WO2023032296A1 - Composition evaluation method, sensor and evaluation system - Google Patents
Composition evaluation method, sensor and evaluation system Download PDFInfo
- Publication number
- WO2023032296A1 WO2023032296A1 PCT/JP2022/011683 JP2022011683W WO2023032296A1 WO 2023032296 A1 WO2023032296 A1 WO 2023032296A1 JP 2022011683 W JP2022011683 W JP 2022011683W WO 2023032296 A1 WO2023032296 A1 WO 2023032296A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- composition
- emitting
- substance
- emitting layer
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 142
- 238000011156 evaluation Methods 0.000 title abstract description 46
- 239000000126 substance Substances 0.000 claims abstract description 149
- 230000005284 excitation Effects 0.000 claims abstract description 59
- 238000004519 manufacturing process Methods 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims description 41
- 239000000463 material Substances 0.000 claims description 32
- 238000004020 luminiscence type Methods 0.000 claims description 26
- 238000001514 detection method Methods 0.000 claims description 21
- 239000013307 optical fiber Substances 0.000 claims description 21
- 230000010365 information processing Effects 0.000 claims description 11
- 230000001678 irradiating effect Effects 0.000 claims description 6
- 238000012827 research and development Methods 0.000 abstract description 6
- 239000010410 layer Substances 0.000 description 77
- 239000000523 sample Substances 0.000 description 65
- 239000000047 product Substances 0.000 description 19
- 238000004458 analytical method Methods 0.000 description 18
- 230000008569 process Effects 0.000 description 14
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 10
- 230000006399 behavior Effects 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- 239000011342 resin composition Substances 0.000 description 10
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 9
- 239000011230 binding agent Substances 0.000 description 9
- 238000000491 multivariate analysis Methods 0.000 description 7
- 238000013473 artificial intelligence Methods 0.000 description 6
- 239000000835 fiber Substances 0.000 description 6
- 235000013305 food Nutrition 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000001939 inductive effect Effects 0.000 description 5
- 238000010801 machine learning Methods 0.000 description 5
- 239000003550 marker Substances 0.000 description 5
- 238000000611 regression analysis Methods 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- SSDSCDGVMJFTEQ-UHFFFAOYSA-N octadecyl 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)CCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 SSDSCDGVMJFTEQ-UHFFFAOYSA-N 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 238000007619 statistical method Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000006087 Silane Coupling Agent Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000007621 cluster analysis Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 235000019634 flavors Nutrition 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 238000012628 principal component regression Methods 0.000 description 2
- 238000003908 quality control method Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- QQQSFSZALRVCSZ-UHFFFAOYSA-N triethoxysilane Chemical compound CCO[SiH](OCC)OCC QQQSFSZALRVCSZ-UHFFFAOYSA-N 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 150000000918 Europium Chemical class 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N benzo-alpha-pyrone Natural products C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- 150000004775 coumarins Chemical class 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 150000001925 cycloalkenes Chemical class 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000007418 data mining Methods 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004870 electrical engineering Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012854 evaluation process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000556 factor analysis Methods 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000012880 independent component analysis Methods 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 150000002503 iridium Chemical class 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 238000007477 logistic regression Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000009022 nonlinear effect Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000010238 partial least squares regression Methods 0.000 description 1
- 150000002979 perylenes Chemical class 0.000 description 1
- 238000000513 principal component analysis Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000000275 quality assurance Methods 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 239000013545 self-assembled monolayer Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000011524 similarity measure Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Definitions
- the present invention relates to a composition evaluation method, a sensor for performing this, and an evaluation system.
- hypotheses In fields where hypotheses can be tested a small number of times to reach a theory, there is little merit in using AI. Examples of such areas include physics and electrical engineering.
- hypotheses In fields that deal with low-molecular-weight compounds, polymer materials, biotechnology, etc., it is possible to formulate hypotheses, but the effects are often diverse, and it is easy for the hypotheses to fail or to take time to verify the hypotheses.
- the data used in the inductive interpretation method is data that is difficult to handle deductively by human thinking. It is scientific data etc. that have not been made. Furthermore, even scientific data with well-established grounds or sufficient meaning cannot be processed deductively by human thinking due to its complexity or large amount of information. scientific data are included in inductive data.
- the fluorescence fingerprint is a method of acquiring a fluorescence spectrum while changing the excitation wavelength, and is a measurement method known since the 1970s. Foods contain a relatively large amount of components that emit fluorescence when exposed to excitation light. Therefore, fluorescence fingerprints are utilized in the field of food products for quality control and the like.
- Patent Documents 1 and 2 propose a sensor whose tip carries a fluorescent substance or reagent whose fluorescence activity changes according to the concentration of a specific substance, a system including this, and the like.
- the present invention is an evaluation method that can comprehensively evaluate the state of a composition without affecting the composition that is the object of manufacture or research in research and development of products and production lines.
- the purpose is to provide sensors and evaluation systems.
- a composition comprising a step of irradiating with excitation light to obtain luminescence information of the luminescent substance, and a step of analyzing the luminescence information based on fluorescence fingerprint information obtained in advance to evaluate the state of the composition.
- a light-emitting portion having a light-emitting layer containing a light-emitting substance whose light-emitting behavior changes according to the state of the composition, an excitation light source that emits excitation light for exciting the light-emitting substance, and and a detector that acquires information on light emitted by a luminescent substance, wherein the wavelength of the excitation light is a wavelength determined based on pre-obtained fluorescence fingerprint information.
- a light-emitting portion having a light-emitting layer containing a light-emitting substance whose light-emitting behavior changes according to the state of the composition, an excitation light source for emitting excitation light for exciting the light-emitting substance, and the light-emitting substance and a detector for acquiring information on the light emitted by the , wherein the luminescent material is a material selected based on pre-obtained fluorescence fingerprint information.
- the senor and an information processing unit that analyzes the light information acquired by the detection unit by fluorescence fingerprint information acquired in advance and evaluates the state of the composition. provide the system.
- the above composition evaluation method it is possible to comprehensively evaluate the state of the composition in various production lines, trial production, and research without affecting the target composition. Moreover, according to the above sensor and evaluation system, the above evaluation method can be performed efficiently.
- FIG. 1 is a diagram showing the flow of one embodiment of the composition evaluation method of the present invention.
- FIG. 2 is a diagram showing a flow of a modification of one embodiment of the composition evaluation method of the present invention.
- FIG. 3 is a diagram showing the flow of the luminescent material selection process.
- FIG. 4 is a schematic diagram showing an example of the structure of the sensor of the present invention.
- FIG. 5A is a fluorescence fingerprint of a composition containing a recyclable cycloolefin polymer
- FIG. 5B is a fluorescence fingerprint of a composition containing a non-recyclable cycloolefin polymer used in the examples of the present invention.
- composition evaluation method of the present embodiment is a method for evaluating various performances and properties of the composition, such as determining the quality of the composition, specifying the degree of deterioration, and determining the production area and lot. is.
- the composition evaluation method of the present embodiment is a method for evaluating various performances and properties of the composition, such as determining the quality of the composition, specifying the degree of deterioration, and determining the production area and lot. is.
- the structure and properties of a substance to be measured are known, it is easy to select test conditions, reagents, etc., according to the substance as a target.
- evaluation is difficult when the composition contains a plurality of substances that interact in a complex manner, or when a plurality of components contribute to the properties and performance of the composition.
- the method of the present embodiment it is possible to comprehensively evaluate the performance, properties, etc. of a composition that is difficult to evaluate by a general method.
- the composition to be evaluated by the composition evaluation method of the present embodiment may contain two or more components, and may be, for example, foods or various industrial products. Further, as will be described in detail later, the composition is required to sufficiently interact with the light-emitting substance in the light-emitting layer, so the composition is preferably a fluid, more preferably a gas or a liquid, and particularly preferably a liquid.
- the timing of performing the evaluation method of the composition of the present embodiment may be the product trial production, development, or research process, and the process of testing the production line of the product (within the test plant) or the production of the prototype. It may be a process (within a pilot plant), a product manufacturing process, or a product quality inspection process. Moreover, it may be a manufacturing process, a storage process, a quality control process, or the like of an agricultural product or its processed product.
- the evaluation method of the composition of the present embodiment includes, for example, as shown in the flow chart of FIG. A step S12 of bringing the light-emitting layer and the composition into contact with each other and irradiating the light-emitting layer with excitation light to obtain light emission information of the light-emitting substance (hereinafter also referred to as a “light emission information obtaining step”). and a step S13 (hereinafter also referred to as an “evaluation step”) of analyzing the luminescence information based on the fluorescence fingerprint information obtained in advance and evaluating the state of the composition.
- the evaluation method of the composition of the present embodiment may have steps other than these, if necessary.
- a step S10 of selecting a light-emitting material to be used for the light-emitting layer (hereinafter also referred to as a "light-emitting material selection step") before the step S11 of preparing the light-emitting layer.
- a mode in which the luminescent material selection step S10 is performed before the luminescent layer preparation step S11 will be described below.
- this embodiment is not limited to this aspect.
- a luminescent material to be used for the luminescent layer prepared in the luminescent layer preparation step S11 which will be described later, is selected. Specifically, as shown in the flowchart of FIG. 3, a plurality of samples containing a plurality of compositions in different states and a plurality of types of candidate luminescent substances are prepared (S101). Then, sample fluorescence fingerprints are acquired for the plurality of samples (S102). Furthermore, based on the sample fluorescence fingerprint information, a luminescent material to be used for the luminescent layer is determined (S103).
- a plurality of compositions in different states are prepared.
- “different states” means that the properties, performance, etc. are different, and in the evaluation method of the present embodiment, it is appropriately selected according to what properties and performance are to be evaluated. .
- an ideal composition (good product) and a composition with inferior taste and flavor (defective product) are prepared.
- a plurality of compositions with different properties are prepared.
- a plurality of compositions having different degrees of polymerization are prepared. It should be noted that the performance or property to be evaluated in the evaluation step S13, which will be described later, does not need to be one, and may be plural. When evaluating multiple performances and properties, multiple compositions may be prepared for each performance and property.
- the term “luminescent substance” may be any substance that can emit light when irradiated with light in the luminescence information acquisition step described later and whose luminous behavior changes depending on the state of the composition.
- the light emission behavior changes means that the peak wavelength of the light emitted by the substance changes, the intensity of the emitted light changes, or the spectrum of the emitted light changes.
- Light emitted by a light-emitting substance is usually fluorescence or phosphorescence generated by excitation of the light-emitting substance.
- luminescent substances whose luminescence behavior changes depending on the state of the composition include substances that hydrogen bond with components in the composition, substances that interact with ⁇ - ⁇ , and the like.
- Such light-emitting substances may be inorganic substances, organic substances, metal complexes, or the like.
- inorganic materials that can be used as luminescent materials include YAG phosphors, quantum dot phosphors, thermochromic materials such as VO2 , Ag nanoparticles, and the like.
- organic materials that can be used as luminescent materials (candidate luminescent materials) include fluorescent materials such as coumarins and perylenes.
- Examples of metal complexes that can be used as light-emitting substances include phosphorescent materials such as Eu (europium) complexes and Ir (iridium) complexes.
- phosphorescent materials such as Eu (europium) complexes and Ir (iridium) complexes.
- compounds that interact with water and change the emission intensity depending on its concentration, and compounds that have optical anisotropy become cis-type when irradiated with ultraviolet rays and become trans-type when irradiated with visible light, and have a switching function.
- Compounds and the like can also be used as light-emitting substances (candidate light-emitting substances).
- these light-emitting substances may have a group (eg, Si--O--R) for covalent bonding with a binder in the light-emitting layer, which will be described later.
- a light-emitting substance obtained by bonding the above inorganic substance, organic substance, metal complex, or the like with silane coupling may be used.
- step S101 of preparing a sample the plurality of compositions and the plurality of candidate luminescent substances are mixed or brought into contact to prepare a sample.
- the ratio of the composition in the sample to be prepared to the candidate luminescent substance, etc. is appropriately selected. Moreover, you may mix these using a solvent etc. as needed. Furthermore, it is not necessary to mix the composition and the candidate luminescent material so long as they are sufficiently contactable. Also, when preparing the samples, it is preferable to also prepare samples that do not contain the candidate luminescent material, ie samples that consist of the composition alone or the composition and solvent alone.
- the number of samples to be prepared in the sample preparation step S101 is not particularly limited, and is appropriately selected according to the number of different types of compositions and the number of candidate luminescent substances.
- a plurality of samples can be prepared by the following method, but is not limited to this method. For example, each well of a 96-well plate contains 95 candidate luminescent substances. The one remaining well is without candidate luminescent material. Then, the first composition (eg, good product) is added to each of the 96 wells. Similarly, another plate is prepared with 95 candidate luminescent substances in each well, and a second composition (eg, reject) is added to each of the 96 wells. As a result, 192 samples can be prepared, and further samples may be prepared using the third composition, the fourth composition, or the like. Each candidate light-emitting substance may be composed of only one compound, or may be a mixture of two or more compounds.
- a step of obtaining a fluorescence fingerprint (also referred to herein as a "sample fluorescence fingerprint") is performed for each of the samples (step S102).
- the method of acquiring the sample fluorescence fingerprint is not particularly limited, and can be performed, for example, as follows. First, each sample is irradiated with excitation light of a specific wavelength from an excitation light source. Then, the wavelength and intensity of light (fluorescence or phosphorescence) emitted by the sample when irradiated with the excitation light are measured. The wavelength of the excitation light is then shifted by a desired width (eg 10 nm) and the wavelength and intensity of the light are similarly measured.
- a desired width eg 10 nm
- sample fluorescence fingerprint referred to in this specification may be created based on the wavelength and intensity of light emitted by the sample (luminescent substance), for example, based on the wavelength and intensity of phosphorescence emitted by the sample (luminescent substance). It may be created by
- the wavelength of the excitation light used to obtain the sample fluorescence fingerprint is appropriately selected according to the type of candidate luminescent substance, the type of composition, and the like.
- the candidate light-emitting substance when a substance that can be excited by visible light is used as the candidate light-emitting substance, visible light is used as the excitation light.
- ultraviolet light when a substance that can be excited by ultraviolet light is used as the candidate light-emitting substance, ultraviolet light is used as the excitation light.
- the light source of the excitation light is not particularly limited, it is a supercontinuum light source (a broadband pulse light source that emits strong light in phase over a very wide wavelength range using the nonlinear effect of optical fibers, and is called an "SC light source”). is also called) or an LED.
- SC light source a broadband pulse light source that emits strong light in phase over a very wide wavelength range using the nonlinear effect of optical fibers
- LED an LED
- the amount of light can be increased, making it easier to obtain a clear fluorescence fingerprint of the sample.
- a sample fluorescence fingerprint may be obtained by combining a plurality of light sources.
- the wavelength and intensity of fluorescence emitted by each sample can be measured with a spectrofluorometer or the like. Measurements may be made using multiple spectrofluorometers.
- a device that creates a sample fluorescence fingerprint from the wavelength of excitation light and the wavelength and intensity of light emitted by a candidate luminescent substance that is, a device that converts these data into three-dimensional data
- a general information processing device such as a personal computer. etc.
- sample fluorescence fingerprint information the information of these sample fluorescence fingerprints (also collectively referred to herein as “sample fluorescence fingerprint information”) is collected, and based on the sample fluorescence fingerprint information, a plurality of A luminescent substance suitable for the desired evaluation of the composition is determined from among the candidate luminescent substances (step S103). Specifically, the sample fluorescence fingerprints of each sample were compared, and depending on the state of the composition, the candidate luminescent substance that showed a large difference in the sample fluorescence fingerprint, the wavelength of the excitation light, and the candidate luminescent substance emitted. Identify the wavelength of light, etc.
- the specified candidate luminescent substance is selected as the luminescent substance of the luminescent layer to be used in the luminescent information acquisition step S12, which will be described later.
- the specified candidate luminescent substance is selected as the luminescent substance of the luminescent layer to be used in the luminescent information acquisition step S12, which will be described later.
- this step only one light-emitting substance may be selected, or two or more light-emitting substances may be selected. Also, a plurality of light-emitting substances may be selected according to the evaluation items of the composition.
- the method of comparing multiple sample fluorescence fingerprints in this step is not particularly limited, and multiple sample fluorescence fingerprints may simply be superimposed and compared.
- the sample fluorescence fingerprint information may be reduced to a lower dimension by statistical analysis processing, parameterized so as to directly represent the characteristics of each state of the composition, and compared.
- statistical analysis processing methods include multivariate analysis and data mining. Specific examples thereof include data structure analysis, discriminant analysis, pattern classification, multidimensional data analysis, regression analysis, machine learning, and the like.
- the above data structure analysis includes principal component analysis, factor analysis, correspondence analysis and independent component analysis.
- the discriminant analysis includes linear discriminant analysis or nonlinear discriminant analysis.
- Linear discriminant analysis includes canonical discriminant analysis, and nonlinear discriminant analysis includes decision tree.
- Examples of the above pattern classification include cluster analysis and multidimensional scaling.
- the regression analysis includes linear regression and nonlinear regression.
- linear discriminant analysis includes Partial Least Square (PLS) regression, simple regression analysis, multiple regression analysis and principal component regression
- nonlinear discriminant analysis includes logistic regression and regression tree.
- the above machine learning includes neural networks, self-organizing maps, group learning, and genetic algorithms. Any analytical method may be used for the statistical analysis, as long as it is a technique that enables more accurate analysis of the composition.
- a light-emitting layer containing a light-emitting substance is prepared.
- the light-emitting layer may have any shape or structure as long as it can emit light while in contact with the composition in the step of obtaining light emission information, which will be described later.
- the light-emitting layer may be arranged at the tip of the optical fiber, or may be arranged on one surface of a light-guiding planar member such as glass.
- a probe or the like in which a light-emitting layer is arranged at the tip of an optical fiber, light is guided to the light-emitting layer via the optical fiber, and light emitted by a light-emitting substance in the light-emitting layer is transmitted to a detection device or the like via the optical fiber. be able to. Therefore, detection can be performed efficiently.
- the light-emitting layer is arranged at the tip of the optical fiber (probe) will be described below as an example, but the present embodiment is not limited to this aspect.
- the sensor 200 has a probe 21, a light source 22, a detector 23, and cables 210a and 210b connecting these.
- the probe 21 only needs to have a light guide member 21a and a light emitting layer 21b containing a light emitting material disposed at the tip of the light guide member 21a.
- the light-emitting substance included in the light-emitting layer 21b is, for example, the light-emitting substance selected in the above-described light-emitting substance selection process.
- the light guide member 21a may be any member as long as it can guide the light (fluorescence or phosphorescence) emitted by the light-emitting substance in the light-emitting layer 21b to the detection section 23 side.
- the light guide member 21a can guide the excitation light for exciting the light-emitting substance in the light-emitting layer 21b emitted by the light source 22 to the light-emitting layer 21b side, and the light-emitting substance in the light-emitting layer 21b emits light.
- a member capable of guiding light (fluorescence or phosphorescence) to the detection section 23 side is preferable because the excitation light can be reliably applied to the light-emitting substance.
- the light guide member 21a may be an optical fiber, and may be composed of one type of optical fiber, for example.
- the optical fiber guides the excitation light from the light source 22 to the light emitting layer 21b side and guides the light (fluorescence or phosphorescence) emitted by the light emitting substance from the light emitting layer 21b side to the detection section 23 side.
- the light guide member 21a may be composed of multiple types of optical fibers.
- the light guide member 21a includes an optical fiber for guiding the excitation light from the light source 22 to the light emitting layer 21b side, and for guiding the light (fluorescence and phosphorescence) emitted by the light emitting substance from the light emitting layer 21b side to the detection section 23 side. optical fibers, respectively.
- the light guide member 21a is made of one type of optical fiber.
- Cables 210a, 210b and the like may be arranged between the light guide member 21a of the probe 21 and the light source 22 or the detection section 23 as necessary.
- the light emitting layer 21b may be arranged at least at the tip of the light guide member 21a (probe 21), and may be arranged so as to cover the entire light guide member 21a, for example.
- the light-emitting layer 21b may be a layer containing only a light-emitting substance.
- layers containing only luminescent materials include monolayers such as porous films and self-assembled monolayers. Such a monomolecular film may cover the entire tip of the probe, or, for example, may cover the tip of the probe in a sea-island pattern, that is, partially.
- the luminescent material is a layer bound to the light guide member 21a by a binder.
- the amount of the light-emitting substance in the light-emitting layer 21b is not particularly limited as long as it can sufficiently come into contact with the composition and can sufficiently emit light (fluorescence or phosphorescence) upon receiving excitation light.
- the light-emitting layer 21b may contain only one kind of light-emitting substance, or may contain two or more kinds thereof.
- one light-emitting layer 21b may contain a plurality of light-emitting substances for evaluating each performance and property.
- a plurality of probes 21 may be prepared for each luminescent substance, and the luminescence information acquisition step S12, which will be described later, may be performed using these probes. When a plurality of probes 21 are prepared, the luminescence information from each luminescent substance is not mixed, and it becomes easier to evaluate in the evaluation step S13 described later.
- the type of binder contained in the light-emitting layer 21b is not particularly limited, but a material capable of transmitting excitation light for exciting the light-emitting substance and light emitted by the light-emitting substance is preferable.
- a material capable of transmitting excitation light for exciting the light-emitting substance and light emitted by the light-emitting substance is preferable.
- an inorganic material such as silicone resin or an organic resin such as epoxy resin may be used.
- the light-emitting layer 21b may contain only one type of binder, or may contain two or more types of binders.
- the method of forming the light emitting layer 21b at the tip of the light guide member 21a is not particularly limited.
- a luminescent material and a binder precursor for example, triethoxysilane
- a binder precursor for example, triethoxysilane
- a sol-gel reaction may be used for the polymerization, such as when the binder precursor is triethoxysilane.
- an epoxy resin (polymer) or the like, a light-emitting substance, and a solvent may be mixed and applied around the light guide member 21a, and then the solvent may be removed to form the light-emitting layer 21b.
- a light-emitting substance having a group (—Si(OCH 3 ) 3 ) derived from a silane coupling agent is applied to the tip of an optical fiber by an inkjet method or the like. may be cured by polycondensation by a sol-gel reaction or the like.
- the tip of the optical fiber may be immersed in a light-emitting substance having a group (—Si(OCH 3 ) 3 ) derived from a silane coupling agent, followed by polycondensation and curing.
- a light-emitting substance having a group (—Si(OCH 3 ) 3 ) derived from a silane coupling agent followed by polycondensation and curing.
- the light-emitting layer is formed on a light-guiding planar member such as glass instead of the tip of the optical fiber, the same method can be used to form the light-emitting layer.
- the light source 22 that can be used for the sensor 200 is not particularly limited as long as it can irradiate light of a predetermined wavelength, and can be a supercontinuum light source, an LED, a white light source, or the like. Further, the light source 22 may include a filter for irradiating only a specific wavelength, a mechanism for adjusting the intensity of light, and the like.
- the detection unit 23 only needs to be able to measure the wavelength and intensity of the light (fluorescence or phosphorescence) emitted by the light-emitting substance, and can be a spectrofluorophotometer, for example.
- the detection unit 23 may be connected to an information processing device (not shown) for analyzing the light emission information of the light emitting substance.
- the luminescent information acquisition step S12 the luminescent layer prepared in the luminescent layer preparation step S11 described above, for example, the luminescent layer 21b of the probe 21 of the sensor 200 is brought into contact with the composition, and in this state, excitation light from the light source 22 is emitted.
- the light-emitting substance in the light-emitting layer 21b is irradiated.
- the method of contacting the light-emitting layer 21b with the composition is not particularly limited, and for example, the light-emitting layer 21b may be immersed in the composition. Also, a composition may be applied to the surface of the light-emitting layer 21b.
- the composition when the luminescence information acquisition step S12 is performed during the manufacture of the composition, the composition may be sampled and brought into contact with the luminescent layer 21b. That is, the light emission information acquisition step S12 may be performed offline. Alternatively, the luminescent layer may be immersed in the composition in the production line to bring them into contact. That is, the light emission information acquisition step S12 may be performed inline. In this embodiment, since the luminescent substance is immobilized on the surface of the probe, the possibility of contamination of the composition with the luminescent substance is extremely low, and the process of acquiring luminescence information can be performed even in-line.
- the wavelength of the excitation light with which the light-emitting layer 21b (light-emitting substance) is irradiated in the light-emitting information acquisition step S12 may be a specific wavelength with a large difference in the fluorescence fingerprint in the above-described light-emitting substance selection step S10.
- light of a wide wavelength range may be sequentially irradiated while shifting the wavelengths.
- the light emitted by the luminous substance may be detected by a detection device or the like.
- the luminescence information acquired by the detection unit 23 may be information that enables the composition to be evaluated in the evaluation step S13 described later. For example, it may be only the intensity of a specific wavelength emitted by a light-emitting substance, or the spectrum of light emitted by a light-emitting substance.
- the luminescence information acquired in this step may be information about fluorescence emitted by a light-emitting substance, or information about phosphorescence emitted by a light-emitting substance.
- the luminescence information may be acquired using only one probe 21, but a plurality of probes 21 having different types of luminescent substances may be prepared to acquire a plurality of luminescence information.
- a probe that does not have the light-emitting layer 21b may be separately prepared to obtain the difference in light-emission information.
- Obtaining the difference means canceling the effects of various factors other than the item of interest and obtaining only the effect of the item of interest. This can increase the signal/noise ratio to useful information.
- a probe 21 having a luminescent layer 21b and a probe whose luminescent layer does not contain a luminescent substance are prepared. Then, each of these is brought into contact with the composition, and in this state, the probe 21 is irradiated with light (excitation light) from the light source 22 . Light from each probe is detected by the detector 23 .
- the data detected from the probe whose light-emitting layer does not contain the light-emitting substance is subtracted from the data detected from the probe 21 with the light-emitting layer 21b. Accordingly, noise can be removed, and luminescence information derived from the luminescence substance can be acquired more accurately.
- a plurality of data may be acquired at regular time intervals.
- the reaction speed, aging speed, fermentation speed, etc., drying speed, stability over time, etc. when manufacturing a specific product can be grasped over time.
- the luminescence information obtained in the luminescence information obtaining step S12 is analyzed based on the previously obtained fluorescence fingerprint information to evaluate the state of the composition.
- the fluorescence fingerprint information used in the evaluation step S13 may be the sample fluorescence fingerprint information obtained in the above-described luminescent material selection step S10, or may be separately obtained fluorescence fingerprint information.
- the luminescent substance selection step S10 if the luminescent substance selection step S10 is not performed, a plurality of samples are prepared by mixing the luminescent substance and a plurality of compositions in different states in advance, and fluorescence fingerprints are obtained for each sample. . Information on these fluorescent fingerprints (fluorescent fingerprint information) may then be used for evaluation of the composition.
- the method for obtaining the fluorescent fingerprint information is the same as the method for obtaining the sample fluorescent fingerprint information in the luminescent material selection step S10 described above.
- the fluorescent fingerprint information obtained in advance and the luminescence information obtained in the luminescence information obtaining step S12 are collated to determine the state of the composition.
- a general information processing device such as a personal computer.
- a state estimation model may be created in advance, and the state of the composition may be specified by the estimation model.
- more appropriate evaluation can be performed by using a state estimation model.
- the state estimation model can be created by machine learning the fluorescent fingerprint obtained in advance and the state of the composition corresponding to this.
- a known method can be used as the machine learning method.
- multivariate analysis is performed using the fluorescence fingerprint as an explanatory variable and the state as an objective variable to obtain a similarity index.
- Similarity measures include cosine similarity, Pearson's correlation coefficient, deviation pattern similarity, Euclidean distance similarity, Morishita's similarity index, standard Euclidean distance similarity, Mahalanobis distance similarity, Manhattan distance similarity, and Chebyshev distance similarity. degree, Minkowski distance similarity, Jaccard coefficient similarity, Dice coefficient similarity, and Simpson coefficient similarity.
- the similarity index of the fluorescence fingerprint is calculated for a specific composition. This is then done for other compositions in different states. Then, an estimation model can be created by repeatedly executing and optimizing such that the error between the calculated similarity index and the actual state of the composition becomes small.
- the fluorescence fingerprint described above is three-dimensional data of the wavelength of excitation light, the wavelength of light emitted by a luminescent substance, and the intensity of the light. Therefore, three-dimensional data may be developed two-dimensionally to perform multivariate analysis.
- fluorescence fingerprints may be developed into two-dimensional data of wavelength conditions (combination of excitation wavelength and fluorescence wavelength) and fluorescence intensity, and multivariate analysis may be performed.
- meancentering, normalization, autoscale, second derivative, baseline correction, and smoothing are performed on the two-dimensionally unfolded fluorescence fingerprint. etc. may be performed. This allows us to emphasize the information contained in each data and scale the data from different samples.
- multivariate analysis may be performed on the three-dimensional data as it is.
- marker signals (combinations of excitation wavelengths and fluorescence wavelengths, etc.) that are important for estimation (changes significantly depending on the state of the composition) from the obtained similarity index.
- principal component regression, cluster analysis, discriminant analysis, SIMCA, multiple regression analysis, PLS regression analysis, PLS discrimination, SVM regression, SVM discrimination, RF regression, and / or RF discrimination are performed as multivariate analysis, and the marker signal is may be detected.
- marker signals are detected based on indicators that indicate the contribution rate of one or more of the regression coefficient, factor loading, loading, selectivityratio, variableimportanceinprojection, variable importance, and outofbagerror obtained by multivariate analysis to regression and discrimination. good too.
- the numerical value of the marker signal is estimated for a composition different from the composition for which the similarity index was obtained.
- the data calculated by the estimation and the actual data are compared, optimization is repeatedly performed so that these errors are reduced, and a state estimation model that can estimate the state of the composition by a specific marker signal is obtained.
- the state of the composition can be evaluated by applying the luminescence information obtained in the luminescence information acquisition step to the state estimation model.
- the state of the composition is evaluated based on fluorescence fingerprint information obtained in advance. According to the method, even if individual components in the composition are not specified or multiple substances in the composition interact in a complex manner, their properties and performance can be inductively captured and comprehensively can be evaluated. In other words, it is possible to evaluate the performance and characteristics of the composition without the need to perform a complicated component analysis on the composition, and even when the correlation between each component and the performance and characteristics is not clear. .
- the state of the composition can be comprehensively evaluated at an appropriate timing without affecting the composition in product research and development and production lines.
- the present invention also provides, in one embodiment, sensors that can be used in the evaluation methods described above.
- the sensor includes a light-emitting portion having a light-emitting layer containing a light-emitting substance whose light-emitting behavior changes according to the state of the composition, an excitation light source that emits excitation light for exciting the light-emitting substance, and light emitted by the light-emitting substance.
- the light emitting unit, the excitation light source, and the detecting unit may not be connected.
- the light-emitting portion may be a structure (probe) having an optical fiber and a light-emitting layer disposed at the tip of the optical fiber. It may be a structure having a light-emitting layer disposed on the surface member.
- the light-emitting part is the above-mentioned probe, it is preferable because it is easy to connect with the excitation light source and the detection part, the sensor is easy to handle, and it can be miniaturized.
- a sensor having such a probe will be described below as an example, but the sensor of this embodiment is not limited to this structure.
- the senor includes a light guide member 21a and a light emitting layer 21b disposed at the tip of the light guide member 21a and containing a light emitting substance whose light emission behavior changes depending on the state of the composition.
- a light source 22 that emits excitation light for exciting the luminescent substance; and a detector 23 that acquires information on the light emitted by the luminescent substance.
- the configuration of each of these members is the same as that of the sensor prepared in the light-emitting layer preparation step S12 of the evaluation method described above.
- the wavelength of the excitation light emitted by the light source 22 in the sensor 20 is a wavelength determined based on the previously acquired fluorescence fingerprint information (mode 1), or the light-emitting substance is a wavelength determined based on the previously acquired fluorescence fingerprint information. It is a determined substance (aspect 2).
- the pre-acquired fluorescence fingerprint information is obtained by mixing a specific light-emitting substance (the light-emitting substance contained in the light-emitting layer 21b) and a plurality of compositions having different states to prepare a plurality of samples. This is information when fluorescence fingerprints are obtained for each sample. By measuring the fluorescence fingerprints of each of these samples and comparing the fluorescence fingerprints with each other, it becomes clear what wavelength of excitation light is applied to make it easier to determine the change in state of the composition. Then, the wavelength at which the state change can be easily determined is determined as the wavelength of the excitation light emitted by the light source 22 . Therefore, according to the sensor 20 of aspect 1, the state of the composition can be grasped only by irradiating light of a specific wavelength as excitation light without using excitation light of a wide wavelength range.
- the fluorescence fingerprint information obtained in advance in aspect 2 is obtained by mixing a plurality of candidate luminescent substances and a plurality of compositions in different states to prepare a plurality of samples, and obtaining fluorescence fingerprints for each of these samples. It is the information at the time of acquisition. Fluorescence fingerprints are obtained for each of these samples, and by comparing the fluorescence fingerprints, it becomes clear which candidate luminescent substance (luminescent substance) is used to make it easier to determine the state change of the composition. Then, a candidate light-emitting substance whose state change can be easily determined is determined as a light-emitting substance contained in the light-emitting layer 21b. Therefore, according to the sensor 20 of aspect 2, the difference in the state of the composition is likely to appear in the luminescence information from the light-emitting substance, and the state of the composition can be easily grasped.
- the method for obtaining the fluorescent fingerprint is the same as the method described in the above-described luminescent substance selection step S10.
- the present invention also provides, as an embodiment, an evaluation system having any one of the above sensors and an information processing unit.
- the information processing section of the evaluation system analyzes the luminescence information obtained by the detection section of the sensor based on the fluorescence fingerprint information obtained in advance, and evaluates the state of the composition.
- the type of the information processing unit is not particularly limited, and a general information processing device such as a personal computer can be used.
- the fluorescence fingerprint information used by the evaluation system may be the fluorescence fingerprint information acquired to determine the wavelength of the excitation light of the sensor, or the fluorescence fingerprint information acquired to determine the luminescent substance of the sensor. may be Alternatively, the fluorescence fingerprint information obtained separately may be used.
- the information processing unit may be made to acquire a state estimation model in advance by machine learning, and the composition may be evaluated using the state estimation model.
- the state estimation model can be created in the same manner as the state estimation model used in the composition evaluation method described above.
- Resin composition A concentration of cycloolefin polymer a: 30 g/l
- resin composition B concentration of cycloolefin polymer b: 30 g/l
- the number of standard samples was 50, that is, 2 (resin compositions A and B) x 25 (24 types (number of luminescent substances) + 1 (no luminescent substance)). Then, fluorescence fingerprints were measured for each of these standard samples. Fluorescence fingerprints were measured with a commercially available spectrofluorophotometer (F-7000, manufactured by Hitachi High-Tech Science Co., Ltd.). The fluorescence fingerprint was measured by measuring the wavelength and intensity of the fluorescence emitted by the standard sample while shifting the excitation wavelength by 10 nm in the range of 250 nm to 700 nm. Fluorescent fingerprints were acquired by converting these into three-dimensional data.
- FIG. 5A shows a fluorescence fingerprint obtained using a light-emitting substance (IRGANOX1076 manufactured by BASF) for resin composition A
- FIG. 5B shows a fluorescence fingerprint obtained using a light-emitting substance (IRGANOX1076 manufactured by BASF). Shows fluorescent fingerprints.
- composition A resin composition C (concentration of cycloolefin polymer c: 30 g/l) was prepared by dissolving cycloolefin polymer c whose number of recycling times was unknown in methylene chloride. The end portion of the sensor was immersed in the resin composition C, and irradiated with light having a wavelength of 320 nm by an excitation light fiber. Fluorescence emitted by the light-emitting layer was detected with a spectrofluorometer through a detection light fiber. The obtained data was compared with the fluorescence fingerprint data by the information processing unit to determine whether or not the cycloolefin polymer c was recyclable.
- the evaluation method of the composition of the present invention it is possible to comprehensively evaluate the state of the composition in the research and development of products and in the production line without affecting the target composition. Therefore, it is useful for inspection, research, production, etc. of various compositions.
Landscapes
- Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
The purpose of the present invention is to provide an evaluation method of a composition in which, during research and development, or on a production line, it is possible to perform overall evaluation of the state of the target composition without affecting the composition. This evaluation method of said composition involves: a step in which a light-emitting layer is prepared that contains a light-emitting substance which changes light emission behavior in response to the state of the composition; a step in which, in a state in which the light-emitting layer and the composition are brought into contact, the light-emitting layer is irradiated with excitation light and light emission information about the light emission substance is acquired; and a step in which the light emission information is analyzed on the basis of fluorescence fingerprint information acquired in advance, and the state of the composition is evaluated.
Description
本発明は、組成物の評価方法、これを行うためのセンサーおよび評価システムに関する。
The present invention relates to a composition evaluation method, a sensor for performing this, and an evaluation system.
従来、製造業におけるサプライチェーンの下流側、すなわち販売や在庫管理、経理、品質保証等の分野でデータサイエンスが利用されていた。これに対し、近年、より上流側の製品の試作や開発、研究、製造等の分野でも、データサイエンスの活用が望まれている。ただし、当該データサイエンスを製造業の上流側の分野に適合させるためには、概念を理解した上で的確に使いこなすことが肝要である。
In the past, data science was used in the downstream side of the supply chain in the manufacturing industry, that is, in fields such as sales, inventory management, accounting, and quality assurance. On the other hand, in recent years, there has been a demand for the utilization of data science also in fields such as product prototyping, development, research, and manufacturing on the upstream side. However, in order to adapt the data science to the upstream field of the manufacturing industry, it is important to understand the concept and use it properly.
例えば、対象となる学問や行動等を全て総括して、「法則性」と「相関性」という切り口で切ってみると、昨今、AI(Artificial Intelligence)の発達によって大きな利得を得ているのは、物理や電気のような理論的で法則性の高い学問領域ではなく、画像や購買行動のような法則性が無く、相関性だけで解を出す領域である。これらの領域では、AIの活用によって、事業拡張や課題解決等が飛躍的に進んでいる。
For example, if we summarize all of the subject studies and behaviors, and cut them from the perspective of "regularity" and "correlation", we can see that the development of AI (Artificial Intelligence) has brought about great gains in recent years. , It is not a theoretical and highly regular academic field such as physics and electricity, but an area where there is no regularity such as images and purchasing behavior and solutions can be found only by correlation. In these areas, the use of AI is making dramatic progress in business expansion and problem solving.
一方、技術開発・研究開発の分野では、これまで、実験から得られたデータを起点として、そこから法則性や相関性を研究者が「演繹的」に考え出し、それにより発想される「仮説」を立ててそれを検証(アブダクション)することが重要であった。当該仮説検証が少ない回数で理論まで導ける分野では、AIを使うメリットが少ない。このような領域の例には、物理学や電気工学等がある。一方、低分子化合物や高分子材料、バイオテクノロジー等を扱う分野では仮説は立案できるが、作用が多岐に及ぶことが多く、仮説が当たらなかったり、仮説検証に時間がかかったりしやすかった。
On the other hand, in the field of technology development and research and development, until now, researchers have deduced rules and correlations from data obtained from experiments as a starting point, and the "hypothesis" that is conceived from this. It was important to set up and verify (abduction) it. In fields where hypotheses can be tested a small number of times to reach a theory, there is little merit in using AI. Examples of such areas include physics and electrical engineering. On the other hand, in fields that deal with low-molecular-weight compounds, polymer materials, biotechnology, etc., it is possible to formulate hypotheses, but the effects are often diverse, and it is easy for the hypotheses to fail or to take time to verify the hypotheses.
ここで、「演繹的」に仮説を立案することの対極として、「帰納的」に解釈するという手法がある。インダストリー4.0では、演繹的な仮説立案ではなく、帰納的なアプローチが優位である。この帰納的な手法を化学・材料・調合などに適合させたのがマテリアル・インフォマティクスであり、それを製造プロセスまで発展させたのがプロセス・インフォマティクスである。極めて単純化して考えると、これらの分野において、AIの恩恵を享受するためには、「アブダクションを最小化する」ことが重要である。そして、工業分野におけるデジタルトランスフォーメーション(DX)の促進を主導するのは、AIではなく、データを発生させるところにある。例えば、対象となる物体や流体、気体について、微妙な違いや特徴を2値のデータとして発生させることが肝要である。
Here, there is a method of interpreting "inductively" as the opposite of "deductively" formulating hypotheses. In Industry 4.0, an inductive approach, rather than a priori hypothesis-making, predominates. Materials informatics adapts this inductive method to chemistry, materials, and compounding, and process informatics develops it into manufacturing processes. Simplistically speaking, it is important to "minimize abduction" in order to enjoy the benefits of AI in these fields. And it is the generation of data, not AI, that is driving the industrial digital transformation (DX). For example, it is essential to generate subtle differences and characteristics of target objects, fluids, and gases as binary data.
ここで、帰納的に解釈する手法で用いられるデータとは、人間の思考では演繹的に取り扱うことが困難なデータであり、例えば根拠が十分に確立されていない科学的データ、または意味付けが十分になされていない科学的データ等である。さらに、根拠が十分に確立され、または意味付けが十分になされている科学的データであっても、複雑さ、または情報量の多さ等の理由によって人間の思考での演繹的な処理が困難な科学的データは、帰納的なデータに含まれる。
Here, the data used in the inductive interpretation method is data that is difficult to handle deductively by human thinking. It is scientific data etc. that have not been made. Furthermore, even scientific data with well-established grounds or sufficient meaning cannot be processed deductively by human thinking due to its complexity or large amount of information. scientific data are included in inductive data.
帰納的なデータの一つに、蛍光指紋がある。蛍光指紋は、励起波長を変化させながら蛍光スペクトルを取得していく方法で、1970年代から知られている計測法である。食品には、励起光を受けて蛍光を発する成分が比較的多く含まれていることから、食品分野では、品質管理等において、蛍光指紋が活用されている。
One of the inductive data is the fluorescence fingerprint. The fluorescence fingerprint is a method of acquiring a fluorescence spectrum while changing the excitation wavelength, and is a measurement method known since the 1970s. Foods contain a relatively large amount of components that emit fluorescence when exposed to excitation light. Therefore, fluorescence fingerprints are utilized in the field of food products for quality control and the like.
一方、特許文献1や特許文献2には、特定の物質の濃度に応じて、蛍光活性が変化する蛍光体や試薬を先端に担持させたセンサー、これを含むシステム等が提案されている。
On the other hand, Patent Documents 1 and 2 propose a sensor whose tip carries a fluorescent substance or reagent whose fluorescence activity changes according to the concentration of a specific substance, a system including this, and the like.
前述のように、低分子化合物、高分子材料、バイオテクノロジー分野等を取り扱う製造業においても、デジタルトランスフォーメーションが求められており、その加速のために、蛍光指紋を活用することが考えられる。しかしながら、蛍光指紋は、食品分野以外では、殆ど普及していないのが実情である。食品以外の分野では、測定対象物に蛍光を発する成分が含まれていないことが一因として挙げられる。
As mentioned above, there is a need for digital transformation even in the manufacturing industry that deals with low-molecular-weight compounds, polymer materials, and biotechnology fields, and the use of fluorescence fingerprints is conceivable to accelerate this. However, the fact is that fluorescence fingerprinting has hardly spread outside the food field. In fields other than food, one reason is that the measurement target does not contain a component that emits fluorescence.
そこで、製品の研究開発や、製造ラインにおいて、原料組成物や中間生成物、最終生成物等に発光物質を混合することが考えられる。しかしながら、このような物質を添加すると、原料組成物や製品の品質等を損なう可能性があり、適切でない。
Therefore, it is conceivable to mix light-emitting substances with raw material compositions, intermediate products, final products, etc. in product research and development and production lines. However, the addition of such substances may impair the quality of raw material compositions and products, and is not suitable.
本発明は、製品の研究開発や、製造ラインにおいて、製造や研究の対象である組成物に影響を与えることなく、組成物の状態を総合的に評価することが可能な評価方法、これに用いるセンサー、および評価システムの提供を目的とする。
The present invention is an evaluation method that can comprehensively evaluate the state of a composition without affecting the composition that is the object of manufacture or research in research and development of products and production lines. The purpose is to provide sensors and evaluation systems.
本発明の一実施形態として、組成物の状態に応じて発光挙動が変化する発光物質を含む発光層を準備する工程と、前記発光層及び前記組成物を接触させた状態で、前記発光層に励起光を照射し、前記発光物質の発光情報を取得する工程と、前記発光情報を、予め取得した蛍光指紋情報に基づいて解析し、前記組成物の状態を評価する工程と、を有する、組成物の評価方法を提供する。
As an embodiment of the present invention, a step of preparing a light-emitting layer containing a light-emitting substance whose light-emitting behavior changes according to the state of the composition, and in a state where the light-emitting layer and the composition are in contact, the light-emitting layer A composition comprising a step of irradiating with excitation light to obtain luminescence information of the luminescent substance, and a step of analyzing the luminescence information based on fluorescence fingerprint information obtained in advance to evaluate the state of the composition. Provide a method of evaluating objects.
本発明の一実施形態として、組成物の状態に応じて発光挙動が変化する発光物質を含む発光層を有する発光部と、前記発光物質を励起させるための励起光を出射する励起光源と、前記発光物質が発する光の情報を取得する検出部と、を有し、前記励起光の波長は、予め取得した蛍光指紋情報に基づいて決定された波長である、センサーを提供する。
As one embodiment of the present invention, a light-emitting portion having a light-emitting layer containing a light-emitting substance whose light-emitting behavior changes according to the state of the composition, an excitation light source that emits excitation light for exciting the light-emitting substance, and and a detector that acquires information on light emitted by a luminescent substance, wherein the wavelength of the excitation light is a wavelength determined based on pre-obtained fluorescence fingerprint information.
他の実施形態として、組成物の状態に応じて発光挙動が変化する発光物質を含む発光層を有する発光部と、前記発光物質を励起させるための励起光を出射する励起光源と、前記発光物質が発する光の情報を取得する検出部と、を有し、前記発光物質は、予め取得した蛍光指紋情報に基づいて選定された物質である、センサーも提供する。
As another embodiment, a light-emitting portion having a light-emitting layer containing a light-emitting substance whose light-emitting behavior changes according to the state of the composition, an excitation light source for emitting excitation light for exciting the light-emitting substance, and the light-emitting substance and a detector for acquiring information on the light emitted by the , wherein the luminescent material is a material selected based on pre-obtained fluorescence fingerprint information.
本発明の一実施形態として、前記センサーと、前記検出部が取得した光の情報を、予め取得した蛍光指紋情報により解析し、前記組成物の状態を評価する情報処理部と、を有する、評価システムを提供する。
As an embodiment of the present invention, the sensor and an information processing unit that analyzes the light information acquired by the detection unit by fluorescence fingerprint information acquired in advance and evaluates the state of the composition. provide the system.
上記組成物の評価方法によれば、各種製造ラインや、試作、研究において、その対象である組成物に影響を与えることなく、組成物の状態を総合的に評価可能である。また、上記センサーや評価システムによれば、効率よく上記評価方法を行うことができる。
According to the above composition evaluation method, it is possible to comprehensively evaluate the state of the composition in various production lines, trial production, and research without affecting the target composition. Moreover, according to the above sensor and evaluation system, the above evaluation method can be performed efficiently.
以下、本発明について、一実施形態を例に詳細に説明する。ただし、本発明は、これらの実施形態に限定されない。
Hereinafter, the present invention will be described in detail by taking one embodiment as an example. However, the invention is not limited to these embodiments.
1.組成物の評価方法
本実施形態の組成物の評価方法は、組成物の良否の判定や、劣化度合いの特定、産地やロットの判別等、組成物の各種性能や性質等を評価するための方法である。一般的に、測定したい物質の構造や性質が判明している場合、当該物質を標的に合わせて試験のための条件や試薬等を選択することは容易である。これに対し、組成物が複数の物質を含み、これらが複雑に相互作用している場合や、複数の成分がその性質や性能等に寄与している場合等には、その評価が難しい。本実施形態の方法によれば、一般的な方法では評価が難しい組成物についても、総合的にその性能や性質等を評価可能である。 1. Composition evaluation method The composition evaluation method of the present embodiment is a method for evaluating various performances and properties of the composition, such as determining the quality of the composition, specifying the degree of deterioration, and determining the production area and lot. is. In general, when the structure and properties of a substance to be measured are known, it is easy to select test conditions, reagents, etc., according to the substance as a target. On the other hand, evaluation is difficult when the composition contains a plurality of substances that interact in a complex manner, or when a plurality of components contribute to the properties and performance of the composition. According to the method of the present embodiment, it is possible to comprehensively evaluate the performance, properties, etc. of a composition that is difficult to evaluate by a general method.
本実施形態の組成物の評価方法は、組成物の良否の判定や、劣化度合いの特定、産地やロットの判別等、組成物の各種性能や性質等を評価するための方法である。一般的に、測定したい物質の構造や性質が判明している場合、当該物質を標的に合わせて試験のための条件や試薬等を選択することは容易である。これに対し、組成物が複数の物質を含み、これらが複雑に相互作用している場合や、複数の成分がその性質や性能等に寄与している場合等には、その評価が難しい。本実施形態の方法によれば、一般的な方法では評価が難しい組成物についても、総合的にその性能や性質等を評価可能である。 1. Composition evaluation method The composition evaluation method of the present embodiment is a method for evaluating various performances and properties of the composition, such as determining the quality of the composition, specifying the degree of deterioration, and determining the production area and lot. is. In general, when the structure and properties of a substance to be measured are known, it is easy to select test conditions, reagents, etc., according to the substance as a target. On the other hand, evaluation is difficult when the composition contains a plurality of substances that interact in a complex manner, or when a plurality of components contribute to the properties and performance of the composition. According to the method of the present embodiment, it is possible to comprehensively evaluate the performance, properties, etc. of a composition that is difficult to evaluate by a general method.
ここで、本実施形態の組成物の評価方法で評価する組成物は、2種以上の成分を含んでいればよく、例えば食品であってもよく、各種工業製品等であってもよい。また、後で詳しく説明するが、組成物は発光層中の発光物質と十分に相互作用させる必要があるため、流体が好ましく、気体または液体がより好ましく、特に液体が好ましい。また、本実施形態の組成物の評価方法を行うタイミングは、製品の試作、開発、研究過程であってもよく、製品の製造ラインをテストする過程(テストプラント内)や、試作品を作製する過程(パイロットプラント内)であってもよく、さらには製品の製造過程であってもよく、製品の品質検査過程であってもよい。また、農産物やその加工品の製造過程や保存過程、品質管理過程等であってもよい。
Here, the composition to be evaluated by the composition evaluation method of the present embodiment may contain two or more components, and may be, for example, foods or various industrial products. Further, as will be described in detail later, the composition is required to sufficiently interact with the light-emitting substance in the light-emitting layer, so the composition is preferably a fluid, more preferably a gas or a liquid, and particularly preferably a liquid. In addition, the timing of performing the evaluation method of the composition of the present embodiment may be the product trial production, development, or research process, and the process of testing the production line of the product (within the test plant) or the production of the prototype. It may be a process (within a pilot plant), a product manufacturing process, or a product quality inspection process. Moreover, it may be a manufacturing process, a storage process, a quality control process, or the like of an agricultural product or its processed product.
本実施形態の組成物の評価方法は、例えば図1のフロー図に示すように、組成物の状態に応じて発光挙動が変化する発光物質を含む発光層を準備する工程S11(以下、「発光層準備工程」とも称する)と、発光層及び組成物を接触させて、発光層に励起光を照射し、発光物質の発光情報を取得する工程S12(以下、「発光情報取得工程」とも称する)と、発光情報を、予め取得した蛍光指紋情報により解析し、組成物の状態を評価する工程S13(以下、「評価工程」とも称する)と、を有する。
The evaluation method of the composition of the present embodiment includes, for example, as shown in the flow chart of FIG. A step S12 of bringing the light-emitting layer and the composition into contact with each other and irradiating the light-emitting layer with excitation light to obtain light emission information of the light-emitting substance (hereinafter also referred to as a “light emission information obtaining step”). and a step S13 (hereinafter also referred to as an “evaluation step”) of analyzing the luminescence information based on the fluorescence fingerprint information obtained in advance and evaluating the state of the composition.
本実施形態の組成物の評価方法は、必要に応じて、これら以外の工程を有していてもよい。例えば図2のフロー図に示すように、発光層を準備する工程S11の前に、発光層に用いる発光物質を選定する工程S10(以下、「発光物質選定工程」とも称する)等を有していてもよい。以下、発光層準備工程S11前に、発光物質選定工程S10を行う態様について説明する。ただし、本実施形態は、当該態様に限定されない。
The evaluation method of the composition of the present embodiment may have steps other than these, if necessary. For example, as shown in the flow chart of FIG. 2, there is a step S10 of selecting a light-emitting material to be used for the light-emitting layer (hereinafter also referred to as a "light-emitting material selection step") before the step S11 of preparing the light-emitting layer. may A mode in which the luminescent material selection step S10 is performed before the luminescent layer preparation step S11 will be described below. However, this embodiment is not limited to this aspect.
(発光物質選定工程)
発光物質選定工程S10では、後述の発光層準備工程S11で準備する発光層に使用する発光物質を選定する。具体的には、図3のフロー図に示すように、状態が互いに異なる複数の組成物と、複数種類の候補発光物質と、を含む複数のサンプルを調製する(S101)。そして、当該複数のサンプルについて、サンプル蛍光指紋を取得する(S102)。さらに、当該サンプル蛍光指紋情報に基づいて、発光層に使用する発光物質を決定する(S103)。 (Luminescent substance selection process)
In the luminescent material selection step S10, a luminescent material to be used for the luminescent layer prepared in the luminescent layer preparation step S11, which will be described later, is selected. Specifically, as shown in the flowchart of FIG. 3, a plurality of samples containing a plurality of compositions in different states and a plurality of types of candidate luminescent substances are prepared (S101). Then, sample fluorescence fingerprints are acquired for the plurality of samples (S102). Furthermore, based on the sample fluorescence fingerprint information, a luminescent material to be used for the luminescent layer is determined (S103).
発光物質選定工程S10では、後述の発光層準備工程S11で準備する発光層に使用する発光物質を選定する。具体的には、図3のフロー図に示すように、状態が互いに異なる複数の組成物と、複数種類の候補発光物質と、を含む複数のサンプルを調製する(S101)。そして、当該複数のサンプルについて、サンプル蛍光指紋を取得する(S102)。さらに、当該サンプル蛍光指紋情報に基づいて、発光層に使用する発光物質を決定する(S103)。 (Luminescent substance selection process)
In the luminescent material selection step S10, a luminescent material to be used for the luminescent layer prepared in the luminescent layer preparation step S11, which will be described later, is selected. Specifically, as shown in the flowchart of FIG. 3, a plurality of samples containing a plurality of compositions in different states and a plurality of types of candidate luminescent substances are prepared (S101). Then, sample fluorescence fingerprints are acquired for the plurality of samples (S102). Furthermore, based on the sample fluorescence fingerprint information, a luminescent material to be used for the luminescent layer is determined (S103).
サンプルを調製する工程S101では、まず、状態が互いに異なる複数の組成物を準備する。ここでいう、「状態が互いに異なる」とは、性質や性能等が異なっていればよく、本実施形態の評価方法において、どのような性質や性能を評価するか、に応じて適宜選択される。例えば、食品の味や風味等を評価する場合、理想的な組成物(良品)と、味や風味が劣る組成物(不良品)とを準備する。また、製品のロットや産地を評価する場合には、これらが異なる複数の組成物を準備する。さらに、製造過程におけるモノマーの重合状態等を判断する場合には、重合度が異なる複数の組成物を準備する。なお、後述の評価工程S13で評価する性能や性質は、1つである必要はなく、複数であってもよい。複数の性能や性質について評価を行う場合には、各性能や性質毎に、複数の組成物を準備してもよい。
In the sample preparation step S101, first, a plurality of compositions in different states are prepared. Here, "different states" means that the properties, performance, etc. are different, and in the evaluation method of the present embodiment, it is appropriately selected according to what properties and performance are to be evaluated. . For example, when evaluating the taste and flavor of food, an ideal composition (good product) and a composition with inferior taste and flavor (defective product) are prepared. In addition, when evaluating product lots and production areas, a plurality of compositions with different properties are prepared. Furthermore, when judging the state of polymerization of monomers in the manufacturing process, a plurality of compositions having different degrees of polymerization are prepared. It should be noted that the performance or property to be evaluated in the evaluation step S13, which will be described later, does not need to be one, and may be plural. When evaluating multiple performances and properties, multiple compositions may be prepared for each performance and property.
一方、サンプルを調製する工程S101では、後述の発光情報取得工程S12で発光物質として使用する可能性のある候補発光物質を複数準備する。本明細書における「発光物質」とは、後述の発光情報取得工程で照射する光によって発光可能であり、かつ上記組成物の状態に応じて発光挙動が変化する物質であればよい。なお、「発光挙動が変化する」とは、当該物質が発する光のピーク波長が変化したり、発する光の強度が変化したり、発する光のスペクトルが変化したりすることをいう。通常、発光物質が発する光は、発光物質の励起によって生じる蛍光や燐光である。
On the other hand, in the sample preparation step S101, a plurality of candidate luminescent substances that may be used as luminescent substances in the luminescent information acquisition step S12, which will be described later, are prepared. As used herein, the term “luminescent substance” may be any substance that can emit light when irradiated with light in the luminescence information acquisition step described later and whose luminous behavior changes depending on the state of the composition. Note that "the light emission behavior changes" means that the peak wavelength of the light emitted by the substance changes, the intensity of the emitted light changes, or the spectrum of the emitted light changes. Light emitted by a light-emitting substance is usually fluorescence or phosphorescence generated by excitation of the light-emitting substance.
組成物の状態に応じて発光挙動が変化する発光物質(候補発光物質)の例には、組成物中の成分と水素結合する物質やπ-π相互作用する物質等が含まれる。このような発光物質(候補発光物質)は、無機物質や有機物質、金属錯体等、いずれであってもよい。発光物質(候補発光物質)として使用可能な無機物質の例には、YAG蛍光体や、量子ドット蛍光体、VO2等のサーモクロミック材料、Agナノ粒子等が含まれる。発光物質(候補発光物質)として使用可能な有機物質の例には、クマリン、ペリレン等の蛍光材料が含まれる。また、発光物質(候補発光物質)として使用可能な金属錯体の例には、Eu(ユウロピウム)錯体やIr(イリジウム)錯体等の燐光材料が含まれる。また、水と相互作用してその濃度に応じて発光強度が変化する化合物や、光異方性を有し、紫外線を照射するとシス型となり可視光線を照射するとトランス型となってスイッチング機能を有する化合物等も発光物質(候補発光物質)として使用可能である。また、これらの発光物質(候補発光物質)は、後述の発光層中のバインダと共有結合するための基(例えばSi-O-R)等を有していてもよい。また、例えば上記無機物質や有機物質、金属錯体等にシランカップリングを結合させた発光物質であってもよい。
Examples of luminescent substances (candidate luminescent substances) whose luminescence behavior changes depending on the state of the composition include substances that hydrogen bond with components in the composition, substances that interact with π-π, and the like. Such light-emitting substances (candidate light-emitting substances) may be inorganic substances, organic substances, metal complexes, or the like. Examples of inorganic materials that can be used as luminescent materials (candidate luminescent materials) include YAG phosphors, quantum dot phosphors, thermochromic materials such as VO2 , Ag nanoparticles, and the like. Examples of organic materials that can be used as luminescent materials (candidate luminescent materials) include fluorescent materials such as coumarins and perylenes. Examples of metal complexes that can be used as light-emitting substances (candidate light-emitting substances) include phosphorescent materials such as Eu (europium) complexes and Ir (iridium) complexes. In addition, compounds that interact with water and change the emission intensity depending on its concentration, and compounds that have optical anisotropy, become cis-type when irradiated with ultraviolet rays and become trans-type when irradiated with visible light, and have a switching function. Compounds and the like can also be used as light-emitting substances (candidate light-emitting substances). In addition, these light-emitting substances (candidate light-emitting substances) may have a group (eg, Si--O--R) for covalent bonding with a binder in the light-emitting layer, which will be described later. Alternatively, for example, a light-emitting substance obtained by bonding the above inorganic substance, organic substance, metal complex, or the like with silane coupling may be used.
そして、サンプルを調製する工程S101では、上記複数の組成物と、複数の候補発光物質とを混合したり、接触させたりして、サンプルを調製する。なお、調製するサンプル中の組成物と、候補発光物質との比率等は適宜選択される。また必要に応じて、溶媒等を用いてこれらを混合してもよい。さらに、組成物と候補発光物質とが十分に接触可能であれば、必ずしもこれらを混合しなくてもよい。またサンプルを調製する際、候補発光物質を含まないサンプル、すなわち組成物のみ、もしくは組成物および溶媒のみからなるサンプルも調製することが好ましい。
Then, in step S101 of preparing a sample, the plurality of compositions and the plurality of candidate luminescent substances are mixed or brought into contact to prepare a sample. Note that the ratio of the composition in the sample to be prepared to the candidate luminescent substance, etc., is appropriately selected. Moreover, you may mix these using a solvent etc. as needed. Furthermore, it is not necessary to mix the composition and the candidate luminescent material so long as they are sufficiently contactable. Also, when preparing the samples, it is preferable to also prepare samples that do not contain the candidate luminescent material, ie samples that consist of the composition alone or the composition and solvent alone.
サンプルを調製する工程S101で作製するサンプルの数は特に制限されず、種類の異なる組成物の数や、候補発光物質の数に合わせて適宜選択される。複数のサンプルは、以下のような方法で調製できるが、当該方法に限定されない。例えば、96個のウェルを有するプレートの各ウェルに、95種類の候補発光物質をそれぞれ入れる。残り1つのウェルは、候補発光物質なしとする。そして、96個のウェルにそれぞれ第1の組成物(例えば良品)を添加する。同様に、95種類の候補発光物質を各ウェルに入れたプレートをさらに準備し、96個のウェルにそれぞれ第2の組成物(例えば不良品)を添加する。これにより、192個のサンプルを調製できるが、さらに第3の組成物や第4の組成物等を用いて、サンプルをさらに調製してもよい。なお、各候補発光物質は、それぞれ1種の化合物のみで構成されていてもよく、2種以上の化合物の混合物であってもよい。
The number of samples to be prepared in the sample preparation step S101 is not particularly limited, and is appropriately selected according to the number of different types of compositions and the number of candidate luminescent substances. A plurality of samples can be prepared by the following method, but is not limited to this method. For example, each well of a 96-well plate contains 95 candidate luminescent substances. The one remaining well is without candidate luminescent material. Then, the first composition (eg, good product) is added to each of the 96 wells. Similarly, another plate is prepared with 95 candidate luminescent substances in each well, and a second composition (eg, reject) is added to each of the 96 wells. As a result, 192 samples can be prepared, and further samples may be prepared using the third composition, the fourth composition, or the like. Each candidate light-emitting substance may be composed of only one compound, or may be a mixture of two or more compounds.
上記複数のサンプルの調製後、当該サンプルについて、それぞれ蛍光指紋(本明細書では「サンプル蛍光指紋」とも称する)を取得する工程を行う(工程S102)。サンプル蛍光指紋を取得する方法は特に制限されず、例えば、以下のように行うことができる。まず、各サンプルに励起光源から、特定の波長の励起光を照射する。そして、当該励起光を照射したときに、サンプルが発する光(蛍光もしくは燐光)の波長および強度を測定する。次いで、励起光の波長を、所望の幅(例えば10nm)ずらし、同様に光の波長および強度を測定する。そして、これらを繰り返し行い、励起光の波長と、サンプル(発光物質)が発する光の波長および強度とのデータを取得する。そして、これらを3次元データ化することで、サンプル蛍光指紋を取得する。なお、本明細書でいうサンプル蛍光指紋は、サンプル(発光物質)が発する光の波長や強度に基づき作成されたものであればよく、例えばサンプル(発光物質)が発する燐光の波長や強度に基づいて作成されたものであってもよい。
After preparing the plurality of samples, a step of obtaining a fluorescence fingerprint (also referred to herein as a "sample fluorescence fingerprint") is performed for each of the samples (step S102). The method of acquiring the sample fluorescence fingerprint is not particularly limited, and can be performed, for example, as follows. First, each sample is irradiated with excitation light of a specific wavelength from an excitation light source. Then, the wavelength and intensity of light (fluorescence or phosphorescence) emitted by the sample when irradiated with the excitation light are measured. The wavelength of the excitation light is then shifted by a desired width (eg 10 nm) and the wavelength and intensity of the light are similarly measured. By repeating these steps, data on the wavelength of the excitation light and the wavelength and intensity of the light emitted by the sample (luminescent substance) are obtained. Then, by converting these into three-dimensional data, a sample fluorescence fingerprint is obtained. The sample fluorescence fingerprint referred to in this specification may be created based on the wavelength and intensity of light emitted by the sample (luminescent substance), for example, based on the wavelength and intensity of phosphorescence emitted by the sample (luminescent substance). It may be created by
なお、サンプル蛍光指紋の取得に使用する励起光の波長は、候補発光物質の種類や、組成物の種類等に応じて適宜選択される。例えば、候補発光物質として、可視光で励起可能な物質を用いる場合には、可視光を励起光とする。一方、候補発光物質として、紫外光で励起可能な物質を用いる場合には、紫外光を励起光とする。
It should be noted that the wavelength of the excitation light used to obtain the sample fluorescence fingerprint is appropriately selected according to the type of candidate luminescent substance, the type of composition, and the like. For example, when a substance that can be excited by visible light is used as the candidate light-emitting substance, visible light is used as the excitation light. On the other hand, when a substance that can be excited by ultraviolet light is used as the candidate light-emitting substance, ultraviolet light is used as the excitation light.
また、励起光の光源は特に制限されないが、スーパーコンティニューム光源(光ファイバーの非線形効果を利用して非常に広い波長範囲にわたって、位相の揃った強い光を出す広帯域パルス光源であり、「SC光源」とも呼ばれる。)やLEDとすることができる。これらの光源によれば、光量を大きくでき、明瞭なサンプル蛍光指紋を取得しやすい。なお、複数の光源を組み合わせてサンプル蛍光指紋を取得してもよい。
In addition, although the light source of the excitation light is not particularly limited, it is a supercontinuum light source (a broadband pulse light source that emits strong light in phase over a very wide wavelength range using the nonlinear effect of optical fibers, and is called an "SC light source"). is also called) or an LED. With these light sources, the amount of light can be increased, making it easier to obtain a clear fluorescence fingerprint of the sample. Note that a sample fluorescence fingerprint may be obtained by combining a plurality of light sources.
一方、各サンプルが発する蛍光の波長および強度は、分光蛍光光度計等によって測定できる。測定は、複数の分光蛍光光度計を用いて行ってもよい。
On the other hand, the wavelength and intensity of fluorescence emitted by each sample can be measured with a spectrofluorometer or the like. Measurements may be made using multiple spectrofluorometers.
さらに、励起光の波長、候補発光物質が発する光の波長および強度からサンプル蛍光指紋を作成する装置、すなわち、これらのデータを3次元データ化する装置は、一般的な情報処理装置、例えばパーソナルコンピュータ等とすることができる。
Furthermore, a device that creates a sample fluorescence fingerprint from the wavelength of excitation light and the wavelength and intensity of light emitted by a candidate luminescent substance, that is, a device that converts these data into three-dimensional data, is a general information processing device such as a personal computer. etc.
各サンプルについてサンプル蛍光指紋を取得した後、これらのサンプル蛍光指紋の情報(本明細書では、これらをまとめて「サンプル蛍光指紋情報」とも称する)を集め、当該サンプル蛍光指紋情報に基づいて、複数の候補発光物質の中から、組成物の所望の評価に好適な発光物質を決定する(工程S103)。具体的には、各サンプルのサンプル蛍光指紋どうしを比較し、組成物の状態の違いによって、サンプル蛍光指紋に大きく差が出た候補発光物質や、その励起光の波長、候補発光物質が発した光の波長等を特定する。そして、特定した候補発光物質を、後述の発光情報取得工程S12で使用する発光層の発光物質として選択する。なお、当該工程において、1つのみ発光物質を選択してもよいが、2つ以上の発光物質を選択してもよい。また、組成物の評価項目に合わせて、複数の発光物質を選択してもよい。
After obtaining a sample fluorescence fingerprint for each sample, the information of these sample fluorescence fingerprints (also collectively referred to herein as “sample fluorescence fingerprint information”) is collected, and based on the sample fluorescence fingerprint information, a plurality of A luminescent substance suitable for the desired evaluation of the composition is determined from among the candidate luminescent substances (step S103). Specifically, the sample fluorescence fingerprints of each sample were compared, and depending on the state of the composition, the candidate luminescent substance that showed a large difference in the sample fluorescence fingerprint, the wavelength of the excitation light, and the candidate luminescent substance emitted. Identify the wavelength of light, etc. Then, the specified candidate luminescent substance is selected as the luminescent substance of the luminescent layer to be used in the luminescent information acquisition step S12, which will be described later. Note that in this step, only one light-emitting substance may be selected, or two or more light-emitting substances may be selected. Also, a plurality of light-emitting substances may be selected according to the evaluation items of the composition.
なお、当該工程で複数のサンプル蛍光指紋を比較する手法は特に制限されず、単純に、複数のサンプル蛍光指紋どうしを重ね合わせて比較してもよい。一方で、サンプル蛍光指紋情報を、統計解析処理によって、より低次元にすると共に、組成物の状態ごとの特徴を端的に表すようにパラメータ化し、比較してもよい。統計解析処理方法の例には、多変量解析やデータマイニングが含まれる。その具体例には、データ構造分析、判別分析、パターン分類、多元データ解析、回帰分析、及び機械学習等が含まれる。
The method of comparing multiple sample fluorescence fingerprints in this step is not particularly limited, and multiple sample fluorescence fingerprints may simply be superimposed and compared. On the other hand, the sample fluorescence fingerprint information may be reduced to a lower dimension by statistical analysis processing, parameterized so as to directly represent the characteristics of each state of the composition, and compared. Examples of statistical analysis processing methods include multivariate analysis and data mining. Specific examples thereof include data structure analysis, discriminant analysis, pattern classification, multidimensional data analysis, regression analysis, machine learning, and the like.
上記データ構造分析としては、主成分分析、因子分析、対応分析及び独立成分分析が挙げられる。上記判別分析としては、線形判別分析又は非線形判別分析が挙げられる。線形判別分析としては、正準判別分析が挙げられ、非線形判別分析としては、決定木が挙げられる。
The above data structure analysis includes principal component analysis, factor analysis, correspondence analysis and independent component analysis. The discriminant analysis includes linear discriminant analysis or nonlinear discriminant analysis. Linear discriminant analysis includes canonical discriminant analysis, and nonlinear discriminant analysis includes decision tree.
上記パターン分類としては、クラスター分析、多次元尺度法が挙げられる。上記回帰分析としては、線形回帰及び非線形回帰が挙げられる。ここで、線形判別分析としては、Partial Least Square(PLS)回帰、単回帰分析、重回帰分析及び主成分回帰が挙げられ、非線形判別分析としては、ロジスティック回帰及び回帰木が挙げられる。
Examples of the above pattern classification include cluster analysis and multidimensional scaling. The regression analysis includes linear regression and nonlinear regression. Here, linear discriminant analysis includes Partial Least Square (PLS) regression, simple regression analysis, multiple regression analysis and principal component regression, and nonlinear discriminant analysis includes logistic regression and regression tree.
上記機械学習としては、ニューラルネットワーク、自己組織化マップ、集団学習及び遺伝的アルゴリズムが挙げられる。統計解析処理は、組成物をより的確に解析できる手法であれば、どの分析方法を用いてもよい。
The above machine learning includes neural networks, self-organizing maps, group learning, and genetic algorithms. Any analytical method may be used for the statistical analysis, as long as it is a technique that enables more accurate analysis of the composition.
(発光層準備工程)
発光層準備工程では、発光物質を含む発光層を準備する。発光層は、後述の発光情報取得工程で、組成物と接触させた状態で、発光させることが可能であれば、どのような形状や構造であってもよい。例えば、発光層が光ファイバーの先端に配置されていてもよく、例えばガラス等の導光性面状部材の一方の面に配置されていてもよい。 (Emitting layer preparation step)
In the light-emitting layer preparation step, a light-emitting layer containing a light-emitting substance is prepared. The light-emitting layer may have any shape or structure as long as it can emit light while in contact with the composition in the step of obtaining light emission information, which will be described later. For example, the light-emitting layer may be arranged at the tip of the optical fiber, or may be arranged on one surface of a light-guiding planar member such as glass.
発光層準備工程では、発光物質を含む発光層を準備する。発光層は、後述の発光情報取得工程で、組成物と接触させた状態で、発光させることが可能であれば、どのような形状や構造であってもよい。例えば、発光層が光ファイバーの先端に配置されていてもよく、例えばガラス等の導光性面状部材の一方の面に配置されていてもよい。 (Emitting layer preparation step)
In the light-emitting layer preparation step, a light-emitting layer containing a light-emitting substance is prepared. The light-emitting layer may have any shape or structure as long as it can emit light while in contact with the composition in the step of obtaining light emission information, which will be described later. For example, the light-emitting layer may be arranged at the tip of the optical fiber, or may be arranged on one surface of a light-guiding planar member such as glass.
発光層が光ファイバーの先端に配置されているプローブ等によれば、光ファイバーを介して発光層に光を導くとともに、発光層中の発光物質が発した光を、光ファイバーを介して検出装置等に伝えることができる。したがって、効率よく検出を行うことができる。以下、発光層が光ファイバーの先端に配置されている場合(プローブ)を例に説明するが、本実施形態は当該態様に限定されない。
According to a probe or the like in which a light-emitting layer is arranged at the tip of an optical fiber, light is guided to the light-emitting layer via the optical fiber, and light emitted by a light-emitting substance in the light-emitting layer is transmitted to a detection device or the like via the optical fiber. be able to. Therefore, detection can be performed efficiently. A case where the light-emitting layer is arranged at the tip of the optical fiber (probe) will be described below as an example, but the present embodiment is not limited to this aspect.
プローブを含むセンサーの構造の一例を図4に示す。当該センサー200は、プローブ21と、光源22と、検出部23と、これらを繋ぐケーブル210a、210bを有する。
An example of the structure of the sensor including the probe is shown in FIG. The sensor 200 has a probe 21, a light source 22, a detector 23, and cables 210a and 210b connecting these.
プローブ21は、導光部材21aと、当該導光部材21aの先端に配置された、発光物質を含む発光層21bとを有していればよい。発光層21bが含む発光物質は、例えば、上述の発光物質選定工程で選定された発光物質である。
The probe 21 only needs to have a light guide member 21a and a light emitting layer 21b containing a light emitting material disposed at the tip of the light guide member 21a. The light-emitting substance included in the light-emitting layer 21b is, for example, the light-emitting substance selected in the above-described light-emitting substance selection process.
ここで、導光部材21aは、発光層21b中の発光物質が発した光(蛍光や燐光)を検出部23側に導くことが可能な部材であればよい。導光部材21aが、光源22が出射した、発光層21b中の発光物質を励起させるための励起光を発光層21b側に導くことが可能であり、かつ発光層21b中の発光物質が発した光(蛍光や燐光)を検出部23側に導くことが可能な部材であると、発光物質に確実に励起光を照射できることから好ましい。
Here, the light guide member 21a may be any member as long as it can guide the light (fluorescence or phosphorescence) emitted by the light-emitting substance in the light-emitting layer 21b to the detection section 23 side. The light guide member 21a can guide the excitation light for exciting the light-emitting substance in the light-emitting layer 21b emitted by the light source 22 to the light-emitting layer 21b side, and the light-emitting substance in the light-emitting layer 21b emits light. A member capable of guiding light (fluorescence or phosphorescence) to the detection section 23 side is preferable because the excitation light can be reliably applied to the light-emitting substance.
導光部材21aは、光ファイバーとすることができ、例えば1種類の光ファイバーで構成されていてもよい。この場合、当該光ファイバーは、励起光を光源22から発光層21b側に導くとともに、発光物質が発した光(蛍光や燐光)を発光層21b側から検出部23側に導く役割を果たす。一方、導光部材21aは、複数種類の光ファイバーで構成されていてもよい。この場合、導光部材21aは、励起光を光源22から発光層21b側に導くための光ファイバーと、発光物質が発した光(蛍光や燐光)を発光層21b側から検出部23側に導くための光ファイバーと、をそれぞれ有する。ただし省スペースの観点では、導光部材21aが一種類の光ファイバーで構成されていることが好ましい。
The light guide member 21a may be an optical fiber, and may be composed of one type of optical fiber, for example. In this case, the optical fiber guides the excitation light from the light source 22 to the light emitting layer 21b side and guides the light (fluorescence or phosphorescence) emitted by the light emitting substance from the light emitting layer 21b side to the detection section 23 side. On the other hand, the light guide member 21a may be composed of multiple types of optical fibers. In this case, the light guide member 21a includes an optical fiber for guiding the excitation light from the light source 22 to the light emitting layer 21b side, and for guiding the light (fluorescence and phosphorescence) emitted by the light emitting substance from the light emitting layer 21b side to the detection section 23 side. optical fibers, respectively. However, from the viewpoint of space saving, it is preferable that the light guide member 21a is made of one type of optical fiber.
なお、プローブ21の導光部材21aと光源22や検出部23との間には、必要に応じてケーブル210a、210b等が配置されていてもよい。
Cables 210a, 210b and the like may be arranged between the light guide member 21a of the probe 21 and the light source 22 or the detection section 23 as necessary.
一方、発光層21bは、導光部材21a(プローブ21)の少なくとも先端に配置されていればよく、例えば導光部材21a全体を覆うように配置されていてもよい。当該発光層21bは、発光物質のみを含む層であってもよい。発光物質のみを含む層の例には、多孔質膜や自己組織化単分子膜のような単分子膜が含まれる。このような単分子膜は、プローブの先端全体を覆っていてもよいが、例えばプローブの先端を海島状に、すなわち部分的に覆うものであってもよい。ただし、発光物質がバインダによって導光部材21aに結着された層であることが、強度の観点等から好ましい。
On the other hand, the light emitting layer 21b may be arranged at least at the tip of the light guide member 21a (probe 21), and may be arranged so as to cover the entire light guide member 21a, for example. The light-emitting layer 21b may be a layer containing only a light-emitting substance. Examples of layers containing only luminescent materials include monolayers such as porous films and self-assembled monolayers. Such a monomolecular film may cover the entire tip of the probe, or, for example, may cover the tip of the probe in a sea-island pattern, that is, partially. However, from the viewpoint of strength, etc., it is preferable that the luminescent material is a layer bound to the light guide member 21a by a binder.
また、発光層21b中の発光物質の量は、十分に組成物と接触可能であり、かつ励起光を受けて十分に光(蛍光や燐光)を発することが可能な量であれば特に制限されない。発光層21bは、発光物質を1種のみ含んでいてもよく、2種以上含んでいてもよい。例えば、組成物の複数の性能や性質について評価したい場合に、1つの発光層21bが、各性能や性質を評価するための、複数の発光物質を含んでいてもよい。一方で、発光物質ごとに、複数のプローブ21を準備し、これらを用いて後述の発光情報取得工程S12を行ってもよい。複数のプローブ21を準備したほうが、各発光物質からの発光情報が混ざらず、後述の評価工程S13において評価しやすくなる。
In addition, the amount of the light-emitting substance in the light-emitting layer 21b is not particularly limited as long as it can sufficiently come into contact with the composition and can sufficiently emit light (fluorescence or phosphorescence) upon receiving excitation light. . The light-emitting layer 21b may contain only one kind of light-emitting substance, or may contain two or more kinds thereof. For example, when evaluating a plurality of performances and properties of the composition, one light-emitting layer 21b may contain a plurality of light-emitting substances for evaluating each performance and property. On the other hand, a plurality of probes 21 may be prepared for each luminescent substance, and the luminescence information acquisition step S12, which will be described later, may be performed using these probes. When a plurality of probes 21 are prepared, the luminescence information from each luminescent substance is not mixed, and it becomes easier to evaluate in the evaluation step S13 described later.
一方、発光層21bが含むバインダの種類は特に制限されないが、発光物質を励起するための励起光、および発光物質が発する光を透過可能な材料が好ましい。例えばシリコーン樹脂等の無機材料であってもよく、エポキシ樹脂等の有機樹脂であってもよい。発光層21bは、バインダを一種のみ含んでいてもよく、二種以上含んでいてもよい。
On the other hand, the type of binder contained in the light-emitting layer 21b is not particularly limited, but a material capable of transmitting excitation light for exciting the light-emitting substance and light emitted by the light-emitting substance is preferable. For example, an inorganic material such as silicone resin or an organic resin such as epoxy resin may be used. The light-emitting layer 21b may contain only one type of binder, or may contain two or more types of binders.
ここで、導光部材21aの先端に発光層21bを形成する方法は特に制限されない。例えば、発光物質と、バインダ前駆体(例えばトリエトキシシラン等)とを混合し、導光部材21aの周囲に塗布し、これを硬化させて発光層21bを形成してもよい。このとき、バインダ前駆体のみを重合させて混合物を硬化させてもよく、発光物質およびバインダ前駆体を共重合させて、混合物を硬化させてもよい。バインダ前駆体がトリエトキシシランである場合等には、重合にゾルゲル反応を利用してもよい。また、例えばエポキシ樹脂(ポリマー)等と発光物質と溶媒とを混合して、導光部材21aの周囲に塗布した後、溶媒を除去して発光層21bを形成してもよい。また、発光物質のみからなる発光層を形成する場合等には、シランカップリング剤由来の基(-Si(OCH3)3)を有する発光物質をインクジェット法等により光ファイバーの先端に塗布し、これをゾルゲル反応等によって重縮合させ、硬化してもよい。また、例えば光ファイバーの先端を、シランカップリング剤由来の基(-Si(OCH3)3)を有する発光物質中に浸漬し、その後重縮合させて硬化してもよい。なお、発光層を光ファイバーの先端ではなく、ガラス等の導光性面状部材上に形成する場合にも、同様の方法で発光層を形成できる。
Here, the method of forming the light emitting layer 21b at the tip of the light guide member 21a is not particularly limited. For example, a luminescent material and a binder precursor (for example, triethoxysilane) may be mixed, applied around the light guide member 21a, and cured to form the luminescent layer 21b. At this time, only the binder precursor may be polymerized to cure the mixture, or the luminescent material and the binder precursor may be copolymerized to cure the mixture. A sol-gel reaction may be used for the polymerization, such as when the binder precursor is triethoxysilane. Alternatively, for example, an epoxy resin (polymer) or the like, a light-emitting substance, and a solvent may be mixed and applied around the light guide member 21a, and then the solvent may be removed to form the light-emitting layer 21b. In the case of forming a light-emitting layer consisting only of a light-emitting substance, a light-emitting substance having a group (—Si(OCH 3 ) 3 ) derived from a silane coupling agent is applied to the tip of an optical fiber by an inkjet method or the like. may be cured by polycondensation by a sol-gel reaction or the like. Alternatively, for example, the tip of the optical fiber may be immersed in a light-emitting substance having a group (—Si(OCH 3 ) 3 ) derived from a silane coupling agent, followed by polycondensation and curing. When the light-emitting layer is formed on a light-guiding planar member such as glass instead of the tip of the optical fiber, the same method can be used to form the light-emitting layer.
ここで、上記センサー200に使用可能な光源22は、所定の波長の光を照射可能であれば特に制限されず、スーパーコンティニューム光源やLED、白色光源等とすることができる。また、光源22は、特定の波長のみを照射するためのフィルターや、光の強度を調整するための機構等を備えていてもよい。
Here, the light source 22 that can be used for the sensor 200 is not particularly limited as long as it can irradiate light of a predetermined wavelength, and can be a supercontinuum light source, an LED, a white light source, or the like. Further, the light source 22 may include a filter for irradiating only a specific wavelength, a mechanism for adjusting the intensity of light, and the like.
一方、検出部23は、発光物質が発する光(蛍光もしくは燐光)の波長および強度を測定可能であればよく、例えば分光蛍光光度計とすることができる。当該検出部23は、発光物質の発光情報を解析するための情報処理装置(図示せず)と接続されていてもよい。
On the other hand, the detection unit 23 only needs to be able to measure the wavelength and intensity of the light (fluorescence or phosphorescence) emitted by the light-emitting substance, and can be a spectrofluorophotometer, for example. The detection unit 23 may be connected to an information processing device (not shown) for analyzing the light emission information of the light emitting substance.
(発光情報取得工程)
発光情報取得工程S12では、上述の発光層準備工程S11で準備した発光層、例えば上記センサー200のプローブ21の発光層21bを、組成物と接触させ、この状態で、光源22からの励起光を発光層21b中の発光物質に照射する。 (Light emission information acquisition step)
In the luminescent information acquisition step S12, the luminescent layer prepared in the luminescent layer preparation step S11 described above, for example, theluminescent layer 21b of the probe 21 of the sensor 200 is brought into contact with the composition, and in this state, excitation light from the light source 22 is emitted. The light-emitting substance in the light-emitting layer 21b is irradiated.
発光情報取得工程S12では、上述の発光層準備工程S11で準備した発光層、例えば上記センサー200のプローブ21の発光層21bを、組成物と接触させ、この状態で、光源22からの励起光を発光層21b中の発光物質に照射する。 (Light emission information acquisition step)
In the luminescent information acquisition step S12, the luminescent layer prepared in the luminescent layer preparation step S11 described above, for example, the
発光層21bと組成物との接触方法は特に制限されず、例えば、組成物中に発光層21bを浸漬してもよい。また、発光層21bの表面に組成物を塗布してもよい。
The method of contacting the light-emitting layer 21b with the composition is not particularly limited, and for example, the light-emitting layer 21b may be immersed in the composition. Also, a composition may be applied to the surface of the light-emitting layer 21b.
ここで、組成物の製造中に、当該発光情報取得工程S12を行う場合、上記組成物をサンプリングし、当該組成物と発光層21bと接触させてもよい。つまり、オフラインで発光情報取得工程S12を行ってもよい。一方で、製造ライン内の組成物に発光層を浸漬して、これらを接触させてもよい。つまりインラインで、発光情報取得工程S12を行ってもよい。本実施形態では、発光物質がプローブ表面に固定されていることから、発光物質によって組成物を汚染する可能性が非常に低く、インラインでも発光情報取得工程を行うことができる。
Here, when the luminescence information acquisition step S12 is performed during the manufacture of the composition, the composition may be sampled and brought into contact with the luminescent layer 21b. That is, the light emission information acquisition step S12 may be performed offline. Alternatively, the luminescent layer may be immersed in the composition in the production line to bring them into contact. That is, the light emission information acquisition step S12 may be performed inline. In this embodiment, since the luminescent substance is immobilized on the surface of the probe, the possibility of contamination of the composition with the luminescent substance is extremely low, and the process of acquiring luminescence information can be performed even in-line.
また、発光情報取得工程S12で発光層21b(発光物質)に照射する励起光の波長は、上述の発光物質選定工程S10において、蛍光指紋に大きく差が出た特定の波長であってもよい。一方で、励起光として幅広い波長の光を照射すると、多くの情報を得られることから、幅広い波長範囲の光を、波長をずらしながら順に照射してもよい。ただし、インラインで発光情報取得工程を行う場合等には、特定の波長の光を照射することが、効率の観点で好ましい。
Further, the wavelength of the excitation light with which the light-emitting layer 21b (light-emitting substance) is irradiated in the light-emitting information acquisition step S12 may be a specific wavelength with a large difference in the fluorescence fingerprint in the above-described light-emitting substance selection step S10. On the other hand, since a large amount of information can be obtained by irradiating light of a wide wavelength range as excitation light, light of a wide wavelength range may be sequentially irradiated while shifting the wavelengths. However, when performing the light emission information acquisition process inline, it is preferable to irradiate light of a specific wavelength from the viewpoint of efficiency.
当該発光情報取得工程S12では、発光物質が発した光を検出装置等によって検出すればよく、例えば上記センサー200を用いる場合には、導光部材21aやケーブル210bを介して検出部23が検出する。検出部23が取得する発光情報は、後述の評価工程S13で組成物を評価可能な情報であればよい。例えば発光物質が発する特定の波長の強度のみであってもよく、発光物質が発する光のスペクトル等であってもよい。また、本工程で取得する発光情報は、発光物質が発する蛍光に関する情報であってもよく、発光物質が発する燐光に関する情報であってもよい。
In the luminescence information obtaining step S12, the light emitted by the luminous substance may be detected by a detection device or the like. . The luminescence information acquired by the detection unit 23 may be information that enables the composition to be evaluated in the evaluation step S13 described later. For example, it may be only the intensity of a specific wavelength emitted by a light-emitting substance, or the spectrum of light emitted by a light-emitting substance. The luminescence information acquired in this step may be information about fluorescence emitted by a light-emitting substance, or information about phosphorescence emitted by a light-emitting substance.
なお、上記センサー200を用いる場合、1つのプローブ21のみを用いて、上記発光情報を取得してもよいが、発光物質の種類が異なる複数のプローブ21を準備し、複数の発光情報を取得してもよい。
When the sensor 200 is used, the luminescence information may be acquired using only one probe 21, but a plurality of probes 21 having different types of luminescent substances may be prepared to acquire a plurality of luminescence information. may
また、上記発光層21bを有さないプローブ(図示せず)を別途準備し、発光情報の差分を取得してもよい。差分を取得するとは、着目している項目以外の様々な因子による影響をキャンセルして、着目している項目の影響のみを取得することをいう。これにより、シグナル/ノイズ比を上げて有効な情報とすることができる。具体的には、発光層21bを有するプローブ21と、発光層が発光物質を含まないプローブとを準備する。そして、これらをそれぞれ組成物と接触させ、この状態で光源22からプローブ21に光(励起光)を照射する。そして、各プローブからの光を検出部23で検出する。その後、発光層が発光物質を含まないプローブから検出されたデータを、発光層21bを有するプローブ21から検出されたデータから差し引く。これによりノイズを除去でき、発光物質に由来する発光情報をより正確に取得できる。
Alternatively, a probe (not shown) that does not have the light-emitting layer 21b may be separately prepared to obtain the difference in light-emission information. Obtaining the difference means canceling the effects of various factors other than the item of interest and obtaining only the effect of the item of interest. This can increase the signal/noise ratio to useful information. Specifically, a probe 21 having a luminescent layer 21b and a probe whose luminescent layer does not contain a luminescent substance are prepared. Then, each of these is brought into contact with the composition, and in this state, the probe 21 is irradiated with light (excitation light) from the light source 22 . Light from each probe is detected by the detector 23 . After that, the data detected from the probe whose light-emitting layer does not contain the light-emitting substance is subtracted from the data detected from the probe 21 with the light-emitting layer 21b. Accordingly, noise can be removed, and luminescence information derived from the luminescence substance can be acquired more accurately.
また、発光情報取得工程S12では、一定時間ごとに、複数のデータを取得してもよい。一定時間ごとに複数のデータを取得すると、例えば、特定の製品を製造する際の反応速度や熟成速度、発酵速度等、乾燥速度、経時の安定性等を経時で把握できる。
Also, in the light emission information acquisition step S12, a plurality of data may be acquired at regular time intervals. By acquiring a plurality of data at regular time intervals, for example, the reaction speed, aging speed, fermentation speed, etc., drying speed, stability over time, etc. when manufacturing a specific product can be grasped over time.
(評価工程)
評価工程S13では、上記発光情報取得工程S12で取得した発光情報を、予め取得した蛍光指紋情報に基づいて解析し、組成物の状態を評価する。当該評価工程S13で使用する蛍光指紋情報は、上述の発光物質選定工程S10で取得したサンプル蛍光指紋情報であってもよく、別途取得した蛍光指紋情報であってもよい。 (Evaluation process)
In the evaluation step S13, the luminescence information obtained in the luminescence information obtaining step S12 is analyzed based on the previously obtained fluorescence fingerprint information to evaluate the state of the composition. The fluorescence fingerprint information used in the evaluation step S13 may be the sample fluorescence fingerprint information obtained in the above-described luminescent material selection step S10, or may be separately obtained fluorescence fingerprint information.
評価工程S13では、上記発光情報取得工程S12で取得した発光情報を、予め取得した蛍光指紋情報に基づいて解析し、組成物の状態を評価する。当該評価工程S13で使用する蛍光指紋情報は、上述の発光物質選定工程S10で取得したサンプル蛍光指紋情報であってもよく、別途取得した蛍光指紋情報であってもよい。 (Evaluation process)
In the evaluation step S13, the luminescence information obtained in the luminescence information obtaining step S12 is analyzed based on the previously obtained fluorescence fingerprint information to evaluate the state of the composition. The fluorescence fingerprint information used in the evaluation step S13 may be the sample fluorescence fingerprint information obtained in the above-described luminescent material selection step S10, or may be separately obtained fluorescence fingerprint information.
例えば、発光物質選定工程S10を行わない場合には、予め、上記発光物質と、状態が互いに異なる複数の組成物とを混合して複数のサンプルを作成し、各サンプルについて、蛍光指紋を取得する。そして、これらの蛍光指紋に関する情報(蛍光指紋情報)を、組成物の評価に用いてもよい。当該蛍光指紋情報の取得方法は、上述の発光物質選定工程S10におけるサンプル蛍光指紋情報の取得方法と同様である。
For example, if the luminescent substance selection step S10 is not performed, a plurality of samples are prepared by mixing the luminescent substance and a plurality of compositions in different states in advance, and fluorescence fingerprints are obtained for each sample. . Information on these fluorescent fingerprints (fluorescent fingerprint information) may then be used for evaluation of the composition. The method for obtaining the fluorescent fingerprint information is the same as the method for obtaining the sample fluorescent fingerprint information in the luminescent material selection step S10 described above.
ここで、評価工程S13では、予め取得した蛍光指紋情報と発光情報取得工程S12で取得した発光情報とを照合し、組成物がどのような状態であるかを判断する。このとき、上述のように、組成物の1つの性能や性質のみを評価してもよく、複数の性質や性能を評価してもよい。これらの比較は、一般的な情報処理装置、例えばパーソナルコンピュータ等によって行うことができる。
Here, in the evaluation step S13, the fluorescent fingerprint information obtained in advance and the luminescence information obtained in the luminescence information obtaining step S12 are collated to determine the state of the composition. At this time, as described above, only one performance or property of the composition may be evaluated, or a plurality of properties or performances may be evaluated. These comparisons can be performed by a general information processing device such as a personal computer.
また、予め状態推定モデルを作成しておき、当該推定モデルによって、組成物の状態を特定してもよい。組成物の評価項目が多い場合等には、状態推定モデルを用いることで、より適切な評価を行うことができる。
Alternatively, a state estimation model may be created in advance, and the state of the composition may be specified by the estimation model. When there are many evaluation items for a composition, more appropriate evaluation can be performed by using a state estimation model.
状態推定モデルは、予め取得した蛍光指紋と、これに対応する組成物の状態と、を機械学習させて作成できる。機械学習の方法は公知の方法を利用できる。例えば、特定の状態の組成物について、蛍光指紋を説明変数、その状態を目的変数として、多変量解析を行い、類似度指標を求める。類似度指標は、コサイン類似度、ピアソンの相関係数、偏差パターン類似度、ユークリッド距離類似度、モリシタの類似度指数、標準ユークリッド距離類似度、マハラノビス距離類似度、マンハッタン距離類似度、チェビシェフ距離類似度、ミンコフスキー距離類似度、ジャッカード係数類似度、ダイス係数類似度、および、シンプソン係数類似度等から選択することができる。
The state estimation model can be created by machine learning the fluorescent fingerprint obtained in advance and the state of the composition corresponding to this. A known method can be used as the machine learning method. For example, for a composition in a specific state, multivariate analysis is performed using the fluorescence fingerprint as an explanatory variable and the state as an objective variable to obtain a similarity index. Similarity measures include cosine similarity, Pearson's correlation coefficient, deviation pattern similarity, Euclidean distance similarity, Morishita's similarity index, standard Euclidean distance similarity, Mahalanobis distance similarity, Manhattan distance similarity, and Chebyshev distance similarity. degree, Minkowski distance similarity, Jaccard coefficient similarity, Dice coefficient similarity, and Simpson coefficient similarity.
類似度指標計算工程において、目的変数である組成物の状態と蛍光指紋の類似度指標とには相関があるという前提の下、特定の組成物について、蛍光指紋の類似度指標を計算する。次いで、これを状態が異なる他の組成物に対して行う。そして、算出された類似度指標と実際の組成物の状態との誤差が小さくなるように繰り返し実行し最適化を行うことで、推定モデルを作成することができる。
In the similarity index calculation process, on the premise that there is a correlation between the state of the composition, which is the objective variable, and the similarity index of the fluorescence fingerprint, the similarity index of the fluorescence fingerprint is calculated for a specific composition. This is then done for other compositions in different states. Then, an estimation model can be created by repeatedly executing and optimizing such that the error between the calculated similarity index and the actual state of the composition becomes small.
なお、多くの解析手法は2次元データを対象に開発されている。一方、上述の蛍光指紋は、励起光の波長、発光物質が発する光の波長、および当該光の強度の3次元データである。そこで、3次元データを2次元に展開して、多変量解析を行ってもよい。例えば、蛍光指紋を、波長条件(励起波長と蛍光波長の組み合わせ)と蛍光強度との2次元データに展開し、多変量解析を行ってもよい。また、2次元に展開した蛍光指紋に対して、中心化(meancentering)、規格化(normalization)、標準化(autoscale)、2次微分(2ndderivative)、ベースライン補正(baselinecorrection)、および平滑化(smoothing)等の処理を行ってもよい。これにより、各データに含まれている情報の強調、異なるサンプルのデータの尺度を合わせることができる。一方で、3次元データのまま多変量解析を行ってもよい。
It should be noted that many analysis methods have been developed for 2D data. On the other hand, the fluorescence fingerprint described above is three-dimensional data of the wavelength of excitation light, the wavelength of light emitted by a luminescent substance, and the intensity of the light. Therefore, three-dimensional data may be developed two-dimensionally to perform multivariate analysis. For example, fluorescence fingerprints may be developed into two-dimensional data of wavelength conditions (combination of excitation wavelength and fluorescence wavelength) and fluorescence intensity, and multivariate analysis may be performed. In addition, meancentering, normalization, autoscale, second derivative, baseline correction, and smoothing are performed on the two-dimensionally unfolded fluorescence fingerprint. etc. may be performed. This allows us to emphasize the information contained in each data and scale the data from different samples. On the other hand, multivariate analysis may be performed on the three-dimensional data as it is.
また、必要に応じて、得られた類似度指標から、推定に重要な(組成物の状態によって変化が顕著)なマーカーシグナル(励起波長および蛍光波長の組み合わせ等)を検出することもできる。このとき、多変量解析として主成分回帰、クラスター分析、判別分析、SIMCA、重回帰分析、PLS回帰分析、PLS判別、SVM回帰、SVM判別、RF回帰、および/またはRF判別を行い、マーカーシグナルを検出してもよい。また、多変量解析で得られる回帰係数、因子負荷量、ローディング、selectivityratio、variableimportanceinprojection、変数重要度、outofbagerrorの1または複数の回帰・判別への寄与率を示す指標に基づき、マーカーシグナルを検出してもよい。
In addition, if necessary, it is also possible to detect marker signals (combinations of excitation wavelengths and fluorescence wavelengths, etc.) that are important for estimation (changes significantly depending on the state of the composition) from the obtained similarity index. At this time, principal component regression, cluster analysis, discriminant analysis, SIMCA, multiple regression analysis, PLS regression analysis, PLS discrimination, SVM regression, SVM discrimination, RF regression, and / or RF discrimination are performed as multivariate analysis, and the marker signal is may be detected. In addition, marker signals are detected based on indicators that indicate the contribution rate of one or more of the regression coefficient, factor loading, loading, selectivityratio, variableimportanceinprojection, variable importance, and outofbagerror obtained by multivariate analysis to regression and discrimination. good too.
そして、上記類似度指標を求めた組成物とは異なる組成物について、マーカーシグナルの数値を推定する。その後、推定によって算出されたデータと、実際のデータとを比較し、これらの誤差が小さくなるように繰り返し最適化を行い、組成物の状態を特定のマーカーシグナルによって推定可能な状態推定モデルを得てもよい。
Then, the numerical value of the marker signal is estimated for a composition different from the composition for which the similarity index was obtained. After that, the data calculated by the estimation and the actual data are compared, optimization is repeatedly performed so that these errors are reduced, and a state estimation model that can estimate the state of the composition by a specific marker signal is obtained. may
そして、このような状態推定モデルを作成した場合、上記発光情報取得工程で得られた発光情報を状態推定モデルに当てはめることで、組成物の状態を評価できる。
Then, when such a state estimation model is created, the state of the composition can be evaluated by applying the luminescence information obtained in the luminescence information acquisition step to the state estimation model.
(その他)
上述の説明では、発光物質選定工程、発光層準備工程、発光情報取得工程、および評価工程を行う態様を説明したが、すでに、好適な発光物質が判明している場合等には、発光物質選定工程を行わなくてもよい。 (others)
In the above description, the luminescent material selection step, the luminescent layer preparation step, the luminescent information acquisition step, and the evaluation step have been described. No process is required.
上述の説明では、発光物質選定工程、発光層準備工程、発光情報取得工程、および評価工程を行う態様を説明したが、すでに、好適な発光物質が判明している場合等には、発光物質選定工程を行わなくてもよい。 (others)
In the above description, the luminescent material selection step, the luminescent layer preparation step, the luminescent information acquisition step, and the evaluation step have been described. No process is required.
(効果)
上述のように、本実施形態の評価方法では、組成物の状態を、予め取得した蛍光指紋情報に基づいて評価する。当該方法によれば、組成物中の個々の成分が特定されていなかったり、組成物中の複数の物質が複雑に相互作用していたとしても、その性質や性能を帰納的にとらえ、総合的に評価できる。つまり、組成物に対して複雑な成分分析を行ったりする必要がなく、また各成分と性能や特性との相関性が明らかでない場合等にも、組成物の性能や特性を評価することができる。 (effect)
As described above, in the evaluation method of the present embodiment, the state of the composition is evaluated based on fluorescence fingerprint information obtained in advance. According to the method, even if individual components in the composition are not specified or multiple substances in the composition interact in a complex manner, their properties and performance can be inductively captured and comprehensively can be evaluated. In other words, it is possible to evaluate the performance and characteristics of the composition without the need to perform a complicated component analysis on the composition, and even when the correlation between each component and the performance and characteristics is not clear. .
上述のように、本実施形態の評価方法では、組成物の状態を、予め取得した蛍光指紋情報に基づいて評価する。当該方法によれば、組成物中の個々の成分が特定されていなかったり、組成物中の複数の物質が複雑に相互作用していたとしても、その性質や性能を帰納的にとらえ、総合的に評価できる。つまり、組成物に対して複雑な成分分析を行ったりする必要がなく、また各成分と性能や特性との相関性が明らかでない場合等にも、組成物の性能や特性を評価することができる。 (effect)
As described above, in the evaluation method of the present embodiment, the state of the composition is evaluated based on fluorescence fingerprint information obtained in advance. According to the method, even if individual components in the composition are not specified or multiple substances in the composition interact in a complex manner, their properties and performance can be inductively captured and comprehensively can be evaluated. In other words, it is possible to evaluate the performance and characteristics of the composition without the need to perform a complicated component analysis on the composition, and even when the correlation between each component and the performance and characteristics is not clear. .
また、蛍光指紋情報を用いることで、わずかな変化も検出可能となる。さらには、製品の研究開発や、製造ラインにおいて、組成物に影響を与えることなく、組成物の状態を適切なタイミングで総合的に評価できる。
Also, by using fluorescence fingerprint information, even slight changes can be detected. Furthermore, the state of the composition can be comprehensively evaluated at an appropriate timing without affecting the composition in product research and development and production lines.
2.センサーおよび評価システム
本発明は、一実施形態として、上述の評価方法に使用可能なセンサーも提供する。当該センサーは、組成物の状態に応じて発光挙動が変化する発光物質を含む発光層を有する発光部と、当該発光物質を励起させるための励起光を出射する励起光源と、発光物質が発する光の情報を取得する検出部と、を有していればよく、例えば発光部と、励起光源と、検出部とが、連結されていなくてもよい。例えば、上記発光部は、光ファイバーと、当該光ファイバーの先端に配置された発光層とを有する構造(プローブ)であってもよく、また、例えばガラス等の導光性面状部材と、当該導光性面状部材上に配置された発光層とを有する構造であってもよい。 2. Sensors and Evaluation Systems The present invention also provides, in one embodiment, sensors that can be used in the evaluation methods described above. The sensor includes a light-emitting portion having a light-emitting layer containing a light-emitting substance whose light-emitting behavior changes according to the state of the composition, an excitation light source that emits excitation light for exciting the light-emitting substance, and light emitted by the light-emitting substance. For example, the light emitting unit, the excitation light source, and the detecting unit may not be connected. For example, the light-emitting portion may be a structure (probe) having an optical fiber and a light-emitting layer disposed at the tip of the optical fiber. It may be a structure having a light-emitting layer disposed on the surface member.
本発明は、一実施形態として、上述の評価方法に使用可能なセンサーも提供する。当該センサーは、組成物の状態に応じて発光挙動が変化する発光物質を含む発光層を有する発光部と、当該発光物質を励起させるための励起光を出射する励起光源と、発光物質が発する光の情報を取得する検出部と、を有していればよく、例えば発光部と、励起光源と、検出部とが、連結されていなくてもよい。例えば、上記発光部は、光ファイバーと、当該光ファイバーの先端に配置された発光層とを有する構造(プローブ)であってもよく、また、例えばガラス等の導光性面状部材と、当該導光性面状部材上に配置された発光層とを有する構造であってもよい。 2. Sensors and Evaluation Systems The present invention also provides, in one embodiment, sensors that can be used in the evaluation methods described above. The sensor includes a light-emitting portion having a light-emitting layer containing a light-emitting substance whose light-emitting behavior changes according to the state of the composition, an excitation light source that emits excitation light for exciting the light-emitting substance, and light emitted by the light-emitting substance. For example, the light emitting unit, the excitation light source, and the detecting unit may not be connected. For example, the light-emitting portion may be a structure (probe) having an optical fiber and a light-emitting layer disposed at the tip of the optical fiber. It may be a structure having a light-emitting layer disposed on the surface member.
ただし、発光部が上記プローブであると、励起光源や検出部と連結しやすく、センサーの取り扱い性が良好となり、かつ小型化できる点で好ましい。以下、このようなプローブを有するセンサーを例に説明するが、本実施形態のセンサーは当該構造に限定されない。
However, if the light-emitting part is the above-mentioned probe, it is preferable because it is easy to connect with the excitation light source and the detection part, the sensor is easy to handle, and it can be miniaturized. A sensor having such a probe will be described below as an example, but the sensor of this embodiment is not limited to this structure.
センサーは、例えば図4に示すように、導光部材21a、及び当該導光部材21aの先端に配置された、組成物の状態に応じて発光挙動が変化する発光物質を含む発光層21b、を有するプローブ21と、上記発光物質を励起させるための励起光を出射する光源22と、前記発光物質が発する光の情報を取得する検出部23と、を有する。これらの各部材の構成は、上述の評価方法の発光層準備工程S12で準備するセンサーの各構成と同様である。
For example, as shown in FIG. 4, the sensor includes a light guide member 21a and a light emitting layer 21b disposed at the tip of the light guide member 21a and containing a light emitting substance whose light emission behavior changes depending on the state of the composition. a light source 22 that emits excitation light for exciting the luminescent substance; and a detector 23 that acquires information on the light emitted by the luminescent substance. The configuration of each of these members is the same as that of the sensor prepared in the light-emitting layer preparation step S12 of the evaluation method described above.
ただし、当該センサー20における光源22が発する励起光の波長は、予め取得した蛍光指紋情報に基づいて決定された波長である(態様1)、もしくは発光物質が、予め取得した蛍光指紋情報に基づいて決定された物質である(態様2)。
However, the wavelength of the excitation light emitted by the light source 22 in the sensor 20 is a wavelength determined based on the previously acquired fluorescence fingerprint information (mode 1), or the light-emitting substance is a wavelength determined based on the previously acquired fluorescence fingerprint information. It is a determined substance (aspect 2).
態様1における、予め取得した蛍光指紋情報とは、特定の発光物質(発光層21bが含む発光物質)と、状態が互いに異なる複数の組成物とを混合して複数のサンプルを作成し、これらのサンプルについてそれぞれ蛍光指紋を取得したときの情報である。これらのサンプルについて、それぞれ蛍光指紋を測定し、蛍光指紋どうしを比較すると、どのような波長の励起光を照射したときに、組成物の状態変化を判別しやすいかが明らかとなる。そして、状態変化を判別しやすい波長を、光源22が発する励起光の波長として決定する。したがって、態様1のセンサー20によれば、広い波長範囲の励起光を用いることなく、特定の波長の光を励起光として照射するだけで、組成物の状態を把握できる。
In the aspect 1, the pre-acquired fluorescence fingerprint information is obtained by mixing a specific light-emitting substance (the light-emitting substance contained in the light-emitting layer 21b) and a plurality of compositions having different states to prepare a plurality of samples. This is information when fluorescence fingerprints are obtained for each sample. By measuring the fluorescence fingerprints of each of these samples and comparing the fluorescence fingerprints with each other, it becomes clear what wavelength of excitation light is applied to make it easier to determine the change in state of the composition. Then, the wavelength at which the state change can be easily determined is determined as the wavelength of the excitation light emitted by the light source 22 . Therefore, according to the sensor 20 of aspect 1, the state of the composition can be grasped only by irradiating light of a specific wavelength as excitation light without using excitation light of a wide wavelength range.
一方、態様2における、予め取得した蛍光指紋情報とは、複数の候補発光物質と、状態が互いに異なる複数の組成物とを混合して複数のサンプルを作成し、これらのサンプルについてそれぞれ蛍光指紋を取得したときの情報である。これらのサンプルについて、それぞれ蛍光指紋を取得し、蛍光指紋どうしを比較すると、どの候補発光物質(発光物質)を用いたときに、組成物の状態変化を判別しやすいかが明らかとなる。そして、状態変化を判別しやすい候補発光物質を、発光層21bが含む発光物質として決定する。したがって、態様2のセンサー20によれば、発光物質からの発光情報に、組成物の状態の違いが表れやすく、容易に組成物の状態を把握できる。
On the other hand, the fluorescence fingerprint information obtained in advance in aspect 2 is obtained by mixing a plurality of candidate luminescent substances and a plurality of compositions in different states to prepare a plurality of samples, and obtaining fluorescence fingerprints for each of these samples. It is the information at the time of acquisition. Fluorescence fingerprints are obtained for each of these samples, and by comparing the fluorescence fingerprints, it becomes clear which candidate luminescent substance (luminescent substance) is used to make it easier to determine the state change of the composition. Then, a candidate light-emitting substance whose state change can be easily determined is determined as a light-emitting substance contained in the light-emitting layer 21b. Therefore, according to the sensor 20 of aspect 2, the difference in the state of the composition is likely to appear in the luminescence information from the light-emitting substance, and the state of the composition can be easily grasped.
なお、いずれの態様においても、蛍光指紋の取得方法は、上述の発光物質選定工程S10で説明した方法と同様である。
In any aspect, the method for obtaining the fluorescent fingerprint is the same as the method described in the above-described luminescent substance selection step S10.
本発明は、一実施形態として、上記いずれかのセンサーと、情報処理部とを有する評価システムも提供する。当該評価システムの情報処理部では、上記センサーの検出部が取得した発光情報を、予め取得した蛍光指紋情報により解析し、組成物の状態を評価する。ここで、情報処理部の種類は特に制限されず、一般的な情報処理装置、例えばパーソナルコンピュータ等とすることができる。
The present invention also provides, as an embodiment, an evaluation system having any one of the above sensors and an information processing unit. The information processing section of the evaluation system analyzes the luminescence information obtained by the detection section of the sensor based on the fluorescence fingerprint information obtained in advance, and evaluates the state of the composition. Here, the type of the information processing unit is not particularly limited, and a general information processing device such as a personal computer can be used.
また、当該評価システムが使用する蛍光指紋情報は、上記センサーの励起光の波長を決定するために取得した蛍光指紋情報であってもよく、センサーの発光物質を決定するために取得した蛍光指紋情報であってもよい。また、別途取得した蛍光指紋情報であってもよい。
Further, the fluorescence fingerprint information used by the evaluation system may be the fluorescence fingerprint information acquired to determine the wavelength of the excitation light of the sensor, or the fluorescence fingerprint information acquired to determine the luminescent substance of the sensor. may be Alternatively, the fluorescence fingerprint information obtained separately may be used.
さらに、当該評価システムでは、情報処理部に、機械学習によって、予め状態推定モデルを習得させておき、当該状態推定モデルを用いて組成物の評価を行ってもよい。状態推定モデルは、上述の組成物の評価方法で使用する状態推定モデルと同様に作成できる。
Furthermore, in the evaluation system, the information processing unit may be made to acquire a state estimation model in advance by machine learning, and the composition may be evaluated using the state estimation model. The state estimation model can be created in the same manner as the state estimation model used in the composition evaluation method described above.
以下、本発明の具体的な実施例を比較例とともに説明するが、本発明はこれらに限定されるものではない。
Specific examples of the present invention will be described below together with comparative examples, but the present invention is not limited to these.
(1)発光物質の選定
リサイクル可能なシクロオレフィンポリマーaをメチレンクロライドに溶解させた樹脂組成物A(シクロオレフィンポリマーaの濃度:30g/l)と、リサイクル不可能なシクロオレフィンポリマーb(シクロオレフィンポリマーbは、シクロオレフィンポリマーaを複数回リサイクルした後の樹脂である)をメチレンクロライドに溶解させた樹脂組成物B(シクロオレフィンポリマーbの濃度:30g/l)とを準備した。そして、当該樹脂組成物Aおよび樹脂組成物Bと、24種類の発光物質とをそれぞれ混合した。標準サンプル数は、50個、すなわち2(樹脂組成物AおよびB)×25(24種類(発光物質の数)+1(発光物質なし))とした。そして、これらの標準サンプルについて、それぞれ蛍光指紋を測定した。蛍光指紋は、市販の分光蛍光光度計(日立ハイテクサイエンス社製、F-7000)によって測定した。また、蛍光指紋の測定は、励起波長250nm~700nmの範囲について、10nmずつずらしながら、上記標準サンプルが発する蛍光の波長および強度を測定した。そして、これらを3次元データ化することで、蛍光指紋を取得した。 (1) Selection of light-emitting substances Resin composition A (concentration of cycloolefin polymer a: 30 g/l) in which recyclable cycloolefin polymer a is dissolved in methylene chloride, and non-recyclable cycloolefin polymer b (cycloolefin A resin composition B (concentration of cycloolefin polymer b: 30 g/l) was prepared by dissolving polymer b (resin obtained by recycling cycloolefin polymer a multiple times) in methylene chloride. Then, the resin composition A and the resin composition B were mixed with 24 kinds of luminescent substances. The number of standard samples was 50, that is, 2 (resin compositions A and B) x 25 (24 types (number of luminescent substances) + 1 (no luminescent substance)). Then, fluorescence fingerprints were measured for each of these standard samples. Fluorescence fingerprints were measured with a commercially available spectrofluorophotometer (F-7000, manufactured by Hitachi High-Tech Science Co., Ltd.). The fluorescence fingerprint was measured by measuring the wavelength and intensity of the fluorescence emitted by the standard sample while shifting the excitation wavelength by 10 nm in the range of 250 nm to 700 nm. Fluorescent fingerprints were acquired by converting these into three-dimensional data.
リサイクル可能なシクロオレフィンポリマーaをメチレンクロライドに溶解させた樹脂組成物A(シクロオレフィンポリマーaの濃度:30g/l)と、リサイクル不可能なシクロオレフィンポリマーb(シクロオレフィンポリマーbは、シクロオレフィンポリマーaを複数回リサイクルした後の樹脂である)をメチレンクロライドに溶解させた樹脂組成物B(シクロオレフィンポリマーbの濃度:30g/l)とを準備した。そして、当該樹脂組成物Aおよび樹脂組成物Bと、24種類の発光物質とをそれぞれ混合した。標準サンプル数は、50個、すなわち2(樹脂組成物AおよびB)×25(24種類(発光物質の数)+1(発光物質なし))とした。そして、これらの標準サンプルについて、それぞれ蛍光指紋を測定した。蛍光指紋は、市販の分光蛍光光度計(日立ハイテクサイエンス社製、F-7000)によって測定した。また、蛍光指紋の測定は、励起波長250nm~700nmの範囲について、10nmずつずらしながら、上記標準サンプルが発する蛍光の波長および強度を測定した。そして、これらを3次元データ化することで、蛍光指紋を取得した。 (1) Selection of light-emitting substances Resin composition A (concentration of cycloolefin polymer a: 30 g/l) in which recyclable cycloolefin polymer a is dissolved in methylene chloride, and non-recyclable cycloolefin polymer b (cycloolefin A resin composition B (concentration of cycloolefin polymer b: 30 g/l) was prepared by dissolving polymer b (resin obtained by recycling cycloolefin polymer a multiple times) in methylene chloride. Then, the resin composition A and the resin composition B were mixed with 24 kinds of luminescent substances. The number of standard samples was 50, that is, 2 (resin compositions A and B) x 25 (24 types (number of luminescent substances) + 1 (no luminescent substance)). Then, fluorescence fingerprints were measured for each of these standard samples. Fluorescence fingerprints were measured with a commercially available spectrofluorophotometer (F-7000, manufactured by Hitachi High-Tech Science Co., Ltd.). The fluorescence fingerprint was measured by measuring the wavelength and intensity of the fluorescence emitted by the standard sample while shifting the excitation wavelength by 10 nm in the range of 250 nm to 700 nm. Fluorescent fingerprints were acquired by converting these into three-dimensional data.
得られた蛍光指紋について、分析を行い、樹脂組成物Aおよび樹脂組成物Bの蛍光指紋を比較し、最も変化が生じた発光物質(BASF社製IRGANOX1076)、および特徴的な励起波長および発光波長(励起波長:320nm/発光波長:410nm)を特定した。なお、発光物質なしのデータには、差がなかった。図5Aに、樹脂組成物Aについて、発光物質(BASF社製IRGANOX1076)を用いて取得した蛍光指紋を示し、図5Bに樹脂組成物Bについて、発光物質(BASF社製IRGANOX1076)を用いて取得した蛍光指紋を示す。
The obtained fluorescence fingerprints were analyzed, the fluorescence fingerprints of resin composition A and resin composition B were compared, and the most changed luminescent substance (BASF IRGANOX 1076) and the characteristic excitation wavelength and emission wavelength (excitation wavelength: 320 nm/emission wavelength: 410 nm) was identified. In addition, there was no difference in the data without the luminescent substance. FIG. 5A shows a fluorescence fingerprint obtained using a light-emitting substance (IRGANOX1076 manufactured by BASF) for resin composition A, and FIG. 5B shows a fluorescence fingerprint obtained using a light-emitting substance (IRGANOX1076 manufactured by BASF). Shows fluorescent fingerprints.
(2)センサーの作製
光ファイバーの端部に、エポキシ系ポリマーと発光物質(BASF社製IRGANOX1076)と、を混合した組成物を塗布し、厚さ1mmの発光層を形成し、センサーを作製した。光ファイバーは、励起光用ファイバーおよび検出光用ファイバーを備えるものを準備した。なお、励起光用ファイバーは、波長320nmの光を出射可能な光源と接続した。一方、検出光用ファイバーは、検出部(分光蛍光光度計、日立ハイテクサイエンス社製、F-7000)と接続した。 (2) Fabrication of sensor A composition obtained by mixing an epoxy polymer and a light-emitting material (IRGANOX1076 manufactured by BASF) was applied to the end of an optical fiber to form a light-emitting layer with a thickness of 1 mm to fabricate a sensor. An optical fiber provided with an excitation light fiber and a detection light fiber was prepared. The excitation light fiber was connected to a light source capable of emitting light with a wavelength of 320 nm. On the other hand, the detection light fiber was connected to a detection unit (spectrofluorophotometer, F-7000, manufactured by Hitachi High-Tech Science Co., Ltd.).
光ファイバーの端部に、エポキシ系ポリマーと発光物質(BASF社製IRGANOX1076)と、を混合した組成物を塗布し、厚さ1mmの発光層を形成し、センサーを作製した。光ファイバーは、励起光用ファイバーおよび検出光用ファイバーを備えるものを準備した。なお、励起光用ファイバーは、波長320nmの光を出射可能な光源と接続した。一方、検出光用ファイバーは、検出部(分光蛍光光度計、日立ハイテクサイエンス社製、F-7000)と接続した。 (2) Fabrication of sensor A composition obtained by mixing an epoxy polymer and a light-emitting material (IRGANOX1076 manufactured by BASF) was applied to the end of an optical fiber to form a light-emitting layer with a thickness of 1 mm to fabricate a sensor. An optical fiber provided with an excitation light fiber and a detection light fiber was prepared. The excitation light fiber was connected to a light source capable of emitting light with a wavelength of 320 nm. On the other hand, the detection light fiber was connected to a detection unit (spectrofluorophotometer, F-7000, manufactured by Hitachi High-Tech Science Co., Ltd.).
(3)組成物の評価
リサイクル回数が不明なシクロオレフィンポリマーcをメチレンクロライドに溶解させた樹脂組成物C(シクロオレフィンポリマーcの濃度:30g/l)を準備した。当該樹脂組成物Cに上記センサーの端部を浸漬し、励起光用ファイバーにより、波長320nmの光を照射した。そして、発光層が発する蛍光を、検出光用ファイバーを介して分光蛍光光度計で検出した。得られたデータを情報処理部によって、上記蛍光指紋データと比較し、シクロオレフィンポリマーcのリサイクル可否を判断した。 (3) Evaluation of composition A resin composition C (concentration of cycloolefin polymer c: 30 g/l) was prepared by dissolving cycloolefin polymer c whose number of recycling times was unknown in methylene chloride. The end portion of the sensor was immersed in the resin composition C, and irradiated with light having a wavelength of 320 nm by an excitation light fiber. Fluorescence emitted by the light-emitting layer was detected with a spectrofluorometer through a detection light fiber. The obtained data was compared with the fluorescence fingerprint data by the information processing unit to determine whether or not the cycloolefin polymer c was recyclable.
リサイクル回数が不明なシクロオレフィンポリマーcをメチレンクロライドに溶解させた樹脂組成物C(シクロオレフィンポリマーcの濃度:30g/l)を準備した。当該樹脂組成物Cに上記センサーの端部を浸漬し、励起光用ファイバーにより、波長320nmの光を照射した。そして、発光層が発する蛍光を、検出光用ファイバーを介して分光蛍光光度計で検出した。得られたデータを情報処理部によって、上記蛍光指紋データと比較し、シクロオレフィンポリマーcのリサイクル可否を判断した。 (3) Evaluation of composition A resin composition C (concentration of cycloolefin polymer c: 30 g/l) was prepared by dissolving cycloolefin polymer c whose number of recycling times was unknown in methylene chloride. The end portion of the sensor was immersed in the resin composition C, and irradiated with light having a wavelength of 320 nm by an excitation light fiber. Fluorescence emitted by the light-emitting layer was detected with a spectrofluorometer through a detection light fiber. The obtained data was compared with the fluorescence fingerprint data by the information processing unit to determine whether or not the cycloolefin polymer c was recyclable.
本出願は、2021年9月2日出願の特願2021-143165号に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。
This application claims priority based on Japanese Patent Application No. 2021-143165 filed on September 2, 2021. All contents described in the specification and drawings are incorporated herein by reference.
本発明の組成物の評価方法では、製品の研究開発や、製造ラインにおいて、その対象である組成物に影響を与えることなく、組成物の状態を総合的に評価することが可能である。したがって、各種組成物の検査や研究、製造等に有用である。
With the evaluation method of the composition of the present invention, it is possible to comprehensively evaluate the state of the composition in the research and development of products and in the production line without affecting the target composition. Therefore, it is useful for inspection, research, production, etc. of various compositions.
21 プローブ
21a 導光部材
21b 発光層
22 光源
23 検出部
210a、210b ケーブル 21probe 21a light guide member 21b light emitting layer 22 light source 23 detector 210a, 210b cable
21a 導光部材
21b 発光層
22 光源
23 検出部
210a、210b ケーブル 21
Claims (8)
- 組成物の状態に応じて発光挙動が変化する発光物質を含む発光層を準備する工程と、
前記発光層及び前記組成物を接触させた状態で、前記発光層に励起光を照射し、前記発光物質の発光情報を取得する工程と、
前記発光情報を、予め取得した蛍光指紋情報に基づいて解析し、前記組成物の状態を評価する工程と、
を有する、組成物の評価方法。 preparing a light-emitting layer containing a light-emitting substance whose light-emitting behavior changes depending on the state of the composition;
a step of irradiating the light-emitting layer with excitation light while the light-emitting layer and the composition are in contact with each other to acquire light emission information of the light-emitting substance;
a step of analyzing the luminescence information based on fluorescence fingerprint information obtained in advance to evaluate the state of the composition;
A method for evaluating a composition. - 前記発光層が、光ファイバーの先端に配置されている、または導光性面状部材上に配置されている、
請求項1に記載の組成物の評価方法。 the light-emitting layer is disposed at the tip of an optical fiber or disposed on a light-guiding planar member;
A method for evaluating the composition according to claim 1 . - 前記発光情報を取得する工程を、前記組成物の製造ライン内で行う、
請求項1または2に記載の組成物の評価方法。 performing the step of acquiring the luminescence information in a production line of the composition;
A method for evaluating the composition according to claim 1 or 2. - 前記発光層を準備する工程の前に、
互いに状態が異なる複数の前記組成物と、複数種類の候補発光物質と、を含む複数のサンプルを調製する工程と、
前記複数のサンプルについて、サンプル蛍光指紋情報を取得する工程と、
前記サンプル蛍光指紋情報に基づいて、前記発光物質を選定する工程と、
をさらに有する、請求項1~3のいずれか一項に記載の組成物の評価方法。 Before the step of preparing the light-emitting layer,
preparing a plurality of samples containing a plurality of the compositions in different states and a plurality of types of candidate luminescent substances;
obtaining sample fluorescence fingerprint information for the plurality of samples;
selecting the luminescent material based on the sample fluorescence fingerprint information;
The method for evaluating the composition according to any one of claims 1 to 3, further comprising - 前記励起光の波長を、前記サンプル蛍光指紋情報に基づいて決定する、
請求項4に記載の組成物の評価方法。 determining the wavelength of the excitation light based on the sample fluorescence fingerprint information;
A method for evaluating the composition according to claim 4 . - 組成物の状態に応じて発光挙動が変化する発光物質を含む発光層を有する発光部と、
前記発光物質を励起させるための励起光を出射する励起光源と、
前記発光物質が発する光の情報を取得する検出部と、
を有し、
前記励起光の波長は、予め取得した蛍光指紋情報に基づいて決定された波長である、
センサー。 a light-emitting portion having a light-emitting layer containing a light-emitting substance whose light-emitting behavior changes depending on the state of the composition;
an excitation light source that emits excitation light for exciting the luminescent substance;
a detection unit that acquires information about the light emitted by the light-emitting substance;
has
The wavelength of the excitation light is a wavelength determined based on pre-obtained fluorescence fingerprint information.
sensor. - 組成物の状態に応じて発光挙動が変化する発光物質を含む発光層を有する発光部と、
前記発光物質を励起させるための励起光を出射する励起光源と、
前記発光物質が発する光の情報を取得する検出部と、
を有し、
前記発光物質は、予め取得した蛍光指紋情報に基づいて選定された物質である、
センサー。 a light-emitting portion having a light-emitting layer containing a light-emitting substance whose light-emitting behavior changes depending on the state of the composition;
an excitation light source that emits excitation light for exciting the luminescent substance;
a detection unit that acquires information about the light emitted by the light-emitting substance;
has
The luminescent substance is a substance selected based on pre-obtained fluorescence fingerprint information,
sensor. - 請求項6または7に記載のセンサーと、
前記検出部が取得した光の情報を、予め取得した蛍光指紋情報により解析し、前記組成物の状態を評価する情報処理部と、
を有する、評価システム。 a sensor according to claim 6 or 7;
an information processing unit that analyzes the light information acquired by the detection unit by fluorescence fingerprint information acquired in advance and evaluates the state of the composition;
A rating system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023545047A JPWO2023032296A1 (en) | 2021-09-02 | 2022-03-15 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-143165 | 2021-09-02 | ||
JP2021143165 | 2021-09-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023032296A1 true WO2023032296A1 (en) | 2023-03-09 |
Family
ID=85412474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/011683 WO2023032296A1 (en) | 2021-09-02 | 2022-03-15 | Composition evaluation method, sensor and evaluation system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2023032296A1 (en) |
WO (1) | WO2023032296A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019035462A1 (en) * | 2017-08-17 | 2019-02-21 | 東京エレクトロン株式会社 | Method for position-specific determination of undifferentiated state of pluripotent stem cells cultured in a cell culture container, method for subculturing pluripotent stem cells, and device used in said methods |
US20190107543A1 (en) * | 2017-05-15 | 2019-04-11 | Indicator Systems International, Inc. | Methods to detect remnant cancer cells |
WO2020158107A1 (en) * | 2019-01-28 | 2020-08-06 | 日本たばこ産業株式会社 | Sample quality determining method using fluorescent image, program, and device |
-
2022
- 2022-03-15 JP JP2023545047A patent/JPWO2023032296A1/ja active Pending
- 2022-03-15 WO PCT/JP2022/011683 patent/WO2023032296A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190107543A1 (en) * | 2017-05-15 | 2019-04-11 | Indicator Systems International, Inc. | Methods to detect remnant cancer cells |
WO2019035462A1 (en) * | 2017-08-17 | 2019-02-21 | 東京エレクトロン株式会社 | Method for position-specific determination of undifferentiated state of pluripotent stem cells cultured in a cell culture container, method for subculturing pluripotent stem cells, and device used in said methods |
WO2020158107A1 (en) * | 2019-01-28 | 2020-08-06 | 日本たばこ産業株式会社 | Sample quality determining method using fluorescent image, program, and device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023032296A1 (en) | 2023-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8729502B1 (en) | Simultaneous, single-detector fluorescence detection of multiple analytes with frequency-specific lock-in detection | |
Faulds et al. | Multiplexed detection of six labelled oligonucleotides using surface enhanced resonance Raman scattering (SERRS) | |
EP2158474B1 (en) | Method using a grating-based sensor combining label-free binding detection and fluorescence amplification | |
EP1913366B1 (en) | Grating-based sensor combining label-free binding detection and fluorescence amplification | |
JP4509163B2 (en) | Measuring method of fine particles | |
KR102466599B1 (en) | A microfluidic detection system and a microfluidic cartridge | |
US20170038299A1 (en) | Online process monitoring | |
US20160258876A1 (en) | Online Measurement Of Black Powder In Gas And Oil Pipelines | |
CN105190295B (en) | For the method and apparatus of bacterial monitoring | |
EP1282734A2 (en) | Differentiable spectral bar code methods and systems | |
AU2013391450A1 (en) | Discriminant analysis used with optical computing devices | |
EP3290908B1 (en) | Unknown sample determining method | |
KR101229991B1 (en) | Simultaneous measuring sensor system of LSPR and SERS signal based on optical fiber | |
WO2023032296A1 (en) | Composition evaluation method, sensor and evaluation system | |
CN104091864B (en) | Multi-wavelength near-infrared LED manufacturing method based on PbSe quantum dots | |
Kalinichev et al. | Optical sensors (optodes) for multiparameter chemical imaging: classification, challenges, and prospects | |
CN104350378B (en) | Method and apparatus for the performance of measure spectrum system | |
RU2714836C1 (en) | Method of substances identification in solution and control of solutions concentration | |
CN111290074B (en) | Intermediate infrared Bragg optical fiber and gas qualitative and quantitative detection device thereof | |
WO2019122872A1 (en) | Apparatus | |
WO2023153279A1 (en) | Analysis system and analysis method | |
US20240345071A1 (en) | Composition evaluation method | |
CN109324031B (en) | Method for distinguishing Raman signal through specific modulated exciting light | |
US20240302279A1 (en) | Optochemical sensor and method for measuring luminescing analytes in a measurement medium | |
KR20220105864A (en) | Optical analysis device and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22863886 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023545047 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22863886 Country of ref document: EP Kind code of ref document: A1 |