved by making it equal to or less than the above upper limit.
The resin composition of the present embodiment may contain only one type of (C) silicone oil, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
 本実施形態の樹脂組成物は、25℃における動粘度が1,000~55,000cStであるシリコーンオイル以外のシリコーンオイルを実質的に含まないことが好ましい。実質的に含まないとは、25℃における動粘度が1,000~55,000cStであるシリコーンオイル以外のシリコーンオイルの含有量が、25℃における動粘度が1,000~55,000cStであるシリコーンオイルの含有量の5質量%以下であることをいい、1質量%以下であることが好ましい。 The resin composition of the present embodiment preferably does not substantially contain silicone oils other than those having a kinematic viscosity of 1,000 to 55,000 cSt at 25°C. "Substantially free" means that the content of the silicone oil other than the silicone oil having a kinematic viscosity at 25°C of 1,000 to 55,000 cSt is a silicone having a kinematic viscosity at 25°C of 1,000 to 55,000 cSt. It is 5% by mass or less of the oil content, preferably 1% by mass or less.
 本実施形態の樹脂組成物においては、(B)オレフィン重合体と(C)シリコーンオイルの質量比率である(B)/(C)が2.00以下である。このような構成とすることにより、摺動性を向上させることができる。前記(B)/(C)は、1.50以下であることが好ましく、1.00以下であることがより好ましく、0.80以下であることがさらに好ましく、0.60以下であることが一層好ましく、0.50以下であることがより一層好ましく、0.45以下であってもよい。前記(B)/(C)の下限値は、0.10以上であることが好ましく、0.15以上であることが好ましい。 In the resin composition of the present embodiment, (B)/(C), which is the mass ratio of (B) the olefin polymer and (C) the silicone oil, is 2.00 or less. With such a configuration, slidability can be improved. The (B)/(C) is preferably 1.50 or less, more preferably 1.00 or less, further preferably 0.80 or less, and 0.60 or less. It is more preferably 0.50 or less, even more preferably 0.45 or less. The lower limit of (B)/(C) is preferably 0.10 or more, more preferably 0.15 or more.
<(D)炭化水素ワックス>
 本実施形態の樹脂組成物は、(A)ポリアセタール樹脂100質量部に対し、(D)炭化水素ワックスを0.1~15.0質量部の割合で含む。炭化水素ワックスを含むことにより、得られる成形品の摺動性がより向上する傾向にある。なお、炭化水素ワックスのうち、上記オレフィン重合体にも該当しうる場合、ビカット軟化温度が30℃以上のものは、上記オレフィン重合体に該当するものとし、ビカット軟化温度が30℃未満あるいは、ビカット軟化温度が測定できないものは、炭化水素ワックスに該当するものとする。ビカット軟化温度が測定できないものの例として、ビカット軟化温度を測定するための試験片が成形できないものが挙げられる。通常、炭化水素ワックスは、ビカット軟化温度を測定するための試験片が製造できない。
 炭化水素ワックスとは、炭化水素を主成分とするワックスであり、酸基等の官能基を有していてもよい。
<(D) Hydrocarbon wax>
The resin composition of the present embodiment contains 0.1 to 15.0 parts by mass of (D) hydrocarbon wax with respect to 100 parts by mass of (A) polyacetal resin. Containing the hydrocarbon wax tends to further improve the slidability of the obtained molded article. Among hydrocarbon waxes, if they can also correspond to the above olefin polymers, those having a Vicat softening temperature of 30° C. or higher are considered to correspond to the above olefin polymers. Those whose softening temperature cannot be measured shall be regarded as hydrocarbon waxes. Examples of those for which the Vicat softening temperature cannot be measured include those for which a test piece for measuring the Vicat softening temperature cannot be molded. Generally, hydrocarbon waxes cannot be made into test specimens for measuring the Vicat softening temperature.
A hydrocarbon wax is a wax containing a hydrocarbon as a main component, and may have a functional group such as an acid group.
 本実施形態で用いる炭化水素ワックスは、粘度法による分子量が1000以上であることが好ましく、1500以上であることがより好ましく、2000以上であることがさらに好ましく、2500以上であってもよい。前記下限値以上とすることにより、成形品表面へのブリードアウトの発生をより効果的に防止できる。前記粘度法による分子量の上限値は、7000以下であることが好ましく、6000以下であることがより好ましく、5500以下であってもよい。上記上限値以下とすることにより、摩擦摩耗特性および成形加工性等をより向上させることができる。 The hydrocarbon wax used in the present embodiment preferably has a molecular weight of 1,000 or more, more preferably 1,500 or more, even more preferably 2,000 or more, and may be 2,500 or more as determined by the viscosity method. When the content is at least the above lower limit, it is possible to more effectively prevent the occurrence of bleeding out onto the surface of the molded article. The upper limit of the molecular weight determined by the viscosity method is preferably 7,000 or less, more preferably 6,000 or less, and may be 5,500 or less. By adjusting the content to be equal to or less than the above upper limit, it is possible to further improve frictional wear characteristics, moldability, and the like.
 炭化水素ワックスとしては、パラフィンワックス、ポリオレフィンワックス、フィッシャー・トロプシュワックスと呼ばれるものが含まれる。本実施形態においては、ポリオレフィンワックスが好ましく、ポリエチレンワックスがより好ましい。
 炭化水素ワックスとしては、日本精蝋が販売しているFT-100およびFT-0070や、SASOL社製、パラフリントなどが例示される。
 特に、ポリオレフィンワックスとしては、ハイワックス(三井化学社製)、サンワックス(三洋化成工業製)、エポレン(Eastman Chemical製)、アライドワックス(Allied Singnals製)などが例示される。
Hydrocarbon waxes include paraffin waxes, polyolefin waxes, and Fischer-Tropsch waxes. In the present embodiment, polyolefin wax is preferred, and polyethylene wax is more preferred.
Examples of hydrocarbon waxes include FT-100 and FT-0070 sold by Nippon Seiro, and Paraflint manufactured by SASOL.
In particular, examples of polyolefin waxes include Hiwax (manufactured by Mitsui Chemicals), Sanwax (manufactured by Sanyo Chemical Industries), Epolen (manufactured by Eastman Chemical), and Allied Wax (manufactured by Allied Signals).
 本実施形態で用いるポリエチレンワックスは、低分子量ポリエチレンまたは低分子量ポリエチレン共重合体を酸変性した変性ポリエチレンワックスであることが好ましい。酸変性処理は、必要に応じてパーオキシドや酸素の存在下に、ワックスを無機酸、有機酸あるいは不飽和カルボン酸等で処理し、カルボキシル基やスルホン酸基等の極性基を導入すればよい。 The polyethylene wax used in this embodiment is preferably modified polyethylene wax obtained by acid-modifying low-molecular-weight polyethylene or low-molecular-weight polyethylene copolymer. The acid modification treatment may be carried out by treating the wax with an inorganic acid, an organic acid, an unsaturated carboxylic acid, or the like in the presence of peroxide or oxygen, if necessary, to introduce a polar group such as a carboxyl group or a sulfonic acid group.
 これらのポリエチレンワックスは、中酸価型ポリエチレンワックス、高酸価型ポリエチレンワックス、酸変性型ポリエチレンワックス等の名称で市販され、市場より容易に入手することができる。
 また、本実施形態で用いるポリエチレンワックスは、酸価が5mgKOH/g以上であることが好ましく、10mgKOH/g以上であることがより好ましく、26mgKOH/g以上であってもよい。前記ポリエチレンワックスの酸価の上限値としては、60mgKOH/g以下であることが好ましく、50mgKOH/g以下であることがより好ましく、40mgKOH/g以下であることがさらに好ましく、37mgKOH/g以下であることが一層好ましく、35mgKOH/g以下であってもよく、30mgKOH/g以下であってもよい。このような範囲とすることにより、高い摩擦特性および耐摩耗性を達成できる。
 酸価は、後述する実施例の記載に従って測定される。
These polyethylene waxes are commercially available under the names of medium-acid-value polyethylene wax, high-acid-value polyethylene wax, acid-modified polyethylene wax, and the like, and are readily available on the market.
The polyethylene wax used in the present embodiment preferably has an acid value of 5 mgKOH/g or more, more preferably 10 mgKOH/g or more, and may be 26 mgKOH/g or more. The upper limit of the acid value of the polyethylene wax is preferably 60 mgKOH/g or less, more preferably 50 mgKOH/g or less, even more preferably 40 mgKOH/g or less, and 37 mgKOH/g or less. More preferably, it may be 35 mgKOH/g or less, or 30 mgKOH/g or less. By setting it as such a range, high frictional characteristics and wear resistance can be achieved.
The acid value is measured according to the description in the examples below.
 本実施形態の樹脂組成物における(D)炭化水素ワックスの含有量は、(A)ポリアセタール樹脂100質量部に対し、0.1質量部以上であり、0.5質量部以上であることが好ましく、0.8質量部以上であることがより好ましく、1.0質量部以上であることがさらに好ましく、1.2質量部以上であることが一層好ましく、1.3質量部以上であることがより一層好ましい。前記下限値以上とすることにより、摺動性がより向上する傾向にある。また、前記(D)炭化水素ワックスの含有量は、(A)ポリアセタール樹脂100質量部に対し、15.0質量部以下であり、10.0質量部以下であることが好ましく、5.0質量部以下であることがより好ましく、3.5質量部以下であることがさらに好ましく、2.5質量部以下であることが一層好ましく、2.0質量部以下であることがより一層好ましい。前記上限値以下とすることにより、成形性がより向上する傾向にある。
 本実施形態の樹脂組成物は、(D)炭化水素ワックスを1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
The content of the (D) hydrocarbon wax in the resin composition of the present embodiment is 0.1 parts by mass or more, preferably 0.5 parts by mass or more, relative to 100 parts by mass of the (A) polyacetal resin. , more preferably 0.8 parts by mass or more, more preferably 1.0 parts by mass or more, still more preferably 1.2 parts by mass or more, and preferably 1.3 parts by mass or more Even more preferable. By making it more than the said lower limit, there exists a tendency for slidability to improve more. In addition, the content of the (D) hydrocarbon wax is 15.0 parts by mass or less, preferably 10.0 parts by mass or less, and 5.0 parts by mass with respect to 100 parts by mass of the (A) polyacetal resin. parts by mass or less, more preferably 3.5 parts by mass or less, even more preferably 2.5 parts by mass or less, and even more preferably 2.0 parts by mass or less. Formability tends to be further improved by making it equal to or less than the above upper limit.
The resin composition of the present embodiment may contain only one type of (D) hydrocarbon wax, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
 本実施形態の樹脂組成物は、(D)炭化水素ワックスと(C)シリコーンオイルの質量比率である(D)/(C)が1.0以下であることが好ましく、0.9以下であることがより好ましく、0.8以下であることがさらに好ましく、0.7以下であることが一層好ましく、0.65以下であることがより一層好ましい。前記(D)/(C)の下限値は、0.1以上であることが実際的である。 In the resin composition of the present embodiment, (D)/(C), which is the mass ratio of (D) hydrocarbon wax and (C) silicone oil, is preferably 1.0 or less, and is 0.9 or less. is more preferably 0.8 or less, even more preferably 0.7 or less, and even more preferably 0.65 or less. It is practical that the lower limit of (D)/(C) is 0.1 or more.
<他の成分>
 本実施形態の樹脂組成物は、本発明の目的を損なわない範囲内で、公知の添加剤や充填剤を添加してもよい。本実施形態に使用することのできる添加剤や充填剤としては、具体的には例えば公知の熱可塑性ポリマー、帯電防止剤、紫外線吸収剤、光安定剤、炭素繊維、ガラス繊維、ガラスフレーク、タルク、マイカ、炭酸カルシウム、チタン酸カリウムウイスカー等が挙げられる。
 これらの成分の含有量は、合計で、樹脂組成物の10質量%以下の割合であることが好ましい。
 本実施形態の樹脂組成物は、(A)ポリアセタール樹脂、(B)オレフィン重合体、(C)25℃における動粘度が1,000~55,000cStであるシリコーンオイルおよび(D)炭化水素ワックスの合計が樹脂組成物の90質量%以上を占めることが好ましく、95質量%以上を占めることがより好ましく、99質量%以上を占めていてもよい。
<Other ingredients>
Known additives and fillers may be added to the resin composition of the present embodiment as long as the objects of the present invention are not impaired. Specific examples of additives and fillers that can be used in the present embodiment include known thermoplastic polymers, antistatic agents, ultraviolet absorbers, light stabilizers, carbon fibers, glass fibers, glass flakes, and talc. , mica, calcium carbonate, potassium titanate whiskers, and the like.
The total content of these components is preferably 10 mass % or less of the resin composition.
The resin composition of the present embodiment comprises (A) a polyacetal resin, (B) an olefin polymer, (C) a silicone oil having a kinematic viscosity at 25° C. of 1,000 to 55,000 cSt, and (D) a hydrocarbon wax. The total content of the resin composition is preferably 90% by mass or more, more preferably 95% by mass or more, and may be 99% by mass or more.
<樹脂組成物の物性値>
 本実施形態の樹脂組成物は、限界PV値が10.0以上であることが好ましく、11.0以上であることがより好ましい。前記限界PV値の上限値は、例えば、25.0以下が実際的である。限界PV値は、円筒型スラスト試験片に成形し、温度23℃、湿度50%雰囲気下で、面圧を0.15、0.25、0.49、0.74、0.98、1.23、1.47MPaと3分ごとに昇圧して試験し、試験片が溶融もしくは異常摩耗した面圧の1つ前の面圧と線速度を乗じた値をいう。
 本実施形態の樹脂組成物は、円筒型スラスト試験片に成形し温度23℃、湿度50%雰囲気下で、面圧0.49MPa、線速度0.1m/秒で測定した動摩擦係数が0.17以下であることが好ましく、0.15以下であることがより好ましく、0.14以下であることがさらに好ましく、0.13以下であることが一層好ましい。下限値は、例えば、0.01以上が実際的である。
 限界PV値および動摩擦係数は、後述する実施例の記載に従って測定される。
<Physical property values of the resin composition>
The limit PV value of the resin composition of the present embodiment is preferably 10.0 or more, more preferably 11.0 or more. A practical upper limit of the limit PV value is, for example, 25.0 or less. The limiting PV values were obtained by forming a cylindrical thrust test piece, and applying a surface pressure of 0.15, 0.25, 0.49, 0.74, 0.98, 1.0 in an atmosphere of 23° C. and 50% humidity. It is a value obtained by multiplying the surface pressure immediately before the surface pressure at which the test piece melted or abnormally worn and the linear velocity by increasing the pressure to 23 and 1.47 MPa every 3 minutes.
The resin composition of the present embodiment has a dynamic friction coefficient of 0.17 when molded into a cylindrical thrust test piece and measured at a surface pressure of 0.49 MPa and a linear velocity of 0.1 m / sec at a temperature of 23 ° C. and a humidity of 50%. It is preferably 0.15 or less, more preferably 0.14 or less, and even more preferably 0.13 or less. A practical lower limit is, for example, 0.01 or more.
The limit PV value and dynamic friction coefficient are measured according to the description of the examples below.
<樹脂組成物の製造方法>
 本実施形態の樹脂組成物は、従来の熱可塑性樹脂組成物の調製法として一般に用いられる公知の方法により容易に調製される。例えば、(1)組成物を構成する全成分を混合し、これを押出機に供給して溶融混練し、ペレット状の組成物を得る方法、(2)組成物を構成する成分の一部を押出機の主フィード口から、残余成分をサイドフィード口から供給して溶融混練し、ペレット状の組成物を得る方法、(3)押出し等により一旦組成の異なるペレットを調製し、そのペレットを混合して所定の組成に調整する方法等を採用できる。
<Method for producing resin composition>
The resin composition of the present embodiment is easily prepared by a known method generally used as a method for preparing conventional thermoplastic resin compositions. For example, (1) a method of mixing all the components that make up the composition, feeding this to an extruder and melt-kneading to obtain a pellet-like composition, (2) a method of obtaining a pellet-like composition, A method of obtaining a composition in the form of pellets by supplying the remaining components from the main feed port of the extruder and melt-kneading them from the side feed port. It is also possible to adopt a method of adjusting the composition to a predetermined composition.
 混練機は、ニーダー、バンバリーミキサー、押出機等が例示される。混合・混練の各種条件や装置についても、特に制限はなく、従来公知の任意の条件から適宜選択して決定すればよい。混練はポリアセタール樹脂が溶融する温度以上、具体的にはポリアセタール樹脂の融解温度以上(一般的には180℃以上)で行うことが好ましい。 Examples of kneaders include kneaders, Banbury mixers, and extruders. Various conditions and devices for mixing and kneading are not particularly limited, and may be determined by appropriately selecting from conventionally known arbitrary conditions. The kneading is preferably performed at a temperature higher than the melting temperature of the polyacetal resin, specifically at a temperature higher than the melting temperature of the polyacetal resin (generally 180° C. or higher).
 特に本実施形態では、(A)ポリアセタール樹脂と、(B)オレフィン重合体と、(D)炭化水素ワックスとを押出機の供給口から投入し、混練した後、液体供給ポンプから、(C)25℃における動粘度が1,000~55,000cStであるシリコーンオイルを投入して、さらに混練することを含むことが好ましい。
 図1は本実施形態の樹脂組成物の製造方法で使用する押出機の一例の模式的説明図である。この押出機1は、原料供給口2と、樹脂溶融部3と、混練分散部4と、液体供給ポンプ5と、押出部6と、取り出し部7で構成されている。まず、樹脂溶融部3に設けられた原料供給口2から(A)ポリアセタール樹脂、(B)オレフィン重合体、(D)炭化水素ワックス、さらに必要に応じて配合される他の成分を供給する。このとき、(C)シリコーンオイルは供給しない。次に、これらは、混練分散部4に送られ、均一に混合される。さらに、液体供給ポンプ5から(C)シリコーンオイルを投入し、さらに混練される。次いで、押出部6から樹脂組成物が押し出され、冷却して取り出し部7から取り出され、冷却後カットすればペレット状の樹脂組成物となる。
In particular, in the present embodiment, (A) polyacetal resin, (B) olefin polymer, and (D) hydrocarbon wax are introduced from the supply port of the extruder, kneaded, and then (C) is supplied from the liquid supply pump. It is preferable to include adding a silicone oil having a kinematic viscosity of 1,000 to 55,000 cSt at 25° C. and further kneading.
FIG. 1 is a schematic illustration of an example of an extruder used in the method for producing a resin composition of the present embodiment. This extruder 1 is composed of a raw material supply port 2 , a resin melting section 3 , a kneading and dispersing section 4 , a liquid supply pump 5 , an extrusion section 6 and a take-out section 7 . First, (A) a polyacetal resin, (B) an olefin polymer, (D) a hydrocarbon wax, and, if necessary, other components are supplied from a raw material supply port 2 provided in a resin melting section 3 . At this time, (C) silicone oil is not supplied. Next, these are sent to the kneading and dispersing section 4 and uniformly mixed. Further, (C) silicone oil is introduced from the liquid supply pump 5 and further kneaded. Next, the resin composition is extruded from the extruding section 6, cooled, taken out from the take-out section 7, and cut after cooling to obtain a resin composition in the form of pellets.
<成形品>
 本実施形態の成形品は、本実施形態の樹脂組成物から形成される。本実施形態の樹脂組成物をペレタイズして得られたペレットは、各種の成形法で成形して成形品とされる。またペレットを経由せずに、押出機で溶融混練された樹脂組成物を直接、成形して成形品にすることもできる。
 成形品の形状としては、特に制限はなく、成形品の用途、目的に応じて適宜選択することができ、例えば、板状、プレート状、ロッド状、シート状、フィルム状、円筒状、環状、円形状、楕円形状、歯車状、多角形形状、異形品、中空品、枠状、箱状、パネル状のもの等が挙げられる。本実施形態の成形品は、完成品であってもよいし、部品であってもよい。
<Molded product>
The molded article of this embodiment is formed from the resin composition of this embodiment. Pellets obtained by pelletizing the resin composition of the present embodiment are molded by various molding methods to obtain molded articles. Alternatively, the resin composition melted and kneaded by an extruder can be directly molded into a molded product without going through pellets.
The shape of the molded product is not particularly limited and can be appropriately selected according to the use and purpose of the molded product. Circular, elliptical, gear-shaped, polygonal, odd-shaped, hollow, frame-shaped, box-shaped, panel-shaped and the like can be mentioned. The molded product of this embodiment may be a finished product or a part.
 成形品を成形する方法としては、特に制限されず、従来公知の成形法を採用でき、例えば、射出成形法、射出圧縮成形法、押出成形法、異形押出法、トランスファー成形法、中空成形法、ガスアシスト中空成形法、ブロー成形法、押出ブロー成形、IMC(インモールドコーティング成形)成形法、回転成形法、多層成形法、2色成形法、インサート成形法、サンドイッチ成形法、発泡成形法、加圧成形法等が挙げられる。 The method for molding the molded article is not particularly limited, and conventionally known molding methods can be employed, such as injection molding, injection compression molding, extrusion molding, profile extrusion, transfer molding, blow molding, Gas-assisted blow molding, blow molding, extrusion blow molding, IMC (in-mold coating molding) molding, rotational molding, multi-layer molding, two-color molding, insert molding, sandwich molding, foam molding, additive A compression molding method and the like can be mentioned.
 本実施形態の樹脂組成物は、摺動部材形成用として好ましく用いられる。従って、本実施形態の樹脂組成物から形成された成形品は、摺動部材(摺動部品)として好ましく用いられる。
 摺動部材の具体的な例としては、電気・電子機器、事務機器、車両(自動車)、産業機器等で要求されている高品質化を目的とした、歯車、回転軸、軸受け、各種ギア、カム、メカニカルシールの端面材、バルブなどの弁座、Vリング、ロッドパッキン、ピストンリング、ライダーリング等のシール部材、圧縮機の回転軸、回転スリーブ、ピストン、インペラー、ローラー等の摺動部材が挙げられる。
The resin composition of the present embodiment is preferably used for forming sliding members. Therefore, the molded article formed from the resin composition of this embodiment is preferably used as a sliding member (sliding part).
Specific examples of sliding members include gears, rotary shafts, bearings, gears, End face materials for cams and mechanical seals, valve seats for valves, sealing members such as V-rings, rod packings, piston rings and rider rings, rotating shafts for compressors, rotating sleeves, pistons, impellers, rollers and other sliding members mentioned.
 本実施形態の摺動部材は、本実施形態の摺動部材同士はもちろん、他の樹脂製摺動部材や、繊維強化樹脂摺動部材の他、セラミックスや金属製摺動部材と組み合わせた摺動部材として用いることも可能である。 The sliding member of the present embodiment can be used not only with the sliding members of the present embodiment, but also with other resin sliding members, fiber-reinforced resin sliding members, ceramics, and metal sliding members. It can also be used as a member.
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
 実施例で用いた測定機器等が廃番等により入手困難な場合、他の同等の性能を有する機器を用いて測定することができる。
EXAMPLES The present invention will be described more specifically with reference to examples below. The materials, usage amounts, ratios, processing details, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the gist of the present invention. Accordingly, the scope of the present invention is not limited to the specific examples shown below.
If the measuring instruments and the like used in the examples are discontinued and difficult to obtain, other instruments having equivalent performance can be used for measurement.
A-1:ポリアセタール樹脂(MFR:45)
三菱エンジニアリングプラスチックス社製 ユピタールF40-03、メルトフローレート(MFR)(190℃、荷重2.16kgで測定、以下、ポリアセタール樹脂のMFRについて同じ):52g/10分
A-2:ポリアセタール樹脂(MFR:30)
三菱エンジニアリングプラスチックス社製 ユピタールF30-03、メルトフローレート(MFR):27g/10分
A-3:ポリアセタール樹脂(MFR:12)
三菱エンジニアリングプラスチックス社製 ユピタールA25-03、メルトフローレート(MFR):14g/10分
A-1: Polyacetal resin (MFR: 45)
Mitsubishi Engineering-Plastics Iupital F40-03, melt flow rate (MFR) (measured at 190 ° C., load 2.16 kg, hereinafter the same for MFR of polyacetal resin): 52 g / 10 minutes A-2: Polyacetal resin (MFR :30)
Iupital F30-03 manufactured by Mitsubishi Engineering-Plastics, melt flow rate (MFR): 27 g/10 minutes A-3: polyacetal resin (MFR: 12)
Iupital A25-03 manufactured by Mitsubishi Engineering-Plastics, melt flow rate (MFR): 14 g/10 minutes
B-1:タフマーMA9015
無水マレイン酸変性エチレン-ブテン共重合体、酸価11.6mgKOH/g、MFR(190℃、荷重2.16kgで測定、以下、ポリオレフィンのMFRについて同じ):11.0g/分、ビカット軟化温度30~40℃程度、三井化学社製
B-2:タフマーMH5020
無水マレイン酸変性オレフィン重合体、酸価15.5mgKOH/g、MFR0.6g/分、ビカット軟化温度30~40℃程度、三井化学社製
B-3:タフマーMH7510
無水マレイン酸変性オレフィン重合体、酸価7.3mgKOH/g、MFR40.0g/分、ビカット軟化温度30~40℃程度、三井化学社製
B-4:ノバテックLC522
酸未変性オレフィン重合体、酸価0mgKOH/g、MFR4.0g/分、ビカット軟化温度90℃程度、日本ポリエチレン社製
B-1: Toughmer MA9015
Maleic anhydride-modified ethylene-butene copolymer, acid value 11.6 mgKOH/g, MFR (measured at 190°C under a load of 2.16 kg, hereinafter the same for polyolefin MFR): 11.0 g/min, Vicat softening temperature 30 ~40°C, Mitsui Chemicals B-2: Toughmer MH5020
Maleic anhydride-modified olefin polymer, acid value 15.5 mg KOH/g, MFR 0.6 g/min, Vicat softening temperature 30 to 40° C., Mitsui Chemicals B-3: Toughmer MH7510
Maleic anhydride-modified olefin polymer, acid value 7.3 mgKOH/g, MFR 40.0 g/min, Vicat softening temperature of about 30 to 40°C, Mitsui Chemicals B-4: Novatec LC522
Acid-unmodified olefin polymer, acid value 0 mgKOH/g, MFR 4.0 g/min, Vicat softening temperature of about 90°C, manufactured by Japan Polyethylene Co., Ltd.
C-1:シリコーンオイル1000cSt
製造元:信越化学工業社製、KF-96H-1,000cs、25℃における動粘度が1000cSt
C-2:シリコーンオイル6000cSt
製造元:信越化学工業社製、KF-96H-6,000cs、25℃における動粘度が6000cSt
C-3:シリコーンオイル10000cSt
製造元: 信越化学工業社製、KF-96H-10,000cs、25℃における動粘度が10000cSt
C-4:シリコーンオイル30000cSt
製造元: 信越化学工業社製、KF-96H-30,000、25℃における動粘度が30000cSt
C-5:シリコーンオイル60000cSt
製造元:信越化学工業社製、KF-96H-60,000、25℃における動粘度が60000cSt
C-1: Silicone oil 1000cSt
Manufacturer: Shin-Etsu Chemical Co., Ltd., KF-96H-1,000 cs, kinematic viscosity at 25 ° C. is 1000 cSt
C-2: Silicone oil 6000cSt
Manufacturer: Shin-Etsu Chemical Co., Ltd., KF-96H-6,000cs, kinematic viscosity at 25 ° C. is 6000cSt
C-3: Silicone oil 10000cSt
Manufacturer: Shin-Etsu Chemical Co., Ltd., KF-96H-10,000cs, kinematic viscosity at 25 ° C. is 10000cSt
C-4: Silicone oil 30000cSt
Manufacturer: Shin-Etsu Chemical Co., Ltd., KF-96H-30,000, kinematic viscosity at 25 ° C. is 30000 cSt
C-5: Silicone oil 60000cSt
Manufacturer: Shin-Etsu Chemical Co., Ltd., KF-96H-60,000, kinematic viscosity at 25 ° C. is 60000 cSt
D-1:パラフィンワックス155F
製造元:日本精鑞社製、ビカット軟化温度:測定不可、分子量(粘度法)300~550
D-2:ハイワックス720P
低分子量ポリエチレン、ビカット軟化温度:測定不可、分子量(粘度法)2700、三井化学社製
D-3:サンワックス151P
三洋化成社製、低分子量ポリエチレン、ビカット軟化温度:測定不可、数平均分子量2000
D-1: Paraffin wax 155F
Manufacturer: Nihon Seiro Co., Ltd. Vicat Softening temperature: Unmeasurable, molecular weight (viscosity method) 300-550
D-2: High wax 720P
Low molecular weight polyethylene, Vicat softening temperature: not measurable, molecular weight (viscosity method) 2700, Mitsui Chemicals D-3: Sanwax 151P
Sanyo Kasei Co., Ltd., low molecular weight polyethylene, Vicat softening temperature: not measurable, number average molecular weight: 2000
<酸価の測定>
 試料(酸変性オレフィン重合体、ポリエチレンワックス等)1gの中和に要する水酸化カリウムの質量を測定し、酸価とした。
 具体的には、JIS K0070に準拠して、中和滴定により測定を行った。試料1gを精秤し、キシレン100mLに約120℃で撹拌溶解した。完全に溶解した後、フェノールフタレイン溶液を加え、予め正確な濃度を求めた0.1mol/L水酸化カリウムエタノール溶液を用いて中和滴定を行った。滴下量(T)、0.1mol/L水酸化カリウムエタノール溶液のファクター(f)、水酸化カリウムの式量56.11の1/10(5.611)、試料の質量(S)から下記式により酸価を算出した。
 酸価=T×f×5.611/S
 単位は、mgKOH/gとして示した。
<Measurement of acid value>
The mass of potassium hydroxide required for neutralizing 1 g of a sample (acid-modified olefin polymer, polyethylene wax, etc.) was measured and taken as the acid value.
Specifically, it was measured by neutralization titration according to JIS K0070. 1 g of the sample was precisely weighed and dissolved in 100 mL of xylene with stirring at about 120°C. After complete dissolution, a phenolphthalein solution was added, and neutralization titration was performed using a 0.1 mol/L potassium hydroxide ethanol solution whose exact concentration had been determined in advance. The amount of dropping (T), the factor (f) of 0.1 mol / L potassium hydroxide ethanol solution, 1/10 (5.611) of the formula weight of potassium hydroxide 56.11, and the mass (S) of the sample, the following formula The acid value was calculated by
Acid value = T x f x 5.611/S
Units are given as mgKOH/g.
<動粘度の測定>
 ASTM D 445-46Tによるウッベローデ粘度計により測定した。
<Measurement of kinematic viscosity>
Measured with an Ubbelohde viscometer according to ASTM D 445-46T.
実施例1~11、比較例1~5
<コンパウンド>
 下記表1および表2に示すとおり各成分を配合し(表1および表2における各成分の単位は質量部である)、プリブレンドした後、1ヶ所のベント口を有する30mm径の二軸押出機の主フィード口に投入して溶融混合(押出条件:L/D=35、押出温度=190℃、スクリュー回転数=120rpm、ベント真空圧=-0.08MPa、吐出量=10kg/hr)し、ペレット状の樹脂組成物を調製した。26mm径の二軸押出機(芝浦機械社製)の根元から投入し、溶融した後で液体供給ポンプを用いてシリコーンオイルを供給し、樹脂ペレットを作成した。押出温度190℃、スクリュー回転数120rpm、ベンド真空圧-0.08MPa、吐出量12kg/hrの条件で実施した。
 得られた樹脂組成物を用いて以下の評価を行った。
Examples 1-11, Comparative Examples 1-5
<Compound>
Each component was blended as shown in Tables 1 and 2 below (the unit of each component in Tables 1 and 2 is parts by mass), preblended, and then a 30 mm diameter twin-screw extrusion having one vent port. (Extrusion conditions: L/D = 35, extrusion temperature = 190°C, screw speed = 120 rpm, vent vacuum pressure = -0.08 MPa, discharge rate = 10 kg/hr). , to prepare a resin composition in the form of pellets. The mixture was put into a twin-screw extruder with a diameter of 26 mm (manufactured by Shibaura Kikai Co., Ltd.) from the root, and after melting, silicone oil was supplied using a liquid supply pump to prepare resin pellets. Extrusion temperature was 190° C., screw rotation speed was 120 rpm, bend vacuum pressure was −0.08 MPa, and discharge rate was 12 kg/hr.
The following evaluation was performed using the obtained resin composition.
<対F20-03 限界PV値>
 円筒型スラスト試験片を、シリンダー温度200℃、金型温度80℃で射出成形にて作製した。オリエンテック社製スラスト式摩擦摩耗試験機を用い、温度23℃、湿度50%雰囲気下で、面圧を0.15、0.25、0.49、0.74、0.98、1.23、1.47MPaと3分ごとに昇圧して試験し、試験片が溶融もしくは異常摩耗した面圧の1つ前の面圧と線速度を乗じた値を限界PVとした。
<Compared to F20-03 limit PV value>
Cylindrical thrust test pieces were produced by injection molding at a cylinder temperature of 200°C and a mold temperature of 80°C. Using a thrust type friction wear tester manufactured by Orientec Co., Ltd., the surface pressure is 0.15, 0.25, 0.49, 0.74, 0.98, 1.23 in an atmosphere of 23 ° C. and 50% humidity. , and 1.47 MPa every 3 minutes, and the value obtained by multiplying the surface pressure immediately before the surface pressure at which the test piece was melted or abnormally worn by the linear velocity was defined as the limit PV.
<対F20-03(10kg) 動摩擦係数(-)>
 円筒型スラスト試験片を、シリンダー温度200℃、金型温度80℃で射出成形にて作製した。オリエンテック社製スラスト式摩擦摩耗試験機を用い、温度23℃、湿度50%雰囲気下で、面圧0.49MPa、線速度0.1m/秒で測定した。
<Compared to F20-03 (10kg) dynamic friction coefficient (-)>
Cylindrical thrust test pieces were produced by injection molding at a cylinder temperature of 200°C and a mold temperature of 80°C. Using a thrust-type friction wear tester manufactured by Orientec Co., Ltd., the measurement was performed at a temperature of 23° C. and a humidity of 50% at a surface pressure of 0.49 MPa and a linear velocity of 0.1 m/sec.
<対F20-03 摩耗(F20-03/自材)>
 円筒型スラスト試験片を、シリンダー温度200℃、金型温度80℃で射出成形にて作製した。オリエンテック社製スラスト式摩擦摩耗試験機を用い、温度23℃、湿度50%雰囲気下で、面圧0.15MPa、線速度0.3m/秒で20時間試験前後の試験片重量から摩耗量を算出した。
<Compared to F20-03 wear (F20-03 / own material)>
Cylindrical thrust test pieces were produced by injection molding at a cylinder temperature of 200°C and a mold temperature of 80°C. Using an Orientec thrust type friction wear tester, the temperature is 23 ° C., the humidity is 50%, the surface pressure is 0.15 MPa, the linear velocity is 0.3 m / sec. Calculated.
<成形性>
 射出成形機を用いて、シリンダー温度200℃、金型温度80℃に設定し、射出時間45秒、冷却時間20秒の射出条件で成形することにより、ISO294-1に準拠した多目的試験片形状の成形体を得た。計量にかかる時間で成形性を評価した。
A:15秒以内
B:18秒以内
C:18秒超
<Moldability>
Using an injection molding machine, the cylinder temperature is set to 200 ° C., the mold temperature is set to 80 ° C., the injection time is 45 seconds, and the cooling time is 20 seconds. A compact was obtained. Moldability was evaluated by the time required for weighing.
A: Within 15 seconds B: Within 18 seconds C: More than 18 seconds
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記結果から明らかなとおり、本発明の樹脂組成物は、摺動性に優れ、かつ成形性に優れていた(実施例1~11)。
 これに対し、シリコーンオイルの動粘度が高い場合(比較例1)、摺動性に劣っていた。また、シリコーンオイルを含まない場合(比較例2)、摺動性に劣っていた。また、炭化水素ワックスを含まない場合(比較例3)、摺動性に劣っていた。また、(B)/(C)の質量比率が2.0を超える場合(比較例4)、摺動性に劣っていた。また、オレフィン重合体を含まない場合(比較例5)、成形性に劣っていた。
As is clear from the above results, the resin composition of the present invention was excellent in slidability and moldability (Examples 1 to 11).
On the other hand, when the kinematic viscosity of the silicone oil was high (Comparative Example 1), the slidability was poor. Moreover, when silicone oil was not contained (Comparative Example 2), the slidability was inferior. Moreover, when the hydrocarbon wax was not contained (Comparative Example 3), the slidability was poor. Moreover, when the mass ratio of (B)/(C) exceeded 2.0 (Comparative Example 4), the slidability was poor. Further, when the olefin polymer was not contained (Comparative Example 5), the moldability was inferior.
1 押出機
2 原料供給口
3 樹脂溶融部
4 混練分散部
5 液体供給ポンプ
6 押出部
7 取り出し部
1 extruder 2 raw material supply port 3 resin melting section 4 kneading and dispersing section 5 liquid supply pump 6 extruding section 7 taking-out section

Claims (16)

  1. (A)ポリアセタール樹脂100質量部に対し、
    (B)オレフィン重合体0.1~30.0質量部と、
    (C)25℃における動粘度が1,000~55,000cStであるシリコーンオイル0.1~30.0質量部と、
    (D)炭化水素ワックス0.1~15.0質量部とを含み、
    前記(B)オレフィン重合体と(C)シリコーンオイルの質量比率である(B)/(C)が2.00以下である、
    樹脂組成物。
    (A) for 100 parts by mass of polyacetal resin,
    (B) 0.1 to 30.0 parts by mass of an olefin polymer;
    (C) 0.1 to 30.0 parts by mass of a silicone oil having a kinematic viscosity at 25°C of 1,000 to 55,000 cSt;
    (D) 0.1 to 15.0 parts by mass of a hydrocarbon wax,
    The mass ratio (B)/(C) of the (B) olefin polymer and (C) the silicone oil is 2.00 or less.
    Resin composition.
  2. 前記(B)オレフィン重合体と(C)シリコーンオイルの質量比率である(B)/(C)が0.10以上である、請求項1に記載の樹脂組成物。 2. The resin composition according to claim 1, wherein (B)/(C), which is the mass ratio of (B) the olefin polymer and (C) the silicone oil, is 0.10 or more.
  3. 前記(B)オレフィン重合体が、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、および、エチレン-ブテン共重合体からなる群より選ばれる、請求項1または2に記載の樹脂組成物。 3. The resin composition according to claim 1, wherein the (B) olefin polymer is selected from the group consisting of polyethylene, polypropylene, ethylene-propylene copolymers, and ethylene-butene copolymers.
  4. 前記(B)オレフィン重合体が、エチレン-ブテン共重合体を含む、請求項1または2に記載の樹脂組成物。 3. The resin composition according to claim 1, wherein the (B) olefin polymer comprises an ethylene-butene copolymer.
  5. 前記(B)オレフィン重合体のJIS K7206に従ったビカット軟化温度が30℃以上である、請求項1または2に記載の樹脂組成物。 3. The resin composition according to claim 1, wherein the (B) olefin polymer has a Vicat softening temperature of 30° C. or higher according to JIS K7206.
  6. 前記(B)オレフィン重合体の含有量が、前記(A)ポリアセタール樹脂100質量部に対し、0.1~3.0質量部である、請求項1または2に記載の樹脂組成物。 3. The resin composition according to claim 1, wherein the content of the (B) olefin polymer is 0.1 to 3.0 parts by mass with respect to 100 parts by mass of the (A) polyacetal resin.
  7. 前記(C)シリコーンオイルの含有量が、前記(A)ポリアセタール樹脂100質量部に対し、0.5~5.0質量部である、請求項1または2に記載の樹脂組成物。 3. The resin composition according to claim 1, wherein the content of said (C) silicone oil is 0.5 to 5.0 parts by mass with respect to 100 parts by mass of said (A) polyacetal resin.
  8. 前記(B)オレフィン重合体と(C)シリコーンオイルの質量比率である(B)/(C)が0.80以下である、請求項1または2に記載の樹脂組成物。 3. The resin composition according to claim 1, wherein (B)/(C), which is the mass ratio of (B) the olefin polymer and (C) the silicone oil, is 0.80 or less.
  9. 前記(B)オレフィン重合体と(C)シリコーンオイルの質量比率である(B)/(C)が0.50以下である、請求項1または2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein (B)/(C), which is the mass ratio of (B) the olefin polymer and (C) the silicone oil, is 0.50 or less.
  10. 前記(D)炭化水素ワックスと(C)シリコーンオイルの質量比率である(D)/(C)
    が1.0以下である、請求項1または2に記載の樹脂組成物。
    (D)/(C), which is the mass ratio of (D) hydrocarbon wax and (C) silicone oil
    is 1.0 or less, the resin composition according to claim 1 or 2.
  11. 摺動部材形成用である、請求項1または2に記載の樹脂組成物。 3. The resin composition according to claim 1, which is used for forming a sliding member.
  12. 請求項1または2に記載の樹脂組成物のペレット。 A pellet of the resin composition according to claim 1 or 2.
  13. 請求項1または2に記載の樹脂組成物から形成される成形品。 A molded article formed from the resin composition according to claim 1 or 2.
  14. 請求項12に記載のペレットから形成される成形品。 A shaped article formed from the pellets of claim 12 .
  15. 摺動部材である、請求項13に記載の成形品。 14. The molded article according to claim 13, which is a sliding member.
  16. 請求項1または2に記載の樹脂組成物の製造方法であって、
    (A)ポリアセタール樹脂と、(B)オレフィン重合体と、(D)炭化水素ワックスとを押出機の供給口から投入し、混練した後、液体供給ポンプから、(C)25℃における動粘度が1,000~55,000cStであるシリコーンオイルを投入して、さらに混練することを含む、樹脂組成物の製造方法。
    A method for producing the resin composition according to claim 1 or 2,
    (A) Polyacetal resin, (B) olefin polymer, and (D) hydrocarbon wax are charged from the feed port of the extruder and kneaded. A method for producing a resin composition, comprising adding a silicone oil of 1,000 to 55,000 cSt and further kneading.
PCT/JP2022/030285 2021-08-30 2022-08-08 Resin composition, molded article, and method for producing resin composition WO2023032606A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280058012.2A CN117897447A (en) 2021-08-30 2022-08-08 Resin composition, molded article, and method for producing resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-139873 2021-08-30
JP2021139873 2021-08-30

Publications (1)

Publication Number Publication Date
WO2023032606A1 true WO2023032606A1 (en) 2023-03-09

Family

ID=85412210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030285 WO2023032606A1 (en) 2021-08-30 2022-08-08 Resin composition, molded article, and method for producing resin composition

Country Status (2)

Country Link
CN (1) CN117897447A (en)
WO (1) WO2023032606A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04224856A (en) * 1990-12-26 1992-08-14 Mitsubishi Gas Chem Co Inc Polyacetal resin composition
JP2008019430A (en) * 2006-06-15 2008-01-31 Mitsubishi Engineering Plastics Corp Polyacetal resin composition, process for its production and sliding member produced by molding the resin composition
JP2011178880A (en) * 2010-03-01 2011-09-15 Techno Polymer Co Ltd Automobile interior part reduced in creaking sound
JP2014055297A (en) * 2013-10-10 2014-03-27 Techno Polymer Co Ltd Automobile interior part reducing creaking noise

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04224856A (en) * 1990-12-26 1992-08-14 Mitsubishi Gas Chem Co Inc Polyacetal resin composition
JP2008019430A (en) * 2006-06-15 2008-01-31 Mitsubishi Engineering Plastics Corp Polyacetal resin composition, process for its production and sliding member produced by molding the resin composition
JP2011178880A (en) * 2010-03-01 2011-09-15 Techno Polymer Co Ltd Automobile interior part reduced in creaking sound
JP2014055297A (en) * 2013-10-10 2014-03-27 Techno Polymer Co Ltd Automobile interior part reducing creaking noise

Also Published As

Publication number Publication date
CN117897447A (en) 2024-04-16

Similar Documents

Publication Publication Date Title
KR101380533B1 (en) Polyacetal resin composition, process for producing the same, and sliding member molded from the resin composition
WO1998018861A1 (en) Polyacetal resin composition
JP2011500922A (en) Polyacetal compositions with improved tribological properties
CA2350487C (en) Polyoxymethylene resin compositions having enhanced tensile elongation, thermal stability and impact resistance
WO2023032606A1 (en) Resin composition, molded article, and method for producing resin composition
Calderón et al. Evidence of compatibility and thermal stability improvement of poly (propylene carbonate) and polyoxymethylene blends
Jung et al. Physical and mechanical properties of plasticized butenediol vinyl alcohol copolymer/thermoplastic starch blend
KR20240051106A (en) Resin compositions, molded articles and methods for producing resin compositions
US11384237B2 (en) Polyacetal resin composition, molded article and method for manufacturing polyacetal resin composition
JP4828116B2 (en) Polyacetal resin composition
WO2022168970A1 (en) Resin composition and molded article
JP2009270024A (en) Thermoplastic resin composition improved in sliding property
Gonzalez et al. Toughening and brittle‐tough transition in blends of an amorphous polyamide with a modified styrene/ethylene‐butylene/styrene triblock copolymer
WO2017170508A1 (en) Polyacetal resin composition and molded article therefrom
JPH07216190A (en) Polyacetal resin composition
JP2020026485A (en) Resin composition for slide member and slide member
WO2023238790A1 (en) Resin composition and molded article
JP2009191113A (en) Polyacetal resin composition and slide member produced by molding it
WO2023243388A1 (en) Sliding member for conveyance devices and resin composition
JP2024028654A (en) Sliding members and resin compositions for conveyor devices
JP2023184214A (en) Resin composition, and molded article
WO2023199901A1 (en) Resin composition, pellet, and molded article
CN115340727A (en) Polypropylene alloy with high surface hardness and preparation method and application thereof
Ramiro et al. Compatibilized poly (ether imide)/amorphous polyamide blends by means of poly (ethylene terephthalate) addition
JP2020164661A (en) Polyamide resin composition and molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864192

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023545395

Country of ref document: JP