WO2023032387A1 - Fiber fabric and method for dyeing fiber fabric - Google Patents

Fiber fabric and method for dyeing fiber fabric Download PDF

Info

Publication number
WO2023032387A1
WO2023032387A1 PCT/JP2022/022853 JP2022022853W WO2023032387A1 WO 2023032387 A1 WO2023032387 A1 WO 2023032387A1 JP 2022022853 W JP2022022853 W JP 2022022853W WO 2023032387 A1 WO2023032387 A1 WO 2023032387A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber fabric
dyeing
fiber
temperature
color fastness
Prior art date
Application number
PCT/JP2022/022853
Other languages
French (fr)
Japanese (ja)
Inventor
泰治 ▲高▼木
順正 金法
Original Assignee
小松マテーレ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 小松マテーレ株式会社 filed Critical 小松マテーレ株式会社
Priority to KR1020247002209A priority Critical patent/KR20240047966A/en
Priority to CN202280055785.5A priority patent/CN117813427A/en
Publication of WO2023032387A1 publication Critical patent/WO2023032387A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • D04B1/16Other fabrics or articles characterised primarily by the use of particular thread materials synthetic threads
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B21/14Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes
    • D04B21/16Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes incorporating synthetic threads
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/08Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with halogenated hydrocarbons
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/34Material containing ester groups
    • D06P3/52Polyesters
    • D06P3/54Polyesters using dispersed dyestuffs

Definitions

  • the present invention relates to a fiber fabric containing synthetic fibers and a method for dyeing the fiber fabric.
  • a polyester fiber (hereinafter also referred to as “regular PET fiber”) made of polyethylene terephthalate (hereinafter also referred to as “regular PET”) obtained by polymerizing terephthalic acid and ethylene glycol is made into a sheet such as woven fabric or knitted fabric.
  • Polyester fiber fabric (hereinafter also referred to as “regular PET fiber fabric”) is known.
  • Regular PET fiber has excellent strength and elongation, and has high heat resistance among synthetic fibers for clothing, and is highly versatile. For this reason, regular PET fibers are used for various items such as underwear such as shirts and pants, inner garments such as blouses and sweaters, outer garments such as coats and anoraks, curtains and sheets.
  • a dyeing method for coloring such regular PET fibers and regular PET fiber fabrics fibers, yarns or fabrics are immersed in an aqueous dispersion containing a disperse dye, and the aqueous dispersion is heated to 130 ° C. to 135 ° C.
  • a method is known in which disperse dyes are exhausted (dyed) between molecular chains of polyethylene terephthalate constituting regular PET fibers by heating and treating at a high temperature of .
  • Fiber fabrics colored in this way have excellent color fastness to light and washing.
  • polyester fiber made by introducing a sulfonic acid group into the polyester so that it can be dyed at normal pressure with a cationic dye, or a (poly)oxyalkylene group added to the polyester.
  • polyester fibers that are introduced to enable dyeing at a low temperature with disperse dyes, or a combination thereof (Patent Document 1).
  • the polyester fiber into which a sulfonic acid group has been introduced has excellent color fastness because the cationic dye and the polyester fiber are bonded by ionic bonds, but the yarn strength is lower than that of regular PET fiber. There is a problem that it is weak.
  • polyester fibers to which (poly)oxyalkylene groups have been introduced have the problem of low washing fastness and sublimation fastness.
  • polyester fiber into which a sulfonic acid group is introduced and the polyester fiber into which a polyoxyalkylene group is introduced are difficult to use for general purposes because the production cost of the polyester resin is higher than that of regular PET.
  • the present invention has been made to solve such problems, and is a polyester fiber fabric obtained using synthetic fibers, particularly synthetic fibers made of polyethylene terephthalate, while reducing the temperature during dyeing.
  • the purpose of the present invention is to provide a fiber fabric, etc., which has excellent versatility and has excellent color fastness.
  • one aspect of the fiber fabric and the dyeing method for the fiber fabric according to the present invention has the following configuration.
  • One aspect of the fiber fabric according to the present invention includes synthetic fibers having a rigid amorphous fraction of 55% or less.
  • the synthetic fibers are preferably made of polyethylene terephthalate.
  • the fiber fabric is dyed with a disperse dye, and JIS L 0842 color fastness to ultraviolet carbon arc lamp light color fastness in the third exposure method is grade 3 or higher.
  • JIS L 0844 Color fastness test to washing Method A The color fastness in No. A-2 is grade 3 or higher in discoloration and staining grade 3 or higher, and JIS L 0860 Color fastness to dry cleaning A-1 method The color fastness is preferably grade 4 or higher for discoloration and grade 3 or higher for staining.
  • the fiber fabric is JIS L 1091 Combustibility test method for textile products A-1 method (45 ° micro burner method) both in heating for 1 minute and heating for 3 seconds. Afterflame is within 3 seconds, dust is within 5 seconds, carbonized area is within 30 cm 2 , and the number of times of flame contact is 3 or more in Method D (flame contact test (coil method)).
  • the method for dyeing a fiber fabric according to the present invention comprises immersing the fiber fabric in an aqueous dispersion containing a disperse dye and performing dyeing at a temperature of 120°C or less.
  • the aqueous dispersion preferably contains a flame retardant.
  • the fiber fabric according to the present invention can be dyed at a low temperature.
  • it is a fiber fabric containing synthetic fibers obtained using polyethylene terephthalate, it can be dyed at a temperature of 120° C. or less, so it is possible to greatly reduce the amount of energy used during dyeing.
  • the dyeing time can be shortened.
  • the synthetic fiber according to the present invention has excellent color fastness even though it is dyed at a low temperature of 120°C or less. Therefore, by using the synthetic fiber according to the present invention, it is possible to obtain a fiber fabric that can be used in various applications such as underwear, innerwear, outerwear, curtains, and sheets.
  • the synthetic fiber contained in the fiber fabric according to the present embodiment has a rigid amorphous fraction of 55% or less.
  • Drawn synthetic fibers generally consist of three phases: crystalline, mobile amorphous (amorphous exhibiting glass transition), and rigid amorphous (amorphous exhibiting no glass transition).
  • Normal (conventional) polyester fibers made of polyethylene terephthalate also referred to as “normal yarn” have a rigid amorphous fraction of about 60 to 70%, but the synthetic fibers used for the fiber fabric according to the present embodiment are As described above, the rigid amorphous fraction is 55% or less.
  • a synthetic fiber having a rigid amorphous fraction of 55% or less By using a synthetic fiber having a rigid amorphous fraction of 55% or less, even when the synthetic fiber is dyed at a low temperature, it has excellent coloring (dyeability) and is used in the field of clothing and the like. also has sufficient color fastness.
  • the combination of the crystal and the rigid amorphous is regarded as the total crystalline region, in the present embodiment, since the rigid amorphous fraction of the synthetic fiber is 55% or less, the crystal content is combined with the rigid amorphous. Also, the total crystal area is small. A lower total crystalline area indicates a higher mobile amorphous content that contributes to dyeing.
  • the synthetic fiber according to the present embodiment which has a smaller total crystal region than the normal yarn, has more mobile amorphous components that contribute to dyeing than the normal yarn. It is believed that this improves the dyeability at low temperatures. That is, since the synthetic fiber according to the present embodiment has a rigid amorphous fraction of 55% or less, the total crystal region is small and the mobile amorphous portion contributing to dyeing is large. As a result, the dyeing treatment can be performed at a low temperature to obtain a desired color density.
  • the lower limit of the rigid amorphous fraction is not particularly limited. It is preferably 20% or more, more preferably 25% or more, and even more preferably 30% or more.
  • the degree of orientation A in a plane parallel to the fiber axis direction obtained by wide-angle X-ray scattering measurement is preferably smaller than that of ordinary yarn.
  • normal yarn made of polyethylene terephthalate has an orientation degree A of about 83.4%, but the orientation degree A of synthetic fibers in the present embodiment is preferably smaller than this.
  • the degree of orientation A is preferably 80% or less, more preferably 78% or less.
  • the scattering intensity is plotted along the azimuth angle of the portion corresponding to the Miller index (100) plane in the triclinic system, and the half width of the peak that appears is Wh , the following (Equation 1) can be obtained. can be done.
  • a fully automatic multi-purpose X-ray diffractometer "SmartLab” (trade name) provided by Rigaku Co., Ltd. was used as the measuring device, and the measurement was performed at a tube current of 200 mA, a tube voltage of 45 kV, and an irradiation time of 15 minutes. By doing so, the degree of orientation A can be obtained.
  • the lower limit of the degree of orientation A is not particularly limited, but if the degree of orientation A is less than 70%, the crystal components in the molecules that exhibit high strength are not sufficiently oriented in the axial direction of the fiber, Mechanical strength may decrease.
  • the rigid amorphous fraction (%) of synthetic fibers can be obtained by the following (formula 2).
  • the rigid amorphous fraction and crystallinity of synthetic fibers are determined by temperature modulation DSC.
  • DSC8500 manufactured by PerkinElmer
  • the temperature rising conditions are between 60 and 160°C, which are moderate conditions for specific heat measurement around the glass transition temperature. 2 minutes, and between 160° C. and 280° C. are fast conditions to prevent recrystallization, for example, a heating rate of 40° C./min, a step temperature width of 2° C., and an isothermal holding time of 0.4 minutes.
  • the sample weight is measured at about 5 mg, and the rigid amorphous fraction can be obtained by the following (Equation 3) and (Equation 4).
  • ⁇ C p , ⁇ C p,a , ⁇ h F , ⁇ h F,perfect are defined as follows.
  • ⁇ C p Difference in specific heat before and after glass transition temperature obtained by temperature-modulated DSC ⁇ C p,a : Difference in specific heat before and after glass transition temperature of completely amorphous polyethylene terephthalate ⁇ h F: Heat of fusion of sample ⁇ h F, perfect : heat of fusion of perfect crystal
  • the glass transition temperature of synthetic fibers is obtained from the temperature dependence of the dynamic tensile modulus.
  • the measurement frequency is 10 Hz
  • the temperature increase rate is 2 ° C./min
  • the temperature at the peak of the loss elastic modulus in the temperature range of 40 to 150 ° C. is obtained. be able to.
  • the glass transition temperature of the regular PET fiber according to the present embodiment is preferably 110°C or higher, more preferably 114°C or higher, from the viewpoint of suppressing shrinkage of the fiber fabric due to heat. Moreover, from the viewpoint of suppressing embrittlement of the fiber fabric, the glass transition temperature of the regular PET fiber is preferably 125° C. or lower, more preferably 122° C. or lower.
  • the synthetic fibers in the fiber fabric according to the present embodiment are composed of polyethylene terephthalate, for example.
  • the fiber fabric using synthetic fibers according to the present embodiment will be described with respect to the fiber fabric using fibers made of polyethylene terephthalate as the synthetic fibers.
  • the fiber made of polyethylene terephthalate is a fiber melt-spun using a polyester resin (regular PET) obtained by polymerizing ethylene glycol and terephthalic acid.
  • the rigid amorphous fraction is 55% or less.
  • the regular PET fibers may contain known additives such as titanium oxide, antioxidants, light stabilizers, catalysts, etc., which are used for dulling of known polyester fibers.
  • the regular PET fiber according to the present embodiment has a rigid amorphous fraction of 55% or less, it has excellent dyeability and colorfastness even when the dyeing treatment is performed at a low temperature as described above.
  • the rigid amorphous fraction is more preferably 50% or less.
  • the crystallinity of the regular PET fiber according to the present embodiment is not particularly limited, but although it depends on the rigid amorphous fraction, from the viewpoint of the strength of the yarn obtained, it is 20% or more. It is preferably 45% or less from the viewpoint of dyeability at low temperatures.
  • the regular PET fiber according to this embodiment may be either monofilament or multifilament. From the viewpoint of versatility, the regular PET fibers are preferably multifilaments.
  • the yarn obtained from regular PET fibers is not particularly limited, it may have a thickness of 5 decitex to 200 decitex and a filament count of about 1 to 300.
  • regular PET fibers according to the present embodiment may be either long fibers or short fibers.
  • the regular PET fiber according to the present embodiment is not particularly limited in its adjusting method as long as the rigid amorphous fraction is adjusted to 55% or less.
  • Methods for adjusting the rigid amorphous fraction include, for example, addition of particles serving as a crystal nucleating agent or crystallization inhibitor to fibers, heating and rapid cooling of fibers or fiber fabrics, and spraying of suitable liquids such as water and organic solvents. and immersion in a liquid, stretching, application of mechanical shear force such as kneading, and methods combining these.
  • melt-spinning by a known method (raw silk: FDY, semi-drawn yarn: POY, or a composite of these yarns with a partially changed draw ratio), and then heated to 110 ° C. or higher and 160 ° C.
  • False twisting at a draw ratio of less than 1.6 at the following temperature has the effect of lowering the dyeing temperature by adjusting the rigid amorphous fraction to 55% or less, and the mechanical strength and dimensional stability of the fiber. , the texture can be improved at the same time, and the process can be simplified, which is preferable.
  • the temperature during false twisting is 120° C. or higher and 150° C. or lower.
  • the temperature during false twisting is preferably 140° C. or less.
  • the draw ratio is more preferably 1.5 or less.
  • the draw ratio is preferably 1.1 or more, more preferably 1.3 or more, from the viewpoint of bulkiness and stretchability of the yarn. .
  • the heat treatment during false twisting is performed in two ways. It is better to do it step by step.
  • the heat treatment is preferably performed at a heating temperature of 110° C. or higher and 160° C. or lower in the first step, and the heat treatment is performed at a heating temperature of 200° C. or higher and 300° C. or lower in the second step.
  • the heating temperature in the first stage is from 120°C to 150°C
  • the heating temperature in the second stage is from 230°C to 280°C, even more preferably from 240°C to 270°C. is preferred.
  • the rigid amorphous fraction of the regular PET fibers changes due to the heat treatment, it is preferable to control the heating temperature and the like so that the rigid amorphous fraction does not deviate from the preferable range.
  • regular PET fibers drawn as described above may be used as a composite yarn having different drawing ratios.
  • Composite use of regular PET fibers having different draw ratios can impart a heathered appearance, a feeling of fullness, and the like to the obtained fiber fabric.
  • regular PET fibers with different draw ratios if regular PET fibers with a rigid amorphous fraction of 55% or less are included, regular PET fibers with a rigid amorphous fraction of more than 55% are included. good too.
  • a yarn made of drawn regular PET fibers and a yarn made of undrawn regular PET fibers are aligned, and examples include those subjected to fluid treatment such as taslan treatment and interlace treatment, and those in which a yarn made of drawn regular PET fibers is used as a core yarn and a yarn made of undrawn regular PET fibers is wound around it to form a sheath yarn.
  • fluid treatment such as taslan treatment and interlace treatment
  • a yarn made of drawn regular PET fibers is used as a core yarn and a yarn made of undrawn regular PET fibers is wound around it to form a sheath yarn.
  • the regular PET fibers are short fibers
  • drawn regular PET fibers and undrawn regular PET fibers may be blended to form a composite.
  • the fiber fabric according to the present embodiment contains the above regular PET fibers, and its form is not particularly limited, and examples thereof include woven fabrics, knitted fabrics, and non-woven fabrics.
  • the regular PET fiber may be a yarn made of regular PET fiber having a rigid amorphous fraction of more than 55%, a yarn made of nylon fiber, or a polyester fiber into which a sulfonic acid group is introduced.
  • Synthetic fiber yarns, regenerated fibers such as rayon and acetate, semi-synthetic fibers, and natural fibers such as cotton, hemp, wool, silk, etc. may be used.
  • the fiber fabric according to the present embodiment is JIS L 0842 color fastness to ultraviolet carbon arc lamp light fastness in the third exposure method is grade 3 or higher, and JIS L 0844 color fastness test to washing A method A-2 color fastness is grade 3 or higher and staining grade 3 or higher, and JIS L 0860 color fastness to dry cleaning A-1 method is discoloration or fading grade 4 or higher and staining grade 3 or higher. good.
  • the fiber fabric according to the present embodiment preferably has a fastness level of discoloration grade 4 or higher and contamination grade 3 or higher in the JIS L 0854 dye fastness test method for sublimation.
  • the fiber fabric according to the present embodiment is immersed in an aqueous dispersion containing a disperse dye and dyed at a temperature of 120 ° C. or less. It is possible.
  • regular PET fibers and regular PET fiber fabrics obtained by dyeing regular PET fibers having a rigid amorphous fraction of more than 55% at a temperature of 120 ° C. or less have not achieved sufficient concentrations and desired
  • the disperse dye is not sufficiently exhausted to the gap between the molecules of the regular PET fiber, so a large amount of the disperse dye adheres to the surface of the fiber. Therefore, the color fastness to light, color fastness to washing, color fastness to sublimation, color fastness to dry cleaning and color fastness to rubbing were poor, and it was not possible to use it as a colored product with a desired color for clothes, curtains, and the like.
  • polyester fibers into which polyoxyalkylene groups are introduced at temperatures of 120° C. or less, they are highly hydrophilic, so their fastness to washing and fastness to rubbing (wet) are poor. There is the problem of low
  • the fiber fabric according to the present embodiment has excellent color fastness as described above, and it is possible to provide clothes, curtains, etc. colored in any desired color.
  • the fiber fabric according to the present embodiment is JIS L 1091 Combustibility test method for textile products A-1 method (45 ° micro burner method) heating for 1 minute and heating for 3 seconds with flame afterflame within 3 seconds, It is preferable that the residue is within 5 seconds, the carbonized area is within 30 cm 2 , and the number of times of flame contact is 3 or more in the D method (flame contact test (coil method)).
  • the fiber fabric according to the present embodiment can have the above flame retardancy even if it is immersed in an aqueous dispersion containing a flame retardant and processed at a temperature of 120 ° C. or less. is.
  • the flame retardant is It was thought that it would be difficult to meet the flame retardant standards set by the Japan Fire Retardant Association with low-temperature treatment such as 120°C or lower due to its low exhaustion rate.
  • the fiber fabric according to the present embodiment can meet the flame retardant performance test standards for the flame retardant articles set forth by the Fire Retardant Association.
  • the fiber fabric according to the present embodiment is subjected to a JIS L1902 antibacterial test for textile products after washing according to the product washing method prescribed by the High Temperature Accelerated Washing Method 50 Washes specified by the General Incorporated Association Textile Evaluation Technology Council.
  • Method and antibacterial effect Quantitative test Bacterial liquid absorption method Bacterial species used: Antibacterial activity value measured according to Staphylococcus aureus, growth of control sample (standard cloth (cotton): provided by (one company) Textile Evaluation Technology Council) value should be exceeded.
  • the fiber fabric according to the present embodiment has an antibacterial activity value after 100 washings (high temperature accelerated washing method: washing twice according to the product washing method prescribed for 50 washings) is the same as the control It should exceed the growth value of the sample (standard cloth (cotton): provided by the Japan Textile Evaluation Technology Council).
  • the high-temperature accelerated washing method is to wash at a high temperature of 80 ° C.
  • the fiber fabric according to the present embodiment has the above bacteriostatic performance even when it is immersed in an aqueous dispersion containing zinc pyrithione as an antibacterial agent and processed at a temperature of 120°C or less.
  • the fiber fabric according to the present embodiment even when the dyeing treatment is performed at a lower temperature than the conventional fiber fabric, the dyeing density (color density) and color fastness are equivalent to those of the conventional fiber fabric.
  • the desired fiber fabric can be obtained with less energy and in a short processing time.
  • the fiber fabric according to the present embodiment the case where the fiber fabric is immersed in an aqueous dispersion containing a disperse dye or the like at a temperature of 120 ° C. or less to perform a dyeing treatment or the like has been described.
  • dyeing a fiber fabric containing synthetic fibers for example, the case where the dyeing process is performed by immersing it in an aqueous dispersion containing a disperse dye at a temperature exceeding 120 ° C., such as 130 ° C., is not excluded.
  • dyeing treatment or the like may be performed by immersing in an aqueous dispersion containing a disperse dye or the like at a temperature exceeding 120°C.
  • the fiber fabric according to the present embodiment is not excluded from the fiber fabric according to the present embodiment, which is obtained by processing by a padding method or a textile printing method and imparted with functionality such as flame retardancy and bacteriostatic properties.
  • the fiber fabric according to may be imparted with functionality such as flame retardancy and bacteriostasis obtained by processing by a padding method or a textile printing method.
  • the dyeing method according to the present embodiment is a method for dyeing fiber fabric using synthetic fibers. Specifically, in the dyeing method according to the present embodiment, the regular PET fiber fabric is immersed in an aqueous dispersion containing a disperse dye and dyed at a temperature of 120° C. or less.
  • the dyeing method according to the present embodiment is a dyeing method called a bath exhaustion method, in which a fiber fabric is immersed in an aqueous dispersion containing a disperse dye, and the temperature of the aqueous dispersion is It is a method of dyeing a polyester fiber with a disperse dye by increasing the
  • the dyeing machine used for the bath exhaustion method includes a high-pressure jet dyeing machine, high-pressure wince, high-pressure jigger, high-pressure drum-type dyeing machine, and the like.
  • the normal pressure type dyeing machine can also be used.
  • disperse dyes can be used as disperse dyes, and the "Kayalon Polyester” series and “Kayalon Microester” (registered trademark) series provided by Nippon Kayaku Co., Ltd., and provided by Kiwa Kagaku Kogyo Co., Ltd. "KIWALON POLYESTER” series, “Sumikaron” (registered trademark) series provided by Sumika Chemtex Co., Ltd., "TERASIL” (registered trademark) series provided by Huntsman Japan Co., Ltd., and Distar Japan Co., Ltd. and the "Dianix” (registered trademark) series.
  • a known dyeing aid may be added to the aqueous dispersion containing the disperse dye.
  • Dyeing assistants include, for example, acids, pH adjusters, chelating agents, leveling agents, slowing agents, dispersants, and carriers.
  • the dyeing temperature (temperature during dyeing) is 120°C or less. From the viewpoint of energy suppression, the dyeing temperature is preferably 115° C. or lower, more preferably 110° C. or lower, and even more preferably 105° C. or lower.
  • the lower limit of the dyeing temperature is not particularly limited, but the dyeing temperature is preferably 95° C. or higher from the viewpoint of achieving the desired color density and color fastness of the dyed polyester fiber fabric. More preferably, it is 100° C. or higher.
  • the dyeing temperature is lowered to 120°C or less, so the amount of energy used in the dyeing process is reduced. Furthermore, dyeing processing time can be shortened, and productivity is improved.
  • the temperature increase rate of the aqueous dispersion containing the disperse dye is preferably 3°C/min or more. This makes it possible to shorten the dyeing processing time, which is preferable from the viewpoint of productivity. More preferably, the heating rate of the aqueous dispersion is 4°C/min, still more preferably 5°C/min.
  • the temperature increase rate of 3 ° C./min, and the temperature increase rate exceeding 3 ° C./min Dyeing unevenness is less likely to occur even when dyeing is performed at a heating rate. Therefore, the dyeing processing time can be effectively shortened, and the productivity can be significantly improved.
  • the bath ratio of the regular PET fiber fabric and the water dispersion containing the disperse dye may be about 1:2 to 1:100 in terms of mass ratio of fiber fabric:water dispersion.
  • the fiber fabric:water dispersion ratio is preferably 1:4 to 1:100, more preferably 1:10 to 1:100.
  • the fiber fabric:water dispersion ratio is preferably 1:2 to 1:30, more preferably 1:4 to 1:15.
  • the fiber fabric:water dispersion 1:3 to 1:20, more preferably 1:5 to 1:10.
  • the regular PET fiber fabric dyed by the above dyeing method may be washed with water, washed with hot water and/or reduced, if necessary.
  • the dyed regular PET fiber fabric is subjected to drying, finishing, setting, water-repellent finishing, flame-retardant finishing, antibacterial and deodorant finishing, bactericidal finishing, SR finishing, deodorant finishing, and UV shielding in the usual manner.
  • drying, finishing, setting, water-repellent finishing, flame-retardant finishing, antibacterial and deodorant finishing, bactericidal finishing, SR finishing, deodorant finishing, and UV shielding in the usual manner. You may give well-known functional processing, such as processing.
  • urethane resin film an acrylic resin film, or a polyester resin film may be laminated on the regular PET fiber fabric before or after being dyed by a known method.
  • the aqueous dispersion containing the disperse dye is added with functionality such as a flame retardant, an antibacterial agent, an ultraviolet absorber, a water absorbing agent, and an SR agent. Disperse dye containing agents may also be added.
  • flame retardants such as halogen-based flame retardants and phosphorus-based flame retardants may be added to the aqueous dispersion containing disperse dyes, since flameproofing can be performed along with dyeing.
  • the regular PET fiber fabric according to the present embodiment has the flame retardant performance of flame retardant articles stipulated by the Fire Retardant Association even if it is treated at a low temperature of 120 ° C. or less. Can meet test standards. As a result, it is possible to obtain a fiber fabric such as a regular PET fiber fabric having excellent color fastness and excellent flame retardancy even when dyeing and flameproofing are performed at a low temperature of 120° C. or less.
  • the aqueous dispersion containing the flame retardant may be added with a dyeing aid or the like used in the aqueous dispersion containing the disperse dye.
  • the regular PET fiber fabric according to the present embodiment can be dyed at a low temperature of 120° C. or less, while the general regular PET It has antibacterial and deodorant performance and/or bactericidal performance with excellent washing durability, equivalent to that of a fiber fabric processed at a normal temperature of 130°C.
  • an antibacterial agent particularly zinc pyrithione
  • a fiber fabric containing fibers made of regular PET fibers can be dyed at a low temperature, so that energy consumption can be reduced. Moreover, the dyeing time required for raising the temperature to reach the maximum dyeing temperature can be shortened, so that the productivity of the dyeing process can be improved.
  • the regular PET fiber fabric obtained by such a dyeing method has sufficient color density and excellent color fastness.
  • by adding a functional agent to the aqueous dispersion containing the disperse dye as necessary it is possible to obtain a fiber fabric excellent in flame retardancy, antibacterial and deodorizing properties, and antibacterial properties. Therefore, the regular PET fiber fabric according to the present embodiment can be used for various purposes such as underwear, inner garments, outerwear, sheets, curtains, etc., as a versatile fiber fabric, like conventional regular polyester fiber fabrics. Can be used for textile products.
  • the dyeing method according to the present embodiment can reduce the amount of energy used during the dyeing process, so it is also an environmentally friendly dyeing method.
  • % omf is the mass % of the dye with respect to the mass of the fiber.
  • Sublimation fastness A test was performed according to JIS L 0854, Color fastness test method for sublimation.
  • Bacterial species used According to Staphylococcus aureus, antibacterial before washing and after 50 and 100 times of high temperature accelerated washing method Activity values were measured. In addition, antibacterial activity value>proliferation value of control sample (standard cloth (cotton): provided by (one company) Textile Evaluation Technology Council) is regarded as an acceptance criterion.
  • washing process is based on the Textile Evaluation Technology Council, Product Certification Department, SEK Mark Textile Product Washing Method, High Temperature Accelerated Washing Method (washing method for products stipulated to be washed 50 times). bottom. In addition, "100 times of washing” was obtained by repeating the above 50 times of washing twice.
  • Rigid Amorphous Fraction and Crystallinity were determined by temperature modulation DSC.
  • DSC8500 manufactured by PerkinElmer
  • the temperature elevation conditions between 60°C and 160°C, the conditions are moderate for specific heat measurement around the glass transition temperature, with a temperature elevation rate of 5°C/min, a step temperature width of 2°C, and an isothermal holding time of 2 minutes.
  • the heating rate was 40° C./min
  • the step temperature width was 2° C.
  • the isothermal holding time was 0.4 min under fast conditions to prevent recrystallization.
  • measurement was performed with a sample weight of about 5 mg, ⁇ C p and ⁇ h F were calculated, and the rigid amorphous fraction was obtained by the following (Equation 5) and (Equation 6).
  • the glass transition temperature was obtained from the temperature dependence of the dynamic tensile modulus. Specifically, using a dynamic viscoelasticity measuring device E4000 (manufactured by UBM), the measurement frequency is 10 Hz, the temperature increase rate is 2 ° C./min, and the temperature at the peak of the loss elastic modulus in the temperature range of 40 to 150 ° C. A glass transition temperature was determined.
  • Example 1 Regular PET was melt-spun to obtain a semi-drawn yarn. Next, false twisting was performed to obtain a yarn made of regular PET fibers of 83 decitex and 36 filaments.
  • the obtained regular PET fiber had a rigid amorphous fraction of 46%, a crystallinity of 30%, and a glass transition temperature of 120°C.
  • this regular PET fiber was knitted to obtain a knitted fabric.
  • the dyed fiber fabric was colored uniformly light orange.
  • the time required for the dyeing process was about 90 minutes.
  • Example 2 Regular PET was melt-spun to obtain raw silk. Next, false twisting was performed to obtain a yarn made of regular PET fibers of 83 decitex and 36 filaments. The obtained regular PET fiber had a rigid amorphous fraction of 38%, a crystallinity of 37%, and a glass transition temperature of 119°C.
  • this regular PET fiber was knitted to obtain a knitted fabric.
  • the dyed fiber fabric was colored black.
  • the time required for the dyeing process (total time for a series of processes including scouring, dyeing, reduction washing, and water washing) was about 140 minutes.
  • Example 2 was uniformly dyed, and its color density was equivalent to that obtained by dyeing at 135°C for 60 minutes using the aqueous dispersion containing the disperse dye. color density. Table 1 shows the color fastness and the like of the fiber fabric of Example 2 thus obtained.
  • Example 3 Regular PET was melt-spun to obtain a semi-drawn yarn. Next, using two heaters, false twisting was carried out while heat treatment was carried out in two steps to obtain a yarn composed of regular PET fibers of 83 decitex and 36 filaments. The obtained regular PET fiber had a rigid amorphous fraction of 44%, a crystallinity of 33%, and a glass transition temperature of 114°C.
  • this regular PET fiber was used as the warp, and a commercially available 166 decitex, 48 filament black spun PET fiber (rigid amorphous fraction: 60%) was used as the weft.
  • a satin fabric having a basis weight of m 2 was obtained.
  • the knitted fabric obtained by knitting using the regular PET fibers thus obtained was dyed in the same manner as in Example 1.
  • the fiber fabric of Comparative Example 1 thus obtained was orange, but the color density was low.
  • the dyeing state of the fiber fabric of Comparative Example 1 the dyeing was slightly uneven.
  • the fiber fabric of Comparative Example 2 thus obtained had almost the same color and color fastness as Example 2, but the time required for dyeing (dyeing, reduction washing, reduction washing, water washing) The total time for a series of processes) was about 200 minutes. Table 1 shows the color fastness and the like of the fiber fabric of Comparative Example 2.
  • Example 4 The warp used in Example 3 was changed to the fiber used in Example 2, and the processing was performed in the same manner as in Example 3.
  • the fabric dyed using the regular PET fibers used in Example 3 had a longer length of the fabric after dyeing than the fabric dyed using the regular PET fibers used in Example 2.
  • the length was longer than 10%. Therefore, it was confirmed that heat treatment using two heaters during false twisting improves the dimensional stability of the obtained fiber fabric.
  • Other color fastness and flame retardancy were the same as in Example 3.
  • Example 5 Regular PET was melt-spun to obtain a semi-drawn yarn. Next, false twisting was performed to obtain a yarn made of regular PET fibers of 83 decitex and 36 filaments.
  • the obtained regular PET fiber had a rigid amorphous fraction of 46%, a crystallinity of 30%, and a glass transition temperature of 120°C.
  • the time required for the dyeing process was about 70 minutes.
  • Comparative Example 3 The fiber fabric was prepared in the same manner as in Example 5, except that the regular PET fiber described in Comparative Example 1 was used, and the temperature was raised to 130°C at a rate of 2°C/min and maintained for 10 minutes as the dyeing conditions. got The time required for the dyeing process (total time of heating the aqueous dispersion to 130°C and maintaining the temperature at 130°C for 10 minutes) was about 100 minutes.
  • Table 2 shows the color fastness, etc. of the fiber fabric of Comparative Example 3 thus obtained.
  • the fiber fabrics of Examples 1, 2, 3, 4, and 5 are fiber fabrics obtained using regular PET fibers, they are all dyed at a low temperature of 120 ° C. or less and in a short time. , and had the same color density and color fastness as those of conventional fiber fabrics obtained by dyeing at 130°C to 135°C. Therefore, it was confirmed that a colored regular PET fiber fabric can be obtained with a small amount of energy and that the productivity is also excellent.
  • Example 1 As can be seen by comparing Example 1 and Comparative Example 1, it was confirmed that the fiber fabric of Example 1 hardly causes dyeing unevenness even though the temperature rise rate is high, and the productivity is improved. was done.
  • Example 3 even if the treatment is performed at a low temperature of 120°C or less, a regular PET fiber fabric can be obtained that has flameproof performance equivalent to that of ordinary dyeing at 130°C to 135°C. was confirmed.
  • Example 5 the fiber fabric of Example 5 was treated at a lower temperature than the fiber fabric of Comparative Example 3, which was subjected to normal antibacterial treatment at 130 ° C.
  • the bacteriostatic fiber fabric has excellent washing durability in spite of the fact that the bacteriostatic treatment was performed in a short treatment time.
  • the fiber fabric using the synthetic fiber according to the present invention can be used for textile products for various purposes such as underwear, inner garments, outer garments, sheets or curtains.

Abstract

The present invention enables the achievement of fiber fabric with excellent versatility, the fiber fabric being polyester fiber fabric that is obtained using synthetic fibers that are formed of a polyethylene terephthalate, and the fiber fabric still being capable of lowering the temperature during dyeing, while having excellent color fastness by setting the rigid amorphous fraction of the synthetic fibers to 55% or less.

Description

繊維布帛及び繊維布帛の染色方法Textile fabric and method for dyeing textile fabric
 本発明は、合成繊維を含む繊維布帛、及び、その繊維布帛の染色方法に関するものである。 The present invention relates to a fiber fabric containing synthetic fibers and a method for dyeing the fiber fabric.
 テレフタル酸とエチレングリコールとを重合させて得られるポリエチレンテレフタレート(以下、「レギュラーPET」ともいう)からなるポリエステル繊維(以下、「レギュラーPET繊維」ともいう)を、織物又は編物などのシート状にしたポリエステル製繊維布帛(以下、「レギュラーPET繊維布帛」ともいう。)が知られている。 A polyester fiber (hereinafter also referred to as "regular PET fiber") made of polyethylene terephthalate (hereinafter also referred to as "regular PET") obtained by polymerizing terephthalic acid and ethylene glycol is made into a sheet such as woven fabric or knitted fabric. Polyester fiber fabric (hereinafter also referred to as "regular PET fiber fabric") is known.
 レギュラーPET繊維は、優れた強度及び伸度をもっており、衣料用合成繊維の中では耐熱性が高く、汎用性に富んでいる。このため、レギュラーPET繊維は、シャツやパンツなどの下着、ブラウスやセーターなどの中衣、コートやアノラックなどの外衣、カーテンやシーツ等など、様々なものに用いられている。 Regular PET fiber has excellent strength and elongation, and has high heat resistance among synthetic fibers for clothing, and is highly versatile. For this reason, regular PET fibers are used for various items such as underwear such as shirts and pants, inner garments such as blouses and sweaters, outer garments such as coats and anoraks, curtains and sheets.
 従来、このようなレギュラーPET繊維やレギュラーPET繊維布帛を着色するための染色方法として、繊維、糸又は布帛を、分散染料を含む水分散液に浸漬し、当該水分散液を130℃~135℃の高温で加熱し処理することにより、レギュラーPET繊維を構成するポリエチレンテレフタレートの分子鎖と分子鎖との間に分散染料を吸尽(染着)させる方法が知られている。 Conventionally, as a dyeing method for coloring such regular PET fibers and regular PET fiber fabrics, fibers, yarns or fabrics are immersed in an aqueous dispersion containing a disperse dye, and the aqueous dispersion is heated to 130 ° C. to 135 ° C. A method is known in which disperse dyes are exhausted (dyed) between molecular chains of polyethylene terephthalate constituting regular PET fibers by heating and treating at a high temperature of .
 このようにして着色された繊維布帛は、光や洗濯などに対して優れた染色堅牢性を有している。 Fiber fabrics colored in this way have excellent color fastness to light and washing.
 しかしながら、従来の染色方法は、染色時に130℃以上の高温の熱処理が必要であることから、大量のエネルギーと時間とを必要としていた。 However, conventional dyeing methods require a high temperature heat treatment of 130°C or higher during dyeing, which requires a large amount of energy and time.
 そこで、ポリエステル樹脂を改質することで染色時の温度を低下させる技術が提案されている。例えば、ポリエステルの重合成分としてスルホイソフタル酸等を用い、ポリエステルにスルホン酸基を導入してカチオン染料により常圧にて染色できるようにしたポリエステル製繊維、または、ポリステルに(ポリ)オキシアルキレン基を導入して分散染料により低温で染色できるようにしたポリエステル製繊維、あるいはこれらを組み合わせたもの等が知られている(特許文献1)。 Therefore, technology has been proposed to lower the temperature during dyeing by modifying the polyester resin. For example, using sulfoisophthalic acid or the like as a polyester polymerization component, a polyester fiber made by introducing a sulfonic acid group into the polyester so that it can be dyed at normal pressure with a cationic dye, or a (poly)oxyalkylene group added to the polyester. There are known polyester fibers that are introduced to enable dyeing at a low temperature with disperse dyes, or a combination thereof (Patent Document 1).
特開平5-9807号公報JP-A-5-9807
 しかしながら、スルホン酸基が導入されたポリエステル製繊維は、カチオン染料と当該ポリエステル製繊維とがイオン結合により結合しているので染色堅牢度には優れているものの、糸の強度がレギュラーPET繊維に比べて弱いという課題がある。 However, the polyester fiber into which a sulfonic acid group has been introduced has excellent color fastness because the cationic dye and the polyester fiber are bonded by ionic bonds, but the yarn strength is lower than that of regular PET fiber. There is a problem that it is weak.
 また、(ポリ)オキシアルキレン基が導入されたポリエステル製繊維は、洗濯堅牢度や昇華堅牢度が低いという課題がある。 In addition, polyester fibers to which (poly)oxyalkylene groups have been introduced have the problem of low washing fastness and sublimation fastness.
 さらに、スルホン酸基が導入されたポリエステル製繊維もポリオキシアルキレン基が導入されたポリエステル製繊維も、レギュラーPETに比べてポリエステル樹脂の製造コストが高いので、汎用的に使用することが難しいという課題もある。 Furthermore, the polyester fiber into which a sulfonic acid group is introduced and the polyester fiber into which a polyoxyalkylene group is introduced are difficult to use for general purposes because the production cost of the polyester resin is higher than that of regular PET. There is also
 本発明は、このような課題を解決するためになされたものであり、合成繊維、特にポリエチレンテレフタレートからなる合成繊維を用いて得られたポリエステル繊維布帛でありながら、染色時の温度を低下させることができ、かつ、優れた染色堅牢度を有する汎用性に優れた繊維布帛等を提供することを目的とする。 The present invention has been made to solve such problems, and is a polyester fiber fabric obtained using synthetic fibers, particularly synthetic fibers made of polyethylene terephthalate, while reducing the temperature during dyeing. The purpose of the present invention is to provide a fiber fabric, etc., which has excellent versatility and has excellent color fastness.
 上記課題を解決するために、本発明に係る繊維布帛及び繊維布帛の染色方法の一態様は、以下の構成を有する。 In order to solve the above problems, one aspect of the fiber fabric and the dyeing method for the fiber fabric according to the present invention has the following configuration.
 (1)本発明に係る繊維布帛の一態様は、剛直非晶分率が55%以下である合成繊維を含む。 (1) One aspect of the fiber fabric according to the present invention includes synthetic fibers having a rigid amorphous fraction of 55% or less.
 (2)本発明に係る繊維布帛の一態様において、合成繊維がポリエチレンテレフタレートからなるとよい。 (2) In one aspect of the fiber fabric according to the present invention, the synthetic fibers are preferably made of polyethylene terephthalate.
 (3)本発明に係る繊維布帛の一態様において、繊維布帛は、分散染料で染色されており、JIS L 0842 紫外線カーボンアーク灯光に対する染色堅牢度 第3露光法での染色堅牢度が3級以上であり、JIS L 0844 洗濯に対する染色堅牢度試験 A法 A-2号での染色堅牢度が変退色3級以上かつ汚染3級以上であり、JIS L 0860 ドライクリーニングに対する染色堅牢度 A-1法での染色堅牢度が、変退色4級以上かつ汚染3級以上であるとよい。 (3) In one aspect of the fiber fabric according to the present invention, the fiber fabric is dyed with a disperse dye, and JIS L 0842 color fastness to ultraviolet carbon arc lamp light color fastness in the third exposure method is grade 3 or higher. JIS L 0844 Color fastness test to washing Method A The color fastness in No. A-2 is grade 3 or higher in discoloration and staining grade 3 or higher, and JIS L 0860 Color fastness to dry cleaning A-1 method The color fastness is preferably grade 4 or higher for discoloration and grade 3 or higher for staining.
 (4)本発明に係る繊維布帛の一態様において、繊維布帛は、JIS L 1091 繊維製品の燃焼性試験方法 A-1法(45°ミクロバーナー法)1分間加熱及び着炎3秒加熱において共に残炎が3秒以内、残じんが5秒以内、炭化面積が30cm2以内であり、D法(接炎試験(コイル法))において接炎回数が3回以上であるとよい。 (4) In one aspect of the fiber fabric according to the present invention, the fiber fabric is JIS L 1091 Combustibility test method for textile products A-1 method (45 ° micro burner method) both in heating for 1 minute and heating for 3 seconds. Afterflame is within 3 seconds, dust is within 5 seconds, carbonized area is within 30 cm 2 , and the number of times of flame contact is 3 or more in Method D (flame contact test (coil method)).
 (5)本発明に係る繊維布帛の染色方法は、上記の繊維布帛を、分散染料を含む水分散液に浸漬し、120℃以下の温度にて染色加工を行うものである。 (5) The method for dyeing a fiber fabric according to the present invention comprises immersing the fiber fabric in an aqueous dispersion containing a disperse dye and performing dyeing at a temperature of 120°C or less.
 (6)本発明に係る繊維布帛の染色方法において、水分散液に難燃剤が含まれているとよい。 (6) In the method for dyeing a fiber fabric according to the present invention, the aqueous dispersion preferably contains a flame retardant.
 本発明に係る繊維布帛によれば、低い温度で染色することができる。特にポリエチレンテレフタレート用いて得られた合成繊維を含む繊維布帛でありながら、120℃以下の温度で染色することができるので、染色時のエネルギー使用量を大幅に削減することができる。また、染色時において分散染料を含む水分散液の温度を130℃以上にまで上げる必要が無いため、染色時間を短縮することもできる。 The fiber fabric according to the present invention can be dyed at a low temperature. In particular, even though it is a fiber fabric containing synthetic fibers obtained using polyethylene terephthalate, it can be dyed at a temperature of 120° C. or less, so it is possible to greatly reduce the amount of energy used during dyeing. Moreover, since it is not necessary to raise the temperature of the aqueous dispersion containing the disperse dye to 130° C. or higher during dyeing, the dyeing time can be shortened.
 また、本発明に係る合成繊維は、120℃以下という低い温度で染色したにも関わらず、優れた染色堅牢度を有している。従って、本発明に係る合成繊維を用いることで、下着、中衣、外衣、さらに、カーテン、シーツなど、種々の用途に用いることができる繊維布帛を得ることができる。 In addition, the synthetic fiber according to the present invention has excellent color fastness even though it is dyed at a low temperature of 120°C or less. Therefore, by using the synthetic fiber according to the present invention, it is possible to obtain a fiber fabric that can be used in various applications such as underwear, innerwear, outerwear, curtains, and sheets.
 以下、本発明の実施の形態について説明する。なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。従って、以下の実施の形態で示される、数値、形状、材料、構成要素等は、一例であって本発明を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Embodiments of the present invention will be described below. It should be noted that each of the embodiments described below is a preferred specific example of the present invention. Therefore, numerical values, shapes, materials, components, and the like shown in the following embodiments are examples and are not intended to limit the present invention. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in independent claims representing the highest level concept of the present invention will be described as optional constituent elements.
 (合成繊維)
 本実施の形態に係る繊維布帛に含まれる合成繊維は、剛直非晶分率が55%以下である。
(Synthetic fiber)
The synthetic fiber contained in the fiber fabric according to the present embodiment has a rigid amorphous fraction of 55% or less.
 合成繊維を製造する過程においては、得られる繊維の強度、形態安定性、染色堅牢性、タッチ、膨らみ感の付与などの種々の観点より、溶融紡糸工程やその後の撚糸や仮撚りなどの工程において合成繊維を延伸する工程がある。延伸された合成繊維は、一般的に、結晶、可動非晶(ガラス転移を示す非晶)、剛直非晶(ガラス転移を示さない非晶)の三相から構成されている。 In the process of manufacturing synthetic fibers, from various viewpoints such as the strength, shape stability, color fastness, touch, and provision of a feeling of swelling, the melt spinning process and subsequent processes such as twisting and false twisting There is a process of drawing synthetic fibers. Drawn synthetic fibers generally consist of three phases: crystalline, mobile amorphous (amorphous exhibiting glass transition), and rigid amorphous (amorphous exhibiting no glass transition).
 ポリエチレンテレフタレートからなる通常(従来)のポリエステル繊維(「通常糸」ともいう)の剛直非晶分率は60~70%程度であるが、本実施の形態に係る繊維布帛に用いられる合成繊維は、上記のように、剛直非晶分率が55%以下である。 Normal (conventional) polyester fibers made of polyethylene terephthalate (also referred to as “normal yarn”) have a rigid amorphous fraction of about 60 to 70%, but the synthetic fibers used for the fiber fabric according to the present embodiment are As described above, the rigid amorphous fraction is 55% or less.
 剛直非晶分率が55%以下である合成繊維を用いることにより、合成繊維を低い温度で染色処理を行った場合においても、着色性(染色性)に優れ、かつ、衣服等の分野において用いるには十分な染色堅牢度も有している。また、結晶と剛直非晶とを合わせてトータル結晶領域とみているが、本実施の形態では合成繊維の剛直非晶分率が55%以下であることから、剛直非晶に結晶分を合わせてもトータル結晶領域が少ない。トータル結晶領域が少ないことは、染色に寄与する可動非晶分が多いことを指す。従って、通常糸よりトータル結晶領域が少ない本実施の形態における合成繊維は、通常糸よりも染色に寄与する可動非晶分が多いといえる。そして、このことが低温での染色性を良くしていると考えられる。つまり、本実施の形態における合成繊維では、剛直非晶分率が55%以下であることから、トータル結晶領域が少なく、染色に寄与する可動非晶分が多くなっている。これにより、低い温度で所望の色濃度が得られる染色処理を行うことができる。 By using a synthetic fiber having a rigid amorphous fraction of 55% or less, even when the synthetic fiber is dyed at a low temperature, it has excellent coloring (dyeability) and is used in the field of clothing and the like. also has sufficient color fastness. In addition, although the combination of the crystal and the rigid amorphous is regarded as the total crystalline region, in the present embodiment, since the rigid amorphous fraction of the synthetic fiber is 55% or less, the crystal content is combined with the rigid amorphous. Also, the total crystal area is small. A lower total crystalline area indicates a higher mobile amorphous content that contributes to dyeing. Therefore, it can be said that the synthetic fiber according to the present embodiment, which has a smaller total crystal region than the normal yarn, has more mobile amorphous components that contribute to dyeing than the normal yarn. It is believed that this improves the dyeability at low temperatures. That is, since the synthetic fiber according to the present embodiment has a rigid amorphous fraction of 55% or less, the total crystal region is small and the mobile amorphous portion contributing to dyeing is large. As a result, the dyeing treatment can be performed at a low temperature to obtain a desired color density.
 なお、本実施の形態に係る合成繊維において、剛直非晶分率の下限は、特に限定されるものではないが、結晶化度にもよるものの、得られる糸の強度の観点からは、例えば、20%以上であることが好ましく、より好ましくは25%以上、さらにより好ましくは30%以上である。 In the synthetic fiber according to the present embodiment, the lower limit of the rigid amorphous fraction is not particularly limited. It is preferably 20% or more, more preferably 25% or more, and even more preferably 30% or more.
 さらに、本実施の形態に係る合成繊維では、低温での染色性の観点から、広角X線散乱測定により求められる繊維軸方向と平行な面における配向度Aは、通常糸よりも小さいとよりよい。例えば、ポリエチレンテレフタレートからなる通常糸では、配向度A=83.4%程度であるが、本実施の形態における合成繊維の配向度Aは、これよりも小さい方がよい。具体的には、本実施の形態における合成繊維がレギュラーPET繊維であれば、配向度Aは、80%以下であるとよく、より好ましくは78%以下である。なお、本実施の形態におけるレギュラーPETの配向度Aは、A=75.0%程度であるとよりよい。 Furthermore, in the synthetic fiber according to the present embodiment, from the viewpoint of dyeability at low temperatures, the degree of orientation A in a plane parallel to the fiber axis direction obtained by wide-angle X-ray scattering measurement is preferably smaller than that of ordinary yarn. . For example, normal yarn made of polyethylene terephthalate has an orientation degree A of about 83.4%, but the orientation degree A of synthetic fibers in the present embodiment is preferably smaller than this. Specifically, if the synthetic fibers in the present embodiment are regular PET fibers, the degree of orientation A is preferably 80% or less, more preferably 78% or less. The degree of orientation A of regular PET in the present embodiment is preferably about A=75.0%.
 なお、配向度Aは、例えば、c軸を繊維軸方向と一致させて広角X線散乱測定をして得られた2次元散乱像のうち、2θ=25.5°(PETの結晶系である三斜晶系におけるミラー指数(100)面に相当)部分を方位角に沿って散乱強度をプロットし、現れたピークの半値幅をWとしたときに、以下の(式1)で求めることができる。 The orientation degree A is, for example, 2θ = 25.5° (in the crystal system of PET When the scattering intensity is plotted along the azimuth angle of the portion corresponding to the Miller index (100) plane in the triclinic system, and the half width of the peak that appears is Wh , the following (Equation 1) can be obtained. can be done.
 配向度A=(360-2W)÷360・・・・・・(式1) Orientation degree A = (360-2 W h )/360 (Formula 1)
 この場合、測定装置としては、株式会社リガクが提供している「SmartLab」(商品名)の全自動多目的X線回折装置を用い、管電流200mA、管電圧45kV、照射時間15分にて測定を行うことで、配向度Aを求めることができる。 In this case, a fully automatic multi-purpose X-ray diffractometer "SmartLab" (trade name) provided by Rigaku Co., Ltd. was used as the measuring device, and the measurement was performed at a tube current of 200 mA, a tube voltage of 45 kV, and an irradiation time of 15 minutes. By doing so, the degree of orientation A can be obtained.
 なお、配向度Aの下限は特に限定されるものではないが、配向度Aが70%を下回ると、高い強度を発現する分子中の結晶成分が繊維の軸方向に十分配向しておらず、機械強度が低下するおそれがある。 The lower limit of the degree of orientation A is not particularly limited, but if the degree of orientation A is less than 70%, the crystal components in the molecules that exhibit high strength are not sufficiently oriented in the axial direction of the fiber, Mechanical strength may decrease.
 また、合成繊維の剛直非晶分率(%)は、以下の(式2)で求めることができる。 In addition, the rigid amorphous fraction (%) of synthetic fibers can be obtained by the following (formula 2).
 剛直非晶分率(%)=100-結晶化度-可動非晶分率・・・(式2)  Rigid amorphous fraction (%) = 100 - crystallinity - mobile amorphous fraction... (Formula 2)
 本実施の形態において、合成繊維の剛直非晶分率及び結晶化度は、温度変調DSCにて求めたものである。この場合、測定器として、DSC8500(PerkinElmer社製)を用いることができる。また、昇温条件としては、60~160℃間では、ガラス転移温度前後での比熱測定用に緩やかな条件であり、例えば、昇温速度5℃/分、ステップ温度幅2℃、等温保持時間2分で行い、160~280℃間では、再結晶化を防ぐために速い条件であり、例えば、昇温速度40℃/分、ステップ温度幅2℃、等温保持時間0.4分で行う。そして、試料重量を約5mgにて測定を行って、以下の(式3)及び(式4)により、剛直非晶分率を求めることができる。 In the present embodiment, the rigid amorphous fraction and crystallinity of synthetic fibers are determined by temperature modulation DSC. In this case, DSC8500 (manufactured by PerkinElmer) can be used as a measuring instrument. In addition, the temperature rising conditions are between 60 and 160°C, which are moderate conditions for specific heat measurement around the glass transition temperature. 2 minutes, and between 160° C. and 280° C. are fast conditions to prevent recrystallization, for example, a heating rate of 40° C./min, a step temperature width of 2° C., and an isothermal holding time of 0.4 minutes. Then, the sample weight is measured at about 5 mg, and the rigid amorphous fraction can be obtained by the following (Equation 3) and (Equation 4).
 剛直非晶分率(%)=(1-X-ΔC/ΔCp,a)×100・・(式3)
 X(結晶化度)=Δh/ΔhF,perfect ・・・・・・・・・・・・(式4)
Rigid amorphous fraction (%)=(1−X c −ΔC p /ΔC p,a )×100 (Formula 3)
X c (degree of crystallinity)=Δh F /Δh F, perfect (Equation 4)
 (式3)及び(式4)において、ΔC、ΔCp,a、Δh、ΔhF,perfectは、以下のように定義される。なお、本実施の形態において、ΔhF,perfect=140J/gとし、ΔCp,a=0.405J/g・Kとした。 In (Formula 3) and (Formula 4), ΔC p , ΔC p,a , Δh F , Δh F,perfect are defined as follows. In this embodiment, Δh F,perfect =140 J/g and ΔC p,a =0.405 J/g·K.
 ΔC:温度変調DSCにて求めたガラス転移温度前後での比熱の差
 ΔCp,a:完全非晶のポリエチレンテレフタレートのガラス転移温度前後での比熱の差
 ΔhF:試料の融解熱量
 ΔhF,perfect:完全結晶の融解熱量
ΔC p : Difference in specific heat before and after glass transition temperature obtained by temperature-modulated DSC ΔC p,a : Difference in specific heat before and after glass transition temperature of completely amorphous polyethylene terephthalate Δh F: Heat of fusion of sample Δh F, perfect : heat of fusion of perfect crystal
 また、合成繊維のガラス転移温度は、動的引張弾性率の温度依存性から求めたものである。具体的には、動的粘弾性測定装置E4000(UBM社製)を用い、測定周波数10Hz、昇温速度2℃/分、温度範囲40~150℃での損失弾性率のピーク時の温度より求めることができる。 In addition, the glass transition temperature of synthetic fibers is obtained from the temperature dependence of the dynamic tensile modulus. Specifically, using a dynamic viscoelasticity measuring device E4000 (manufactured by UBM), the measurement frequency is 10 Hz, the temperature increase rate is 2 ° C./min, and the temperature at the peak of the loss elastic modulus in the temperature range of 40 to 150 ° C. is obtained. be able to.
 本実施の形態に係るレギュラーPET繊維のガラス転移温度は、繊維布帛の熱による収縮を抑制する観点から、110℃以上が好ましく、114℃以上がより好ましい。また、繊維布帛の脆化を抑制する観点から、レギュラーPET繊維のガラス転移温度は、125℃以下が好ましく、122℃以下がより好ましい。 The glass transition temperature of the regular PET fiber according to the present embodiment is preferably 110°C or higher, more preferably 114°C or higher, from the viewpoint of suppressing shrinkage of the fiber fabric due to heat. Moreover, from the viewpoint of suppressing embrittlement of the fiber fabric, the glass transition temperature of the regular PET fiber is preferably 125° C. or lower, more preferably 122° C. or lower.
 本実施の形態に係る繊維布帛における合成繊維は、例えば、ポリエチレンテレフタレートによって構成されている。以下、本実施の形態に係る合成繊維を用いた繊維布帛について、合成繊維としてポリエチレンテレフタレートからなる繊維を用いた繊維布帛について説明する。 The synthetic fibers in the fiber fabric according to the present embodiment are composed of polyethylene terephthalate, for example. In the following, the fiber fabric using synthetic fibers according to the present embodiment will be described with respect to the fiber fabric using fibers made of polyethylene terephthalate as the synthetic fibers.
 (ポリエチレンテレフタレートからなる繊維)
 本実施の形態において、ポリエチレンテレフタレートからなる繊維(レギュラーPET繊維)とは、エチレングリコールとテレフタル酸を重合して得られるポリエステル樹脂(レギュラーPET)を用いて溶融紡糸された繊維であり、上記の通り剛直非晶分率が55%以下である。
(Fiber made of polyethylene terephthalate)
In the present embodiment, the fiber made of polyethylene terephthalate (regular PET fiber) is a fiber melt-spun using a polyester resin (regular PET) obtained by polymerizing ethylene glycol and terephthalic acid. The rigid amorphous fraction is 55% or less.
 なお、レギュラーPET繊維の中には、公知のポリエステル繊維のダル化等に用いられている酸化チタンや酸化防止剤、光安定剤又は触媒等、公知の添加物が含まれていてもよい。 The regular PET fibers may contain known additives such as titanium oxide, antioxidants, light stabilizers, catalysts, etc., which are used for dulling of known polyester fibers.
 本実施の形態に係るレギュラーPET繊維は、剛直非晶分率が55%以下であるので、上記のように、低い温度で染色処理を行った場合においても、染色性及び染色堅牢性に優れている。 Since the regular PET fiber according to the present embodiment has a rigid amorphous fraction of 55% or less, it has excellent dyeability and colorfastness even when the dyeing treatment is performed at a low temperature as described above. there is
 なお、分散染料を用いた低い温度での染色性の観点及び染色堅牢性の観点からは、剛直非晶分率は、50%以下であることがより好ましい。 From the viewpoint of dyeability at a low temperature using disperse dyes and the viewpoint of color fastness, the rigid amorphous fraction is more preferably 50% or less.
 また、本実施の形態に係るレギュラーPET繊維の結晶化度は、特に限定されるものではないが、剛直非晶分率にもよるものの、得られる糸の強度の観点からは、20%以上であるとよく、低い温度での染色性の観点からは45%以下であるとよい。 In addition, the crystallinity of the regular PET fiber according to the present embodiment is not particularly limited, but although it depends on the rigid amorphous fraction, from the viewpoint of the strength of the yarn obtained, it is 20% or more. It is preferably 45% or less from the viewpoint of dyeability at low temperatures.
 本実施の形態に係るレギュラーPET繊維は、モノフィラメント及びマルチフィラメントのいずれであっても良い。汎用性の観点から、レギュラーPET繊維は、マルチフィラメントであることが好ましい。 The regular PET fiber according to this embodiment may be either monofilament or multifilament. From the viewpoint of versatility, the regular PET fibers are preferably multifilaments.
 また、レギュラーPET繊維から得られる糸は、特に限定されるものではないが、糸の太さが5デシテックス~200デシテックスで、フィラメント数が1本~300本程度のものが挙げられる。 In addition, although the yarn obtained from regular PET fibers is not particularly limited, it may have a thickness of 5 decitex to 200 decitex and a filament count of about 1 to 300.
 また、本実施の形態に係るレギュラーPET繊維は、長繊維及び短繊維のいずれであってもよい。 Also, the regular PET fibers according to the present embodiment may be either long fibers or short fibers.
 また、本実施の形態に係るレギュラーPET繊維は、剛直非晶分率を55%以下に調整したものであれば、その調整方法は特に限定されない。剛直非晶分率を調整する方法としては、例えば、繊維への結晶核剤又は結晶化阻害剤となる粒子の添加、繊維又は繊維布帛に対する加熱、急冷、水や有機溶剤など適宜の液体の噴霧や液体への浸漬、延伸、揉み加工などの機械的せん断力の付与、及びこれらを組み合わせる方法などが挙げられる。 In addition, the regular PET fiber according to the present embodiment is not particularly limited in its adjusting method as long as the rigid amorphous fraction is adjusted to 55% or less. Methods for adjusting the rigid amorphous fraction include, for example, addition of particles serving as a crystal nucleating agent or crystallization inhibitor to fibers, heating and rapid cooling of fibers or fiber fabrics, and spraying of suitable liquids such as water and organic solvents. and immersion in a liquid, stretching, application of mechanical shear force such as kneading, and methods combining these.
 なかでも公知の方法で溶融紡糸(生糸:FDYや半延伸糸:POY、また、これらを複合した部分的に延伸率を変化させた糸であっても良い)にした後、110℃以上160℃以下の温度で延伸倍率が1.6未満にて仮撚加工されたものが、剛直非晶分率を55%以下に調整して染色温度を低下させる効果と、繊維の機械強度や寸法安定性、風合いの良さを同時に向上させることができ、工程の簡略化が可能となる効果とが得られるため、好ましい。より好ましくは、仮撚時の温度は、120℃以上、150℃以下である。さらに、仮撚時の温度は、140℃以下であるとよい。また、延伸倍率は、1.5以下であることがより好ましい。なお、延伸倍率の下限値は特に限定されるものではないが、糸の嵩高性及び伸縮性の観点から、延伸倍率は、1.1以上であるとよく、さらに好ましくは1.3以上である。 Above all, melt-spinning by a known method (raw silk: FDY, semi-drawn yarn: POY, or a composite of these yarns with a partially changed draw ratio), and then heated to 110 ° C. or higher and 160 ° C. False twisting at a draw ratio of less than 1.6 at the following temperature has the effect of lowering the dyeing temperature by adjusting the rigid amorphous fraction to 55% or less, and the mechanical strength and dimensional stability of the fiber. , the texture can be improved at the same time, and the process can be simplified, which is preferable. More preferably, the temperature during false twisting is 120° C. or higher and 150° C. or lower. Furthermore, the temperature during false twisting is preferably 140° C. or less. Further, the draw ratio is more preferably 1.5 or less. Although the lower limit of the draw ratio is not particularly limited, the draw ratio is preferably 1.1 or more, more preferably 1.3 or more, from the viewpoint of bulkiness and stretchability of the yarn. .
 また、本発明の所期の目的を逸脱しない範囲で、染ムラの抑制や風合い変化の観点から、紡糸時の延伸倍率又は仮撚時の延伸倍率や温度は、ランダムに変化させたものであってもよい。 In addition, the draw ratio during spinning or the draw ratio and temperature during false twisting were changed at random from the viewpoint of suppressing uneven dyeing and changing the texture within a range that does not deviate from the intended purpose of the present invention. may
 また、得られるレギュラーPET繊維布帛の寸法安定性(乾熱、湿熱、湿潤)、特に、精練時や後に説明を行う染色加工時の寸法安定性向上の観点から、仮撚り時の熱処理は、2段階にて行うとよい。この場合、1段目は、前記の110℃以上160℃以下の加熱温度で熱処理し、2段目は、200℃以上300℃以下の加熱温度で熱処理を行うとよい。 In addition, from the viewpoint of improving the dimensional stability (dry heat, wet heat, wet heat) of the obtained regular PET fiber fabric, especially during scouring and during dyeing processing, which will be described later, the heat treatment during false twisting is performed in two ways. It is better to do it step by step. In this case, the heat treatment is preferably performed at a heating temperature of 110° C. or higher and 160° C. or lower in the first step, and the heat treatment is performed at a heating temperature of 200° C. or higher and 300° C. or lower in the second step.
 より好ましくは、1段目の加熱温度は、120℃~150℃であることが好ましく、2段目の加熱温度は、230℃以上280℃以下、さらにより好ましくは240℃~270℃であることが好ましい。 More preferably, the heating temperature in the first stage is from 120°C to 150°C, and the heating temperature in the second stage is from 230°C to 280°C, even more preferably from 240°C to 270°C. is preferred.
 なお、熱処理によってレギュラーPET繊維の剛直非晶分率が変化するため、剛直非晶分率を好ましい範囲から逸脱しないように加熱温度等を管理するとよい。 In addition, since the rigid amorphous fraction of the regular PET fibers changes due to the heat treatment, it is preferable to control the heating temperature and the like so that the rigid amorphous fraction does not deviate from the preferable range.
 また、前記のように延伸されたレギュラーPET繊維は、異なる延伸倍率のものを複合した糸として用いてもよい。延伸倍率が異なるレギュラーPET繊維を複合して用いることにより、得られる繊維布帛に杢調の外観やふくらみ感等を与えることができる。特に延伸を行っていない未延伸のレギュラーPET繊維と延伸を行ったレギュラーPET繊維とを組み合わせるとよい。なお、延伸率が異なるレギュラーPET繊維を用いる場合、剛直非晶分率が55%以下のレギュラーPET繊維を含んでいれば、剛直非晶分率が55%を超えるレギュラーPET繊維が含まれていてもよい。 In addition, the regular PET fibers drawn as described above may be used as a composite yarn having different drawing ratios. Composite use of regular PET fibers having different draw ratios can impart a heathered appearance, a feeling of fullness, and the like to the obtained fiber fabric. In particular, it is preferable to combine non-drawn regular PET fibers with drawn regular PET fibers. When using regular PET fibers with different draw ratios, if regular PET fibers with a rigid amorphous fraction of 55% or less are included, regular PET fibers with a rigid amorphous fraction of more than 55% are included. good too.
 延伸倍率が異なるレギュラーPET繊維を複合する方法としては、例えば、延伸したレギュラーPET繊維からなる糸と未延伸のレギュラーPET繊維からなる糸とを引き揃えたもの、また、引き揃えたものに対してタスラン処理やインターレース処理などの流体処理を施したもの、延伸したレギュラーPET繊維からなる糸を芯糸とし、その周りに未延伸のレギュラーPET繊維からなる糸を巻き付け鞘糸としたものなどが挙げられる。レギュラーPET繊維が短繊維の場合には、延伸したレギュラーPET繊維と未延伸のレギュラーPET繊維とを混紡により複合してもよい。 As a method for combining regular PET fibers with different draw ratios, for example, a yarn made of drawn regular PET fibers and a yarn made of undrawn regular PET fibers are aligned, and Examples include those subjected to fluid treatment such as taslan treatment and interlace treatment, and those in which a yarn made of drawn regular PET fibers is used as a core yarn and a yarn made of undrawn regular PET fibers is wound around it to form a sheath yarn. . When the regular PET fibers are short fibers, drawn regular PET fibers and undrawn regular PET fibers may be blended to form a composite.
 なお、本発明の所期の目的を逸脱しない範囲で、レギュラーPET繊維に、ナイロン繊維やスルホン酸基を導入したポリエステル繊維などの他の合成繊維やレーヨン等の再生繊維、アセテート等の半合成繊維や綿、麻、羊毛、絹などの天然繊維などの他の繊維を、混繊、混紡するなどして複合糸として用いてもよい。 In addition, other synthetic fibers such as nylon fibers and polyester fibers into which a sulfonic acid group is introduced, regenerated fibers such as rayon, semi-synthetic fibers such as acetate, etc., are used in addition to regular PET fibers, without departing from the intended purpose of the present invention. Alternatively, other fibers such as natural fibers such as cotton, hemp, wool, and silk may be used as a composite yarn by blending or blending.
 (ポリエチレンテレフタレートからなる繊維を含む繊維布帛)
 本実施の形態に係る繊維布帛は、上記のレギュラーPET繊維を含むものであり、その形態は、特に限定されるものではなく、例えば、織物、編物又は不織布等が挙げられる。
(Fiber fabric containing fibers made of polyethylene terephthalate)
The fiber fabric according to the present embodiment contains the above regular PET fibers, and its form is not particularly limited, and examples thereof include woven fabrics, knitted fabrics, and non-woven fabrics.
 また、所期の目的を逸脱しない範囲で、前記レギュラーPET繊維に、剛直非晶分率が55%超のレギュラーPET繊維からなる糸やナイロン繊維からなる糸あるいはスルホン酸基を導入したポリエステル繊維などの他の合成繊維からなる糸やレーヨン、アセテート等の再生繊維、半合成繊維や綿、麻、羊毛、絹などの天然繊維などの他の繊維からなる糸と交織又は交編などして複合して用いてもよい。 In addition, to the extent that does not deviate from the intended purpose, the regular PET fiber may be a yarn made of regular PET fiber having a rigid amorphous fraction of more than 55%, a yarn made of nylon fiber, or a polyester fiber into which a sulfonic acid group is introduced. Synthetic fiber yarns, regenerated fibers such as rayon and acetate, semi-synthetic fibers, and natural fibers such as cotton, hemp, wool, silk, etc. may be used.
 本実施の形態に係る繊維布帛は、JIS L 0842 紫外線カーボンアーク灯光に対する染色堅牢度 第3露光法での堅牢度が3級以上で、JIS L 0844 洗濯に対する染色堅牢度試験 A法 A-2号での堅牢度が、変退色3級以上かつ汚染3級以上で、JIS L 0860 ドライクリーニングに対する染色堅牢度 A-1法での堅牢度が、変退色4級以上かつ汚染3級以上であるとよい。 The fiber fabric according to the present embodiment is JIS L 0842 color fastness to ultraviolet carbon arc lamp light fastness in the third exposure method is grade 3 or higher, and JIS L 0844 color fastness test to washing A method A-2 color fastness is grade 3 or higher and staining grade 3 or higher, and JIS L 0860 color fastness to dry cleaning A-1 method is discoloration or fading grade 4 or higher and staining grade 3 or higher. good.
 また、本実施の形態に係る繊維布帛は、JIS L 0854 昇華に対する染色堅牢度試験方法での堅牢度が、変退色4級以上かつ汚染3級以上であるとよい。 In addition, the fiber fabric according to the present embodiment preferably has a fastness level of discoloration grade 4 or higher and contamination grade 3 or higher in the JIS L 0854 dye fastness test method for sublimation.
 特に、本実施の形態に係る繊維布帛は、分散染料を含む水分散液に浸漬し、120℃以下の温度にて染色加工を行ったものであっても、上記の染色堅牢度を有することが可能である。 In particular, the fiber fabric according to the present embodiment is immersed in an aqueous dispersion containing a disperse dye and dyed at a temperature of 120 ° C. or less. It is possible.
 従来、剛直非晶分率が55%超のレギュラーPET繊維を120℃以下の温度で染色(浴中吸尽法)して得られたレギュラーPET繊維及びレギュラーPET繊維布帛では、十分な濃度や所望の色に着色できなかったり、また、着色された場合においても分散染料がレギュラーPET繊維の分子と分子との隙間にまで十分吸尽されていないために繊維の表面に分散染料が多く付着したりするので、耐光堅牢度、洗濯堅牢度、昇華堅牢度、ドライクリーニング堅牢度及び摩擦堅牢度が悪く、衣服やカーテンなどで求められる色に着色されたものとしては用いることができなかった。 Conventionally, regular PET fibers and regular PET fiber fabrics obtained by dyeing regular PET fibers having a rigid amorphous fraction of more than 55% at a temperature of 120 ° C. or less (in-bath exhaustion method) have not achieved sufficient concentrations and desired In addition, even if it is colored, the disperse dye is not sufficiently exhausted to the gap between the molecules of the regular PET fiber, so a large amount of the disperse dye adheres to the surface of the fiber. Therefore, the color fastness to light, color fastness to washing, color fastness to sublimation, color fastness to dry cleaning and color fastness to rubbing were poor, and it was not possible to use it as a colored product with a desired color for clothes, curtains, and the like.
 また、ポリオキシアルキレン基を導入したポリエステル繊維を用いた繊維については、120℃以下の温度で着色することは可能ではあるが、親水性が強いので、洗濯堅牢度や摩擦堅牢度(湿潤)が低いという問題がある。 In addition, although it is possible to color fibers using polyester fibers into which polyoxyalkylene groups are introduced at temperatures of 120° C. or less, they are highly hydrophilic, so their fastness to washing and fastness to rubbing (wet) are poor. There is the problem of low
 これに対して、本実施の形態に係る繊維布帛は、上記のように優れた染色堅牢度を有しており、所望の任意の色に着色された衣服やカーテン等を提供することができる。 On the other hand, the fiber fabric according to the present embodiment has excellent color fastness as described above, and it is possible to provide clothes, curtains, etc. colored in any desired color.
 また、本実施の形態に係る繊維布帛は、JIS L 1091 繊維製品の燃焼性試験方法 A-1法(45°ミクロバーナー法)1分間加熱及び着炎3秒加熱共に残炎が3秒以内、残じんが5秒以内、炭化面積が30cm2以内であり、D法(接炎試験(コイル法))において接炎回数が3回以上であるとよい。 In addition, the fiber fabric according to the present embodiment is JIS L 1091 Combustibility test method for textile products A-1 method (45 ° micro burner method) heating for 1 minute and heating for 3 seconds with flame afterflame within 3 seconds, It is preferable that the residue is within 5 seconds, the carbonized area is within 30 cm 2 , and the number of times of flame contact is 3 or more in the D method (flame contact test (coil method)).
 特に、本実施の形態に係る繊維布帛は、難燃剤を含む水分散液に浸漬し、120℃以下の温度にて加工を行ったものであっても、上記の難燃性能を有することが可能である。 In particular, the fiber fabric according to the present embodiment can have the above flame retardancy even if it is immersed in an aqueous dispersion containing a flame retardant and processed at a temperature of 120 ° C. or less. is.
 また、これまで、ハロゲン系難燃剤やリン系難燃剤等を分散染料を含む水分散液に添加して行われる浴中吸尽法によるレギュラーPET繊維布帛では、難燃剤のレギュラーPET繊維への吸尽率が低く、120℃以下といった低温処理では、防炎協会が定める防炎基準をみたすことは困難であると考えられていた。 In addition, until now, in regular PET fiber fabrics by the bath exhaustion method, which is performed by adding a halogen-based flame retardant, a phosphorus-based flame retardant, etc. to an aqueous dispersion containing a disperse dye, the flame retardant is It was thought that it would be difficult to meet the flame retardant standards set by the Japan Fire Retardant Association with low-temperature treatment such as 120°C or lower due to its low exhaustion rate.
 これに対して、本実施の形態に係る繊維布帛は、防炎協会が定める上記防炎物品の防炎性能試験基準を満たすことができる。 On the other hand, the fiber fabric according to the present embodiment can meet the flame retardant performance test standards for the flame retardant articles set forth by the Fire Retardant Association.
 また、本実施の形態に係る繊維布帛は、一般社団法人 繊維評価技術協議会が定める高温加速洗濯法 洗濯50回規定の製品の洗濯方法に準じた洗濯後の、JIS L1902 繊維製品の抗菌性試験方法及び抗菌効果 定量試験 菌液吸収法 使用菌種:黄色ブドウ球菌に準じ測定された抗菌活性値が、対照試料(標準布(綿):(一社)繊維評価技術協議会より提供)の増殖値を上回るとよい。より好ましくは、本実施の形態に係る繊維布帛は、洗濯100回後(高温加速洗濯法 洗濯50回規定の製品の洗濯方法に準じた洗濯を2回施したもの)の抗菌活性値が、対照試料(標準布(綿):(一社)繊維評価技術協議会より提供)の増殖値を上回るとよい。 In addition, the fiber fabric according to the present embodiment is subjected to a JIS L1902 antibacterial test for textile products after washing according to the product washing method prescribed by the High Temperature Accelerated Washing Method 50 Washes specified by the General Incorporated Association Textile Evaluation Technology Council. Method and antibacterial effect Quantitative test Bacterial liquid absorption method Bacterial species used: Antibacterial activity value measured according to Staphylococcus aureus, growth of control sample (standard cloth (cotton): provided by (one company) Textile Evaluation Technology Council) value should be exceeded. More preferably, the fiber fabric according to the present embodiment has an antibacterial activity value after 100 washings (high temperature accelerated washing method: washing twice according to the product washing method prescribed for 50 washings) is the same as the control It should exceed the growth value of the sample (standard cloth (cotton): provided by the Japan Textile Evaluation Technology Council).
 なお、高温加速洗濯法は、80℃の高温で洗濯を行うものであり、当該基準を満たすことにより、一般的な生活環境で用いられるものだけではなく、医療施設及びそれに準じた施設用製品、例えば白衣などに対しても抗菌効果が期待できるとされている。 In addition, the high-temperature accelerated washing method is to wash at a high temperature of 80 ° C. By satisfying this standard, not only products used in general living environments, but also medical facilities and similar facility products, For example, it is said that antibacterial effects can be expected for white coats and the like.
 特に、本実施の形態に係る繊維布帛は、抗菌剤としてジンクピリチオンを含む水分散液に浸漬し、120℃以下の温度にて加工を行った場合であっても、上記の制菌性能を有する。 In particular, the fiber fabric according to the present embodiment has the above bacteriostatic performance even when it is immersed in an aqueous dispersion containing zinc pyrithione as an antibacterial agent and processed at a temperature of 120°C or less.
 以上のように、本実施の形態に係る繊維布帛によれば、従来の繊維布帛に比べて、低い温度で染色処理を行った場合でも、従来と同等の染色濃度(色濃度)や染色堅牢度を有しており、少ないエネルギーで、また、短い加工時間で、所望の繊維布帛を得ることができる。また、同様に少ないエネルギーで、また、短い加工時間で、難燃性及び制菌性などの機能性を有する繊維布帛を得ることができる。従って、環境にやさしい衣服、カーテン、シーツなどの繊維製品を提供することができる。 As described above, according to the fiber fabric according to the present embodiment, even when the dyeing treatment is performed at a lower temperature than the conventional fiber fabric, the dyeing density (color density) and color fastness are equivalent to those of the conventional fiber fabric. The desired fiber fabric can be obtained with less energy and in a short processing time. In addition, it is possible to obtain a fiber fabric having functionality such as flame retardancy and bacteriostatic properties with a similarly small amount of energy and a short processing time. Therefore, environment-friendly textile products such as clothes, curtains and sheets can be provided.
 なお、本実施の形態に係る繊維布帛では、繊維布帛を120℃以下の温度で分散染料等を含む水分散液に浸漬して染色処理等を行う場合について説明したが、従来のポリエチレンテレフタレートからなる合成繊維を含む繊維布帛を染色処理する場合、例えば130℃などの120℃を超える温度で分散染料等を含む水分散液に浸漬して染色処理等を行う場合を除外するものではなく、本実施の形態でも、120℃を超える温度で分散染料等を含む水分散液に浸漬して染色処理等を行ってもよい。また、パディング法や捺染法により加工を施して得られた難燃性や制菌性などの機能性を付与したものも本実施の形態に係る繊維布帛から除外するものではなく、本実施の形態に係る繊維布帛は、パディング法や捺染法により加工を施して得られた難燃性や制菌性などの機能性を付与したものであってもよい。 In the fiber fabric according to the present embodiment, the case where the fiber fabric is immersed in an aqueous dispersion containing a disperse dye or the like at a temperature of 120 ° C. or less to perform a dyeing treatment or the like has been described. When dyeing a fiber fabric containing synthetic fibers, for example, the case where the dyeing process is performed by immersing it in an aqueous dispersion containing a disperse dye at a temperature exceeding 120 ° C., such as 130 ° C., is not excluded. In the form of , dyeing treatment or the like may be performed by immersing in an aqueous dispersion containing a disperse dye or the like at a temperature exceeding 120°C. In addition, the fiber fabric according to the present embodiment is not excluded from the fiber fabric according to the present embodiment, which is obtained by processing by a padding method or a textile printing method and imparted with functionality such as flame retardancy and bacteriostatic properties. The fiber fabric according to may be imparted with functionality such as flame retardancy and bacteriostasis obtained by processing by a padding method or a textile printing method.
 (染色方法)
 次に、本実施の形態に係る染色方法について説明する。
(Dyeing method)
Next, a dyeing method according to this embodiment will be described.
 本実施の形態に係る染色方法は、合成繊維を用いた繊維布帛を染色する方法である。具体的には、本実施の形態に係る染色方法は、上記のレギュラーPET繊維布帛を、分散染料を含む水分散液に浸漬し、120℃以下の温度で染色するものである。 The dyeing method according to the present embodiment is a method for dyeing fiber fabric using synthetic fibers. Specifically, in the dyeing method according to the present embodiment, the regular PET fiber fabric is immersed in an aqueous dispersion containing a disperse dye and dyed at a temperature of 120° C. or less.
 より詳細には、本実施の形態に係る染色方法は、浴中吸尽法と言われる染色方法であって、分散染料を含む水分散液中に繊維布帛を浸漬し、当該水分散液の温度を上げることにより分散染料をポリエステル繊維に染着させる方法である。 More specifically, the dyeing method according to the present embodiment is a dyeing method called a bath exhaustion method, in which a fiber fabric is immersed in an aqueous dispersion containing a disperse dye, and the temperature of the aqueous dispersion is It is a method of dyeing a polyester fiber with a disperse dye by increasing the
 この場合、浴中吸尽法に用いられる染色機としては、高圧液流染色機、高圧ウインス、高圧ジッカー、高圧ドラム型染色機等が挙げられる。なお、100℃以下の温度にて浴中吸尽法により染色加工を行う場合には、上記染色機の常圧タイプのものも用いることができる。 In this case, the dyeing machine used for the bath exhaustion method includes a high-pressure jet dyeing machine, high-pressure wince, high-pressure jigger, high-pressure drum-type dyeing machine, and the like. When the dyeing process is carried out by the in-bath exhaust method at a temperature of 100° C. or less, the normal pressure type dyeing machine can also be used.
 分散染料は、公知の分散染料を用いることができ、日本化薬株式会社から提供されている「Kayalon Polyester」シリーズ、「Kayalon Microester」(登録商標)シリーズ、紀和化学工業株式会社から提供されている「KIWALON POLYESTER」シリーズ、住化ケムテックス株式会社から提供されている「Sumikaron」(登録商標)シリーズ、ハンツマンジャパン株式会社から提供される「TERASIL」(登録商標)シリーズ、ダイスタージャパン株式会社から提供される「Dianix」(登録商標)シリーズなどが挙げられる。 Known disperse dyes can be used as disperse dyes, and the "Kayalon Polyester" series and "Kayalon Microester" (registered trademark) series provided by Nippon Kayaku Co., Ltd., and provided by Kiwa Kagaku Kogyo Co., Ltd. "KIWALON POLYESTER" series, "Sumikaron" (registered trademark) series provided by Sumika Chemtex Co., Ltd., "TERASIL" (registered trademark) series provided by Huntsman Japan Co., Ltd., and Distar Japan Co., Ltd. and the "Dianix" (registered trademark) series.
 分散染料を含む水分散液には、公知の染色助剤が添加されていてもよい。染色助剤としては、例えば、酸、pH調整剤、キレート剤、均染剤、緩染剤、分散剤、キャリア等を挙げることができる。 A known dyeing aid may be added to the aqueous dispersion containing the disperse dye. Dyeing assistants include, for example, acids, pH adjusters, chelating agents, leveling agents, slowing agents, dispersants, and carriers.
 染色温度(染色時の温度)は、120℃以下で行う。エネルギー抑制の観点から、染色温度は、115℃以下であることが好ましく、より好ましくは110℃以下、さらにより好ましくは105℃以下である。 The dyeing temperature (temperature during dyeing) is 120°C or less. From the viewpoint of energy suppression, the dyeing temperature is preferably 115° C. or lower, more preferably 110° C. or lower, and even more preferably 105° C. or lower.
 染色温度の下限は、特に限定されるものではないが、染色されたポリエステル製繊維布帛の色濃度及び染色堅牢度を所望のものにするとの観点からは、染色温度は、95℃以上が好ましく、より好ましくは100℃以上である。 The lower limit of the dyeing temperature is not particularly limited, but the dyeing temperature is preferably 95° C. or higher from the viewpoint of achieving the desired color density and color fastness of the dyed polyester fiber fabric. More preferably, it is 100° C. or higher.
 本実施の形態に係る染色方法は、染色温度が120℃以下にまで低下させているので、染色加工におけるエネルギー量が削減される。さらに染色加工時間を短縮することができ、生産性が向上する。 In the dyeing method according to the present embodiment, the dyeing temperature is lowered to 120°C or less, so the amount of energy used in the dyeing process is reduced. Furthermore, dyeing processing time can be shortened, and productivity is improved.
 また、本実施の形態に係る染色方法において、分散染料を含む水分散液の昇温速度は、3℃/分以上であるとよい。これにより、染色加工時間を短縮することができ、生産性の観点より好ましい。より好ましくは、水分散液の昇温速度は、4℃/分、さらにより好ましくは5℃/分である。 Further, in the dyeing method according to the present embodiment, the temperature increase rate of the aqueous dispersion containing the disperse dye is preferably 3°C/min or more. This makes it possible to shorten the dyeing processing time, which is preferable from the viewpoint of productivity. More preferably, the heating rate of the aqueous dispersion is 4°C/min, still more preferably 5°C/min.
 一般的なレギュラーPET繊維布帛の浴中吸尽法での染色加工においては、分散染料を含む水分散液の温度をあまり速く上げすぎると染ムラが発生するため、水分散液の昇温速度は1~2℃/分程度である。また、以下で説明を行う浴比を調整し、繊維布帛に比べて水分散液の割合を大きくすることにより昇温速度を速くしかつ染ムラを抑制する方法も考えられるが、水分散液の割合を大きくすると、それだけ多くの水の温度を上げる必要があるため、結局エネルギー消費量が増えてしまうことになる。このため、これまで、水分散液の昇温速度は、現実的には3℃/分まで上げられるか否かという状況であった。 In the dyeing process of general regular PET fiber fabric by the bath exhaustion method, if the temperature of the aqueous dispersion containing the disperse dye is raised too quickly, uneven dyeing occurs. It is about 1 to 2°C/min. In addition, it is possible to increase the rate of temperature rise and suppress uneven dyeing by adjusting the bath ratio, which will be described below, and increasing the ratio of the aqueous dispersion compared to the fiber fabric. A higher ratio will eventually result in higher energy consumption since more water must be heated. For this reason, until now, it has been questioned whether the rate of temperature increase of the aqueous dispersion can be increased to 3° C./min in reality.
 これに対して、本実施の形態に係るレギュラーPET繊維を含む繊維布帛を用いることで、3℃/分の昇温速度、さらには3℃/分を超える昇温速度、例えば5℃/分の昇温速度で染色加工を行っても染ムラが発生し難い。従って、染色加工時間を効果的に短縮させることができ、生産性を著しく向上させることができる。 On the other hand, by using the fiber fabric containing the regular PET fiber according to the present embodiment, the temperature increase rate of 3 ° C./min, and the temperature increase rate exceeding 3 ° C./min. Dyeing unevenness is less likely to occur even when dyeing is performed at a heating rate. Therefore, the dyeing processing time can be effectively shortened, and the productivity can be significantly improved.
 また、レギュラーPET繊維布帛と分散染料を含む水分散液との浴比は、質量比で、繊維布帛:水分散液=1:2~1:100程度で行えばよい。この場合、染ムラを防止するとの観点からは、繊維布帛:水分散液=1:4~1:100であることが好ましく、より好ましくは1:10~1:100である。また、染色加工時のエネルギー消費量を削減するとの観点からは、繊維布帛:水分散液=1:2~1:30であることが好ましく、より好ましくは1:4~1:15である。 In addition, the bath ratio of the regular PET fiber fabric and the water dispersion containing the disperse dye may be about 1:2 to 1:100 in terms of mass ratio of fiber fabric:water dispersion. In this case, from the viewpoint of preventing uneven dyeing, the fiber fabric:water dispersion ratio is preferably 1:4 to 1:100, more preferably 1:10 to 1:100. From the viewpoint of reducing energy consumption during dyeing, the fiber fabric:water dispersion ratio is preferably 1:2 to 1:30, more preferably 1:4 to 1:15.
 特に、染ムラの防止とエネルギー消費量の削減との両立を図るとの観点からは、繊維布帛:水分散液=1:3~1:20であることが好ましく、より好ましくは1:5~1:10である。 In particular, from the viewpoint of achieving both prevention of dyeing unevenness and reduction of energy consumption, it is preferable that the fiber fabric:water dispersion = 1:3 to 1:20, more preferably 1:5 to 1:10.
 なお、上記の染色方法により染色加工されたレギュラーPET繊維布帛については、必要に応じて、水洗、湯洗及び/又は還元洗浄等を行ってもよい。 The regular PET fiber fabric dyed by the above dyeing method may be washed with water, washed with hot water and/or reduced, if necessary.
 以上説明したように、本実施の形態に係る染色方法によれば、120℃以下という低い温度で染色加工されたレギュラーPET繊維布帛であっても、所望の任意の色に着色することができ、また、優れた染色堅牢度を有するポリエステル製繊維布帛を得ることができる。 As described above, according to the dyeing method according to the present embodiment, even a regular PET fiber fabric dyed at a low temperature of 120° C. or less can be colored in any desired color. Moreover, a polyester fiber fabric having excellent color fastness can be obtained.
 また、染色加工されたレギュラーPET繊維布帛については、常法により、乾燥、仕上げセットを施したり、撥水加工、防炎加工、抗菌防臭加工、制菌加工、SR加工、消臭加工、紫外線遮蔽加工等の公知の機能性加工を施したりしても良い。 In addition, the dyed regular PET fiber fabric is subjected to drying, finishing, setting, water-repellent finishing, flame-retardant finishing, antibacterial and deodorant finishing, bactericidal finishing, SR finishing, deodorant finishing, and UV shielding in the usual manner. You may give well-known functional processing, such as processing.
 さらに、ウレタン樹脂膜やアクリル樹脂膜、ポリエステル樹脂膜を、公知の方法で、染色加工される前又は染色加工された後のレギュラーPET繊維布帛に積層してもよい。 Furthermore, a urethane resin film, an acrylic resin film, or a polyester resin film may be laminated on the regular PET fiber fabric before or after being dyed by a known method.
 また、本実施の形態に係る染色方法においては、分散染料を含む水分散液には、染色助剤以外にも、難燃剤、抗菌剤、紫外線吸収剤、吸水剤、SR剤等の機能性付与剤を含む分散染料が添加されていてもよい。 Further, in the dyeing method according to the present embodiment, in addition to the dyeing aid, the aqueous dispersion containing the disperse dye is added with functionality such as a flame retardant, an antibacterial agent, an ultraviolet absorber, a water absorbing agent, and an SR agent. Disperse dye containing agents may also be added.
 特に、染色加工と共に防炎加工を行うことができることから、ハロゲン系難燃剤やリン系難燃剤の難燃剤等を、分散染料を含む水分散液に添加してもよい。 In particular, flame retardants such as halogen-based flame retardants and phosphorus-based flame retardants may be added to the aqueous dispersion containing disperse dyes, since flameproofing can be performed along with dyeing.
 つまり、従来は、難燃剤を浴中吸尽法にて付与する場合、難燃剤の吸尽率が低く、120℃以下といった低温処理では、公益社団法人日本防炎協会(防炎協会)が定める基準を満たすことは困難であると考えられていたが、本実施の形態に係るレギュラーPET繊維布帛では、120℃以下といった低温処理であっても、防炎協会が定める防炎物品の防炎性能試験基準を満たすことができる。これにより、120℃以下の低温で染色加工と防炎加工とを行っても、優れた染色堅牢度を有するとともに優れた難燃性を有するレギュラーPET繊維布帛等の繊維布帛を得ることができる。 In other words, conventionally, when the flame retardant is applied by the bath exhaustion method, the exhaustion rate of the flame retardant is low, and in low temperature treatment such as 120 ° C or less, the Japan Fire Retardant Association (Fire Retardant Association) stipulates It was thought that it would be difficult to meet the standard, but the regular PET fiber fabric according to the present embodiment has the flame retardant performance of flame retardant articles stipulated by the Fire Retardant Association even if it is treated at a low temperature of 120 ° C. or less. Can meet test standards. As a result, it is possible to obtain a fiber fabric such as a regular PET fiber fabric having excellent color fastness and excellent flame retardancy even when dyeing and flameproofing are performed at a low temperature of 120° C. or less.
 なお、難燃剤を含む水分散液には、分散染料を含む水分散液に用いる染色助剤等が添加されていてもよい。 The aqueous dispersion containing the flame retardant may be added with a dyeing aid or the like used in the aqueous dispersion containing the disperse dye.
 また、抗菌剤、特にジンクピリチオンを水分散液に添加することで、本実施の形態に係るレギュラーPET繊維布帛は、120℃以下の低い温度で染色加工されたものでありながら、一般的なレギュラーPET繊維布帛を通常の130℃で加工したものと同等に、洗濯耐久性に優れた抗菌防臭性能及び/又は制菌性能を有する。 In addition, by adding an antibacterial agent, particularly zinc pyrithione, to the water dispersion, the regular PET fiber fabric according to the present embodiment can be dyed at a low temperature of 120° C. or less, while the general regular PET It has antibacterial and deodorant performance and/or bactericidal performance with excellent washing durability, equivalent to that of a fiber fabric processed at a normal temperature of 130°C.
 以上のように、本実施の形態に係る染色方法によれば、レギュラーPET繊維からなる繊維を含む繊維布帛に対して、低い温度で染色することができるのでエネルギーの消費量を削減することができ、かつ、最高染色温度に到達するまでの昇温にかかる染色時間を短縮することができるので、染色加工の生産性を向上させることができる。そして、このような染色方法で得られたレギュラーPET繊維布帛は、十分な着色の濃度を有するとともに、優れた染色堅牢度を有する。また、分散染料を含む水分散液に必要に応じて機能性剤を添加することで、難燃性や抗菌防臭性、制菌性にも優れた繊維布帛を得ることもできる。従って、本実施の形態に係るレギュラーPET繊維布帛は、従来のレギュラーポリエステル繊維製繊維布帛と同様に、汎用性のある繊維布帛として、肌着、中衣、外衣、シーツ、カーテン等、様々な用途の繊維製品に用いることができる。 As described above, according to the dyeing method according to the present embodiment, a fiber fabric containing fibers made of regular PET fibers can be dyed at a low temperature, so that energy consumption can be reduced. Moreover, the dyeing time required for raising the temperature to reach the maximum dyeing temperature can be shortened, so that the productivity of the dyeing process can be improved. The regular PET fiber fabric obtained by such a dyeing method has sufficient color density and excellent color fastness. In addition, by adding a functional agent to the aqueous dispersion containing the disperse dye as necessary, it is possible to obtain a fiber fabric excellent in flame retardancy, antibacterial and deodorizing properties, and antibacterial properties. Therefore, the regular PET fiber fabric according to the present embodiment can be used for various purposes such as underwear, inner garments, outerwear, sheets, curtains, etc., as a versatile fiber fabric, like conventional regular polyester fiber fabrics. Can be used for textile products.
 さらに、本実施の形態では、染色時に分散染料を含む水分散液の昇温速度を上げた場合であっても、繊維布帛に染ムラ等が発生しにくい。このため、エネルギー消費量の削減と加工時間の削減(生産性の向上)とを図ることができるだけではなく、繊維布帛の外観品位が低下することも抑制できる。 Furthermore, in the present embodiment, even if the temperature rise rate of the aqueous dispersion containing the disperse dye is increased during dyeing, uneven dyeing or the like is less likely to occur in the fiber fabric. For this reason, it is possible not only to reduce energy consumption and processing time (improve productivity), but also to suppress deterioration of the appearance quality of the fiber fabric.
 また、本実施の形態に係る染色方法は、染色加工時のエネルギー量を削減できるので、環境にやさしい染色方法にもなっている。 In addition, the dyeing method according to the present embodiment can reduce the amount of energy used during the dyeing process, so it is also an environmentally friendly dyeing method.
 以下、実施例及び比較例を挙げて本実施の形態に係る繊維布帛を詳細に説明するが、本発明は、以下の実施例によって限定されるものではない。なお、「%omf」とは、繊維の質量に対する染料の質量%である。 Although the fiber fabric according to the present embodiment will be described in detail below with reference to examples and comparative examples, the present invention is not limited to the following examples. Note that "% omf" is the mass % of the dye with respect to the mass of the fiber.
 なお、以下の実施例及び比較例における各種物性は、次の方法で測定した。 Various physical properties in the following examples and comparative examples were measured by the following methods.
 (1)耐光堅牢度
 JIS L 0842 紫外線カーボンアーク灯光に対する染色堅牢度 第3露光法に準じて試験を行った。
(1) Color fastness to light JIS L 0842 Color fastness to ultraviolet carbon arc lamp A test was performed according to the third exposure method.
 (2)洗濯堅牢度
 JIS L 0844 洗濯に対する染色堅牢度試験 A法 A-2号に準じて試験を行った。なお、添付白布はナイロンと綿を用いた。
(2) Color Fastness to Washing JIS L 0844 Color fastness test to washing A test was performed according to Method A-2. Nylon and cotton were used for the attached white cloth.
 (3)昇華堅牢度
 JIS L 0854 昇華に対する染色堅牢度試験方法に準じて試験を行った。
(3) Sublimation fastness A test was performed according to JIS L 0854, Color fastness test method for sublimation.
 (4)ドライクリーニング堅牢度
 JIS L 0860 ドライクリーニングに対する染色堅牢度 A-1法に準じて試験を行った。
(4) Dry Cleaning Fastness Test was performed according to JIS L 0860 Dye Fastness to Dry Cleaning Method A-1.
 (5)摩擦堅牢度
 JIS L 0849 摩擦試験機II形(学振形)法に準じて試験を行った。
(5) Fastness to rubbing A test was conducted according to JIS L 0849 friction tester type II (Gakushin type) method.
 (6)難燃性
 JIS L 1091 繊維製品の燃焼性試験方法 A-1法(45°ミクロバーナー法)1分間加熱及び着炎3秒加熱、並びにD法(接炎試験(コイル法))に準じて試験を行った。そして、1分間加熱及び着炎3秒加熱共に残炎が3秒以内、残じんが5秒以内、炭化面積が30cm2以内であり、D法(接炎試験(コイル法))では接炎回数が3回以上であるものを合格とした。
(6) Flame resistance JIS L 1091 Combustibility test method for textile products A-1 method (45 ° micro burner method) 1 minute heating and flame 3 seconds heating, and D method (flame contact test (coil method)) The test was conducted according to the In both 1-minute heating and 3-second heating, the afterflame is within 3 seconds, the dust is within 5 seconds, and the carbonized area is within 30 cm 2 . 3 times or more was regarded as a pass.
 (7)制菌性
 JIS L1902 繊維製品の抗菌性試験方法及び抗菌効果 定量試験 菌液吸収法使用菌種:黄色ブドウ球菌に準じ、洗濯前と高温加速洗濯法50回後と100回後の抗菌活性値を測定した。なお、抗菌活性値>対照試料(標準布(綿):(一社)繊維評価技術協議会にて提供)の増殖値が合格基準とされている。
(7) Bactericidal property JIS L1902 Antibacterial test method for textile products and antibacterial effect Quantitative test Bacterial liquid absorption method Bacterial species used: According to Staphylococcus aureus, antibacterial before washing and after 50 and 100 times of high temperature accelerated washing method Activity values were measured. In addition, antibacterial activity value>proliferation value of control sample (standard cloth (cotton): provided by (one company) Textile Evaluation Technology Council) is regarded as an acceptance criterion.
 洗濯処理は、一般社団法人繊維評価技術協議会 製品認証部 SEKマーク繊維製品の洗濯方法 高温加速洗濯法(洗濯50回規定の製品の洗濯方法)に準じて洗濯処理を施し「洗濯50回」とした。また、上記洗濯50回を2回繰り返したものを「洗濯100回」とした。 The washing process is based on the Textile Evaluation Technology Council, Product Certification Department, SEK Mark Textile Product Washing Method, High Temperature Accelerated Washing Method (washing method for products stipulated to be washed 50 times). bottom. In addition, "100 times of washing" was obtained by repeating the above 50 times of washing twice.
 (8)剛直非晶分率、結晶化度
 剛直非晶分率及び結晶化度は、温度変調DSCにて求めたものである。測定器としては、DSC8500(PerkinElmer社製)を用いた。昇温条件としては、60~160℃間では、ガラス転移温度前後での比熱測定用に緩やかな条件で、昇温速度5℃/分、ステップ温度幅2℃、等温保持時間2分とし、160~280℃間では、再結晶化を防ぐために速い条件で、昇温速度40℃/分、ステップ温度幅2℃、等温保持時間0.4分とした。そして、試料重量を約5mgにて測定を行ってΔC、Δhを算出し、以下の(式5)及び(式6)により、剛直非晶分率を求めた。
(8) Rigid Amorphous Fraction and Crystallinity Rigid amorphous fraction and crystallinity were determined by temperature modulation DSC. DSC8500 (manufactured by PerkinElmer) was used as a measuring instrument. As for the temperature elevation conditions, between 60°C and 160°C, the conditions are moderate for specific heat measurement around the glass transition temperature, with a temperature elevation rate of 5°C/min, a step temperature width of 2°C, and an isothermal holding time of 2 minutes. In the range from 280° C. to 280° C., the heating rate was 40° C./min, the step temperature width was 2° C., and the isothermal holding time was 0.4 min under fast conditions to prevent recrystallization. Then, measurement was performed with a sample weight of about 5 mg, ΔC p and Δh F were calculated, and the rigid amorphous fraction was obtained by the following (Equation 5) and (Equation 6).
 剛直非晶分率(%)=(1-X-ΔC/ΔCp,a)×100・・(式5)
 X(結晶化度)=Δh/ΔhF,perfect ・・・・・・・・・・・・(式6)
 ΔhF,perfect=140J/g
 ΔCp,a=0.405J/g・K
Rigid amorphous fraction (%)=(1−X c −ΔC p /ΔC p,a )×100 (Formula 5)
X c (degree of crystallinity) = Δh F / Δh F, perfect (Formula 6)
Δh F, perfect =140 J/g
ΔC p,a = 0.405 J/g K
 (9)ガラス転移温度
 ガラス転移温度は、動的引張弾性率の温度依存性から求めた。具体的には、動的粘弾性測定装置E4000(UBM社製)を用い、測定周波数10Hz、昇温速度2℃/分、温度範囲40~150℃での損失弾性率のピーク時の温度より、ガラス転移温度を求めた。
(9) Glass transition temperature The glass transition temperature was obtained from the temperature dependence of the dynamic tensile modulus. Specifically, using a dynamic viscoelasticity measuring device E4000 (manufactured by UBM), the measurement frequency is 10 Hz, the temperature increase rate is 2 ° C./min, and the temperature at the peak of the loss elastic modulus in the temperature range of 40 to 150 ° C. A glass transition temperature was determined.
 (実施例1)
 レギュラーPETを溶融紡糸し、半延伸糸を得た。次に、仮撚加工を行い、83デシテックス、36フィラメントのレギュラーPET繊維からなる糸を得た。得られたレギュラーPET繊維は、剛直非晶分率が46%で、結晶化度が30%で、ガラス転移温度が120℃であった。
(Example 1)
Regular PET was melt-spun to obtain a semi-drawn yarn. Next, false twisting was performed to obtain a yarn made of regular PET fibers of 83 decitex and 36 filaments. The obtained regular PET fiber had a rigid amorphous fraction of 46%, a crystallinity of 30%, and a glass transition temperature of 120°C.
 次に、このレギュラーPET繊維を用いて編立し、編物を得た。 Next, this regular PET fiber was knitted to obtain a knitted fabric.
 得られた編物を高圧液流染色機を用いて、下記の分散染料を含む水分散液に浸漬(浴比(質量比) 繊維:水分散液=1:15)し、当該水分散液を5℃/分で昇温し、110℃で10分間維持することで精練同時染色加工を行った。染色加工を行った繊維布帛は、均一な薄いオレンジに着色されていた。また、染色加工にかかった時間(精練、染色、水洗の一連の加工の合計時間)は約90分であった。 Using a high-pressure liquid jet dyeing machine, the obtained knitted fabric is immersed in an aqueous dispersion containing the following disperse dye (bath ratio (mass ratio) fiber: aqueous dispersion = 1:15), and the aqueous dispersion is C./min and maintained at 110.degree. C. for 10 minutes to carry out scouring and dyeing simultaneously. The dyed fiber fabric was colored uniformly light orange. Moreover, the time required for the dyeing process (total time for a series of processes including scouring, dyeing and washing) was about 90 minutes.
 ・分散染料を含む水分散液
  Dianix Yellow ACE new  0.01%omf
  (ダイスタージャパン(株) 分散染料)
  Dianix Red ACE 01      0.01%omf
  (ダイスタージャパン(株) 分散染料)
  酢酸                     0.2g/l
  ニッカサンソルトSN-550         1.0g/l
  (日華化学(株)製 洗浄、分散均染剤)
  水                      残部
・ Aqueous dispersion containing disperse dye Dianix Yellow ACE new 0.01% omf
(Distar Japan Co., Ltd. disperse dyes)
Dianix Red ACE 01 0.01% omf
(Distar Japan Co., Ltd. disperse dyes)
Acetic acid 0.2g/l
Nikka Sun Salt SN-550 1.0g/l
(Nicca Chemical Co., Ltd. washing, dispersing and leveling agent)
water
 次に、編物を染色機から取り出した後、帯電防止剤をパディング法で付与し、120℃で乾燥した。その後、140℃で30秒間仕上げセットを行った。これにより、着色された繊維布帛が得られた。このようにして得られた実施例1の繊維布帛の色相及び色濃度(染色濃度)は、上記と同様の水分散液を用いて130℃にて10分間染色したものと同等の色相及び色濃度であった。また、実施例1の繊維布帛については、染ムラは見られず、均一に着色されていた。なお、実施例1の繊維布帛の染色堅牢度等を表1に記載した。 Next, after the knitted fabric was taken out from the dyeing machine, an antistatic agent was applied by a padding method and dried at 120°C. A finish set was then performed at 140° C. for 30 seconds. This gave a colored fiber fabric. The hue and color density (dyeing density) of the fiber fabric of Example 1 thus obtained are equivalent to those obtained by dyeing at 130° C. for 10 minutes using the same aqueous dispersion as above. Met. Further, the fiber fabric of Example 1 was uniformly colored with no dyeing unevenness. Table 1 shows the color fastness and the like of the fiber fabric of Example 1.
 (実施例2)
 レギュラーPETを溶融紡糸し、生糸を得た。次に、仮撚加工を行い、83デシテックス、36フィラメントのレギュラーPET繊維からなる糸を得た。得られたレギュラーPET繊維は、剛直非晶分率が38%で、結晶化度が37%で、ガラス転移温度が119℃であった。
(Example 2)
Regular PET was melt-spun to obtain raw silk. Next, false twisting was performed to obtain a yarn made of regular PET fibers of 83 decitex and 36 filaments. The obtained regular PET fiber had a rigid amorphous fraction of 38%, a crystallinity of 37%, and a glass transition temperature of 119°C.
 次に、このレギュラーPET繊維を用いて編立し、編物を得た。 Next, this regular PET fiber was knitted to obtain a knitted fabric.
 得られた編物を高圧液流染色機を用いて、下記の分散染料を含む水分散液に浸漬(浴比(質量比) 繊維:水分散液=1:15)し、当該水分散液を5℃/分で昇温し、120℃にて30分間維持することで精練同時染色加工を行った。染色加工を行った繊維布帛は、黒色に着色されていた。染色加工にかかった時間(精練、染色、還元洗浄、水洗の一連の加工の合計時間)は約140分であった。 Using a high-pressure liquid jet dyeing machine, the obtained knitted fabric is immersed in an aqueous dispersion containing the following disperse dye (bath ratio (mass ratio) fiber: aqueous dispersion = 1:15), and the aqueous dispersion is C./min and maintained at 120.degree. C. for 30 minutes to carry out scouring and dyeing simultaneously. The dyed fiber fabric was colored black. The time required for the dyeing process (total time for a series of processes including scouring, dyeing, reduction washing, and water washing) was about 140 minutes.
 ・分散染料を含む水分散液
  Kiwalon Black AS78 Liquid 10.0% omf
  (紀和化学工業(株)製、分散染料)
  酢酸                        0.2g/l
  トーホーソルトKS-10              0.2g/l
  (東邦化学工業(株)製、分散均染剤)
  水                         残部
・Aqueous dispersion containing disperse dye Kiwalon Black AS78 Liquid 10.0% omf
(manufactured by Kiwa Chemical Industry Co., Ltd., disperse dye)
Acetic acid 0.2g/l
Toho Salt KS-10 0.2g/l
(manufactured by Toho Chemical Industry Co., Ltd., dispersing and leveling agent)
water
 次に、編物を染色機から取り出した後、帯電防止剤をパディング法で付与し、120℃で乾燥した。その後、150℃で30秒間仕上げセットを行った。これにより、黒く染められた繊維布帛が得られた。このようにして得られた実施例2の繊維布帛は、均一に染色されており、その色濃度は、上記の分散染料を含む水分散液を用い135℃にて60分間染色したものと同等の色濃度であった。このようにして得られた実施例2の繊維布帛の染色堅牢度等を表1に記載した。 Next, after the knitted fabric was taken out from the dyeing machine, an antistatic agent was applied by a padding method and dried at 120°C. A finish set was then performed at 150° C. for 30 seconds. This gave a textile fabric dyed black. The fiber fabric of Example 2 thus obtained was uniformly dyed, and its color density was equivalent to that obtained by dyeing at 135°C for 60 minutes using the aqueous dispersion containing the disperse dye. color density. Table 1 shows the color fastness and the like of the fiber fabric of Example 2 thus obtained.
 (実施例3)
 レギュラーPETを溶融紡糸し、半延伸糸を得た。次に、2個のヒーターを用い、2段階の加熱処理を行いながら仮撚加工を行い、83デシテックス、36フィラメントのレギュラーPET繊維からなる糸を得た。得られたレギュラーPET繊維は、剛直非晶分率が44%で、結晶化度が33%で、ガラス転移温度が114℃であった。
(Example 3)
Regular PET was melt-spun to obtain a semi-drawn yarn. Next, using two heaters, false twisting was carried out while heat treatment was carried out in two steps to obtain a yarn composed of regular PET fibers of 83 decitex and 36 filaments. The obtained regular PET fiber had a rigid amorphous fraction of 44%, a crystallinity of 33%, and a glass transition temperature of 114°C.
 次に、このレギュラーPET繊維を経糸として用い、緯糸に市販されている166デシテックス、48フィラメントのレギュラーPET繊維(剛直非晶分率60%)の黒色原着糸を用い、遮光カーテン用の280g/mの目付を有する朱子織物を得た。 Next, this regular PET fiber was used as the warp, and a commercially available 166 decitex, 48 filament black spun PET fiber (rigid amorphous fraction: 60%) was used as the weft. A satin fabric having a basis weight of m 2 was obtained.
 次に、得られた織物を80℃で精練した後、150℃にて30秒間予備セットを行った後、下記の分散染料・難燃剤を含む水分散液に浸漬(浴比(質量比) 繊維:水分散液=1:20)し、水分散液を5℃/分の昇温速度で昇温し、120℃にて15分間維持することで染色加工を行った。染色加工にかかった時間(染色、洗浄(70℃にてソーダ灰とソーピング剤を含む洗浄液での洗浄)の一連の加工の合計時間)は約120分であった。 Next, after scouring the obtained fabric at 80°C, it is pre-set at 150°C for 30 seconds, and then immersed in an aqueous dispersion containing the following disperse dye and flame retardant (bath ratio (mass ratio) fiber : Aqueous dispersion = 1:20), the temperature of the aqueous dispersion was raised at a rate of 5°C/min and maintained at 120°C for 15 minutes to carry out dyeing processing. The time required for the dyeing process (the total time for a series of processes including dyeing and washing (washing with a washing liquid containing soda ash and a soaping agent at 70° C.)) was about 120 minutes.
 ・分散染料を含む水分散液
  Dianix Blue ACE        1.0%omf
  (ダイスタージャパン(株) 分散染料)
  KDS042                 6.0%owf
  (大京化学(株)製 リン系難燃剤)
  酢酸                     0.2g/l
  トーホーソルトKS-10           0.5g/l
  水                      残部
・Water dispersion containing disperse dye Dianix Blue ACE 1.0% omf
(Distar Japan Co., Ltd. disperse dyes)
KDS042 6.0%owf
(Phosphorus-based flame retardant manufactured by Daikyo Chemical Co., Ltd.)
Acetic acid 0.2g/l
Toho Salt KS-10 0.5g/l
water
 次に、編物を染色機から取り出した後、120℃で乾燥した。その後、170℃で30秒間仕上げセットを行って繊維布帛を得た。このようにして得られた実施例3の繊維布帛の染色堅牢度及び難燃性等を表1に記載した。 Next, after taking out the knitted fabric from the dyeing machine, it was dried at 120°C. Thereafter, finish setting was performed at 170° C. for 30 seconds to obtain a fiber fabric. Table 1 shows the color fastness, flame retardancy, etc. of the fiber fabric of Example 3 thus obtained.
 (比較例1)
 レギュラーPETを溶融紡糸し、半延伸糸を得た。次に、仮撚加工を行い、83デシテックス、36フィラメントのレギュラーPET繊維を得た。得られたレギュラーPET繊維は、剛直非晶分率が64%で、結晶化度が26%で、ガラス転移温度が123℃であった。
(Comparative example 1)
Regular PET was melt-spun to obtain a semi-drawn yarn. Next, a false twisting process was performed to obtain a regular PET fiber of 83 decitex and 36 filaments. The obtained regular PET fiber had a rigid amorphous fraction of 64%, a crystallinity of 26%, and a glass transition temperature of 123°C.
 次に、このようにして得られたレギュラーPET繊維を用いて編立して得られた編物に対して、実施例1と同様にして染色加工を行った。このようにして得られた比較例1の繊維布帛は、オレンジ色であったが、色濃度が薄かった。また、比較例1の繊維布帛の染具合については、ややムラ状に染められていた。 Next, the knitted fabric obtained by knitting using the regular PET fibers thus obtained was dyed in the same manner as in Example 1. The fiber fabric of Comparative Example 1 thus obtained was orange, but the color density was low. As for the dyeing state of the fiber fabric of Comparative Example 1, the dyeing was slightly uneven.
 (比較例2)
 比較例1の編物に対し、通常の黒色に染色する条件にて染色加工を行った。具体的には水分散液の昇温速度を2℃/分とし、浴比(質量比)を繊維:水分散液=1:10とし、135℃の温度を35分維持して染色を行った。このようにして得られた比較例2の繊維布帛は、色及び染色堅牢度は、実施例2とほぼ同等であったが、染色加工にかかった時間(染色、還元洗浄、還元洗浄、水洗の一連の加工の合計時間)は、約200分であった。なお、比較例2の繊維布帛の染色堅牢度等を表1に記載した。
(Comparative example 2)
The knitted fabric of Comparative Example 1 was dyed under normal black dyeing conditions. Specifically, the heating rate of the aqueous dispersion was set to 2° C./min, the bath ratio (mass ratio) was set to fiber: aqueous dispersion=1:10, and the temperature was maintained at 135° C. for 35 minutes for dyeing. . The fiber fabric of Comparative Example 2 thus obtained had almost the same color and color fastness as Example 2, but the time required for dyeing (dyeing, reduction washing, reduction washing, water washing) The total time for a series of processes) was about 200 minutes. Table 1 shows the color fastness and the like of the fiber fabric of Comparative Example 2.
 (実施例4)
 実施例3で用いた経糸を、実施例2で用いた繊維に変更し、他は実施例3と同様に加工を行った。
(Example 4)
The warp used in Example 3 was changed to the fiber used in Example 2, and the processing was performed in the same manner as in Example 3.
 その結果、実施例3で用いたレギュラーPET繊維を用いて染色加工された織物は、実施例2で用いたレギュラーPET繊維を用いて染色加工された織物に比べて、染色加工後の織物の長さが10%以上長かった。従って、仮撚り時に2個のヒーターを用いて熱処理することにより、得られる繊維布帛の寸法安定性が向上することが確認された。その他の染色堅牢度及び難燃性は実施例3と同様であった。 As a result, the fabric dyed using the regular PET fibers used in Example 3 had a longer length of the fabric after dyeing than the fabric dyed using the regular PET fibers used in Example 2. The length was longer than 10%. Therefore, it was confirmed that heat treatment using two heaters during false twisting improves the dimensional stability of the obtained fiber fabric. Other color fastness and flame retardancy were the same as in Example 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (実施例5)
 レギュラーPETを溶融紡糸し、半延伸糸を得た。次に、仮撚加工を行い、83デシテックス、36フィラメントのレギュラーPET繊維からなる糸を得た。得られたレギュラーPET繊維は、剛直非晶分率が46%で、結晶化度が30%で、ガラス転移温度が120℃であった。
(Example 5)
Regular PET was melt-spun to obtain a semi-drawn yarn. Next, false twisting was performed to obtain a yarn made of regular PET fibers of 83 decitex and 36 filaments. The obtained regular PET fiber had a rigid amorphous fraction of 46%, a crystallinity of 30%, and a glass transition temperature of 120°C.
 次に、このレギュラーPET繊維を用いて平織物を得た。 Next, a plain weave fabric was obtained using this regular PET fiber.
 次に、得られた織物を85℃で精練した後、高圧液流染色機を用いて下記の分散染料を含む水分散液に浸漬(浴比(質量比) 繊維:水分散液=1:10)し、当該水分散液を5℃/分の昇温速度で昇温し、110℃で10分間維持することで制菌・染色加工を行って薄いグレーに着色した。染色加工にかかった時間(染色、水洗の一連の加工の合計時間)は約70分であった。 Next, after scouring the obtained fabric at 85°C, it is immersed in an aqueous dispersion containing the following disperse dyes using a high-pressure jet dyeing machine (bath ratio (mass ratio) fiber: aqueous dispersion = 1:10 ), the water dispersion was heated at a rate of 5° C./min and maintained at 110° C. for 10 minutes to perform bactericidal and dyeing processing to color it light gray. The time required for the dyeing process (total time for a series of processes including dyeing and washing) was about 70 minutes.
 ・分散染料を含む水分散液
  Dianix Yellow ACE new  0.1% omf
  (ダイスタージャパン(株) 分散染料)
  Dianix Red ACE 01      0.1% omf
  (ダイスタージャパン(株) 分散染料)
  Dianix Blue ACE        0.1% omf
  (ダイスタージャパン(株) 分散染料)
  ニッカノン SKT              2.0%omf
  (日華化学(株)製 抗菌剤:ジンクピリチオン)
  酢酸                     0.2g/l
  ニッカサンソルトSN-550         1.0g/l
  (日華化学(株)製 洗浄、分散均染剤)
  水                      残部
・Water dispersion containing disperse dye Dianix Yellow ACE new 0.1% omf
(Distar Japan Co., Ltd. disperse dyes)
Dianix Red ACE 01 0.1% omf
(Distar Japan Co., Ltd. disperse dyes)
Dianix Blue ACE 0.1% omf
(Distar Japan Co., Ltd. disperse dyes)
Nickanon SKT 2.0% omf
(Antibacterial agent manufactured by Nicca Chemical Co., Ltd.: zinc pyrithione)
Acetic acid 0.2g/l
Nikka Sun Salt SN-550 1.0g/l
(Nicca Chemical Co., Ltd. washing, dispersing and leveling agent)
water
 次に、平織物を染色機から取り出した後、帯電防止剤をパディング法で付与し、120℃で乾燥した。その後、140℃で30秒間仕上げセットを行って繊維布帛を得た。得られた実施例5の繊維布帛の染色堅牢度等を表2に記載した。 Next, after the plain weave was taken out of the dyeing machine, an antistatic agent was applied by a padding method and dried at 120°C. After that, finish setting was performed at 140° C. for 30 seconds to obtain a fiber fabric. Table 2 shows the color fastness and the like of the obtained fiber fabric of Example 5.
 (比較例3)
 レギュラーPET繊維として比較例1に記載のものを用い、染色加工条件として、昇温速度を2℃/分で130℃まで昇温し、10分間維持した以外は実施例5と同様にして繊維布帛を得た。染色加工にかかった時間(水分散液の130℃までの昇温時間と130℃にて10分間維持の合計時間)は約100分であった。
(Comparative Example 3)
The fiber fabric was prepared in the same manner as in Example 5, except that the regular PET fiber described in Comparative Example 1 was used, and the temperature was raised to 130°C at a rate of 2°C/min and maintained for 10 minutes as the dyeing conditions. got The time required for the dyeing process (total time of heating the aqueous dispersion to 130°C and maintaining the temperature at 130°C for 10 minutes) was about 100 minutes.
 このようにして得られた比較例3の繊維布帛の染色堅牢度等を表2に記載した。 Table 2 shows the color fastness, etc. of the fiber fabric of Comparative Example 3 thus obtained.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 対照試料の増殖値=・・・・・2.12 Proliferation value of control sample = 2.12
 上記実施例1、2、3、4、5の繊維布帛は、レギュラーPET繊維を用いて得られた繊維布帛でありながら、いずれも120℃以下という低い温度で、かつ、短時間の染色加工で、従来の130℃~135℃にて染色し得られた繊維布帛と同等の色濃度及び染色堅牢度を有していた。従って、少ないエネルギー量で着色されたレギュラーPET繊維布帛が得られ、かつ、生産性にも優れることが確認された。 Although the fiber fabrics of Examples 1, 2, 3, 4, and 5 are fiber fabrics obtained using regular PET fibers, they are all dyed at a low temperature of 120 ° C. or less and in a short time. , and had the same color density and color fastness as those of conventional fiber fabrics obtained by dyeing at 130°C to 135°C. Therefore, it was confirmed that a colored regular PET fiber fabric can be obtained with a small amount of energy and that the productivity is also excellent.
 また、実施例1と比較例1とを比較して分かるように、実施例1の繊維布帛は、昇温速度が速いにも関わらず染ムラが発生し難く、生産性が向上することも確認された。 In addition, as can be seen by comparing Example 1 and Comparative Example 1, it was confirmed that the fiber fabric of Example 1 hardly causes dyeing unevenness even though the temperature rise rate is high, and the productivity is improved. was done.
 また、実施例3から分かるように、120℃以下という低温での処理であっても、通常の130℃~135℃にて染色するときと同等の防炎性能を有するレギュラーPET繊維布帛が得られることが確認された。 In addition, as can be seen from Example 3, even if the treatment is performed at a low temperature of 120°C or less, a regular PET fiber fabric can be obtained that has flameproof performance equivalent to that of ordinary dyeing at 130°C to 135°C. was confirmed.
 また、実施例3と実施例4とから明らかなように、仮撚加工時に2段階で加熱を行うことにより、寸法安定性に優れたレギュラーPET繊維布帛を得ることができる。 In addition, as is clear from Examples 3 and 4, a regular PET fiber fabric with excellent dimensional stability can be obtained by heating in two steps during the false twisting process.
 また、実施例5と比較例3とを比較して分かるように、実施例5の繊維布帛は、通常の130℃にて制菌加工を行った比較例3の繊維布帛に比べて、低温でかつ短い処理時間にて制菌加工を行ったにも関わらず、優れた洗濯耐久性を有する制菌性繊維布帛であることが確認された。 In addition, as can be seen by comparing Example 5 and Comparative Example 3, the fiber fabric of Example 5 was treated at a lower temperature than the fiber fabric of Comparative Example 3, which was subjected to normal antibacterial treatment at 130 ° C. In addition, it was confirmed that the bacteriostatic fiber fabric has excellent washing durability in spite of the fact that the bacteriostatic treatment was performed in a short treatment time.
 本発明に係る合成繊維を用いた繊維布帛は、肌着、中衣、外衣、シーツ又はカーテン等の様々な用途の繊維製品に用いることができる。 The fiber fabric using the synthetic fiber according to the present invention can be used for textile products for various purposes such as underwear, inner garments, outer garments, sheets or curtains.

Claims (6)

  1.  剛直非晶分率が55%以下である合成繊維を含む繊維布帛。 A fiber fabric containing synthetic fibers with a rigid amorphous fraction of 55% or less.
  2.  前記合成繊維がポリエチレンテレフタレートからなることを特徴とする請求項1に記載の繊維布帛。 The fiber fabric according to claim 1, wherein the synthetic fibers are made of polyethylene terephthalate.
  3.  分散染料で染色されており、
     JIS L 0842 紫外線カーボンアーク灯光に対する染色堅牢度 第3露光法での染色堅牢度が、3級以上であり、
     JIS L 0844 洗濯に対する染色堅牢度試験 A法 A-2号での染色堅牢度が、変退色3級以上かつ汚染3級以上であり、
     JIS L 0860 ドライクリーニングに対する染色堅牢度 A-1法での染色堅牢度が、変退色4級以上かつ汚染3級以上であることを特徴とする請求項1又は2に記載の繊維布帛。
    Dyed with disperse dyes,
    JIS L 0842 Color fastness to ultraviolet carbon arc lamp The color fastness in the third exposure method is grade 3 or higher,
    JIS L 0844 Color fastness test for washing A method A-2 has a color fastness of grade 3 or higher and stain grade 3 or higher,
    3. The fiber fabric according to claim 1 or 2, wherein the color fastness according to JIS L 0860 Dry Cleaning Method A-1 is grade 4 or higher for discoloration and grade 3 or higher for staining.
  4.  JIS L 1091 繊維製品の燃焼性試験方法 A-1法(45°ミクロバーナー法)1分間加熱及び着炎3秒加熱において共に残炎が3秒以内、残じんが5秒以内、炭化面積が30cm2以内であり、
     D法(接炎試験(コイル法))において接炎回数が3回以上であることを特徴とする請求項1~3のいずれか1項に記載の繊維布帛。
    JIS L 1091 Combustibility test method for textile products A-1 method (45 ° micro burner method) After heating for 1 minute and flaming for 3 seconds, afterflame within 3 seconds, dust within 5 seconds, carbonized area 30 cm is within 2 and
    The fiber fabric according to any one of claims 1 to 3, wherein the number of flame contact times is 3 or more in the D method (flame contact test (coil method)).
  5.  請求項2に記載の繊維布帛を、分散染料を含む水分散液に浸漬し、120℃以下の温度にて染色加工を行うことを特徴とする繊維布帛の染色方法。 A method for dyeing a fiber fabric, comprising immersing the fiber fabric according to claim 2 in an aqueous dispersion containing a disperse dye, and performing dyeing at a temperature of 120°C or less.
  6.  前記水分散液に難燃剤が含まれることを特徴とする請求項5に記載の繊維布帛の染色方法。 The method for dyeing a fiber fabric according to claim 5, wherein the aqueous dispersion contains a flame retardant.
PCT/JP2022/022853 2021-08-30 2022-06-06 Fiber fabric and method for dyeing fiber fabric WO2023032387A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247002209A KR20240047966A (en) 2021-08-30 2022-06-06 Textile fabric and dyeing method of fiber fabric
CN202280055785.5A CN117813427A (en) 2021-08-30 2022-06-06 Fiber fabric and method for dyeing fiber fabric

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021139925 2021-08-30
JP2021-139925 2021-08-30

Publications (1)

Publication Number Publication Date
WO2023032387A1 true WO2023032387A1 (en) 2023-03-09

Family

ID=85411149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022853 WO2023032387A1 (en) 2021-08-30 2022-06-06 Fiber fabric and method for dyeing fiber fabric

Country Status (3)

Country Link
KR (1) KR20240047966A (en)
CN (1) CN117813427A (en)
WO (1) WO2023032387A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000328358A (en) * 1999-05-11 2000-11-28 Toray Ind Inc Soft polyester fiber and fabric
JP2014231650A (en) * 2013-05-29 2014-12-11 東レ株式会社 Ultra-fine fiber, substrate for artificial leather and artificial leather
WO2016104278A1 (en) * 2014-12-26 2016-06-30 東レ株式会社 High-shrinkage polyamide fibers, combined-filament yarn using same in portion thereof, and woven or knitted fabric
WO2019124189A1 (en) * 2017-12-21 2019-06-27 東レ株式会社 Polyphenylene sulfide short fiber, fibrous structure, filter felt, and bag filter
WO2019208427A1 (en) * 2018-04-25 2019-10-31 東レ株式会社 Polyamide fiber, woven or knit fabric, and method for producing polyamide fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000328358A (en) * 1999-05-11 2000-11-28 Toray Ind Inc Soft polyester fiber and fabric
JP2014231650A (en) * 2013-05-29 2014-12-11 東レ株式会社 Ultra-fine fiber, substrate for artificial leather and artificial leather
WO2016104278A1 (en) * 2014-12-26 2016-06-30 東レ株式会社 High-shrinkage polyamide fibers, combined-filament yarn using same in portion thereof, and woven or knitted fabric
WO2019124189A1 (en) * 2017-12-21 2019-06-27 東レ株式会社 Polyphenylene sulfide short fiber, fibrous structure, filter felt, and bag filter
WO2019208427A1 (en) * 2018-04-25 2019-10-31 東レ株式会社 Polyamide fiber, woven or knit fabric, and method for producing polyamide fiber

Also Published As

Publication number Publication date
CN117813427A (en) 2024-04-02
KR20240047966A (en) 2024-04-12

Similar Documents

Publication Publication Date Title
JPH10325085A (en) Fiber product exhibiting chambray appearance and its formation
JPH1143871A (en) Dyeing of textile product comprising melamine fiber and cellulose fiber
KR100359347B1 (en) Polyester fiber and fabric prepared therefrom
CA3098119C (en) Textile materials containing aramid fibers and dyed polyphenylene sulfide fibers
WO2023032387A1 (en) Fiber fabric and method for dyeing fiber fabric
JPH03174076A (en) Dyed textile made of blended polyester fiber and polyurethane fiber and production thereof
JP2000034675A (en) Antibacterial polyester fiber
JP2003339503A (en) Heat retaining blanket
JP6360589B2 (en) Method for producing stretchable fabric
JP6284605B2 (en) Stretchable fabric and method for producing the same
JP3267963B2 (en) Copolymerized polytrimethylene terephthalate
JP4833610B2 (en) Flame retardant polyester fiber structure and method for producing the same
JP2001200471A (en) Fiber structure of whole aromatic polyamide having improved light fastness
JPS6335824A (en) Soil release polyester fiber
JP2012041664A (en) Method for dyeing dyeable polypropylene fiber
JP4721532B2 (en) Colored polyphenylene sulfide fiber and method for producing the same
JP3862063B2 (en) Method for dyeing polyester fabric having flame retardancy and antibacterial properties
JP5473703B2 (en) Moist heat resistant knitted fabric
JPH0340880A (en) Polyester yarn to be blended with vegetable yarn, dyed product of cloth of blended polyester yarn/vegetable yarn and production thereof
JPH10212676A (en) Dyeing of polyester composite fiber structure
JPS6410628B2 (en)
JP3818743B2 (en) Easily dyeable polyester fiber and its mixed fabric dyeing
JP2000034676A (en) Antibacterial fiber
JP2005264357A (en) Method for dyeing blended fiber product
JPH07252777A (en) Production of cloth having high stretchability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863975

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023545093

Country of ref document: JP