WO2023032152A1 - Busbar and battery module - Google Patents

Busbar and battery module Download PDF

Info

Publication number
WO2023032152A1
WO2023032152A1 PCT/JP2021/032435 JP2021032435W WO2023032152A1 WO 2023032152 A1 WO2023032152 A1 WO 2023032152A1 JP 2021032435 W JP2021032435 W JP 2021032435W WO 2023032152 A1 WO2023032152 A1 WO 2023032152A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
plate
plate body
electrode terminal
busbar
Prior art date
Application number
PCT/JP2021/032435
Other languages
French (fr)
Japanese (ja)
Inventor
英則 宮本
直樹 岩村
博清 間明田
寛高 柳澤
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to JP2023544934A priority Critical patent/JPWO2023032152A1/ja
Priority to PCT/JP2021/032435 priority patent/WO2023032152A1/en
Publication of WO2023032152A1 publication Critical patent/WO2023032152A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/505Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising a single busbar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/526Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material having a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments of the present invention relate to busbars and battery modules.
  • a battery module or the like that includes a plurality of batteries (single cells)
  • the electrode terminals of one battery and the electrode terminals of another battery are electrically connected via bus bars.
  • the bus bar is connected to each of the two electrode terminals (the first electrode terminal and the second electrode terminal) by being joined by laser welding or the like.
  • battery modules formed from a plurality of batteries are required to have higher output.
  • a battery module with high output performance is required to appropriately suppress a temperature rise in a bus bar that electrically connects two electrode terminals even when a large current flows.
  • busbars are required to have an appropriate cross-sectional area that is perpendicular or substantially perpendicular to the extending direction of the electrical path, and to appropriately suppress an increase in electrical resistance in the busbar.
  • the stress applied from the busbars to the electrode terminals to which the busbars are connected is appropriately relieved.
  • the batteries (single cells) that form the battery module it is required to effectively prevent the deterioration of the hermeticity of the internal cavities caused by the stress from the busbars to the electrode terminals.
  • the problem to be solved by the present invention is to provide a bus bar in which a cross-sectional area orthogonal or substantially orthogonal to the extending direction of an electric path is ensured to have an appropriate size, and the stress applied to the electrode terminals is appropriately relaxed;
  • An object of the present invention is to provide a battery module having the bus bar.
  • a busbar that electrically connects between two electrode terminals that are spaced apart from each other.
  • the busbar includes a stacking plate body, a first joint and a second joint.
  • the laminated plate comprises a plurality of conductive plates each having electrical conductivity, and in the laminated plate, the plurality of conductive plates are stacked.
  • the first joint portion is formed at one end of the stacked plate body in the longitudinal direction of the stacked plate body that intersects the stacking direction of the plurality of conductive plates, and is a conductive member separate from the stacked plate body. It is joined to a first conductive member.
  • the second joint is formed at an end opposite to the first joint in the longitudinal direction of the stacked plate body, and is a second conductive member separate from the stacked plate body and the first conductive member. of the conductive member.
  • FIG. 1 is a schematic diagram showing an example of a single battery according to an embodiment.
  • FIG. 2 is a schematic diagram showing an example of the battery module of the embodiment.
  • FIG. 3 is a schematic diagram showing the busbar according to the first embodiment as viewed from one side in the first direction.
  • FIG. 4 is a schematic diagram showing a bus bar according to the first embodiment, two electrode terminals to which the bus bar is connected, and a configuration in the vicinity of these in a cross section orthogonal or substantially orthogonal to the third direction; be.
  • FIG. 5 shows a bus bar according to a first modification of the first embodiment, two electrode terminals to which the bus bar is connected, and a configuration in the vicinity of these in a cross section orthogonal or substantially orthogonal to the third direction.
  • FIG. 6 shows a bus bar according to a second modification of the first embodiment, two electrode terminals to which the bus bar is connected, and a configuration in the vicinity of these in a cross section orthogonal or substantially orthogonal to the third direction. It is the schematic which shows a bus-bar.
  • FIG. 7 shows a bus bar according to a third modification of the first embodiment, two electrode terminals to which the bus bar is connected, and a configuration in the vicinity of these in a cross section orthogonal or substantially orthogonal to the third direction.
  • FIG. 8 is a schematic diagram showing the bus bar according to the second embodiment as viewed from one side in the first direction.
  • FIG. 9 is a schematic diagram showing a bus bar according to a second embodiment, two electrode terminals to which the bus bar is connected, and a configuration in the vicinity of these when the bus bar is viewed from one side in the third direction; be.
  • FIG. 10 shows a bus bar according to a modification of the second embodiment, two electrode terminals to which the bus bar is connected, and a configuration in the vicinity of these when the bus bar is viewed from one side in the third direction.
  • 1 is a schematic diagram showing FIG.
  • a battery module includes a plurality of batteries.
  • the plurality of batteries comprises a first battery and a second battery.
  • the first battery has a first electrode terminal
  • the second battery has a second electrode terminal.
  • the busbar electrically connects the first terminal of the first battery and the second terminal of the second battery.
  • the bus bar is connected to each of the first electrode terminal and the second electrode terminal by being joined by laser welding or the like.
  • FIG. 1 shows an example of a battery 1 alone.
  • a battery 1 that is a single cell includes an electrode group 2 and an outer container 3 in which the electrode group 2 is accommodated.
  • the exterior container 3 is formed from metals, such as aluminum, an aluminum alloy, iron, or stainless steel.
  • the exterior container 3 includes a container body 5 and a lid 6.
  • the depth direction (direction indicated by arrows X1 and X2) and the lateral direction (direction indicated by arrows Y1 and Y2) crossing (perpendicular or substantially perpendicular to) the depth direction , and a height direction (direction indicated by arrows Z1 and Z2) that intersects (perpendicularly or substantially perpendicularly) to both the depth direction and the lateral direction are defined.
  • the dimension in the depth direction is smaller than the dimension in the lateral direction and the dimension in the height direction.
  • the container body 5 includes a bottom wall 7 and a peripheral wall 8.
  • An internal cavity 10 in which the electrode group 2 is housed is defined by a bottom wall 7 and a peripheral wall 8 .
  • the internal cavity 10 opens toward the side opposite to the side where the bottom wall 7 is located in the height direction.
  • the peripheral wall 8 surrounds the inner cavity 10 along the entire circumference.
  • the lid 6 is attached to the container body 5 by welding or the like at the opening of the internal cavity 10 .
  • the lid 6 is thus attached to the peripheral wall 8 at the end opposite the bottom wall 7 .
  • the lid 6 and the bottom wall 7 face each other across the internal cavity 10 in the height direction.
  • the internal cavity 10 is sealed and sealed to the exterior of the outer container 3 .
  • the electrode group 2 includes a positive electrode and a negative electrode (both not shown). Further, in the electrode group 2, a separator (not shown) is interposed between the positive electrode and the negative electrode. The separator is made of an electrically insulating material and electrically insulates the positive electrode from the negative electrode.
  • the positive electrode includes a positive electrode current collector such as a positive electrode current collector foil, and a positive electrode active material-containing layer carried on the surface of the positive electrode current collector.
  • the positive electrode current collector is, but not limited to, aluminum foil or aluminum alloy foil, etc., and has a thickness of about 5 ⁇ m to 20 ⁇ m.
  • the positive electrode active material-containing layer comprises a positive electrode active material and may optionally contain a binder and a conductive agent. Examples of positive electrode active materials include, but are not limited to, oxides, sulfides, and polymers that can intercalate and deintercalate lithium ions.
  • the positive electrode current collector has a positive electrode current collecting tab as a portion on which the positive electrode active material-containing layer is not supported.
  • the negative electrode includes a negative electrode current collector such as a negative electrode current collector foil, and a negative electrode active material-containing layer (not shown) carried on the surface of the negative electrode current collector.
  • the negative electrode current collector is, but not limited to, aluminum foil, aluminum alloy foil, copper foil, or the like, and has a thickness of about 5 ⁇ m to 20 ⁇ m.
  • the negative electrode active material containing layer comprises a negative electrode active material and may optionally contain a binder and a conductive agent. Examples of the negative electrode active material include, but are not limited to, metal oxides, metal sulfides, metal nitrides, and carbon materials that can occlude and release lithium ions.
  • the negative electrode current collector includes a negative electrode current collecting tab as a portion where the negative electrode active material-containing layer is not supported.
  • a pair of current collecting tabs is formed by the positive electrode current collecting tab and the negative electrode current collecting tab.
  • a pair of current collecting tabs protrude from the electrode group 2 .
  • the positive electrode current collecting tab protrudes to one side of the battery 1 in the lateral direction
  • the negative electrode current collecting tab is on the opposite side of the lateral direction of the battery 1 to the side from which the positive electrode current collecting tab protrudes.
  • each of the pair of current collecting tabs in the electrode group 2 protrudes in the height direction of the battery 1 toward the side where the lid 6 is located. In this case, the pair of current collecting tabs are positioned apart from each other in the lateral direction of the battery 1 .
  • the electrode group 2 is held (impregnated) with an electrolytic solution (not shown).
  • the electrolytic solution may be a non-aqueous electrolytic solution in which an electrolyte is dissolved in an organic solvent, or an aqueous electrolytic solution such as an aqueous solution.
  • a gel electrolyte may be used instead of the electrolytic solution, or a solid electrolyte may be used.
  • the solid electrolyte may be interposed between the positive electrode and the negative electrode in place of the separator in the electrode group. In this case, the solid electrolyte electrically insulates the positive electrode from the negative electrode.
  • a pair of electrode terminals 11 are attached to the outer surface (upper surface) of the lid 6 of the outer container 3 .
  • the electrode terminal 11 is made of a conductive material such as metal.
  • One of the electrode terminals 11 is the positive terminal of the battery 1 and the other of the electrode terminals 11 is the negative terminal of the battery 1 .
  • Each of the electrode terminals 11 penetrates the lid 6 through a corresponding through hole (not shown) and is inserted into the internal cavity 10 .
  • An insulating member 12 and an insulating gasket are provided between each of the electrode terminals 11 and the lid 6 .
  • Each of the electrode terminals 11 is prevented from contacting the lid 6 by the insulating member 12 and the insulating gasket, and is electrically insulated from the exterior container 3 including the lid 6 . Moreover, at the portions of the electrode terminals 11 penetrating through the lids 6 , airtightness between the lids 6 and the electrode terminals 11 is ensured by insulating gaskets. Therefore, even if the cover 6 is formed with through-holes for penetrating the electrode terminals 11 , the internal cavity 10 is properly sealed from the outside of the outer container 3 .
  • the positive electrode current collecting tab of the electrode group 2 is electrically connected to the corresponding positive electrode terminal of the electrode terminals 11 via one or more leads (positive electrode lead). Further, the negative electrode current collecting tab of the electrode group 2 is electrically connected to one of the corresponding negative electrode terminals 11 via one or more leads (negative lead). In each of the electrode terminals 11, the portion inserted into the internal cavity 10 is connected to the corresponding lead. Each of the leads is formed from a conductive material such as metal. In addition, in the internal cavity 10 of the outer container 3, each of the pair of current collecting tabs and leads is electrically connected to the outer container 3 (container body 5 and lid 6) by one or more insulating members (not shown). insulated to
  • the positive electrode terminal and the lead (positive electrode side lead) that electrically connects the positive electrode current collector tab and the positive electrode terminal are each preferably made of the same material as the positive electrode current collector.
  • the contact resistance at the connection portion of the positive electrode current collecting tab to the lead, the contact resistance at the connection portion of the positive electrode terminal to the lead, etc. reduced.
  • the negative electrode terminal and the lead (negative electrode side lead) that electrically connects the negative electrode current collector tab and the negative electrode terminal are each preferably made of the same material as the negative electrode current collector. .
  • each of the negative electrode lead and the negative electrode terminal is made of aluminum.
  • Each of the terminals is preferably formed from copper.
  • the lid 6 is formed with a gas release valve 13 and an injection port.
  • a sealing plate 15 is welded to the outer surface of the lid 6 to close the injection port. It should be noted that the gas release valve 13, the injection port, and the like may not be provided in the battery.
  • the configuration of the battery is not limited to the example shown in FIG.
  • the exterior of the battery may be formed from a laminate film instead of the exterior container 3 .
  • the metal layer is sandwiched between two electrically insulating insulating layers, and the outer surface of the casing is formed by one of the two insulating layers. Then, the electrode group is housed inside the exterior portion formed from the laminate film.
  • FIG. 2 shows an example of the battery module 20.
  • the battery module 20 includes batteries 1A and 1B. Batteries 1A and 1B have the same configuration as battery 1 in the example of FIG.
  • the battery (first battery) 1A has an electrode terminal (first electrode terminal) 11A as one of the pair of electrode terminals 11
  • the battery (second battery) 1B has a pair of electrode terminals. 11, an electrode terminal (second electrode terminal) 11B is provided.
  • the battery module 20 also includes a bus bar 21.
  • a bus bar is provided between the electrode terminal (first electrode terminal) 11A of the battery 1A and the electrode terminal (second electrode terminal) 11B of the battery 1B. 21 are electrically connected.
  • the bus bar 21 is connected to each of the electrode terminals 11A and 11B by being joined by laser welding or the like.
  • one of the electrode terminal 11A of the battery 1A and the electrode terminal 11B of the battery 1B is a positive terminal
  • the other of the electrode terminals 11A and 11B is a negative terminal. Therefore, in the example of FIG. 2 , the batteries 1A and 1B are electrically connected in series by the bus bar 21 .
  • two bus bars similar to bus bar 21 may be used to electrically connect two batteries in parallel. In this case, one of the two bus bars electrically connects the positive terminals of the two batteries. The other of the two bus bars electrically connects the negative terminals of the two batteries.
  • busbar A bus bar according to an embodiment will be described below.
  • the busbar electrically connects between the two electrode terminals, as described above.
  • the busbar electrically connects between the first electrode terminal of the first battery and the second electrode terminal of the second battery.
  • the busbar is formed from a conductive material such as metal.
  • the busbar 21 of the present embodiment electrically connects the two electrode terminals 11A and 11B in the example battery module 20 of FIG.
  • FIG. 3 shows the busbar 21 of the present embodiment
  • FIG. 4 shows the busbar 21 of the present embodiment, two electrode terminals 11A and 11B to which the busbar 21 is connected (joined), and the configuration of the vicinity thereof.
  • the busbar 21 has a first direction (directions indicated by arrows Z3 and Z4) and a second direction that intersects (perpendicularly or substantially perpendicularly) the first direction.
  • FIG. 3 shows the busbar 21 as viewed from one side in the first direction
  • FIG. 4 shows the busbar 21 in a cross section perpendicular or substantially perpendicular to the third direction.
  • the bus bar 21 includes a pair of connector plates 22A and 22B and a stack plate body 23.
  • Each of the connector plates 22A and 22B has a plate length direction, a plate width direction that intersects (perpendicularly or substantially perpendicular to) the plate length direction, and an intersects (perpendicular to) both the plate length direction and the plate width direction. or substantially perpendicular to each other) is defined.
  • the plate thickness direction matches or substantially matches the first direction of the busbars 21, and the plate length direction matches or substantially matches the second direction of the busbars 21.
  • the plate width direction matches or substantially matches the third direction of the bus bar 21 .
  • the connector plate (first connector plate) 22A is a conductive member (first conductive member) made of a conductive material, and is joined to the electrode terminal (first electrode terminal) 11A of the battery 1A by ultrasonic welding or the like. be done.
  • the connector plate 22A is joined (connected) to the electrode terminal 11A in a state in which the electrode terminal 11A abuts from one side (arrow Z3 side) of the bus bar 21 in the first direction. 2 and 4, the connector plate 22A is joined to the electrode terminal 11A in a state of contacting the electrode terminal 11A from the side facing the outer surface of the lid 6 of the battery 1A. As shown in an example of FIG.
  • the connector plate 22A is formed with a through hole 25A penetrating through the connector plate 22A in the plate thickness direction.
  • the connector plate 22A is joined to the electrode terminal 11A on the surface facing the side where the electrode terminal 11A (battery 1A) is located in the plate thickness direction (the first direction of the busbar 21) and at the site around the through hole 25A. be done.
  • the connector plate (second connector plate) 22B is a conductive member (second conductive member) made of a conductive material, and is joined to the electrode terminal (second electrode terminal) 11B of the battery 1B by ultrasonic welding or the like. be done.
  • the electrode terminal 11B abuts against the connector plate 22B from the side (arrow Z3 side) where the electrode terminal 11A abuts the connector plate 22A in the first direction of the bus bar 21 .
  • the connector plate 22B is joined (connected) to the electrode terminals 11B while the electrode terminals 11B are in contact with each other as described above.
  • the connector plate 22B is joined to the electrode terminal 11B in a state of contacting the electrode terminal 11B from the side facing the outer surface of the lid 6 of the battery 1B.
  • the connector plate 22B is formed with a through hole 25B penetrating through the connector plate 22B in the plate thickness direction.
  • the connector plate 22B is joined to the electrode terminal 11B on the surface facing the side where the electrode terminal 11B (battery 1B) is located in the plate thickness direction (the first direction of the bus bar 21) and at the site around the through hole 25B. be done.
  • the stacked plate body 23 includes a plurality of conductive plates 26, and in one example such as FIG. 4, four conductive plates 26 are provided.
  • Each of the plurality of conductive plates 26 is made of a conductive material and has electrical conductivity.
  • a plurality of conductive plates 26 are stacked against each other.
  • the plate length direction, the plate width direction that intersects (perpendicularly or substantially perpendicular to) the plate length direction, and the plate length direction and the plate width direction that intersect (perpendicularly) or substantially orthogonal) are defined.
  • the plurality of conductive plates 26 are stacked in a state in which the plate thickness direction of each conductive plate 26 matches or substantially matches the stacking direction.
  • the stacking direction of the plurality of conductive plates 26 is defined as the thickness direction.
  • the length direction intersecting (perpendicular or substantially perpendicular) to the stacking direction and the width direction intersecting (perpendicular or substantially perpendicular) to both the stacking direction and the length direction is defined.
  • the length direction of the stacked plate body 23 matches or substantially matches the plate length direction of each of the conductive plates 26 .
  • the width direction of the stacked plate body 23 matches or substantially matches the plate width direction of each conductive plate 26 and matches or substantially matches the third direction of the bus bar 21 .
  • the conductive plate 26A is positioned closest to the electrode terminals 11A and 11B, and the conductive plate 26B is located near the electrode terminals 11A and 11B. most distal to the
  • Each of the plurality of conductive plates 26 has an edge surface E1 forming one end in the plate length direction and an edge surface E2 forming an end opposite to the edge surface E1 in the plate length direction.
  • the stacked plate body 23 has an end S1 on one side in the length direction and an end S2 on the side opposite to the end S1 in the length direction.
  • the edge surfaces E1 of the plurality of conductive plates 26 are not displaced or hardly displaced with respect to each other in the length direction of the stacked plate body 23 .
  • the end S1 of the stacked plate body 23 is formed by the edge surfaces E1 of all the conductive plates 26 .
  • the edge surfaces E2 of the plurality of conductive plates 26 are not displaced or hardly displaced with respect to each other in the longitudinal direction of the stacked plate body 23 . For this reason, in one example such as FIG. 4 , the end S2 of the stacked plate body 23 is formed by the edge surfaces E2 of all the conductive plates 26 .
  • the edge surfaces E1 of one or more of the conductive plates 26 are offset from the edge surfaces E1 of the other conductive plates 26 in the longitudinal direction of the stacked plate body 23, and all of the conductive plates 26
  • the end S1 of the stacked plate body 23 is formed only by the edge face E1 of a part of the conductive plate 26 inside.
  • the edge surface E1 of the remaining conductive plate 26 is shifted toward the end S2 with respect to the end S1 of the plate stack 23. As shown in FIG.
  • edge surface E2 of one or more of the conductive plates 26 is offset from the edge surface E2 of the other conductive plate 26 in the longitudinal direction of the stack 23, and one of all the conductive plates 26
  • the end S2 of the laminated plate body 23 is formed only by the edge surface E2 of the conductive plate 26 of the part.
  • the edge surface E2 of the remaining conductive plate 26 is shifted from the end S2 of the plate stack 23 toward the end S1.
  • bending positions B1 and B2 are formed between ends S1 and S2 in the length direction of the stacked plate body 23 .
  • the portion adjacent to the bending position B1 on the side opposite to the end S1 bends with respect to the portion between the end S1 and the bending position B1.
  • the portion of each of the plurality of conductive plates 26 adjacent to the bent position B1 on the side opposite to the end S1 is the side away from the electrode terminals 11A and 11B in the first direction of the bus bar 21. It bends (to the distal side with respect to the electrode terminals 11A and 11B).
  • the portion adjacent to the bending position B2 on the side opposite to the end S2 bends with respect to the portion between the end S2 and the bending position B2.
  • the portion of each of the plurality of conductive plates 26 adjacent to the bent position B2 on the side opposite to the end S2 is the side away from the electrode terminals 11A and 11B in the first direction of the bus bar 21. It bends (to the distal side with respect to the electrode terminals 11A and 11B).
  • the portion between the bending positions B1 and B2 in the length direction is formed in a convex shape protruding from the electrode terminals 11A and 11B in the first direction of the busbar 21.
  • the portion between the bending positions B1 and B2 in the length direction is the portion between the end S1 and the bending position B1, and the portion between the end S2 and the bending position B2. and protrudes away from the electrode terminals 11A and 11B.
  • a convex apex 28 is formed between the bending positions B1 and B2 in the length direction, and the apex 28 forms a convex protruding end between the bending positions B1 and B2. do.
  • each of the plurality of conductive plates 26 is formed in a curved shape in a convex portion between bending positions B1 and B2 in the longitudinal direction of the stacked plate body 23 .
  • the sides on which the electrode terminals 11A and 11B are located are inside the curve in the first direction.
  • the side away from 11A and 11B is the outside of the curve.
  • the surfaces of the plurality of conductive plates 26 facing the stacking direction are curved.
  • the cross-sectional shape of each of the conductive plates 26 at the convex portion between the bending positions B1 and B2 in the cross section orthogonal or substantially orthogonal to the third direction (the width direction of the stacked plate body 23) is arcuate or substantially arcuate.
  • the center of the arcuate or substantially arcuate cross-sectional shape formed by each of the conductive plates 26 in the convex portion is positioned on the side of the plate stack 23 on which the electrode terminals 11A and 11B are positioned in the first direction. .
  • each of the conductive plates 26 at the convex portion is U-shaped. Alternatively, it may be substantially U-shaped or the like. 4 and other examples, each of the conductive plates 26 is separated from the adjacent conductive plate 26 in the stacking direction over the entire dimension or substantially the entire dimension along the plate length direction from the edge surface E1 to the edge surface E2. abut.
  • a joint portion ( A first junction) 27A is formed in the stacked plate body 23 .
  • a joint portion 27A of the stacked plate body 23 is joined to the connector plate 22A by ultrasonic welding or the like.
  • the joint portion 27A is formed at a portion between the end S1 and the bending position B1.
  • the joint portion 27A is formed on the conductive plate 26A that is positioned closest to the electrode terminals 11A and 11B among the plurality of conductive plates 26 .
  • a joint portion 27A is formed on the surface facing the electrode terminals 11A and 11B in the first direction. For this reason, in the example of FIG.
  • the stacked plate body 23 (conductive plate 26A) is in contact with the connector plate 22A from the side opposite to the side where the electrode terminals 11A and 11B are located in the first direction. Joint portion 27A of body 23 is joined to connector plate 22A.
  • the end portion on the side opposite to the joint portion 27A in the length direction, that is, the portion near the end S2 in the length direction is joined to the connector plate 22B, which is a conductive member (second conductive member).
  • a joint portion (second joint portion) 27B is formed.
  • the joint portion 27B of the stacked plate body 23 is joined to the connector plate 22B by ultrasonic welding or the like.
  • the joint portion 27B is formed at a portion between the end S2 and the bending position B2.
  • the joint portion 27B is formed on the conductive plate 26A that is positioned closest to the electrode terminals 11A and 11B among the plurality of conductive plates 26 .
  • a joint portion 27B is formed on the surface of the conductive plate 26A that faces the side where the electrode terminals 11A and 11B are located in the first direction. For this reason, in the example of FIG. 4 and the like, the stacked plate body 23 (conductive plate 26A) is in contact with the connector plate 22B from the side opposite to the electrode terminals 11A and 11B in the first direction. Joint portion 27B of body 23 is joined to connector plate 22B.
  • the plurality of conductive plates 26 are joined together at the joining portion 27A and its vicinity in the longitudinal direction, such as the portion between the end S1 and the bending position B1. Further, in the laminated plate body 23, the plurality of conductive plates 26 are joined to each other at the joining portion 27B and its vicinity in the longitudinal direction, such as the portion between the end S2 and the bending position B2. .
  • each of the conductive plates 26 is not joined to the other conductive plates 26 except for the joints 27A and 27B and their vicinities.
  • each of the conductive plates 26 is not joined to the other conductive plate 26 at the portion between the bent positions B1 and B2 in the longitudinal direction of the stacked plate body 23 . Therefore, in the stacked plate body 23, a non-joint portion is formed in which each of the conductive plates 26 is not joined to the other conductive plate 26 over most of the length direction.
  • a joint portion (first joint portion) 27A may be formed on the conductive plate 26B positioned farthest to the electrode terminals 11A and 11B among the plurality of conductive plates 26. .
  • the joint portion 27A of the stacked plate body 23 is connected to the connector plate (the second direction). 1 connector plate) 22A.
  • a joint portion (second joint portion) 27B may be formed on the conductive plate 26B positioned most distally with respect to the electrode terminals 11A and 11B among the plurality of conductive plates 26 .
  • the joint portion 27B of the stacked plate body 23 is connected to the connector plate (second 2 connector plate) 22B.
  • Each of the plurality of conductive plates 26 forming the stacked plate body 23 has a plate thickness T0.
  • the plate thicknesses T0 of the plurality of conductive plates 26 are the same or substantially the same as each other.
  • each of the connector plates 22A and 22B has a plate thickness T1.
  • the thickness T1 of the connector plates 22A and 22B is the same or substantially the same as each other.
  • the plate thickness T0 of each of the plurality of conductive plates 26 is thinner than the plate thickness T1 of the connector plates 22A and 22B.
  • the total thickness T0 of the plurality (all) of the conductive plates 26 is the same or substantially the same as the thickness T1 of each of the connector plates 22A and 22B.
  • the total thickness T0 of all the conductive plates 26 is represented by the value (n ⁇ T0).
  • the plate width W of each of the plurality of conductive plates 26 is the same or substantially the same size (width) as the plate width of each of the connector plates 22A and 22B.
  • the connector plate (first connector plate) 22A is preferably made of the same material as the electrode terminal (first electrode terminal) 11A
  • the connector plate (second connector plate) 22B is preferably made of the same material as the electrode terminal (first electrode terminal).
  • (Second electrode terminal) It is preferably made of the same material as 11B.
  • Each of the plurality of conductive plates 26 is preferably made of a material having higher thermal and electrical conductivity than at least one of the connector plates 22A and 22B, and is more thermally conductive than both the connector plates 22A and 22B. More preferably, it is made of a highly conductive material.
  • each of the electrode terminals 11A, 11B is made of aluminum and each of the connector plates 22A, 22B is made of aluminum.
  • Each of the conductive plates 26 is made of copper, which has higher thermal conductivity (thermal conductivity) and electrical conductivity (conductivity) than aluminum.
  • electrode terminals 11A and connector plate 22A are each formed from aluminum
  • electrode terminals 11B and connector plate 22B are each formed from copper.
  • Each of the conductive plates 26 is then formed from silver, which has higher thermal and electrical conductivity than aluminum and copper.
  • a plurality of conductive plates 26 are stacked on the stacked plate body 23 of the busbar 21 . Then, the stacked plate body 23 is joined to a connector plate 22A, which is a conductive member different from the stacked plate body 23, at a joining portion 27A formed at one end in the longitudinal direction.
  • a connector plate 22B which is a conductive member different from the overlapping plate body 23 and the connector plate 22A, is joined to a connector plate 22B at a joint portion 27B formed at the end opposite to the portion 27A.
  • the plate thickness T0 of each of the plurality of conductive plates 26 is thin, but the total value (n ⁇ T0) of the plate thickness T0 of the plurality of conductive plates 26 is a certain thickness (size). Therefore, in the stacked plate body 23, the cross-sectional area of each of the plurality of conductive plates 26 (the cross-sectional area of the single conductive plate 26) is small, but the cross-sectional area of the stacked plate body 23, which is the total value of the cross-sectional areas of the plurality of conductive plates 26, is small. The overall cross-sectional area is secured to a certain size.
  • the busbar 21 of the present embodiment even if the stacked plate body 23 in which a plurality of conductive plates 26 are stacked is provided, the cross-sectional area of the entire stacked plate body 23 orthogonal or substantially orthogonal to the extending direction of the electric path is , is properly sized. Therefore, the cross-sectional area of the busbar 21 that is orthogonal or substantially orthogonal to the extending direction of the electrical path is ensured to have an appropriate size, and an increase in electrical resistance in the busbar 21 is appropriately suppressed. As a result, even if a large current flows through the busbar 21 that electrically connects the electrode terminals 11A and 11B, the temperature rise in the busbar 21 is appropriately suppressed. By allowing a large current to flow through the busbar 21, it becomes possible to achieve a high output power of the battery module 20 including the batteries 1A and 1B.
  • stress from the busbar 21 acts on each of the electrode terminals 11A and 11B to which the busbar 21 is joined (connected).
  • a stress acts in the second direction of the bus bar 21 on the electrode terminals 11A and 11B.
  • the stacked plate body 23 in which the plurality of conductive plates 26 are stacked is provided. Therefore, when one plate member having the same or substantially the same cross-sectional area as the total value of the cross-sectional areas of the plurality of conductive plates 26 (the cross-sectional area of the entire stacked plate body 23) is provided instead of the stacked plate body 23
  • the stress applied to each of the electrode terminals 11A and 11B is relaxed as compared with the above.
  • n is an integer equal to or greater than 2
  • conductive plates 26 are stacked in the stacked plate body 23, and each of the n conductive plates 26 has a plate thickness T0 and a plate width W.
  • each of the conductive plates 26 is not joined to the other conductive plates 26 over most of the length direction. Therefore, the layered plate 23 can be substantially regarded as a so-called layered beam.
  • the geometrical moment of inertia I0 of the laminated plate body 23 can be calculated in the same manner as the geometrical moment of inertia of the laminated beam, and is calculated according to Equation (1).
  • one plate member having the same plate thickness as the total value (n ⁇ T0) of the plate thickness T0 of the n conductive plates 26 and having the same plate width W as the conductive plate 26 is provided in place of the stacking plate 23 .
  • the geometrical moment of inertia I1 in one plate member is calculated as shown in Equation (2).
  • I0 n ⁇ ((W ⁇ T0 3 )/12) (1)
  • the geometrical moment of inertia I0 of the laminated plate body 23 is relative to the geometrical moment of inertia I1 of one plate member having the same cross-sectional area as the laminated plate body 23. , 1/ n2 . Therefore, by providing the laminated plate body 23 on the bus bar 21, the geometrical moment of inertia of the laminated plate body 23 is reduced, so that the stress applied from the bus bar 21 to each of the electrode terminals 11A and 11B is appropriately relaxed. be done. By relaxing the stress applied to the electrode terminal 11A, in the battery 1A, the stress applied to an insulating gasket or the like disposed near the electrode terminal 11A is also alleviated.
  • the stress on the insulating gasket and the like is appropriately relieved, thereby effectively preventing the deterioration of the hermeticity of the internal cavity 10 due to the stress from the busbar 21 to the electrode terminal 11A.
  • the relaxation of the stress applied to the electrode terminals 11A effectively prevents deterioration of the hermeticity of the internal cavity 10 due to the stress from the bus bar 21 to the electrode terminals 11B.
  • the cross-sectional area orthogonal or substantially orthogonal to the extending direction of the electrical path is ensured to have an appropriate size, and the voltage is applied from the busbar 21 to the electrode terminals 11A and 11B. applied stresses are appropriately relieved.
  • the bent positions B1 and B2 described above are formed in the laminated plate body 23, and the portion between the bent positions B1 and B2 in the length direction is formed in a convex shape. By forming the convex shape (bend structure) on the stacked plate body 23 as described above, the stress applied from the bus bar 21 to the electrode terminals 11A and 11B is further relieved.
  • the connector plate 22A by forming the connector plate 22A from the same material as the electrode terminal 11A, it is possible to effectively prevent the formation of gaps in the joining portion of the connector plate 22A to the electrode terminal 11A. The bonding performance between the plate 22A and the electrode terminal 11A is improved.
  • the connector plate 22B by forming the connector plate 22B from the same material as that of the electrode terminals 11B, it is possible to effectively prevent the formation of gaps in the connecting portions of the connector plate 22B and the electrode terminals 11B, thereby effectively preventing the connector plate 22B from forming the electrode terminals 11B. The bonding performance with the terminal 11B is improved.
  • each of the conductive plates 26 is made of a material having higher thermal conductivity and electrical conductivity than at least one of the connector plates 22A and 22B.
  • the temperature rise at the bus bar 21 is further appropriately suppressed. Therefore, by forming each of the conductive plates 26 from a material having higher thermal and electrical conductivity than at least one of the connector plates 22A and 22B, the conductive plates 26 are formed from the same material as the connector plates 22A and 22B. It is possible to further increase the current flowing through the bus bar 21 as compared with the case where the bus bar 21 is connected. This makes it possible to increase the output of the battery module 20 including the batteries 1A and 1B.
  • each of the conductive plates 26 from a material having higher thermal conductivity and electrical conductivity than at least one of the connector plates 22A and 22B, the number of conductive plates 26 forming the stacked plate body 23 can be reduced. Even if it is reduced, it is possible to pass the same amount of electric current to the bus bar 21 as when the conductive plate 26 is made of the same material as the connector plates 22A and 22B.
  • the conductive plates 26 do not contact adjacent conductive plates 26 in the stacking direction in the portion between the bending positions B1 and B2 of the stacked plate body 23 .
  • a gap 31 is formed between each of the plurality of conductive plates 26 and adjacent conductive plates 26 in the stacking direction in the portion between the bending positions B1 and B2 of the stacked plate body 23 .
  • the stacked plate body 23 includes a pair of plate contact portions 32A and 32B and a plate spacing portion 33. As shown in FIG.
  • the plate contact portion (first plate contact portion) 32A is formed at the end portion of the stack plate body 23 in the longitudinal direction on the side where the joint portion (first joint portion) 27A is located, and is curved with the end S1. It is formed in the portion between position B1.
  • each of the plurality of conductive plates 26 contacts the conductive plate 26 adjacent in the stacking direction.
  • the plurality of conductive plates 26 are joined to each other at the plate contact portion 32A.
  • the plate contact portion (second plate contact portion) 32B is formed at the end portion of the stack plate body 23 in the longitudinal direction on the side where the joint portion (second joint portion) 27B is located, and is curved with the end S2. It is formed in the portion between position B2.
  • the plate contact portion 32B is formed at the end of the stack plate body 23 on the side opposite to the plate contact portion 32A in the longitudinal direction.
  • each of the plurality of conductive plates 26 contacts the conductive plate 26 adjacent in the stacking direction.
  • the plurality of conductive plates 26 are joined to each other at the plate contact portion 32B.
  • the edge surface E1 of each of the plurality of conductive plates 26 is offset from the edge surface E1 of the other conductive plate 26 in the length direction of the stacked plate body 23 .
  • An end S1 of the stacked plate body 23 is formed only by the edge surface E1 of the conductive plate 26A on the most proximal side with respect to the electrode terminals 11A and 11B.
  • the edge surface E1 of the conductive plate 26 on the distal side with respect to the electrode terminals 11A and 11B is located away from the end S1 toward the end S2.
  • the edge surface E2 of each of the plurality of conductive plates 26 is offset from the edge surface E2 of the other conductive plate 26 in the length direction of the stacked plate body 23. As shown in FIG.
  • An end S2 of the plate stack 23 is formed only by the edge surface E2 of the conductive plate 26A that is closest to the electrode terminals 11A and 11B.
  • the edge surface E2 of the conductive plate 26 on the distal side with respect to the electrode terminals 11A and 11B is located away from the end S2 toward the end S1.
  • the plate separation portion 33 is formed between the plate contact portions 32A and 32B in the longitudinal direction of the stacked plate body 23, and is formed in a convex portion between the bending positions B1 and B2.
  • each of the plurality of conductive plates 26 is formed in a curved shape.
  • the side where the electrode terminals 11A and 11B are positioned in the first direction is the inner side of the curve.
  • the side away from 11A and 11B is the outside of the curve.
  • the curvature of the curved shape increases as the conductive plate 26 is located closer to the electrode terminals 11A and 11B. Therefore, among the plurality of conductive plates 26, the conductive plate 26A closest to the electrode terminals 11A and 11B has the largest curvature of the curved shape at the plate separation portion 33, and the electrode terminals 11A and 11B have the largest curvature.
  • the curvature of the curved shape at the plate separation portion 33 is the smallest at the most distal conductive plate 26B.
  • each of the conductive plates 26 is not joined to the other conductive plate 26 in the portion between the bent positions B1 and B2 in the longitudinal direction of the stacked plate body 23 . That is, each of the conductive plates 26 is not joined to the other conductive plates 26 at the plate separation portion 33 . Therefore, even in the stacked plate body 23 of this modified example, a non-joint portion is formed in which each of the conductive plates 26 is not joined to the other conductive plate 26 over most of the length direction.
  • This modified example also has the same actions and effects as those of the first embodiment and the like. Therefore, in the busbar 21 of this modified example as well, the cross-sectional area perpendicular or substantially perpendicular to the extending direction of the electrical path is ensured to have an appropriate size, and the stress applied from the busbar 21 to the electrode terminals 11A and 11B is reduced. is appropriately mitigated. In addition, in this modification, a gap 31 is formed between each of the plurality of conductive plates 26 and the adjacent conductive plate 26 in the stacking direction in the plate separation portion 33 . Therefore, the heat dissipation property of the laminated plate body 23 of the busbar 21 is improved, and the temperature rise in the busbar 21 is further appropriately suppressed.
  • a gap 31 is formed between each of the plurality of conductive plates 26 and adjacent conductive plates 26 in the stacking direction.
  • the edge surfaces E1 of the plurality of conductive plates 26 are not displaced or hardly displaced with respect to each other in the longitudinal direction of the stacked plate body 23 .
  • Edge surfaces E1 of all the conductive plates 26 form an end S1 of the stacked plate body 23.
  • the edge surfaces E2 of the plurality of conductive plates 26 are not displaced or hardly displaced with respect to each other in the longitudinal direction of the stacked plate body 23 .
  • Edge surfaces E2 of all the conductive plates 26 form an end S2 of the stacked plate body 23.
  • the conductive plate 26 positioned closer to the electrode terminals 11A and 11B along the length direction of the stacked plate body 23 from the edge surface E1 to the edge surface E2.
  • the extension length becomes shorter. Then, the closer the conductive plate 26 is positioned to the proximal side with respect to the electrode terminals 11A and 11B, the more the plate separation portion 33 (the convex portion between the bending positions B1 and B2) along the length direction of the laminated plate body 23 becomes. Extension length is shortened.
  • the conductive plate 26A closest to the electrode terminals 11A and 11B has the shortest extension length along the longitudinal direction of the stacked plate body 23, and the electrode terminal
  • the extension length along the longitudinal direction of the stack 23 is the longest at the conductive plate 26B that is the most distal with respect to 11A and 11B.
  • each of the conductive plates 26 in the stacked plate body 23 has a different extension length along the length direction, so that in the plate separation portion 33, each of the plurality of conductive plates 26 and the stacking direction A gap 31 is formed between the conductive plates 26 adjacent to each other.
  • the gap 31 is formed in the plate separation portion 33, the heat dissipation of the stacked plate body 23 of the busbar 21 is improved, and the temperature rise in the busbar 21 is further reduced, as in the modification of FIG. Properly suppressed.
  • the edge surfaces E1 of the plurality of conductive plates 26 are not displaced or hardly displaced with respect to each other in the longitudinal direction of the stacked plate body 23 .
  • the edge surfaces E2 of the plurality of conductive plates 26 are not displaced or hardly displaced from each other in the longitudinal direction of the stacked plate body 23. As shown in FIG. Therefore, workability is improved in assembling (forming) the plate stack 23 and forming the bus bar 21 .
  • the connector plates 22A and 22B are not provided on the busbar 21, and the busbar 21 is formed only from the laminated plate body 23.
  • the joint portion (first joint portion) 27A of the stacked plate body 23 is joined to the electrode terminal (first conductive member) 11A of the battery 1A, which is a conductive member different from the stacked plate body 23. be.
  • the joint portion (second joint portion) 27B of the stacked plate body 23 is joined to the electrode terminal (second conductive member) 11B of the battery 1B, which is a conductive member different from the stacked plate body 23 and the electrode terminal 11A. be done.
  • only one of the connector plates 22A and 22B may be provided on the bus bar 21 .
  • the same functions and effects as those of the first embodiment and the like can be obtained. That is, even in the busbar 21 of the modified example of FIG. applied stresses are appropriately relieved.
  • the number of the conductive plates 26 forming the stacked plate body 23 is not particularly limited as long as it is two or more. .
  • busbar 21 (Second embodiment) Next, a busbar 21 according to a second embodiment will be described.
  • the busbar 21 of this embodiment is obtained by modifying the busbar 21 of the first embodiment and the like as follows. Therefore, in the bus bar 21 of the present embodiment, description of the same configuration as that of the first embodiment and the like will be omitted.
  • FIG. 8 shows the busbar 21 of this embodiment
  • FIG. 9 shows the configuration of the busbar 21 of this embodiment, two electrode terminals 11A and 11B to which the busbar 21 is connected (joined), and their vicinity.
  • the first direction (the direction indicated by arrows Z3 and Z4)
  • the second direction (the direction indicated by arrows Y3 and Y4)
  • the third direction Directions (directions indicated by arrows X3 and X4) are defined.
  • 8 shows the busbar 21 as viewed from one side in the first direction
  • FIG. 10 shows the busbar 21 as viewed from one side in the third direction.
  • the bus bar 21 also includes connector plates 22A and 22B, and the length direction, width direction, and thickness direction of each of the connector plates 22A and 22B are defined in the same manner as in the first embodiment. be done.
  • the bus bar 21 includes a plurality of conductive wires 41 instead of the layered plates 23, and ten conductive wires 41 are provided in an example such as FIGS.
  • Each of the plurality of conductive wires 41 is made of a conductive material and has electrical conductivity. Examples of the material forming the conductive wire 41 include copper.
  • Each of the conductive wires 41 has a central axis, and each of the conductive wires 41 defines an axial direction along the central axis.
  • Each of the plurality of conductive wires 41 has a bonding portion (first bonding portion) bonded to a connector plate (first connector plate) 22A, which is a conductive member (first conductive member), at one end in the axial direction. bonding portion) 42A is formed.
  • Each of the plurality of conductive wires 41 is bonded to a connector plate (second connector plate) 22B, which is a conductive member (second conductive member), at an end portion opposite to the bonding portion 42A in the axial direction.
  • a bonding portion (second bonding portion) 42B is formed.
  • a corresponding one of the conductive wires 41 is bonded to the connector plate 22A, such as by ultrasonic welding.
  • a corresponding one of the conductive wires 41 is bonded to the connector plate 22B, such as by ultrasonic welding.
  • Each of the plurality of conductive wires 41 extends in at least one direction of the first direction of the bus bar 21 (thickness direction of the connector plates 22A and 22B) and the third direction of the bus bar 21 (the plate width direction of the connector plates 22A and 22B). at a distance from the other conductive wires 41 . Therefore, in the busbar 21, the plurality of conductive wires 41 do not contact each other. 8 and 9, the plurality of conductive wires 41 are composed of five conductive wires 41A and five conductive wires 41B. The five conductive wires 41A are arranged apart from each other in the third direction (the width direction of the connector plates 22A and 22B), and the five conductive wires 41B are arranged apart from each other in the third direction. placed.
  • the conductive wire 41A is arranged apart from the conductive wire 41B in the first direction (thickness direction of the connector plates 22A and 22B).
  • the conductive wire 41A extends through a region farther from the electrode terminals 11A and 11B in the first direction than the conductive wire 41B.
  • the busbar 21 is provided with a plurality of conductive wires 41 .
  • the diameter of each of the plurality of conductive wires 41 is small, and the cross-sectional area of each of the conductive wires 41 is small.
  • the total cross-sectional area of the plurality of conductive wires 41 can be secured to some extent.
  • the total value of the cross-sectional areas of the plurality of conductive wires 41 is the cross-sectional area orthogonal or substantially orthogonal to the extending direction of the electrical path.
  • the cross-sectional area of the busbar 21 orthogonal or substantially orthogonal to the extending direction of the electrical path is ensured to have an appropriate size.
  • a plurality of conductive wires 41 are provided on the bus bar 21 as described above. Therefore, the stress applied from the bus bar 21 to each of the electrode terminals 11A and 11B is reduced compared to the case where the plate-like portions integrated with the connector plates 22A and 22B are provided instead of the plurality of conductive wires 41. be.
  • the cross-sectional area orthogonal or substantially orthogonal to the extending direction of the electric path is ensured to have an appropriate size, and voltage is applied from the busbar 21 to the electrode terminals 11A and 11B. applied stresses are appropriately relieved. Therefore, this embodiment also has the same functions and effects as those of the above-described embodiments.
  • the busbar 21 is not provided with connector plates 22A, 22B, and the busbar 21 is formed only from a plurality of conductive wires 41.
  • each bonding portion (first bonding portion) 42A of the conductive wire 41 is bonded to the electrode terminal (first conductive member) 11A of the battery 1A, which is a conductive member different from the conductive wire 41. be.
  • Each bonding portion (second bonding portion) 42B of the conductive wire 41 is bonded to the electrode terminal (second conductive member) 11B of the battery 1B, which is a conductive member different from the conductive wire 41 and the electrode terminal 11A. be done.
  • only one of the connector plates 22A and 22B may be provided on the bus bar 21 .
  • the same functions and effects as those of the second embodiment and the like can be obtained. That is, even in the busbar 21 of the modified example shown in FIG. applied stresses are appropriately relieved.
  • the number of conductive wires 41 provided on the busbar 21 is not particularly limited as long as it is two or more.
  • the busbar comprises a stacking plate, in which a plurality of conductive plates are stacked.
  • the stacked plate body is connected to a first conductive member, which is a conductive member different from the stacked plate body, at a first joint portion formed at one end of the stacked plate body in the longitudinal direction of the stacked plate body. spliced.
  • the laminated plate body is separated from the laminated plate body and the first conductive member at the second joint portion formed at the end opposite to the first joint portion in the longitudinal direction of the laminated plate body.
  • a cross-sectional area perpendicular or substantially perpendicular to the direction in which the electrical path extends can be ensured to have an appropriate size, and a bus bar can be provided in which the stress applied to the electrode terminals is appropriately relaxed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

One embodiment provides a busbar which electrically connects two electrode terminals disposed to be spaced apart from each other. The busbar comprises a layered plate body, a first joint part, and a second joint part, wherein a plurality of conductive plates are stacked in the layered plate body. The first joint part is formed in an end section on one side of the layered plate body in the length direction of the layered plate body, the length direction crossing the stacked direction of the plurality of conductive plates, and is joined to a separate first conductive member different from the layered plate body. The second joint part is formed in an end section on the opposite side from the first joint part in the length direction of the layered plate body, and is joined to the layered plate body and a separate second conductive member different from the first conductive member.

Description

バスバー及び電池モジュールBusbar and battery module
 本発明の実施形態は、バスバー及び電池モジュールに関する。 Embodiments of the present invention relate to busbars and battery modules.
 複数の電池(単セル)を備える電池モジュール等では、ある1つの電池の電極端子と別のある1つの電池の電極端子との間が、バスバーを介して電気的に接続される。この場合、バスバーは、2つの電極端子(第1の電極端子及び第2の電極端子)のそれぞれに、レーザー溶接等によって接合される等して、接続される。近年、複数の電池から形成される電池モジュールでは、高出力化が要求されている。高い出力性能を有する電池モジュールでは、大電流が流れても、2つの電極端子の間を電気的に接続するバスバーでの温度上昇が適切に抑制されることが、求められている。このため、バスバーでは、電気経路の延設方向に直交又は略直交する断面積を適切な大きさに確保し、バスバーにおける電気抵抗の上昇を適切に抑制することが、求められている。また、電池モジュール等では、バスバーが接続される電極端子にバスバーから印加される応力が適切に緩和されることが、求められている。そして、電池モジュールを形成する電池(単セル)のそれぞれにおいて、バスバーから電極端子への応力に起因する内部空洞の密閉性の低下等が有効に防止されることが、求められている。 In a battery module or the like that includes a plurality of batteries (single cells), the electrode terminals of one battery and the electrode terminals of another battery are electrically connected via bus bars. In this case, the bus bar is connected to each of the two electrode terminals (the first electrode terminal and the second electrode terminal) by being joined by laser welding or the like. In recent years, battery modules formed from a plurality of batteries are required to have higher output. A battery module with high output performance is required to appropriately suppress a temperature rise in a bus bar that electrically connects two electrode terminals even when a large current flows. For this reason, busbars are required to have an appropriate cross-sectional area that is perpendicular or substantially perpendicular to the extending direction of the electrical path, and to appropriately suppress an increase in electrical resistance in the busbar. In addition, in battery modules and the like, it is required that the stress applied from the busbars to the electrode terminals to which the busbars are connected is appropriately relieved. In each of the batteries (single cells) that form the battery module, it is required to effectively prevent the deterioration of the hermeticity of the internal cavities caused by the stress from the busbars to the electrode terminals.
日本国特開2009-87761号公報Japanese Patent Application Laid-Open No. 2009-87761
 本発明が解決しようとする課題は、電気経路の延設方向に直交又は略直交する断面積が適切な大きさに確保され、電極端子に印加される応力が適切に緩和されるバスバー、及び、そのバスバーを備える電池モジュールを提供することにある。 The problem to be solved by the present invention is to provide a bus bar in which a cross-sectional area orthogonal or substantially orthogonal to the extending direction of an electric path is ensured to have an appropriate size, and the stress applied to the electrode terminals is appropriately relaxed; An object of the present invention is to provide a battery module having the bus bar.
 実施形態によれば、互いに対して離れて配置される2つの電極端子の間を電気的に接続するバスバーが提供される。バスバーは、重ね板体、第1の接合部及び第2の接合部を備える。重ね板体は、導電性をそれぞれが有する複数の導電板を備え、重ね板体では、複数の導電板が積重ねられる。第1の接合部は、複数の導電板の積重ね方向に対して交差する重ね板体の長さ方向について重ね板体の一方側の端部に形成され、重ね板体とは別の導電部材である第1の導電部材に接合される。第2の接合部は、重ね板体の長さ方向について第1の接合部とは反対側の端部に形成され、重ね板体及び第1の導電部材とは別の導電部材である第2の導電部材に接合される。 According to embodiments, a busbar is provided that electrically connects between two electrode terminals that are spaced apart from each other. The busbar includes a stacking plate body, a first joint and a second joint. The laminated plate comprises a plurality of conductive plates each having electrical conductivity, and in the laminated plate, the plurality of conductive plates are stacked. The first joint portion is formed at one end of the stacked plate body in the longitudinal direction of the stacked plate body that intersects the stacking direction of the plurality of conductive plates, and is a conductive member separate from the stacked plate body. It is joined to a first conductive member. The second joint is formed at an end opposite to the first joint in the longitudinal direction of the stacked plate body, and is a second conductive member separate from the stacked plate body and the first conductive member. of the conductive member.
図1は、実施形態の電池単体の一例を示す概略図である。FIG. 1 is a schematic diagram showing an example of a single battery according to an embodiment. 図2は、実施形態の電池モジュールの一例を示す概略図である。FIG. 2 is a schematic diagram showing an example of the battery module of the embodiment. 図3は、第1の実施形態に係るバスバーを、第1の方向の一方側から視た状態で示す概略図である。FIG. 3 is a schematic diagram showing the busbar according to the first embodiment as viewed from one side in the first direction. 図4は、第1の実施形態に係るバスバー、バスバーが接続される2つの電極端子、及び、これらの近傍の構成を、第3の方向に直交又は略直交する断面でバスバーを示す概略図である。FIG. 4 is a schematic diagram showing a bus bar according to the first embodiment, two electrode terminals to which the bus bar is connected, and a configuration in the vicinity of these in a cross section orthogonal or substantially orthogonal to the third direction; be. 図5は、第1の実施形態の第1の変形例に係るバスバー、バスバーが接続される2つの電極端子、及び、これらの近傍の構成を、第3の方向に直交又は略直交する断面でバスバーを示す概略図である。FIG. 5 shows a bus bar according to a first modification of the first embodiment, two electrode terminals to which the bus bar is connected, and a configuration in the vicinity of these in a cross section orthogonal or substantially orthogonal to the third direction. It is the schematic which shows a bus-bar. 図6は、第1の実施形態の第2の変形例に係るバスバー、バスバーが接続される2つの電極端子、及び、これらの近傍の構成を、第3の方向に直交又は略直交する断面でバスバーを示す概略図である。FIG. 6 shows a bus bar according to a second modification of the first embodiment, two electrode terminals to which the bus bar is connected, and a configuration in the vicinity of these in a cross section orthogonal or substantially orthogonal to the third direction. It is the schematic which shows a bus-bar. 図7は、第1の実施形態の第3の変形例に係るバスバー、バスバーが接続される2つの電極端子、及び、これらの近傍の構成を、第3の方向に直交又は略直交する断面でバスバーを示す概略図である。FIG. 7 shows a bus bar according to a third modification of the first embodiment, two electrode terminals to which the bus bar is connected, and a configuration in the vicinity of these in a cross section orthogonal or substantially orthogonal to the third direction. It is the schematic which shows a bus-bar. 図8は、第2の実施形態に係るバスバーを、第1の方向の一方側から視た状態で示す概略図である。FIG. 8 is a schematic diagram showing the bus bar according to the second embodiment as viewed from one side in the first direction. 図9は、第2の実施形態に係るバスバー、バスバーが接続される2つの電極端子、及び、これらの近傍の構成を、第3の方向の一方側からバスバーを視た状態で示す概略図である。FIG. 9 is a schematic diagram showing a bus bar according to a second embodiment, two electrode terminals to which the bus bar is connected, and a configuration in the vicinity of these when the bus bar is viewed from one side in the third direction; be. 図10は、第2の実施形態のある変形例に係るバスバー、バスバーが接続される2つの電極端子、及び、これらの近傍の構成を、第3の方向の一方側からバスバーを視た状態で示す概略図である。FIG. 10 shows a bus bar according to a modification of the second embodiment, two electrode terminals to which the bus bar is connected, and a configuration in the vicinity of these when the bus bar is viewed from one side in the third direction. 1 is a schematic diagram showing FIG.
 以下、実施形態について図面を参照して説明する。実施形態に係る電池モジュールは、複数の電池を備える。複数の電池は、第1の電池及び第2の電池を備える。そして、第1の電池は、第1の電極端子を備え、第2の電池は、第2の電極端子を備える。電池モジュールでは、第1の電池の第1の端子と第2の電池の第2の端子との間が、バスバーによって電気的に接続される。バスバーは、第1の電極端子及び第2の電極端子のそれぞれに、レーザー溶接等によって接合される等して、接続される。 Hereinafter, embodiments will be described with reference to the drawings. A battery module according to an embodiment includes a plurality of batteries. The plurality of batteries comprises a first battery and a second battery. The first battery has a first electrode terminal, and the second battery has a second electrode terminal. In the battery module, the busbar electrically connects the first terminal of the first battery and the second terminal of the second battery. The bus bar is connected to each of the first electrode terminal and the second electrode terminal by being joined by laser welding or the like.
 [電池] 
 まず、電池モジュールに設けられる電池単体について、説明する。図1は、電池1単体の一例を示す。単セルである電池1は、電極群2と、電極群2が収納される外装容器3と、を備える。図1等の一例では、外装容器3は、アルミニウム、アルミニウム合金、鉄又はステンレス等の金属から形成される。外装容器3は、容器本体5と、蓋6と、を備える。ここで、電池1及び外装容器3では、奥行方向(矢印X1及び矢印X2で示す方向)、奥行方向に対して交差する(直交又は略直交する)横方向(矢印Y1及び矢印Y2で示す方向)、及び、奥行方向及び横方向の両方に対して交差する(直交又は略直交する)高さ方向(矢印Z1及び矢印Z2で示す方向)が、規定される。図1等の一例では、電池1及び外装容器3のそれぞれにおいて、奥行方向についての寸法が、横方向についての寸法、及び、高さ方向についての寸法のそれぞれに比べて、小さい。
[battery]
First, a single battery provided in the battery module will be described. FIG. 1 shows an example of a battery 1 alone. A battery 1 that is a single cell includes an electrode group 2 and an outer container 3 in which the electrode group 2 is accommodated. In one example, such as FIG. 1, the exterior container 3 is formed from metals, such as aluminum, an aluminum alloy, iron, or stainless steel. The exterior container 3 includes a container body 5 and a lid 6. Here, in the battery 1 and the outer container 3, the depth direction (direction indicated by arrows X1 and X2) and the lateral direction (direction indicated by arrows Y1 and Y2) crossing (perpendicular or substantially perpendicular to) the depth direction , and a height direction (direction indicated by arrows Z1 and Z2) that intersects (perpendicularly or substantially perpendicularly) to both the depth direction and the lateral direction are defined. In the example shown in FIG. 1 and the like, in each of the battery 1 and the outer container 3, the dimension in the depth direction is smaller than the dimension in the lateral direction and the dimension in the height direction.
 容器本体5は、底壁7及び周壁8を備える。電極群2が収納される内部空洞10は、底壁7及び周壁8によって規定される。電池1では、内部空洞10は、高さ方向について、底壁7が位置する側とは反対側へ向かって開口する。周壁8は、内部空洞10を周方向の全周に渡って囲む。蓋6は、内部空洞10の開口において、容器本体5に溶接等によって取付けられる。したがって、蓋6は、底壁7とは反対側の端部で、周壁8に取付けられる。蓋6及び底壁7は、高さ方向について内部空洞10を挟んで対向する。内部空洞10は、外装容器3の外部に対して封止及び密閉される。 The container body 5 includes a bottom wall 7 and a peripheral wall 8. An internal cavity 10 in which the electrode group 2 is housed is defined by a bottom wall 7 and a peripheral wall 8 . In the battery 1, the internal cavity 10 opens toward the side opposite to the side where the bottom wall 7 is located in the height direction. The peripheral wall 8 surrounds the inner cavity 10 along the entire circumference. The lid 6 is attached to the container body 5 by welding or the like at the opening of the internal cavity 10 . The lid 6 is thus attached to the peripheral wall 8 at the end opposite the bottom wall 7 . The lid 6 and the bottom wall 7 face each other across the internal cavity 10 in the height direction. The internal cavity 10 is sealed and sealed to the exterior of the outer container 3 .
 電極群2は、正極及び負極(いずれも図示しない)を備える。また、電極群2では、正極と負極との間にセパレータ(図示しない)が介在する。セパレータは、電気的絶縁性を有する材料から形成され、正極を負極に対して電気的に絶縁する。 The electrode group 2 includes a positive electrode and a negative electrode (both not shown). Further, in the electrode group 2, a separator (not shown) is interposed between the positive electrode and the negative electrode. The separator is made of an electrically insulating material and electrically insulates the positive electrode from the negative electrode.
 正極は、正極集電箔等の正極集電体と、正極集電体の表面に担持される正極活物質含有層と、を備える。正極集電体は、これらに限定されるものではないが、例えば、アルミニウム箔又はアルミニウム合金箔等であり、厚さが5μm~20μm程度である。正極活物質含有層は、正極活物質を備え、結着剤及び導電剤を任意に含んでもよい。正極活物質としては、これらに限定されるものではないが、リチウムイオンを吸蔵放出できる酸化物、硫化物及びポリマー等が挙げられる。正極集電体は、正極活物質含有層が未担持の部分として、正極集電タブを備える。 The positive electrode includes a positive electrode current collector such as a positive electrode current collector foil, and a positive electrode active material-containing layer carried on the surface of the positive electrode current collector. The positive electrode current collector is, but not limited to, aluminum foil or aluminum alloy foil, etc., and has a thickness of about 5 μm to 20 μm. The positive electrode active material-containing layer comprises a positive electrode active material and may optionally contain a binder and a conductive agent. Examples of positive electrode active materials include, but are not limited to, oxides, sulfides, and polymers that can intercalate and deintercalate lithium ions. The positive electrode current collector has a positive electrode current collecting tab as a portion on which the positive electrode active material-containing layer is not supported.
 負極は、負極集電箔等の負極集電体と、負極集電体の表面に担持される負極活物質含有層(図示しない)と、を備える。負極集電体は、これらに限定されるものではないが、例えば、アルミニウム箔、アルミニウム合金箔又は銅箔等であり、厚さが5μm~20μm程度である。負極活物質含有層は、負極活物質を備え、結着剤及び導電剤を任意に含んでもよい。負極活物質としては、特に限定されるものではないが、リチウムイオンを吸蔵放出できる金属酸化物、金属硫化物、金属窒化物及び炭素材料等が挙げられる。負極集電体は、負極活物質含有層が未担持の部分として、負極集電タブを備える。 The negative electrode includes a negative electrode current collector such as a negative electrode current collector foil, and a negative electrode active material-containing layer (not shown) carried on the surface of the negative electrode current collector. The negative electrode current collector is, but not limited to, aluminum foil, aluminum alloy foil, copper foil, or the like, and has a thickness of about 5 μm to 20 μm. The negative electrode active material containing layer comprises a negative electrode active material and may optionally contain a binder and a conductive agent. Examples of the negative electrode active material include, but are not limited to, metal oxides, metal sulfides, metal nitrides, and carbon materials that can occlude and release lithium ions. The negative electrode current collector includes a negative electrode current collecting tab as a portion where the negative electrode active material-containing layer is not supported.
 電極群2では、正極集電タブ及び負極集電タブによって、一対の集電タブが形成される。電極群2では、一対の集電タブが突出する。ある一例では、電極群2において、正極集電タブが電池1の横方向の一方側へ突出し、負極集電タブが、電池1の横方向について、正極集電タブが突出する側とは反対側へ突出する。別のある一例では、電極群2において、一対の集電タブのそれぞれが、電池1の高さ方向について、蓋6が位置する側へ向かって突出する。この場合、一対の集電タブは、電池1の横方向について、互いに対して離れて位置する。 In the electrode group 2, a pair of current collecting tabs is formed by the positive electrode current collecting tab and the negative electrode current collecting tab. A pair of current collecting tabs protrude from the electrode group 2 . In one example, in the electrode group 2, the positive electrode current collecting tab protrudes to one side of the battery 1 in the lateral direction, and the negative electrode current collecting tab is on the opposite side of the lateral direction of the battery 1 to the side from which the positive electrode current collecting tab protrudes. protrude to In another example, each of the pair of current collecting tabs in the electrode group 2 protrudes in the height direction of the battery 1 toward the side where the lid 6 is located. In this case, the pair of current collecting tabs are positioned apart from each other in the lateral direction of the battery 1 .
 また、内部空洞10では、電極群2に、電解液(図示しない)が保持(含浸)される。電解液は、電解質を有機溶媒に溶解させた非水電解液であってもよく、水溶液等の水系電解液であってもよい。電解液の代わりに、ゲル状電解質が用いられてもよく、固体電解質が用いられてもよい。固体電解質が電解質として用いられる場合、電極群において、固体電解質が、セパレータの代わりに、正極と負極との間に介在してもよい。この場合、固体電解質により、正極が負極に対して電気的に絶縁される。 In addition, in the internal cavity 10, the electrode group 2 is held (impregnated) with an electrolytic solution (not shown). The electrolytic solution may be a non-aqueous electrolytic solution in which an electrolyte is dissolved in an organic solvent, or an aqueous electrolytic solution such as an aqueous solution. A gel electrolyte may be used instead of the electrolytic solution, or a solid electrolyte may be used. When a solid electrolyte is used as the electrolyte, the solid electrolyte may be interposed between the positive electrode and the negative electrode in place of the separator in the electrode group. In this case, the solid electrolyte electrically insulates the positive electrode from the negative electrode.
 電池1では、外装容器3の蓋6の外表面(上面)に、一対の電極端子11が取付けられる。電極端子11は、金属等の導電材料から形成される。電極端子11の一方が電池1の正極端子であり、電極端子11の他方が電池1の負極端子である。電極端子11のそれぞれは、対応する貫通孔(図示しない)を通して蓋6を貫通し、内部空洞10に挿入される。電極端子11のそれぞれと蓋6との間には、絶縁部材12及び絶縁ガスケット(図示しない)が設けられる。電極端子11のそれぞれは、絶縁部材12及び絶縁ガスケットによって、蓋6への接触が防止され、蓋6を含む外装容器3に対して電気的に絶縁される。また、電極端子11のそれぞれの蓋6を貫通する部分では、絶縁ガスケットによって、蓋6と電極端子11との間の気密性が確保される。このため、電極端子11のそれぞれを貫通させる貫通孔を蓋6に形成しても、内部空洞10は、外装容器3の外部に対して適切に密閉される。 In the battery 1 , a pair of electrode terminals 11 are attached to the outer surface (upper surface) of the lid 6 of the outer container 3 . The electrode terminal 11 is made of a conductive material such as metal. One of the electrode terminals 11 is the positive terminal of the battery 1 and the other of the electrode terminals 11 is the negative terminal of the battery 1 . Each of the electrode terminals 11 penetrates the lid 6 through a corresponding through hole (not shown) and is inserted into the internal cavity 10 . An insulating member 12 and an insulating gasket (not shown) are provided between each of the electrode terminals 11 and the lid 6 . Each of the electrode terminals 11 is prevented from contacting the lid 6 by the insulating member 12 and the insulating gasket, and is electrically insulated from the exterior container 3 including the lid 6 . Moreover, at the portions of the electrode terminals 11 penetrating through the lids 6 , airtightness between the lids 6 and the electrode terminals 11 is ensured by insulating gaskets. Therefore, even if the cover 6 is formed with through-holes for penetrating the electrode terminals 11 , the internal cavity 10 is properly sealed from the outside of the outer container 3 .
 電極群2の正極集電タブは、1つ以上のリード(正極側リード)を介して、電極端子11の対応する一方である正極端子に、電気的に接続される。また、電極群2の負極集電タブは、1つ以上リード(負極側リード)を介して、電極端子11の対応する一方である負極端子に、電気的に接続される。電極端子11のそれぞれでは、内部空洞10に挿入された部分が、対応するリードに接続される。リードのそれぞれは、金属等の導電材料から形成される。また、外装容器3の内部空洞10では、一対の集電タブ及びリードのそれぞれは、1つ以上の絶縁部材(図示しない)によって、外装容器3(容器本体5及び蓋6)に対して電気的に絶縁される。 The positive electrode current collecting tab of the electrode group 2 is electrically connected to the corresponding positive electrode terminal of the electrode terminals 11 via one or more leads (positive electrode lead). Further, the negative electrode current collecting tab of the electrode group 2 is electrically connected to one of the corresponding negative electrode terminals 11 via one or more leads (negative lead). In each of the electrode terminals 11, the portion inserted into the internal cavity 10 is connected to the corresponding lead. Each of the leads is formed from a conductive material such as metal. In addition, in the internal cavity 10 of the outer container 3, each of the pair of current collecting tabs and leads is electrically connected to the outer container 3 (container body 5 and lid 6) by one or more insulating members (not shown). insulated to
 なお、正極端子、及び、正極集電タブと正極端子との間を電気的に接続するリード(正極側リード)のそれぞれは、正極集電体と同一の材料から形成されることが、好ましい。これにより、正極集電タブと正極端子との間の電気経路において、正極集電タブのリードへの接続部分での接触抵抗、及び、正極端子のリードへの接続部分での接触抵抗等が、低減される。同様に、負極端子、及び、負極集電タブと負極端子との間を電気的に接続するリード(負極側リード)のそれぞれは、負極集電体と同一の材料から形成されることが、好ましい。これにより、負極集電タブと負極端子との間の電気経路において、負極集電タブのリードへの接続部分での接触抵抗、及び、負極端子のリードへの接続部分での接触抵抗等が、低減される。例えば、負極集電体がアルミニウム箔である場合は、負極側リード及び負極端子のそれぞれは、アルミニウムから形成されることが好ましく、負極集電体が銅箔である場合は、負極側リード及び負極端子のそれぞれは、銅から形成されることが好ましい。 The positive electrode terminal and the lead (positive electrode side lead) that electrically connects the positive electrode current collector tab and the positive electrode terminal are each preferably made of the same material as the positive electrode current collector. As a result, in the electrical path between the positive electrode current collecting tab and the positive electrode terminal, the contact resistance at the connection portion of the positive electrode current collecting tab to the lead, the contact resistance at the connection portion of the positive electrode terminal to the lead, etc. reduced. Similarly, the negative electrode terminal and the lead (negative electrode side lead) that electrically connects the negative electrode current collector tab and the negative electrode terminal are each preferably made of the same material as the negative electrode current collector. . As a result, in the electrical path between the negative electrode current collecting tab and the negative electrode terminal, the contact resistance at the connection portion of the negative electrode current collecting tab to the lead, the contact resistance at the connection portion of the negative electrode terminal to the lead, etc. reduced. For example, when the negative electrode current collector is aluminum foil, it is preferable that each of the negative electrode lead and the negative electrode terminal is made of aluminum. Each of the terminals is preferably formed from copper.
 また、図1の一例では、蓋6に、ガス開放弁13及び注液口が、形成される。そして、蓋6の外表面に、注液口を塞ぐ封止板15が、溶接される。なお、ガス開放弁13及び注液口等は、電池に設けられなくてもよい。 In addition, in the example of FIG. 1, the lid 6 is formed with a gas release valve 13 and an injection port. A sealing plate 15 is welded to the outer surface of the lid 6 to close the injection port. It should be noted that the gas release valve 13, the injection port, and the like may not be provided in the battery.
 また、電池(単セル)の構成は、図1で示す一例に限るものではない。ある一例では、電池の外装部が外装容器3の代わりにラミネートフィルムから形成されてもよい。この場合、電池の外装部では、金属層が電気的絶縁性を有する2つの絶縁層の間で挟まれ、外装部の外表面は、2つの絶縁層の一方によって形成される。そして、ラミネートフィルムから形成される外装部の内部に、電極群が収納される。 Also, the configuration of the battery (single cell) is not limited to the example shown in FIG. In one example, the exterior of the battery may be formed from a laminate film instead of the exterior container 3 . In this case, in the battery casing, the metal layer is sandwiched between two electrically insulating insulating layers, and the outer surface of the casing is formed by one of the two insulating layers. Then, the electrode group is housed inside the exterior portion formed from the laminate film.
 [電池モジュール] 
 次に、前述したような電池(単セル)を複数備える電池モジュールについて説明する。図2は、電池モジュール20の一例を示す。電池モジュール20は、電池1A,1Bを備える。電池1A,1Bは、図1の一例の電池1と同様の構成である。電池モジュール20では、電池(第1の電池)1Aは、一対の電極端子11の一方として電極端子(第1の電極端子)11Aを備え、電池(第2の電池)1Bは、一対の電極端子11の一方として電極端子(第2の電極端子)11Bを備える。また、電池モジュール20は、バスバー21を備え、電池モジュール20では、電池1Aの電極端子(第1の電極端子)11Aと電池1Bの電極端子(第2の電極端子)11Bとの間が、バスバー21によって電気的に接続される。バスバー21は、電極端子11A,11Bのそれぞれに、レーザー溶接等によって接合される等して、接続される。
[Battery module]
Next, a battery module including a plurality of batteries (single cells) as described above will be described. FIG. 2 shows an example of the battery module 20. As shown in FIG. The battery module 20 includes batteries 1A and 1B. Batteries 1A and 1B have the same configuration as battery 1 in the example of FIG. In the battery module 20, the battery (first battery) 1A has an electrode terminal (first electrode terminal) 11A as one of the pair of electrode terminals 11, and the battery (second battery) 1B has a pair of electrode terminals. 11, an electrode terminal (second electrode terminal) 11B is provided. The battery module 20 also includes a bus bar 21. In the battery module 20, a bus bar is provided between the electrode terminal (first electrode terminal) 11A of the battery 1A and the electrode terminal (second electrode terminal) 11B of the battery 1B. 21 are electrically connected. The bus bar 21 is connected to each of the electrode terminals 11A and 11B by being joined by laser welding or the like.
 ここで、図2の一例では、電池1Aの電極端子11A及び電池1Bの電極端子11Bの一方が正極端子となり、電極端子11A,11Bの他方が、負極端子となる。このため、図2の一例では、バスバー21によって、電池1A,1Bが電気的に直列に接続される。なお、別のある一例では、バスバー21と同様のバスバーを2つ用いて、2つの電池が電気的に並列に接続されてもよい。この場合、2つのバスバーの一方によって、2つの電池の正極端子同士が電気的に接続される。そして、2つのバスバーの他方によって、2つの電池の負極端子同士が電気的に接続される。 Here, in one example of FIG. 2, one of the electrode terminal 11A of the battery 1A and the electrode terminal 11B of the battery 1B is a positive terminal, and the other of the electrode terminals 11A and 11B is a negative terminal. Therefore, in the example of FIG. 2 , the batteries 1A and 1B are electrically connected in series by the bus bar 21 . In another example, two bus bars similar to bus bar 21 may be used to electrically connect two batteries in parallel. In this case, one of the two bus bars electrically connects the positive terminals of the two batteries. The other of the two bus bars electrically connects the negative terminals of the two batteries.
 [バスバー] 
 以下、実施形態に係るバスバーについて説明する。バスバーは、前述のように、2つの電極端子の間を電気的に接続する。バスバーは、例えば、第1の電池及び第2の電池を備える電池モジュールにおいて、第1の電池の第1の電極端子と第2の電池の第2の電極端子との間を電気的に接続する。バスバーは、金属等の導電材料から形成される。
[Busbar]
A bus bar according to an embodiment will be described below. The busbar electrically connects between the two electrode terminals, as described above. For example, in a battery module including a first battery and a second battery, the busbar electrically connects between the first electrode terminal of the first battery and the second electrode terminal of the second battery. . The busbar is formed from a conductive material such as metal.
 (第1の実施形態) 
 まず、第1の実施形態に係るバスバー21について説明する。本実施形態のバスバー21は、図2の一例の電池モジュール20において、2つの電極端子11A,11Bの間を電気的に接続する。図3は、本実施形態のバスバー21を示し、図4は、本実施形態のバスバー21、バスバー21が接続(接合)される2つの電極端子11A,11B、及び、これらの近傍の構成を示す。図3及び図4等に示すように、バスバー21では、第1の方向(矢印Z3及び矢印Z4で示す方向)、第1の方向に対して交差する(直交又は略直交する)第2の方向(矢印Y3及び矢印Y4で示す方向)、及び、第1の方向及び第2の方向の両方に対して交差する(直交又は略直交する)第3の方向(矢印X3及び矢印X4で示す方向)が規定される。図3では、第1の方向の一方側から視た状態でバスバー21が示され、図4では、第3の方向に対して直交又は略直交する断面でバスバー21が示される。
(First embodiment)
First, the busbar 21 according to the first embodiment will be described. The bus bar 21 of the present embodiment electrically connects the two electrode terminals 11A and 11B in the example battery module 20 of FIG. FIG. 3 shows the busbar 21 of the present embodiment, and FIG. 4 shows the busbar 21 of the present embodiment, two electrode terminals 11A and 11B to which the busbar 21 is connected (joined), and the configuration of the vicinity thereof. . As shown in FIGS. 3 and 4, etc., the busbar 21 has a first direction (directions indicated by arrows Z3 and Z4) and a second direction that intersects (perpendicularly or substantially perpendicularly) the first direction. (directions indicated by arrows Y3 and Y4), and a third direction (directions indicated by arrows X3 and X4) that intersects (perpendicular or substantially perpendicular to) both the first direction and the second direction is defined. 3 shows the busbar 21 as viewed from one side in the first direction, and FIG. 4 shows the busbar 21 in a cross section perpendicular or substantially perpendicular to the third direction.
 本実施形態では、バスバー21は、一対のコネクタ板22A,22B、及び、重ね板体23を備える。コネクタ板22A,22Bのそれぞれでは、板長方向、板長方向に対して交差する(直交又は略直交する)板幅方向、及び、板長方向及び板幅方向の両方に対して交差する(直交又は略直交する)板厚方向が規定される。コネクタ板22A,22Bのそれぞれでは、板厚方向が、バスバー21の第1の方向と一致又は略一致し、板長方向がバスバー21の第2の方向と一致又は略一致する。そして、コネクタ板22A,22Bのそれぞれでは、板幅方向が、バスバー21の第3の方向と一致又は略一致する。 In this embodiment, the bus bar 21 includes a pair of connector plates 22A and 22B and a stack plate body 23. Each of the connector plates 22A and 22B has a plate length direction, a plate width direction that intersects (perpendicularly or substantially perpendicular to) the plate length direction, and an intersects (perpendicular to) both the plate length direction and the plate width direction. or substantially perpendicular to each other) is defined. In each of the connector plates 22A and 22B, the plate thickness direction matches or substantially matches the first direction of the busbars 21, and the plate length direction matches or substantially matches the second direction of the busbars 21. As shown in FIG. In each of the connector plates 22A and 22B, the plate width direction matches or substantially matches the third direction of the bus bar 21 .
 コネクタ板(第1のコネクタ板)22Aは、導電材料から形成される導電部材(第1の導電部材)であり、電池1Aの電極端子(第1の電極端子)11Aに超音波溶接等によって接合される。コネクタ板22Aは、バスバー21の第1の方向の一方側(矢印Z3側)から電極端子11Aが当接する状態で、電極端子11Aに接合(接続)される。そして、図2及び図4等の一例では、コネクタ板22Aは、電池1Aの蓋6の外表面が向く側から電極端子11Aに当接する状態で、電極端子11Aに接合される。図3の一例に示すように、コネクタ板22Aには、板厚方向にコネクタ板22Aを貫通する貫通孔25Aが形成される。コネクタ板22Aは、板厚方向(バスバー21の第1の方向)について電極端子11A(電池1A)が位置する側を向く表面で、かつ、貫通孔25Aの周囲の部位において、電極端子11Aに接合される。 The connector plate (first connector plate) 22A is a conductive member (first conductive member) made of a conductive material, and is joined to the electrode terminal (first electrode terminal) 11A of the battery 1A by ultrasonic welding or the like. be done. The connector plate 22A is joined (connected) to the electrode terminal 11A in a state in which the electrode terminal 11A abuts from one side (arrow Z3 side) of the bus bar 21 in the first direction. 2 and 4, the connector plate 22A is joined to the electrode terminal 11A in a state of contacting the electrode terminal 11A from the side facing the outer surface of the lid 6 of the battery 1A. As shown in an example of FIG. 3, the connector plate 22A is formed with a through hole 25A penetrating through the connector plate 22A in the plate thickness direction. The connector plate 22A is joined to the electrode terminal 11A on the surface facing the side where the electrode terminal 11A (battery 1A) is located in the plate thickness direction (the first direction of the busbar 21) and at the site around the through hole 25A. be done.
 コネクタ板(第2のコネクタ板)22Bは、導電材料から形成される導電部材(第2の導電部材)であり、電池1Bの電極端子(第2の電極端子)11Bに超音波溶接等によって接合される。コネクタ板22Bには、バスバー21の第1の方向について電極端子11Aがコネクタ板22Aに当接する側(矢印Z3側)から、電極端子11Bが当接する。そして、コネクタ板22Bは、電極端子11Bが前述のように当接する状態で、電極端子11Bに接合(接続)される。図2及び図4等の一例では、コネクタ板22Bは、電池1Bの蓋6の外表面が向く側から電極端子11Bに当接する状態で、電極端子11Bに接合される。図3の一例に示すように、コネクタ板22Bには、板厚方向にコネクタ板22Bを貫通する貫通孔25Bが形成される。コネクタ板22Bは、板厚方向(バスバー21の第1の方向)について電極端子11B(電池1B)が位置する側を向く表面で、かつ、貫通孔25Bの周囲の部位において、電極端子11Bに接合される。 The connector plate (second connector plate) 22B is a conductive member (second conductive member) made of a conductive material, and is joined to the electrode terminal (second electrode terminal) 11B of the battery 1B by ultrasonic welding or the like. be done. The electrode terminal 11B abuts against the connector plate 22B from the side (arrow Z3 side) where the electrode terminal 11A abuts the connector plate 22A in the first direction of the bus bar 21 . Then, the connector plate 22B is joined (connected) to the electrode terminals 11B while the electrode terminals 11B are in contact with each other as described above. 2 and 4, the connector plate 22B is joined to the electrode terminal 11B in a state of contacting the electrode terminal 11B from the side facing the outer surface of the lid 6 of the battery 1B. As shown in an example of FIG. 3, the connector plate 22B is formed with a through hole 25B penetrating through the connector plate 22B in the plate thickness direction. The connector plate 22B is joined to the electrode terminal 11B on the surface facing the side where the electrode terminal 11B (battery 1B) is located in the plate thickness direction (the first direction of the bus bar 21) and at the site around the through hole 25B. be done.
 バスバー21では、コネクタ板22A,22Bの間が、重ね板体23によって中継される。重ね板体23は、複数の導電板26を備え、図4等の一例では、4つの導電板26を備える。複数の導電板26のそれぞれは、導電材料から形成され、導電性を有する。重ね板体23では、複数の導電板26が互いに対して積重ねられる。複数の導電板26のそれぞれでは、板長方向、板長方向に対して交差する(直交又は略直交する)板幅方向、及び、板長方向及び板幅方向の両方に対して交差する(直交又は略直交する)板厚方向が、規定される。重ね板体23では、導電板26のそれぞれの板厚方向が積重ね方向と一致又は略一致する状態で、複数の導電板26が積重ねられる。 In the bus bar 21, the connector plates 22A and 22B are relayed by the stacked plate body 23. The stacked plate body 23 includes a plurality of conductive plates 26, and in one example such as FIG. 4, four conductive plates 26 are provided. Each of the plurality of conductive plates 26 is made of a conductive material and has electrical conductivity. In the stacked plate body 23, a plurality of conductive plates 26 are stacked against each other. In each of the plurality of conductive plates 26, the plate length direction, the plate width direction that intersects (perpendicularly or substantially perpendicular to) the plate length direction, and the plate length direction and the plate width direction that intersect (perpendicularly) or substantially orthogonal) are defined. In the stacked plate body 23, the plurality of conductive plates 26 are stacked in a state in which the plate thickness direction of each conductive plate 26 matches or substantially matches the stacking direction.
 また、重ね板体23では、複数の導電板26の積重ね方向が厚さ方向として規定される。そして、重ね板体23では、積重ね方向に対して交差する(直交又は略直交する)長さ方向、及び、積重ね方向及び長さ方向の両方に対して交差する(直交又は略直交する)幅方向が規定される。重ね板体23の長さ方向は、導電板26のそれぞれの板長方向と一致又は略一致する。そして、重ね板体23の幅方向は、導電板26のそれぞれの板幅方向と一致又は略位一致するとともに、バスバー21の第3の方向と一致又は略一致する。また、重ね板体23を形成する複数の導電板26の中では、導電板26Aが、電極端子11A,11Bに対して最も近位側に位置し、導電板26Bが、電極端子11A,11Bに対して最も遠位側に位置する。 In addition, in the stacked plate body 23, the stacking direction of the plurality of conductive plates 26 is defined as the thickness direction. In the stacked plate body 23, the length direction intersecting (perpendicular or substantially perpendicular) to the stacking direction and the width direction intersecting (perpendicular or substantially perpendicular) to both the stacking direction and the length direction is defined. The length direction of the stacked plate body 23 matches or substantially matches the plate length direction of each of the conductive plates 26 . The width direction of the stacked plate body 23 matches or substantially matches the plate width direction of each conductive plate 26 and matches or substantially matches the third direction of the bus bar 21 . Among the plurality of conductive plates 26 forming the stacked plate body 23, the conductive plate 26A is positioned closest to the electrode terminals 11A and 11B, and the conductive plate 26B is located near the electrode terminals 11A and 11B. most distal to the
 複数の導電板26のそれぞれは、板長方向について一方側の端を形成する縁面E1、及び、板長方向について縁面E1とは反対側の端を形成する縁面E2を備える。また、重ね板体23は、長さ方向について一方側の端S1、及び、長さ方向について端S1とは反対側の端S2を有する。図4等の一例では、複数の導電板26の縁面E1は、重ね板体23の長さ方向について、互いに対してずれていない又はほとんどずれていない。このため、図4等の一例では、全ての導電板26の縁面E1によって、重ね板体23の端S1が形成される。また、図4等の一例では、複数の導電板26の縁面E2は、重ね板体23の長さ方向について、互いに対してずれていない又はほとんどずれていない。このため、図4等の一例では、全ての導電板26の縁面E2によって、重ね板体23の端S2が形成される。 Each of the plurality of conductive plates 26 has an edge surface E1 forming one end in the plate length direction and an edge surface E2 forming an end opposite to the edge surface E1 in the plate length direction. In addition, the stacked plate body 23 has an end S1 on one side in the length direction and an end S2 on the side opposite to the end S1 in the length direction. In one example such as FIG. 4 , the edge surfaces E1 of the plurality of conductive plates 26 are not displaced or hardly displaced with respect to each other in the length direction of the stacked plate body 23 . For this reason, in one example such as FIG. 4 , the end S1 of the stacked plate body 23 is formed by the edge surfaces E1 of all the conductive plates 26 . In addition, in one example such as FIG. 4 , the edge surfaces E2 of the plurality of conductive plates 26 are not displaced or hardly displaced with respect to each other in the longitudinal direction of the stacked plate body 23 . For this reason, in one example such as FIG. 4 , the end S2 of the stacked plate body 23 is formed by the edge surfaces E2 of all the conductive plates 26 .
 なお、ある一例では、1つ以上の導電板26の縁面E1が、重ね板体23の長さ方向について、他の導電板26の縁面E1からずれて位置し、全ての導電板26の中の一部の導電板26の縁面E1のみによって、重ね板体23の端S1を形成される。この場合、残りの導電板26の縁面E1は、重ね板体23の端S1に対して端S2へ向かう側へずれて位置する。同様に、1つ以上の導電板26の縁面E2が、重ね板体23の長さ方向について、他の導電板26の縁面E2からずれて位置し、全ての導電板26の中の一部の導電板26の縁面E2のみによって、重ね板体23の端S2を形成される。この場合、残りの導電板26の縁面E2は、重ね板体23の端S2に対して端S1へ向かう側へずれて位置する。 In one example, the edge surfaces E1 of one or more of the conductive plates 26 are offset from the edge surfaces E1 of the other conductive plates 26 in the longitudinal direction of the stacked plate body 23, and all of the conductive plates 26 The end S1 of the stacked plate body 23 is formed only by the edge face E1 of a part of the conductive plate 26 inside. In this case, the edge surface E1 of the remaining conductive plate 26 is shifted toward the end S2 with respect to the end S1 of the plate stack 23. As shown in FIG. Similarly, the edge surface E2 of one or more of the conductive plates 26 is offset from the edge surface E2 of the other conductive plate 26 in the longitudinal direction of the stack 23, and one of all the conductive plates 26 The end S2 of the laminated plate body 23 is formed only by the edge surface E2 of the conductive plate 26 of the part. In this case, the edge surface E2 of the remaining conductive plate 26 is shifted from the end S2 of the plate stack 23 toward the end S1.
 また、重ね板体23には、長さ方向について端S1,S2の間に屈曲位置B1,B2が形成される。屈曲位置B1では、屈曲位置B1に対して端S1とは反対側に隣接する部分が、端S1と屈曲位置B1との間の部分に対して屈曲する。そして、屈曲位置B1では、複数の導電板26のそれぞれにおいて屈曲位置B1に対して端S1とは反対側に隣接する部分が、バスバー21の第1の方向について、電極端子11A,11Bから離れる側(電極端子11A,11Bに対して遠位側)に屈曲する。屈曲位置B2では、屈曲位置B2に対して端S2とは反対側に隣接する部分が、端S2と屈曲位置B2との間の部分に対して屈曲する。そして、屈曲位置B2では、複数の導電板26のそれぞれにおいて屈曲位置B2に対して端S2とは反対側に隣接する部分が、バスバー21の第1の方向について、電極端子11A,11Bから離れる側(電極端子11A,11Bに対して遠位側)に屈曲する。 In addition, bending positions B1 and B2 are formed between ends S1 and S2 in the length direction of the stacked plate body 23 . At the bending position B1, the portion adjacent to the bending position B1 on the side opposite to the end S1 bends with respect to the portion between the end S1 and the bending position B1. At the bent position B1, the portion of each of the plurality of conductive plates 26 adjacent to the bent position B1 on the side opposite to the end S1 is the side away from the electrode terminals 11A and 11B in the first direction of the bus bar 21. It bends (to the distal side with respect to the electrode terminals 11A and 11B). At the bending position B2, the portion adjacent to the bending position B2 on the side opposite to the end S2 bends with respect to the portion between the end S2 and the bending position B2. At the bent position B2, the portion of each of the plurality of conductive plates 26 adjacent to the bent position B2 on the side opposite to the end S2 is the side away from the electrode terminals 11A and 11B in the first direction of the bus bar 21. It bends (to the distal side with respect to the electrode terminals 11A and 11B).
 重ね板体23では、長さ方向について屈曲位置B1,B2の間の部分は、バスバー21の第1の方向について電極端子11A,11Bから突出する凸形状に形成される。このため、重ね板体23の導電板26のそれぞれでは、長さ方向について屈曲位置B1,B2の間の部分は、端S1と屈曲位置B1との間の部分、及び、端S2と屈曲位置B2との間の部分のそれぞれに対して、電極端子11A,11Bから離れる側に突出する。このため、重ね板体23では、長さ方向について屈曲位置B1,B2の間に、凸形状の頂部28が形成され、頂部28が、屈曲位置B1,B2の間の凸形状の突出端を形成する。 In the overlapping plate body 23, the portion between the bending positions B1 and B2 in the length direction is formed in a convex shape protruding from the electrode terminals 11A and 11B in the first direction of the busbar 21. As shown in FIG. Therefore, in each of the conductive plates 26 of the laminated plate body 23, the portion between the bending positions B1 and B2 in the length direction is the portion between the end S1 and the bending position B1, and the portion between the end S2 and the bending position B2. and protrudes away from the electrode terminals 11A and 11B. Therefore, in the laminated plate body 23, a convex apex 28 is formed between the bending positions B1 and B2 in the length direction, and the apex 28 forms a convex protruding end between the bending positions B1 and B2. do.
 図4等の一例では、重ね板体23の長さ方向について屈曲位置B1,B2の間の凸形状部分において、複数の導電板26のそれぞれは、湾曲形状に形成される。そして、屈曲位置B1,B2の間に形成される導電板26のそれぞれの湾曲形状では、第1の方向について電極端子11A,11Bが位置する側が、湾曲の内側となり、第1の方向について電極端子11A,11Bから離れる側が、湾曲の外側となる。また、重ね板体23の長さ方向について屈曲位置B1,B2の間の凸形状部分では、複数の導電板26のそれぞれの積重ね方向を向く表面は、曲面状に形成される。 In one example such as FIG. 4 , each of the plurality of conductive plates 26 is formed in a curved shape in a convex portion between bending positions B1 and B2 in the longitudinal direction of the stacked plate body 23 . In each curved shape of the conductive plate 26 formed between the bending positions B1 and B2, the sides on which the electrode terminals 11A and 11B are located are inside the curve in the first direction. The side away from 11A and 11B is the outside of the curve. In addition, in the convex portion between bending positions B1 and B2 in the longitudinal direction of the stacking plate body 23, the surfaces of the plurality of conductive plates 26 facing the stacking direction are curved.
 図4等の一例では、第3の方向(重ね板体23の幅方向)に直交又は略直交する断面において、屈曲位置B1,B2の間の凸形状部分での導電板26のそれぞれの断面形状は、円弧状又は略円弧状になる。凸形状部分において導電板26のそれぞれが形成する円弧状又は略円弧状の断面形状の中心は、第1の方向について、重ね板体23に対して電極端子11A,11Bが位置する側に位置する。なお、ある一例では、第3の方向(重ね板体23の幅方向)に直交又は略直交する断面において、前述の凸形状部分での複数の導電板26のそれぞれの断面形状が、U字状又は略U字状等になってもよい。また、図4等の一例では、導電板26のそれぞれは、縁面E1から縁面E2までの板長方向に沿った全寸法又はほぼ全寸法に渡って、積重ね方向について隣り合う導電板26と当接する。 4 and other examples, the cross-sectional shape of each of the conductive plates 26 at the convex portion between the bending positions B1 and B2 in the cross section orthogonal or substantially orthogonal to the third direction (the width direction of the stacked plate body 23) is arcuate or substantially arcuate. The center of the arcuate or substantially arcuate cross-sectional shape formed by each of the conductive plates 26 in the convex portion is positioned on the side of the plate stack 23 on which the electrode terminals 11A and 11B are positioned in the first direction. . In one example, in a cross section orthogonal or substantially orthogonal to the third direction (the width direction of the stacked plate body 23), the cross-sectional shape of each of the plurality of conductive plates 26 at the convex portion is U-shaped. Alternatively, it may be substantially U-shaped or the like. 4 and other examples, each of the conductive plates 26 is separated from the adjacent conductive plate 26 in the stacking direction over the entire dimension or substantially the entire dimension along the plate length direction from the edge surface E1 to the edge surface E2. abut.
 重ね板体23では、長さ方向について一方側の端部、すなわち、長さ方向について端S1の近傍部分に、導電部材(第1の導電部材)であるコネクタ板22Aに接合される接合部(第1の接合部)27Aが形成される。重ね板体23の接合部27Aは、超音波溶接等によって、コネクタ板22Aに接合される。重ね板体23では、接合部27Aは、端S1と屈曲位置B1との間の部位に形成される。また、図4等の一例では、複数の導電板26の中で電極端子11A,11Bに対して最も近位側に位置する導電板26Aに、接合部27Aが形成される。そして、導電板26Aでは、第1の方向について電極端子11A,11Bが位置する側を向く表面に、接合部27Aが形成される。このため、図4の一例等では、第1の方向について電極端子11A,11Bが位置する側とは反対側からコネクタ板22Aに重ね板体23(導電板26A)が当接する状態で、重ね板体23の接合部27Aがコネクタ板22Aに接合される。 In the stacked plate body 23, a joint portion ( A first junction) 27A is formed. A joint portion 27A of the stacked plate body 23 is joined to the connector plate 22A by ultrasonic welding or the like. In the laminated plate body 23, the joint portion 27A is formed at a portion between the end S1 and the bending position B1. In addition, in one example such as FIG. 4, the joint portion 27A is formed on the conductive plate 26A that is positioned closest to the electrode terminals 11A and 11B among the plurality of conductive plates 26 . In the conductive plate 26A, a joint portion 27A is formed on the surface facing the electrode terminals 11A and 11B in the first direction. For this reason, in the example of FIG. 4 and the like, the stacked plate body 23 (conductive plate 26A) is in contact with the connector plate 22A from the side opposite to the side where the electrode terminals 11A and 11B are located in the first direction. Joint portion 27A of body 23 is joined to connector plate 22A.
 重ね板体23では、長さ方向について接合部27Aとは反対側の端部、すなわち、長さ方向について端S2の近傍部分に、導電部材(第2の導電部材)であるコネクタ板22Bに接合される接合部(第2の接合部)27Bが形成される。重ね板体23の接合部27Bは、超音波溶接等によって、コネクタ板22Bに接合される。重ね板体23では、接合部27Bは、端S2と屈曲位置B2との間の部位に形成される。また、図4等の一例では、複数の導電板26の中で電極端子11A,11Bに対して最も近位側に位置する導電板26Aに、接合部27Bが形成される。そして、導電板26Aでは、第1の方向について電極端子11A,11Bが位置する側を向く表面に、接合部27Bが形成される。このため、図4の一例等では、第1の方向について電極端子11A,11Bが位置する側とは反対側からコネクタ板22Bに重ね板体23(導電板26A)が当接する状態で、重ね板体23の接合部27Bがコネクタ板22Bに接合される。 In the stacked plate body 23, the end portion on the side opposite to the joint portion 27A in the length direction, that is, the portion near the end S2 in the length direction is joined to the connector plate 22B, which is a conductive member (second conductive member). A joint portion (second joint portion) 27B is formed. The joint portion 27B of the stacked plate body 23 is joined to the connector plate 22B by ultrasonic welding or the like. In the laminated plate body 23, the joint portion 27B is formed at a portion between the end S2 and the bending position B2. In addition, in one example such as FIG. 4, the joint portion 27B is formed on the conductive plate 26A that is positioned closest to the electrode terminals 11A and 11B among the plurality of conductive plates 26 . A joint portion 27B is formed on the surface of the conductive plate 26A that faces the side where the electrode terminals 11A and 11B are located in the first direction. For this reason, in the example of FIG. 4 and the like, the stacked plate body 23 (conductive plate 26A) is in contact with the connector plate 22B from the side opposite to the electrode terminals 11A and 11B in the first direction. Joint portion 27B of body 23 is joined to connector plate 22B.
 重ね板体23では、例えば端S1と屈曲位置B1との間の部位等の、長さ方向について接合部27A及びその近傍の部位において、複数の導電板26が、互いに対して接合される。また、重ね板体23では、例えば端S2と屈曲位置B2との間の部位等の、長さ方向について接合部27B及びその近傍の部位において、複数の導電板26が、互いに対して接合される。ただし、重ね板体23では、接合部27A,27B及びそれらの近傍の部位を除いて、導電板26のそれぞれは、他の導電板26と接合されていない。例えば、重ね板体23の長さ方向について屈曲位置B1,B2の間の部位では、導電板26のそれぞれは、他の導電板26と接合されていない。したがって、重ね板体23では、長さ方向について大部分に渡って、導電板26のそれぞれが他の導電板26に接合されていない非接合部分が、形成される。 In the stacked plate body 23, the plurality of conductive plates 26 are joined together at the joining portion 27A and its vicinity in the longitudinal direction, such as the portion between the end S1 and the bending position B1. Further, in the laminated plate body 23, the plurality of conductive plates 26 are joined to each other at the joining portion 27B and its vicinity in the longitudinal direction, such as the portion between the end S2 and the bending position B2. . However, in the stacked plate body 23, each of the conductive plates 26 is not joined to the other conductive plates 26 except for the joints 27A and 27B and their vicinities. For example, each of the conductive plates 26 is not joined to the other conductive plate 26 at the portion between the bent positions B1 and B2 in the longitudinal direction of the stacked plate body 23 . Therefore, in the stacked plate body 23, a non-joint portion is formed in which each of the conductive plates 26 is not joined to the other conductive plate 26 over most of the length direction.
 なお、ある一例では、複数の導電板26の中で電極端子11A,11Bに対して最も遠位側に位置する導電板26Bに、接合部(第1の接合部)27Aが形成されてもよい。この場合、第1の方向について電極端子11A,11Bが位置する側からコネクタ板22Aに重ね板体23(導電板26B)が当接する状態で、重ね板体23の接合部27Aがコネクタ板(第1のコネクタ板)22Aに接合される。同様に、複数の導電板26の中で電極端子11A,11Bに対して最も遠位側に位置する導電板26Bに、接合部(第2の接合部)27Bが形成されてもよい。この場合、第1の方向について電極端子11A,11Bが位置する側からコネクタ板22Bに重ね板体23(導電板26B)が当接する状態で、重ね板体23の接合部27Bがコネクタ板(第2のコネクタ板)22Bに接合される。 In one example, a joint portion (first joint portion) 27A may be formed on the conductive plate 26B positioned farthest to the electrode terminals 11A and 11B among the plurality of conductive plates 26. . In this case, in a state in which the stacked plate body 23 (conductive plate 26B) is in contact with the connector plate 22A from the side where the electrode terminals 11A and 11B are located in the first direction, the joint portion 27A of the stacked plate body 23 is connected to the connector plate (the second direction). 1 connector plate) 22A. Similarly, a joint portion (second joint portion) 27B may be formed on the conductive plate 26B positioned most distally with respect to the electrode terminals 11A and 11B among the plurality of conductive plates 26 . In this case, in a state in which the stacked plate body 23 (conductive plate 26B) is in contact with the connector plate 22B from the side where the electrode terminals 11A and 11B are positioned in the first direction, the joint portion 27B of the stacked plate body 23 is connected to the connector plate (second 2 connector plate) 22B.
 重ね板体23を形成する複数の導電板26のそれぞれは、板厚T0を有する。複数の導電板26では、板厚T0は、互いに対して同一又は略同一の厚さとなる。また、コネクタ板22A,22Bのそれぞれは、板厚T1を有する。コネクタ板22A,22Bでは、板厚T1は、互いに対して同一又は略同一の厚さとなる。複数の導電板26のそれぞれの板厚T0は、コネクタ板22A,22Bの板厚T1に比べて薄い。また、ある一例では、複数(全て)の導電板26の板厚T0の合計値は、コネクタ板22A,22Bのそれぞれの板厚T1と同一又は略同一の厚さとなる。ここで、重ね板体23を形成する導電板26の数をn(nは2以上の整数)とすると、全ての導電板26の板厚T0の合計値は、値(n×T0)で示される。また、ある一例では、複数の導電板26のそれぞれの板幅Wは、コネクタ板22A,22Bのそれぞれの板幅と同一又は略同一の大きさ(幅)となる。 Each of the plurality of conductive plates 26 forming the stacked plate body 23 has a plate thickness T0. The plate thicknesses T0 of the plurality of conductive plates 26 are the same or substantially the same as each other. Also, each of the connector plates 22A and 22B has a plate thickness T1. The thickness T1 of the connector plates 22A and 22B is the same or substantially the same as each other. The plate thickness T0 of each of the plurality of conductive plates 26 is thinner than the plate thickness T1 of the connector plates 22A and 22B. In one example, the total thickness T0 of the plurality (all) of the conductive plates 26 is the same or substantially the same as the thickness T1 of each of the connector plates 22A and 22B. Here, if the number of conductive plates 26 forming the stacked plate body 23 is n (n is an integer of 2 or more), the total thickness T0 of all the conductive plates 26 is represented by the value (n×T0). be In one example, the plate width W of each of the plurality of conductive plates 26 is the same or substantially the same size (width) as the plate width of each of the connector plates 22A and 22B.
 また、コネクタ板(第1のコネクタ板)22Aは、電極端子(第1の電極端子)11Aと同一の材料から形成されることが好ましく、コネクタ板(第2のコネクタ板)22Bは、電極端子(第2の電極端子)11Bと同一の材料から形成されることが好ましい。そして、複数の導電板26のそれぞれは、コネクタ板22A,22Bの少なくとも一方に比べて熱伝導性及び導電性が高い材料から形成されることが好ましく、コネクタ板22A,22Bの両方に比べて熱伝導性が高い材料から形成されることがさらに好ましい。ある一例では、電極端子11A,11Bのそれぞれがアルミニウムから形成され、コネクタ板22A,22Bのそれぞれがアルミニウムから形成される。そして、導電板26のそれぞれが、アルミニウムに比べて熱伝導性(熱伝導率)及び導電性(導電率)が高い銅から形成される。別のある一例では、電極端子11A及びコネクタ板22Aのそれぞれがアルミニウムから形成され、電極端子11B及びコネクタ板22Bのそれぞれが銅から形成される。そして、導電板26のそれぞれが、アルミニウム及び銅に比べて熱伝導性及び導電性が高い銀から形成される。 The connector plate (first connector plate) 22A is preferably made of the same material as the electrode terminal (first electrode terminal) 11A, and the connector plate (second connector plate) 22B is preferably made of the same material as the electrode terminal (first electrode terminal). (Second electrode terminal) It is preferably made of the same material as 11B. Each of the plurality of conductive plates 26 is preferably made of a material having higher thermal and electrical conductivity than at least one of the connector plates 22A and 22B, and is more thermally conductive than both the connector plates 22A and 22B. More preferably, it is made of a highly conductive material. In one example, each of the electrode terminals 11A, 11B is made of aluminum and each of the connector plates 22A, 22B is made of aluminum. Each of the conductive plates 26 is made of copper, which has higher thermal conductivity (thermal conductivity) and electrical conductivity (conductivity) than aluminum. In another example, electrode terminals 11A and connector plate 22A are each formed from aluminum, and electrode terminals 11B and connector plate 22B are each formed from copper. Each of the conductive plates 26 is then formed from silver, which has higher thermal and electrical conductivity than aluminum and copper.
 本実施形態では、バスバー21の重ね板体23において、複数の導電板26が積重ねられる。そして、重ね板体23は、長さ方向について一方側の端部に形成される接合部27Aで、重ね板体23とは別の導電部材であるコネクタ板22Aに接合され、長さ方向について接合部27Aとは反対側の端部に形成される接合部27Bで、重ね板体23及びコネクタ板22Aとは別の導電部材であるコネクタ板22Bに接合される。重ね板体23では、複数の導電板26のそれぞれの板厚T0は薄いが、複数の導電板26の板厚T0の合計値(n×T0)はある程度の厚さ(大きさ)となる。このため、重ね板体23では、複数の導電板26のそれぞれの断面積(導電板26単体での断面積)は小さいが、複数の導電板26の断面積の合計値である重ね板体23全体の断面積は、ある程度の大きさに確保される。 In this embodiment, a plurality of conductive plates 26 are stacked on the stacked plate body 23 of the busbar 21 . Then, the stacked plate body 23 is joined to a connector plate 22A, which is a conductive member different from the stacked plate body 23, at a joining portion 27A formed at one end in the longitudinal direction. A connector plate 22B, which is a conductive member different from the overlapping plate body 23 and the connector plate 22A, is joined to a connector plate 22B at a joint portion 27B formed at the end opposite to the portion 27A. In the laminated plate body 23, the plate thickness T0 of each of the plurality of conductive plates 26 is thin, but the total value (n×T0) of the plate thickness T0 of the plurality of conductive plates 26 is a certain thickness (size). Therefore, in the stacked plate body 23, the cross-sectional area of each of the plurality of conductive plates 26 (the cross-sectional area of the single conductive plate 26) is small, but the cross-sectional area of the stacked plate body 23, which is the total value of the cross-sectional areas of the plurality of conductive plates 26, is small. The overall cross-sectional area is secured to a certain size.
 したがって、本実施形態のバスバー21では、複数の導電板26が積重ねられた重ね板体23が設けられても、電気経路の延設方向に直交又は略直交する重ね板体23全体の断面積が、適切な大きさに確保される。このため、電気経路の延設方向に直交又は略直交するバスバー21の断面積が、適切な大きさに確保され、バスバー21における電気抵抗の上昇が適切に抑制される。これにより、電極端子11A,11Bの間を電気的に接続するバスバー21に大電流が流れても、バスバー21での温度上昇が適切に抑制される。バスバー21に大電流を流すことが可能になることにより、電池1A,1Bを備える電池モジュール20の高出力化が実現可能になる。 Therefore, in the busbar 21 of the present embodiment, even if the stacked plate body 23 in which a plurality of conductive plates 26 are stacked is provided, the cross-sectional area of the entire stacked plate body 23 orthogonal or substantially orthogonal to the extending direction of the electric path is , is properly sized. Therefore, the cross-sectional area of the busbar 21 that is orthogonal or substantially orthogonal to the extending direction of the electrical path is ensured to have an appropriate size, and an increase in electrical resistance in the busbar 21 is appropriately suppressed. As a result, even if a large current flows through the busbar 21 that electrically connects the electrode terminals 11A and 11B, the temperature rise in the busbar 21 is appropriately suppressed. By allowing a large current to flow through the busbar 21, it becomes possible to achieve a high output power of the battery module 20 including the batteries 1A and 1B.
 また、バスバー21が接合(接続)される電極端子11A,11Bのそれぞれには、バスバー21から応力が作用する。電極端子11A,11Bでは、バスバー21の第2の方向へ応力が作用する。本実施形態のバスバー21では、前述のように、複数の導電板26が積重ねられた重ね板体23が設けられる。このため、複数の導電板26の断面積の合計値(重ね板体23全体の断面積)と断面積が同一又は略同一になる1枚の板部材が重ね板体23の代わりに設けられる場合等に比べて、電極端子11A,11Bのそれぞれに印加される応力が、緩和される。 Further, stress from the busbar 21 acts on each of the electrode terminals 11A and 11B to which the busbar 21 is joined (connected). A stress acts in the second direction of the bus bar 21 on the electrode terminals 11A and 11B. In the busbar 21 of the present embodiment, as described above, the stacked plate body 23 in which the plurality of conductive plates 26 are stacked is provided. Therefore, when one plate member having the same or substantially the same cross-sectional area as the total value of the cross-sectional areas of the plurality of conductive plates 26 (the cross-sectional area of the entire stacked plate body 23) is provided instead of the stacked plate body 23 The stress applied to each of the electrode terminals 11A and 11B is relaxed as compared with the above.
 ここで、重ね板体23において、n(nは2以上の整数)枚の導電板26が積重ねられ、n枚の導電板26のそれぞれは、板厚T0及び板幅Wを有するとする。本実施形態の重ね板体23では、前述のように、長さ方向について大部分に渡って、導電板26のそれぞれが他の導電板26に接合されていない。このため、重ね板体23は、実質的にいわゆる重ね梁とみなすことが可能である。そして、重ね板体23での断面二次モーメントI0は、重ね梁の断面二次モーメントと同様に算出可能であり、式(1)のようにして算出される。また、比較例として、n枚の導電板26の板厚T0の合計値(n×T0)と板厚が同一になり、かつ、導電板26と同一の板幅Wとなる1枚の板部材が、重ね板体23の代わりに設けられるものとする。比較例では、1枚の板部材での断面二次モーメントI1は、式(2)のようにして算出される。 Here, it is assumed that n (n is an integer equal to or greater than 2) conductive plates 26 are stacked in the stacked plate body 23, and each of the n conductive plates 26 has a plate thickness T0 and a plate width W. In the stacked plate body 23 of this embodiment, as described above, each of the conductive plates 26 is not joined to the other conductive plates 26 over most of the length direction. Therefore, the layered plate 23 can be substantially regarded as a so-called layered beam. The geometrical moment of inertia I0 of the laminated plate body 23 can be calculated in the same manner as the geometrical moment of inertia of the laminated beam, and is calculated according to Equation (1). Further, as a comparative example, one plate member having the same plate thickness as the total value (n×T0) of the plate thickness T0 of the n conductive plates 26 and having the same plate width W as the conductive plate 26 is provided in place of the stacking plate 23 . In the comparative example, the geometrical moment of inertia I1 in one plate member is calculated as shown in Equation (2).
I0=n×((W×T0)/12)    (1)
I1=(W×(n×T0))/12=n×((W×T0)/12)  (2)
I0=n×((W×T0 3 )/12) (1)
I1=(W×(n×T0) 3 )/12=n 3 ×((W×T0 3 )/12) (2)
 式(1)及び式(2)で示すように、重ね板体23の断面二次モーメントI0は、重ね板体23と断面積が同一の1枚の板部材での断面二次モーメントI1に対して、1/nとなる。したがって、重ね板体23がバスバー21に設けられることにより、重ね板体23での断面二次モーメントが低くなるため、電極端子11A,11Bのそれぞれにバスバー21から印加される応力が、適切に緩和される。電極端子11Aへ印加される応力が緩和されることにより、電池1Aでは、電極端子11Aの近傍に配置される絶縁ガスケット等に印加される応力も緩和される。電池1Aでは、絶縁ガスケット等への応力が適切に緩和されることにより、バスバー21から電極端子11Aへの応力に起因する内部空洞10の密閉性の低下等が、有効に防止される。同様に、電池1Bについても、電極端子11Aへ印加される応力が緩和されることにより、バスバー21から電極端子11Bへの応力に起因する内部空洞10の密閉性の低下等が、有効に防止される。 As shown by equations (1) and (2), the geometrical moment of inertia I0 of the laminated plate body 23 is relative to the geometrical moment of inertia I1 of one plate member having the same cross-sectional area as the laminated plate body 23. , 1/ n2 . Therefore, by providing the laminated plate body 23 on the bus bar 21, the geometrical moment of inertia of the laminated plate body 23 is reduced, so that the stress applied from the bus bar 21 to each of the electrode terminals 11A and 11B is appropriately relaxed. be done. By relaxing the stress applied to the electrode terminal 11A, in the battery 1A, the stress applied to an insulating gasket or the like disposed near the electrode terminal 11A is also alleviated. In the battery 1A, the stress on the insulating gasket and the like is appropriately relieved, thereby effectively preventing the deterioration of the hermeticity of the internal cavity 10 due to the stress from the busbar 21 to the electrode terminal 11A. Similarly, in the case of the battery 1B, the relaxation of the stress applied to the electrode terminals 11A effectively prevents deterioration of the hermeticity of the internal cavity 10 due to the stress from the bus bar 21 to the electrode terminals 11B. be.
 前述のように、本実施形態のバスバー21では、電気経路の延設方向に直交又は略直交する断面積が適切な大きさに確保されるとともに、バスバー21から電極端子11A,11Bのそれぞれに印加される応力が、適切に緩和される。また、本実施形態のバスバー21では、重ね板体23に前述した屈曲位置B1,B2が形成され、長さ方向について屈曲位置B1,B2の間の部分が、凸形状に形成される。前述のような凸形状(ベンド構造)が重ね板体23に形成されることにより、バスバー21から電極端子11A,11Bのそれぞれに印加される応力が、さらに緩和される。 As described above, in the busbar 21 of the present embodiment, the cross-sectional area orthogonal or substantially orthogonal to the extending direction of the electrical path is ensured to have an appropriate size, and the voltage is applied from the busbar 21 to the electrode terminals 11A and 11B. applied stresses are appropriately relieved. Further, in the bus bar 21 of the present embodiment, the bent positions B1 and B2 described above are formed in the laminated plate body 23, and the portion between the bent positions B1 and B2 in the length direction is formed in a convex shape. By forming the convex shape (bend structure) on the stacked plate body 23 as described above, the stress applied from the bus bar 21 to the electrode terminals 11A and 11B is further relieved.
 また、本実施形態では、コネクタ板22Aを電極端子11Aと同一の材料から形成することにより、コネクタ板22Aの電極端子11Aへの接合部分に空隙が形成されること等が有効に防止され、コネクタ板22Aと電極端子11Aとの間の接合性能が向上する。同様に、コネクタ板22Bを電極端子11Bと同一の材料から形成することにより、コネクタ板22Bの電極端子11Bへの接合部分に空隙が形成されること等が有効に防止され、コネクタ板22Bと電極端子11Bとの間の接合性能が向上する。 In addition, in the present embodiment, by forming the connector plate 22A from the same material as the electrode terminal 11A, it is possible to effectively prevent the formation of gaps in the joining portion of the connector plate 22A to the electrode terminal 11A. The bonding performance between the plate 22A and the electrode terminal 11A is improved. Similarly, by forming the connector plate 22B from the same material as that of the electrode terminals 11B, it is possible to effectively prevent the formation of gaps in the connecting portions of the connector plate 22B and the electrode terminals 11B, thereby effectively preventing the connector plate 22B from forming the electrode terminals 11B. The bonding performance with the terminal 11B is improved.
 また、本実施形態では、導電板26のそれぞれをコネクタ板22A,22Bの少なくとも一方に比べて熱伝導性及び導電性が高い材料から形成することにより、バスバー21に大電流が流れたことに起因するバスバー21での温度上昇が、さらに適切に抑制される。このため、導電板26のそれぞれをコネクタ板22A,22Bの少なくとも一方に比べて熱伝導性及び導電性が高い材料から形成することにより、導電板26がコネクタ板22A,22Bと同一の材料から形成される場合等に比べて、バスバー21に流す電流をさらに大きくすることが可能になる。これにより、電池1A,1Bを備える電池モジュール20を高出力化することが可能になる。また、導電板26のそれぞれをコネクタ板22A,22Bの少なくとも一方に比べて熱伝導性及び導電性が高い材料から形成することにより、重ね板体23を形成する導電板26の数(枚数)を減少させても、導電板26がコネクタ板22A,22Bと同一の材料から形成される場合等と同一の大きさの電流をバスバー21に流すことが可能になる。 In addition, in the present embodiment, each of the conductive plates 26 is made of a material having higher thermal conductivity and electrical conductivity than at least one of the connector plates 22A and 22B. The temperature rise at the bus bar 21 is further appropriately suppressed. Therefore, by forming each of the conductive plates 26 from a material having higher thermal and electrical conductivity than at least one of the connector plates 22A and 22B, the conductive plates 26 are formed from the same material as the connector plates 22A and 22B. It is possible to further increase the current flowing through the bus bar 21 as compared with the case where the bus bar 21 is connected. This makes it possible to increase the output of the battery module 20 including the batteries 1A and 1B. Moreover, by forming each of the conductive plates 26 from a material having higher thermal conductivity and electrical conductivity than at least one of the connector plates 22A and 22B, the number of conductive plates 26 forming the stacked plate body 23 can be reduced. Even if it is reduced, it is possible to pass the same amount of electric current to the bus bar 21 as when the conductive plate 26 is made of the same material as the connector plates 22A and 22B.
 (第1の実施形態の変形例) 
 以下、前述した第1の実施形態の変形例について説明する。図5に示す第1の変形例では、重ね板体23の屈曲位置B1,B2の間の部分において、導電板26のそれぞれは、積重ね方向について隣り合う導電板26と当接しない。そして、重ね板体23の屈曲位置B1,B2の間の部分では、複数の導電板26のそれぞれと積重ね方向について隣り合う導電板26との間に、空隙31が形成される。本変形例では、重ね板体23は、一対の板当接部32A,32B、及び、板離間部33を備える。
(Modification of the first embodiment)
Modifications of the above-described first embodiment will be described below. In the first modification shown in FIG. 5, the conductive plates 26 do not contact adjacent conductive plates 26 in the stacking direction in the portion between the bending positions B1 and B2 of the stacked plate body 23 . A gap 31 is formed between each of the plurality of conductive plates 26 and adjacent conductive plates 26 in the stacking direction in the portion between the bending positions B1 and B2 of the stacked plate body 23 . In this modified example, the stacked plate body 23 includes a pair of plate contact portions 32A and 32B and a plate spacing portion 33. As shown in FIG.
 板当接部(第1の板当接部)32Aは、重ね板体23の長さ方向について接合部(第1の接合部)27Aが位置する側の端部に形成され、端S1と屈曲位置B1との間の部分に形成される。板当接部32Aでは、複数の導電板26のそれぞれが、積重ね方向について隣り合う導電板26と当接する。また、重ね板体23では、板当接部32Aにおいて、複数の導電板26が、互いに対して接合される。板当接部(第2の板当接部)32Bは、重ね板体23の長さ方向について接合部(第2の接合部)27Bが位置する側の端部に形成され、端S2と屈曲位置B2との間の部分に形成される。このため、板当接部32Bは、重ね板体23の長さ方向について板当接部32Aとは反対側の端部に、形成される。板当接部32Bでは、複数の導電板26のそれぞれが、積重ね方向について隣り合う導電板26と当接する。また、重ね板体23では、板当接部32Bにおいて、複数の導電板26が、互いに対して接合される。 
 本変形例では、複数の導電板26のそれぞれの縁面E1は、重ね板体23の長さ方向について、他の導電板26の縁面E1からずれて位置する。そして、電極端子11A,11Bに対して最も近位側の導電板26Aの縁面E1のみによって、重ね板体23の端S1が形成される。そして、導電板26A以外の導電板26の中では、電極端子11A,11Bに対して遠位側の導電板26ほど、縁面E1が、端S1に対して端S2側へ離れて位置する。また、本変形例では、複数の導電板26のそれぞれの縁面E2は、重ね板体23の長さ方向について、他の導電板26の縁面E2からずれて位置する。そして、電極端子11A,11Bに対して最も近位側の導電板26Aの縁面E2のみによって、重ね板体23の端S2が形成される。そして、導電板26A以外の導電板26の中では、電極端子11A,11Bに対して遠位側の導電板26ほど、縁面E2が、端S2に対して端S1側へ離れて位置する。
The plate contact portion (first plate contact portion) 32A is formed at the end portion of the stack plate body 23 in the longitudinal direction on the side where the joint portion (first joint portion) 27A is located, and is curved with the end S1. It is formed in the portion between position B1. At the plate contact portion 32A, each of the plurality of conductive plates 26 contacts the conductive plate 26 adjacent in the stacking direction. Further, in the stacked plate body 23, the plurality of conductive plates 26 are joined to each other at the plate contact portion 32A. The plate contact portion (second plate contact portion) 32B is formed at the end portion of the stack plate body 23 in the longitudinal direction on the side where the joint portion (second joint portion) 27B is located, and is curved with the end S2. It is formed in the portion between position B2. For this reason, the plate contact portion 32B is formed at the end of the stack plate body 23 on the side opposite to the plate contact portion 32A in the longitudinal direction. At the plate contact portion 32B, each of the plurality of conductive plates 26 contacts the conductive plate 26 adjacent in the stacking direction. Further, in the stacked plate body 23, the plurality of conductive plates 26 are joined to each other at the plate contact portion 32B.
In this modified example, the edge surface E1 of each of the plurality of conductive plates 26 is offset from the edge surface E1 of the other conductive plate 26 in the length direction of the stacked plate body 23 . An end S1 of the stacked plate body 23 is formed only by the edge surface E1 of the conductive plate 26A on the most proximal side with respect to the electrode terminals 11A and 11B. Among the conductive plates 26 other than the conductive plate 26A, the edge surface E1 of the conductive plate 26 on the distal side with respect to the electrode terminals 11A and 11B is located away from the end S1 toward the end S2. In addition, in this modification, the edge surface E2 of each of the plurality of conductive plates 26 is offset from the edge surface E2 of the other conductive plate 26 in the length direction of the stacked plate body 23. As shown in FIG. An end S2 of the plate stack 23 is formed only by the edge surface E2 of the conductive plate 26A that is closest to the electrode terminals 11A and 11B. Among the conductive plates 26 other than the conductive plate 26A, the edge surface E2 of the conductive plate 26 on the distal side with respect to the electrode terminals 11A and 11B is located away from the end S2 toward the end S1.
 板離間部33は、重ね板体23の長さ方向について板当接部32A,32Bの間に形成され、屈曲位置B1,B2の間の凸形状部分に形成される。板離間部33(凸形状部分)では、複数の導電板26のそれぞれは、湾曲形状に形成される。本変形例でも、板離間部33に形成される導電板26のそれぞれの湾曲形状において、第1の方向について電極端子11A,11Bが位置する側が、湾曲の内側となり、第1の方向について電極端子11A,11Bから離れる側が、湾曲の外側となる。 The plate separation portion 33 is formed between the plate contact portions 32A and 32B in the longitudinal direction of the stacked plate body 23, and is formed in a convex portion between the bending positions B1 and B2. In the plate spacing portion 33 (protruding portion), each of the plurality of conductive plates 26 is formed in a curved shape. In this modified example as well, in the curved shape of each of the conductive plates 26 formed in the plate spacing portion 33, the side where the electrode terminals 11A and 11B are positioned in the first direction is the inner side of the curve. The side away from 11A and 11B is the outside of the curve.
 ただし、本変形例の板離間部33では、電極端子11A,11Bに対して近位側に位置する導電板26ほど、湾曲形状の曲率が大きくなる。したがって、複数の導電板26の中では、電極端子11A,11Bに対して最も近位側の導電板26Aで、板離間部33における湾曲形状の曲率が最も大きくなり、電極端子11A,11Bに対して最も遠位側の導電板26Bで、板離間部33における湾曲形状の曲率が最も小さくなる。本変形例では、前述のように板離間部33において導電板26ごとに湾曲形状の曲率を異ならせることにより、板離間部33において、複数の導電板26のそれぞれと積重ね方向について隣り合う導電板26との間に、空隙31が形成される。 However, in the plate spacing portion 33 of this modified example, the curvature of the curved shape increases as the conductive plate 26 is located closer to the electrode terminals 11A and 11B. Therefore, among the plurality of conductive plates 26, the conductive plate 26A closest to the electrode terminals 11A and 11B has the largest curvature of the curved shape at the plate separation portion 33, and the electrode terminals 11A and 11B have the largest curvature. The curvature of the curved shape at the plate separation portion 33 is the smallest at the most distal conductive plate 26B. In this modification, by varying the curvature of the curved shape for each conductive plate 26 in the plate spacing portion 33 as described above, the conductive plates adjacent to each of the plurality of conductive plates 26 in the stacking direction in the plate spacing portion 33 26, a gap 31 is formed.
 本変形例でも、重ね板体23の長さ方向について屈曲位置B1,B2の間の部位では、導電板26のそれぞれは、他の導電板26と接合されていない。すなわち、板離間部33では、導電板26のそれぞれは、他の導電板26と接合されていない。したがって、本変形例の重ね板体23でも、長さ方向について大部分に渡って、導電板26のそれぞれが他の導電板26に接合されていない非接合部分が、形成される。 Also in this modified example, each of the conductive plates 26 is not joined to the other conductive plate 26 in the portion between the bent positions B1 and B2 in the longitudinal direction of the stacked plate body 23 . That is, each of the conductive plates 26 is not joined to the other conductive plates 26 at the plate separation portion 33 . Therefore, even in the stacked plate body 23 of this modified example, a non-joint portion is formed in which each of the conductive plates 26 is not joined to the other conductive plate 26 over most of the length direction.
 本変形例でも、第1の実施形態等と同様の作用及び効果を奏する。したがって、本変形例のバスバー21でも、電気経路の延設方向に直交又は略直交する断面積が適切な大きさに確保されるとともに、バスバー21から電極端子11A,11Bのそれぞれに印加される応力が、適切に緩和される。また、本変形例では、板離間部33において、複数の導電板26のそれぞれと積重ね方向について隣り合う導電板26との間に、空隙31が形成される。このため、バスバー21の重ね板体23の放熱性が向上し、バスバー21での温度上昇がさらに適切に抑制される。 This modified example also has the same actions and effects as those of the first embodiment and the like. Therefore, in the busbar 21 of this modified example as well, the cross-sectional area perpendicular or substantially perpendicular to the extending direction of the electrical path is ensured to have an appropriate size, and the stress applied from the busbar 21 to the electrode terminals 11A and 11B is reduced. is appropriately mitigated. In addition, in this modification, a gap 31 is formed between each of the plurality of conductive plates 26 and the adjacent conductive plate 26 in the stacking direction in the plate separation portion 33 . Therefore, the heat dissipation property of the laminated plate body 23 of the busbar 21 is improved, and the temperature rise in the busbar 21 is further appropriately suppressed.
 また、図6に示す第2の変形例でも、図5の変形例等と同様に、重ね板体23は、一対の板当接部32A,32B、及び、板離間部33を備え、板離間部33において、複数の導電板26のそれぞれと積重ね方向について隣り合う導電板26との間に、空隙31が形成される。ただし、本変形例では、複数の導電板26の縁面E1は、重ね板体23の長さ方向について、互いに対してずれていない又はほとんどずれていない。そして、全ての導電板26の縁面E1によって、重ね板体23の端S1が形成される。また、本変形例では、複数の導電板26の縁面E2は、重ね板体23の長さ方向について、互いに対してずれていない又はほとんどずれていない。そして、全ての導電板26の縁面E2によって、重ね板体23の端S2が形成される。 Also in the second modified example shown in FIG. 6, similarly to the modified example of FIG. In the portion 33, a gap 31 is formed between each of the plurality of conductive plates 26 and adjacent conductive plates 26 in the stacking direction. However, in this modified example, the edge surfaces E1 of the plurality of conductive plates 26 are not displaced or hardly displaced with respect to each other in the longitudinal direction of the stacked plate body 23 . Edge surfaces E1 of all the conductive plates 26 form an end S1 of the stacked plate body 23. As shown in FIG. In addition, in this modification, the edge surfaces E2 of the plurality of conductive plates 26 are not displaced or hardly displaced with respect to each other in the longitudinal direction of the stacked plate body 23 . Edge surfaces E2 of all the conductive plates 26 form an end S2 of the stacked plate body 23. As shown in FIG.
 また、本変形例の重ね板体23では、電極端子11A,11Bに対して近位側に位置する導電板26ほど、縁面E1から縁面E2までの重ね板体23の長さ方向に沿った延設長が短くなる。そして、電極端子11A,11Bに対して近位側に位置する導電板26ほど、重ね板体23の長さ方向に沿った板離間部33(屈曲位置B1,B2の間の凸形状部分)における延設長が短くなる。したがって、複数の導電板26の中では、電極端子11A,11Bに対して最も近位側の導電板26Aで、重ね板体23の長さ方向に沿った延設長が最も短くなり、電極端子11A,11Bに対して最も遠位側の導電板26Bで、重ね板体23の長さ方向に沿った延設長が最も長くなる。本変形例では、前述のように重ね板体23において導電板26ごとに長さ方向に沿った延設長を異ならせることにより、板離間部33において、複数の導電板26のそれぞれと積重ね方向について隣り合う導電板26との間に、空隙31が形成される。 Further, in the stacked plate body 23 of this modified example, the conductive plate 26 positioned closer to the electrode terminals 11A and 11B along the length direction of the stacked plate body 23 from the edge surface E1 to the edge surface E2. The extension length becomes shorter. Then, the closer the conductive plate 26 is positioned to the proximal side with respect to the electrode terminals 11A and 11B, the more the plate separation portion 33 (the convex portion between the bending positions B1 and B2) along the length direction of the laminated plate body 23 becomes. Extension length is shortened. Therefore, among the plurality of conductive plates 26, the conductive plate 26A closest to the electrode terminals 11A and 11B has the shortest extension length along the longitudinal direction of the stacked plate body 23, and the electrode terminal The extension length along the longitudinal direction of the stack 23 is the longest at the conductive plate 26B that is the most distal with respect to 11A and 11B. In this modification, as described above, each of the conductive plates 26 in the stacked plate body 23 has a different extension length along the length direction, so that in the plate separation portion 33, each of the plurality of conductive plates 26 and the stacking direction A gap 31 is formed between the conductive plates 26 adjacent to each other.
 本変形例でも、板離間部33に空隙31が形成されるため、図5等の変形例と同様に、バスバー21の重ね板体23の放熱性が向上し、バスバー21での温度上昇がさらに適切に抑制される。また、本変形例では、複数の導電板26の縁面E1は、重ね板体23の長さ方向について、互いに対してずれていない又はほとんどずれていない。そして、複数の導電板26の縁面E2は、重ね板体23の長さ方向について、互いに対してずれていない又はほとんどずれていない。このため、重ね板体23の組立て(形成)、及び、バスバー21の形成において、作業性が向上する。 Also in this modification, since the gap 31 is formed in the plate separation portion 33, the heat dissipation of the stacked plate body 23 of the busbar 21 is improved, and the temperature rise in the busbar 21 is further reduced, as in the modification of FIG. Properly suppressed. In addition, in this modification, the edge surfaces E1 of the plurality of conductive plates 26 are not displaced or hardly displaced with respect to each other in the longitudinal direction of the stacked plate body 23 . The edge surfaces E2 of the plurality of conductive plates 26 are not displaced or hardly displaced from each other in the longitudinal direction of the stacked plate body 23. As shown in FIG. Therefore, workability is improved in assembling (forming) the plate stack 23 and forming the bus bar 21 .
 また、図7に示す第3の変形例では、バスバー21にコネクタ板22A,22Bが設けられず、バスバー21は、重ね板体23のみから形成される。本変形例では、重ね板体23の接合部(第1の接合部)27Aは、重ね板体23とは別の導電部材である電池1Aの電極端子(第1の導電部材)11Aに接合される。そして、重ね板体23の接合部(第2の接合部)27Bは、重ね板体23及び電極端子11Aとは別の導電部材である電池1Bの電極端子(第2の導電部材)11Bに接合される。なお、ある変形例では、コネクタ板22A,22Bの一方のみがバスバー21に設けられる構成であってもよい。 In addition, in the third modification shown in FIG. 7, the connector plates 22A and 22B are not provided on the busbar 21, and the busbar 21 is formed only from the laminated plate body 23. As shown in FIG. In this modification, the joint portion (first joint portion) 27A of the stacked plate body 23 is joined to the electrode terminal (first conductive member) 11A of the battery 1A, which is a conductive member different from the stacked plate body 23. be. The joint portion (second joint portion) 27B of the stacked plate body 23 is joined to the electrode terminal (second conductive member) 11B of the battery 1B, which is a conductive member different from the stacked plate body 23 and the electrode terminal 11A. be done. Note that, in a modification, only one of the connector plates 22A and 22B may be provided on the bus bar 21 .
 図7等の変形例のようにコネクタ板22A,22Bの少なくとも一方がバスバー21に設けられない構成であっても、バスバー21は、第1の実施形態等と同様に、重ね板体23を備える。このため、図7等の変形例でも、第1の実施形態等と同様の作用及び効果を奏する。すなわち、図7等の変形例のバスバー21でも、電気経路の延設方向に直交又は略直交する断面積が適切な大きさに確保されるとともに、バスバー21から電極端子11A,11Bのそれぞれに印加される応力が、適切に緩和される。また、第1の実施形態等のように重ね板体23が設けられるバスバー21では、重ね板体23を形成する導電板26の数は、2枚以上であれば、特に限定されるものではない。 Even if at least one of the connector plates 22A and 22B is not provided on the bus bar 21 as in the modified example of FIG. . Therefore, even in the modified example shown in FIG. 7, etc., the same functions and effects as those of the first embodiment and the like can be obtained. That is, even in the busbar 21 of the modified example of FIG. applied stresses are appropriately relieved. In addition, in the bus bar 21 provided with the stacked plate body 23 as in the first embodiment, the number of the conductive plates 26 forming the stacked plate body 23 is not particularly limited as long as it is two or more. .
 (第2の実施形態) 
 次に、第2の実施形態に係るバスバー21について説明する。本実施形態のバスバー21は、第1の実施形態等のバスバー21を以下のように変形したものである。このため、本実施形態のバスバー21において第1の実施形態等と同様の構成等については、説明を省略する。
(Second embodiment)
Next, a busbar 21 according to a second embodiment will be described. The busbar 21 of this embodiment is obtained by modifying the busbar 21 of the first embodiment and the like as follows. Therefore, in the bus bar 21 of the present embodiment, description of the same configuration as that of the first embodiment and the like will be omitted.
 図8は、本実施形態のバスバー21を示し、図9は、本実施形態のバスバー21、バスバー21が接続(接合)される2つの電極端子11A,11B、及び、これらの近傍の構成を示す。本実施形態のバスバー21でも、前述の実施形態等と同様に、第1の方向(矢印Z3及び矢印Z4で示す方向)、第2の方向(矢印Y3及び矢印Y4で示す方向)及び第3の方向(矢印X3及び矢印X4で示す方向)が規定される。図8では、第1の方向の一方側から視た状態でバスバー21が示され、図10では、第3の方向の一方側から視た状態でバスバー21が示される。 FIG. 8 shows the busbar 21 of this embodiment, and FIG. 9 shows the configuration of the busbar 21 of this embodiment, two electrode terminals 11A and 11B to which the busbar 21 is connected (joined), and their vicinity. . Also in the bus bar 21 of this embodiment, as in the above-described embodiments, the first direction (the direction indicated by arrows Z3 and Z4), the second direction (the direction indicated by arrows Y3 and Y4), and the third direction Directions (directions indicated by arrows X3 and X4) are defined. 8 shows the busbar 21 as viewed from one side in the first direction, and FIG. 10 shows the busbar 21 as viewed from one side in the third direction.
 本実施形態でも、バスバー21は、コネクタ板22A,22Bを備え、コネクタ板22A,22Bのそれぞれでは、板長方向、板幅方向及び板厚方向が、第1の実施形態等と同様にして規定される。ただし、本実施形態では、バスバー21は、重ね板体23の代わりに複数の導電ワイヤ41を備え、図8及び図9等の一例では、10本の導電ワイヤ41を備える。複数の導電ワイヤ41のそれぞれは、導電材料から形成され、導電性を有する。導電ワイヤ41を形成する材料としては、例えば、銅が挙げられる。導電ワイヤ41のそれぞれは、中心軸を有し、導電ワイヤ41のそれぞれでは、中心軸に沿う軸方向が規定される。 In this embodiment, the bus bar 21 also includes connector plates 22A and 22B, and the length direction, width direction, and thickness direction of each of the connector plates 22A and 22B are defined in the same manner as in the first embodiment. be done. However, in this embodiment, the bus bar 21 includes a plurality of conductive wires 41 instead of the layered plates 23, and ten conductive wires 41 are provided in an example such as FIGS. Each of the plurality of conductive wires 41 is made of a conductive material and has electrical conductivity. Examples of the material forming the conductive wire 41 include copper. Each of the conductive wires 41 has a central axis, and each of the conductive wires 41 defines an axial direction along the central axis.
 複数の導電ワイヤ41のそれぞれでは、軸方向について一方側の端部に、導電部材(第1の導電部材)であるコネクタ板(第1のコネクタ板)22Aにボンディングされるボンディング部(第1のボンディング部)42Aが形成される。また、複数の導電ワイヤ41のそれぞれでは、軸方向についてボンディング部42Aとは反対側の端部に、導電部材(第2の導電部材)であるコネクタ板(第2のコネクタ板)22Bにボンディングされるボンディング部(第2のボンディング部)42Bが形成される。ボンディング部42Aのそれぞれでは、超音波溶接等によって、導電ワイヤ41の対応する1つがコネクタ板22Aにボンディングされる。同様に、ボンディング部42Bのそれぞれでは、超音波溶接等によって、導電ワイヤ41の対応する1つがコネクタ板22Bにボンディングされる。 Each of the plurality of conductive wires 41 has a bonding portion (first bonding portion) bonded to a connector plate (first connector plate) 22A, which is a conductive member (first conductive member), at one end in the axial direction. bonding portion) 42A is formed. Each of the plurality of conductive wires 41 is bonded to a connector plate (second connector plate) 22B, which is a conductive member (second conductive member), at an end portion opposite to the bonding portion 42A in the axial direction. A bonding portion (second bonding portion) 42B is formed. At each bonding portion 42A, a corresponding one of the conductive wires 41 is bonded to the connector plate 22A, such as by ultrasonic welding. Similarly, at each bonding portion 42B, a corresponding one of the conductive wires 41 is bonded to the connector plate 22B, such as by ultrasonic welding.
 複数の導電ワイヤ41のそれぞれは、バスバー21の第1の方向(コネクタ板22A,22Bの板厚方向)及びバスバー21の第3の方向(コネクタ板22A,22Bの板幅方向)の少なくとも一方向に、他の導電ワイヤ41から離れて位置する。このため、バスバー21では、複数の導電ワイヤ41は、互いに対して接触しない。図8及び図9等の一例では、複数の導電ワイヤ41は、5本の導電ワイヤ41A及び5本の導電ワイヤ41Bから構成される。5本の導電ワイヤ41Aは、第3の方向(コネクタ板22A,22Bの板幅方向)に互いに対して離れて配置され、5本の導電ワイヤ41Bは、第3の方向に互いに対して離れて配置される。また、導電ワイヤ41Aは、導電ワイヤ41Bに対して、第1の方向(コネクタ板22A,22Bの板厚方向)に離れて配置される。そして、導電ワイヤ41Aは、導電ワイヤ41Bに比べて、第1の方向について電極端子11A,11Bから離れた領域を通って、延設される。 Each of the plurality of conductive wires 41 extends in at least one direction of the first direction of the bus bar 21 (thickness direction of the connector plates 22A and 22B) and the third direction of the bus bar 21 (the plate width direction of the connector plates 22A and 22B). at a distance from the other conductive wires 41 . Therefore, in the busbar 21, the plurality of conductive wires 41 do not contact each other. 8 and 9, the plurality of conductive wires 41 are composed of five conductive wires 41A and five conductive wires 41B. The five conductive wires 41A are arranged apart from each other in the third direction (the width direction of the connector plates 22A and 22B), and the five conductive wires 41B are arranged apart from each other in the third direction. placed. Also, the conductive wire 41A is arranged apart from the conductive wire 41B in the first direction (thickness direction of the connector plates 22A and 22B). The conductive wire 41A extends through a region farther from the electrode terminals 11A and 11B in the first direction than the conductive wire 41B.
 本実施形態では、前述のように、バスバー21に複数の導電ワイヤ41が設けられる。ここで、複数の導電ワイヤ41のそれぞれの径は小さく、導電ワイヤ41のそれぞれの断面積は小さい。ただし、導電ワイヤ41を複数設けることにより、特に、導電ワイヤ41の数を増加させることにより、複数の導電ワイヤ41の断面積の合計値は、ある程度の大きさに確保される。本実施形態のバスバー21では、複数の導電ワイヤ41の断面積の合計値が、電気経路の延設方向に直交又は略直交する断面積となる。このため、複数の導電ワイヤ41によってバスバー21における電気経路が形成されても、電気経路の延設方向に直交又は略直交するバスバー21の断面積は、適切な大きさに確保される。 In this embodiment, as described above, the busbar 21 is provided with a plurality of conductive wires 41 . Here, the diameter of each of the plurality of conductive wires 41 is small, and the cross-sectional area of each of the conductive wires 41 is small. However, by providing a plurality of conductive wires 41 , particularly by increasing the number of conductive wires 41 , the total cross-sectional area of the plurality of conductive wires 41 can be secured to some extent. In the busbar 21 of the present embodiment, the total value of the cross-sectional areas of the plurality of conductive wires 41 is the cross-sectional area orthogonal or substantially orthogonal to the extending direction of the electrical path. Therefore, even if an electrical path is formed in the busbar 21 by a plurality of conductive wires 41, the cross-sectional area of the busbar 21 orthogonal or substantially orthogonal to the extending direction of the electrical path is ensured to have an appropriate size.
 また、本実施形態では、前述のようにバスバー21に複数の導電ワイヤ41が設けられる。このため、コネクタ板22A,22Bと一体の板状部が複数の導電ワイヤ41の代わりに設けられる場合等に比べて、電極端子11A,11Bのそれぞれにバスバー21から印加される応力が、緩和される。 Also, in the present embodiment, a plurality of conductive wires 41 are provided on the bus bar 21 as described above. Therefore, the stress applied from the bus bar 21 to each of the electrode terminals 11A and 11B is reduced compared to the case where the plate-like portions integrated with the connector plates 22A and 22B are provided instead of the plurality of conductive wires 41. be.
 以上のように、本実施形態のバスバー21でも、電気経路の延設方向に直交又は略直交する断面積が適切な大きさに確保されるとともに、バスバー21から電極端子11A,11Bのそれぞれに印加される応力が、適切に緩和される。したがって、本実施形態でも、前述の実施形態等と同様の作用及び効果を奏する。 As described above, in the busbar 21 of the present embodiment as well, the cross-sectional area orthogonal or substantially orthogonal to the extending direction of the electric path is ensured to have an appropriate size, and voltage is applied from the busbar 21 to the electrode terminals 11A and 11B. applied stresses are appropriately relieved. Therefore, this embodiment also has the same functions and effects as those of the above-described embodiments.
 (第2の実施形態の変形例) 
 図10に示す第2の実施形態のある変形例では、バスバー21にコネクタ板22A,22Bが設けられず、バスバー21は、複数の導電ワイヤ41のみから形成される。本変形例では、導電ワイヤ41のそれぞれのボンディング部(第1のボンディング部)42Aは、導電ワイヤ41とは別の導電部材である電池1Aの電極端子(第1の導電部材)11Aにボンディングされる。そして、導電ワイヤ41のそれぞれのボンディング部(第2のボンディング部)42Bは、導電ワイヤ41及び電極端子11Aとは別の導電部材である電池1Bの電極端子(第2の導電部材)11Bにボンディングされる。なお、ある変形例では、コネクタ板22A,22Bの一方のみがバスバー21に設けられる構成であってもよい。
(Modification of Second Embodiment)
In a variant of the second embodiment shown in FIG. 10, the busbar 21 is not provided with connector plates 22A, 22B, and the busbar 21 is formed only from a plurality of conductive wires 41. As shown in FIG. In this modification, each bonding portion (first bonding portion) 42A of the conductive wire 41 is bonded to the electrode terminal (first conductive member) 11A of the battery 1A, which is a conductive member different from the conductive wire 41. be. Each bonding portion (second bonding portion) 42B of the conductive wire 41 is bonded to the electrode terminal (second conductive member) 11B of the battery 1B, which is a conductive member different from the conductive wire 41 and the electrode terminal 11A. be done. Note that, in a modification, only one of the connector plates 22A and 22B may be provided on the bus bar 21 .
 図10等の変形例のようにコネクタ板22A,22Bの少なくとも一方がバスバー21に設けられない構成であっても、バスバー21は、第2の実施形態等と同様に、複数の導電ワイヤ41を備える。このため、図10等の変形例でも、第2の実施形態等と同様の作用及び効果を奏する。すなわち、図10等の変形例のバスバー21でも、電気経路の延設方向に直交又は略直交する断面積が適切な大きさに確保されるとともに、バスバー21から電極端子11A,11Bのそれぞれに印加される応力が、適切に緩和される。また、第2の実施形態等のように複数の導電ワイヤ41が設けられるバスバー21では、バスバー21に設けられる導電ワイヤ41の数は、2本以上であれば、特に限定されるものではない。 Even if at least one of the connector plates 22A and 22B is not provided on the bus bar 21 as in the modification of FIG. Prepare. Therefore, even in the modified example shown in FIG. 10, etc., the same functions and effects as those of the second embodiment and the like can be obtained. That is, even in the busbar 21 of the modified example shown in FIG. applied stresses are appropriately relieved. In the busbar 21 provided with a plurality of conductive wires 41 as in the second embodiment, the number of conductive wires 41 provided on the busbar 21 is not particularly limited as long as it is two or more.
 これらの少なくとも一つの実施形態又は実施例によれば、バスバーは、重ね板体を備え、重ね板体では、複数の導電板が積重ねられる。重ね板体は、重ね板体の長さ方向について重ね板体の一方側の端部に形成される第1の接合部において、重ね板体とは別の導電部材である第1の導電部材に接合される。また、重ね板体は、重ね板体の長さ方向について第1の接合部とは反対側の端部に形成される第2の接合部において、重ね板体及び第1の導電部材とは別の導電部材である第2の導電部材に接合される。これにより、電気経路の延設方向に直交又は略直交する断面積が適切な大きさに確保され、電極端子に印加される応力が適切に緩和されるバスバーを提供することができる。 According to at least one of these embodiments or examples, the busbar comprises a stacking plate, in which a plurality of conductive plates are stacked. The stacked plate body is connected to a first conductive member, which is a conductive member different from the stacked plate body, at a first joint portion formed at one end of the stacked plate body in the longitudinal direction of the stacked plate body. spliced. In addition, the laminated plate body is separated from the laminated plate body and the first conductive member at the second joint portion formed at the end opposite to the first joint portion in the longitudinal direction of the laminated plate body. is joined to a second conductive member, which is the conductive member of the As a result, a cross-sectional area perpendicular or substantially perpendicular to the direction in which the electrical path extends can be ensured to have an appropriate size, and a bus bar can be provided in which the stress applied to the electrode terminals is appropriately relaxed.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and equivalents thereof.

Claims (12)

  1.  互いに対して離れて配置される2つの電極端子の間を電気的に接続するバスバーであって、
     導電性をそれぞれが有する複数の導電板を備え、複数の前記導電板が積重ねられる重ね板体と、
     複数の前記導電板の積重ね方向に対して交差する前記重ね板体の長さ方向について前記重ね板体の一方側の端部に形成され、前記重ね板体とは別の導電部材である第1の導電部材に接合される第1の接合部と、
     前記重ね板体の前記長さ方向について前記第1の接合部とは反対側の端部に形成され、前記重ね板体及び前記第1の導電部材とは別の導電部材である第2の導電部材に接合される第2の接合部と
     を具備する、バスバー。
    A bus bar electrically connecting between two electrode terminals spaced apart from each other,
    a stacked plate body comprising a plurality of conductive plates each having conductivity, wherein the plurality of conductive plates are stacked;
    A first conductive member, which is formed at one end of the stacked plate body in the length direction of the stacked plate body that intersects the stacking direction of the plurality of conductive plates and is separate from the stacked plate body. a first joint joined to the conductive member of
    A second conductive member which is formed at an end opposite to the first joint portion in the longitudinal direction of the stacked plate body and which is a conductive member different from the stacked plate body and the first conductive member. a second joint joined to the member; and a busbar.
  2.  前記重ね板体の前記第1の接合部が接合される前記第1の導電部材となり、2つの前記電極端子の一方である第1の電極端子に接合される第1のコネクタ板と、
     前記重ね板体の前記第2の接合部が接合される前記第2の導電部材となり、2つの前記電極端子の前記第1の電極端子とは別の一方である第2の電極端子に接合される第2のコネクタ板と、
     をさらに具備する、請求項1のバスバー。
    a first connector plate that serves as the first conductive member to which the first joint portion of the stacked plate is joined and that is joined to a first electrode terminal that is one of the two electrode terminals;
    The second joint portion of the stacked plate body serves as the second conductive member to be joined, and is joined to the second electrode terminal which is one of the two electrode terminals and is different from the first electrode terminal. a second connector plate that
    2. The busbar of claim 1, further comprising:
  3.  複数の前記導電板のそれぞれの板厚は、前記第1のコネクタ板及び前記第2のコネクタ板のそれぞれの板厚に比べて薄い、請求項2のバスバー。 The busbar according to claim 2, wherein the plate thickness of each of the plurality of conductive plates is thinner than the plate thickness of each of the first connector plate and the second connector plate.
  4.  複数の前記導電板の前記板厚の合計値は、前記第1のコネクタ板及び前記第2のコネクタ板のそれぞれの板厚と同一の厚さになる、請求項3のバスバー。 The bus bar according to claim 3, wherein the total thickness of the plurality of conductive plates is the same as the thickness of each of the first connector plate and the second connector plate.
  5.  前記第1のコネクタ板は、前記第1の電極端子と同一の材料から形成され、
     前記第2のコネクタ板は、前記第2の電極端子と同一の材料から形成され、
     複数の前記導電板のそれぞれは、前記第1のコネクタ板及び前記第2のコネクタ板の少なくとも一方に比べて熱伝導性及び導電性が高い材料から形成される、
     請求項2乃至4のいずれか1項のバスバー。
    the first connector plate is made of the same material as the first electrode terminal;
    the second connector plate is made of the same material as the second electrode terminal;
    each of the plurality of conductive plates is formed of a material having higher thermal and electrical conductivity than at least one of the first connector plate and the second connector plate;
    A busbar according to any one of claims 2 to 4.
  6.  2つの前記電極端子の一方である第1の電極端子が、前記重ね板体の前記第1の接合部が接合される前記第1の導電部材となり、
     2つの前記電極端子の前記第1の電極端子とは別の一方である第2の電極端子が、前記重ね板体の前記第2の接合部が接合される前記第2の導電部材となる、
     請求項1のバスバー。
    a first electrode terminal, which is one of the two electrode terminals, serves as the first conductive member to which the first joint portion of the laminated plate body is joined;
    A second electrode terminal, which is one of the two electrode terminals and is different from the first electrode terminal, serves as the second conductive member to which the second joint portion of the stacked plate body is joined.
    2. The busbar of claim 1.
  7.  前記重ね板体は、
      前記重ね板体の前記長さ方向について前記第1の接合部が位置する側の端部に形成され、複数の前記導電板のそれぞれが前記積重ね方向について隣り合う前記導電板と当接する第1の板当接部と、
      前記重ね板体の前記長さ方向について前記第2の接合部が位置する側の端部に形成され、複数の前記導電板のそれぞれが前記積重ね方向について隣り合う前記導電板と当接する第2の板当接部と、
      前記重ね板体の前記長さ方向について前記第1の板当接部と前記第2の板当接部との間に形成され、複数の前記導電板のそれぞれと前記積重ね方向について隣り合う前記導電板との間に空隙が形成される板離間部と、
     を備える、請求項1乃至6のいずれか1項のバスバー。
    The stacked plate body is
    A first contact portion is formed at the end portion of the stacked plate body on the side where the first joint portion is located in the longitudinal direction, and each of the plurality of conductive plates abuts the conductive plates adjacent to each other in the stacking direction. a plate contact portion;
    A second conductive plate is formed at the end of the stacked plate body on the side where the second joint portion is located in the longitudinal direction, and each of the plurality of conductive plates abuts the conductive plate adjacent to the stacked plate in the stacking direction. a plate contact portion;
    The conductive plate formed between the first plate contact portion and the second plate contact portion in the length direction of the stacked plate body and adjacent to each of the plurality of conductive plates in the stacking direction. a plate separation portion in which a gap is formed between the plates;
    7. The busbar of any one of claims 1-6, comprising:
  8.  前記重ね板体では、
      2つの前記電極端子に対して近位側に位置する前記導電板ほど曲率が大きくなる湾曲形状に、前記板離間部において複数の前記導電板のそれぞれが形成されるか、及び、
      2つの前記電極端子に対して近位側に位置する前記導電板ほど前記重ね板体の前記長さ方向に沿った延設長が短くなる状態に、複数の前記導電板のそれぞれが延設されるか、
     の少なくとも一方である、請求項7のバスバー。
    In the stacked plate body,
    whether each of the plurality of conductive plates is formed in the plate separation portion in a curved shape in which the curvature of the conductive plate increases toward the proximal side with respect to the two electrode terminals;
    Each of the plurality of conductive plates is extended in such a manner that the length of extension of the stacked plate body along the longitudinal direction becomes shorter as the conductive plate is positioned closer to the proximal side with respect to the two electrode terminals. ruka,
    8. The busbar of claim 7, wherein the busbar is at least one of:
  9.  互いに対して離れて配置される2つの電極端子の間を電気的に接続するバスバーであって、
     導電性をそれぞれが有する複数の導電ワイヤと、
     複数の前記導電ワイヤのそれぞれにおいて一方側の端部に形成され、複数の前記導電ワイヤとは別の導電部材である第1の導電部材にボンディングされる第1のボンディング部と、
     複数の前記導電ワイヤのそれぞれにおいて前記第1のボンディング部とは反対側の端部に形成され、複数の前記導電ワイヤ及び前記第1の導電部材とは別の導電部材である第2の導電部材にボンディングされる第2のボンディング部と、
     を具備する、バスバー。
    A bus bar electrically connecting between two electrode terminals spaced apart from each other,
    a plurality of conductive wires each having electrical conductivity;
    a first bonding portion formed at one end of each of the plurality of conductive wires and bonded to a first conductive member, which is a conductive member different from the plurality of conductive wires;
    A second conductive member which is formed at an end of each of the plurality of conductive wires opposite to the first bonding portion and which is a conductive member different from the plurality of conductive wires and the first conductive member. a second bonding portion bonded to
    A busbar comprising:
  10.  複数の前記導電ワイヤのそれぞれの前記第1のボンディング部がボンディングされる前記第1の導電部材となり、2つの前記電極端子の一方である第1の電極端子に接合される第1のコネクタ板と、
     複数の前記導電ワイヤのそれぞれの前記第2のボンディング部がボンディングされる前記第2の導電部材となり、2つの前記電極端子の前記第1の電極端子とは別の一方である第2の電極端子に接合される第2のコネクタ板と、
     をさらに具備する、請求項9のバスバー。
    a first connector plate that serves as the first conductive member to which the first bonding portions of the plurality of conductive wires are bonded and that is joined to a first electrode terminal that is one of the two electrode terminals; ,
    The second bonding portion of each of the plurality of conductive wires serves as the second conductive member to which the second electrode terminal is one other than the first electrode terminal of the two electrode terminals. a second connector plate joined to the
    10. The busbar of claim 9, further comprising:
  11.  2つの前記電極端子の一方である第1の電極端子が、複数の前記導電ワイヤのそれぞれの前記第1のボンディング部がボンディングされる前記第1の導電部材となり、
     2つの前記電極端子の前記第1の電極端子とは別の一方である第2の電極端子が、複数の前記導電ワイヤのそれぞれの前記第2のボンディング部がボンディングされる前記第2の導電部材となる、
     請求項9のバスバー。
    a first electrode terminal, which is one of the two electrode terminals, serves as the first conductive member to which the first bonding portion of each of the plurality of conductive wires is bonded;
    A second electrode terminal, which is one of the two electrode terminals and is different from the first electrode terminal, is the second conductive member to which the second bonding portions of the plurality of conductive wires are bonded. becomes
    10. The busbar of claim 9.
  12.  請求項1乃至11のいずれか1項のバスバーと、
     2つの前記電極端子の一方である第1の電極端子を備える第1の電池と、
     2つの前記電極端子の前記第1の電極端子とは別の一方である第2の電極端子を備え、前記第2の電極端子が前記バスバーを介して前記第1の電極端子に電気的に接続される第2の電池と、
     を具備する、電池モジュール。
    A busbar according to any one of claims 1 to 11;
    a first battery comprising a first electrode terminal being one of the two electrode terminals;
    A second electrode terminal that is one of the two electrode terminals and the first electrode terminal is provided, and the second electrode terminal is electrically connected to the first electrode terminal via the bus bar. a second battery configured to
    A battery module comprising:
PCT/JP2021/032435 2021-09-03 2021-09-03 Busbar and battery module WO2023032152A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023544934A JPWO2023032152A1 (en) 2021-09-03 2021-09-03
PCT/JP2021/032435 WO2023032152A1 (en) 2021-09-03 2021-09-03 Busbar and battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/032435 WO2023032152A1 (en) 2021-09-03 2021-09-03 Busbar and battery module

Publications (1)

Publication Number Publication Date
WO2023032152A1 true WO2023032152A1 (en) 2023-03-09

Family

ID=85410827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032435 WO2023032152A1 (en) 2021-09-03 2021-09-03 Busbar and battery module

Country Status (2)

Country Link
JP (1) JPWO2023032152A1 (en)
WO (1) WO2023032152A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012243689A (en) * 2011-05-23 2012-12-10 Sanyo Electric Co Ltd Power supply device, vehicle including the same, and bus bar
JP2018073666A (en) * 2016-10-31 2018-05-10 株式会社豊田自動織機 Power storage device
JP2018181780A (en) * 2017-04-21 2018-11-15 矢崎総業株式会社 Laminated bus bar and battery module
WO2019124108A1 (en) * 2017-12-22 2019-06-27 パナソニックIpマネジメント株式会社 Cell laminate
WO2019188214A1 (en) * 2018-03-28 2019-10-03 パナソニックIpマネジメント株式会社 Bus bar and cell stack
WO2020090216A1 (en) * 2018-10-29 2020-05-07 三洋電機株式会社 Method for producing busbar, busbar, and battery module
JP2020521287A (en) * 2018-01-15 2020-07-16 エルジー・ケム・リミテッド Battery module with gas discharge structure
US20200321595A1 (en) * 2016-05-30 2020-10-08 Samsung Sdi Co., Ltd. Battery module

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012243689A (en) * 2011-05-23 2012-12-10 Sanyo Electric Co Ltd Power supply device, vehicle including the same, and bus bar
US20200321595A1 (en) * 2016-05-30 2020-10-08 Samsung Sdi Co., Ltd. Battery module
JP2018073666A (en) * 2016-10-31 2018-05-10 株式会社豊田自動織機 Power storage device
JP2018181780A (en) * 2017-04-21 2018-11-15 矢崎総業株式会社 Laminated bus bar and battery module
WO2019124108A1 (en) * 2017-12-22 2019-06-27 パナソニックIpマネジメント株式会社 Cell laminate
JP2020521287A (en) * 2018-01-15 2020-07-16 エルジー・ケム・リミテッド Battery module with gas discharge structure
WO2019188214A1 (en) * 2018-03-28 2019-10-03 パナソニックIpマネジメント株式会社 Bus bar and cell stack
WO2020090216A1 (en) * 2018-10-29 2020-05-07 三洋電機株式会社 Method for producing busbar, busbar, and battery module

Also Published As

Publication number Publication date
JPWO2023032152A1 (en) 2023-03-09

Similar Documents

Publication Publication Date Title
JP5175265B2 (en) Lithium secondary battery with improved safety and capacity
TWI466361B (en) Secondary battery pack and method of manufacturing the same
JP5179494B2 (en) Secondary battery having an upper sealing portion with an improved structure
CN110622341B (en) Battery module with enhanced electrical connection stability
JP5300788B2 (en) Secondary battery
TW201336142A (en) Secondary battery pack
KR20160040047A (en) Flexible electrochemical device including electrode assemblies electrically connected to each other
US20220271399A1 (en) Battery
US20120171555A1 (en) Rechargeable battery
JP2014157813A (en) Battery module
US20130089759A1 (en) Rechargeable battery
KR102510891B1 (en) Secondary battery
WO2019003928A1 (en) Bus bar and battery laminate
JP2013109858A (en) Battery
JP7488695B2 (en) Solid-state battery module and solid-state battery cell
US11909055B2 (en) Secondary battery
WO2023032152A1 (en) Busbar and battery module
JPWO2019124109A1 (en) Busbar and battery laminate
US10320035B2 (en) Battery pack
JP6936397B2 (en) Connection structure and battery module
WO2022123680A1 (en) Battery
US20130122356A1 (en) Rechargeable battery
JP7194337B2 (en) sealed battery
WO2023032151A1 (en) Battery
JP2015046217A (en) Thin secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956040

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023544934

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE