WO2023031528A1 - Battery system having a means for measuring an internal pressure in order to manage a charge setpoint - Google Patents

Battery system having a means for measuring an internal pressure in order to manage a charge setpoint Download PDF

Info

Publication number
WO2023031528A1
WO2023031528A1 PCT/FR2022/051387 FR2022051387W WO2023031528A1 WO 2023031528 A1 WO2023031528 A1 WO 2023031528A1 FR 2022051387 W FR2022051387 W FR 2022051387W WO 2023031528 A1 WO2023031528 A1 WO 2023031528A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
battery
parameter
value
setpoint
Prior art date
Application number
PCT/FR2022/051387
Other languages
French (fr)
Inventor
Arnaud Beniere
Bao Kou XIONG
Victor CLOUZET
Jean Parenteau
Original Assignee
Psa Automobiles Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Psa Automobiles Sa filed Critical Psa Automobiles Sa
Priority to CN202280059603.1A priority Critical patent/CN117940311A/en
Publication of WO2023031528A1 publication Critical patent/WO2023031528A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current

Definitions

  • the field of the invention relates to a battery system and a method for controlling the charging of said system.
  • the invention applies in particular to an electrified vehicle and aims to optimize the service life of a battery.
  • Electrified vehicles are equipped with a high-power traction battery generally comprising several electrochemical cells, for example of the Lithium-ion type.
  • a cell comprises a wall and internal elements comprising a positive electrode, a separator and a negative electrode.
  • these elements must be kept in contact within a range of positive force.
  • the chemical reactions generate gases and an expansion of the electrodes, then producing a pressure pushing the walls.
  • This pressure increases as a cell ages. This is the pressure resulting from the increase in the passivation layer in proportion to the state of aging. Furthermore, it has been found that the pressure fluctuates significantly during variations in the level of the state of charge in charge and unloading. This results in a force resulting from the expansion of active materials in proportion to the instantaneous state of charge level. This last phenomenon is called breathing or “Breathing” according to the English term.
  • the increase in internal pressure affects the aging of the cell and therefore determines the end of life.
  • the end of life is generally set at a loss of energy storage capacity of around 20%.
  • values of the order of 25 k.N of tensile force were measured on the sides of the frame for a state of aging of 20% and values of 5 k.N for new condition.
  • Battery system frames are sized for a maximum level of pressure and for a given aging state, linked to an acceptable loss of energy capacity for the intended application.
  • the force applied to the surface of the cells by the internal elements reaches the expected limit, the use of the battery is terminated to avoid the risk of fire due to a rupture of the cells or a module.
  • document FR2952235A1 is known describing a charging process in which the voltage measured at the terminals of the battery is compared with a voltage threshold in order to control the end of charging and in which the threshold is provided by a table which is a function of the measured temperature and the current flowing in the battery.
  • the use of this table aims to prevent physical damage to the battery and improve its longevity.
  • Other strategies recommended by certain manufacturers aim to reduce the target state of charge level at the end of recharging, set for example at 80% of the maximum total capacity available, to reduce the stresses on the cells caused by a state of charge pupil.
  • the invention aims to overcome the aforementioned problems.
  • An object of the invention is to extend the life of a battery.
  • Another objective is to adapt the management of the charging of a battery according to the aging of the electrochemical cells.
  • Another objective is to improve the estimation of the level of aging of a battery and adapt the energy management in accordance with its use.
  • the invention relates to a battery system comprising electrical energy storage elements, a control means able to calculate a charging instruction and a metal frame to enclose all the elements.
  • the system further comprises means for measuring a parameter representative of a measured pressure which is exerted by the surface elements of said metal frame and the control means delivers a limited recharging setpoint as a function of said parameter .
  • the measuring means comprises at least one strain gauge delivering a measurement of the elongation of the metal frame.
  • the measuring means comprises at least one strain gauge delivering a measurement of the elongation of the metal frame or a measurement of the elongation of the wall of an electrical energy storage element.
  • the measuring means comprises at least one pressure sensor fixed between the energy storage elements and the metal frame.
  • the measuring means comprises at least one pressure sensor fixed between two electrochemical cells at the surface of one of said two cells.
  • an electrified vehicle comprising a battery system according to any one of the preceding embodiments.
  • a charging control method is provided for such a battery system comprising the following steps:
  • control of the first limited charging setpoint consists in determining a charging limitation coefficient as a function of the parameter with respect to a charging limitation threshold, the value of the first limited charging setpoint being a function of a second recharging setpoint multiplied by the limitation coefficient.
  • the limitation coefficient when the value of the parameter is greater than or equal to the limitation threshold, the limitation coefficient is equal to a first value controlling the stopping of the recharging of the battery system.
  • the limitation coefficient is equal to a second value which is a function of a difference between the value of the parameter and the limitation threshold.
  • the first charging setpoint is a maximum authorized charging current setpoint
  • the first value of the coefficient is equal to 0
  • the second value is a value strictly greater than 0, between 0 and 1, for example 0 .5, 0.75, 0.90 or 1 .
  • the first charging setpoint is a maximum authorized state of charge level
  • the maximum authorized state of charge level is strictly lower than the level of charge available, for example is equal to 90% of the maximum level of charge available, or else 80%, 70%, 60%, 50%, 40%, 30%, 20%, or 10% of the maximum level of charge available.
  • the invention improves the management of the electric recharge in that it is controlled in a manner adapted to the aging of the battery thanks to the monitoring of the expansion of the electrochemical cells. Thanks to the invention, it is possible to extend the duration life of a battery, by accepting a limited maximum state of charge level and controlled specifically according to the process. The invention makes it possible to monitor the increase in the dilation of the cells and to control the stopping of the recharge in the event of a risk of rupture of the cells.
  • FIG.1 schematically represents a battery system according to the invention.
  • FIG .2 represents a functional diagram describing the recharging control means provided for controlling the recharging control method according to the invention.
  • FIG.3 is a graph schematically illustrating the evolution of the aging level of a battery and the recharging control according to the invention as a function of the pressure exerted by the electrical energy storage elements of the battery.
  • FIG.4a schematically represents an alternative embodiment of the battery system comprising a pressure sensor.
  • FIG.4b schematically represents another alternative embodiment of the battery system comprising a pressure sensor.
  • the invention applies to the field of electrochemical batteries, in particular in the field of electrified vehicles, but not exclusively.
  • the battery system and the associated method find an application in the field of charging control management applications in stationary applications, electromobility and any electronic device with a battery system.
  • the preferred mode of the invention will be described for an electrified motor vehicle application comprising a high-power traction battery.
  • the term approximately means +/-10% of the indicated value and the limits of a range of values are included in the range.
  • the object of the invention is to stop recharging and/or gradually reduce recharging as a function of a parameter representative of an internal pressure of the battery.
  • the invention has the effect of gradually reducing the maximum authorized state of charge level as a function of the aging of the battery.
  • FIG 1 there is schematically described a preferred embodiment of the battery system according to the invention for an electrified vehicle.
  • the battery system 1 comprises a module 3 comprising electrical energy storage elements 9 comprising a plurality of electrochemical cells, in this non-limiting example of Lithium-ion type technology.
  • An electrochemical cell comprises a wall and internal elements comprising a positive electrode, a separator and a negative electrode. The internal elements of a cell must be held in contact within a positive force range.
  • the wall of a cell can be cylindrical, prismatic or be in the form of a film (technology known as “Pouch Cell”).
  • the battery system 1 further comprises a means 2 for controlling recharging.
  • the control means 2 is provided for at least developing a charging instruction for the energy storage elements 9 in accordance with the method according to the invention.
  • the battery system 1 is electrically rechargeable by means of electric lines 8 connected to a charging control device 6 of the electrified vehicle.
  • the charging control device 6 is electrically connected to an electrical charging source 7.
  • the electrical source 7 can be an electricity-generating machine, for example the electric traction machine of the vehicle, or a charging terminal external to the vehicle.
  • the charging control device 6 comprises charging means cooperating with an electrical outlet so as to be able to be electrically connected to the external charging terminal 7 connected to an electrical power supply network, generally operating in alternating voltage. Terminal 7 can deliver direct or alternating current.
  • High voltage contactors are generally provided which ensure the disconnection/connection of the battery 1 with the electrical power circuit of the vehicle, the charging control device 6 and the electrical outlet.
  • the battery system 1 further comprises means 5 for enclosing the electrochemical cells 9.
  • the means 5 for enclosing is a metal frame.
  • This metal frame is for example external to the electrochemical cells, made of aluminum type material for example.
  • This frame is then sufficiently rigid to exert a positive pressure against the surface of the walls of the cells 9, this rigid frame 5 surrounding or surrounding a group of several electrochemical cells 9 as can be seen in FIG. 1 so as to exert this positive pressure against the surface of walls of the cells 9.
  • the frame 5 is arranged to apply pressure to only part of the wall of the cells, for example on each side of the cells laterally. It is not excluded that the frame 5 can frame or completely enclose the electrochemical cells, for example in the form of a box. The pressure exerted by the frame 5 is then applied in the latter case to the side faces and the upper and lower faces of a cell.
  • the frame 5 is commonly designated by the English terms “casing”, “side plate” or “end plate”, or the terms strapping, box, belt. It frames the module 3 of a group of cells 9.
  • each cell of a battery can be enclosed by a frame 5.
  • the means for enclosing 5 forms the outer wall of an electrochemical cell. The pressure applied by the clamping means 5 is provided to keep the electrodes in contact against the separator inside each cell.
  • the force applied by the frame 5 on the surface of a cell is 5k. N.
  • the force applied by the frame 5 varies between 20k. N and 25k. N, with fluctuations of the order of 5k. N resulting from cell respiration.
  • the state of aging can be designated by the acronym SOHc for "State of Health on capacity" and corresponds to the aging level parameter of the battery expressed by a ratio between the maximum quantity of electricity that can be stored at a given moment and the quantity maximum storable electricity in new battery condition.
  • the state of charge level can be designated by the acronym SOC for "State of Charge” and corresponds to the state of charge level of the battery expressed by a ratio between the quantity of energy stored at a given instant and the maximum amount of energy that can be stored at a given time.
  • SOC State of Charge
  • the SOHc and SOC parameters are expressed in percentages.
  • the battery system 1 further comprises a means 4 for measuring a pressure.
  • the measuring means 4 has the function of measuring a parameter representative of a pressure which is exerted by the electrical energy storage elements 9 of the battery 1 on the surface of the frame 5.
  • the measuring means 4 is a strain gauge arranged to measure an elongation of the frame rigid 5 or the elongation of an electrochemical cell 9 of the battery 1.
  • the strain gauge is fixed to the surface of the frame 5 or to the surface of the wall of a cell.
  • the strain gauge 4 delivers a voltage signal to the control means 2, the value of which is proportional to the elongation of the frame 5.
  • the measuring means can be a pressure sensor or a piezoelectric technology sensor for example. Such a sensor is fixed between an electrochemical cell 9 and the frame 5, or alternatively between two electrochemical cells 9.
  • control means 2 The monitoring of this parameter allows the control means 2 to develop a recharging setpoint CRL according to the invention, for example an end of recharging command when this parameter exceeds a chosen threshold. Additionally or as an alternative variant, the control means 2 is configured to generate a command to reduce the charging current gradually as a function of said parameter.
  • the control means 2 is intended for the supervision of the battery system 1 . It is capable of delivering battery status information to other vehicle computers, such as a value representative of the SOC, the SOHc, the temperature, the charging current flowing through the battery or the no-load voltage in particular , as well as instructions intended for the charging control device 6 and/or a charging terminal 7, in particular an authorized charging power, a charging mode, a maximum charging current, or a charging limitation setpoint. fluent.
  • a communication bus is provided, for example of the CAN (Control Area Network) type, allowing the control means 2 to communicate the charging instructions to other computers.
  • the charging control device 6 has the function of managing the communication between the various charging terminals and of monitoring and controlling the electrical charging at the terminal.
  • the recharging device 6 also comprises an electrical converter of the alternating/direct AC/DC and direct/direct DC/DC type. In terminal charging situations, it performs the conversion of an alternating voltage to an AC/DC direct voltage, in particular when charging in mode 2 or mode 3 in which it is necessary to convert an alternating voltage in 220V (single-phase or three-phase type) to a compatible DC voltage of the battery system, up to 450V or 1000V for example in this embodiment.
  • another function is the DC/DC conversion between the battery and the vehicle's on-board systems, for example the 14V on-board network, the low voltage battery and the electric traction machine of the powertrain.
  • the charging voltage is delivered directly by terminal 7, i.e. without modification of the voltage by the voltage converter.
  • the voltage delivered by terminal 7 is of the DC type, generally greater than 300V, in this example between 400V and 500V, and is directly applied to the terminals of battery 1 through the high voltage contactors.
  • the charging device 6 delivers to terminal 7 the charging setpoint CRL calculated by the control means 2 of the battery system 1 .
  • the control means 2 is provided with an integrated circuit computer and electronic memories, the computer and the memories being configured to execute a recharging control method according to the invention. But this is not mandatory. Indeed, the computer could be external to the control means 2, while being coupled to the latter. In the latter case, it can itself be arranged in the form of a dedicated computer comprising a possible dedicated program, for example. Consequently, the control means 2, according to the invention, can be produced in the form of software (or computer (or even “software”)) modules, or else of electronic circuits (or “hardware”), or even of a combination of electronic circuits and software modules.
  • FIG. 2 the functional module of the control means 2 of the battery system 1 provided to allow the charging control method according to the invention to be implemented has been described.
  • it conventionally comprises a first module 20 configured to calculate a charging instruction CR.
  • the recharge setpoint is a maximum authorized recharge current setpoint.
  • the current setpoint CR is determined as a function of the current state of charge SOC, of the state of aging SOH, of the temperature in particular.
  • the current setpoint CR is delivered for example by a predetermined map, established in design and recorded in the memory of the control unit 2 of the battery system 1, taking as input the current state of charge SOC and the temperature of the battery 1 .
  • the control means 2 receives as input a measured value of the temperature of the battery from one or more temperature sensors, as well as a measured value of the total voltage of the battery 1 .
  • the total voltage of the battery 1 can be determined from information measured at the level of the electrochemical cells 9.
  • the current flowing through the battery is determined from current sensors of the battery 1 .
  • the control means 2 is able to determine the SOC state of charge level of the battery 1 at any time, for example expressed as a % of the total capacity of the battery, from equivalence tables with the measured voltage and an indicator of state of health or state of aging SOH.
  • the table(s) are stored in the memory of the control means 2 and can be consulted at any time by its computer.
  • the recharging control method comprises a step of determining a parameter P representative of a measured pressure which is exerted by the internal elements of the battery on the surface of said means for clamping and a step of controlling the setpoint limited charging CRL as a function of said parameter P.
  • the charging setpoint CRL is a maximum accepted current setpoint.
  • the strain gauge 4 delivers an elongation value M of the frame 5 to the computer 2.
  • the value M is proportional to the elongation of the frame 5.
  • the value M is multiplied, illustrated by the multiplier block in FIG. 2, by a coefficient of stiffness K, proportional between the elongation and the force exerted by the internal elements of the battery 1.
  • K is a predetermined coefficient in design and stored in memory.
  • P is a parameter whose value is representative of the force exerted by the internal elements of battery 1 on frame 5.
  • the control of the limited recharging setpoint CRL consists in determining a recharging limitation coefficient CL as a function of the parameter P with respect to a recharging limitation threshold SL.
  • the control means 2 comprises a second module 21 whose function is to calculate the limitation coefficient CL.
  • the function of the limitation coefficient CL is to limit the recharge setpoint CR and/or to gradually reduce the value of the recharge setpoint CL, until the end of the recharge when the pressure is greater than a predetermined limitation threshold.
  • the limitation coefficient CL is multiplied by the value of the current setpoint CR to calculate the limited recharge setpoint CRL, illustrated by the multiplier block in FIG. 2.
  • the limitation coefficient CL takes values in a range delimited by the values 0 and 1 , in a binary or gradual way.
  • the coefficient CL is equal to 1 as long as the value of the parameter P is lower than the pressure limitation threshold SL.
  • the limitation coefficient CL is equal to zero when the value of the parameter P is greater than or equal to the threshold SL.
  • the value 0 therefore controls the stopping of recharging because the maximum authorized current set point is equal to 0 amperes.
  • the threshold SL is calibrated for example at a value of approximately 25k. N.
  • the value of the threshold SL depends on the dimensions and characteristics of the frame 5 and the stress criteria specific to the battery system 1. This value is in no way limiting of the invention.
  • the coefficient CL is equal to a value between 0 and 1 according to the difference between the value of the parameter P and the value of the threshold SL.
  • the value is equal to 1 when the deviation is greater than 2k. N, i.e. for a pressure P up to 23k. N.
  • the value of CL is equal to 0.5 for a pressure P equal to 24k. N and the value of CL is 0 when P is equal to or greater than 25k. N.
  • Other coefficient values can be envisaged without departing from the scope of the invention.
  • the limited recharge setpoint CRL is preferably the maximum current setpoint authorized by the battery, that is to say is equal to or less than the setpoint CR.
  • the charging setpoint CRL can be a setpoint specifically controlling the stopping of the charging, which can be independent of the setpoint CR used to control the charging of the battery. It does not necessarily express a maximum recharge current.
  • the setpoint CRL can be any setpoint capable of controlling the end of charging protocol. The CRL setpoint commands the stopping of recharging before reaching the maximum state of charge SOC to avoid degradation of the cells, in particular separation of the electrodes and separators internal to the cells.
  • the charging setpoint is a target maximum state of charge level SOC conditioning the triggering of the stopping of the charging.
  • the method comprises the determination of a maximum SOC charge level authorized for recharging as a function of the value of the parameter P.
  • the computer of the battery system continuously monitors the state of charge of the battery and stops charging when the maximum authorized SOC is reached.
  • a table saved in the memory of computer 2, comprises values of the maximum battery charge level associated with parameter values P, representative of the pressure or of the elongation measured. Depending on the value P measured, the table delivers the maximum authorized charge level.
  • the maximum level of SOC authorized is configured at a value lower than the maximum level of SOC available.
  • This maximum authorized level corresponds to the maximum acceptable pressure with regard to a risk of rupture of the frame or the cells.
  • the advantage of this variant is that it also allows the user to be shown a virtual state of charge level, in percentage, based on the authorized load range instead of an available load range.
  • the charge level can thus be reported on a scale of [0%-100%] of the allowed range. This avoids a possible misunderstanding of the limitation function by the user, where the latter would consider the early stopping of the charge as a malfunction of the battery system.
  • FIG. 3 a graph is presented illustrating the operation of the invention for controlling battery recharging, in particular for controlling the stopping of recharging when the internal pressure of a battery reaches the predetermined threshold SL .
  • the evolution of battery aging has been represented as a function of the SOHc parameter, expressed in % by the ratio between the quantity of energy maximum storable at a given moment and maximum quantity of energy storable in the new state of the battery.
  • the measured pressure P is between 5k. N, in early battery life situation, and 25k. N, in usual end of battery life situation.
  • the threshold SL illustrated by the double horizontal line is established in this example at 25k. N.
  • the value of the pressure P measured by the strain gauge varies between these two curves according to the value of the current SOC throughout the life of the battery. This is the breathing phenomenon. Furthermore, it is observed that the average value P increases as the battery ages.
  • SOCmax is represented by a double line curve and is between 0% and 100% and corresponds to the authorized battery usage range.
  • the value of SOCmax at the start of life is equal to 100% and remains constant as long as the pressure measured is lower than the threshold SL.
  • the value of SOCmax decreases gradually as a function of the pressure when the pressure P reaches the threshold SL.
  • UT1 corresponds to the life phase during which the pressure measured is lower than the threshold SL whatever the value of the SOC.
  • the method according to the invention does not impose any recharging limitation.
  • UT2 corresponds to a phase where the aging SOHc is greater than 20% and corresponds to a life phase where the measured pressure P SO cioo% can reach the threshold value SL according to the value of the SOC.
  • the control method according to the invention imposes a limitation of the recharging setpoint as soon as the pressure reaches the threshold SL. It can be seen that the value of the pressure P peaks at the value of the threshold SL. This is the consequence of the charging limitation according to the method.
  • FIGS. 4a and 4b a first alternative embodiment of the module 3 of a battery system is described in which the measuring means 4 is a pressure sensor.
  • the sensor 4 is fixed between the frame 5 and an electrochemical cell 9.
  • the sensor 4 is fixed between two electrochemical cells 9.
  • each module or only a selection of the modules comprises at least one means measurement of parameter P.
  • Each module or the selection of modules can be equipped with a strain gauge and/or a pressure sensor.
  • the frame forming the pack is equipped with one or more strain gauges and/or one or more pressure sensors between the frame and a cell, and /or between two cells.
  • the pressure measurement means is attached to the surface of the film, or between two cells.
  • the battery system can comprise a single electrochemical cell or comprise a plurality of cells.

Abstract

The present invention relates to a battery system (1) comprising electrical power storage elements (9), a control means (2) capable of calculating a charge setpoint (CRL) and a means (5) for enclosing the elements (9), which battery system further comprises a means for measuring (4) a parameter representative of a measured pressure which is exerted by the surface elements (9) of the enclosure means (5) and wherein the control means (2) provides a limited charge setpoint (CRL) according to the parameter. The invention also relates to a method for controlling the charge by managing a charge setpoint according to the parameter representative of the measured pressure. The invention is for use, for example, in electric vehicles having a traction battery.

Description

DESCRIPTION DESCRIPTION
TITRE : SYSTEME DE BATTERIE COMPORTANT UN MOYEN DETITLE: BATTERY SYSTEM COMPRISING A MEANS OF
MESURE D’UNE PRESSION INTERNE POUR PILOTER UNEINTERNAL PRESSURE MEASUREMENT TO CONTROL A
CONSIGNE DE RECHARGE RECHARGE INSTRUCTION
La présente invention revendique la priorité de la demande française N°2109170 déposée le 02.09.2021 dont le contenu (texte, dessins et revendications) est ici incorporé par référence. The present invention claims the priority of French application No. 2109170 filed on 02.09.2021, the content of which (text, drawings and claims) is incorporated herein by reference.
Le domaine de l’invention concerne un système d’une batterie et un procédé de contrôle de la recharge dudit système. L’invention s’applique notamment pour un véhicule électrifié et vise à optimiser la durée de vie d’utilisation d’une batterie. The field of the invention relates to a battery system and a method for controlling the charging of said system. The invention applies in particular to an electrified vehicle and aims to optimize the service life of a battery.
Les véhicules électrifiés sont équipés d’une batterie de traction de grande puissance comprenant généralement plusieurs cellules électrochimiques, par exemple de type Lithium-ion. Pour ce type de technologies, une cellule comporte une paroi et des éléments internes comportant une électrode positive, un séparateur et une électrode négative. Pour le bon fonctionnement d’une cellule, ces éléments doivent être maintenus en contact dans une plage de force positive. En fonctionnement, les réactions chimiques génèrent des gaz et une expansion des électrodes, produisant alors une pression repoussant les parois. Electrified vehicles are equipped with a high-power traction battery generally comprising several electrochemical cells, for example of the Lithium-ion type. For this type of technology, a cell comprises a wall and internal elements comprising a positive electrode, a separator and a negative electrode. For the proper functioning of a cell, these elements must be kept in contact within a range of positive force. In operation, the chemical reactions generate gases and an expansion of the electrodes, then producing a pressure pushing the walls.
Cette pression augmente au fur et à mesure du vieillissement d’une cellule. Il s’agit de la pression résultant de l’accroissement de la couche de passivation proportionnellement à l’état de vieillissement. Par ailleurs, on a constaté que la pression fluctue sensiblement lors des variations du niveau d’état de charge en charge et décharge. Il en résulte une force résultant de l’expansion de matières actives proportionnellement au niveau d’état de charge instantané. Ce dernier phénomène est appelé respiration ou « Breathing » selon le terme anglophone. This pressure increases as a cell ages. This is the pressure resulting from the increase in the passivation layer in proportion to the state of aging. Furthermore, it has been found that the pressure fluctuates significantly during variations in the level of the state of charge in charge and unloading. This results in a force resulting from the expansion of active materials in proportion to the instantaneous state of charge level. This last phenomenon is called breathing or “Breathing” according to the English term.
L’augmentation de pression résultant à la fois du vieillissement et à la fois de la respiration de la cellule a tendance à diminuer la pression entre électrodes et séparateurs. Pour éviter leur séparation, il est courant d’enserrer une cellule ou un ensemble de cellules dans un cadre rigide pour maintenir les éléments internes en contact. The increase in pressure resulting from both aging and both cell respiration tends to decrease the pressure between electrodes and separators. To prevent their separation, it is common to enclose a cell or a set of cells in a rigid frame to keep the internal elements in contact.
Au fur et à mesure de l’utilisation d’une cellule, l’augmentation de la pression interne affecte le vieillissement de la cellule et par conséquent détermine la fin de vie. Pour des applications d’électromobilités, la fin de vie est généralement fixée à une perte de capacité de stockage d’énergie d’environ 20%. Au regard des déformations mécaniques observées entre cellules et les extrémités du cadre rigide, on a mesuré des valeurs de l’ordre de 25 k.N de force de traction sur les côtés du cadre pour un état de vieillissement de 20% et des valeurs de 5 k.N pour un état neuf. As a cell is used, the increase in internal pressure affects the aging of the cell and therefore determines the end of life. For electromobility applications, the end of life is generally set at a loss of energy storage capacity of around 20%. With regard to the mechanical deformations observed between cells and the ends of the rigid frame, values of the order of 25 k.N of tensile force were measured on the sides of the frame for a state of aging of 20% and values of 5 k.N for new condition.
Les cadres de systèmes de batterie sont dimensionnés pour un niveau maximum de pression et pour un état de vieillissement donné, lié à une perte de capacité d’énergie acceptable pour l’application envisagée. Lorsque la force appliquée à la surface des cellules par les éléments internes atteint la limite prévue, on met fin à l’utilisation de la batterie pour éviter les risques d’incendie du fait d’une rupture des cellules ou d’un module. Battery system frames are sized for a maximum level of pressure and for a given aging state, linked to an acceptable loss of energy capacity for the intended application. When the force applied to the surface of the cells by the internal elements reaches the expected limit, the use of the battery is terminated to avoid the risk of fire due to a rupture of the cells or a module.
A cet effet, les constructeurs automobiles élaborent des algorithmes d’estimation de l’état de vieillissement des batteries pour définir la période de fin de vie. Une méthode connue consiste à comptabiliser le nombre de cycles de charges et décharge et décider un remplacement de la batterie lorsqu’une limite est atteinte. Cependant, les hypothèses de contrainte utilisées ne sont pas toujours réalistes car le niveau de vieillissement dépend principalement de l’utilisation réelle de la batterie. Il arrive dans certains cas que l’utilisation de la batterie pourrait être prolongée sans risque de disfonctionnement. To this end, car manufacturers are developing algorithms for estimating the state of aging of batteries to define the end-of-life period. A known method consists of counting the number of charge and discharge cycles and deciding to replace the battery when a limit is reached. However, the constraint assumptions used are not always realistic because the level of aging mainly depends on the actual use of the battery. It happens in some cases that the use of the battery could be extended without risk of malfunction.
Par ailleurs, la durée de vie des systèmes de batterie pourrait être augmentée en contrepartie de batteries plus volumineuses, plus lourdes et d’un cadre renforcé ainsi qu’une plus grande diminution de la capacité totale. Cependant, ces solutions ne sont pas préconisées dans le domaine de l’électromobilité. On the other hand, the lifetime of the battery systems could be increased in return for larger, heavier batteries and a reinforced frame as well as a greater reduction in the total capacity. However, these solutions are not recommended in the field of electromobility.
Il est connu également d’implémenter des procédés de contrôle de température et de limitation du courant de charge, en particulier pour les charges rapides. On connaît par exemple le document FR2952235A1 décrivant un procédé de recharge dans lequel on compare la tension mesurée aux bornes de la batterie avec un seuil de tension afin de piloter la fin de charge et dans laquelle le seuil est fourni par une table qui est fonction de la température mesurée et du courant circulant dans la batterie. L’usage de cette table vise à éviter les dégradations physiques de la batterie et améliorer sa longévité. D’autres stratégies préconisées par certains constructeurs visent à réduire le niveau d’état de charge cible en fin de recharge, paramétré par exemple à 80% de la capacité totale maximum disponible, pour diminuer les contraintes sur les cellules provoquées par un état de charge élevé. It is also known to implement methods for controlling the temperature and for limiting the charging current, in particular for fast charging. For example, document FR2952235A1 is known describing a charging process in which the voltage measured at the terminals of the battery is compared with a voltage threshold in order to control the end of charging and in which the threshold is provided by a table which is a function of the measured temperature and the current flowing in the battery. The use of this table aims to prevent physical damage to the battery and improve its longevity. Other strategies recommended by certain manufacturers aim to reduce the target state of charge level at the end of recharging, set for example at 80% of the maximum total capacity available, to reduce the stresses on the cells caused by a state of charge pupil.
L’invention vise à pallier les problèmes précités. Un objectif de l’invention est de prolonger la durée de vie d’une batterie. Un autre objectif est d’adapter la gestion de la recharge d’une batterie en fonction du vieillissement des cellules électrochimiques. Un autre objectif est d’améliorer l’estimation du niveau de vieillissement d’une batterie et adapter la gestion énergétique en concordance avec son usage. The invention aims to overcome the aforementioned problems. An object of the invention is to extend the life of a battery. Another objective is to adapt the management of the charging of a battery according to the aging of the electrochemical cells. Another objective is to improve the estimation of the level of aging of a battery and adapt the energy management in accordance with its use.
Plus précisément, l’invention concerne un système de batterie comportant des éléments de stockage d’énergie électrique, un moyen de contrôle apte à calculer une consigne de recharge et un cadre métallique pour enserrer l’ensemble des éléments. Selon l’invention, le système comporte en outre un moyen de mesure d’un paramètre représentatif d’une pression mesurée qui est exercée par les éléments en surface dudit cadre métallique et le moyen de contrôle délivre une consigne de recharge limitée en fonction dudit paramètre. More specifically, the invention relates to a battery system comprising electrical energy storage elements, a control means able to calculate a charging instruction and a metal frame to enclose all the elements. According to the invention, the system further comprises means for measuring a parameter representative of a measured pressure which is exerted by the surface elements of said metal frame and the control means delivers a limited recharging setpoint as a function of said parameter .
Selon une variante, le moyen de mesure comporte au moins une jauge de contrainte délivrant une mesure de l’élongation du cadre métallique. According to a variant, the measuring means comprises at least one strain gauge delivering a measurement of the elongation of the metal frame.
Selon une variante, le moyen de mesure comporte au moins une jauge de contrainte délivrant une mesure de l’élongation du cadre métallique ou une mesure de l’élongation de la paroi d’un élément de stockage d’énergie électrique. According to a variant, the measuring means comprises at least one strain gauge delivering a measurement of the elongation of the metal frame or a measurement of the elongation of the wall of an electrical energy storage element.
Selon une variante, le moyen de mesure comporte au moins un capteur de pression fixé entre les éléments de stockage d’énergie et le cadre métallique. According to a variant, the measuring means comprises at least one pressure sensor fixed between the energy storage elements and the metal frame.
Selon une variante du système dans lequel les éléments de stockage d’énergie sont des cellules électrochimiques, le moyen de mesure comporte au moins un capteur de pression fixé entre deux cellules électrochimiques en surface d’une desdites deux cellules. According to a variant of the system in which the energy storage elements are electrochemical cells, the measuring means comprises at least one pressure sensor fixed between two electrochemical cells at the surface of one of said two cells.
Il est prévu selon l’invention un véhicule électrifié comportant un système de batterie selon l’un quelconque des modes de réalisation précédents. Il est prévu selon l’invention un procédé de contrôle de recharge pour un tel système de batterie comportant les étapes suivantes : There is provided according to the invention an electrified vehicle comprising a battery system according to any one of the preceding embodiments. According to the invention, a charging control method is provided for such a battery system comprising the following steps:
La détermination d’un paramètre représentatif d’une pression mesurée qui est exercée par les éléments de stockage d’énergie électrique en surface dudit cadre métallique, The determination of a parameter representative of a measured pressure which is exerted by the electrical energy storage elements on the surface of said metal frame,
Le pilotage d’une première consigne de recharge limitée en fonction dudit paramètre. The control of a first charging setpoint limited according to said parameter.
Selon une variante, le pilotage de la première consigne de recharge limitée consiste à déterminer un coefficient de limitation de la recharge en fonction du paramètre par rapport à un seuil de limitation de la recharge, la valeur de la première consigne de recharge limitée étant fonction d’une deuxième consigne de recharge multipliée par le coefficient de limitation. According to a variant, the control of the first limited charging setpoint consists in determining a charging limitation coefficient as a function of the parameter with respect to a charging limitation threshold, the value of the first limited charging setpoint being a function of a second recharging setpoint multiplied by the limitation coefficient.
Selon une variante, lorsque la valeur du paramètre est supérieure ou égale au seuil de limitation, le coefficient de limitation est égal à une première valeur commandant l’arrêt de la recharge du système de la batterie. According to a variant, when the value of the parameter is greater than or equal to the limitation threshold, the limitation coefficient is equal to a first value controlling the stopping of the recharging of the battery system.
Selon une variante, lorsque la valeur du paramètre est inférieure au seuil de limitation, le coefficient de limitation est égal à une deuxième valeur qui est en fonction d’un écart entre la valeur du paramètre et le seuil de limitation. According to a variant, when the value of the parameter is lower than the limitation threshold, the limitation coefficient is equal to a second value which is a function of a difference between the value of the parameter and the limitation threshold.
Selon une variante, la première consigne de recharge est une consigne de courant de charge maximum autorisée, la première valeur du coefficient est égale à 0, et la deuxième valeur est une valeur strictement supérieure à 0, comprise entre 0 et 1 , par exemple 0,5, 0,75, 0,90 ou 1 . According to a variant, the first charging setpoint is a maximum authorized charging current setpoint, the first value of the coefficient is equal to 0, and the second value is a value strictly greater than 0, between 0 and 1, for example 0 .5, 0.75, 0.90 or 1 .
Selon une variante, la première consigne de recharge est un niveau d’état de charge maximum autorisé, lorsque la valeur du paramètre est supérieure ou égale au seuil de limitation, le niveau d’état de charge maximum autorisé est strictement inférieur au niveau de charge disponible, par exemple est égal à 90% du niveau maximum de charge disponible, ou alors 80%, 70%, 60%, 50%, 40%, 30%, 20%, ou 10% du niveau maximum de charge disponible. According to a variant, the first charging setpoint is a maximum authorized state of charge level, when the value of the parameter is greater than or equal to the limitation threshold, the maximum authorized state of charge level is strictly lower than the level of charge available, for example is equal to 90% of the maximum level of charge available, or else 80%, 70%, 60%, 50%, 40%, 30%, 20%, or 10% of the maximum level of charge available.
L’invention améliore la gestion de la recharge électrique en ce qu’elle est pilotée de manière adaptée au vieillissement de la batterie grâce à la surveillance de la dilatation des cellules électrochimiques. Grâce à l’invention, il est possible de prolonger la durée de vie d’une batterie, en acceptant un niveau d’état de charge maximum limité et piloté spécifiquement selon le procédé. L’invention permet de surveiller l’augmentation de la dilatation des cellules et commander l’arrêt de la recharge en cas de risque de rupture des cellules. The invention improves the management of the electric recharge in that it is controlled in a manner adapted to the aging of the battery thanks to the monitoring of the expansion of the electrochemical cells. Thanks to the invention, it is possible to extend the duration life of a battery, by accepting a limited maximum state of charge level and controlled specifically according to the process. The invention makes it possible to monitor the increase in the dilation of the cells and to control the stopping of the recharge in the event of a risk of rupture of the cells.
D’autres caractéristiques et avantages de la présente invention apparaitront plus clairement à la lecture de la description détaillée qui suit comprenant des modes de réalisation de l’invention donnés à titre d’exemples nullement limitatifs et illustrés par les dessins annexés, dans lesquels : Other characteristics and advantages of the present invention will appear more clearly on reading the following detailed description comprising embodiments of the invention given by way of non-limiting examples and illustrated by the appended drawings, in which:
[Fig .1 ] représente schématiquement un système de batterie selon l’invention.[Fig.1] schematically represents a battery system according to the invention.
[Fig .2] représente un diagramme fonctionnel décrivant le moyen de contrôle de la recharge prévu pour piloter le procédé de contrôle de la recharge selon l’invention. [Fig .2] represents a functional diagram describing the recharging control means provided for controlling the recharging control method according to the invention.
[Fig.3] est un graphique illustrant schématiquement l’évolution du niveau de vieillissement d’une batterie et le contrôle de la recharge selon l’invention en fonction de la pression exercée par les éléments de stockage d’énergie électrique de la batterie. [Fig.3] is a graph schematically illustrating the evolution of the aging level of a battery and the recharging control according to the invention as a function of the pressure exerted by the electrical energy storage elements of the battery.
[Fig.4a] représente schématiquement une variante de réalisation du système de batterie comportant un capteur de pression. [Fig.4a] schematically represents an alternative embodiment of the battery system comprising a pressure sensor.
[Fig .4b] représente schématiquement une autre variante de réalisation du système de batterie comportant un capteur de pression. [Fig .4b] schematically represents another alternative embodiment of the battery system comprising a pressure sensor.
L’invention s’applique au domaine des batteries électrochimiques, notamment dans le domaine des véhicules électrifiés, mais pas exclusivement. Le système de batterie et le procédé associé trouvent une application dans le domaine des applications de gestion de contrôle de recharge en application stationnaire, d’électromobilité et tout dispositif électronique à système de batterie. A titre d’exemple non limitatif, le mode préférentiel de l’invention sera décrit pour une application de véhicule automobile électrifié comprenant une batterie de traction de haute puissance. Dans la présente description, le terme environ signifie +/-10% de la valeur indiquée et les bornes d’une plage de valeurs sont comprises dans la plage. The invention applies to the field of electrochemical batteries, in particular in the field of electrified vehicles, but not exclusively. The battery system and the associated method find an application in the field of charging control management applications in stationary applications, electromobility and any electronic device with a battery system. By way of non-limiting example, the preferred mode of the invention will be described for an electrified motor vehicle application comprising a high-power traction battery. In the present description, the term approximately means +/-10% of the indicated value and the limits of a range of values are included in the range.
L’invention a pour objectif d’arrêter la recharge et/ou réduire graduellement la recharge en fonction d’un paramètre représentatif d’une pression interne de la batterie. L’invention a pour effet de réduire progressivement le niveau d’état de charge maximum autorisé en fonction du vieillissement de la batterie. En figure 1 , on a décrit schématiquement un mode de réalisation préférentiel du système de batterie selon l’invention pour un véhicule électrifié. Le système de batterie 1 comporte un module 3 comprenant des éléments 9 de stockage d’énergie électrique comprenant une pluralité de cellules électrochimiques, dans cet exemple non limitatif de technologie de type Lithium-ion. Une cellule électrochimique comporte une paroi et des éléments internes comportant une électrode positive, un séparateur et une électrode négative. Les éléments internes d’une cellule doivent être maintenus en contact dans une plage de force positive. La paroi d’une cellule peut être de forme cylindrique, prismatique ou être de la forme d’un film (technologie dite « Pouch Cell »). Le système de batterie 1 comporte en outre un moyen de contrôle 2 de la recharge. Le moyen de contrôle 2 est prévu pour au moins élaborer une consigne de recharge des éléments 9 de stockage d’énergie conformément au procédé selon l’invention. The object of the invention is to stop recharging and/or gradually reduce recharging as a function of a parameter representative of an internal pressure of the battery. The invention has the effect of gradually reducing the maximum authorized state of charge level as a function of the aging of the battery. In Figure 1, there is schematically described a preferred embodiment of the battery system according to the invention for an electrified vehicle. The battery system 1 comprises a module 3 comprising electrical energy storage elements 9 comprising a plurality of electrochemical cells, in this non-limiting example of Lithium-ion type technology. An electrochemical cell comprises a wall and internal elements comprising a positive electrode, a separator and a negative electrode. The internal elements of a cell must be held in contact within a positive force range. The wall of a cell can be cylindrical, prismatic or be in the form of a film (technology known as “Pouch Cell”). The battery system 1 further comprises a means 2 for controlling recharging. The control means 2 is provided for at least developing a charging instruction for the energy storage elements 9 in accordance with the method according to the invention.
Le système de batterie 1 est rechargeable électriquement au moyen de lignes électriques 8 connectées à un dispositif de contrôle de recharge 6 du véhicule électrifié. Le dispositif de contrôle de recharge 6 est connecté électriquement à une source électrique de recharge 7. La source électrique 7 peut être une machine génératrice d’électricité, par exemple la machine électrique de traction du véhicule, ou une borne de recharge externe au véhicule. Par exemple, le dispositif de contrôle de recharge 6 comporte des moyens de recharge coopérant avec une prise électrique de manière à pouvoir à se brancher électriquement à la borne de recharge externe 7 connectée à un réseau d’alimentation électrique, fonctionnant généralement en tension alternative. La borne 7 peut délivrer un courant continu ou alternatif. Il est généralement prévu des contacteurs haute tension qui assurent la déconnexion/connexion de la batterie 1 avec le circuit électrique de puissance du véhicule, le dispositif de contrôle de recharge 6 et la prise électrique. The battery system 1 is electrically rechargeable by means of electric lines 8 connected to a charging control device 6 of the electrified vehicle. The charging control device 6 is electrically connected to an electrical charging source 7. The electrical source 7 can be an electricity-generating machine, for example the electric traction machine of the vehicle, or a charging terminal external to the vehicle. For example, the charging control device 6 comprises charging means cooperating with an electrical outlet so as to be able to be electrically connected to the external charging terminal 7 connected to an electrical power supply network, generally operating in alternating voltage. Terminal 7 can deliver direct or alternating current. High voltage contactors are generally provided which ensure the disconnection/connection of the battery 1 with the electrical power circuit of the vehicle, the charging control device 6 and the electrical outlet.
Le système de batterie 1 comporte en outre un moyen 5 pour enserrer les cellules électrochimiques 9. Dans ce mode de réalisation, le moyen 5 pour enserrer est un cadre métallique. Ce cadre métallique est par exemple externe aux cellules électrochimiques, en matériau de type aluminium par exemple. Ce cadre est alors suffisamment rigide pour exercer une pression positive contre la surface des parois des cellules 9, ce cadre rigide 5 ceinturant ou entourant un groupe de plusieurs cellules électrochimiques 9 comme cela est visible en figure 1 de manière à exercer cette pression positive contre la surface des parois des cellules 9. Le cadre 5 est agencé pour appliquer une pression sur une partie seulement de la paroi des cellules, par exemple de chaque côté des cellules latéralement. On n’exclut pas que le cadre 5 puisse encadrer ou enfermer complètement les cellules électrochimiques, par exemple sous forme de boitier. La pression exercée par le cadre 5 s’applique alors dans ce dernier cas sur les faces latérales et les faces supérieures et inférieures d’une cellule. The battery system 1 further comprises means 5 for enclosing the electrochemical cells 9. In this embodiment, the means 5 for enclosing is a metal frame. This metal frame is for example external to the electrochemical cells, made of aluminum type material for example. This frame is then sufficiently rigid to exert a positive pressure against the surface of the walls of the cells 9, this rigid frame 5 surrounding or surrounding a group of several electrochemical cells 9 as can be seen in FIG. 1 so as to exert this positive pressure against the surface of walls of the cells 9. The frame 5 is arranged to apply pressure to only part of the wall of the cells, for example on each side of the cells laterally. It is not excluded that the frame 5 can frame or completely enclose the electrochemical cells, for example in the form of a box. The pressure exerted by the frame 5 is then applied in the latter case to the side faces and the upper and lower faces of a cell.
Le cadre 5 est couramment désigné par les termes anglophones « casing », « side plate » ou « end plate », ou les termes cerclage, boitier, ceinture. Il encadre le module 3 d’un groupe de cellules 9. Dans un autre mode de réalisation, on envisage que chaque cellule d’une batterie puisse être enserrée par un cadre 5. Dans un autre mode de réalisation, le moyen pour enserrer 5 forme la paroi externe d’une cellule électrochimique. La pression appliquée par le moyen pour enserrer 5 est prévue pour maintenir en contact les électrodes contre le séparateur à l’intérieur de chaque cellule. The frame 5 is commonly designated by the English terms “casing”, “side plate” or “end plate”, or the terms strapping, box, belt. It frames the module 3 of a group of cells 9. In another embodiment, it is envisaged that each cell of a battery can be enclosed by a frame 5. In another embodiment, the means for enclosing 5 forms the outer wall of an electrochemical cell. The pressure applied by the clamping means 5 is provided to keep the electrodes in contact against the separator inside each cell.
Dans le cas d’exemple non limitatif, d’une cellule prismatique de dimensions 28mmx7mmx14mm, en début de vie, la force appliquée par le cadre 5 en surface d’une cellule est de 5k. N. Pour un état de vieillissement en fin de vie spécifié par exemple pour un véhicule automobile, la force appliquée par le cadre 5 varie entre 20k. N et 25k. N, avec des fluctuations de l’ordre de 5k. N résultant de la respiration des cellules. In the case of a non-limiting example, of a prismatic cell of dimensions 28mmx7mmx14mm, at the start of its life, the force applied by the frame 5 on the surface of a cell is 5k. N. For a state of aging at the end of life specified for example for a motor vehicle, the force applied by the frame 5 varies between 20k. N and 25k. N, with fluctuations of the order of 5k. N resulting from cell respiration.
L’état de vieillissement peut être désigné par l’acronyme SOHc pour « State of Health on capacity » et correspond au paramètre de niveau de vieillissement de la batterie exprimé par un rapport entre la quantité d’électricité maximum stockable à un instant donné et quantité d’électricité maximum stockable à l’état neuf de la batterie. The state of aging can be designated by the acronym SOHc for "State of Health on capacity" and corresponds to the aging level parameter of the battery expressed by a ratio between the maximum quantity of electricity that can be stored at a given moment and the quantity maximum storable electricity in new battery condition.
Le niveau d’état de charge peut être désigné par l’acronyme SOC pour « State of Charge » et correspond au niveau d’état de charge de la batterie exprimé par un rapport entre la quantité d’énergie stockée à un instant donné et la quantité d’énergie maximum stockable à un instant donné. Les paramètres SOHc et SOC sont exprimés en pourcents. The state of charge level can be designated by the acronym SOC for "State of Charge" and corresponds to the state of charge level of the battery expressed by a ratio between the quantity of energy stored at a given instant and the maximum amount of energy that can be stored at a given time. The SOHc and SOC parameters are expressed in percentages.
Les forces appliquées qui ont pu être mesurées au cours de la vie d’une cellule ou en essai permettent d’établir un seuil de limitation de la recharge visant à stopper une dilatation d’une cellule électrochimique résultant d’un accroissement de l’état de charge. The forces applied which have been measured during the life of a cell or during testing make it possible to establish a recharge limitation threshold aimed at stopping expansion of an electrochemical cell resulting from an increase in the state dump.
Le système de batterie 1 comporte en outre un moyen de mesure 4 d’une pression. Le moyen de mesure 4 a pour fonction de mesurer un paramètre représentatif d’une pression qui est exercée par les éléments 9 de stockage d’énergie électrique de la batterie 1 en surface du cadre 5. Dans ce mode préférentiel de l’invention, le moyen de mesure 4 est une jauge de contrainte agencée pour mesurer une élongation du cadre rigide 5 ou l’élongation d’une cellule électrochimique 9 de la batterie 1. La jauge de contrainte est fixée en surface du cadre 5 ou en surface de la paroi d’une cellule. La jauge de contrainte 4 délivre un signal de tension au moyen de contrôle 2 dont la valeur est proportionnelle à l’élongation du cadre 5. The battery system 1 further comprises a means 4 for measuring a pressure. The measuring means 4 has the function of measuring a parameter representative of a pressure which is exerted by the electrical energy storage elements 9 of the battery 1 on the surface of the frame 5. In this preferred embodiment of the invention, the measuring means 4 is a strain gauge arranged to measure an elongation of the frame rigid 5 or the elongation of an electrochemical cell 9 of the battery 1. The strain gauge is fixed to the surface of the frame 5 or to the surface of the wall of a cell. The strain gauge 4 delivers a voltage signal to the control means 2, the value of which is proportional to the elongation of the frame 5.
Tout autre moyen de mesure est envisageable sans sortir du cadre de l’invention. Le moyen de mesure peut être un capteur de pression ou un capteur à technologie piézoélectrique par exemple. Un tel capteur est fixé entre une cellule électrochimique 9 et le cadre 5, ou alternativement entre deux cellules électrochimiques 9. Any other means of measurement is possible without departing from the scope of the invention. The measuring means can be a pressure sensor or a piezoelectric technology sensor for example. Such a sensor is fixed between an electrochemical cell 9 and the frame 5, or alternatively between two electrochemical cells 9.
La surveillance de ce paramètre permet au moyen de contrôle 2 d’élaborer une consigne de recharge CRL selon l’invention, par exemple une commande de fin de recharge lorsque ce paramètre dépasse un seuil choisi. Complémentairement ou en variante alternative le moyen de contrôle 2 est configuré pour élaborer une commande de réduction du courant de charge de manière graduelle en fonction dudit paramètre. The monitoring of this parameter allows the control means 2 to develop a recharging setpoint CRL according to the invention, for example an end of recharging command when this parameter exceeds a chosen threshold. Additionally or as an alternative variant, the control means 2 is configured to generate a command to reduce the charging current gradually as a function of said parameter.
Le moyen de contrôle 2 est destiné à la supervision du système de batterie 1 . Il est apte à délivrer à d’autres calculateurs du véhicule des informations d’état de la batterie, telles une valeur représentative du SOC, du SOHc, de la température, le courant de charge circulant à travers la batterie ou la tension à vide notamment, ainsi que des consignes à destination du dispositif de contrôle de la recharge 6 et/ou d’une borne de recharge 7, notamment une puissance de recharge autorisée, un mode de recharge, un courant de recharge maximal, ou une consigne de limitation de courant. Il est prévu un bus de communication, par exemple de type CAN (Contrôler Area Network en anglais), permettant au moyen de contrôle 2 de communiquer les consignes de recharge à d’autres calculateurs. The control means 2 is intended for the supervision of the battery system 1 . It is capable of delivering battery status information to other vehicle computers, such as a value representative of the SOC, the SOHc, the temperature, the charging current flowing through the battery or the no-load voltage in particular , as well as instructions intended for the charging control device 6 and/or a charging terminal 7, in particular an authorized charging power, a charging mode, a maximum charging current, or a charging limitation setpoint. fluent. A communication bus is provided, for example of the CAN (Control Area Network) type, allowing the control means 2 to communicate the charging instructions to other computers.
Le dispositif de contrôle de recharge 6 a pour fonction de gérer la communication entre les différentes bornes de recharge et de surveiller et contrôler la recharge électrique sur borne. Le dispositif de recharge 6 comporte également un convertisseur électrique de type alternatif/continu AC/DC et continu/continu DC/DC. Dans les situations de recharge sur borne, il réalise la conversion d’une tension alternative vers une tension continue AC/DC, notamment lors de recharge en mode 2 ou mode 3 dans lesquels il est nécessaire de convertir une tension alternative en 220V (de type monophasique ou triphasique) vers une tension continue compatible du système de batterie, jusqu’à 450V ou 1000V par exemple dans ce mode de réalisation. En situation de roulage, une autre fonction est la conversion DC/DC entre la batterie et les systèmes embarqués du véhicule, par exemple le réseau de bord en 14V, la batterie basse tension et la machine électrique de traction du groupe motopropulseur. The charging control device 6 has the function of managing the communication between the various charging terminals and of monitoring and controlling the electrical charging at the terminal. The recharging device 6 also comprises an electrical converter of the alternating/direct AC/DC and direct/direct DC/DC type. In terminal charging situations, it performs the conversion of an alternating voltage to an AC/DC direct voltage, in particular when charging in mode 2 or mode 3 in which it is necessary to convert an alternating voltage in 220V (single-phase or three-phase type) to a compatible DC voltage of the battery system, up to 450V or 1000V for example in this embodiment. When driving, another function is the DC/DC conversion between the battery and the vehicle's on-board systems, for example the 14V on-board network, the low voltage battery and the electric traction machine of the powertrain.
Dans le cadre des recharges dites rapides ou de mode 4, la tension de recharge est délivrée directement par la borne 7, c’est-à-dire sans modification de la tension par le convertisseur de tension. La tension délivrée par la borne 7 est de type continu, généralement supérieure à 300V, dans cet exemple comprise entre 400V et 500V, et est directement appliquée aux bornes de la batterie 1 à travers les contacteurs haute tension. Pour ce type de charge, le dispositif de recharge 6 délivre à la borne 7 la consigne de recharge CRL calculée par le moyen de contrôle 2 du système de batterie 1 . In the context of so-called fast or mode 4 charging, the charging voltage is delivered directly by terminal 7, i.e. without modification of the voltage by the voltage converter. The voltage delivered by terminal 7 is of the DC type, generally greater than 300V, in this example between 400V and 500V, and is directly applied to the terminals of battery 1 through the high voltage contactors. For this type of charge, the charging device 6 delivers to terminal 7 the charging setpoint CRL calculated by the control means 2 of the battery system 1 .
Le moyen de contrôle 2 est muni d’un calculateur à circuits intégrés et de mémoires électroniques, le calculateur et les mémoires étant configurés pour exécuter un procédé de contrôle de la recharge selon l’invention. Mais cela n’est pas obligatoire. En effet, le calculateur pourrait être externe au moyen de contrôle 2, tout en étant couplé à ce dernier. Dans ce dernier cas, il peut être lui-même agencé sous la forme d’un calculateur dédié comprenant un éventuel programme dédié, par exemple. Par conséquent, le moyen de contrôle 2, selon l’invention, peut être réalisé sous la forme de modules logiciels (ou informatiques (ou encore « software »)), ou bien de circuits électroniques (ou « hardware »), ou encore d’une combinaison de circuits électroniques et de modules logiciels. The control means 2 is provided with an integrated circuit computer and electronic memories, the computer and the memories being configured to execute a recharging control method according to the invention. But this is not mandatory. Indeed, the computer could be external to the control means 2, while being coupled to the latter. In the latter case, it can itself be arranged in the form of a dedicated computer comprising a possible dedicated program, for example. Consequently, the control means 2, according to the invention, can be produced in the form of software (or computer (or even “software”)) modules, or else of electronic circuits (or “hardware”), or even of a combination of electronic circuits and software modules.
En figure 2, on a décrit le module fonctionnel du moyen de contrôle 2 du système de batterie 1 prévu pour permettre en œuvre le procédé de contrôle de recharge selon l’invention. Dans ce mode de réalisation, il comporte classiquement un premier module 20 configuré pour calculer une consigne de recharge CR. In FIG. 2, the functional module of the control means 2 of the battery system 1 provided to allow the charging control method according to the invention to be implemented has been described. In this embodiment, it conventionally comprises a first module 20 configured to calculate a charging instruction CR.
Dans ce mode de réalisation préférentiel, la consigne de recharge est une consigne de courant de recharge maximum autorisé. La consigne de courant CR est déterminée en fonction de l’état de charge SOC courant, de l’état de vieillissement SOH, de la température notamment. La consigne de courant CR est délivrée par exemple par une cartographie prédéterminée, établie en conception et enregistrée en mémoire de l’unité de contrôle 2 du système de batterie 1 , prenant en entrée l’état de charge SOC courant et la température de la batterie 1 . In this preferred embodiment, the recharge setpoint is a maximum authorized recharge current setpoint. The current setpoint CR is determined as a function of the current state of charge SOC, of the state of aging SOH, of the temperature in particular. The current setpoint CR is delivered for example by a predetermined map, established in design and recorded in the memory of the control unit 2 of the battery system 1, taking as input the current state of charge SOC and the temperature of the battery 1 .
Plus précisément, le moyen de contrôle 2 reçoit en entrée une valeur mesurée de la température de la batterie à partir d’un ou de capteurs de température, ainsi qu’une valeur mesurée de la tension totale de la batterie 1 . De façon connue en soi, la tension totale de la batterie 1 peut être déterminée à partir d’informations mesurées au niveau des cellules électrochimiques 9. Le courant circulant à travers la batterie est déterminé à partir de capteurs de courant de la batterie 1 . En outre, le moyen de contrôle 2 est apte à déterminer le niveau d’état de charge SOC de la batterie 1 à tout instant, par exemple exprimé en % de la capacité totale de la batterie, à partir de tables d’équivalence avec la tension mesurée et un indicateur d’état de santé ou d’état de vieillissement SOH. La ou les tables sont enregistrées en mémoire du moyen de contrôle 2 et consultables à tout instant par son calculateur. More precisely, the control means 2 receives as input a measured value of the temperature of the battery from one or more temperature sensors, as well as a measured value of the total voltage of the battery 1 . In a manner known per se, the total voltage of the battery 1 can be determined from information measured at the level of the electrochemical cells 9. The current flowing through the battery is determined from current sensors of the battery 1 . In addition, the control means 2 is able to determine the SOC state of charge level of the battery 1 at any time, for example expressed as a % of the total capacity of the battery, from equivalence tables with the measured voltage and an indicator of state of health or state of aging SOH. The table(s) are stored in the memory of the control means 2 and can be consulted at any time by its computer.
Le procédé de contrôle de recharge selon l’invention comporte une étape de détermination d’un paramètre P représentatif d’une pression mesurée qui est exercée par les éléments internes de la batterie en surface dudit moyen pour enserrer et une étape de pilotage de la consigne de recharge limitée CRL en fonction dudit paramètre P. La consigne de recharge CRL est une consigne de courant maximum accepté. The recharging control method according to the invention comprises a step of determining a parameter P representative of a measured pressure which is exerted by the internal elements of the battery on the surface of said means for clamping and a step of controlling the setpoint limited charging CRL as a function of said parameter P. The charging setpoint CRL is a maximum accepted current setpoint.
Plus précisément, pour déterminer la consigne de recharge CRL, dépendante de la pression interne de la batterie conformément à l’invention, la jauge de contrainte 4 délivre une valeur d’élongation M du cadre 5 au calculateur 2. La valeur M est proportionnelle à l’élongation du cadre 5. La valeur M est multipliée, illustré par le bloc multiplicateur sur la figure 2, par un coefficient de raideur K, proportionnel entre l’élongation et la force exercée par les éléments internes de la batterie 1. K est un coefficient prédéterminé en conception et enregistré en mémoire. Le moyen de contrôle 2 calcule donc en permanence durant l’usage de la batterie 1 la valeur du paramètre P, où P = K*M. P est un paramètre dont la valeur est représentative de la force exercée par les éléments internes de la batterie 1 sur le cadre 5. More precisely, to determine the recharge setpoint CRL, dependent on the internal pressure of the battery in accordance with the invention, the strain gauge 4 delivers an elongation value M of the frame 5 to the computer 2. The value M is proportional to the elongation of the frame 5. The value M is multiplied, illustrated by the multiplier block in FIG. 2, by a coefficient of stiffness K, proportional between the elongation and the force exerted by the internal elements of the battery 1. K is a predetermined coefficient in design and stored in memory. The control means 2 therefore continuously calculates during the use of the battery 1 the value of the parameter P, where P = K*M. P is a parameter whose value is representative of the force exerted by the internal elements of battery 1 on frame 5.
Dans ce mode de réalisation préférentiel du procédé, le pilotage de la consigne de recharge limitée CRL consiste à déterminer un coefficient de limitation CL de la recharge en fonction du paramètre P par rapport à un seuil de limitation de la recharge SL. A cet effet, le moyen de contrôle 2 comporte un deuxième module 21 dont la fonction est de calculer le coefficient de limitation CL. Le coefficient de limitation CL a pour fonction de limiter la consigne de recharge CR et/ou de réduire graduellement la valeur de la consigne de recharge CL, jusqu’à la fin de la recharge lorsque la pression est supérieure à un seuil de limitation prédéterminé. In this preferred embodiment of the method, the control of the limited recharging setpoint CRL consists in determining a recharging limitation coefficient CL as a function of the parameter P with respect to a recharging limitation threshold SL. For this purpose, the control means 2 comprises a second module 21 whose function is to calculate the limitation coefficient CL. The function of the limitation coefficient CL is to limit the recharge setpoint CR and/or to gradually reduce the value of the recharge setpoint CL, until the end of the recharge when the pressure is greater than a predetermined limitation threshold.
Dans ce mode de réalisation, le coefficient de limitation CL est multiplié à la valeur de la consigne de courant CR pour calculer la consigne de recharge limitée CRL, illustré par le bloc multiplicateur en figure 2. Le coefficient de limitation CL prend des valeurs dans une plage délimitée par les valeurs 0 et 1 , de manière binaire ou graduelle. In this embodiment, the limitation coefficient CL is multiplied by the value of the current setpoint CR to calculate the limited recharge setpoint CRL, illustrated by the multiplier block in FIG. 2. The limitation coefficient CL takes values in a range delimited by the values 0 and 1 , in a binary or gradual way.
Dans un mode de réalisation en pilotage de limitation binaire ou de type « tout ou rien », le coefficient CL est égal à 1 tant que la valeur du paramètre P est inférieure au seuil de limitation en pression SL. Le coefficient de limitation CL est égal à zéro lorsque la valeur du paramètre P est supérieure ou égale au seuil SL. La valeur 0 pilote donc l’arrêt de la recharge car la consigne de courant maximum autorisé est égale à 0 ampère. Le seuil SL est calibré par exemple à une valeur environ de 25k. N. La valeur du seuil SL dépend des dimensions et caractéristiques du cadre 5 et des critères de contraintes spécifiques au système de batterie 1. Cette valeur n’est aucunement limitative de l’invention. In an embodiment in binary limitation or "all or nothing" type control, the coefficient CL is equal to 1 as long as the value of the parameter P is lower than the pressure limitation threshold SL. The limitation coefficient CL is equal to zero when the value of the parameter P is greater than or equal to the threshold SL. The value 0 therefore controls the stopping of recharging because the maximum authorized current set point is equal to 0 amperes. The threshold SL is calibrated for example at a value of approximately 25k. N. The value of the threshold SL depends on the dimensions and characteristics of the frame 5 and the stress criteria specific to the battery system 1. This value is in no way limiting of the invention.
Dans un mode de réalisation en pilotage de limitation graduelle, le coefficient CL est égal à une valeur comprise entre 0 et 1 en fonction de l’écart entre la valeur du paramètre P et la valeur du seuil SL. La valeur est égale à 1 lorsque l’écart est supérieur à 2k. N, soit pour une pression P jusqu’à 23k. N. La valeur de CL est égale à 0,5 pour une pression P égale à 24k. N et la valeur de CL est égale à 0 lorsque P est égale ou supérieure à 25k. N. D’autres valeurs de coefficient sont envisageables sans sortir du cadre de l’invention. In an embodiment in gradual limitation control, the coefficient CL is equal to a value between 0 and 1 according to the difference between the value of the parameter P and the value of the threshold SL. The value is equal to 1 when the deviation is greater than 2k. N, i.e. for a pressure P up to 23k. N. The value of CL is equal to 0.5 for a pressure P equal to 24k. N and the value of CL is 0 when P is equal to or greater than 25k. N. Other coefficient values can be envisaged without departing from the scope of the invention.
La consigne de recharge CRL limitée est de préférence la consigne de courant maximum autorisée par la batterie, c’est-à-dire est égale ou inférieure à la consigne CR. En variante, la consigne de recharge CRL peut être une consigne pilotant spécifiquement l’arrêt de la recharge, pouvant être indépendante de la consigne CR utilisée pour piloter la recharge de la batterie. Elle n’exprime pas nécessairement un courant de recharge maximum. Dans ce cas, la consigne CRL peut être toute consigne apte à commander le protocole de fin de recharge. La consigne CRL commande l’arrêt de la recharge avant l’atteinte de l’état de charge SOC maximal pour éviter une dégradation des cellules, en particulier une séparation des électrodes et séparateurs internes aux cellules. The limited recharge setpoint CRL is preferably the maximum current setpoint authorized by the battery, that is to say is equal to or less than the setpoint CR. As a variant, the charging setpoint CRL can be a setpoint specifically controlling the stopping of the charging, which can be independent of the setpoint CR used to control the charging of the battery. It does not necessarily express a maximum recharge current. In this case, the setpoint CRL can be any setpoint capable of controlling the end of charging protocol. The CRL setpoint commands the stopping of recharging before reaching the maximum state of charge SOC to avoid degradation of the cells, in particular separation of the electrodes and separators internal to the cells.
Dans une autre variante du procédé, la consigne de recharge est un niveau d’état de charge SOC maximum cible conditionnant le déclenchement de l’arrêt de la recharge. Le procédé comporte la détermination d’un niveau de charge SOC maximum autorisé pour la recharge en fonction de la valeur du paramètre P. Lors d’une recharge, le calculateur du système de batterie surveille en permanence l’état de charge de la batterie et stoppe la recharge lorsque le SOC maximum autorisé est atteint. In another variant of the method, the charging setpoint is a target maximum state of charge level SOC conditioning the triggering of the stopping of the charging. The method comprises the determination of a maximum SOC charge level authorized for recharging as a function of the value of the parameter P. During recharging, the computer of the battery system continuously monitors the state of charge of the battery and stops charging when the maximum authorized SOC is reached.
Par exemple, une table, enregistrée en mémoire du calculateur 2, comporte des valeurs de niveau de charge maximum de la batterie associées à des valeurs de paramètre P, représentatives de la pression ou de l’élongation mesurée. En fonction de la valeur P mesurée, la table délivre le niveau de charge maximum autorisé. For example, a table, saved in the memory of computer 2, comprises values of the maximum battery charge level associated with parameter values P, representative of the pressure or of the elongation measured. Depending on the value P measured, the table delivers the maximum authorized charge level.
En particulier, lorsque le paramètre P est égal ou supérieur au seuil SL, le niveau maximum de SOC autorisé est configuré à une valeur inférieure au niveau maximum de SOC disponible. Ce niveau maximum autorisé correspond à la pression maximum acceptable en regard d’un risque de rupture du cadre ou des cellules. Ainsi, selon le procédé, lorsque l’état de charge atteint le niveau maximum autorisé établi en fonction du paramètre P, le procédé pilote l’arrêt de la recharge. In particular, when the parameter P is equal to or greater than the threshold SL, the maximum level of SOC authorized is configured at a value lower than the maximum level of SOC available. This maximum authorized level corresponds to the maximum acceptable pressure with regard to a risk of rupture of the frame or the cells. Thus, according to the method, when the state of charge reaches the maximum authorized level established according to the parameter P, the method controls the stopping of the recharge.
L’avantage de cette variante est qu’elle permet en outre d’afficher à l’utilisateur un niveau d’état de charge virtuel, en pourcentage, en fonction de la plage de charge autorisée au lieu d’une plage de charge disponible. Le niveau de charge peut ainsi être rapporté sur une échelle de [0%-100%] de la plage autorisée. On évite ainsi une éventuelle incompréhension de la fonction de limitation par l’utilisateur, où celui-ci considérerait l’arrêt précoce de la charge comme un disfonctionnement du système de batterie. The advantage of this variant is that it also allows the user to be shown a virtual state of charge level, in percentage, based on the authorized load range instead of an available load range. The charge level can thus be reported on a scale of [0%-100%] of the allowed range. This avoids a possible misunderstanding of the limitation function by the user, where the latter would consider the early stopping of the charge as a malfunction of the battery system.
En figure 3, on présente un graphique illustrant l’opération de l’invention pour le contrôle d’une recharge de la batterie, en particulier pour piloter l’arrêt de la recharge lorsque la pression interne d’une batterie atteint le seuil SL prédéterminé. In FIG. 3, a graph is presented illustrating the operation of the invention for controlling battery recharging, in particular for controlling the stopping of recharging when the internal pressure of a battery reaches the predetermined threshold SL .
Sur l’axe des abscisses, on a représenté l’évolution du vieillissement de la batterie en fonction du paramètre SOHc, exprimé en % par le rapport entre la quantité d’énergie maximum stockable à un instant donné et quantité d’énergie maximum stockable à l’état neuf de la batterie. On the abscissa axis, the evolution of battery aging has been represented as a function of the SOHc parameter, expressed in % by the ratio between the quantity of energy maximum storable at a given moment and maximum quantity of energy storable in the new state of the battery.
Sur l’axe des ordonnées de gauche, on a représenté la valeur du paramètre P qui est représentative de la pression interne. La pression P mesurée est comprise entre 5k. N, en situation de début de vie de la batterie, et 25k. N, en situation habituelle de fin de vie de la batterie. Le seuil SL, illustré par la ligne horizontale en double trait est établi dans cet exemple à 25k. N. La courbe PSOco% exprime la valeur de la pression P mesurée pour un état de charge courant de la batterie à SOC=0%. La courbe PSOcioo% exprime la valeur de la pression P mesurée pour un état de charge courant de la batterie à SOC=100%. La valeur de la pression P mesurée par la jauge de contrainte varie entre ces deux courbes selon la valeur du SOC courant tout au long de la vie de la batterie. Il s’agit du phénomène de respiration. En outre, on observe que la valeur moyenne P augmente au fur et à mesure du vieillissement de la batterie. On the left ordinate axis, the value of the parameter P which is representative of the internal pressure has been represented. The measured pressure P is between 5k. N, in early battery life situation, and 25k. N, in usual end of battery life situation. The threshold SL, illustrated by the double horizontal line is established in this example at 25k. N. The P SO co% curve expresses the value of the pressure P measured for a current state of charge of the battery at SOC=0%. The curve P SO cioo% expresses the value of the pressure P measured for a current state of charge of the battery at SOC=100%. The value of the pressure P measured by the strain gauge varies between these two curves according to the value of the current SOC throughout the life of the battery. This is the breathing phenomenon. Furthermore, it is observed that the average value P increases as the battery ages.
Sur l’axe des ordonnées de droite, on a indiqué la valeur de l’état de charge maximum de la batterie pouvant être autorisée conformément au procédé selon l’invention. SOCmax est représentée par une courbe en double trait et est compris entre 0% et 100% et correspond à la plage d’utilisation autorisée de la batterie. La valeur de SOCmax en début de vie est égale à 100% et reste constante tant que la pression mesurée est inférieure au seuil SL. La valeur de SOCmax diminue progressivement en fonction de la pression lorsque la pression P atteint le seuil SL. On the right-hand ordinate axis, the value of the maximum state of charge of the battery that can be authorized in accordance with the method according to the invention has been indicated. SOCmax is represented by a double line curve and is between 0% and 100% and corresponds to the authorized battery usage range. The value of SOCmax at the start of life is equal to 100% and remains constant as long as the pressure measured is lower than the threshold SL. The value of SOCmax decreases gradually as a function of the pressure when the pressure P reaches the threshold SL.
On distingue deux phases de vie de la batterie UT1 et UT2. UT1 correspond à la phase de vie durant laquelle la pression mesurée est inférieure au seuil SL quelle que soit la valeur du SOC. Le procédé selon l’invention n’impose pas de limitation de recharge. UT2 correspond à une phase où le vieillissement SOHc est supérieur à 20% et correspond à une phase de vie où la pression mesurée PSOcioo% peut atteindre la valeur du seuil SL selon la valeur du SOC. There are two life phases of the battery UT1 and UT2. UT1 corresponds to the life phase during which the pressure measured is lower than the threshold SL whatever the value of the SOC. The method according to the invention does not impose any recharging limitation. UT2 corresponds to a phase where the aging SOHc is greater than 20% and corresponds to a life phase where the measured pressure P SO cioo% can reach the threshold value SL according to the value of the SOC.
Pour UT2, le procédé de contrôle selon l’invention impose une limitation de la consigne de recharge dès que la pression atteint le seuil SL. On constate que la valeur de la pression P plafonne à la valeur du seuil SL. Cela est la conséquence de la limitation de recharge selon le procédé. Dans cette phase, la valeur maximale d’état de charge rechargeable SOCmax devient inférieure au niveau de SOC maximum de la batterie, établi à SOCmax=100%. Plus la pression augmente et plus le SOCmax diminue car l’arrêt de la recharge est commandé pour des états de charge plus faibles conformément à l’invention. Cela permet de prolonger l’utilisation d’une batterie de manière contrôlée et optimale, en contrepartie d’une diminution du SOCmax durant la période UT2. For UT2, the control method according to the invention imposes a limitation of the recharging setpoint as soon as the pressure reaches the threshold SL. It can be seen that the value of the pressure P peaks at the value of the threshold SL. This is the consequence of the charging limitation according to the method. In this phase, the maximum rechargeable state of charge value SOCmax becomes lower than the maximum SOC level of the battery, set at SOCmax=100%. The more the pressure increases, the more the SOCmax decreases because the stopping of the recharge is controlled for lower states of charge in accordance with the invention. This makes it possible to prolong the use of a battery in a controlled and optimal manner, in return for a reduction in the SOCmax during the period UT2.
En trait en pointillé, on a prolongé la valeur de la pression Psoc100% pour un SOCmax de 100% et la valeur du SOCmax=100%, dans l’hypothèse que le procédé de contrôle de recharge selon l’invention ne serait pas appliqué. On observe qu’en maintenant le SOC autorisé maximal à 100% durant UT2, la pression Psoc100% dépasserait le seuil SL. Cette situation est sujette à risque d’incendie au niveau des cellules ou de rupture du cadre des cellules. Généralement, on met fin à l’usage de la batterie. L’invention évite cela en commandant la fin de la recharge conformément au procédé pour maintenir la pression inférieure ou égale à SL. In dotted lines, the value of the pressure Psoc100% has been extended for a SOCmax of 100% and the value of the SOCmax=100%, on the assumption that the recharging control method according to the invention would not be applied. It is observed that by maintaining the maximum authorized SOC at 100% during UT2, the pressure Psoc100% would exceed the threshold SL. This situation is subject to the risk of fire in the cells or rupture of the frame of the cells. Generally, the use of the battery is terminated. The invention avoids this by controlling the end of the refill in accordance with the method to maintain the pressure less than or equal to SL.
On décrit maintenant plusieurs modes de réalisation du système de batterie se différenciant par l’agencement du moyen de mesure de la pression. Several embodiments of the battery system are now described, differing by the arrangement of the pressure measurement means.
En figure 4a et 4b, on décrit un premier mode de réalisation alternatif du module 3 d’un système de batterie dans lequel le moyen de mesure 4 est un capteur de pression. Selon une variante du premier mode de réalisation, comme illustré en figure 4a, le capteur 4 est fixé entre le cadre 5 et une cellule électrochimique 9. Selon une deuxième variante, comme illustré en figure 4b, le capteur 4 est fixé entre deux cellules électrochimiques 9. In FIGS. 4a and 4b, a first alternative embodiment of the module 3 of a battery system is described in which the measuring means 4 is a pressure sensor. According to a variant of the first embodiment, as illustrated in FIG. 4a, the sensor 4 is fixed between the frame 5 and an electrochemical cell 9. According to a second variant, as illustrated in FIG. 4b, the sensor 4 is fixed between two electrochemical cells 9.
Dans un deuxième mode de réalisation, dans lequel le système de batterie est muni de plusieurs modules de cellules électrochimiques, et dans lequel chaque module comporte un cadre rigide enserrant le groupe de cellules, chaque module ou une sélection seulement des modules comprend au moins un moyen de mesure du paramètre P. Chaque module ou la sélection des modules peut être équipé d’une jauge de contrainte et/ou d’un capteur de pression. In a second embodiment, in which the battery system is provided with several modules of electrochemical cells, and in which each module comprises a rigid frame enclosing the group of cells, each module or only a selection of the modules comprises at least one means measurement of parameter P. Each module or the selection of modules can be equipped with a strain gauge and/or a pressure sensor.
Dans un troisième mode de réalisation, de technologie dite « Cell to Pack », le cadre formant le pack est équipé d’une ou plusieurs jauges de contrainte et/ou d’un ou plusieurs capteurs de pression entre le cadre et une cellule, et/ou entre deux cellules. In a third embodiment, of so-called "Cell to Pack" technology, the frame forming the pack is equipped with one or more strain gauges and/or one or more pressure sensors between the frame and a cell, and /or between two cells.
Dans un quatrième mode de réalisation, de technologie dite « Pouch Cell », le moyen de mesure de la pression est fixé en surface du film, ou entre deux cellules. In a fourth embodiment, of so-called “Pouch Cell” technology, the pressure measurement means is attached to the surface of the film, or between two cells.
Enfin, le système de batterie peut comporter une unique cellule électrochimique ou comporter une pluralité de cellules. Finally, the battery system can comprise a single electrochemical cell or comprise a plurality of cells.

Claims

REVENDICATIONS
1. Système de batterie (1 ) comportant des éléments (9) de stockage d’énergie électrique, un moyen de contrôle (2) apte à calculer une consigne de recharge (CR, CRL) et un cadre métallique (5) pour enserrer l’ensemble des éléments (9), caractérisé en ce qu’il comporte en outre un moyen de mesure (4) d’un paramètre (P) représentatif d’une pression mesurée qui est exercée par les éléments (9) en surface dudit cadre métallique (5) et en ce que le moyen de contrôle (2) délivre une consigne de recharge limitée (CRL) en fonction dudit paramètre (P). 1. Battery system (1) comprising elements (9) for storing electrical energy, a control means (2) capable of calculating a charging setpoint (CR, CRL) and a metal frame (5) for enclosing the set of elements (9), characterized in that it further comprises a means (4) for measuring a parameter (P) representative of a measured pressure which is exerted by the elements (9) on the surface of said frame metal (5) and in that the control means (2) delivers a limited recharging instruction (CRL) as a function of said parameter (P).
2. Système (1 ) selon la revendication 1 , caractérisé en ce que le moyen de mesure (4) comporte au moins une jauge de contrainte délivrant une mesure de l’élongation (M) du cadre métallique (5). 2. System (1) according to claim 1, characterized in that the measuring means (4) comprises at least one strain gauge delivering a measurement of the elongation (M) of the metal frame (5).
3. Système (1 ) selon la revendication 1 ou 2, caractérisé en ce que le moyen de mesure (4) comporte au moins un premier capteur de pression fixé entre les éléments (9) et le cadre métallique (5). 3. System (1) according to claim 1 or 2, characterized in that the measuring means (4) comprises at least a first pressure sensor fixed between the elements (9) and the metal frame (5).
4. Système (1 ) selon l’une quelconque des revendications 1 à 3, dans lequel les éléments (9) sont des cellules électrochimiques, caractérisé en ce que le moyen de mesure (4) comporte au moins un capteur de pression fixé entre deux cellules électrochimiques en surface d’une desdites deux cellules. 4. System (1) according to any one of claims 1 to 3, wherein the elements (9) are electrochemical cells, characterized in that the measuring means (4) comprises at least one pressure sensor fixed between two electrochemical cells on the surface of one of said two cells.
5. Véhicule électrifié comportant un système de batterie (1 ) selon l’une quelconque des revendications 1 à 4. 5. Electrified vehicle comprising a battery system (1) according to any one of claims 1 to 4.
6. Procédé de contrôle de recharge pour un système de batterie (1 ) selon l’une quelconque des revendications 1 à 4, caractérisé en ce qu’il comporte les étapes suivantes : 6. Charging control method for a battery system (1) according to any one of claims 1 to 4, characterized in that it comprises the following steps:
- La détermination d’un paramètre (P) représentatif d’une pression mesurée qui est exercée par les éléments (9) de stockage d’énergie électrique en surface dudit cadre métallique (5), - The determination of a parameter (P) representative of a measured pressure which is exerted by the elements (9) for storing electrical energy on the surface of said metal frame (5),
- Le pilotage d’une première consigne de recharge limitée (CRL) en fonction dudit paramètre (P). - The control of a first limited recharging setpoint (CRL) according to said parameter (P).
7. Procédé selon la revendication 6, caractérisé en ce que le pilotage de la première consigne de recharge limitée (CRL) consiste à déterminer un coefficient de limitation (CL) de la recharge en fonction du paramètre (P) par rapport à un seuil de limitation de la recharge (SL), la valeur de la première consigne de recharge limitée (CRL) étant fonction d’une deuxième consigne de recharge (CR) multipliée par le coefficient de limitation (R). 7. Method according to claim 6, characterized in that the control of the first limited recharge setpoint (CRL) consists in determining a coefficient of charging limitation (CL) as a function of the parameter (P) with respect to a charging limitation threshold (SL), the value of the first limited charging set point (CRL) being a function of a second charging set point ( CR) multiplied by the limitation coefficient (R).
8. Procédé selon la revendication 7, caractérisé en ce que, lorsque la valeur du paramètre (P) est supérieure ou égale au seuil de limitation (SL), le coefficient de limitation (CL) est égal à une première valeur commandant l’arrêt de la recharge du système de batterie (1 ). 8. Method according to claim 7, characterized in that, when the value of the parameter (P) is greater than or equal to the limitation threshold (SL), the limitation coefficient (CL) is equal to a first value controlling the stoppage recharging the battery system (1 ).
9. Procédé selon la revendication 7 ou 8, caractérisé en ce que, lorsque la valeur du paramètre (P) est inférieure au seuil de limitation (SL), le coefficient de limitation (CL) est égal à une deuxième valeur qui est en fonction d’un écart entre la valeur du paramètre (P) et le seuil de limitation (SL). 9. Method according to claim 7 or 8, characterized in that, when the value of the parameter (P) is lower than the limitation threshold (SL), the limitation coefficient (CL) is equal to a second value which is a function a difference between the value of the parameter (P) and the limit threshold (SL).
PCT/FR2022/051387 2021-09-02 2022-07-11 Battery system having a means for measuring an internal pressure in order to manage a charge setpoint WO2023031528A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280059603.1A CN117940311A (en) 2021-09-02 2022-07-11 Battery system including a measurement component for measuring internal pressure to manipulate recharging set point

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2109170 2021-09-02
FR2109170A FR3126356A1 (en) 2021-09-02 2021-09-02 BATTERY SYSTEM COMPRISING A MEANS OF MEASURING AN INTERNAL PRESSURE TO CONTROL A RECHARGE INSTRUCTION

Publications (1)

Publication Number Publication Date
WO2023031528A1 true WO2023031528A1 (en) 2023-03-09

Family

ID=78649404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/051387 WO2023031528A1 (en) 2021-09-02 2022-07-11 Battery system having a means for measuring an internal pressure in order to manage a charge setpoint

Country Status (3)

Country Link
CN (1) CN117940311A (en)
FR (1) FR3126356A1 (en)
WO (1) WO2023031528A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2109170A5 (en) 1970-10-06 1972-05-26 Westinghouse Freins & Signaux
FR2952235A1 (en) 2009-10-29 2011-05-06 Commissariat Energie Atomique METHOD FOR CHARGING OR DISCHARGING A BATTERY TO DETERMINE THE END OF CHARGE OR DISCHARGE BASED ON CURRENT MEASUREMENTS AND TEMPERATURE
DE102012219389A1 (en) * 2012-10-24 2014-04-24 Robert Bosch Gmbh Battery for use in motor car, has signal transmitter arranged in region of pressure-sensitive membrane, and electrical switching elements operatively connected with transmitter and formed to disconnect main electric current of battery
DE102013204529A1 (en) * 2013-03-15 2014-09-18 Robert Bosch Gmbh Battery cell device with overpressure safety function and method for monitoring a battery cell
WO2015103175A1 (en) * 2014-01-02 2015-07-09 Johnson Controls Technology Company Battery with life estimation
US20200182942A1 (en) * 2018-12-11 2020-06-11 Hyundai Motor Company System and method for charging battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2109170A5 (en) 1970-10-06 1972-05-26 Westinghouse Freins & Signaux
FR2952235A1 (en) 2009-10-29 2011-05-06 Commissariat Energie Atomique METHOD FOR CHARGING OR DISCHARGING A BATTERY TO DETERMINE THE END OF CHARGE OR DISCHARGE BASED ON CURRENT MEASUREMENTS AND TEMPERATURE
DE102012219389A1 (en) * 2012-10-24 2014-04-24 Robert Bosch Gmbh Battery for use in motor car, has signal transmitter arranged in region of pressure-sensitive membrane, and electrical switching elements operatively connected with transmitter and formed to disconnect main electric current of battery
DE102013204529A1 (en) * 2013-03-15 2014-09-18 Robert Bosch Gmbh Battery cell device with overpressure safety function and method for monitoring a battery cell
WO2015103175A1 (en) * 2014-01-02 2015-07-09 Johnson Controls Technology Company Battery with life estimation
US20200182942A1 (en) * 2018-12-11 2020-06-11 Hyundai Motor Company System and method for charging battery

Also Published As

Publication number Publication date
FR3126356A1 (en) 2023-03-03
CN117940311A (en) 2024-04-26

Similar Documents

Publication Publication Date Title
EP3191337B1 (en) Method for managing the operating range of a battery
JP5656415B2 (en) Secondary battery state determination device and control device
JP5009223B2 (en) Secondary battery remaining capacity estimation method and apparatus
JP5719236B2 (en) Secondary battery control device
JP4209423B2 (en) Secondary battery control device and secondary battery output control method
EP2878034B1 (en) Vehicle comprising a battery and means for determining a maximum allowable power for the battery, and corresponding method
US7880442B2 (en) Charging control device for a storage battery
FR2828348A1 (en) BATTERY REGULATION SYSTEM
FR3065292B1 (en) METHOD OF MANAGING A BATTERY BASED ON ITS HEALTH CONDITION
FR3013151A1 (en) METHOD FOR MANAGING THE AVAILABLE POWER OF A BATTERY
WO2013064587A1 (en) Method of managing the operation of a hybrid system
JP2008060020A (en) Device and method of controlling accumulation of electricity
WO2017050945A1 (en) Method for estimating an indicator of the state of health of a lithium battery and associated estimating device
EP3729553A1 (en) Method for managing a charge state of a battery left to rest
EP2945817A1 (en) Management of the charge of a battery
EP2001074A1 (en) System and method to determine the loss in capacity and energy of a battery determining the output capacity of a battery
WO2023031528A1 (en) Battery system having a means for measuring an internal pressure in order to manage a charge setpoint
WO2014195606A1 (en) Method for estimating the state of health of an electrochemical cell for storing electrical energy
EP2076953A2 (en) Method for controlling the end of the discharge of a rechargeable battery
WO2009080993A2 (en) Electrical energy storage system and management method
WO2021130068A1 (en) Method for identifying the start of the acceleration of the degradation of the state of health of a pack of rechargeable batteries
FR2965409A1 (en) Electrochemical storage system ageing state determining method for e.g. electric vehicle, involves determining value representative of current resistance, impedance and/or capacity, and determining ageing parameter according to value
EP2259080A1 (en) System and procedure for determining the loss of capacity of a battery
WO2010106257A1 (en) Battery recharging system
FR2994339A1 (en) METHOD FOR MANAGING AND DIAGNOSING A BATTERY

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22755246

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022755246

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022755246

Country of ref document: EP

Effective date: 20240402