WO2023030543A1 - 一种麻醉机 - Google Patents

一种麻醉机 Download PDF

Info

Publication number
WO2023030543A1
WO2023030543A1 PCT/CN2022/117392 CN2022117392W WO2023030543A1 WO 2023030543 A1 WO2023030543 A1 WO 2023030543A1 CN 2022117392 W CN2022117392 W CN 2022117392W WO 2023030543 A1 WO2023030543 A1 WO 2023030543A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
air
ventilation
oxygen
branch
Prior art date
Application number
PCT/CN2022/117392
Other languages
English (en)
French (fr)
Inventor
蔡琨
皇甫勇
周小勇
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to CN202280060311.XA priority Critical patent/CN117957032A/zh
Priority to PCT/CN2023/079715 priority patent/WO2024051118A1/zh
Publication of WO2023030543A1 publication Critical patent/WO2023030543A1/zh
Priority to PCT/CN2023/110428 priority patent/WO2024051399A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/01Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes specially adapted for anaesthetising
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M16/0006Accessories therefor, e.g. sensors, vibrators, negative pressure with means for creating vibrations in patients' airways
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • A61M16/024Control means therefor including calculation means, e.g. using a processor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/12Preparation of respiratory gases or vapours by mixing different gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits
    • A61M16/0883Circuit type
    • A61M16/0891Closed circuit, e.g. for anaesthesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/12Preparation of respiratory gases or vapours by mixing different gases
    • A61M16/122Preparation of respiratory gases or vapours by mixing different gases with dilution
    • A61M16/125Diluting primary gas with ambient air
    • A61M16/127Diluting primary gas with ambient air by Venturi effect, i.e. entrainment mixers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/14Preparation of respiratory gases or vapours by mixing different fluids, one of them being in a liquid phase
    • A61M16/18Vaporising devices for anaesthetic preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/201Controlled valves
    • A61M16/202Controlled valves electrically actuated
    • A61M16/203Proportional
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/208Non-controlled one-way valves, e.g. exhalation, check, pop-off non-rebreathing valves
    • A61M16/209Relief valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/22Carbon dioxide-absorbing devices ; Other means for removing carbon dioxide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0027Accessories therefor, e.g. sensors, vibrators, negative pressure pressure meter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/02Gases
    • A61M2202/0208Oxygen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/02Gases
    • A61M2202/0266Nitrogen (N)
    • A61M2202/0283Nitrous oxide (N2O)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3334Measuring or controlling the flow rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/502User interfaces, e.g. screens or keyboards

Definitions

  • the invention relates to the field of medical equipment, in particular to an anesthesia machine.
  • Anesthesia machines are mainly used to provide oxygen, anesthesia and respiratory support to patients during surgery.
  • the anesthesia machine delivers the anesthesia mixture to the patient while receiving the patient's exhaled gas.
  • the exhaled gas is generally recycled.
  • part of the patient's exhaled gas will be re-inhaled as inhaled gas, so that anesthetics, as a relatively expensive gas component, are retained to the greatest extent, and at the same time play an important role in reducing environmental pollution and saving costs .
  • the patient's exhaled air contains CO2, which can lead to acidosis if directly re-inhaled, so the CO2 needs to be removed before it can be recycled.
  • the commonly used method is to use CO2 absorbent (soda lime) to react with CO2 to achieve the purpose of removing CO2, and at the same time react to generate water and heat, which is conducive to maintaining the temperature and humidity of the patient's inhaled gas.
  • the commonly used method is to insert the endotracheal tube into the patient's trachea by means of endotracheal intubation, so that the anesthesia machine and the patient's trachea are connected. damage.
  • tracheal intubation cannot be used, because it will block the surgical site, making it impossible to perform surgical operations or because this ventilation method will cause the surgical site to follow inhalation and exhalation.
  • the periodic ups and downs of ventilation affect the surgical effect.
  • additional high-frequency jet equipment such as high-frequency jet ventilator
  • Such equipment is rarely equipped in anesthesia operating rooms, and the frequency of adding high-frequency jet equipment and high-frequency jet equipment is not very high. High, which will bring about the problem of multi-device management. Therefore, many hospitals do not have the conditions for this kind of surgery, and can only be transferred to other hospitals for surgical treatment; or other compromise methods are adopted, which greatly reduces the surgical effect and even brings surgical risks.
  • the invention mainly provides an anesthesia machine to improve the application range of the anesthesia machine.
  • One embodiment provides an anesthesia machine, comprising:
  • a flow monitoring device used to adjust the flow of the first gas
  • An anesthetic delivery device in communication with the flow monitoring device, used to mix the first gas with anesthetic to obtain a second gas, and deliver the second gas to the breathing circuit;
  • a breathing circuit for delivering the second gas to the patient
  • the first ventilation control device is used to control the breathing circuit to deliver the second gas to the patient, so as to provide the patient with periodic anesthesia breathing support;
  • the human-computer interaction device is used to receive the respiratory support mode provided by the anesthesia machine for the patient input by the user;
  • a ventilation module configured to receive the first gas, and use the first gas to provide periodic respiratory support to the patient;
  • the anesthesia machine also makes the first ventilation control device provide periodic anesthesia breathing support for the patient and/or makes the ventilation module provide periodic breathing support for the patient according to the breathing support mode received by the human-computer interaction device.
  • Support wherein the periodic respiratory support includes no delivery of gas to the patient during at least part of a respiratory cycle.
  • An embodiment provides an anesthesia machine, including: an air source interface, an anesthetic delivery device communicated with the air source interface, a breathing circuit, and a first ventilation control device;
  • the air source interface is used to connect to an external air source
  • the anesthetic delivery device is used to mix the gas provided by the external gas source with the anesthetic, and deliver the mixed gas to the breathing circuit;
  • the first ventilation control device is used to control the breathing circuit to periodically deliver the mixed gas to the patient, thereby providing anesthesia breathing support for the patient;
  • the ventilation module is used to provide breathing support for the patient by using the gas provided by the external gas source; wherein, the ventilation module includes a gas delivery branch, and the gas delivery branch receives the gas provided by the external gas source, and uses Ventilation frequency above 3Hz provides respiratory support for the patient.
  • An embodiment provides an anesthesia machine, including: an air source interface, an anesthetic delivery device communicated with the air source interface, a breathing circuit, and a first ventilation control device;
  • the air source interface is used to connect to an external air source
  • the anesthetic delivery device is used to mix the gas provided by the external gas source with the anesthetic, and deliver the mixed gas to the breathing circuit;
  • the first ventilation control device is used to control the breathing circuit to periodically deliver the mixed gas to the patient, thereby providing anesthesia breathing support for the patient;
  • the ventilation module is used to connect the injection accessories, receive the gas output from the air source interface and adjust it, so that the gas can provide respiratory support to the patient in the form of jet airflow after passing through the injection accessories.
  • An embodiment provides a ventilation control method for an anesthesia machine, including: receiving a first gas; receiving a breathing support mode provided by an anesthesia machine input by a user; when the received breathing support mode is periodic anesthesia breathing support, Controlling the mixing of the first gas and anesthetic to obtain a second gas, controlling the second gas to enter the breathing circuit of the anesthesia machine, and controlling the breathing circuit to periodically output the second gas to achieve periodic anesthesia breathing Support; when the received respiratory support mode is periodic respiratory support, control the first gas to enter the ventilation module of the anesthesia machine, and control the ventilation module to output the first gas periodically to achieve periodic Breathing support; wherein, the periodic breathing support includes not providing gas delivery for part of a breathing cycle.
  • the anesthesia machine includes an anesthetic delivery device, a breathing circuit, a first ventilation control device and a ventilation module.
  • the anesthetic delivery device mixes the first gas with the anesthetic, and delivers the second gas to the breathing circuit; the first ventilation control device controls the breathing circuit to deliver the second gas to the patient periodically, thereby providing anesthesia breathing support for the patient.
  • the ventilation module uses the first gas to provide periodic respiratory support for the patient, so that the anesthesia machine can be used to provide corresponding ventilation support for the patient according to the needs of the clinical scene, which improves the application range of the anesthesia machine without using additional equipment .
  • Fig. 1 is the structural block diagram of existing anesthesia machine
  • Fig. 2 is the structural block diagram of an embodiment of anesthesia machine provided by the present invention.
  • Fig. 3 is the structural block diagram of an embodiment of the anesthesia machine provided by the present invention.
  • Fig. 4 is the structural block diagram of an embodiment of the anesthesia machine provided by the present invention.
  • Fig. 5 is a structural block diagram of an embodiment of the ventilation module in the anesthesia machine provided by the present invention.
  • Fig. 6 is an air circuit diagram of an embodiment of the ventilation module in the anesthesia machine provided by the present invention.
  • Fig. 7 is an air circuit diagram of an embodiment of the ventilation module in the anesthesia machine provided by the present invention.
  • Fig. 8 is an air circuit diagram of an embodiment of the ventilation module in the anesthesia machine provided by the present invention.
  • Fig. 9 is the pressure waveform shown on the monitor in the anesthesia machine provided by the present invention.
  • FIG. 10 is a schematic diagram of the main monitoring interface on the display of the anesthesia machine in the anesthesia machine provided by the present invention.
  • Fig. 11 is a structural block diagram of the flow monitoring device in the embodiment shown in Fig. 3;
  • Fig. 12 is a structural block diagram of the flow monitoring device in the embodiment shown in Fig. 4;
  • Fig. 13 is an air circuit diagram of an embodiment of the injection device in the anesthesia machine provided by the present invention.
  • connection and “connection” mentioned in this application include direct and indirect connection (connection) unless otherwise specified.
  • an existing anesthesia machine generally includes a gas source module 10 , an anesthetic delivery device 20 , a breathing circuit 30 and a first ventilation control device 40 .
  • the gas source module 10 is connected to the breathing circuit 30 through the anesthetic delivery device 20 , that is, the three are connected in sequence through the gas path.
  • the gas source module 10 is used to provide the gas required by the anesthesia machine, that is, to provide the first gas, such as one or more of oxygen, air and nitrous oxide (nitrous oxide), because it is necessary to provide respiratory support for the patient, Therefore, the supplied gas contains at least oxygen. That is, the first gas may be oxygen, or air, or a mixed gas of oxygen and air, or a mixed gas of oxygen and laughing gas.
  • the air source module 10 may be an air source interface, which is used to connect to an external air source.
  • the external gas source provides the gas required by the anesthesia machine to the anesthesia machine through the gas source interface.
  • the gas source module 10 can also be an air compressor, an oxygen generator, etc., which can generate the first gas required by the anesthesia machine by itself. Subsequent embodiments will be described by taking the gas source interface as an example.
  • the anesthetic delivery device 20 is used to mix the first gas provided by the gas source module 10 with the anesthetic, control the anesthetic concentration of the mixed gas (second gas), and deliver the mixed gas (second gas) to the breathing circuit 30 middle.
  • the anesthetic delivery device 20 includes a vaporizer.
  • the breathing circuit 30 is an air circuit connecting the anesthetic drug delivery device 20 and the patient, and can recycle the gas exhaled by the patient to save anesthetic drugs and reduce environmental pollution. It may include various connecting catheters and accessories, and the accessories may be endotracheal intubation, endotracheal catheters with balloons at their ends, and the like.
  • a gas purification device may be provided in the breathing circuit 30 for removing at least part of the carbon dioxide exhaled by the patient into the breathing circuit.
  • CO2 absorbent soda
  • the CO2 absorbent reacts with CO2 to achieve the purpose of removing CO2. At the same time, the reaction generates water and heat, which is conducive to maintaining the temperature and humidity of the gas inhaled by the patient.
  • the first ventilation control device (ie, the anesthesia ventilation control device) 40 is used to control the breathing circuit 30 to periodically deliver the mixed gas (second gas) to the patient, thereby providing periodic anesthesia breathing support for the patient.
  • the first ventilation control device 40 may automatically perform anesthesia ventilation control, or may perform manual control (such as a balloon).
  • the first ventilation control device 40 may include a plurality of valves and a board for driving the plurality of valves. The board controls the multiple valves to periodically deliver the second gas to the patient, thereby providing the patient with periodic anesthesia breathing support.
  • the gas source module 10 provides the first gas, the gas components are mixed through the flow monitoring device, and then the anesthetic is added and the concentration is adjusted through the evaporator to form the second gas; the second gas enters the breathing circuit 30,
  • the first ventilation control device 40 performs ventilation control, delivers the second gas to the patient, and the exhaust gas exhaled by the patient is purified by the gas purification device and then discharged or recycled; during the above process, the anesthesia machine will also monitor the machine status and patient parameters to ensure Patient safety, and abnormal alarm.
  • the present invention creatively integrates the ventilation module that can provide periodic breathing support on the anesthesia machine, so that the anesthesia machine can provide periodic breathing support through the ventilation module, and/or provide periodic breathing support for anesthesia through the first ventilation control device .
  • the patient can be breathed through the ventilation module of the anesthesia machine, which improves the application range of the anesthesia machine, and at the same time does not need to use additional equipment, saving Went to multi-device management issues.
  • the periodic respiratory support provided by the ventilation module can be high-frequency ventilation (for example, the ventilation module includes a gas delivery branch, the gas delivery branch receives gas provided by an external gas source, and provides respiratory support to the patient at a ventilation frequency above 3 Hz) , can also be low-frequency ventilation, etc.
  • the ventilation mode of the ventilation module can be jet ventilation or non-jet ventilation; when jet ventilation is provided, the ventilation module can further provide high-frequency jet ventilation. The following describes in detail through some embodiments.
  • the anesthesia machine provided by the present invention adds a ventilation module 50 communicating with the gas source module 10, and the gas source module 10 and the ventilation module 50 can be connected directly or indirectly , in short, it can be connected.
  • the ventilation module 50 is used to provide periodic respiratory support to the patient by using the first gas (such as oxygen and/or air) provided by the gas source module 10 .
  • the anesthesia machine can be used to ventilate the patient, which improves the application range of the anesthesia machine without using additional equipment.
  • the human-computer interaction device of the anesthesia machine can be used to receive the breathing support provided by the anesthesia machine to the patient.
  • trigger buttons for different breathing support modes may be provided on the display interface of the human-computer interaction device.
  • the anesthesia machine can decide whether to use the ventilation module to provide periodic respiratory support to the patient according to the respiratory support method received by the human-computer interaction device, or to use the first ventilation control device to control the breathing circuit to provide periodic anesthesia respiratory support to the patient. Or both provide respiratory support to different patients at the same time.
  • the "periodic respiratory support” and “periodic anesthesia respiratory support” mentioned in this application represent two different ways of respiratory support. Gas delivery, the difference between the two is that the gas delivered in periodic anesthesia respiratory support includes anesthetics, while the gas delivered in periodic respiratory support does not contain anesthetics.
  • the ventilation module 50 can be connected with various accessories, such as injection accessories, nasal plugs, nasal masks, face masks, etc. Doctors can connect appropriate accessories and perform corresponding ventilation methods according to the patient's actual situation and ventilation needs, which is very convenient.
  • Ventilation module 50 can have multiple implementations, as shown in Figure 6, Figure 7 and Figure 8, in the periodic respiratory support provided by it, the specific ventilation mode can be high-frequency ventilation and/or jet ventilation, wherein jet ventilation can be For high-frequency jet ventilation, it can also be low-frequency jet ventilation.
  • high frequency/jet ventilation refers to high frequency ventilation or jet ventilation. The following is illustrated by some examples.
  • the ventilation mode provided by the ventilation module 50 is high-frequency ventilation.
  • the ventilation module 50 includes a high-frequency ventilation device 501 .
  • the high-frequency ventilation device 501 is used to ventilate the patient at a ventilation frequency of at least 3 Hz, so as to provide periodic respiratory support for the patient.
  • the high-frequency ventilation device 501 may include a gas delivery branch 500 , a second control valve T5 and an output port 530 .
  • the high frequency ventilation device 501 receives the first gas through the gas delivery branch 500 .
  • the second control valve T5 is disposed in the gas delivery branch 500 and is controlled to switch the flow at a switching frequency of at least 3 Hz, so that the first gas output from the output port 530 forms a high-frequency flow.
  • the expression "high-frequency gas flow” used herein refers to gas whose output frequency is greater than a certain critical value, for example, gas whose output frequency is greater than or equal to 3 Hz.
  • the ventilation frequency of the second control valve T5 can be preset.
  • the valve flow can be switched between, the frequency can be above 3Hz, such as between 3-20Hz), so that the first gas forms a high-frequency pulse flow, and the high-frequency pulse flow can give the patient high-frequency jet ventilation after passing through the subsequent jet accessories , if the jet accessories are not connected later, the high-frequency pulse airflow can provide high-frequency ventilation to the patient.
  • the second control valve T5 can be an electromagnetic valve, an electromagnetic servo valve, an electromagnetic switching valve, or an electromagnetic proportional valve, etc.
  • the high-frequency ventilation device 501 provides periodic breathing support at the first ventilation frequency
  • the first ventilation control device 40 controls the breathing circuit 30 to provide periodic breathing support for anesthesia at the third ventilation frequency.
  • the first ventilation frequency is greater than the third ventilation frequency, for example, the first ventilation frequency is greater than or equal to 3 Hz, and the third ventilation frequency is less than 3 Hz.
  • the first gas may include oxygen.
  • the gas source module 10 includes an oxygen unit for providing oxygen, for example, the oxygen unit is an oxygen interface or an oxygen generator.
  • the oxygen interface is used to connect to an external oxygen source, such as the oxygen interface connected to the oxygen delivery pipeline, oxygen cylinder, etc. in the hospital.
  • the gas delivery branch 500 includes an oxygen branch 510 , that is, the ventilation module 50 or high frequency ventilation device 501 includes: an oxygen branch 510 , a second control valve T5 and an output port 530 .
  • the oxygen branch 510 communicates with the oxygen unit, for example, the two are directly connected.
  • the oxygen unit communicates with the output port 530 through the oxygen branch 510 .
  • the second control valve T5 is set in the oxygen branch circuit 510, and the second control valve T5 switches the flow rate at a set frequency (for example, at least 3Hz), which can be used to control the oxygen flow rate of the oxygen branch circuit 510, or to Oxygen output from the output port 530 forms a high-frequency airflow, thereby realizing periodic high-frequency ventilation for the patient.
  • the oxygen branch 510 may also be provided with a first switching valve T1 for controlling the on-off of the oxygen branch 510 .
  • the first gas may also include air.
  • the air source module 10 includes an air unit for providing air, for example, the air unit is an air interface.
  • the air interface is used to connect to an external air source, such as an air delivery pipe in a hospital, etc.
  • the air unit is a turbine, which can obtain air from the external atmosphere.
  • the gas delivery branch 500 includes an air branch 520 , that is, the ventilation module 50 or the high frequency ventilation device 501 includes: the air branch 520 , the second control valve T5 and the output port 530 .
  • the air branch 520 communicates with the air unit, for example, the two are directly connected.
  • the air unit communicates with the output port 530 through the air branch 520 .
  • the second control valve T5 is set in the air branch 520, and the second control valve T5 switches the flow rate at a set frequency (for example, at least 3Hz), which can be used to control the air flow of the air branch 520, or to
  • the air output from the output port 530 forms a high-frequency airflow, so as to realize periodic high-frequency ventilation for the patient.
  • the air branch 520 may also be provided with a second switching valve T2 for controlling the opening and closing of the air branch 520 .
  • the second control valve T2 switches the flow rate at a frequency that can realize high-frequency ventilation.
  • the oxygen branch and the The flow rate of the air branch circuit controls the ventilation frequency of the air flow in the oxygen branch circuit and the air branch circuit by switching the frequency.
  • the first gas may also include oxygen and air.
  • the air source module 10 includes an oxygen unit and an air unit for supplying oxygen.
  • the gas delivery branch 500 includes an oxygen branch 510 and an air branch 520 , that is, the ventilation module 50 or the high-frequency ventilation device 501 includes: an oxygen branch 510 , an air branch 520 , a second control valve T5 and an output port 530 .
  • the oxygen branch 510 communicates with the oxygen unit, for example, the two are directly connected.
  • the air branch 520 communicates with the air unit, for example, the two are directly connected.
  • the oxygen branch 510 and the air branch 520 are connected to the output port 530 through the second control valve T5.
  • the oxygen branch 510 is provided with a first control valve T3, the first control valve T3 is used to control the oxygen flow of the oxygen branch 510, and the oxygen branch 510 can also be provided with a switch for controlling the oxygen branch 510
  • the first switching valve T1; the first switching valve T1 plays a role of safety protection.
  • the air branch 520 is provided with a third control valve T4, the third control valve T4 is used to control the air flow of the air branch 520, and the air branch 520 may also be provided with a second switch for controlling the air branch 520 on and off Valve T2; the second switching valve T2 plays a role of safety protection.
  • the first control valve T3 may be a proportional valve or a flow valve
  • the third control valve T4 may be a proportional valve or a flow valve.
  • the first control valve T3 and the third control valve T4 can jointly control the total flow rate and oxygen concentration of the oxygen-air mixture.
  • the second control valve T5 switches the flow rate at a set frequency (for example, at least 3 Hz), and can be used to form a high-frequency air flow from the mixed gas of air and oxygen after confluence, and the high-frequency air flow is output through the output port 530, and then the The patient is on high frequency ventilation.
  • a set frequency for example, at least 3 Hz
  • the second control valve T5 may not be provided, but the high-frequency ventilation control is implemented by the first control valve T3 and the third control valve T4 together. That is, the first control valve T3 is used not only to control the oxygen flow of the oxygen branch 510, but also to make the oxygen in the oxygen branch form a high-frequency air flow, thereby realizing high-frequency ventilation; the third control valve T4 is used to control the oxygen flow of the air branch. The air flow of the channel 520 is also used to make the air in the air branch circuit form a high-frequency airflow, thereby realizing high-frequency ventilation.
  • the first control valve T3 and the third control valve T4 switch the flow rate at a frequency that can realize high-frequency ventilation.
  • the oxygen branch is controlled by the opening. and the flow rate of the air branch, and the ventilation frequency of the airflow in the branch is controlled by switching frequency. Therefore, as an alternative to the embodiment shown in FIG. 6 , by controlling the first control valve T3 and the third control valve T4 at a high frequency (for example, greater than or equal to 3 Hz), the flow rates of two different valves, one large and one small, are controlled. Switch between (such as high-frequency on and partial off), so that the mixture of oxygen and air forms a high-frequency airflow, so as to provide high-frequency ventilation to the patient.
  • a high frequency for example, greater than or equal to 3 Hz
  • both the first on-off valve T1 and the second on-off valve T2 play a role of safety protection. If the ventilation module 50 is not in use, if the ventilation module 50 has a gas output, it will affect the gas supply of the anesthesia delivery system of the original anesthesia machine and the ventilation of the anesthesia ventilator, and will also cause a loss of oxygen or air source. Waste; therefore, the first on-off valve T1 and the second on-off valve T2 are set to prevent gas output when the oxygen control valve T3, air control valve T4 or second control valve T5 cannot be closed when the ventilation module is not in use.
  • the ventilation frequency of the high-frequency airflow formed at the output port 530 for ventilation of the patient is at least 3 Hz, or in some embodiments, the high-frequency airflow formed at the output port 530 is effective for the patient.
  • the ventilation frequency for ventilation is one of 50-1500 bpm.
  • High-frequency ventilation includes high-frequency positive pressure ventilation, high-frequency oscillatory ventilation, and high-frequency jet ventilation.
  • the ventilation frequency for ventilation of the patient is at least 3 Hz; when the high-frequency ventilation device is used for high-frequency jet ventilation, the ventilation frequency for ventilation of the patient is 50-1500bpm.
  • the high-frequency ventilation provided by the ventilation module 50 can be pure high-frequency ventilation, or high-frequency jet ventilation can be formed after the injection accessory 70 is added. Specifically, if the output port 530 is not connected to the injection accessory, it is connected to other ventilation accessories (such as trachea, intubation, face mask, nasal mask, etc.), the high-frequency ventilation device 501 simply provides high-frequency ventilation for the patient. And if the output port 530 is connected with 70 jet attachments, the high-frequency ventilator 501 can further provide high-frequency jet ventilation for the patient. Taking the latter as an example, the output port 530 can be used to connect a jetting accessory, and the high-frequency air output from the output port 530 is transmitted through the jetting attachment to form a high-frequency jet stream.
  • the output port 530 can be used to connect a jetting accessory, and the high-frequency air output from the output port 530 is transmitted through the jetting attachment to form a high-frequency jet stream.
  • the injection accessory can be provided by a third-party manufacturer, and the user only needs to connect it to the output port 530 .
  • the injection accessory can also be a part of the accessories of the anesthesia machine, that is, the anesthesia machine includes the injection accessory connected to the high-frequency ventilation device 501 .
  • the injection accessory receives the first gas output by the high-frequency ventilation device 501, and outputs the first gas in the form of high-frequency jet flow. That is, the output port 530 outputs a high-frequency airflow (high-frequency pulsed airflow), which becomes a high-frequency jet airflow after passing through the jet accessory.
  • the ventilation frequency of the high-frequency jet airflow to ventilate the patient can be above 3 Hz or Between 50-1500bpm, so as to provide high-frequency jet ventilation for patients.
  • the ventilation frequency can be above 3Hz; for high-frequency jet ventilation, the ventilation frequency can be one of 50-1500bpm.
  • the spray attachment includes a spray channel, and the output aperture of the spray channel is less than 4mm.
  • Injection accessories can include nozzles, needles or brackets (such as bronchoscopes, bronchoscopes, mirror sheaths, etc.).
  • the brackets are used to support human tissue or connect to tracheal tubes, which is convenient for doctors to operate.
  • the walls of the brackets are provided with holes for jetting (for example, its hole diameter is less than 4mm).
  • the ventilation mode provided by the ventilation module 50 is jet ventilation.
  • the ventilation module 50 is also used to connect the injection accessories, receive and adjust the gas output from the gas source interface, so that the gas can provide respiratory support to the patient in the form of jet airflow after passing through the injection accessories.
  • the air circuit diagram is still shown in Figure 6-8. That is, the ventilation module 50 includes a gas delivery branch 500 , a second control valve T5 and an output port 530 , and the second control valve T5 is disposed in the gas delivery branch 500 and used to control the ventilation module 50 to provide periodic respiratory support.
  • Output port 530 is used to connect a jetting accessory.
  • the ventilation module 50 receives the first gas through the gas delivery branch 500 , and the first gas is output through the injection accessory 70 connected to the output port 530 and formed into a jet flow.
  • the anesthesia machine may include a spray accessory 70 connected to the ventilation module 50, and the spray accessory 70 receives the first gas output from the ventilation module 50, and makes the first gas form a jet flow.
  • the anesthesia machine may not include the injection accessory, and the user installs the injection accessory to the output port 530 of the ventilation module in subsequent use.
  • jet ventilation used in this paper refers to the following ventilation method: during the air delivery phase of a respiratory cycle, high-pressure gas is injected into the airway at a high velocity through a jet attachment with a fine aperture. For supplementation, air delivery is stopped during the exhalation phase of a breathing cycle.
  • jet air flow corresponding to jet ventilation refers to a high-speed air flow output through a jet attachment.
  • FIG. 6 there may be various air circuit diagrams of the ventilation module 50 , as shown in FIG. 6 , FIG. 7 and FIG. 8 , which will be introduced one by one below.
  • the gas source module 10 includes an oxygen unit, and the first gas includes oxygen provided by the oxygen unit.
  • the gas delivery branch 500 includes an oxygen branch 510 , that is, the ventilation module includes: an oxygen branch 510 , a second control valve T5 and an output port 530 .
  • the oxygen unit is in communication with the output port 530 through the oxygen branch, and the output port 530 is used to connect the injection accessories.
  • the second control valve T5 is arranged in the oxygen branch circuit 510, and is used to control the oxygen flow rate of the oxygen branch circuit 510 and make the oxygen output from the output port 530 pass through the injection accessory to form a periodic jet flow, thereby realizing the periodic injection for the patient. Jet ventilation.
  • the oxygen branch 510 may also be provided with a first switch valve T1 for controlling the on-off of the oxygen branch 510 .
  • the air source module 10 includes an air unit, and the first gas includes air provided by the air unit.
  • the gas delivery branch 500 includes an air branch 520 , that is, the ventilation module 50 includes: an air branch 520 , a second control valve T5 and an output port 530 .
  • the air unit communicates with the output port 530 through the air branch 520 .
  • the output port is used to connect jetting accessories.
  • the second control valve T5 is set in the air branch 520, and is used to control the air flow of the air branch 520 and make the air output from the output port 530 pass through the spray attachment to form a periodic jet flow, so as to provide the patient with periodic Jet ventilation.
  • the air branch 520 may also be provided with a second switching valve T2 for controlling the air branch 520 to be turned on or off.
  • the second control valve T5 switches the flow rate at a certain frequency.
  • the flow rate of the oxygen branch and the air branch is controlled by the opening.
  • the frequency controls the ventilation frequency of the airflow in the oxygen branch circuit and the air branch circuit, so that the oxygen branch circuit and the air branch circuit can respectively output periodic airflow.
  • Periodic jet ventilation is provided to the patient when the periodic air flow from the output port is output through the jet channel of the jet accessory.
  • the gas source module 10 includes an oxygen unit for providing oxygen and an air unit for providing air
  • the first gas includes oxygen provided by the oxygen unit and air provided by the air unit.
  • the gas delivery branch 500 includes an oxygen branch and an air branch, that is, the ventilation module 50 includes: an oxygen branch 510 , an air branch 520 , a second control valve T5 and an output port 530 .
  • the oxygen branch 510 communicates with the oxygen unit
  • the air branch 520 communicates with the air unit.
  • the oxygen branch 510 and the air branch 520 are connected to the output port 530 through the second control valve T5.
  • Output port 530 is used to connect a jetting accessory.
  • the oxygen branch 510 is provided with a first control valve T3, and the air branch 520 is provided with a third control valve T4.
  • the first control valve T3 is used to control the flow of oxygen in the oxygen branch 510
  • the third control valve T4 is used to control the flow of air in the air branch 520 .
  • the second control valve T5 is used to make the combined gas of air and oxygen form a periodic jet flow when it is output through the jet accessory connected to the output port 530 , so as to provide periodic jet ventilation for the patient.
  • the second control valve T5 may not be provided, but the injection control is implemented jointly by the first control valve T3 and the third control valve T4 . That is, the first control valve T3 is used not only to control the oxygen flow of the oxygen branch 510, but also to make the oxygen in the oxygen branch form a periodic output of oxygen flow, thereby realizing jet ventilation; the third control valve T4 is used to control The air flow of the air branch 520 is also used to make the air in the air branch form a periodically output air flow, so as to realize jet ventilation. That is, the mixed gas after the periodic airflow of the oxygen branch 510 and the periodic airflow of the air branch 520 is combined forms a periodic jet flow when it is output through the jet accessory connected to the output port 530 .
  • Jet ventilation is one form of positive pressure ventilation, which is a type of ventilation in which high-pressure gas is injected into the airway at high speed under an open airway. Jet ventilation has a wide range of ventilation frequencies. In order to meet the needs of different physiological conditions of users, jet ventilation can have a variety of ventilation frequencies, such as high-frequency jet ventilation and low-frequency jet ventilation. High-frequency and low-frequency are relative concepts, which are equivalent to multiple ventilation frequency gears, and the frequency of high-frequency jet ventilation is higher than that of low-frequency jet ventilation.
  • the frequency of high-frequency jet ventilation can be between 50-1500bpm, and in other embodiments, the frequency of high-frequency jet ventilation can be above 3Hz, for example, between 3-20Hz; the frequency of low-frequency ventilation is, for example, Can be between 10-50bpm.
  • the jet ventilation is positive pressure ventilation under an open airway, while the periodic anesthesia breathing support is applied to Ventilation scenarios with closed airway or intubation.
  • some anesthesia machines can provide high-flow oxygen therapy in addition to anesthesia breathing support for patients, that is, deliver high-flow oxygen to patients, thereby realizing pre-oxygenation of patients and prolonging the patient's asphyxia time window , to reserve time for doctors to perform operations such as intubation.
  • Pre-oxygenation does not involve the control of the breathing cycle, but the ventilation module 50 added in this embodiment needs to provide periodic breathing support to the patient, which involves the control of the breathing cycle, that is, the control of the ventilation frequency.
  • the ventilation module 50 may include a second ventilation control device.
  • the second ventilation control device may also include one or more valves and a board for driving one or more valves, and one or more valves are arranged in the gas delivery branch (such as the above-mentioned oxygen branch, air branch, etc.) etc.).
  • the board controls one or more valves (such as various control valves in Figure 6-8), so that the first gas is delivered to the patient periodically, so as to provide periodic breathing support for the patient.
  • the board card forms periodic airflow by switching and controlling the opening of one or more valves at a certain frequency, so that the ventilation module 50 can provide periodic respiratory support for the patient.
  • the ventilation module 50 when the second ventilation control device controls the opening of one or more valves and the switching control frequency is above 3 Hz, the ventilation module 50 can provide high-frequency ventilation for the patient; the second ventilation control device controls the opening of one or more valves.
  • the opening switching control frequency is 10-1500 bpm, and when the ventilation module 50 is connected with jet accessories, the ventilation module 50 can provide jet ventilation for the patient.
  • the oxygen branch 510 may also be provided with a first flow sensor F1 for monitoring the flow of the oxygen branch 510 .
  • a second flow sensor F2 for monitoring the flow of the air branch 520 may also be provided in the air branch 520 .
  • a safety valve T6 for pressure relief and at least one pressure sensor for monitoring pressure is provided between the junction of the oxygen branch 510 and the air branch 520 (the black dot in FIG. 6 ) and the output port 530 .
  • the safety valve T6 can be specifically used to connect the output port 530 to the exhaust end of the safety valve T6 when the pressure monitored by the pressure sensor exceeds a preset threshold, so that the gas between the output port 530 and the safety valve T6 is discharged through the exhaust end , to prevent the patient from barotrauma.
  • the safety valve T6 can also be used to isolate the output port 530 from the airway between the confluence node when the pressure monitored by the pressure sensor exceeds a preset threshold.
  • the safety valve T6 is a three-way valve, the first end of the three-way valve is connected to the output port 530 , the second end of the three-way valve is connected to the confluence node, and the third end of the three-way valve is an exhaust end.
  • the first end of the three-way valve is connected (communicated) with the second end, the first end is disconnected from the exhaust end, and the second end is disconnected from the exhaust end.
  • the pressure sensor outputs the monitored pressure to the second ventilation control device.
  • the second ventilation control device judges whether the pressure exceeds a preset threshold, and outputs a corresponding control signal to the three-way valve when the pressure exceeds the preset threshold.
  • the three-way valve disconnects the first end from the second end, and connects (communicates) the first end to the exhaust end, so that the over-pressure gas can be released, which improves safety.
  • the preset threshold can be set according to clinical experience or doctor's needs.
  • the man-machine interaction device of the anesthesia machine also includes a display.
  • the display When the respiratory support mode received by the human-computer interaction device is periodic respiratory support, the display is used to output the prompt information for closing the anesthetic delivery device 20 or output the prompt information for switching the patient's anesthesia mode, so as to avoid that the anesthetic drug of the anesthetic delivery device 20 does not pass through the breath.
  • the circuit is provided to the patient, but released to the environment.
  • the display can also be used to display the pressure waveform W (as shown in FIG. 9 ), which is convenient for the user to view and analyze. The pressure in the pressure waveform W is monitored by a pressure sensor.
  • the anesthesia machine when the anesthetic delivery device 20 is an electronic evaporation can, the anesthesia machine can also acquire the working status of the electronic evaporation can.
  • the respiratory support mode received by the human-computer interaction device is periodic respiratory support
  • the anesthesia machine is also used to determine whether the current working state of the electronic evaporation tank is to stop working, that is, to determine whether the electronic evaporation tank is closed, and to determine whether the electronic evaporation tank is closed. After it is turned off, the anesthesia machine can switch to the periodic breathing support mode.
  • the ventilation module 50 performs periodic respiratory support only after the electronic evaporation tank is closed, which improves the safety of the anesthesia machine.
  • FIG. 10 is a schematic diagram of the main monitoring interface on the display of the anesthesia machine.
  • the main monitoring interface includes a ventilation mode switching area P1, and high-frequency jet ventilation, as one of the ventilation modes, is presented in the ventilation mode switching area P1 in the form of tabs.
  • the ventilation module 50 can be activated under control and provide periodic high-frequency jet ventilation to the patient.
  • the pressure monitored during high-frequency jet ventilation will be displayed in the pressure waveform area P2 of the main monitoring interface.
  • the first ventilation control device 40 can control the breathing circuit to provide periodic breathing support for the patient. Respiratory support for anesthesia.
  • the instructions formed based on the same breathing support method can be sent to the first ventilation control device and the second ventilation control device respectively.
  • the two ventilation control devices respectively start or stop corresponding breathing support methods according to the received instructions.
  • the respiratory support mode received by the human-computer interaction device is periodic respiratory support
  • the first ventilation control device 40 controls the breathing circuit to stop outputting the second gas with anesthetic to the outside, and stops the periodic anesthetic respiratory support for the patient.
  • the second ventilation control device synchronously controls the ventilation module 50 (for example, the gas delivery branch) to periodically provide the first gas to the patient, and perform high-frequency/jet ventilation.
  • the second ventilation control device and the first ventilation control device 40 are two independent ventilation control devices; of course, in some other implementations, the second ventilation control device and the first ventilation control device 40 may also be The same ventilation control device, ie the control function of the ventilation module 50 can further be integrated with the first ventilation control device. That is, the first ventilation control device also has the function of the above-mentioned second ventilation control device, and is used to control the gas delivery branch to provide periodic respiratory support to the patient.
  • the first ventilation control device decides whether to control the breathing circuit to provide periodic anesthesia breathing support, and/or control The gas delivery branch provides periodic respiratory support for the patient.
  • a pressure sensor may be disposed between the second control valve T5 and the output port 530 .
  • the relief valve T6 is also disposed between the second control valve T5 and the output port 530 .
  • Multiple pressure sensors can be provided, and this embodiment is described by setting the first pressure sensor P1 and the second pressure sensor P2 as an example.
  • the pressure monitored by the first pressure sensor P1 is used to trigger the safety valve T6, and the pressure monitored by the second pressure sensor P2 is used to display the waveform.
  • the first pressure sensor P1 is close to the safety valve T6.
  • the first pressure sensor P1 monitors the pressure of the high-frequency gas.
  • the safety valve T6 is switched so that the airway at the patient end is separated from the airway of the ventilation module 50.
  • the gas at the patient end It can be discharged through the safety valve T6 to prevent barotrauma at the patient side.
  • the second pressure sensor P2 is near the patient end, ie near the output port 530 .
  • There is a pressure sampling port near the patient which is connected to the second pressure sensor P2 of the ventilation module 50 through a pressure sampling catheter.
  • the display displays the pressure oscillation waveform W collected by the second pressure sensor P2 on the interface.
  • the action of the safety valve T6 can also be triggered by the second pressure sensor P2 near the patient, and the data of the pressure waveform W displayed on the display can also be collected by the first pressure sensor P1 near the safety valve T6.
  • the ventilation module 50 can perform high-frequency/jet ventilation by controlling the switching frequency of the second control valve T5, and the specific process of the high-frequency/jet ventilation has been described in detail above.
  • the ventilation module 50 can adjust the frequency of the high-frequency/jet ventilation (ie, air supply frequency) performed by the second control valve T5 to realize ventilation with different ventilation frequencies. For example, when the ventilation module 50 realizes jet ventilation, when the ventilation frequency of the jet ventilation device is lowered, the above-mentioned jet ventilation device is a low-frequency ventilation device, which can realize low-frequency ventilation with corresponding accessories (such as nasal plugs, nasal masks, face masks, etc.) .
  • the anesthesia machine further includes a flow monitoring device 60, which is used to control (regulate) the flow of the first gas, which can be mechanical or fully electronic.
  • the flow monitoring device 60 can also be used to detect the flow of the first gas.
  • the gas source module 10 is connected to the anesthetic delivery device 20 through the flow monitoring device 60, wherein the ventilation module 50 is connected to the gas source module 10; in FIG. Connect the evaporator 210.
  • the anesthesia machine further includes a three-way valve T12.
  • the three-way valve T12 includes a first port 1 connected to the flow monitoring device 60 , a second port 2 connected to the anesthetic delivery device 20 , and a third port 3 communicated with the ventilation module 50 . That is, the air source module 10 is connected to the input end of the flow monitoring device 60 .
  • the output end of the flow monitoring device 60 can be gated with the anesthetic delivery device 20 under the control of the three-way valve T12, and can also be gated with the ventilation module 50 under the control of the three-way valve T12, that is, the three-way valve T12 is used to enable
  • the flow monitoring device 60 selects one of the anesthetic delivery device 20 and the ventilation module 50 to communicate with.
  • the gas source module 10 can also include a nitrous oxide unit for providing nitrous oxide, the nitrous oxide unit can be a nitrous oxide interface, and the nitrous oxide interface is used to connect to an external nitrous oxide source, such as a nitrous oxide delivery pipeline in a hospital, a nitrous oxide bottle, etc. .
  • the flow monitoring device 60 may have three input interfaces, which are respectively connected to the oxygen interface, the air interface and the laughing gas interface.
  • Figure 11 corresponds to the flow monitoring device 60 of the embodiment in Figure 3, the flow monitoring device 60 includes a third on-off valve T7, a fourth on-off valve T8, a fifth on-off valve T9, a fourth control valve T10, a fifth control valve T11, The third flow sensor F3 and the fourth flow sensor F4.
  • One end of the third on-off valve T7 is connected to the oxygen interface, and the other end of the third on-off valve T7 is connected to the input end of the third flow sensor F3 through the fourth control valve T10.
  • One end of the fourth switch valve T8 is connected to the air interface, and one end of the fifth switch valve T9 is connected to the laughing gas interface.
  • the other end of the fourth on-off valve T8 and the other end of the fifth on-off valve T9 are connected to the input end of the fourth flow sensor F4 through the fifth control valve T11.
  • the output end of the third flow sensor F3 is connected to the evaporator 210 after converging with the output end of the fourth flow sensor F4.
  • the third on-off valve T7, the fourth on-off valve T8 and the fifth on-off valve T9 are all used to control the on-off of the air circuit.
  • the fourth control valve T10 and the fifth control valve T11 are used for flow control.
  • FIG. 12 corresponds to the flow monitoring device 60 of the embodiment in FIG. 4 .
  • the output end of the third flow sensor F3 is connected to the input end 1 of the three-way valve T12 after converging with the output end of the fourth flow sensor F4.
  • the three-way valve T12 has a first output end 2 and a second output end 3 , the first output end 2 is connected to the evaporator 210 , and the second output end 3 is connected to a ventilation module (such as a high-frequency ventilation device 501 ).
  • the three-way valve T12 has two states, one state is that its input end 1 is connected to the first output end 2 , and the other state is that its input end 1 is connected to the second output end 3 .
  • the third on-off valve T7, the fourth on-off valve T8 and the fifth on-off valve T9 are all used to control the on-off of the air circuit.
  • the fourth control valve T10 and the fifth control valve T11 are used for flow control.
  • the ventilation module 50 may include a gas delivery branch and an output port, but the gas delivery branch does not need to set the second control valve T5, but shares the fourth control valve T10 with the flow monitoring device 60
  • the fifth control valve T11, the fourth control valve T10 and the fifth control valve T11 are all used for periodic ventilation control, that is, the functions of the fourth control valve T10 and the fifth control valve T11 can be the same as the above-mentioned second control valve,
  • both the fourth control valve T10 and the fifth control valve T11 can be controlled to switch the flow rate at a preset frequency, so that the pulse frequency of the airflow at the first port 1 of the three-way valve T12 is greater than or equal to 3Hz or between 50-1500bpm between.
  • the first port 1 of the three-way valve T12 is connected to the flow monitoring device 60
  • the second port 2 of the three-way valve T12 is connected to the anesthetic delivery device 20
  • the three-way The third port 3 of the valve T12 is connected to the ventilation module 50 .
  • the breathing support mode received by the anesthesia machine is periodic breathing support
  • the first port 1 and the third port 3 of the three-way valve T12 are connected
  • the fourth control valve T10 and the fifth control valve T11 are connected to the ventilation module 50
  • the third The fourth control valve T10 and the fifth control valve T11 perform flow switching at a preset frequency so that the ventilation module 50 performs ventilation on the patient at the first ventilation frequency.
  • the first ventilation frequency may be greater than or equal to 3 Hz, or between 50-1500 bpm.
  • the mixed gas of oxygen and air (or the mixed gas of oxygen, air and laughing gas) forms a periodic airflow, and the periodic high airflow
  • the gas is transported to the output port along the gas delivery branch. If the output port 530 of the ventilation module 50 is connected to the jet accessory, the periodic air flow passes through the jet accessory to perform jet ventilation to the patient.
  • the respiratory support mode received by the anesthesia machine is periodic anesthesia respiratory support
  • the first port 1 and the second port 2 are connected
  • the fourth control valve T10 and the fifth control valve T11 are connected to the anesthetic delivery device 20
  • the fourth control valve T10 and the fifth control valve T11 provide the first gas to the anesthetic delivery device at the second ventilation frequency, so that the first gas is mixed with the anesthetic at the second ventilation frequency to obtain a second gas, so that the breathing circuit can ventilate the patient.
  • the first ventilation frequency is greater than the second ventilation frequency.
  • the second ventilation frequency may be 0, that is, it only needs to open the fourth control valve T10 and the fifth control valve T11 .
  • gas can be drawn from the flow back end of the flow monitoring device 60 to the ventilation module.
  • the ventilation module in the solution in FIG. 4 is borrowed (shared)
  • Some components (T10 and T11) of the flow monitoring device 60 greatly simplify the structure of the ventilation module.
  • the anesthesia machine may further include an auxiliary gas supply module.
  • the auxiliary gas supply module is used to receive the first gas output by the gas source module 10, and use the first gas to provide respiratory support to the patient at a flow rate of 20-80 liters/min.
  • the respiratory support provided by the auxiliary air supply module is aperiodic respiratory support.
  • Aperiodic respiratory support refers to the continuous delivery of gas to the patient. This method is actually high-flow oxygen therapy. In this way, the anesthesia machine can provide high-flow oxygen therapy for patients when anesthesia is not needed, and has a wide range of applications.
  • the anesthesia machine may include a main frame, the main frame has a casing, and at least a part of the ventilation module may be disposed in an accommodating space formed by the casing, forming an integrated body with the anesthesia machine. That is, at least part of the ventilation module is integrated inside the anesthesia machine and integrated with the anesthesia machine.
  • the second ventilation control device included in the ventilation module is built in the main frame and communicated with the man-machine interaction device of the anesthesia machine.
  • the anesthesia machine of the present invention due to the integration of the ventilation module, can provide the following ventilation control: when the received breathing support mode is periodic anesthesia breathing support, control the mixing of the first gas and the anesthetic to obtain the second gas, and control the second gas Enter the breathing circuit of the anesthesia machine, and control the breathing circuit to output the second gas periodically to achieve periodic anesthesia breathing support; when the received breathing support mode is periodic breathing support, control the first gas to enter the anesthesia machine
  • the ventilation module is used, and the ventilation module is controlled to output the first gas periodically, so as to realize periodic respiratory support; wherein, the periodic respiratory support includes not providing gas delivery for part of a breathing cycle.
  • the ventilation module can be controlled to output periodic first gas at a certain frequency, and the periodic first gas can complete jet ventilation after passing through the jet attachment.
  • the present invention creatively integrates the Jet Ventilation (JV, Jet Ventilation) function on the general anesthesia machine, and directly uses the anesthesia machine to support pharynx, trachea, bronchi or lung surgery and other applications where tracheal intubation ventilation cannot be performed.
  • JV Jet Ventilation
  • the doctor puts the spray needle or nozzle into the appropriate position of the pharynx or trachea, and uses the anesthesia machine to perform jet ventilation and respiratory support.
  • the diameter of the needle or nozzle is small, so there is enough space for the doctor to observe and perform laryngoscopy; on the other hand, the characteristics of jet ventilation, especially the characteristics of high-frequency (above 3Hz, or 50-1500bpm) jet ventilation , the patient's lung pressure changes very little between inhalation and exhalation, and will not form large fluctuations in lung breathing, which undoubtedly provides convenience for one-lung ventilation or lung surgery.
  • jet ventilation uses needles and nozzles for ventilation, it does not make the gas circuit system of the anesthesia machine and the patient's respiratory system form a sealed connection, so this kind of ventilation cannot inject anesthetics synchronously through the needles and nozzles. Otherwise, the anesthetic will leak out. In this case, anesthesia is administered by intravenous injection of anesthesia.
  • the present invention integrates ventilation modules such as jet ventilation functions on a general anesthesia machine, and integrates boards, display screens, etc. into one device, which brings convenience to the management of operating room equipment and enables more hospitals to perform pharyngeal , trachea, bronchi or lung surgery and other anesthesia operations where tracheal intubation and ventilation cannot be performed, it has great clinical value.
  • any tangible, non-transitory computer-readable storage medium may be used, including magnetic storage devices (hard disks, floppy disks, etc.), optical storage devices (CD-ROM, DVD, Blu Ray discs, etc.), flash memory and/or the like .
  • These computer program instructions can be loaded into a general purpose computer, special purpose computer or other programmable data processing apparatus to form a machine, so that these instructions executed on the computer or other programmable data processing apparatus can generate an apparatus for realizing specified functions.
  • These computer program instructions may also be stored in a computer-readable memory which can instruct a computer or other programmable data processing device to operate in a particular manner such that the instructions stored in the computer-readable memory form a Manufactures, including implementing devices for implementing specified functions.
  • Computer program instructions can also be loaded on a computer or other programmable data processing device, thereby performing a series of operational steps on the computer or other programmable device to produce a computer-implemented process, so that the computer or other programmable device Instructions may provide steps for performing specified functions.
  • the term “comprises” and any other variants thereof are non-exclusive, such that a process, method, article, or apparatus that includes a list of elements includes not only those elements, but also elements not expressly listed or not part of the process. , method, system, article or other element of a device.
  • the term “coupled” and any other variations thereof, as used herein refers to a physical connection, an electrical connection, a magnetic connection, an optical connection, a communicative connection, a functional connection, and/or any other connection.

Landscapes

  • Health & Medical Sciences (AREA)
  • Anesthesiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Pulmonology (AREA)
  • Biomedical Technology (AREA)
  • Emergency Medicine (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种麻醉机,包括麻药输送装置(20)、呼吸回路(30)、第一通气控制装置(40)和通气模块(50)。麻药输送装置(20)将第一气体与麻药混合得到第二气体,将第二气体输送到呼吸回路(30)中;第一通气控制装置(40)控制呼吸回路(30)使第二气体周期性的输送给病人,从而为病人提供麻醉呼吸支持。通气模块(50)则使用第一气体对病人进行周期性的呼吸支持,因此,可利用麻醉机根据临床场景的需求,对病人进行相应的通气支持,提高了麻醉机的应用范围,无需使用额外的设备。

Description

一种麻醉机 技术领域
本发明涉及医疗器械领域,具体涉及一种麻醉机。
背景技术
麻醉机主要用于在病人手术期间给其提供氧气、麻醉及呼吸支持。在通气和麻醉过程中,麻醉机为患者输送麻醉混合气体,同时接收患者的呼出气体。为了节约麻醉气体及提高病人吸入气体的舒适度,一般情况下呼出气体都会循环利用。在循环再呼吸系统中,病人呼出的气体中部分将作为吸入气体被重复吸入,这样麻药作为一种比较昂贵的气体成分被最大程度保留下来,同时对于减少环境污染和节约成本起到重要的作用。病人呼出的气体中包含CO2,如果直接重复吸入的话会导致酸中毒,因此在循环利用呼出气体之前,需要将其中的CO2去除。常用的方法用CO2吸收剂(钠石灰)与CO2反应,达到去除CO2的目的,同时反应生成水和热量,这样有利于保持病人吸入气体的温度和湿度。
基于上述原因需要将麻醉机气路系统与患者的呼吸系统联结并保证气密性,才能实施有效通气和麻醉。常用的方法是通过气管插管的方式将气管导管插入患者气管中,使得麻醉机和患者的气管进行联结,同时气管导管端部的气囊可以保证这种联结的气密性,以及防止造成气管内壁的损伤。
但是在一些咽部、气管、支气管或者肺部手术,并不能使用气管插管的方式,因为会遮挡手术部位,导致无法进行手术操作或者因为这种通气方式会造成手术部位随吸气、呼气的通气的周期性起伏,而影响手术效果。通常碰到类似这种手术情况需要另外使用高频喷射设备(如高频喷射呼吸机),此类设备在麻醉手术室配备极少,而且增加高频喷射设备以及高频喷射设备使用频率不太高,这会带来多设备管理的问题。因此很多医院并不具备这种手术的条件,只能转到其它医院进行手术治疗;或者采用其它折中的方法,大大降低手术效果,甚至带来手术风险。
因此,现有的麻醉机使用场景有限。
技术问题
本发明主要提供一种麻醉机,以提高麻醉机的应用范围。
技术解决方案
一实施例提供一种麻醉机,包括:
流量监控装置,用于调节第一气体的流量;
与所述流量监控装置连通的麻药输送装置,用于将所述第一气体与麻药混合得到第二气体,并将所述第二气体输送到呼吸回路中;
呼吸回路,用于将所述第二气体输送给病人;
第一通气控制装置,用于控制所述呼吸回路将所述第二气体输送给病人,从而为病人提供周期性的麻醉呼吸支持;
人机交互装置,用于接收用户输入的所述麻醉机对病人提供的呼吸支持方式;
还包括:
通气模块,用于接收所述第一气体,以使用第一气体对病人进行周期性的呼吸支持;
所述麻醉机还根据所述人机交互装置接收的呼吸支持方式,使所述第一通气控制装置为病人提供周期性的麻醉呼吸支持和/或使所述通气模块为病人提供周期性的呼吸支持;其中,所述周期性的呼吸支持包括在一个呼吸周期中至少部分时间内没有向病人提供气体输送。
一实施例提供一种麻醉机,包括:气源接口、与所述气源接口连通的麻药输送装置、呼吸回路、以及第一通气控制装置;
所述气源接口用于连接外部气源;
所述麻药输送装置用于将外部气源提供的气体与麻药混合,将混合气体输送到呼吸回路中;
所述第一通气控制装置用于控制所述呼吸回路使所述混合气体周期性的输送给病人,从而为病人提供麻醉呼吸支持;
还包括:
通气模块,用于利用所述外部气源提供的气体对病人进行呼吸支持;其中,所述通气模块包括气体输送支路,所述气体输送支路接收所述外部气源提供的气体,并以3Hz以上的通气频率对病人进行呼吸支持。
一实施例提供一种麻醉机,包括:气源接口、与所述气源接口连通的麻药输送装置、呼吸回路、以及第一通气控制装置;
所述气源接口用于连接外部气源;
所述麻药输送装置用于将外部气源提供的气体与麻药混合,将混合气体输送到呼吸回路中;
所述第一通气控制装置用于控制所述呼吸回路使所述混合气体周期性的输送给病人,从而为病人提供麻醉呼吸支持;
还包括:
通气模块,用于连接喷射附件,接收所述气源接口输出的气体并进行调节,使所述气体经过所述喷射附件后以喷射气流的方式对病人进行呼吸支持。
一实施例提供一种通气控制方法,用于麻醉机,包括: 接收第一气体;接收用户输入的麻醉机提供的呼吸支持方式;在所接收的呼吸支持方式为周期性的麻醉呼吸支持时,控制所述第一气体与麻药混合得到第二气体,控制所述第二气体进入所述麻醉机的呼吸回路,并控制所述呼吸回路周期性地输出第二气体,以实现周期性的麻醉呼吸支持;在所接收的呼吸支持方式为周期性的呼吸支持时,控制所述第一气体进入所述麻醉机的通气模块,并控制所述通气模块周期性地输出第一气体,以实现周期性的呼吸支持;其中,所述周期性的呼吸支持包括在一个呼吸周期中部分时间内没有提供气体输送。
有益效果
依据上述实施例的麻醉机,包括麻药输送装置、呼吸回路、第一通气控制装置和通气模块。麻药输送装置将第一气体与麻药混合,将第二气体输送到呼吸回路中;第一通气控制装置控制呼吸回路使第二气体周期性的输送给病人,从而为病人提供麻醉呼吸支持。通气模块则使用第一气体对病人进行周期性的呼吸支持,由此,可利用麻醉机根据临床场景的需要,对病人进行相应的通气支持,提高了麻醉机的应用范围,无需使用额外的设备。
附图说明
图1为现有的麻醉机的结构框图;
图2为本发明提供的麻醉机一实施例的结构框图;
图3为本发明提供的麻醉机一实施例的结构框图;
图4为本发明提供的麻醉机一实施例的结构框图;
图5为本发明提供的麻醉机中,通气模块一实施例的结构框图;
图6为本发明提供的麻醉机中,通气模块一实施例的气路图;
图7为本发明提供的麻醉机中,通气模块一实施例的气路图;
图8为本发明提供的麻醉机中,通气模块一实施例的气路图;
图9为本发明提供的麻醉机中,显示器显示的压力波形图;
图10为本发明提供的麻醉机中,麻醉机的显示器上主监测界面的示意图;
图11为图3所示实施例中,流量监控装置的结构框图;
图12为图4所示实施例中,流量监控装置的结构框图;
图13为本发明提供的麻醉机中,喷射装置一实施例的气路图。
本发明的实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。
如图1所示,现有的麻醉机一般包括气源模块10、麻药输送装置20、呼吸回路30和第一通气控制装置40。气源模块10通过麻药输送装置20连接呼吸回路30,即三者依次气路连接。
气源模块10用于提供麻醉机所需的气体,即提供第一气体,如提供氧气、空气和笑气(一氧化二氮)中的一种或多种,因为需要为病人提供呼吸支持,故提供的气体中至少含氧。即,第一气体可以是氧气,也可以是空气,也可以是氧气与空气的混合气体、或者氧气和笑气的混合气体。气源模块10可以是气源接口,气源接口用于连接外部气源。外部气源通过气源接口将麻醉机所需的气体提供给麻醉机。气源模块10也可以是空气压缩机、制氧机等,由自身来产生麻醉机所需的第一气体。后续实施例以气源接口为例进行说明。
麻药输送装置20用于将气源模块10提供的第一气体与麻药混合,并控制混合后的气体(第二气体)的麻药浓度,将混合后的气体(第二气体)输送到呼吸回路30中。麻药输送装置20包括蒸发器。
呼吸回路30为连接麻药输送装置20与病人的气路,可以循环利用病人呼出的气体,以节约麻药,减少环境污染。其可以包括各种连接导管和附件,附件可以是气管插管、端部设置有气囊的气管导管等。呼吸回路30中可以设置气体净化装置,气体净化装置用于去除至少部分由病人呼出到呼吸回路中的二氧化碳。如气体净化装置中可设置CO2吸收剂(钠石灰)。通过CO2吸收剂与CO2反应,达到去除CO2的目的,同时反应生成水和热量,这样有利于保持病人吸入气体的温度和湿度。
第一通气控制装置(即麻醉通气控制装置)40用于控制呼吸回路30使混合后的气体(第二气体)周期性的输送给病人,从而为病人提供周期性的麻醉呼吸支持。第一通气控制装置40可以自动进行麻醉通气控制,也可以手动进行(如球囊)。例如,第一通气控制装置40可以包括多个阀门以及用于驱动多个阀门的板卡。板卡通过对多个阀门的控制,使第二气体周期性的输送给病人,从而为病人提供周期性的麻醉呼吸支持。
在麻醉机工作过程中,气源模块10提供第一气体,经过流量监控装置进行气体成分混合,之后经过蒸发器进行麻药的添加和浓度调节,形成第二气体;第二气体进入呼吸回路30,第一通气控制装置40进行通气控制,将第二气体输送给病人,病人呼出的废气通过气体净化装置净化后排出或循环使用;上述过程中麻醉机还会进行机器状态和病人参数的监测,保证病人安全,并进行异常报警。
本发明创造性的将可提供周期性的呼吸支持的通气模块集成在麻醉机上,使得麻醉机可以通过通气模块提供周期性的呼吸支持、和/或通过第一通气控制装置提供周期性的麻醉呼吸支持。例如在一些特定的场景下,如在无需使用麻醉机的吸入麻醉功能时,就可以通过麻醉机的通气模块对病人进行呼吸支持,提高了麻醉机的应用范围,同时无需使用额外的设备,省去了多设备的管理问题。其中,通气模块提供的周期性呼吸支持可以是高频通气(例如通气模块包括气体输送支路,气体输送支路接收外部气源提供的气体,并以3Hz以上的通气频率对病人进行呼吸支持),也可以是低频通气等。通气模块的通气方式可以是喷射通气,也可以是非喷射通气;提供喷射通气时,通气模块可以进一步提供高频喷射通气。下面通过一些实施例进行详细说明。
如图2所示,本发明提供的麻醉机在现有麻醉机的基础上,增加了与气源模块10连通的通气模块50,气源模块10与通气模块50可以是直接连接也可以间接连接,总之连通即可。通气模块50用于利用气源模块10提供的第一气体(如氧气和/或空气)对病人进行周期性的呼吸支持。可见,在不用吸入麻醉时,还能利用麻醉机进行对病人通气,提高了麻醉机的应用范围,无需使用额外的设备。在一些使用场景下,麻醉机所具备的人机交互装置可以用于接收麻醉机对病人提供的呼吸支持方式。例如,可以在人机交互装置的显示界面上提供不同呼吸支持方式的触发按键。麻醉机可以根据人机交互装置接收的呼吸支持方式,来决定当前是用通气模块对病人进行周期性的呼吸支持,还是用第一通气控制装置控制呼吸回路对病人进行周期性的麻醉呼吸支持,或者是两者同时对不同病人提供呼吸支持。本申请所提到的“周期性的呼吸支持”和“周期性的麻醉呼吸支持”代表两种不同的呼吸支持方式,两者的共同点在于在一个呼吸周期中至少部分时间内没有向病人提供气体输送,两者的区别点在于周期性的麻醉呼吸支持所输送的气体中包括麻药、而周期性的呼吸支持方式下所输送的气体中没有麻药。
通气模块50可以连接各种附件,如喷射附件、鼻塞、鼻罩、面罩等,医生可以根据病人实际情况及通气需要,连接合适附件及进行相应通气方式,非常方便。
通气模块50可以有多种实现方式,如图6、图7和图8所示,其提供的周期性呼吸支持中,具体通气方式可以是高频通气和/或喷射通气,其中,喷射通气可以为高频喷射通气,也可以为低频喷射通气。本文中所使用的表述“高频/喷射通气”指高频通气或喷射通气。下面通过一些实施例进行举例说明。
实施例一:
本实施例中,通气模块50提供的通气方式为高频通气。例如,如图3和图4所示,通气模块50包括高频通气装置501。
高频通气装置501用于以至少3Hz的通气频率对病人进行通气,从而为病人提供周期性的呼吸支持。如图5所示,高频通气装置501可以包括气体输送支路500、第二控制阀T5和输出端口530。高频通气装置501通过气体输送支路500接收第一气体。第二控制阀T5设置于气体输送支路500中,并受控以至少3Hz的切换频率进行流量大小切换,以使输出端口530输出的第一气体形成高频气流。本文所使用的表述“高频气流”指输出的频率大于一定临界值的气体,例如输出的频率大于等于3Hz的气体。
第二控制阀T5的通气频率(流量切换频率或者说阀门开度切换频率)可预先设置好,第二控制阀T5用于高频通气控制(如高频率的在一大一小的两个不同阀门流量之间切换,其频率可以在3Hz以上,例如在3-20Hz之间),使第一气体形成高频脉冲气流,高频脉冲气流经过后续的喷射附件后可给病人进行高频喷射通气,若后续不接喷射附件,则高频脉冲气流可给病人进行高频通气。第二控制阀T5可以是电磁阀、电磁伺服阀、电磁开关阀或电磁比例阀等。
本实施例中,高频通气装置501以第一通气频率提供周期性的呼吸支持,第一通气控制装置40控制呼吸回路30以第三通气频率提供周期性的麻醉呼吸支持。其中第一通气频率大于第三通气频率,例如,第一通气频率大于等于3Hz,第三通气频率小于3Hz。
高频通气装置501的实现方式可以有多种,如图6、图7和图8所示,下面一一介绍。
如图7所示,第一气体可以包括氧气。气源模块10包括用于提供氧气的氧气单元,例如,氧气单元为氧气接口或制氧机等。氧气接口用于连接外部氧气源,如氧气接口连接医院里的氧气输送管道、氧气瓶等。气体输送支路500包括氧气支路510,即通气模块50或者说高频通气装置501包括:氧气支路510、第二控制阀T5和输出端口530。氧气支路510与氧气单元连通,例如两者直接连接。氧气单元通过氧气支路510与输出端口530连通。第二控制阀T5设置于氧气支路510中,第二控制阀T5以所设定的频率(例如至少3Hz)进行流量大小切换,既可以用于控制氧气支路510的氧气流量,也可以使输出端口530输出的氧气形成高频气流,从而实现为病人提供周期性的高频通气。氧气支路510中还可以设置有用于控制氧气支路510通断的第一开关阀T1。
如图8所示,第一气体也可以包括空气。气源模块10包括用于提供空气的空气单元,例如,空气单元为空气接口。空气接口用于连接外部空气源,如医院里的空气输送管道等。又例如,空气单元为涡轮,可从外部大气环境获取空气。气体输送支路500包括空气支路520,即通气模块50或者说高频通气装置501包括:空气支路520、第二控制阀T5和输出端口530。空气支路520与空气单元连通,例如两者直接连接。空气单元通过空气支路520与输出端口530连通。第二控制阀T5设置于空气支路520中,第二控制阀T5以所设定的频率(例如至少3Hz)进行流量大小切换,既可以用于控制空气支路520的空气流量,也可以使输出端口530输出的空气形成高频气流,从而实现为病人提供周期性的高频通气。空气支路520中还可以设置有用于控制空气支路520通断的第二开关阀T2。
图7-8所示的实施例中,第二控制阀T2以可实现高频通气的频率进行流量大小切换,在阀门开度大小高频调节的过程中,通过开度大小控制氧气支路和空气支路的流量,通过切换频率控制氧气支路和空气支路中气流的通气频率。
如图6所示,第一气体也可以包括氧气和空气。气源模块10包括用于提供氧气的氧气单元和空气单元。气体输送支路500包括氧气支路510和空气支路520,即通气模块50或者说高频通气装置501包括:氧气支路510、空气支路520、第二控制阀T5和输出端口530。氧气支路510与氧气单元连通,例如两者直接连接。空气支路520与空气单元连通,例如两者直接连接。氧气支路510和空气支路520汇流后经第二控制阀T5与输出端口530连通。其中,氧气支路510中设置有第一控制阀T3,第一控制阀T3用于控制氧气支路510的氧气流量的,氧气支路510中还可以设置有用于控制氧气支路510通断的第一开关阀T1;第一开关阀T1起到安全保护作用。空气支路520中设置有第三控制阀T4,第三控制阀T4用于控制空气支路520的空气流量,空气支路520中还可以设置有用于控制空气支路520通断的第二开关阀T2;第二开关阀T2起到安全保护作用。第一控制阀T3可以采用比例阀或流量阀等,第三控制阀T4可以采用比例阀或流量阀等。第一控制阀T3和第三控制阀T4可以一同控制氧空混合气体的总流量及氧气浓度。第二控制阀T5以所设定的频率(例如至少3Hz)进行流量大小切换,可以用于使汇流后的空气和氧气的混合气体形成高频气流,高频气流通过输出端口530输出,进而对病人进行高频通气。有的实施例中,作为图6所示实施例的替代方式,也可以不设置第二控制阀T5,而是由第一控制阀T3和第三控制阀T4共同来实现高频通气控制。即,第一控制阀T3既用于控制氧气支路510的氧气流量,也用于使氧气支路的氧气形成高频气流,从而实现高频通气;第三控制阀T4既用于控制空气支路520的空气流量,也用于使空气支路的空气形成高频气流,从而实现高频通气。该替代实施例中,第一控制阀T3和第三控制阀T4以可实现高频通气的频率进行流量大小切换,在阀门开度大小高频调节的过程中,通过开度大小控制氧气支路和空气支路的流量,通过切换频率控制所在支路中气流的通气频率。因此,作为图6所示实施例的替代方式,通过控制第一控制阀T3和第三控制阀T4这两个阀高频率(如大于等于3Hz)的在一大一小的两个不同阀门流量之间切换(如高频率的开启和部分关断),使氧气和空气的混合气体形成高频气流,从而给病人进行高频通气。
图6-图8的实施例中,第一开关阀T1和第二开关阀T2均起到安全保护作用。如果在不使用该通气模块50时,若通气模块50有气体输出,则会对原麻醉机的麻醉输送系统的给气及麻醉呼吸机的通气造成影响,同时也会造成氧气或空气气源的浪费;因此,设置第一开关阀T1和第二开关阀T2,在不使用该通气模块时,防止氧气控制阀T3、空气控制阀T4或第二控制阀T5不能关闭时导致有气体输出。
从上述的高频通气装置501可知,其输出端口530处形成的高频气流对病人进行通气的通气频率为至少3Hz,或者有的实施例中,其输出端口530处形成的高频气流对病人进行通气的通气频率为50-1500bpm中的一个。高频通气包括高频正压通气、高频振荡通气和高频喷射通气。上述的高频通气装置用于高频正压通气或高频振荡通气时,对病人进行通气的通气频率为至少3Hz;高频通气装置用于高频喷射通气时,对病人进行通气的通气频率为50-1500bpm。通气模块50提供的高频通气可以是单纯的高频通气,也可以在加上喷射附件70后形成高频喷射通气,具体的,输出端口530如果不接喷射附件,而是接其他通气附件(如气管、插管、面罩、鼻罩等),高频通气装置501就单纯为病人提供高频通气。而输出端口530若接喷射附70件,则高频通气装置501还能进一步为病人提供高频喷射通气。以后者为例,输出端口530可用于连接喷射附件,输出端口530输出的高频气流经喷射附件传输形成为高频喷射气流。喷射附件可以由第三方厂商提供,用户接到输出端口530上即可,当然,喷射附件也可以属于麻醉机配件中的一部分,即麻醉机包括与高频通气装置501连接的喷射附件。喷射附件接收高频通气装置501输出的第一气体,并使第一气体以高频喷射气流方式输出。即,输出端口530输出的是高频气流(高频脉冲气流),其经过喷射附件后就变成了高频喷射气流,高频喷射气流对病人进行通气的通气频率可以是3Hz以上,也可以在50-1500bpm之间,从而为病人提供高频喷射通气。对于高频振荡通气和高频正压通气,其通气频率可以在3Hz以上;对于高频喷射通气,其通气频率可以是50-1500bpm中的一个。喷射附件包括喷射通道,喷射通道的输出孔径小于4mm。喷射附件可以包括喷管、喷针或支架(例如气管镜、支气管镜、镜鞘、)等,支架用于支撑人体组织或连接气管导管,便于医生手术,支架的壁上设置有用于喷气的孔(例如,其孔径小于4mm)。
实施例二:
本实施例中,通气模块50提供的通气方式为喷射通气。通气模块50还用于连接喷射附件,接收气源接口输出的气体并进行调节,使气体经过喷射附件后以喷射气流的方式对病人进行呼吸支持。气路图还是如图6-8所示。即,通气模块50包括气体输送支路500、第二控制阀T5和输出端口530,第二控制阀T5设置于气体输送支路500中,并用于控制通气模块50提供周期性的呼吸支持。输出端口530用于连接喷射附件。通气模块50通过气体输送支路500接收第一气体,第一气体经输出端口530连接的喷射附件70输出,并形成为喷射气流。一些实施例中,麻醉机可以包括与通气模块50连接的喷射附件70,喷射附件70接收通气模块50输出的第一气体,并使第一气体形成喷射气流。另一些实施例中,麻醉机可以不包括喷射附件,后续使用中由用户自行安装喷射附件到通气模块的输出端口530。本文所使用的表述“喷射通气”指如下通气方式:在一个呼吸周期的送气阶段,高压气体经细孔径的喷射附件喷射出高速气体进入呼吸道,高速气体利用卷吸/文丘里效应来对潮气量进行补充,在一个呼吸周期的呼气阶段停止送气。本文中,与喷射通气相对应的术语“喷射气流”指经喷射附件输出的高速气流。
本实施例中,通气模块50的气路图可以有多种,如图6、图7和图8所示,下面一一介绍。
如图7所示,气源模块10包括氧气单元,第一气体包括氧气单元提供的氧气。气体输送支路500包括氧气支路510,即通气模块包括:氧气支路510、第二控制阀T5和输出端口530。氧气单元通过氧气支路与输出端口530连通,输出端口530用于连接喷射附件。第二控制阀T5设置于氧气支路510中,用于控制氧气支路510的氧气流量和使输出端口530输出的氧气经过喷射附件后形成周期性的喷射气流,从而实现为病人提供周期性的喷射通气。同样的,氧气支路510中还可以设置有用于控制氧气支路510通断的第一开关阀T1。
如图8所示,气源模块10包括空气单元,第一气体包括空气单元提供的空气。气体输送支路500包括空气支路520,即通气模块50包括:空气支路520、第二控制阀T5和输出端口530。空气单元通过空气支路520与输出端口530连通。输出端口用于连接喷射附件。第二控制阀T5设置于空气支路520中,用于控制空气支路520的空气流量和使输出端口530输出的空气经过喷射附件后形成周期性的喷射气流,从而实现为病人提供周期性的喷射通气。同样的,空气支路520中还可以设置有用于控制空气支路520通断的第二开关阀T2。
图7和图8的实施例中,第二控制阀T5以一定频率进行流量大小切换,在阀门开度大小的调节过程中,通过开度大小控制氧气支路和空气支路的流量,通过切换频率控制氧气支路和空气支路中气流的通气频率,使得氧气支路和空气支路可分别输出周期性的气流。输出端口的周期性气流经喷射附件的喷射通道输出时,对病人提供周期性的喷射通气。
如图6所示,气源模块10包括用于提供氧气的氧气单元和用于提供空气的空气单元,第一气体包括氧气单元提供的氧气和空气单元提供的空气。气体输送支路500包括氧气支路和空气支路,即通气模块50包括:氧气支路510、空气支路520、第二控制阀T5和输出端口530。氧气支路510与氧气单元连通,空气支路520与空气单元连通。氧气支路510和空气支路520汇流后经第二控制阀T5与输出端口530连通。输出端口530用于连接喷射附件。其中,氧气支路510中设置有第一控制阀T3,空气支路520中设置有第三控制阀T4。第一控制阀T3用于控制氧气支路510的氧气流量,第三控制阀T4用于控制空气支路520的空气流量。第二控制阀T5用于使汇流后的空气和氧气的混合气体在经输出端口530连接的喷射附件输出时,形成周期性的喷射气流,从而实现为病人提供周期性的喷射通气。
有的实施例中,作为图6所示实施例的替代方式,也可以不设置第二控制阀T5,而是由第一控制阀T3和第三控制阀T4共同来实现喷射控制。即,第一控制阀T3既用于控制氧气支路510的氧气流量,也用于使氧气支路的氧气形成周期性输出的氧气气流,从而实现喷射通气;第三控制阀T4既用于控制空气支路520的空气流量,也用于使空气支路的空气形成周期性输出的空气气流,从而实现喷射通气。即,氧气支路510的周期性气流和空气支路520的周期性气流汇流后的混合气体在经输出端口530连接的喷射附件输出时,形成周期性的喷射气流。
结合图6-8的实施例可知,本实施例中,通气模块50对病人提供的周期性呼吸支持,是对病人进行喷射通气。喷射通气是正压通气的其中一种方式,喷射通气是一种在开放气道下将高压气体高速喷射进入呼吸道的通气方式。喷射通气的通气频率范围很广,为满足用户不同生理状况的需求,喷射通气可以有多种通气频率,例如高频喷射通气和低频喷射通气等。高频和低频是相对概念,相当于有多个通气频率的档位,高频喷射通气的频率高于低频喷射通气的频率。在一些实施方式中,例如高频喷射通气的频率可以在50-1500bpm之间,还有的实施例中高频喷射通气的频率可以在3Hz以上,例如在3-20Hz之间;低频通气的频率例如可以在10-50bpm之间。本申请中,喷射通气与第一通气控制装置控制实现的周期性的麻醉呼吸支持的另一区别在于,喷射通气为开放气道下的正压通气,而周期性的麻醉呼吸支持则是应用于封闭气道或插管的通气场景。
现有技术中,有的麻醉机除了给病人提供麻醉呼吸支持外,还能提供高流量氧疗,即,给病人输送高流量的氧气,从而实现病人的预给氧,延长病人的窒息时间窗,给医生插管等操作预留时间。预给氧不涉及呼吸周期的控制,而本实施例新增的通气模块50需要给病人提供周期性的呼吸支持,涉及到呼吸周期的控制,也就是通气频率的控制。
一实施例中,通气模块50可包括第二通气控制装置。例如,第二通气控制装置同样可以包括一个或多个阀门以及用于驱动一个或多个阀门的板卡,一个或多个阀门设置在气体输送支路(如上述的氧气支路、空气支路等)中。板卡通过对一个或多个阀门(如图6-8中的各类控制阀等)的控制,使第一气体周期性的输送给病人,从而为病人提供周期性的呼吸支持。其中,板卡通过对一个或多个阀门进行一定频率的开度切换控制,形成周期性的气流,从而使通气模块50可以对病人进行周期性的呼吸支持。结合上述实施例,第二通气控制装置控制一个或多个阀门的开度切换控制频率为3Hz以上时,通气模块50可以为病人提供高频通气;第二通气控制装置控制一个或多个阀门的开度切换控制频率为10-1500bpm,且通气模块50连接有喷射附件时,使得通气模块50可以为病人提供喷射通气。
上述实施例中,氧气支路510中还可以设置用于监测氧气支路510的流量大小的第一流量传感器F1。空气支路520中还可以设置用于监测空气支路520的流量大小的第二流量传感器F2。通过这两个流量传感器,可以很好的对氧气和空气的流量进行监控。
氧气支路510和空气支路520的汇流节点(图6中黑色圆点)与输出端口530之间设置有用于泄压的安全阀T6,还至少设置有一个用于监测压力的压力传感器。安全阀T6可具体用于在压力传感器监测的压力超过预设阈值时,将输出端口530与安全阀T6的排气端连通,使输出端口530与安全阀T6之间的气体通过排气端排出,防止病人产生气压伤。安全阀T6还可用于在压力传感器监测的压力超过预设阈值时,将输出端口530与汇流节点之间的气道隔开。例如,安全阀T6为三通阀,三通阀的第一端连接输出端口530,三通阀的第二端连接汇流节点,三通阀的第三端为排气端。正常情况下,三通阀的第一端与第二端连接(连通),第一端与排气端、第二端与排气端均断开。压力传感器将监测的压力输出给第二通气控制装置。第二通气控制装置判断该压力是否超过预设阈值,在超过预设阈值时,输出相应的控制信号给三通阀。三通阀在控制信号的触发下,将第一端与第二端断开,将第一端与排气端连接(连通),从而可以将过高气压的气体进行释放,提高了安全性。预设阈值可以根据临床经验或医生需求等进行设置。
麻醉机的人机交互装置还包括显示器。当人机交互装置接收的呼吸支持方式为周期性的呼吸支持时,显示器用于输出关闭麻药输送装置20的提示信息或者输出切换病人麻醉方式的提示信息,避免麻药输送装置20的麻药没有经过呼吸回路提供给病人、而是释放到了环境中。当人机交互装置接收的呼吸支持方式为周期性的呼吸支持时,显示器还可以用于显示压力波形W(如图9所示),便于用户查看、分析。压力波形W中的压力由压力传感器监测得到。
本实施例中,麻药输送装置20为电子蒸发罐时,麻醉机还可以获取到电子蒸发罐的工作状态。人机交互装置接收的呼吸支持方式为周期性的呼吸支持时,麻醉机还用于确定电子蒸发罐的当前工作状态是否为停止工作,也即确定电子蒸发罐是否关闭,并在确定电子蒸发罐关闭后,使得麻醉机才能够切换到周期性的呼吸支持方式。只有在电子蒸发罐关闭后通气模块50才进行周期性的呼吸支持,提高了麻醉机使用的安全性。
进一步结合图10,图10为麻醉机的显示器上主监测界面的示意图。该主监测界面包括通气模式切换区域P1,高频喷射通气作为其中一种通气模式,以页签方式呈现在通气模式切换区域P1中。当希望使用麻醉机来提供周期性的呼吸支持时,可选择通气模式切换区域P1的“HFJV”图标,并通过“SET MODE”图标来确认,即可完成周期性的呼吸支持方式的选择。此时,通气模块50可受控启动并向病人提供周期性的高频喷射通气。高频喷射通气过程中监测到的压力,将显示在主监测界面的压力波形区域P2中。当希望使用麻醉机来提供周期性的麻醉呼吸支持时,可选择通气模式切换区域P1的其他通气模式图标,例如“VCV”图标,此时第一通气控制装置40可控制呼吸回路对病人提供周期性的麻醉呼吸支持。
在一些实施例中,人机交互装置接收到任一种呼吸支持方式时,基于该同一呼吸支持方式形成的指令可分别传送给第一通气控制装置和第二通气控制装置。两个通气控制装置分别根据接收到的指令,启动或停止相应的呼吸支持方式。例如,人机交互装置接收到的呼吸支持方式为周期性的呼吸支持时,第一通气控制装置40控制呼吸回路停止对外输出带有麻药的第二气体,停止对病人进行周期性的麻醉呼吸支持,第二通气控制装置同步控制通气模块50(例如气体输送支路)开始向病人周期性的提供第一气体,并进行高频/喷射通气。
上述实施例中,第二通气控制装置与第一通气控制装置40是两个独立的通气控制装置;当然,在另外一些实施方式中,第二通气控制装置与第一通气控制装置40也可以是同一个通气控制装置,即,通气模块50的控制功能可进一步与第一通气控制装置集成。即第一通气控制装置还具有上述第二通气控制装置的功能,用于控制气体输送支路对病人进行周期性的呼吸支持。具体操作中,人机交互装置接收到的选择呼吸支持方式的指令,传送给第一通气控制装置后,由第一通气控制装置决定是控制呼吸回路提供周期性的麻醉呼吸支持,和/或控制气体输送支路为病人提供周期性的呼吸支持。
如图6-8所示,压力传感器可设置在第二控制阀T5和输出端口530之间。安全阀T6同样设置在第二控制阀T5和输出端口530之间。
压力传感器可以设置多个,本实施例以设置第一压力传感器P1和第二压力传感器P2为例进行说明。第一压力传感器P1监测的压力用来触发安全阀T6,第二压力传感器P2监测的压力用来显示波形。
具体的,第一压力传感器P1靠近安全阀T6。第一压力传感器P1监测高频气体的压力,当发现第一压力传感器P1监测的压力值异常时,切换安全阀T6,使得病人端气道与通气模块50的气道隔开,同时病人端气体可以通过安全阀T6排出去,防止病人端产生气压伤。
第二压力传感器P2靠近病人端,即靠近输出端口530。在近病人端有压力采样口,通过压力采样导管连接到通气模块50的第二压力传感器P2。从而显示器在界面上显示第二压力传感器P2采集的压力振荡波形W。当然,有的实施例中,安全阀T6的动作也可以依据近病人端的第二压力传感器P2来触发,显示器显示的压力波形W的数据也可以由近安全阀T6的第一压力传感器P1采集。
通气模块50可以通过控制第二控制阀T5的切换频率来进行高频/喷射通气,高频/喷射通气的具体过程在上述内容中已详细阐述。通气模块50对第二控制阀T5进行高频/喷射通气的频率(即送气频率)进行调节,即可实现不同通气频率的通气。例如,通气模块50实现喷射通气时,将喷射通气装置的通气频率调低时,上述喷射通气装置即为低频通气装置,配合相应的附件(如鼻塞、鼻罩、面罩等)即可实现低频通气。
如图3和图4所示,麻醉机还包括流量监控装置60,流量监控装置60用于控制(调节)第一气体的流量,其可以采用机械式的,也可以采用全电子式的。流量监控装置60还可以用于检测第一气体的流量。流量监控装置60、麻药输送装置20和通气模块50三者之间有多种连接方式。例如图3所示的实施例中,气源模块10通过流量监控装置60连接麻药输送装置20,其中,通气模块50与气源模块10连接;图3中具体为气源接口通过流量监控装置60连接蒸发器210。又例如图4所示的实施例中,麻醉机还包括三通阀T12。三通阀T12包括与流量监控装置60连接的第一端口1、与麻药输送装置20连接的第二端口2、以及与通气模块50连通的第三端口3。即,气源模块10连接流量监控装置60的输入端。流量监控装置60的输出端可以在三通阀T12的控制下与麻药输送装置20选通,也可以在三通阀T12的控制下与通气模块50选通,即,三通阀T12用于使流量监控装置60在麻药输送装置20和通气模块50中选择其中一个连通。
气源模块10还可以包括用于提供笑气的笑气单元,笑气单元可以是笑气接口,笑气接口用于连接外部笑气源,如医院里的笑气输送管道、笑气瓶等。流量监控装置60可以有三个输入接口,分别连接氧气接口、空气接口和笑气接口。图11对应的是图3实施例的流量监控装置60,流量监控装置60包括第三开关阀T7、第四开关阀T8、第五开关阀T9、第四控制阀T10、第五控制阀T11、第三流量传感器F3和第四流量传感器F4。第三开关阀T7的一端连接氧气接口,第三开关阀T7的另一端通过第四控制阀T10连接第三流量传感器F3的输入端。第四开关阀T8的一端连接空气接口,第五开关阀T9的一端连接笑气接口。第四开关阀T8的另一端和第五开关阀T9的另一端汇流后通过第五控制阀T11连接第四流量传感器F4的输入端。第三流量传感器F3的输出端与第四流量传感器F4的输出端汇流后连接蒸发器210。第三开关阀T7、第四开关阀T8和第五开关阀T9均用于控制气路的通断。第四控制阀T10和第五控制阀T11用于流量控制。
图12对应的是图4实施例的流量监控装置60。第三流量传感器F3的输出端与第四流量传感器F4的输出端汇流后连接三通阀T12的输入端1。三通阀T12具有第一输出端2和第二输出端3,其第一输出端2连接蒸发器210,其第二输出端3连接通气模块(如高频通气装置501)。三通阀T12有两个状态,一个状态是其输入端1与第一输出端2连接,另一个状态是其输入端1与第二输出端3连接。即,通过控制三通阀T12,可以选择将气体输出给蒸发器210还是高频通气装置501。第三开关阀T7、第四开关阀T8和第五开关阀T9均用于控制气路的通断。第四控制阀T10和第五控制阀T11用于流量控制。
图4所示的一实施例中,通气模块50可以包括气体输送支路和输出端口,但气体输送支路中不用设置第二控制阀T5,而是与流量监控装置60共用第四控制阀T10和第五控制阀T11,第四控制阀T10和第五控制阀T11均用于周期性的通气控制,即第四控制阀T10和第五控制阀T11的功能可以与上述第二控制阀相同,例如第四控制阀T10和第五控制阀T11均能受控以预设的频率进行流量大小切换,使得三通阀T12的第一端口1的气流的脉冲频率大于等于3Hz或者在50-1500bpm之间。具体的,以图12为例,替代方案的实施例中,三通阀T12的第一端口1与流量监控装置60连接,三通阀T12的第二端口2与麻药输送装置20连接,三通阀T12的第三端口3与通气模块50连接。麻醉机接收的呼吸支持方式为周期性的呼吸支持时,三通阀T12的第一端口1和第三端口3导通,第四控制阀T10和第五控制阀T11与通气模块50连通,第四控制阀T10和第五控制阀T11按预设的频率进行流量切换使得通气模块50以第一通气频率对病人进行通气。第一通气频率例如可以大于等于3Hz,或者在50-1500bpm之间。如此,通过T10和T11这两个控制阀的开度大小切换,使氧气和空气的混合气体(也可以是氧气、空气和笑气的混合气体)形成周期性的气流,该周期性高的气流沿气体输送支路传输到输出端口,通气模块50的输出端口530连接喷射附件的话,周期性气流经过喷射附件后给病人进行喷射通气。麻醉机接收的呼吸支持方式为周期性的麻醉呼吸支持时,第一端口1和第二端口2导通,第四控制阀T10和第五控制阀T11与麻药输送装置20连通,第四控制阀T10和第五控制阀T11以第二通气频率向麻药输送装置提供第一气体,使第一气体以第二通气频率与麻药混合得到第二气体,以使呼吸回路对病人进行通气。其中第一通气频率大于第二通气频率。第二通气频率可以是0,即第四控制阀T10和第五控制阀T11打开即可。
可以理解的是,图4所示的实施例中,可以从流量监控装置60的流量后端引出气体给通气模块,相对于图3的方案来说,图4方案的通气模块借用(共用)了部分流量监控装置60的部件(T10和T11),极大的简化了通气模块的结构。
从上述内容可知,第一气体至少为含氧气体,麻醉机还可以包括辅助供气模块。辅助供气模块用于接收气源模块10输出的第一气体,并使用第一气体以20-80升/分钟的流量对病人进行呼吸支持。辅助供气模块提供的呼吸支持,是非周期性的呼吸支持。非周期性的呼吸支持指持续对病人进行气体输送。此种方式实际上是高流量氧疗,如此,麻醉机在不需要麻醉时,可以为病人提供高流量氧疗,应用范围广泛。
在一些实施例中,麻醉机可以包括主机架,该主机架具有外壳,至少部分的通气模块可以设置于外壳所形成的容置空间中,与麻醉机形成一个集合整体。即至少部分的通气模块集成在麻醉机内部,与麻醉机集成在一起。例如,通气模块所包括的第二通气控制装置内置于主机架中,并与麻醉机的人机交互装置通讯连接。
本发明的麻醉机,由于集成了通气模块,可以提供如下通气控制:在所接收的呼吸支持方式为周期性的麻醉呼吸支持时,控制第一气体与麻药混合得到第二气体,控制第二气体进入麻醉机的呼吸回路,并控制呼吸回路周期性地输出第二气体,以实现周期性的麻醉呼吸支持;在所接收的呼吸支持方式为周期性的呼吸支持时,控制第一气体进入麻醉机的通气模块,并控制通气模块周期性地输出第一气体,以实现周期性的呼吸支持;其中,周期性的呼吸支持包括在一个呼吸周期中部分时间内没有提供气体输送。例如,用户希望通过麻醉机提供喷射通气时,可控制通气模块以一定频率对外输出周期性的第一气体,该周期性的第一气体在经过喷射附件后即可完成喷射通气。
本发明创造性的将喷射通气(JV, Jet Ventilation)功能集成在通用麻醉机上,直接使用麻醉机就可以支持咽部、气管、支气管或者肺部手术等不能进行气管插管通气的应用场合。例如,在使用本发明提供的麻醉机时,医生将喷针或喷管放入咽部或气管的合适位置,用麻醉机进行喷射通气和呼吸支持。一方面,喷针或喷管直径很小,有足够的空间给医生观察和进行喉镜手术;另一方面,喷射通气的特点,尤其高频(3Hz以上,或50-1500bpm)喷射通气的特点,在吸气和呼气之间患者肺部压力变化很小,不会形成肺部呼吸的大的起伏,无疑为单肺通气或肺部手术提供便利。容易理解的是,喷射通气因为使用喷针、喷管通气,并不会使得麻醉机的气路系统和患者的呼吸系统形成密封联结,因此这种通气不能通过喷针、喷管同步注入麻药,否则会造成麻药外泄。这种情况下,需要通过静脉注射麻醉药物的方式进行麻醉。
本发明将通气模块如喷射通气功能集成在通用麻醉机上,将板卡、显示屏等集成在一台设备上,对于手术室设备的管理带来了便利,可以让更多的医院能够进行咽部、气管、支气管或者肺部手术等不能进行气管插管通气的麻醉手术,具有极大的临床价值。
本文参照了各种示范实施例进行说明。然而,本领域的技术人员将认识到,在不脱离本文范围的情况下,可以对示范性实施例做出改变和修正。例如,各种操作步骤以及用于执行操作步骤的组件,可以根据特定的应用或考虑与系统的操作相关联的任何数量的成本函数以不同的方式实现(例如一个或多个步骤可以被删除、修改或结合到其他步骤中)。
另外,如本领域技术人员所理解的,本文的原理可以反映在计算机可读存储介质上的计算机程序产品中,该可读存储介质预装有计算机可读程序代码。任何有形的、非暂时性的计算机可读存储介质皆可被使用,包括磁存储设备(硬盘、软盘等)、光学存储设备(CD-ROM、DVD、Blu Ray盘等)、闪存和/或诸如此类。这些计算机程序指令可被加载到通用计算机、专用计算机或其他可编程数据处理设备上以形成机器,使得这些在计算机上或其他可编程数据处理装置上执行的指令可以生成实现指定的功能的装置。这些计算机程序指令也可以存储在计算机可读存储器中,该计算机可读存储器可以指示计算机或其他可编程数据处理设备以特定的方式运行,这样存储在计算机可读存储器中的指令就可以形成一件制造品,包括实现指定功能的实现装置。计算机程序指令也可以加载到计算机或其他可编程数据处理设备上,从而在计算机或其他可编程设备上执行一系列操作步骤以产生一个计算机实现的进程,使得在计算机或其他可编程设备上执行的指令可以提供用于实现指定功能的步骤。
虽然在各种实施例中已经示出了本文的原理,但是许多特别适用于特定环境和操作要求的结构、布置、比例、元件、材料和部件的修改可以在不脱离本披露的原则和范围内使用。以上修改和其他改变或修正将被包含在本文的范围之内。
前述具体说明已参照各种实施例进行了描述。然而,本领域技术人员将认识到,可以在不脱离本披露的范围的情况下进行各种修正和改变。因此,对于本披露的考虑将是说明性的而非限制性的意义上的,并且所有这些修改都将被包含在其范围内。同样,有关于各种实施例的优点、其他优点和问题的解决方案已如上所述。然而,益处、优点、问题的解决方案以及任何能产生这些的要素,或使其变得更明确的解决方案都不应被解释为关键的、必需的或必要的。本文中所用的术语“包括”和其任何其他变体,皆属于非排他性包含,这样包括要素列表的过程、方法、文章或设备不仅包括这些要素,还包括未明确列出的或不属于该过程、方法、系统、文章或设备的其他要素。此外,本文中所使用的术语“耦合”和其任何其他变体都是指物理连接、电连接、磁连接、光连接、通信连接、功能连接和/或任何其他连接。
具有本领域技术的人将认识到,在不脱离本发明的基本原理的情况下,可以对上述实施例的细节进行许多改变。因此,本发明的范围应根据以下权利要求确定。

Claims (33)

  1. 一种麻醉机,包括:流量监控装置、与所述流量监控装置连通的麻药输送装置、呼吸回路、第一通气控制装置以及人机交互装置:
    所述流量监控装置用于调节第一气体的流量;
    所述麻药输送装置用于将所述第一气体与麻药混合得到第二气体,并将所述第二气体输送到所述呼吸回路中;
    所述呼吸回路用于将所述第二气体输送给病人;
    所述第一通气控制装置用于控制所述呼吸回路将所述第二气体输送给病人,从而为病人提供周期性的麻醉呼吸支持;
    所述人机交互装置用于接收用户输入的所述麻醉机对病人提供的呼吸支持方式;
    其特征在于,还包括:
    通气模块,用于接收所述第一气体,以使用第一气体对病人进行周期性的呼吸支持;
    所述麻醉机还根据所述人机交互装置接收的呼吸支持方式,使得所述第一通气控制装置为病人提供周期性的麻醉呼吸支持和/或使得所述通气模块为病人提供周期性的呼吸支持;其中,所述周期性的呼吸支持包括在一个呼吸周期中部分时间内没有向病人提供气体输送。
  2. 如权利要求1所述的麻醉机,其特征在于,所述通气模块包括高频通气装置,所述高频通气装置用于以至少3Hz的通气频率对病人进行通气,从而为病人提供周期性的呼吸支持。
  3. 如权利要求2所述的麻醉机,其特征在于,所述高频通气装置包括气体输送支路、第二控制阀和输出端口,所述高频通气装置通过所述气体输送支路接收所述第一气体,所述第二控制阀设置于所述气体输送支路中,并受控以至少3Hz的切换频率进行流量大小切换,以使所述输出端口输出的第一气体形成高频气流。
  4. 如权利要求2所述的麻醉机,其特征在于,还包括与所述高频通气装置连接的喷射附件,所述喷射附件接收所述高频通气装置输出的第一气体,并使所述第一气体以高频喷射气流方式输出。
  5. 如权利要求1至4任一项所述的麻醉机,其特征在于,还包括:用于提供所述第一气体的气源模块;所述气源模块通过所述流量监控装置连接所述麻药输送装置;其中,所述通气模块与所述气源模块连接。
  6. 如权利要求1至5任一项所述的麻醉机,其特征在于,所述气源模块包括氧气单元,所述第一气体包括所述氧气单元提供的氧气;
    所述通气模块包括:氧气支路、第二控制阀和输出端口;所述氧气单元通过所述氧气支路与所述输出端口连通,所述第二控制阀设置于所述氧气支路中,用于控制所述氧气支路的氧气流量和使所述输出端口输出的氧气形成高频气流。
  7. 如权利要求1至5任一项所述的麻醉机,其特征在于,所述气源模块包括空气单元,所述第一气体包括所述空气单元提供的空气;
    所述通气模块包括:空气支路、第二控制阀和和输出端口;所述空气单元通过所述空气支路与所述输出端口连通,所述第二控制阀设置于所述空气支路中,用于控制空气支路的空气流量和使所述输出端口输出的空气形成高频气流。
  8. 如权利要求1至5任一项所述的麻醉机,其特征在于,所述气源模块包括用于提供氧气的氧气单元和用于提供空气的空气单元,所述第一气体包括所述氧气单元提供的氧气和所述空气单元提供的空气;
    所述通气模块包括:氧气支路、空气支路和输出端口;所述氧气支路与所述氧气单元连通,所述空气支路与所述空气单元连通;所述氧气支路和所述空气支路汇流后与输出端口连通;其中,所述氧气支路中设置有第一控制阀,所述第一控制阀用于控制氧气支路的氧气流量和使所述氧气支路的氧气形成高频气流,所述空气支路中设置有第三控制阀,所述第三控制阀用于控制空气支路的空气流量和使所述空气支路的空气形成高频气流。
  9. 如权利要求1至5任一项所述的麻醉机,其特征在于,所述气源模块包括用于提供氧气的氧气单元和用于提供空气的空气单元,所述第一气体包括所述氧气单元提供的氧气和所述空气单元提供的空气;
    所述通气模块包括:氧气支路、空气支路、第二控制阀和输出端口;所述氧气支路与所述氧气单元连通,所述空气支路与所述空气单元连通;所述氧气支路和所述空气支路汇流后经所述第二控制阀与所述输出端口连通;其中,所述氧气支路中设置有第一控制阀,所述空气支路中设置有第三控制阀,所述第一控制阀用于控制所述氧气支路的氧气流量,所述第三控制阀用于控制所述空气支路的空气流量,所述第二控制阀用于使汇流后的所述空气和氧气的混合气体形成高频气流。
  10. 如权利要求6-9任一项所述的麻醉机,其特征在于,所述输出端口处形成的高频气流对病人进行通气的通气频率为至少3Hz。
  11. 如权利要求6-9任一项所述的麻醉机,其特征在于,所述输出端口用于连接喷射附件,所述输出端口输出的高频气流经所述喷射附件传输形成为高频喷射气流。
  12. 如权利要求11述的麻醉机,其特征在于,所述高频喷射气流对病人进行通气的通气频率为50-1500bpm。
  13. 如权利要求6-7或9所述的麻醉机,其特征在于,所述第二控制阀和输出端口之间设置有用于监测压力的压力传感器;
    所述人机交互装置包括显示器,所述人机交互装置接收的呼吸支持方式为周期性的呼吸支持时,所述显示器用于显示所述压力传感器监测的压力的波形。
  14. 如权利要求13所述的麻醉机,其特征在于,所述第二控制阀和所述输出端口之间还设置有用于泄压的安全阀。
  15. 如权利要求1所述的麻醉机,其特征在于,所述通气模块包括气体输送支路、第二控制阀和输出端口,所述第二控制阀设置于所述气体输送支路中,并用于控制所述通气模块提供周期性的呼吸支持;所述通气模块通过所述气体输送支路接收所述第一气体,所述第一气体经所述输出端口连接的喷射附件输出,并形成为喷射气流。
  16. 如权利要求1所述的麻醉机,其特征在于,还包括与所述通气模块连接的喷射附件,所述喷射附件接收所述通气模块输出的第一气体,并使所述第一气体形成喷射气流。
  17. 如权利要求16所述的麻醉机,其特征在于,所述喷射附件包括喷射通道,所述喷射通道的输出孔径小于4mm。
  18. 如权利要求5所述的麻醉机,其特征在于,所述气源模块包括氧气单元,所述第一气体包括所述氧气单元提供的氧气;
    所述通气模块包括:氧气支路、第二控制阀和输出端口;所述氧气单元通过所述氧气支路与所述输出端口连通,所述输出端口用于连接喷射附件,所述第二控制阀设置于所述氧气支路中,用于控制所述氧气支路的氧气流量和使所述输出端口输出的氧气经过所述喷射附件后形成周期性的喷射气流。
  19. 如权利要求5所述的麻醉机,其特征在于,所述气源模块包括空气单元,所述第一气体包括所述空气单元提供的空气;
    所述通气模块包括:空气支路、第二控制阀和输出端口;所述空气单元通过所述空气支路与所述输出端口连通,所述输出端口用于连接喷射附件,所述第二控制阀设置于所述空气支路中,用于控制所述空气支路的空气流量和使所述输出端口输出的空气经过所述喷射附件后形成周期性的喷射气流。
  20. 如权利要求5所述的麻醉机,其特征在于,所述气源模块包括用于提供氧气的氧气单元和用于提供空气的空气单元,所述第一气体包括所述氧气单元提供的氧气和所述空气单元提供的空气;
    所述通气模块包括:氧气支路、空气支路和输出端口;所述氧气支路与所述氧气单元连通,所述空气支路与所述空气单元连通;所述氧气支路和所述空气支路汇流后与输出端口连通,所述输出端口用于连接喷射附件;其中,所述氧气支路中设置有第一控制阀,所述第一控制阀用于控制氧气支路的氧气流量和使所述氧气支路的氧气形成周期性气流,所述空气支路中设置有第三控制阀,所述第三控制阀用于控制空气支路的空气流量和使所述空气支路的空气形成周期性气流,所述氧气支路的周期性气流和所述空气支路的周期性气流汇流后的混合气体在经所述输出端口连接的喷射附件输出时,形成周期性的喷射气流。
  21. 如权利要求5所述的麻醉机,其特征在于,所述气源模块包括用于提供氧气的氧气单元和用于提供空气的空气单元,所述第一气体包括所述氧气单元提供的氧气和所述空气单元提供的空气;
    所述通气模块包括:氧气支路、空气支路、第二控制阀和输出端口;所述氧气支路与所述氧气单元连通,所述空气支路与所述空气单元连通;所述氧气支路和所述空气支路汇流后经所述第二控制阀与所述输出端口连通,所述输出端口用于连接喷射附件;其中,所述氧气支路中设置有第一控制阀,所述空气支路中设置有第三控制阀,所述第一控制阀用于控制所述氧气支路的氧气流量,所述第三控制阀用于控制所述空气支路的空气流量,所述第二控制阀用于使汇流后的所述空气和氧气的混合气体在经所述输出端口连接的喷射附件输出时,形成周期性的喷射气流。
  22. 如权利要求1所述的麻醉机,其特征在于,所述通气模块包括第二通气控制装置和气体输送支路,所述第二通气控制装置用于控制所述气体输送支路对病人进行周期性的呼吸支持。
  23. 如权利要求1所述的麻醉机,其特征在于,所述通气模块包括气体输送支路,所述第一通气控制装置还用于控制所述气体输送支路对病人进行周期性的呼吸支持。
  24. 如权利要求1所述的麻醉机,其特征在于,所述人机交互装置包括显示器,所述人机交互装置接收的呼吸支持方式为周期性的呼吸支持时,所述显示器用于输出关闭所述麻药输送装置的提示信息或者切换病人麻醉方式的提示信息。
  25. 如权利要求1所述的麻醉机,其特征在于,所述麻药输送装置为电子蒸发罐,所述人机交互装置接收的呼吸支持方式为周期性的呼吸支持时,所述麻醉机还用于确定所述电子蒸发罐是否关闭,并在确定所述电子蒸发罐关闭后,使得所述麻醉机提供周期性的呼吸支持。
  26. 如权利要求1所述的麻醉机,其特征在于,还包括三通阀;所述三通阀包括与所述流量监控装置连接的第一端口、与所述麻药输送装置连接的第二端口、以及与所述通气模块连通的第三端口;
    所述流量监控装置包括第四控制阀和第五控制阀;所述麻醉机接收的呼吸支持方式为周期性的呼吸支持时,所述第一端口和所述第三端口导通,所述第四控制阀和第五控制阀与所述通气模块连通,使所述通气模块以第一通气频率对病人进行通气;所述麻醉机接收的呼吸支持方式为周期性的麻醉呼吸支持时,所述第一端口和所述第二端口导通,所述第四控制阀和第五控制阀与所述麻药输送装置连通,将第一气体以第二通气频率与麻药混合得到第二气体,以使所述呼吸回路对病人进行通气;其中所述第一通气频率大于所述第二通气频率。
  27. 如权利要求1所述的麻醉机,其特征在于,所述第一气体至少为含氧气体,所述麻醉机还包括:
    辅助供气模块,用于接收所述第一气体,并使用所述第一气体以20-80升/分钟的流量对病人进行呼吸支持。
  28. 如权利要求1至27任一项所述的麻醉机,其特征在于,所述通气模块以第一通气频率提供周期性的呼吸支持,所述第一通气控制装置控制所述呼吸回路以第三通气频率提供周期性的麻醉呼吸支持;其中所述第一通气频率大于所述第三通气频率。
  29. 如权利要求3、6、7、9、13、14、15、18、19或21所述的麻醉机,其特征在于,所述第二控制阀选自电磁阀、电磁伺服阀、电磁开关阀和电磁比例阀。
  30. 一种麻醉机,其特征在于,包括:气源接口、与所述气源接口连通的麻药输送装置、呼吸回路、以及第一通气控制装置;
    所述气源接口用于连接外部气源;
    所述麻药输送装置用于将外部气源提供的气体与麻药混合,将混合气体输送到呼吸回路中;
    所述第一通气控制装置用于控制所述呼吸回路使所述混合气体周期性的输送给病人,从而为病人提供麻醉呼吸支持;
    其特征在于还包括:
    通气模块,用于利用所述外部气源提供的气体对病人进行呼吸支持;其中,所述通气模块包括气体输送支路,所述气体输送支路接收所述外部气源提供的气体,并以3Hz以上的通气频率对病人进行呼吸支持。
  31. 如权利要求30所述的麻醉机,其特征在于,所述通气模块还包括设置在所述气体输送支路中的第二控制阀和与所述气体输送支路连接的输出端口,所述输出端口用于连接喷射附件;其中,所述第二控制阀受控以至少3Hz的频率进行流量大小切换,以使所述外部气源提供的气体经由所述输出端口连接的喷射附件输出时,形成高频喷射气流。
  32. 一种麻醉机,其特征在于,包括:气源接口、与所述气源接口连通的麻药输送装置、呼吸回路、以及第一通气控制装置;
    所述气源接口用于连接外部气源;
    所述麻药输送装置用于将外部气源提供的气体与麻药混合,将混合气体输送到呼吸回路中;
    所述第一通气控制装置用于控制所述呼吸回路使所述混合气体周期性的输送给病人,从而为病人提供麻醉呼吸支持;
    其特征在于还包括:
    通气模块,用于连接喷射附件,接收所述气源接口输出的气体并进行调节,使所述气体经过所述喷射附件后以喷射气流的方式对病人进行呼吸支持。
  33. 一种通气控制方法,用于麻醉机,其特征在于,包括:
    接收第一气体;
    接收用户输入的麻醉机提供的呼吸支持方式;
    在所接收的呼吸支持方式为周期性的麻醉呼吸支持时,控制所述第一气体与麻药混合得到第二气体,控制所述第二气体进入所述麻醉机的呼吸回路,并控制所述呼吸回路周期性地输出第二气体,以实现周期性的麻醉呼吸支持;
    在所接收的呼吸支持方式为周期性的呼吸支持时,控制所述第一气体进入所述麻醉机的通气模块,并控制所述通气模块周期性地输出第一气体,以实现周期性的呼吸支持;其中,所述周期性的呼吸支持包括在一个呼吸周期中部分时间内没有提供气体输送。
PCT/CN2022/117392 2021-09-06 2022-09-06 一种麻醉机 WO2023030543A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280060311.XA CN117957032A (zh) 2021-09-06 2022-09-06 一种麻醉机
PCT/CN2023/079715 WO2024051118A1 (zh) 2022-09-06 2023-03-05 一种麻醉系统、麻醉机及通气控制方法
PCT/CN2023/110428 WO2024051399A1 (zh) 2021-09-06 2023-07-31 一种麻醉机和通气控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111040338.6 2021-09-06
CN202111040338 2021-09-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/597,847 Continuation US20240207565A1 (en) 2021-09-06 2024-03-06 Anesthesia machine

Publications (1)

Publication Number Publication Date
WO2023030543A1 true WO2023030543A1 (zh) 2023-03-09

Family

ID=85410724

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/117392 WO2023030543A1 (zh) 2021-09-06 2022-09-06 一种麻醉机
PCT/CN2023/110428 WO2024051399A1 (zh) 2021-09-06 2023-07-31 一种麻醉机和通气控制方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110428 WO2024051399A1 (zh) 2021-09-06 2023-07-31 一种麻醉机和通气控制方法

Country Status (2)

Country Link
CN (1) CN117957032A (zh)
WO (2) WO2023030543A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024051399A1 (zh) * 2021-09-06 2024-03-14 深圳迈瑞生物医疗电子股份有限公司 一种麻醉机和通气控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1121952A1 (fr) * 2000-02-07 2001-08-08 Taema Ventilateur d'anesthésie avec contrôle automatique du mode de ventilation selectionné
CN201356891Y (zh) * 2009-03-06 2009-12-09 中国人民解放军第四军医大学 气体麻醉管路装置
US20100175695A1 (en) * 2009-01-12 2010-07-15 Mindray Ds Usa, Inc. Auxiliary gas mixing in an anesthesia system
CN102139133A (zh) * 2010-02-01 2011-08-03 迈瑞Ds美国有限责任公司 一种麻醉系统和麻醉系统中的气体混合方法
CN103520814A (zh) * 2012-07-06 2014-01-22 通用电气公司 控制向患者的医用气体输送的系统及方法
WO2016157102A1 (en) * 2015-03-31 2016-10-06 Fisher & Paykel Healthcare Limited Methods and apparatus for high gas flow
CN109069782A (zh) * 2018-06-26 2018-12-21 深圳迈瑞生物医疗电子股份有限公司 一种麻醉机及系统
CN109172981A (zh) * 2018-07-27 2019-01-11 霍玉峰 一种可切换式呼吸麻醉装置
CN213554543U (zh) * 2020-05-29 2021-06-29 彭建良 一种高频喷射呼吸机联合麻醉机通气诊查多功能接头

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018222092A1 (en) * 2017-05-29 2018-12-06 Maquet Critical Care Ab Method and anaesthetic breathing apparatus
CN114126690B (zh) * 2019-10-09 2024-04-09 深圳迈瑞生物医疗电子股份有限公司 一种麻醉通气设备及其信息显示系统及信息显示方法
JP2024502288A (ja) * 2020-12-23 2024-01-18 フィッシャー アンド ペイケル ヘルスケア リミテッド 呼吸装置のための統合及びモード切替
CN117957032A (zh) * 2021-09-06 2024-04-30 深圳迈瑞生物医疗电子股份有限公司 一种麻醉机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1121952A1 (fr) * 2000-02-07 2001-08-08 Taema Ventilateur d'anesthésie avec contrôle automatique du mode de ventilation selectionné
US20100175695A1 (en) * 2009-01-12 2010-07-15 Mindray Ds Usa, Inc. Auxiliary gas mixing in an anesthesia system
CN201356891Y (zh) * 2009-03-06 2009-12-09 中国人民解放军第四军医大学 气体麻醉管路装置
CN102139133A (zh) * 2010-02-01 2011-08-03 迈瑞Ds美国有限责任公司 一种麻醉系统和麻醉系统中的气体混合方法
CN103520814A (zh) * 2012-07-06 2014-01-22 通用电气公司 控制向患者的医用气体输送的系统及方法
WO2016157102A1 (en) * 2015-03-31 2016-10-06 Fisher & Paykel Healthcare Limited Methods and apparatus for high gas flow
CN109069782A (zh) * 2018-06-26 2018-12-21 深圳迈瑞生物医疗电子股份有限公司 一种麻醉机及系统
CN109172981A (zh) * 2018-07-27 2019-01-11 霍玉峰 一种可切换式呼吸麻醉装置
CN213554543U (zh) * 2020-05-29 2021-06-29 彭建良 一种高频喷射呼吸机联合麻醉机通气诊查多功能接头

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024051399A1 (zh) * 2021-09-06 2024-03-14 深圳迈瑞生物医疗电子股份有限公司 一种麻醉机和通气控制方法

Also Published As

Publication number Publication date
WO2024051399A1 (zh) 2024-03-14
CN117957032A (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
CN109069782B (zh) 一种麻醉机及系统
EP1001824B1 (en) Tracheal gas insufflation delivery system for respiration equipment
US7121277B2 (en) Ventilator
EP2539001B1 (en) Spontaneous breathing trial manager
JP5809345B2 (ja) 電気制御高周波ジェット換気喉頭鏡
US20100218766A1 (en) Customizable mandatory/spontaneous closed loop mode selection
US20110197887A1 (en) Accessory connection and data synchronication in a ventilator
JP2011502737A (ja) 電気機械ドライバを備えた呼吸治療システム
WO2024051399A1 (zh) 一种麻醉机和通气控制方法
US7934498B1 (en) Device and method for facilitating delivery of medication/humidity to a patient without breaking a ventilator circuit
WO2021206959A1 (en) Ventilation methods and devices for treating respiratory diseases
US20220241527A1 (en) Ventilator systems and methods
US20230263979A1 (en) Anesthesia machine, anesthesia control method and anesthesia control system
US20240207565A1 (en) Anesthesia machine
WO2024051118A1 (zh) 一种麻醉系统、麻醉机及通气控制方法
WO2021068137A1 (zh) 麻醉机及控制麻醉蒸发器的方法
CN217040993U (zh) 一种呼吸麻醉机
CN114917438A (zh) 一种基于流速控制的呼吸机工作方法及呼吸机
EP4267225A1 (en) Integration and mode switching for respiratory apparatus
US20220062576A1 (en) Gas inhalation device with constant concentration of gas entering respiratory tract and without respiratory resistance
US20220241539A1 (en) Ventilator systems and methods
US20220241528A1 (en) Ventilator systems and methods
Hussein Noninvasive ventilation series
JP2000051359A (ja) 陽圧式人工呼吸補助装置
JP2000185061A (ja) 動物用麻酔装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863677

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280060311.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022863677

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022863677

Country of ref document: EP

Effective date: 20240408