WO2023032058A1 - ビデオセッション評価端末、ビデオセッション評価システム及びビデオセッション評価プログラム - Google Patents
ビデオセッション評価端末、ビデオセッション評価システム及びビデオセッション評価プログラム Download PDFInfo
- Publication number
- WO2023032058A1 WO2023032058A1 PCT/JP2021/032017 JP2021032017W WO2023032058A1 WO 2023032058 A1 WO2023032058 A1 WO 2023032058A1 JP 2021032017 W JP2021032017 W JP 2021032017W WO 2023032058 A1 WO2023032058 A1 WO 2023032058A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- video session
- user
- evaluation
- face
- video
- Prior art date
Links
- 238000011156 evaluation Methods 0.000 title claims abstract description 48
- 238000004364 calculation method Methods 0.000 claims abstract description 4
- 230000001815 facial effect Effects 0.000 claims description 11
- 238000010191 image analysis Methods 0.000 claims description 10
- 230000004424 eye movement Effects 0.000 claims description 5
- 238000004458 analytical method Methods 0.000 description 71
- 238000006243 chemical reaction Methods 0.000 description 70
- 230000008859 change Effects 0.000 description 61
- 230000008921 facial expression Effects 0.000 description 16
- 238000004891 communication Methods 0.000 description 15
- 230000008451 emotion Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 10
- 238000012545 processing Methods 0.000 description 10
- 230000006399 behavior Effects 0.000 description 9
- 230000006870 function Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 230000002996 emotional effect Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000004590 computer program Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 210000000887 face Anatomy 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 208000035473 Communicable disease Diseases 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010219 correlation analysis Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/14—Systems for two-way working
- H04N7/15—Conference systems
Definitions
- the present disclosure relates to a video session evaluation terminal, a video session evaluation system, and a video session evaluation program.
- Patent Document 1 Conventionally, there is known a technique for analyzing the emotions others receive in response to a speaker's remarks (see Patent Document 1, for example). There is also known a technique for analyzing changes in facial expressions of a subject in chronological order over a long period of time and estimating the emotions held during that period (see, for example, Patent Literature 2). Furthermore, there are known techniques for identifying factors that have the greatest influence on changes in emotions (see Patent Documents 3 to 5, for example). Furthermore, there is also known a technology that compares the subject's usual facial expression with the current facial expression and issues an alert when the facial expression is dark (see, for example, Patent Document 6).
- Patent Documents 7 to 9 There is also known a technique for determining the degree of emotion of a subject by comparing the subject's normal (expressionless) facial expression with the current facial expression (for example, Patent Documents 7 to 9). reference). Furthermore, there is also known a technique for analyzing the feeling of an organization and the atmosphere within a group that an individual feels (see Patent Documents 10 and 11, for example).
- the purpose of the present invention is to objectively evaluate exchanged communication in order to conduct more efficient communication in situations where online communication is the main focus.
- a camera unit that acquires a moving image obtained by photographing a target person; a line-of-sight acquisition unit that acquires a movement of the subject's line of sight based on the acquired moving image; a display unit that continuously displays a plurality of images to the subject; a position acquisition unit that acquires a positional relationship between the camera unit and the display unit; an output unit that associates and outputs the eye movement for each of the plurality of displayed images; is obtained.
- exchanged communication can be objectively evaluated in order to conduct more efficient communication in situations where online communication is the main activity.
- FIG. 1 is an example of a functional block diagram of an evaluation terminal according to an embodiment of the present invention
- FIG. FIG. 3 is a diagram showing functional configuration example 1 of the evaluation terminal according to the embodiment of the present invention
- FIG. 8 is a diagram showing functional configuration example 2 of the evaluation terminal according to the embodiment of the present invention
- FIG. 10 is a diagram showing a functional configuration example 3 of the evaluation terminal according to the embodiment of the present invention
- 7 is a screen display example according to the functional configuration example 3 of FIG. 6.
- FIG. FIG. 7 is another screen display example according to the functional configuration example 3 of FIG. 6.
- FIG. 12 is a diagram showing another configuration of functional configuration example 3 of the evaluation terminal according to the embodiment of the present invention.
- FIG. 12 is a diagram showing another configuration of functional configuration example 3 of the evaluation terminal according to the embodiment of the present invention;
- Fig. 2 shows a heat map of the system according to the first embodiment of the invention;
- the moving image analysis system according to item 1, The evaluation means evaluates the amount of eye movement of the user from the recognized face image, The determination means determines a first state in which both the movement of the face and the movement of the eyes are equal to or less than a predetermined threshold, and a state in which the movement of the face is equal to or less than the predetermined threshold but the movement of the eyes is greater than the predetermined threshold. determining two states, and associating the first state, the second state, or any other state with the corresponding frame of the acquired moving image; Video image analysis system.
- the line-of-sight evaluation system according to item 1, further comprising identifying means for identifying the unique user compared to concentration scores associated with other users; Video image analysis system.
- a video session in an environment where a video session (hereinafter referred to as an online session including one-way and two-way sessions) is held by a plurality of people, the person to be analyzed among the plurality of people is different from the others. It is a system that analyzes and evaluates specific emotions (feelings that occur in response to one's own or others' words and actions. Pleasant/unpleasant, or their degree).
- Online sessions are, for example, online meetings, online classes, online chats, etc.
- Terminals installed in multiple locations are connected to a server via a communication network such as the Internet, and moving images are transmitted between multiple terminals through the server. It's made to be interactable.
- Moving images also include images such as materials that are shared and viewed by a plurality of users. It is possible to switch between the face image and the document image on the screen of each terminal to display only one of them, or to divide the display area and display the face image and the document image at the same time. In addition, it is possible to display the image of one user out of a plurality of users on the full screen, or divide the images of some or all of the users into small screens and display them.
- an online session leader, moderator, or manager designates any user as an analysis subject.
- Hosts of online sessions are, for example, instructors of online classes, chairpersons and facilitators of online meetings, coaches of sessions for coaching purposes, and the like.
- An online session host is typically one of the users participating in the online session, but may be another person who does not participate in the online session. It should be noted that all participants may be subject to analysis without specifying the person to be analyzed.
- the leader, moderator, or manager of an online session (hereinafter collectively referred to as the organizer) to designate any user as a person to be analyzed.
- Hosts of online sessions are, for example, instructors of online classes, chairpersons and facilitators of online meetings, coaches of sessions for coaching purposes, and the like.
- An online session host is typically one of the users participating in the online session, but may be another person who does not participate in the online session.
- the video session evaluation system displays at least moving images obtained from a video session established between a plurality of terminals.
- the displayed moving image is acquired by the terminal, and at least a face image included in the moving image is identified for each predetermined frame unit. An evaluation value for the identified face image is then calculated. The evaluation value is shared as necessary.
- the acquired moving images are stored in the terminal, analyzed and evaluated on the terminal, and the results are provided to the user of the terminal. Therefore, for example, even a video session containing personal information or a video session containing confidential information can be analyzed and evaluated without providing the moving image itself to an external evaluation agency or the like.
- the evaluation result evaluation value
- the video session evaluation system includes user terminals 10 and 20 each having at least an input unit such as a camera unit and a microphone unit, a display unit such as a display, and an output unit such as a speaker. , a video session service terminal 30 for providing an interactive video session to the user terminals 10, 20, and an evaluation terminal 40 for performing part of the evaluation of the video session.
- FIG. 2 is a diagram showing a hardware configuration example of a computer that implements each of the terminals 10 to 40 according to this embodiment.
- the computer includes at least a control unit 110, a memory 120, a storage 130, a communication unit 140, an input/output unit 150, and the like. These are electrically connected to each other through bus 160 .
- the control unit 110 is an arithmetic device that controls the overall operation of each terminal, controls transmission and reception of data between elements, executes applications, and performs information processing necessary for authentication processing.
- the control unit 110 is a processor such as a CPU, and executes each information processing by executing a program or the like stored in the storage 130 and developed in the memory 120 .
- the memory 120 includes a main memory made up of a volatile memory device such as a DRAM, and an auxiliary memory made up of a non-volatile memory device such as a flash memory or an HDD.
- the memory 120 is used as a work area or the like for the control unit 110, and stores a BIOS that is executed when each terminal is started, various setting information, and the like.
- the storage 130 stores various programs such as application programs.
- a database storing data used for each process may be constructed in the storage 130 .
- moving images in the online session are not recorded in the storage 130 of the video session service terminal 30, but are stored in the storage 130 of the user terminal 10.
- the evaluation terminal 40 stores an application and other programs necessary for evaluating the moving image acquired on the user terminal 10, and appropriately provides them so that the user terminal 10 can use them.
- the storage 13 managed by the evaluation terminal 40 may share, for example, only the results of analysis and evaluation by the user terminal 10 .
- the communication unit 140 connects the terminal to the network.
- the communication unit 140 is, for example, wired LAN, wireless LAN, Wi-Fi (registered trademark), infrared communication, Bluetooth (registered trademark), short-range or non-contact communication, etc., and communicates directly with an external device or through a network access point. Communicate via
- the input/output unit 150 is, for example, information input devices such as a keyboard, mouse, and touch panel, and output devices such as a display.
- a bus 160 is commonly connected to each of the above elements and transmits, for example, address signals, data signals and various control signals.
- the evaluation terminal acquires a moving image from a video session service terminal, identifies at least a face image included in the moving image for each predetermined frame unit, and calculates an evaluation value for the face image.
- this service provides user terminals 10 and 20 with two-way images and voice. Communication is possible.
- a moving image captured by the camera of the other user's terminal is displayed on the display of the user's terminal, and audio captured by the microphone of the other's user's terminal can be output from the speaker.
- this service allows both or either of the user terminals to record moving images and sounds (collectively referred to as “moving images, etc.") in the storage unit of at least one of the user terminals. configured as possible.
- the recorded moving image information Vs (hereinafter referred to as “recorded information”) is cached in the user terminal that started recording and is locally recorded only in one of the user terminals. If necessary, the user can view the recorded information by himself or share it with others within the scope of using this service.
- the user terminal 10 acquires the recorded information and performs analysis and evaluation as described later.
- the user terminal 10 evaluates the video acquired as described above by the following analysis.
- FIG. 4 is a block diagram showing a configuration example according to this embodiment.
- the video session evaluation system of this embodiment is implemented as a functional configuration of the user terminal 10.
- the user terminal 10 has, as its functions, a moving image acquisition unit 11, a biological reaction analysis unit 12, a peculiar determination unit 13, a related event identification unit 14, a clustering unit 15, and an analysis result notification unit 16.
- Each of the functional blocks 11 to 16 can be configured by any of hardware, a DSP (Digital Signal Processor), and software provided in the user terminal 10, for example.
- each functional block 11 to 16 is actually configured with a computer CPU, RAM, ROM, etc., and a program stored in a recording medium such as RAM, ROM, hard disk, or semiconductor memory. is realized by the operation of
- the moving image acquisition unit 11 acquires from each terminal a moving image obtained by photographing a plurality of people (a plurality of users) with a camera provided in each terminal during an online session. It does not matter whether the moving image acquired from each terminal is set to be displayed on the screen of each terminal. That is, the moving image acquisition unit 11 acquires moving images from each terminal, including moving images being displayed and moving images not being displayed on each terminal.
- the biological reaction analysis unit 12 analyzes changes in the biological reaction of each of a plurality of people based on the moving images (whether or not they are being displayed on the screen) acquired by the moving image acquiring unit 11.
- the biological reaction analysis unit 12 separates the moving image acquired by the moving image acquisition unit 11 into a set of images (collection of frame images) and voice, and analyzes changes in the biological reaction from each.
- the biological reaction analysis unit 12 analyzes the user's facial image using a frame image separated from the moving image acquired by the moving image acquisition unit 11 to obtain at least one of facial expression, gaze, pulse, and facial movement. Analyze changes in biological reactions related to Further, the biological reaction analysis unit 12 analyzes the voice separated from the moving image acquired by the moving image acquisition unit 11 to analyze changes in the biological reaction related to at least one of the user's utterance content and voice quality.
- the biological reaction analysis unit 12 calculates a biological reaction index value reflecting the change in biological reaction by quantifying the change in biological reaction according to a predetermined standard.
- the analysis of changes in facial expressions is performed as follows. That is, for each frame image, a facial region is identified from the frame image, and the identified facial expressions are classified into a plurality of types according to an image analysis model machine-learned in advance. Then, based on the classification results, it analyzes whether positive facial expression changes occur between consecutive frame images, whether negative facial expression changes occur, and to what extent the facial expression changes occur, A facial expression change index value corresponding to the analysis result is output.
- the analysis of changes in line of sight is performed as follows. That is, for each frame image, the eye region is specified in the frame image, and the orientation of both eyes is analyzed to analyze where the user is looking. For example, it analyzes whether the user is looking at the face of the speaker being displayed, whether the user is looking at the shared material being displayed, or whether the user is looking outside the screen. Also, it may be analyzed whether the eye movement is large or small, or whether the movement is frequent or infrequent. A change in line of sight is also related to the user's degree of concentration.
- the biological reaction analysis unit 12 outputs a line-of-sight change index value according to the analysis result of the line-of-sight change.
- the analysis of pulse changes is performed, for example, as follows. That is, for each frame image, the face area is specified in the frame image. Then, using a trained image analysis model that captures numerical values of face color information (G of RGB), changes in the G color of the face surface are analyzed. By arranging the results along the time axis, a waveform representing changes in color information is formed, and the pulse is identified from this waveform. When a person is tense, the pulse speeds up, and when the person is calm, the pulse slows down. The biological reaction analysis unit 12 outputs a pulse change index value according to the analysis result of the pulse change.
- G of RGB face color information
- analysis of changes in facial movement is performed as follows. That is, for each frame image, the face area is specified in the frame image, and the direction of the face is analyzed to analyze where the user is looking. For example, it analyzes whether the user is looking at the face of the speaker being displayed, whether the user is looking at the shared material being displayed, or whether the user is looking outside the screen. Further, it may be analyzed whether the movement of the face is large or small, or whether the movement is frequent or infrequent. The movement of the face and the movement of the line of sight may be analyzed together. For example, it may be analyzed whether the face of the speaker being displayed is viewed straight, whether the face is viewed with upward or downward gaze, or whether the face is viewed obliquely.
- the biological reaction analysis unit 12 outputs a face orientation change index value according to the analysis result of the face orientation change.
- the biological reaction analysis unit 12 converts the voice into a character string by performing known voice recognition processing on the voice for a specified time (for example, about 30 to 150 seconds), and morphologically analyzes the character string. By doing so, words such as particles and articles that are unnecessary for expressing conversation are removed. Then, vectorize the remaining words, analyze whether a positive emotional change has occurred, whether a negative emotional change has occurred, and to what extent the emotional change has occurred. Outputs the utterance content index value.
- Voice quality analysis is performed, for example, as follows. That is, the biological reaction analysis unit 12 identifies the acoustic features of the voice by performing known voice analysis processing on the voice for a specified time (for example, about 30 to 150 seconds). Then, based on the acoustic features, it analyzes whether a positive change in voice quality has occurred, whether a negative change in voice quality has occurred, and to what extent the change in voice quality has occurred, and according to the analysis results, output the voice quality change index value.
- a specified time for example, about 30 to 150 seconds
- the biological reaction analysis unit 12 uses at least one of the facial expression change index value, eye line change index value, pulse change index value, face direction change index value, statement content index value, and voice quality change index value calculated as described above. to calculate the biological reaction index value.
- the biological reaction index value is calculated by weighting the facial expression change index value, eye line change index value, pulse change index value, face direction change index value, statement content index value, and voice quality change index value.
- the peculiarity determination unit 13 determines whether or not the change in the analyzed biological reaction of the person to be analyzed is more specific than the change in the analyzed biological reaction of the person other than the person to be analyzed. In the present embodiment, the peculiarity determination unit 13 compares changes in the biological reaction of the person to be analyzed with those of others based on the biological reaction index values calculated for each of the plurality of users by the biological reaction analysis unit 12. is specific or not.
- the peculiar determination unit 13 calculates the variance of the biological reaction index values calculated for each of the plurality of persons by the biological reaction analysis unit 12, and compares the biological reaction index values calculated for the analysis subject with the variance, It is determined whether or not the change in the analyzed biological reaction of the person to be analyzed is specific compared to others.
- the following three patterns are conceivable as cases where the changes in biological reactions analyzed for the subject of analysis are more specific than those of others.
- the first is a case where a relatively large change in biological reaction occurs in the subject of analysis, although no particularly large change in biological reaction has occurred in the other person.
- the second is a case where a particularly large change in biological reaction has not occurred in the subject of analysis, but a relatively large change in biological reaction has occurred in the other person.
- the third is a case where a relatively large change in biological reaction occurs in both the subject of analysis and the other person, but the content of the change differs between the subject of analysis and the other person.
- the related event identification unit 14 identifies an event occurring in relation to at least one of the person to be analyzed, the other person, and the environment when the change in the biological reaction determined to be peculiar by the peculiarity determination unit 13 occurs. .
- the related event identification unit 14 identifies from the moving image the speech and behavior of the person to be analyzed when a specific change in biological reaction occurs in the person to be analyzed.
- the related event identifying unit 14 identifies, from the moving image, the speech and behavior of the other person when a specific change in the biological reaction of the person to be analyzed occurs.
- the related event identification unit 14 identifies from the moving image the environment in which a specific change in the biological reaction of the person to be analyzed occurs.
- the environment is, for example, the shared material being displayed on the screen, the background image of the person to be analyzed, and the like.
- the clustering unit 15 clusters the change in the biological reaction determined to be specific by the peculiarity determination unit 13 (for example, one or a combination of eye gaze, pulse, facial movement, statement content, and voice quality), and the peculiarity Analyzing the degree of correlation with an event (event identified by the related event identification unit 14) that occurs when a change in biological reaction occurs, and if it is determined that the correlation is at a certain level or more , to cluster the subjects or events based on the correlation analysis results.
- the peculiarity determination unit 13 for example, one or a combination of eye gaze, pulse, facial movement, statement content, and voice quality
- the clustering unit 15 clusters the person to be analyzed or the event into one of a plurality of pre-segmented categories according to the content of the event, the degree of negativity, the magnitude of the correlation, and the like.
- the clustering unit 15 clusters the person to be analyzed or the event into one of a plurality of pre-segmented classifications according to the content of the event, the degree of positivity, the degree of correlation, and the like.
- the analysis result notification unit 16 reports at least one of the changes in the biological reaction determined to be specific by the peculiar determination unit 13, the event identified by the related event identification unit 14, and the classification clustered by the clustering unit 15. , to notify the designator of the subject of analysis (the subject of analysis or the organizer of the online session).
- the analysis result notification unit 16 recognizes that when a change in a specific biological reaction that is different from that of the other person occurs in the person to be analyzed (one of the three patterns described above; the same applies hereinafter), the analysis target is Notifies the person to be analyzed of his/her own behavior. This allows the person to be analyzed to understand that he/she has a different feeling from others when he or she performs a certain behavior. At this time, the person to be analyzed may also be notified of the change in the specific biological reaction identified for the person to be analyzed. Furthermore, the person to be analyzed may be further notified of the change in the biological reaction of the other person to be compared.
- the words and deeds of the person to be analyzed performed without being particularly conscious of their usual emotions, or the words and deeds of the person to be analyzed consciously accompanied by certain emotions, and the emotions and behaviors that others received
- the emotion held by the person to be analyzed is different from the feeling held by the person to be analyzed at the time
- the person to be analyzed is notified of the speech and behavior of the person to be analyzed at that time.
- the analysis result notification unit 16 notifies the organizer of the online session of the event occurring when the person to be analyzed undergoes a specific change in biological reaction that is different from that of the other person, together with the change in the specific biological reaction. to notify.
- the organizer of the online session can know what kind of event affects what kind of emotional change as a phenomenon specific to the specified analysis subject. Then, it becomes possible to perform appropriate treatment on the person to be analyzed according to the grasped contents.
- the analysis result notification unit 16 notifies the organizer of the online session of the event occurring when a specific change in biological reaction occurs in the analysis subject, which is different from that of others, or the clustering result of the analysis subject. do.
- online session organizers can grasp behavioral tendencies peculiar to analysis subjects and predict possible future behaviors and situations, depending on which classification the specified analysis subjects have been clustered into. be able to. Then, it becomes possible to take appropriate measures for the person to be analyzed.
- the biological reaction index value is calculated by quantifying the change in biological reaction according to a predetermined standard, and the analysis subject is analyzed based on the biological reaction index value calculated for each of the plurality of people.
- the biological reaction analysis unit 12 analyzes the movement of the line of sight for each of a plurality of people and generates a heat map indicating the direction of the line of sight.
- the peculiar determination unit 13 compares the heat map generated for the person to be analyzed by the biological reaction analysis unit 12 with the heat map generated for the other person, so that the change in the biological reaction analyzed for the person to be analyzed It is determined whether it is specific compared with the change in biological response analyzed for.
- moving images of a video session are stored in the local storage of the user terminal 10, and the above analysis is performed on the user terminal 10.
- the machine specs of the user terminal 10 it is possible to analyze the moving image information without providing it to the outside.
- the video session evaluation system of this embodiment may include a moving image acquisition unit 11, a biological reaction analysis unit 12, and a reaction information presentation unit 13a as functional configurations.
- the reaction information presentation unit 13a presents information indicating changes in biological reactions analyzed by the biological reaction analysis unit 12a, including participants not displayed on the screen.
- the reaction information presenting unit 13a presents information indicating changes in biological reactions to an online session leader, moderator, or administrator (hereinafter collectively referred to as the organizer).
- Hosts of online sessions are, for example, instructors of online classes, chairpersons and facilitators of online meetings, coaches of sessions for coaching purposes, and the like.
- An online session host is typically one of the users participating in the online session, but may be another person who does not participate in the online session.
- the organizer of the online session can also grasp the state of the participants who are not displayed on the screen in an environment where the online session is held by multiple people.
- FIG. 6 is a block diagram showing a configuration example according to this embodiment. As shown in FIG. 6, in the video session evaluation system of the present embodiment, functions similar to those of the above-described first embodiment are given the same reference numerals, and explanations thereof may be omitted.
- the system includes a camera unit that acquires images of a video session, a microphone unit that acquires audio, an analysis unit that analyzes and evaluates moving images, and information obtained by evaluating the acquired moving images.
- an object generator for generating a display object (described below) based on the display; and a display for displaying both the moving image of the video session and the display object during execution of the video session.
- the analysis unit includes the moving image acquisition unit 11, the biological reaction analysis unit 12, the peculiar determination unit 13, the related event identification unit 14, the clustering unit 15, and the analysis result notification unit 16, as described above.
- the function of each element is as described above.
- the object generation unit generates an object 50 representing the recognized face part and the above-mentioned Information 100 indicating the content of the analysis/evaluation performed is superimposed on the moving image and displayed.
- the object 50 may identify and display all faces of a plurality of persons when the faces of the plurality of persons are moved in the moving image.
- the object 50 is, for example, when the camera function of the video session is stopped at the other party's terminal (that is, it is stopped by software within the application of the video session instead of physically covering the camera). If the other party's face is recognized by the other party's camera, the object 50 or the object 100 may be displayed in the part where the other party's face is located. This makes it possible for both parties to confirm that the other party is in front of the terminal even if the camera function is turned off. In this case, for example, in a video session application, the information obtained from the camera may be hidden while only the object 50 or object 100 corresponding to the face recognized by the analysis unit is displayed. Also, the video information acquired from the video session and the information recognized by the analysis unit may be divided into different display layers, and the layer relating to the former information may be hidden.
- the objects 50 and 100 may be displayed in all areas or only in some areas. For example, as shown in FIG. 8, it may be displayed only on the moving image on the guest side.
- the device described in this specification may be realized as a single device, or may be realized by a plurality of devices (for example, cloud servers) or the like, all or part of which are connected via a network.
- the control unit 110 and the storage 130 of each terminal 10 may be realized by different servers connected to each other via a network.
- the system includes user terminals 10, 20, a video session service terminal 30 for providing an interactive video session to the user terminals 10, 20, and an evaluation terminal 40 for evaluating the video session
- Variation combinations of the following configurations are conceivable.
- (1) Processing everything only on the user terminal As shown in FIG. 9, by performing the processing by the analysis unit on the terminal that is performing the video session (although a certain processing capacity is required), the video session can be performed. Analysis/evaluation results can be obtained at the same time (in real time) as you are.
- an analysis unit may be provided in an evaluation terminal connected via a network or the like.
- the moving images acquired by the user terminal are shared with the evaluation terminal at the same time as or after the video session, and are analyzed and evaluated by the analysis unit in the evaluation terminal. Together with or separately from the moving image data (that is, information including at least analysis data) is shared with the terminal and displayed on the display unit.
- the system according to this embodiment calculates a so-called concentration score (degree of concentration) of a subject participating in an online session. Online, especially in webinar format, the audience's camera is often turned off. According to this system, in such a case, it becomes possible to quantitatively determine how much each collector is concentrating on the lecture.
- the system recognizes the face image captured by the camera during the session (whether or not you share your camera image with the other party) and evaluates the amount of eye movement and face movement of the subject, respectively. .
- absolute values are evaluated as to how much the face has moved and how much the eyes have moved from the initial position.
- the face is not moving, but the eyes are moving in various directions, which suggests that the subject is reading the material.
- the degree of concentration is grasped as such two patterns, and in the former case, it is assumed that the speaker is paying close attention to the speaker's face and listening to the talk, and in the latter case, the displayed material is concentrated and read. It can be inferred that the
- a score related to the degree of concentration may be calculated based on the degree of movement (Value in the graph shown).
- the degree of concentration may be 100 when both face and eyes are 0, and may be 0 when both are the maximum values.
- ideal concentration score conditions set according to the type of session are associated and stored.
- Session types include, for example, meetings, business negotiations, seminars, interviews, and other sessions according to purposes.
- concentration score condition is also associated with each goal.
- a high concentration score condition is set for business negotiations that require high concentration.
- This system accepts (or automatically determines) the input of the session type of the acquired moving image, and reads out the concentration score conditions according to the session type. Then, it may be determined whether or not the user's concentration score exceeds the concentration score condition. This makes it possible to determine whether or not the user was concentrating according to the purpose of the session.
- ⁇ Supplementary hardware configuration The sequence of operations performed by the apparatus described herein may be implemented using software, hardware, or a combination of software and hardware. It is possible to create a computer program for realizing each function of the information sharing support device 10 according to the present embodiment and implement it in a PC or the like. It is also possible to provide a computer-readable recording medium storing such a computer program.
- the recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like. Also, the above computer program may be distributed, for example, via a network without using a recording medium.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Image Analysis (AREA)
Abstract
【課題】ビデオセッションにおいて取得された動画像を評価することにより、ビデオセッション自体の評価を行うこと。 【解決手段】本開示のビデオセッション評価システムは、ビデオセッションのシチュエーションカテゴリと、コンセントレーションスコア条件とが関連つけ付けられて格納された記憶手段と、他の端末との間で行われるビデオセッションの動画像を取得する取得手段と、動画像内に含まれる対象者の少なくとも顔画像を所定のフレームごとに認識する顔認識手段と、認識した顔画像から、ユーザの少なくとも顔の動きの量を評価する評価手段と、評価に基づいて、ユーザコンセントレーションスコアを算出するスコア算出手段と、算出されたユーザコンセントレーションスコアがコンセントレーションスコア条件を超えているか否かを判定する判定手段と、を備える動画像分析システム。
Description
本開示は、ビデオセッション評価端末、ビデオセッション評価システム及びビデオセッション評価プログラムに関する。
従来、発言者の発言に対して他者が受ける感情を解析する技術が知られている(例えば、特許文献1参照)。また、対象者の表情の変化を長期間にわたり時系列的に解析し、その間に抱いた感情を推定する技術も知られている(例えば、特許文献2参照)。さらに、感情の変化に最も影響を与えた要素を特定する技術も知られている(例えば、特許文献3~5参照)。さらにまた、対象者の普段の表情と現在の表情とを比較して、表情が暗い場合にアラートを発する技術も知られている(例えば、特許文献6参照)。また、対象者の平常時(無表情時)の表情と現在の表情とを比較して、対象者の感情の度合いを判定するようにした技術も知られている(例えば、特許文献7~9参照)。更に、また、組織としての感情や、個人が感じるグループ内の雰囲気を分析する技術も知られている(例えば、特許文献10、11参照)。
上述したすべての技術は、現実空間におけるコミュニケーションが主である状況におけるサブ的な機能にすぎない。即ち、昨今の業務のDX(Digital Transformation)化や、世界的な感染症の流行等を受け、業務や授業等のコミュニケーションがオンラインで行われることが主とされる状況に生まれたものではない。
本発明は、オンラインコミュニケーションが主となる状況において、より効率的なコミュニケーションを行うために、交わされたコミュニケーションを客観的に評価することを目的とする。
本発明によれば、
対象者を撮影することによって得られる動画像を取得するカメラ部と、
取得した前記動画像に基づいて前記対象者の目線の動きを取得する視線取得部と、
前記対象者に複数の画像を連続して表示するディスプレイ部と、
前記カメラ部と、前記ディスプレイ部との位置関係を取得する位置取得部と、
表示した複数の前記画像ごとに前記目線の動きを関連付けて出力する出力部と、
が得られる。
対象者を撮影することによって得られる動画像を取得するカメラ部と、
取得した前記動画像に基づいて前記対象者の目線の動きを取得する視線取得部と、
前記対象者に複数の画像を連続して表示するディスプレイ部と、
前記カメラ部と、前記ディスプレイ部との位置関係を取得する位置取得部と、
表示した複数の前記画像ごとに前記目線の動きを関連付けて出力する出力部と、
が得られる。
本開示によれば、ビデオセッションの動画像を分析評価することにより、特に内容に関する評価を客観的に行うことができる。
特に、本発明によれば、オンラインコミュニケーションが主となる状況において、より効率的なコミュニケーションを行うために、交わされたコミュニケーションを客観的に評価することができる。
本開示の実施形態の内容を列記して説明する。本開示は、以下のような構成を備える。
[項目1]
ビデオセッションのシチュエーションカテゴリと、コンセントレーションスコア条件とが関連つけ付けられて格納された記憶手段と、
他の端末との間で行われるビデオセッションの動画像を取得する取得手段と、
前記動画像内に含まれる対象者の少なくとも顔画像を所定のフレームごとに認識する顔認識手段と、
認識した前記顔画像から、前記ユーザの少なくとも顔の動きの量を評価する評価手段と、
前記評価に基づいて、ユーザコンセントレーションスコアを算出するスコア算出手段と、
算出された前記ユーザコンセントレーションスコアが前記コンセントレーションスコア条件を超えているか否かを判定する判定手段と、
を備える
動画像分析システム。
[項目2]
項目1に記載の動画像分析システムであって、
前記評価手段は、認識した前記顔画像から、前記ユーザの目の動きの量を評価し、
前記判定手段は、前記顔の動き及び前記目の動きの双方が所定閾値以下である第1状態と、前記顔の動きは前記所定閾値以下であるものの前記目の動きは前記所定閾値より大きい第2状態を判定し、取得された前記動画像の該当するフレームに前記第1状態、前記第2状態又はそれ以外の状態のいずれかを関連付ける、
動画像分析システム。
[項目3]
項目1に記載の視線評価システムであって、
他のユーザに関連付けられたコンセントレーションスコアと比べて特異的なユーザを特定する特定手段をさらに備える、
動画像分析システム。
[項目1]
ビデオセッションのシチュエーションカテゴリと、コンセントレーションスコア条件とが関連つけ付けられて格納された記憶手段と、
他の端末との間で行われるビデオセッションの動画像を取得する取得手段と、
前記動画像内に含まれる対象者の少なくとも顔画像を所定のフレームごとに認識する顔認識手段と、
認識した前記顔画像から、前記ユーザの少なくとも顔の動きの量を評価する評価手段と、
前記評価に基づいて、ユーザコンセントレーションスコアを算出するスコア算出手段と、
算出された前記ユーザコンセントレーションスコアが前記コンセントレーションスコア条件を超えているか否かを判定する判定手段と、
を備える
動画像分析システム。
[項目2]
項目1に記載の動画像分析システムであって、
前記評価手段は、認識した前記顔画像から、前記ユーザの目の動きの量を評価し、
前記判定手段は、前記顔の動き及び前記目の動きの双方が所定閾値以下である第1状態と、前記顔の動きは前記所定閾値以下であるものの前記目の動きは前記所定閾値より大きい第2状態を判定し、取得された前記動画像の該当するフレームに前記第1状態、前記第2状態又はそれ以外の状態のいずれかを関連付ける、
動画像分析システム。
[項目3]
項目1に記載の視線評価システムであって、
他のユーザに関連付けられたコンセントレーションスコアと比べて特異的なユーザを特定する特定手段をさらに備える、
動画像分析システム。
以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
<基本機能>
本実施形態のビデオセッション評価システムは、複数人でビデオセッション(以下、一方向及び双方向含めてオンラインセッションという)が行われる環境において、当該複数人の中の解析対象者について他者とは異なる特異的な感情(自分または他人の言動に対して起こる気持ち。快・不快またはその程度など)を解析し評価するシステムである。
本実施形態のビデオセッション評価システムは、複数人でビデオセッション(以下、一方向及び双方向含めてオンラインセッションという)が行われる環境において、当該複数人の中の解析対象者について他者とは異なる特異的な感情(自分または他人の言動に対して起こる気持ち。快・不快またはその程度など)を解析し評価するシステムである。
オンラインセッションは、例えばオンライン会議、オンライン授業、オンラインチャットなどであり、複数の場所に設置された端末をインターネットなどの通信ネットワークを介してサーバに接続し、当該サーバを通じて複数の端末間で動画像をやり取りできるようにしたものである。
オンラインセッションで扱う動画像には、端末を使用するユーザの顔画像や音声が含まれる。また、動画像には、複数のユーザが共有して閲覧する資料などの画像も含まれる。各端末の画面上に顔画像と資料画像とを切り替えて何れか一方のみを表示させたり、表示領域を分けて顔画像と資料画像とを同時に表示させたりすることが可能である。また、複数人のうち1人の画像を全画面表示させたり、一部または全部のユーザの画像を小画面に分割して表示させたりすることが可能である。
端末を使用してオンラインセッションに参加する複数のユーザのうち、何れか1人または複数人を解析対象者として指定することが可能である。例えば、オンラインセッションの主導者、進行者または管理者(以下、まとめて主催者という)が何れかのユーザを解析対象者として指定する。オンラインセッションの主催者は、例えばオンライン授業の講師、オンライン会議の議長やファシリテータ、コーチングを目的としたセッションのコーチなどである。オンラインセッションの主催者は、オンラインセッションに参加する複数のユーザの中の一人であるのが普通であるが、オンラインセッションに参加しない別人であってもよい。なお、解析対象者を指定せず全ての参加者を解析対象としてもよい。
また、オンラインセッションの主導者、進行者または管理者(以下、まとめて主催者という)が何れかのユーザを解析対象者として指定することも可能である。オンラインセッションの主催者は、例えばオンライン授業の講師、オンライン会議の議長やファシリテータ、コーチングを目的としたセッションのコーチなどである。オンラインセッションの主催者は、オンラインセッションに参加する複数のユーザの中の一人であるのが普通であるが、オンラインセッションに参加しない別人であってもよい。
本実施の形態によるビデオセッション評価システムは、複数の端末間においてビデオセッションセッションが確立された場合に、当該ビデオセッションから取得される少なくとも動画像を表示される。表示された動画像は、端末によって取得され、動画像内に含まれる少なくとも顔画像を所定のフレーム単位ごとに識別される。その後、識別された顔画像に関する評価値が算出される。当該評価値は必要に応じて共有される。
特に、本実施の形態においては、取得した動画像は当該端末に保存され、端末上で分析評価され、その結果が当該端末のユーザに提供される。従って、例えば個人情報を含むビデオセッションや機密情報を含むビデオセッションであっても、その動画自体を外部の評価機関等に提供することなく分析評価できる。また、必要に応じて、当該評価結果(評価値)だけを外部端末に提供することによって、結果を可視化したり、クロス分析等行うことができる。
図1に示されるように、本実施の形態によるビデオセッション評価システムは、少なくともカメラ部及びマイク部等の入力部と、ディスプレイ等の表示部とスピーカー等の出力部とを有するユーザ端末10、20と、ユーザ端末10、20に双方向のビデオセッションを提供するビデオセッションサービス端末30と、ビデオセッションに関する評価の一部を行う評価端末40とを備えている。
<ハードウェア構成例>
図2は、本実施形態に係る各端末10乃至40を実現するコンピュータのハードウェア構成例を示す図である。コンピュータは、少なくとも、制御部110、メモリ120、ストレージ130、通信部140および入出力部150等を備える。これらはバス160を通じて相互に電気的に接続される。
図2は、本実施形態に係る各端末10乃至40を実現するコンピュータのハードウェア構成例を示す図である。コンピュータは、少なくとも、制御部110、メモリ120、ストレージ130、通信部140および入出力部150等を備える。これらはバス160を通じて相互に電気的に接続される。
制御部110は、各端末全体の動作を制御し、各要素間におけるデータの送受信の制御、及びアプリケーションの実行及び認証処理に必要な情報処理等を行う演算装置である。例えば制御部110は、CPU等のプロセッサであり、ストレージ130に格納されメモリ120に展開されたプログラム等を実行して各情報処理を実施する。
メモリ120は、DRAM等の揮発性記憶装置で構成される主記憶と、フラッシュメモリまたはHDD等の不揮発性記憶装置で構成される補助記憶と、を含む。メモリ120は、制御部110のワークエリア等として使用され、また、各端末の起動時に実行されるBIOS、及び各種設定情報等を格納する。
ストレージ130は、アプリケーション・プログラム等の各種プログラムを格納する。各処理に用いられるデータを格納したデータベースがストレージ130に構築されていてもよい。特に本実施の形態においては、ビデオセッションサービス端末30のストレージ130にはオンラインセッションにおける動画像は記録されず、ユーザ端末10のストレージ130に格納される。また、評価端末40は、ユーザ端末10上において取得された動画像を評価するために必要なアプリケーションその他のプログラムを格納し、ユーザ端末10が利用可能に適宜提供する。なお、評価端末40の管理するストレージ13には、例えば、ユーザ端末10によって解析された結果、評価された結果のみが共有されることとしてもよい。
通信部140は、端末をネットワークに接続する。通信部140は、例えば、有線LAN、無線LAN、Wi-Fi(登録商標)、赤外線通信、Bluetooth(登録商標)、近距離または非接触通信等の方式で、外部機器と直接またはネットワークアクセスポイントを介して通信する。
入出力部150は、例えば、キーボード、マウス、タッチパネル等の情報入力機器、及びディスプレイ等の出力機器である。
バス160は、上記各要素に共通に接続され、例えば、アドレス信号、データ信号及び各種制御信号を伝達する。
特に、本実施の形態による評価端末は、ビデオセッションサービス端末から動画像を取得し、当該動画像内に含まれる少なくとも顔画像を所定のフレーム単位ごとに識別すると共に、顔画像に関する評価値を算出する(詳しくは後述する)。
<動画の取得方法>
図3に示されるように、ビデオセッションサービス端末が提供するビデオセッションサービス(以下、単に「本サービス」と言うことがある」)は、ユーザ端末10、20に対して双方向に画像および音声によって通信が可能となるものである。本サービスは、ユーザ端末のディスプレイに相手のユーザ端末のカメラ部で取得した動画像を表示し、相手のユーザ端末のマイク部で取得した音声をスピーカーから出力可能となっている。
<動画の取得方法>
図3に示されるように、ビデオセッションサービス端末が提供するビデオセッションサービス(以下、単に「本サービス」と言うことがある」)は、ユーザ端末10、20に対して双方向に画像および音声によって通信が可能となるものである。本サービスは、ユーザ端末のディスプレイに相手のユーザ端末のカメラ部で取得した動画像を表示し、相手のユーザ端末のマイク部で取得した音声をスピーカーから出力可能となっている。
また、本サービスは双方の又はいずれかのユーザ端末によって、動画像及び音声(これらを合わせて「動画像等」という)を少なくともいずれかのユーザ端末上の記憶部に記録(レコーディング)することが可能に構成されている。記録された動画像情報Vs(以下「記録情報」という)は、記録を開始したユーザ端末にキャッシュされつついずれかのユーザ端末のローカルのみに記録されることとなる。ユーザは、必要があれば当該記録情報を本サービスの利用の範囲内で自分で視聴、他者に共有等行うこともできる。
ユーザ端末10は、当該記録情報を取得して、後述するような分析及び評価を行う。
ユーザ端末10は、以上のようにして取得した動画を以下のような分析によって評価を行う。
<機能構成例1>
図4は、本実施形態による構成例を示すブロック図である。図4に示すように、本実施形態のビデオセッション評価システムは、ユーザ端末10が有する機能構成として実現される。すなわち、ユーザ端末10はその機能として、動画像取得部11、生体反応解析部12、特異判定部13、関連事象特定部14、クラスタリング部15および解析結果通知部16を備えている。
図4は、本実施形態による構成例を示すブロック図である。図4に示すように、本実施形態のビデオセッション評価システムは、ユーザ端末10が有する機能構成として実現される。すなわち、ユーザ端末10はその機能として、動画像取得部11、生体反応解析部12、特異判定部13、関連事象特定部14、クラスタリング部15および解析結果通知部16を備えている。
上記各機能ブロック11~16は、例えばユーザ端末10に備えられたハードウェア、DSP(Digital Signal Processor)、ソフトウェアの何れによっても構成することが可能である。例えばソフトウェアによって構成する場合、上記各機能ブロック11~16は、実際にはコンピュータのCPU、RAM、ROMなどを備えて構成され、RAMやROM、ハードディスクまたは半導体メモリ等の記録媒体に記憶されたプログラムが動作することによって実現される。
動画像取得部11は、オンラインセッション中に各端末が備えるカメラにより複数人(複数のユーザ)を撮影することによって得られる動画像を各端末から取得する。各端末から取得する動画像は、各端末の画面上に表示されるように設定されているものか否かは問わない。すなわち、動画像取得部11は、各端末に表示中の動画像および非表示中の動画像を含めて、動画像を各端末から取得する。
生体反応解析部12は、動画像取得部11により取得された動画像(画面上に表示中のものか否かは問わない)に基づいて、複数人のそれぞれについて生体反応の変化を解析する。本実施形態において生体反応解析部12は、動画像取得部11により取得された動画像を画像のセット(フレーム画像の集まり)と音声とに分離し、それぞれから生体反応の変化を解析する。
例えば、生体反応解析部12は、動画像取得部11により取得された動画像から分離したフレーム画像を用いてユーザの顔画像を解析することにより、表情、目線、脈拍、顔の動きの少なくとも1つに関する生体反応の変化を解析する。また、生体反応解析部12は、動画像取得部11により取得された動画像から分離した音声を解析することにより、ユーザの発言内容、声質の少なくとも1つに関する生体反応の変化を解析する。
人は感情が変化すると、それが表情、目線、脈拍、顔の動き、発言内容、声質などの生体反応の変化となって現れる。本実施形態では、ユーザの生体反応の変化を解析することを通じて、ユーザの感情の変化を解析する。本実施形態において解析する感情は、一例として、快/不快の程度である。本実施形態において生体反応解析部12は、生体反応の変化を所定の基準に従って数値化することにより、生体反応の変化の内容を反映させた生体反応指標値を算出する。
表情の変化の解析は、例えば以下のようにして行う。すなわち、フレーム画像ごとに、フレーム画像の中から顔の領域を特定し、事前に機械学習させた画像解析モデルに従って特定した顔の表情を複数に分類する。そして、その分類結果に基づいて、連続するフレーム画像間でポジティブな表情変化が起きているか、ネガティブな表情変化が起きているか、およびどの程度の大きさの表情変化が起きているかを解析し、その解析結果に応じた表情変化指標値を出力する。
目線の変化の解析は、例えば以下のようにして行う。すなわち、フレーム画像ごとに、フレーム画像の中から目の領域を特定し、両目の向きを解析することにより、ユーザがどこを見ているかを解析する。例えば、表示中の話者の顔を見ているか、表示中の共有資料を見ているか、画面の外を見ているかなどを解析する。また、目線の動きが大きいか小さいか、動きの頻度が多いか少ないかなどを解析するようにしてもよい。目線の変化はユーザの集中度にも関連する。生体反応解析部12は、目線の変化の解析結果に応じた目線変化指標値を出力する。
脈拍の変化の解析は、例えば以下のようにして行う。すなわち、フレーム画像ごとに、フレーム画像の中から顔の領域を特定する。そして、顔の色情報(RGBのG)の数値を捉える学習済みの画像解析モデルを用いて、顔表面のG色の変化を解析する。その結果を時間軸に合わせて並べることによって色情報の変化を表した波形を形成し、この波形から脈拍を特定する。人は緊張すると脈拍が速くなり、気持ちが落ち着くと脈拍が遅くなる。生体反応解析部12は、脈拍の変化の解析結果に応じた脈拍変化指標値を出力する。
顔の動きの変化の解析は、例えば以下のようにして行う。すなわち、フレーム画像ごとに、フレーム画像の中から顔の領域を特定し、顔の向きを解析することにより、ユーザがどこを見ているかを解析する。例えば、表示中の話者の顔を見ているか、表示中の共有資料を見ているか、画面の外を見ているかなどを解析する。また、顔の動きが大きいか小さいか、動きの頻度が多いか少ないかなどを解析するようにしてもよい。顔の動きと目線の動きとを合わせて解析するようにしてもよい。例えば、表示中の話者の顔をまっすぐ見ているか、上目遣いまたは下目使いに見ているか、斜めから見ているかなどを解析するようにしてもよい。生体反応解析部12は、顔の向きの変化の解析結果に応じた顔向き変化指標値を出力する。
発言内容の解析は、例えば以下のようにして行う。すなわち、生体反応解析部12は、指定した時間(例えば、30~150秒程度の時間)の音声について公知の音声認識処理を行うことによって音声を文字列に変換し、当該文字列を形態素解析することにより、助詞、冠詞などの会話を表す上で不要なワードを取り除く。そして、残ったワードをベクトル化し、ポジティブな感情変化が起きているか、ネガティブな感情変化が起きているか、およびどの程度の大きさの感情変化が起きているかを解析し、その解析結果に応じた発言内容指標値を出力する。
声質の解析は、例えば以下のようにして行う。すなわち、生体反応解析部12は、指定した時間(例えば、30~150秒程度の時間)の音声について公知の音声解析処理を行うことによって音声の音響的特徴を特定する。そして、その音響的特徴に基づいて、ポジティブな声質変化が起きているか、ネガティブな声質変化が起きているか、およびどの程度の大きさの声質変化が起きているかを解析し、その解析結果に応じた声質変化指標値を出力する。
生体反応解析部12は、以上のようにして算出した表情変化指標値、目線変化指標値、脈拍変化指標値、顔向き変化指標値、発言内容指標値、声質変化指標値の少なくとも1つを用いて生体反応指標値を算出する。例えば、表情変化指標値、目線変化指標値、脈拍変化指標値、顔向き変化指標値、発言内容指標値および声質変化指標値を重み付け計算することにより、生体反応指標値を算出する。
特異判定部13は、解析対象者について解析された生体反応の変化が、解析対象者以外の他者について解析された生体反応の変化と比べて特異的か否かを判定する。本実施形態において、特異判定部13は、生体反応解析部12により複数のユーザのそれぞれについて算出された生体反応指標値に基づいて、解析対象者について解析された生体反応の変化が他者と比べて特異的か否かを判定する。
例えば、特異判定部13は、生体反応解析部12により複数人のそれぞれについて算出された生体反応指標値の分散を算出し、解析対象者について算出された生体反応指標値と分散との対比により、解析対象者について解析された生体反応の変化が他者と比べて特異的か否かを判定する。
解析対象者について解析された生体反応の変化が他者と比べて特異的である場合として、次の3パターンが考えられる。1つ目は、他者については特に大きな生体反応の変化が起きていないが、解析対象者について比較的大きな生体反応の変化が起きた場合である。2つ目は、解析対象者については特に大きな生体反応の変化が起きていないが、他者について比較的大きな生体反応の変化が起きた場合である。3つ目は、解析対象者についても他者についても比較的大きな生体反応の変化が起きているが、変化の内容が解析対象者と他者とで異なる場合である。
関連事象特定部14は、特異判定部13により特異的であると判定された生体反応の変化が起きたときに解析対象者、他者および環境の少なくとも1つに関して発生している事象を特定する。例えば、関連事象特定部14は、解析対象者について特異的な生体反応の変化が起きたときにおける解析対象者自身の言動を動画像から特定する。また、関連事象特定部14は、解析対象者について特異的な生体反応の変化が起きたときにおける他者の言動を動画像から特定する。また、関連事象特定部14は、解析対象者について特異的な生体反応の変化が起きたときにおける環境を動画像から特定する。環境は、例えば画面に表示中の共有資料、解析対象者の背景に写っているものなどである。
クラスタリング部15は、特異判定部13により特異的であると判定された生体反応の変化(例えば、目線、脈拍、顔の動き、発言内容、声質のうち1つまたは複数の組み合わせ)と、当該特異的な生体反応の変化が起きたときに発生している事象(関連事象特定部14により特定された事象)との相関の程度を解析し、相関が一定レベル以上であると判定された場合に、その相関の解析結果に基づいて解析対象者または事象をクラスタリングする。
例えば、特異的な生体反応の変化がネガティブな感情変化に相当するものであり、当該特異的な生体反応の変化が起きたときに発生している事象もネガティブな事象である場合には一定レベル以上の相関が検出される。クラスタリング部15は、その事象の内容やネガティブな度合い、相関の大きさなどに応じて、あらかじめセグメント化した複数の分類の何れかに解析対象者または事象をクラスタリングする。
同様に、特異的な生体反応の変化がポジティブな感情変化に相当するものであり、当該特異的な生体反応の変化が起きたときに発生している事象もポジティブな事象である場合には一定レベル以上の相関が検出される。クラスタリング部15は、その事象の内容やポジティブな度合い、相関の大きさなどに応じて、あらかじめセグメント化した複数の分類の何れかに解析対象者または事象をクラスタリングする。
解析結果通知部16は、特異判定部13により特異的であると判定された生体反応の変化、関連事象特定部14により特定された事象、およびクラスタリング部15によりクラスタリングされた分類の少なくとも1つを、解析対象者の指定者(解析対象者またはオンラインセッションの主催者)に通知する。
例えば、解析結果通知部16は、解析対象者について他者とは異なる特異的な生体反応の変化が起きたとき(上述した3パターンの何れか。以下同様)に発生している事象として解析対象者自身の言動を解析対象者自身に通知する。これにより、解析対象者は、自分がある言動を行ったときに他者とは違う感情を持っていることを把握することができる。このとき、解析対象者について特定された特異的な生体反応の変化も併せて解析対象者に通知するようにしてもよい。さらに、対比される他者の生体反応の変化を更に解析対象者に通知するようにしてもよい。
例えば、解析対象者が普段どおりの感情で特に意識せずに行った言動、または、解析対象者がある感情を伴って特に意識して行った言動に対して他者が受けた感情と、言動の際に解析対象者自身が抱いていた感情とが相違している場合に、そのときの解析対象者自身の言動が解析対象者に通知される。これにより、自分の意識に反して他者の受けが良い言動や他者の受けが良くない言動などを発見することも可能である。
また、解析結果通知部16は、解析対象者について他者とは異なる特異的な生体反応の変化が起きたときに発生している事象を、特異的な生体反応の変化と共にオンラインセッションの主催者に通知する。これにより、オンラインセッションの主催者は、指定した解析対象者に特有の現象として、どのような事象がどのような感情の変化に影響を与えているのかを知ることができる。そして、その把握した内容に応じて適切な処置を解析対象者に対して行うことが可能となる。
また、解析結果通知部16は、解析対象者について他者とは異なる特異的な生体反応の変化が起きたときに発生している事象または解析対象者のクラスタリング結果をオンラインセッションの主催者に通知する。これにより、オンラインセッションの主催者は、指定した解析対象者がどの分類にクラスタリングされたかによって、解析対象者に特有の行動の傾向を把握したり、今後起こり得る行動や状態などを予測したりすることができる。そして、それに対して適切な処置を解析対象者に対して行うことが可能となる。
なお、上記実施形態では、生体反応の変化を所定の基準に従って数値化することによって生体反応指標値を算出し、複数人のそれぞれについて算出された生体反応指標値に基づいて、解析対象者について解析された生体反応の変化が他者と比べて特異的か否かを判定する例について説明したが、この例に限定されない。例えば、以下のようにしてもよい。
すなわち、生体反応解析部12は、複数人のそれぞれについて目線の動きを解析して目線の方向を示すヒートマップを生成する。特異判定部13は、生体反応解析部12により解析対象者について生成されたヒートマップと他者について生成されたヒートマップとの対比により、解析対象者について解析された生体反応の変化が、他者について解析された生体反応の変化と比べて特異的か否かを判定する。
このように、本実施の形態においては、ビデオセッションの動画像をユーザ端末10のローカルストレージに保存し、ユーザ端末10上で上述した分析を行うこととしている。ユーザ端末10のマシンスペックに依存する可能性があるとはいえ、動画像の情報を外部に提供することなく分析することが可能となる。
<機能構成例2>
図5に示すように、本実施形態のビデオセッション評価システムは、機能構成として、動画像取得部11、生体反応解析部12および反応情報提示部13aを備えていてもよい。
図5に示すように、本実施形態のビデオセッション評価システムは、機能構成として、動画像取得部11、生体反応解析部12および反応情報提示部13aを備えていてもよい。
反応情報提示部13aは、画面に表示されていない参加者を含めて生体反応解析部12aにより解析された生体反応の変化を示す情報を提示する。例えば、反応情報提示部13aは、生体反応の変化を示す情報をオンラインセッションの主導者、進行者または管理者(以下、まとめて主催者という)に提示する。オンラインセッションの主催者は、例えばオンライン授業の講師、オンライン会議の議長やファシリテータ、コーチングを目的としたセッションのコーチなどである。オンラインセッションの主催者は、オンラインセッションに参加する複数のユーザの中の一人であるのが普通であるが、オンラインセッションに参加しない別人であってもよい。
このようにすることにより、オンラインセッションの主催者は、複数人でオンラインセッションが行われる環境において、画面に表示されていない参加者の様子も把握することができる。
<機能構成例3>
図6は、本実施形態による構成例を示すブロック図である。図6に示すように、本実施形態のビデオセッション評価システムは、機能構成として、上述した実施の形態1と類似する機能については同一つの参照符号を付して説明を省略することがある。
図6は、本実施形態による構成例を示すブロック図である。図6に示すように、本実施形態のビデオセッション評価システムは、機能構成として、上述した実施の形態1と類似する機能については同一つの参照符号を付して説明を省略することがある。
本実施の形態によるシステムは、ビデオセッションの映像を取得するカメラ部及び音声を取得するマイク部と、動画像を分析及び評価する解析部、取得した動画像を評価することによって得られた情報に基づいて表示オブジェクト(後述する)を生成するオブジェクト生成部、前記ビデオセッション実行中にビデオセッションの動画像と表示オブジェクトの両方を表示する表示部と、を備えている。
解析部は、上述した説明と同様に、動画像取得部11、生体反応解析部12、特異判定部13、関連事象特定部14、クラスタリング部15および解析結果通知部16を備えている。各要素の機能については上述したとおりである。
図7に示されるように、オブジェクト生成部は、解析部によってビデオセッションから取得される動画像を解析した結果に基づいて、必要に応じて、当該認識した顔の部分を示すオブジェクト50と、上述した分析・評価した内容を示す情報100を当該動画像に重畳して表示する。当該オブジェクト50は、複数人の顔が動画像内に移っている場合には、複数人全員の顔を識別し、表示することとしてもよい。
また、オブジェクト50は、例えば、相手側の端末において、ビデオセッションのカメラ機能を停止している場合(即ち、物理的にカメラを覆う等ではなく、ビデオセッションのアプリケーション内においてソフトウェア的に停止している場合)であっても、相手側のカメラで相手の顔を認識していた場合には、相手の顔が位置している部分にオブジェクト50やオブジェクト100を表示することとしてもよい。これにより、カメラ機能がオフになっていたとしても、相手側が端末の前にいることがお互い確認することが可能となる。この場合、例えば、ビデオセッションのアプリケーションにおいては、カメラから取得した情報を非表示にする一方、解析部によって認識された顔に対応するオブジェクト50やオブジェクト100のみを表示することとしてもよい。また、ビデオセッションから取得される映像情報と、解析部によって認識され得られた情報とを異なる表示レイヤーに分け、前者の情報に関するレイヤーを非表示にすることとしてもよい。
オブジェクト50やオブジェクト100は、複数の動画像を表示する領域がある場合には、すべての領域又は一部の領域のみに表示することとしてもよい。例えば、図8に示されるように、ゲスト側の動画像のみに表示することとしてもよい。
以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
本明細書において説明した装置は、単独の装置として実現されてもよく、一部または全部がネットワークで接続された複数の装置(例えばクラウドサーバ)等により実現されてもよい。例えば、各端末10の制御部110およびストレージ130は、互いにネットワークで接続された異なるサーバにより実現されてもよい。
即ち、本システムは、ユーザ端末10、20と、ユーザ端末10、20に双方向のビデオセッションを提供するビデオセッションサービス端末30と、ビデオセッションに関する評価を行う評価端末40とを含んでいるところ、以下のような構成のバリエーション組み合わせが考えられる。
(1)すべてをユーザ端末のみで処理
図9に示されるように、解析部による処理をビデオセッションを行っている端末で行うことにより、(一定の処理能力は必要なものの)ビデオセッションを行っている時間と同時に(リアルタイムに)分析・評価結果を得ることができる。
(2)ユーザ端末と評価端末とで処理
図10に示されるように、ネットワーク等で接続された評価端末に解析部を備えさせることとしてもよい。この場合、ユーザ端末で取得された動画像は、ビデオセッションと同時に又は事後的に評価端末に共有され、評価端末における解析部によって分析・評価されたのちに、オブジェクト50及びオブジェクト100の情報がユーザ端末に動画像データと共に又は別に(即ち、少なくとも解析データを含む情報が)共有され表示部に表示される。
(1)すべてをユーザ端末のみで処理
図9に示されるように、解析部による処理をビデオセッションを行っている端末で行うことにより、(一定の処理能力は必要なものの)ビデオセッションを行っている時間と同時に(リアルタイムに)分析・評価結果を得ることができる。
(2)ユーザ端末と評価端末とで処理
図10に示されるように、ネットワーク等で接続された評価端末に解析部を備えさせることとしてもよい。この場合、ユーザ端末で取得された動画像は、ビデオセッションと同時に又は事後的に評価端末に共有され、評価端末における解析部によって分析・評価されたのちに、オブジェクト50及びオブジェクト100の情報がユーザ端末に動画像データと共に又は別に(即ち、少なくとも解析データを含む情報が)共有され表示部に表示される。
<実施の形態>
図20を参照して、本発明の実施の形態によるシステムを説明する。本実施の形態によるシステムは、オンラインセッションに参加している対象者のいわゆるコンセントレーションスコア(集中度)を算出するものである。オンラインの場合には、特にウェビナー形式の場合のように聴講者のカメラがオフにされている場合も多い。本システムによれば、このような場合に、それぞれの徴収者がどれくらい講演に集中しているか否かを定量的に判定することが可能となる。
図20を参照して、本発明の実施の形態によるシステムを説明する。本実施の形態によるシステムは、オンラインセッションに参加している対象者のいわゆるコンセントレーションスコア(集中度)を算出するものである。オンラインの場合には、特にウェビナー形式の場合のように聴講者のカメラがオフにされている場合も多い。本システムによれば、このような場合に、それぞれの徴収者がどれくらい講演に集中しているか否かを定量的に判定することが可能となる。
本システムは、セッション上において(相手に自分のカメラ画像を共有するか否かに関わらず)カメラで取得した顔画像を認識し、対象者の瞳の動き及び顔の動きの量を夫々評価する。例えば、図20に示されるように、初期位置から、顔がどれくらい動いたか、目がどれくらい動いたかに関する量を絶対値として評価する。例えば、図示されるグラフの期間L1においては顔の動きも、目の動きも少ないことがわかり、画面等を凝視していることが推測される。一方で、期間L2では、顔は動いていないが、目はいろいろな方向に動いており資料内を読み込んでいることが推測される。集中度は、このような2パターンとして把握し、前者の場合は講演者の顔を注視して話に聞き入っている状態と推測し、後者の場合は表示された資料等を集中して読み込んでいる状態と推測することができる。
また、動きの度合い(図示されるグラフのValue)によって、集中度に関するスコアを算出することとしてもよい。算出方法は種々な形式、統計的な方法が選択できる。例えば、faceと、eyesの両方が0の場合を集中度100とし、両方が共に最高値の時には集中度0としてもよい。
本実施の形態においては、セッションの種類に応じて設定された理想とすべきコンセントレーションスコア条件が関連付けて記憶されている。セッションの種類としては、例えば、会議、商談、セミナー、面接、等の目的に応じたセッションが例示できる。また、それぞれの目的に沿ったコンセントレーションスコア条件が関連付けられている。例えば、高い集中を必要とする商談のコンセントレーションスコア条件は高く設定されている、といった具合である。
本システムは、取得した動画像のセッションの種類の入力を受け付け(又は自動で判別し)、当該セッションの種類に応じたコンセントレーションスコア条件を読み出す。そして、ユーザのコンセントレーションスコアがコンセントレーションスコア条件を超えているかどうかの判定を行うこととしてもよい。これによって、セッションの目的に応じた集中がなされていたのかどうかが判定できる。
<ハードウェア構成の補足>
本明細書において説明した装置による一連の処理は、ソフトウェア、ハードウェア、及びソフトウェアとハードウェアとの組合せのいずれを用いて実現されてもよい。本実施形態に係る情報共有支援装置10の各機能を実現するためのコンピュータプログラムを作製し、PC等に実装することが可能である。また、このようなコンピュータプログラムが格納された、コンピュータで読み取り可能な記録媒体も提供することが可能である。記録媒体は、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリ等である。また、上記のコンピュータプログラムは、記録媒体を用いずに、例えばネットワークを介して配信されてもよい。
本明細書において説明した装置による一連の処理は、ソフトウェア、ハードウェア、及びソフトウェアとハードウェアとの組合せのいずれを用いて実現されてもよい。本実施形態に係る情報共有支援装置10の各機能を実現するためのコンピュータプログラムを作製し、PC等に実装することが可能である。また、このようなコンピュータプログラムが格納された、コンピュータで読み取り可能な記録媒体も提供することが可能である。記録媒体は、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリ等である。また、上記のコンピュータプログラムは、記録媒体を用いずに、例えばネットワークを介して配信されてもよい。
また、本明細書においてフローチャート図を用いて説明した処理は、必ずしも図示された順序で実行されなくてもよい。いくつかの処理ステップは、並列的に実行されてもよい。また、追加的な処理ステップが採用されてもよく、一部の処理ステップが省略されてもよい。
以上説明した実施の形態を適宜組み合わせて実施することとしてもよい。また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
10、20 ユーザ端末
30 ビデオセッションサービス端末
40 評価端末
30 ビデオセッションサービス端末
40 評価端末
Claims (3)
- ビデオセッションのシチュエーションカテゴリと、コンセントレーションスコア条件とが関連つけ付けられて格納された記憶手段と、
他の端末との間で行われるビデオセッションの動画像を取得する取得手段と、
前記動画像内に含まれる対象者の少なくとも顔画像を所定のフレームごとに認識する顔認識手段と、
認識した前記顔画像から、前記ユーザの少なくとも顔の動きの量を評価する評価手段と、
前記評価に基づいて、ユーザコンセントレーションスコアを算出するスコア算出手段と、
算出された前記ユーザコンセントレーションスコアが前記コンセントレーションスコア条件を超えているか否かを判定する判定手段と、
を備える
動画像分析システム。 - 請求項1に記載の動画像分析システムであって、
前記評価手段は、認識した前記顔画像から、前記ユーザの目の動きの量を評価し、
前記判定手段は、前記顔の動き及び前記目の動きの双方が所定閾値以下である第1状態と、前記顔の動きは前記所定閾値以下であるものの前記目の動きは前記所定閾値より大きい第2状態を判定し、取得された前記動画像の該当するフレームに前記第1状態、前記第2状態又はそれ以外の状態のいずれかを関連付ける、
動画像分析システム。 - 請求項1に記載の視線評価システムであって、
他のユーザに関連付けられたコンセントレーションスコアと比べて特異的なユーザを特定する特定手段をさらに備える、
動画像分析システム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/032017 WO2023032058A1 (ja) | 2021-08-31 | 2021-08-31 | ビデオセッション評価端末、ビデオセッション評価システム及びビデオセッション評価プログラム |
JP2023544855A JPWO2023032058A1 (ja) | 2021-08-31 | 2021-08-31 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/032017 WO2023032058A1 (ja) | 2021-08-31 | 2021-08-31 | ビデオセッション評価端末、ビデオセッション評価システム及びビデオセッション評価プログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023032058A1 true WO2023032058A1 (ja) | 2023-03-09 |
Family
ID=85410944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/032017 WO2023032058A1 (ja) | 2021-08-31 | 2021-08-31 | ビデオセッション評価端末、ビデオセッション評価システム及びビデオセッション評価プログラム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2023032058A1 (ja) |
WO (1) | WO2023032058A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006323547A (ja) * | 2005-05-17 | 2006-11-30 | Fuji Xerox Co Ltd | 情報処理装置、情報処理方法及びプログラム |
JP2018036690A (ja) * | 2016-08-29 | 2018-03-08 | 米澤 朋子 | 一対多コミュニケーションシステムおよびプログラム |
JP2020123884A (ja) * | 2019-01-31 | 2020-08-13 | 富士通株式会社 | 集中度評価プログラム、装置、及び方法 |
JP2021023492A (ja) * | 2019-08-02 | 2021-02-22 | オムロン株式会社 | 集中度解析装置、集中度解析方法、プログラム |
-
2021
- 2021-08-31 WO PCT/JP2021/032017 patent/WO2023032058A1/ja active Application Filing
- 2021-08-31 JP JP2023544855A patent/JPWO2023032058A1/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006323547A (ja) * | 2005-05-17 | 2006-11-30 | Fuji Xerox Co Ltd | 情報処理装置、情報処理方法及びプログラム |
JP2018036690A (ja) * | 2016-08-29 | 2018-03-08 | 米澤 朋子 | 一対多コミュニケーションシステムおよびプログラム |
JP2020123884A (ja) * | 2019-01-31 | 2020-08-13 | 富士通株式会社 | 集中度評価プログラム、装置、及び方法 |
JP2021023492A (ja) * | 2019-08-02 | 2021-02-22 | オムロン株式会社 | 集中度解析装置、集中度解析方法、プログラム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023032058A1 (ja) | 2023-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7120693B1 (ja) | 動画像分析システム | |
WO2023032058A1 (ja) | ビデオセッション評価端末、ビデオセッション評価システム及びビデオセッション評価プログラム | |
JP7138998B1 (ja) | ビデオセッション評価端末、ビデオセッション評価システム及びビデオセッション評価プログラム | |
JP7152819B1 (ja) | 動画像分析プログラム | |
WO2022230070A1 (ja) | 動画像分析システム | |
WO2022230049A1 (ja) | 動画像分析システム | |
JP7121433B1 (ja) | 動画像分析プログラム | |
JP7121436B1 (ja) | 動画像分析プログラム | |
JP7197950B2 (ja) | 動画像分析システム | |
JP7197947B2 (ja) | 動画像分析システム | |
WO2022230050A1 (ja) | 動画像分析システム | |
WO2022201383A1 (ja) | 動画像分析プログラム | |
WO2022264222A1 (ja) | 動画像分析システム | |
JP7156743B1 (ja) | 動画像分析システム | |
JP7138990B1 (ja) | 動画像分析システム | |
WO2022201267A1 (ja) | 動画像分析プログラム | |
WO2022230138A1 (ja) | 動画像分析システム | |
WO2022201275A1 (ja) | 動画像分析プログラム | |
WO2022230155A1 (ja) | 動画像分析システム | |
WO2022230069A1 (ja) | 動画像分析システム | |
WO2022254498A1 (ja) | 動画像分析システム | |
WO2022254497A1 (ja) | 動画像分析システム | |
WO2022201271A1 (ja) | 動画像分析プログラム | |
WO2022230051A1 (ja) | 動画像分析システム | |
WO2022254489A1 (ja) | 動画像分析システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21955948 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023544855 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21955948 Country of ref document: EP Kind code of ref document: A1 |