WO2023030274A1 - 供电电路 - Google Patents

供电电路 Download PDF

Info

Publication number
WO2023030274A1
WO2023030274A1 PCT/CN2022/115630 CN2022115630W WO2023030274A1 WO 2023030274 A1 WO2023030274 A1 WO 2023030274A1 CN 2022115630 W CN2022115630 W CN 2022115630W WO 2023030274 A1 WO2023030274 A1 WO 2023030274A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
branch
circuit
supply branch
output
Prior art date
Application number
PCT/CN2022/115630
Other languages
English (en)
French (fr)
Inventor
程龙
高秋英
吕杨
李尊仁
赵敏
Original Assignee
重庆海尔洗衣机有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆海尔洗衣机有限公司, 海尔智家股份有限公司 filed Critical 重庆海尔洗衣机有限公司
Publication of WO2023030274A1 publication Critical patent/WO2023030274A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/20Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output

Definitions

  • the present application belongs to the field of electronic technology, and in particular relates to a power supply circuit.
  • the normal operation of the washing machine requires the support of a complete power supply system, in which the power supply circuit board is the core component of the power supply system.
  • the above-mentioned power supply circuit board provides control voltage to the power module driving the motor and the processing chip of the washing machine.
  • the power module is usually integrated in the motor driving board to ensure that the motor can be driven normally.
  • the processing chip of the washing machine is also embedded with functions such as OTA (remote upgrade program) in practical applications.
  • OTA remote upgrade program
  • the motor may malfunction. For example, when the OTA upgrade fails, some misoperation may be triggered, resulting in safety problems.
  • the present application provides a power supply circuit, which is used to solve the problem of motor malfunction during the OTA process.
  • the present application provides a power supply circuit, including: a first power supply branch and a second power supply branch with overvoltage protection; the input end of the first power supply branch is connected to the first end of the first branch switch, so The output end of the first power supply branch is connected to the power module for driving the washing machine motor, the second end of the first branch switch is connected to the AC mains; the input end of the second power supply branch is connected to the AC mains Electricity, the output end of the second power supply branch is connected to the processing chip of the washing machine; wherein, the output end of the first power supply branch is connected to the output end of the second power supply branch; when the first branch When the switch is closed, the first power supply branch outputs a first power supply voltage based on AC mains, and the first power supply voltage is higher than the overvoltage protection voltage of the second power supply branch; when the first power supply branch switches When disconnected, the second power supply branch outputs a second power supply voltage based on AC mains power.
  • an isolation element is provided between the first power supply branch and the second power supply branch; the isolation element includes: a first diode; the anode of the first diode is connected to the first The output terminal of the power supply branch, the cathode of the first diode is connected to the output terminal of the second power supply branch.
  • the second power supply branch includes: a first filter protection circuit, a first rectification circuit, and a first power supply; the output end of the first filter protection circuit is connected to the input end of the first rectification circuit, and the The first filter protection circuit is used to filter the AC mains and output it, and the first rectifier circuit is used to rectify the received signal and output it; the input end of the first power supply is connected to the first rectifier circuit connected, the output terminal of the first power supply is used as the output terminal of the second power supply branch.
  • the first rectifier circuit includes: a second diode and a first polarity capacitor; the anode of the second diode is connected to the output terminal of the first filter protection circuit, and the second The cathode of the diode is connected to the anode of the first polarity capacitor and the input terminal of the first power supply, and the cathode of the first polarity capacitor is grounded.
  • the power supply circuit further includes: an output voltage regulation circuit located between the second power supply branch and the processing chip; the input terminal of the output voltage regulation circuit is connected to the second power supply branch The output terminal is connected, and the output terminal of the output voltage regulating circuit is connected with the processing chip.
  • the output voltage regulation circuit includes: a linear voltage regulator or a DC/DC conversion circuit.
  • the first power supply branch includes: a second filter protection circuit, a second rectifier circuit, and a second power supply; the second filter protection circuit is connected between the first end of the first branch switch and the Between the input ends of the second rectification circuit, the output end of the second rectification circuit is connected to the input end of the second power supply, and the second rectification circuit is used to rectify and output the received signal; The output end of the second power supply is used as the output end of the first power supply branch.
  • the second filter protection circuit includes: a second filter circuit and a protection circuit; the second filter circuit is used to filter the AC mains and output it, and the protection circuit is used to supply power to the first The branch is protected, the second filter circuit is set on the live line, the second filter circuit is respectively connected to the first branch switch and the second rectifier circuit, the protection circuit is set on the neutral line, The protection circuit is respectively connected with the first branch switch and the second rectification circuit.
  • the first branch switch includes a door lock switch; or, a relay switch and a door lock switch connected in series; or, a relay switch.
  • the power supply circuit further includes: a second branch switch; one end of the first branch switch is connected to the live wire of the AC mains, and the other end of the first branch switch is connected to the first A power supply branch; one end of the second branch switch is connected to the neutral line of the AC mains, and the other end of the second branch switch is connected to the first power supply branch.
  • An embodiment of the present application provides a power supply circuit, including a first power supply branch connected between a branch switch and a power module for driving a motor, and a second power supply branch connected between an AC mains and a processing chip , the branch switch is connected to the AC mains; wherein, the output of the first power supply branch is connected to the output of the second power supply branch.
  • the first power supply branch is normally powered, the second power supply branch is triggered to be in overvoltage protection, and when the first power supply branch is not output, that is, when the motor is not running, the second power supply branch can output normally.
  • the first power supply branch when the washing machine is working normally, the first power supply branch outputs the first power supply voltage, so that the motor and the processing chip can work normally under the action of the first power supply voltage, and when the processing chip is in OTA, the first power supply branch is guaranteed The first power supply voltage is not output, so as to ensure that the motor will not run incorrectly, thereby ensuring safety.
  • FIG. 1 is a schematic diagram of an application scenario of a washing machine with an OTA function
  • FIG. 2 is a schematic structural diagram of a power supply circuit provided in Embodiment 1 of the present application;
  • FIG. 3 and FIG. 4 are schematic structural diagrams of the power supply circuit provided in Embodiment 2 of the present application.
  • FIG. 5 is a schematic structural diagram of a power supply circuit provided in Embodiment 3 of the present application.
  • FIG. 6 is a schematic diagram of a power supply circuit provided in Embodiment 3 of the present application.
  • FIG 7 and 8 are schematic structural diagrams of another power supply circuit provided by Embodiment 3 of the present application.
  • Power supply circuit refers to a circuit that converts electrical signals by means of digital electronic technology, analog electronic technology, and power electronic technology according to actual needs, and supplies power to certain equipment or components to be powered;
  • Filter circuit refers to the circuit module used to filter out unnecessary waveform components in the mains
  • Protection circuit refers to the circuit module used to protect the components in the circuit board from damage caused by voltage fluctuations
  • Rectifier circuit refers to the circuit module used to convert AC input into DC output
  • Isolation components refers to electronic components used to isolate different circuit modules to prevent mutual interference of signals generated during sampling and other processes
  • Washing machine OTA function The built-in remote upgrade program of the washing machine usually needs to be carried out automatically when the washing machine is idle;
  • connection and “connected” should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , or integrally connected; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, and it can be the internal communication of two components.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , or integrally connected; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, and it can be the internal communication of two components.
  • the normal operation of the washing machine requires the support of a complete power supply system, in which the power supply circuit board is the core component of the power supply system.
  • the above-mentioned power supply circuit board is directly connected to the motor to ensure that the motor has a stable power input.
  • the above power supply system usually only one power supply is arranged, that is, the circuit board only provides one output to the motor side after the mains is connected.
  • the washing machine is also implanted with functions such as OTA (remote upgrade program) in practical applications.
  • Figure 1 shows an application scenario of a washing machine with OTA function.
  • the left half is the washing machine, and the right half is the mobile phone and software used to control the OTA function.
  • 11 is the drum of the washing machine
  • 12 is the motor drive plate of the washing machine equipment
  • 13 is the motor that drives the drum to work
  • 14 is the door lock switch
  • 15 is the remote APP interface for controlling the washing machine to realize the OTA function.
  • the power module for driving the washing machine motor is integrated on the motor driver board.
  • the door lock switch is connected in series with the power supply path for the power module. Therefore, when the washing machine is working normally, the door lock switch needs to be closed first. Generally speaking, the drum door of the washing machine is closed, and the power supply circuit of the power module is turned on at this time. After the corresponding function setting is completed, the motor 13 can drive the drum 11 to start rotating, and the washing machine starts to work.
  • the output end of the power supply circuit of the power module is also connected to the processing chip, that is, the power module and the processing chip are powered by the same power supply circuit.
  • the software controls the motor not to run, and controls the OTA to start.
  • this power supply solution during the OTA upgrade, there is a risk of motor malfunction, which affects the safety of use.
  • an embodiment of the present application provides a power supply circuit to solve the problem of motor malfunction during the OTA process in view of the above problems.
  • FIG. 2 is a schematic structural diagram of a power supply circuit provided in Embodiment 1 of the present application. As shown in FIG. 2 , the power supply circuit includes: a first power supply branch 31 and a second power supply branch 32 with overvoltage protection; wherein,
  • the input end of the first power supply branch 31 is connected to the first end of the first branch switch 33, and the output end of the first power supply branch 31 is connected to the power module 34 for driving the washing machine motor.
  • the two ends are connected to the AC mains; the input end of the second power supply branch 32 is connected to the AC mains, and the output of the second power supply branch 32 is connected to the washing machine processing chip 35; the first power supply branch 31 and the second power supply branch 32 output connection;
  • the first branch switch 33 When the first branch switch 33 is closed, the first power supply branch 31 outputs the first supply voltage based on the AC mains, and the first supply voltage is higher than the overvoltage protection voltage of the second power supply branch 32; when the first branch switch When 33 is disconnected, the second power supply branch 32 outputs a second power supply voltage based on the AC mains; in one example, the first branch switch includes but not limited to: a door lock switch; or, a series relay switch and a door lock switch; alternatively, a relay switch.
  • the switch state of the door lock switch reflects the switch state of the washing machine door. Specifically, when the washing machine door is closed, the door lock conduction is closed, and when the washing machine door is opened, the door lock switch is off.
  • the AC mains is commonly referred to as civil industrial frequency AC, and electrical appliances such as washing machines need to be powered by AC mains input, with a frequency of 50 Hz and a rated voltage of 220 V.
  • the second power supply branch 32 has overvoltage protection.
  • the overvoltage protection is used to perform an overvoltage protection action when it is detected that the voltage at the output terminal of the second power supply branch 32 is higher than a predetermined overvoltage protection voltage.
  • the over-current protection action includes, but is not limited to, measures for stopping the output voltage of the second power supply branch 32 such as disconnecting the circuit.
  • the working process of the power supply circuit in this embodiment is illustrated below in combination with actual scenarios: when the washing machine is in operation, the door of the washing machine is closed, correspondingly, the door lock switch is closed, the first power supply branch 31 is connected to the AC mains, and then the output
  • the first supply voltage is used to provide control voltage for the power module and voltage for the processing chip, so as to ensure that the motor can be driven normally and the processing chip can control the normal operation of the washing machine.
  • the first power supply voltage output by the first power supply branch 31 is transmitted to the output terminal of the second power supply branch 32, so that the voltage at the output terminal of the second power supply branch 32 is higher than the predetermined overvoltage protection voltage, triggering the first
  • the second power supply branch 32 enters the overvoltage protection state, so as to realize the normal operation of the washing machine.
  • the washing machine is idle, the door of the washing machine is opened, correspondingly, the door lock switch is turned off, the first power supply branch 31 is not connected to the AC mains, the first power supply branch 31 does not output the first power supply voltage, and the second power supply branch 31 does not output the first power supply voltage. 32 to leave the overvoltage protection state.
  • the second power supply branch 32 outputs the second power supply voltage to the processing chip, and at this time, the processing chip can be controlled to perform OTA upgrade. It can be understood that based on the power supply circuit of this embodiment, when the OTA is upgraded, it is ensured that the first power supply branch does not output the first power supply voltage, so as to ensure that the motor will not run and improve the safety of operation.
  • the triggering condition of the overvoltage protection can be set as required. It can be seen from FIG. 2 that the output terminal of the first power supply branch 31 is connected to the output terminal of the second power supply branch 32. As an example, the trigger condition of the overvoltage protection can be set as when the output terminal of the second power supply branch When the voltage is higher than the second power supply voltage of its normal output, overvoltage protection is implemented.
  • the first power supply voltage and the second power supply voltage can be set to meet the following conditions: that is, the first power supply voltage normally output by the first power supply branch is greater than the second power supply voltage normally output by the second power supply branch sum of losses.
  • the loss here refers to the voltage loss on the connection path between the output end of the first power supply branch and the output end of the second power supply branch.
  • the conduction of the second power supply branch 32 does not need to depend on the state of the door lock switch.
  • the system can enter the OTA state, no additional operations are required, and the OTA process can be entered through remote software control or built-in working logic, which realizes the convenience of operation.
  • This embodiment provides a power supply circuit, including a first power supply branch and a second power supply branch with overvoltage protection; the input end of the first power supply branch is connected to the first end of the first branch switch, and the first power supply The output end of the branch is connected to the power module for driving the washing machine motor, the second end of the first branch switch is connected to the AC mains; the input end of the second power supply branch is connected to the AC mains, and the second power supply branch The output end is connected to the processing chip of the washing machine; wherein, the output end of the first power supply branch is connected to the output end of the second power supply branch; when the first branch switch is closed, the first power supply branch is based on the AC mains output The first power supply voltage, the first power supply voltage is higher than the overvoltage protection voltage of the second power supply branch; when the switch of the first power supply branch is turned off, the second power supply branch outputs the second power supply voltage based on the AC mains.
  • the conduction of the second power supply branch does not depend on the state of the door lock switch, when it is detected that the system can enter the OTA state, the user does not need to perform additional operations on the first branch switch.
  • remote software control or built-in working logic it can Entering the OTA process realizes the convenience of operation and ensures the security of the OTA process.
  • Embodiment 2 On the basis of Embodiment 1, the connection manner between the output terminals of the first power supply branch and the second power supply branch is illustrated.
  • an isolation element is arranged between the first power supply branch and the second power supply branch.
  • the isolation element is a first diode 41, wherein the anode of the first diode 41 is connected to the output terminal of the first power supply branch 31, and the cathode of the first diode 41 is connected to the second power supply branch 32 outputs.
  • FIG. 3 and 4 are used to illustrate the location of the isolation element.
  • FIG. 3 and FIG. 4 are schematic structural diagrams of the power supply circuit provided in Embodiment 2 of the present application.
  • the connection position of the first diode can be shown in Figure 3, the first diode is located in series between the first power supply branch and the power module, that is, the positive pole is connected to the output of the first power supply branch end, and the negative pole is connected to the output end of the second power supply branch and the power module.
  • the connection position of the first diode may be as shown in FIG. 4 , the anode is connected to the output end of the first power supply branch and the power module, and the cathode is connected to the output end of the second power supply branch.
  • the isolation element is arranged between the first power supply branch and the second power supply branch, which can effectively avoid signal interference generated by another branch during sampling and detection.
  • the power supply circuit provided in this embodiment by introducing isolation elements, effectively reduces the switching noise that may be generated during circuit operation while ensuring the safety of the circuit, thereby ensuring that the signal will not be affected by other power supply branches during sampling and other operations. interference, optimizing the signal quality.
  • Embodiment 3 On the basis of any other embodiment, the specific structures of the first power supply branch and the second power supply branch are illustrated.
  • FIG. 5 is a schematic structural diagram of a power supply circuit provided in Embodiment 3 of the present application. As shown in FIG. 5 , on the basis of any other implementation manner, the second power supply branch circuit 32 includes:
  • the first filter protection circuit 61 is used to filter the AC mains and output it; the first rectifier circuit 62 is used to rectify the received signal and output it; the input end of the first power supply 63 is connected to the first rectifier circuit 62, The output end of the first power supply 63 serves as the output end of the second power supply branch 32 .
  • the output voltages of the first power supply branch and the second power supply branch are adjusted to match the power supply requirements of the processing chip.
  • the power supply circuit further includes: an output voltage regulation circuit 67 located between the second power supply branch 32 and the processing chip 35;
  • the input terminal of the output voltage regulating circuit 67 is connected to the output terminal of the second power supply branch 32 , and the output terminal of the output voltage regulating circuit 67 is connected to the processing chip 35 .
  • the output voltage regulating circuit 67 is used for performing voltage conversion on the received voltage and providing it to the processing chip.
  • the type of the output voltage regulating circuit is not limited.
  • the output voltage regulation circuit may include, but not limited to, one of the following: a linear voltage regulator, a DC/DC conversion circuit, and the like.
  • the linear regulator may include but not limited to: Low Dropout Regulator (LDO for short)
  • the first power supply branch circuit 31 includes: a second filter protection circuit 64, a second rectifier circuit 65, and a second power supply 66;
  • the second filter protection circuit 64 includes: The second filter circuit and protection circuit; the second filter circuit is used to filter the AC mains for output, the protection circuit is used to protect the first power supply branch 31, the second filter circuit is set on the live line, and the second filter circuit respectively connected to the first branch switch and the second rectification circuit, the protection circuit is set on the zero line, and the protection circuit is respectively connected to the first branch switch and the second rectification circuit;
  • the second filter protection circuit 64 is connected to the first branch Between the first end of the switch and the input end of the second rectification circuit 65, the output end of the second rectification circuit 65 is connected to the input end of the second power supply 66, and the second rectification circuit 65 is used for the second filter protection circuit 64
  • the output signal is rectified and output;
  • the first rectification circuit has multiple realization structures, as an example, as shown in FIG. 6 , the first rectification circuit 62 includes: a second diode 621 and a first polarity capacitor 622; It is connected to the output end of the first filter protection circuit 61, the cathode of the second diode 621 is connected to the anode of the first polarity capacitor 622 and the input end of the first power supply 63, and the cathode of the first polarity capacitor 622 is grounded.
  • the first branch switch 33 can be composed of a door lock switch and a first relay K1 connected in series. Referring to FIG. 6 , setting the first relay can make the control process more convenient and meet user experience.
  • the first power supply includes a flyback switching power supply.
  • the rectification methods of the flyback switching power supply include but are not limited to: half-wave rectification, full-wave rectification, and double-voltage rectification.
  • the second rectification circuit includes a double voltage rectification circuit.
  • the second power supply includes a BUCK switching power supply.
  • the washing machine enters into a normal working state.
  • the first power supply branch outputs a normal voltage at this time.
  • the AC mains is input to the second filter protection circuit in the first power supply branch to obtain a filtered AC signal; the AC signal is input to the double voltage rectifier circuit, and is converted into a DC signal by the rectifier circuit; the DC signal That is, the network label HVDC shown in Figure 6 is used as the input of the BUCK switching power supply and the bus voltage of the power device; the first power supply voltage and HVDC are connected to the power device, and the power device modulates the HVDC to output a voltage that meets the needs of the driving motor.
  • the second power supply branch 32 does not output voltage at this time. This is because the flyback switching power supply of the second branch enters the overvoltage protection state and cannot output normally.
  • the filtering circuit and the rectifying circuit in the second power supply branch are functionally similar to the corresponding modules of the first power supply branch.
  • the motor of the washing machine When the door lock switch is turned off, the motor of the washing machine has no power supply and is in a safe state.
  • the washing machine automatically enters the OTA state.
  • the entire circuit of the first power supply branch is disconnected from the AC mains, and the second power supply branch outputs a normal voltage.
  • the flyback switching power supply will not enter the overvoltage protection state at this time, and can output voltage normally, and the amplitude fluctuation can be obtained through the linear voltage regulator or DCDC conversion circuit shown in Figure 6 very little voltage.
  • the arrangement of the relays may also be in accordance with the implementation manner shown in FIG. 7 or FIG. 8 .
  • the power supply circuit may further include: a second branch switch K*; one end of the first branch switch 33 is connected to the live wire of the AC mains, and the other end of the first branch switch 33 is connected to The first power supply branch; one end of the second branch switch K* is connected to the neutral line of the AC mains, and the other end of the second branch switch K* is connected to the first power supply branch 31 .
  • the power supply circuit may only include the second branch switch K*, and its control logic is similar to the case where only the first branch switch 33 is provided.
  • a third branch switch K3 may be provided between the AC mains and the second power supply branch, one end of the third branch switch K3 is connected to the AC mains, and the other end is connected to the second power supply.
  • the third branch switch K3 can be connected to both the live wire and the neutral wire.
  • the two power supply branches may have three modules with similar functions: a filter protection circuit, a rectifier circuit, and a power supply.
  • the filter protection circuit is used to filter the AC mains and output it; the rectifier circuit is used to rectify the received signal and output it; the input end of the power supply is connected to the rectification circuit, and the output end of the power supply is used as the output end of the corresponding power supply branch.
  • the design of the corresponding module can meet the expected demand for electrical signal conversion, and ensure that the motor will not malfunction when the processing chip is performing OTA.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Control Of Washing Machine And Dryer (AREA)

Abstract

本申请提供一种供电电路,包括第一供电支路和具有过压保护的第二供电支路;第一供电支路的输入端与第一支路开关的第一端连接,输出端连接驱动洗衣机电机的功率模块,第一支路开关的第二端连接交流市电;第二供电支路的输入端连接交流市电,输出端连接洗衣机的处理芯片;第一供电支路的输出端与第二供电支路的输出端连接;开关闭合,第一供电支路基于交流市电输出第一供电电压,使第二供电支路进入过压保护;开关断开,第二供电支路基于交流市电输出第二供电电压。第二供电支路的导通无需依赖于门锁开关的状态,检测到系统可以进入OTA状态时,通过远程软件控制或内置工作逻辑,可直接进入OTA,实现了操作上的便捷性,并保证了安全性。

Description

供电电路
本申请要求于2021年08月30日提交中国专利局、申请号为2021110041440、申请名称为“供电电路”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于电子技术领域,尤其涉及一种供电电路。
背景技术
洗衣机的正常工作需要一套完整的供电系统支持,其中供电电路板为供电系统的核心部件。在洗衣机的正常工作中,上述供电电路板向驱动电机的功率模块以及洗衣机的处理芯片提供控制电压,该功率模块通常集成在电机驱动板,以保证电机可以被正常驱动。
当下,洗衣机的处理芯片在实际应用中还植入了OTA(远程升级程序)等功能。在处理芯片进行OTA的过程中,电机可能会发生误运转,比如,当OTA升级故障时,可能会触发一些误操作,导致安全问题。
发明内容
本申请提供一种供电电路,用以解决OTA过程中电机误运转的问题。
本申请提供一种供电电路,包括:第一供电支路和具有过压保护的第二供电支路;所述第一供电支路的输入端与第一支路开关的第一端连接,所述第一供电支路的输出端连接用于驱动洗衣机电机的功率模块,所述第一支路开关的第二端连接交流市电;所述第二供电支路的输入端连接所述交流市电,所述第二供电支路的输出端连接洗衣机的处理芯片;其中,所述第一供电支路的输出端与所述第二供电支路的输出端连接;当所述第一支路开关闭合时,所述第一供电支路基于交流市电输出第一供电电压,所述第一供电电压高于所述第二供电支路的过压保护电压;当所述第一支路开关断开时,所述第二供电支路基于交流市电输出第二供电电压。
可选的,所述第一供电支路和第二供电支路之间设置有隔离元件;所述隔离元件包括:第一二极管;所述第一二极管的正极连接所述第一供电支路的输出端,所述第一二极管的负极连接所述第二供电支路的输出端。
可选的,所述第二供电支路包括:第一滤波保护电路、第一整流电路和第一电源;第一滤波保护电路的输出端与所述第一整流电路的输入端连接,所述第一滤波保护电路用于对所述交流市电进行滤波后输出,所述第一整流电路用于对接收的信号进行整流后输出;所述第一电源的输入端与所述第一整流电路连接,所述第一电源的输出端作为所述第二供电支路的输出端。
可选的,所述第一整流电路包括:第二二极管和第一极性电容;所述第二二极管的正极与所述第一滤波保护电路的输出端连接,所述第二二极管的负极与所述第一极性电容的正极和所述第一电源的输入端连接,所述第一极性电容的负极接地。
可选的,所述供电电路还包括:位于所述第二供电支路和所述处理芯片之间的输出电压调节电路;所述输出电压调节电路的输入端与所述第二供电支路的输出端连接,所述输出电压调节电路的输出端与所述处理芯片连接。
可选的,所述输出电压调节电路包括:线性稳压器或DC/DC转换电路。
可选的,所述第一供电支路包括:第二滤波保护电路、第二整流电路和第二电源;所述第二滤波保护电路连接在所述第一支路开关的第一端和所述第二整流电路的输入端之间,所述第二整流电路的输出端与所述第二电源的输入端连接,所述第二整流电路用于对接收到的信号进行整流输出;所述第二电源的输出端作为所述第一供电支路的输出端。
可选的,所述第二滤波保护电路包括:第二滤波电路和保护电路;所述第二滤波电路用于对所述交流市电进行滤波后输出,所述保护电路用于对第一供电支路进行保护,所述第二滤波电路设置在火线上,所述第二滤波电路分别与所述第一支路开关和所述第二整流电路连接,所述保护电路设置在零线上,所述保护电路分别与所述第一支路开关和所述第二整流电路连接。
可选的,所述第一支路开关包括门锁开关;或者,串联的继电器开关和门锁开关;或者,继电器开关。
可选的,所述供电电路还包括:第二支路开关;所述第一支路开关的一端连接所述交流市电的火线,所述第一支路开关的另一端连接所述第一供电支路;所述第二支路开关的一端连接所述交流市电的零线,所述第二支路开 关的另一端与所述第一供电支路连接。
本申请实施例提供了一种供电电路,包括连接在支路开关和用于驱动电机的功率模块之间的第一供电支路以及连接在交流市电和处理芯片之间的第二供电支路,支路开关连接至交流市电;其中,第一供电支路的输出连接至第二供电支路的输出。在第一供电支路正常供电时触发第二供电支路处于过压保护,以及在第一供电支路未输出,即确保电机不会运转时,第二供电支路可正常输出。通过本方案,当洗衣机正常工作时,第一供电支路输出第一供电电压,以使电机和处理芯片在第一供电电压作用下正常工作,当处理芯片处于OTA时,保证第一供电支路不输出第一供电电压,从而确保电机不会发生误运转,从而确保安全。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。下面参照附图并结合电路结构来描述本申请的实施方式。
图1为一种带有OTA功能的洗衣机的应用场景示意图;
图2为本申请实施例一提供的一种供电电路结构示意图;
图3和图4为本申请实施例二提供的供电电路的结构示意图;
图5为本申请实施例三提供的一种供电电路的结构示意图;
图6为本申请实施例三提供的一种供电电路示意图;
图7和图8为本申请实施例三提供的另一种供电电路的结构示意图。
通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
首先对本申请所涉及的主要名词进行解释:
供电电路:是指根据实际需求,通过数字电子技术、模拟电子技术及电力电子技术等手段进行电信号变换,对某些待供电设备或元器件进行供电的电路;
滤波电路:是指用于滤去市电中不需要的波形分量的电路模块;
保护电路:是指用于保护电路板中的元器件,以免因电压波动等造成损害的电路模块;
整流电路:是指用于将交流电输入转化为直流电输出的电路模块;
隔离元件:是指用于隔离不同电路模块,以防止采样等过程中产生信号的相互干扰的电子元器件;
洗衣机OTA功能:洗衣机内置的远程升级程序,通常需要在洗衣机空闲状态下自动进行;
此外,还需要说明的是,在本申请的描述中,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个构件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本申请中的具体含义。
洗衣机的正常工作需要一套完整的供电系统支持,其中供电电路板为供电系统的核心部件。在洗衣机的正常工作中,上述供电电路板直接连接电机以保证电机有稳定的电源输入。在上述的供电系统中,通常只安排一路供电,即连接市电之后电路板仅提供一路输出到电机侧。当下,洗衣机在实际应用中还植入了OTA(远程升级程序)等功能。
图1展示了一种带有OTA功能的洗衣机的应用场景,左半部分为洗衣机,右半部分为用于控制实现OTA功能的手机及软件。其中,11为洗衣机的滚筒,12为洗衣机设备的电机驱动板,13为带动滚筒进行工作的电机,14为门锁开关,15为控制洗衣机实现OTA功能的远程APP界面。
其中,电机驱动板上集成有用于驱动洗衣机电机的功率模块,在一个示例中,门锁开关串联在为该功率模块供电的供电路径上,故当洗衣机正常工作时,需要首先将门锁开关闭合,通俗而言即关闭洗衣机的滚筒门,此时功率模块的供电电路导通,完成相应功能设置后13电机可以带动11滚筒开始转动,洗衣机即开始工作。
在一种供电方案中,上述功率模块的供电电路的输出端还连接至处理芯 片,即通过同一供电电路为功率模块和处理芯片供电。当需要执行OTA升级时,通过软件控制电机不运转,并控制OTA启动。该供电方案中,在OTA升级时,存在电机误动作的风险,影响使用安全。
基于此,本申请实施例提供一种供电电路,针对上述问题,解决OTA过程中电机误运转的问题。
实施例一
图2为本申请实施例一提供的一种供电电路的结构示意图,如图2所示,该供电电路包括:第一供电支路31和具有过压保护的第二供电支路32;其中,
第一供电支路31的输入端与第一支路开关33的第一端连接,第一供电支路31的输出端连接用于驱动洗衣机电机的功率模块34,第一供电支路33的第二端连接交流市电;第二供电支路32的输入端连接所述交流市电,第二供电支路32的输出端连接洗衣机处理芯片35;第一供电支路31和第二供电支路32的输出端连接;
当第一支路开关33闭合时,第一供电支路31基于交流市电输出第一供电电压,第一供电电压高于第二供电支路32的过压保护电压;当第一支路开关33断开时,第二供电支路32基于交流市电输出第二供电电压;在一个示例中,所述第一支路开关包括但不限于:门锁开关;或者,串联的继电器开关和门锁开关;或者,继电器开关。
以门锁开关为例,门锁开关的开关状态反映洗衣机门的开关状态,具体来说,当洗衣机门关闭时,门锁导通闭合,当洗衣机门打开时,门锁开关断开。其中,交流市电即通常所述的民用工频交流电,洗衣机等电器需要通过交流市电输入供电,其频率为50Hz,额定电压为220V。
本实施例中,第二供电支路32具有过压保护。该过压保护用于在检测到第二供电支路32的输出端处的电压高于预定的过压保护电压时,执行过电保护动作。过电保护动作包括但不限于,例如断开回路等,用于停止第二供电支路32输出电压的措施。
以下结合实际场景,对本实施例中供电电路的工作过程进行示例说明:当洗衣机处于工作时,洗衣机门关闭,相应的,门锁开关闭合,第一供电支路31连接至交流市电,进而输出第一供电电压,该第一供电电压用于为功率模块提供控制电压以及为处理芯片提供电压,以保证电机可以被正常驱动 以及处理芯片控制洗衣机正常工作。此时,第一供电支路31输出的第一供电电压传输至第二供电支路32的输出端,使得第二供电支路32的输出端处电压高于预定的过压保护电压,触发第二供电支路32进入过压保护状态,从而实现洗衣机的正常工作。当洗衣机处于空闲时,洗衣机门打开,相应的,门锁开关断开,第一供电支路31未连接至交流市电,第一供电支路31不输出第一供电电压,第二供电支路32离开过压保护状态。此时,第二供电支路32向处理芯片输出第二供电电压,此时可控制处理芯片进行OTA升级。可以理解,基于本实施例的供电电路,当OTA升级时,确保第一供电支路不输出第一供电电压,从而确保在电机不会运转,提高操作的安全性。
具体的,过压保护的触发条件可以根据需要设定。由图2可以看到,第一供电支路31的输出端和第二供电支路32的输出端连接,作为示例,可以设定过压保护的触发条件为当第二供电支路的输出端处电压高于其正常输出的第二供电电压时,执行过压保护。相应的,在一个示例中,可以设定第一供电电压和第二供电电压满足以下条件:即第一供电支路正常输出的第一供电电压大于第二供电支路正常输出的第二供电电压与损耗之和。这里的损耗指第一供电支路的输出端至第二供电支路的输出端之间的连接路径上的电压损耗。
基于本实施例的方案,第二供电支路32的导通无需依赖于门锁开关的状态。当检测到系统可以进入OTA状态时,不需要再进行额外的操作,通过远程软件控制或内置工作逻辑,可进入OTA过程,实现了操作上的便捷性。
本实施例提供一种供电电路,包括第一供电支路和具有过压保护的第二供电支路;第一供电支路的输入端与第一支路开关的第一端连接,第一供电支路的输出端连接用于驱动洗衣机电机的功率模块,第一支路开关的第二端连接交流市电;第二供电支路的输入端连接所述交流市电,第二供电支路的输出端连接洗衣机的处理芯片;其中,第一供电支路的输出端与所述第二供电支路的输出端连接;当第一支路开关闭合时,第一供电支路基于交流市电输出第一供电电压,第一供电电压高于所述第二供电支路的过压保护电压;当第一支路开关断开时,第二供电支路基于交流市电输出第二供电电压。由于第二供电支路的导通无需依赖于门锁开关的状态,当检测到系统可以进入OTA状态时,无需用户对第一支路开关进行额外操作,通过远程软件控制或 内置工作逻辑,可进入OTA过程,实现了操作上的便捷性,并保证了OTA过程中的安全性。
实施例二
实施例二在实施例一的基础上,对第一供电支路和第二供电支路的输出端之间的连接方式进行示例说明。在一个示例中,在第一供电支路和第二供电支路之间设置有隔离元件。在一个示例中,隔离元件为第一二极管41,其中,第一二极管41的正极连接第一供电支路31的输出端,第一二极管41的负极连接第二供电支路32的输出端。
结合图3和图4,对隔离元件的设置位置进行示例,图3和图4为本申请实施例二提供的供电电路的结构示意图。在一个示例中,第一二极管的连接位置可以如图3所示,第一二极管串联位于第一供电支路和功率模块之间,即正极连接所述第一供电支路的输出端,负极连接所述第二供电支路的输出端和功率模块。在另一个示例中,第一二极管的连接位置可以如图4所示,正极连接所述第一供电支路的输出端和功率模块,负极连接所述第二供电支路的输出端。
本实施例中,隔离元件设置在第一供电支路和第二供电支路之间,可以有效避免采样及检测时,另一支路所产生的信号干扰。本实施例提供的供电电路,通过引入隔离元件,在保证电路工作安全的情况下,还有效降低了电路工作时所可能产生的开关噪声,进而确保采样等工作时信号不会受其他供电支路的干扰,优化了信号质量。
实施例三
实施例三在其它任一实施例的基础上,对第一供电支路和第二供电支路的具体结构进行示例说明。
一个示例中,对第二供电支路的具体结构进行示例说明。图5为本申请实施例三提供的一种供电电路的结构示意图,如图5所示,在其它任一实施方式的基础上,第二供电支路32包括:
第一滤波保护电路61、第一整流电路62、和第一电源63,第一滤波保护电路的输出端与第一整流电路的输入端连接;
其中,第一滤波保护电路61用于对交流市电进行滤波后输出;第一整流电路62用于对接收的信号进行整流后输出;第一电源63的输入端与第一整流电路62连接,第一电源63的输出端作为第二供电支路32的输出端。
在一个示例中,对第一供电支路和第二供电支路的输出电压进行调整,以匹配处理芯片的供电需求。作为示例,如图5所示,所述供电电路还包括:位于第二供电支路32和处理芯片35之间的输出电压调节电路67;
输出电压调节电路67的输入端与第二供电支路32的输出端连接,输出电压调节电路67的输出端与处理芯片35连接。
其中,输出电压调节电路67用于对接收到的电压进行电压转换后提供给所述处理芯片。
其中,输出电压调节电路的类型不限。作为示例,输出电压调节电路可以包括但不限于下述之一:线性稳压器、DC/DC转换电路等。可选的,线性稳压器可以包括但不限于:低压差线性稳压器(Low Dropout Regulator,简称LDO)
在另一个示例中,对第一供电支路的具体结构进行示例说明。如图5所示,在其它任一实施方式的基础上,第一供电支路31包括:第二滤波保护电路64、第二整流电路65和第二电源66;第二滤波保护电路64包括:第二滤波电路和保护电路;第二滤波电路用于对交流市电进行滤波后输出,保护电路用于对第一供电支路31进行保护,第二滤波电路设置在火线上,第二滤波电路分别与第一支路开关和第二整流电路连接,保护电路设置在零线上,保护电路分别与第一支路开关和第二整流电路连接;第二滤波保护电路64连接在第一支路开关的第一端和第二整流电路65的输入端之间,第二整流电路65的输出端与第二电源66的输入端连接,第二整流电路65用于对第二滤波保护电路64所输出的信号进行整流输出;第二电源66的输出端作为第一供电支路31的输出端。
其中,第一整流电路有多种实现结构,作为示例,如图6所示,第一整流电路62包括:第二二极管621和第一极性电容622;第二二极管621的正极与第一滤波保护电路61的输出端连接,第二二极管621的负极与第一极性电容622的正极和第一电源63的输入端连接,第一极性电容622的负极接地。
作为示例,为优化控制逻辑,第一支路开关33可由门锁开关和第一继电器K1串联组成,参见图6,通过设置第一继电器可使控制过程更加便捷,符合用户使用体验。
可选的,各电路结构的类型有多种。作为示例,第一电源包括反激式开 关电源。反激式开关电源的整流方式包括但不限于:半波整流、全波整流、2倍压整流。作为另一个示例,第二整流电路包括2倍压整流电路。作为另一个示例,第二电源包括BUCK开关电源。
以下结合图6,对供电电路的工作过程进行示例说明:
当第一继电器K1闭合、门锁开关导通时,洗衣机进入正常工作状态。结合实施例一中所给的工作场景,在图6所示的电机驱动板部分中,此时第一供电支路正常输出电压。此时的交流市电输入第一供电支路中的第二滤波保护电路,得到经过滤波后的交流信号;该交流信号输入2倍压整流电路中,经整流电路变换为直流信号;该直流信号即图6所示的网络标号HVDC,作为BUCK开关电源的输入和功率器件的母线电压;第一供电电压和HVDC连接至功率器件,功率器件将HVDC进行调制,以输出符合驱动电机需求的电压。
同时,第二供电支路32,此时不输出电压。这是由于第二支路的反激式开关电源进入过压保护状态,无法正常输出。第二供电支路中的滤波电路及整流电路,在功能上与第一供电支路的对应模块类似。
当门锁开关断开时,洗衣机的电机无供电,此时处于安全状态。在一个示例中,当空闲待机时间满足预设要求时,洗衣机自动进入OTA状态。此时,第一供电支路全路与交流市电断开,第二供电支路正常输出电压。与洗衣机正常工作时不同的是,反激式开关电源此时不会进入过压保护状态,可以正常输出电压,经图6中所示的线性稳压器或DCDC变换电路,可以得到幅值波动很小的电压。
可选的,继电器的设置还可以依照图7或图8所示实施方式。
如图7所示,在一个示例中,供电电路还可以包括:第二支路开关K*;第一支路开关33的一端连接交流市电的火线,第一支路开关33的另一端连接第一供电支路;第二支路开关K*的一端连接交流市电的零线,第二支路开关K*的另一端与第一供电支路31连接。示例性地,供电电路可以仅包括第二支路开关K*,其控制逻辑与仅设置第一支路开关33时相类似。如图8所示,在另一个示例中,交流市电和第二供电支路之间可以设置有第三支路开关K3,第三支路开关K3的一端连接交流市电,另一端连接第二供电支路的输入端。其中,第三支路开关K3既可以接入火线,也可以接入零线。通过该示例,可以在不需工作和OTA时,控制第二供电支路断开,以降低功 耗。
基于上述实施例的示例,两供电支路可具有滤波保护电路、整流电路、电源三个功能类似的模块。滤波保护电路用于对交流市电进行滤波后输出;整流电路用于对接收的信号进行整流后输出;电源的输入端与整流电路连接,电源的输出端作为对应供电支路的输出端。相应模块的设计可以达到电信号变换的预期需求,并确保了处理芯片在进行OTA时,电机不会发生误运转。
至此,已经结合附图所示的实施方式描述了本申请的技术方案,但是,本领域技术人员容易理解的是,本申请的保护范围显然不局限于这些具体实施方式。在不偏离本申请的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本申请的保护范围之内。

Claims (10)

  1. 一种供电电路,其特征在于,所述供电电路包括:第一供电支路和具有过压保护的第二供电支路;
    所述第一供电支路的输入端与第一支路开关的第一端连接,所述第一供电支路的输出端连接用于驱动洗衣机电机的功率模块,所述第一支路开关的第二端连接交流市电;所述第二供电支路的输入端连接所述交流市电,所述第二供电支路的输出端连接洗衣机的处理芯片;其中,所述第一供电支路的输出端与所述第二供电支路的输出端连接;
    当所述第一支路开关闭合时,所述第一供电支路基于交流市电输出第一供电电压,所述第一供电电压高于所述第二供电支路的过压保护电压;当所述第一支路开关断开时,所述第二供电支路基于交流市电输出第二供电电压。
  2. 根据权利要求1所述的供电电路,其特征在于,所述第一供电支路和第二供电支路之间设置有隔离元件;所述隔离元件包括:第一二极管;
    所述第一二极管的正极连接所述第一供电支路的输出端,所述第一二极管的负极连接所述第二供电支路的输出端。
  3. 根据权利要求1所述的供电电路,其特征在于,所述第二供电支路包括:第一滤波保护电路、第一整流电路和第一电源,所述第一滤波保护电路的输出端与所述第一整流电路的输入端连接;
    所述第一滤波保护电路用于对所述交流市电进行滤波后输出,所述第一整流电路用于对接收的信号进行整流后输出;所述第一电源的输入端与所述第一整流电路连接,所述第一电源的输出端作为所述第二供电支路的输出端。
  4. 根据权利要求3所述的供电电路,其特征在于,所述第一整流电路包括:第二二极管和第一极性电容;
    所述第二二极管的正极与所述第一滤波保护电路的输出端连接,所述第二二极管的负极与所述第一极性电容的正极和所述第一电源的输入端连接,所述第一极性电容的负极接地。
  5. 根据权利要求2所述的供电电路,其特征在于,所述供电电路还包括:位于所述第二供电支路和所述处理芯片之间的输出电压调节电路;
    所述输出电压调节电路的输入端与所述第二供电支路的输出端连接,所 述输出电压调节电路的输出端与所述处理芯片连接。
  6. 根据权利要求5所述的供电电路,其特征在于,所述输出电压调节电路包括:线性稳压器或DC/DC转换电路。
  7. 根据权利要求1所述的供电电路,其特征在于,所述第一供电支路包括:第二滤波保护电路、第二整流电路和第二电源;
    所述第二滤波保护电路连接在所述第一支路开关的第一端和所述第二整流电路的输入端之间,所述第二整流电路的输出端与所述第二电源的输入端连接,所述第二整流电路用于对接收到的信号进行整流输出;所述第二电源的输出端作为所述第一供电支路的输出端。
  8. 根据权利要求7所述的供电电路,其特征在于,所述第二滤波保护电路包括:第二滤波电路和保护电路;
    所述第二滤波电路用于对所述交流市电进行滤波后输出,所述保护电路用于对第一供电支路进行保护。
  9. 根据权利要求1-8中任一项所述的供电电路,其特征在于,所述第一支路开关包括门锁开关;或者,串联的继电器开关和门锁开关;或者,继电器开关。
  10. 根据权利要求9所述的供电电路,其特征在于,所述供电电路还包括:第二支路开关;
    所述第一支路开关的一端连接所述交流市电的火线,所述第一支路开关的另一端连接所述第一供电支路;所述第二支路开关的一端连接所述交流市电的零线,所述第二支路开关的另一端与所述第一供电支路连接。
PCT/CN2022/115630 2021-08-30 2022-08-29 供电电路 WO2023030274A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111004144.0 2021-08-30
CN202111004144.0A CN115733235A (zh) 2021-08-30 2021-08-30 供电电路

Publications (1)

Publication Number Publication Date
WO2023030274A1 true WO2023030274A1 (zh) 2023-03-09

Family

ID=85290938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115630 WO2023030274A1 (zh) 2021-08-30 2022-08-29 供电电路

Country Status (2)

Country Link
CN (1) CN115733235A (zh)
WO (1) WO2023030274A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101242113A (zh) * 2007-02-08 2008-08-13 佛山市顺德区顺达电脑厂有限公司 电源供应系统
CN101763157A (zh) * 2010-01-15 2010-06-30 旭丽电子(广州)有限公司 电源供应装置及其控制方法与放电方法
WO2016101997A1 (en) * 2014-12-23 2016-06-30 Abb Technology Ltd Modular power converter
WO2017090099A1 (ja) * 2015-11-25 2017-06-01 三菱電機株式会社 電力供給制御装置および電力供給制御方法
CN110620425A (zh) * 2019-09-26 2019-12-27 广州供电局有限公司 配电房二次设备供电电路及装置
CN110829585A (zh) * 2019-11-29 2020-02-21 苏州贝昂科技有限公司 双路供电装置及供电系统
CN112968514A (zh) * 2020-08-20 2021-06-15 合肥海尔智能电子有限公司 一种供电电路及变频设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101242113A (zh) * 2007-02-08 2008-08-13 佛山市顺德区顺达电脑厂有限公司 电源供应系统
CN101763157A (zh) * 2010-01-15 2010-06-30 旭丽电子(广州)有限公司 电源供应装置及其控制方法与放电方法
WO2016101997A1 (en) * 2014-12-23 2016-06-30 Abb Technology Ltd Modular power converter
WO2017090099A1 (ja) * 2015-11-25 2017-06-01 三菱電機株式会社 電力供給制御装置および電力供給制御方法
CN110620425A (zh) * 2019-09-26 2019-12-27 广州供电局有限公司 配电房二次设备供电电路及装置
CN110829585A (zh) * 2019-11-29 2020-02-21 苏州贝昂科技有限公司 双路供电装置及供电系统
CN112968514A (zh) * 2020-08-20 2021-06-15 合肥海尔智能电子有限公司 一种供电电路及变频设备

Also Published As

Publication number Publication date
CN115733235A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
US9124204B2 (en) Inverter device
EP3196999B1 (en) Photovoltaic air-conditioning system and photovoltaic air conditioner having same
CN107579591B (zh) 一种交流电源供电的备电系统
EP3101797B1 (en) Power supply device and air-conditioning device
CN108162782B (zh) 节能直流充电方法
CN108631601B (zh) 多输入变换器
EP2709236B1 (en) Uninterrupted power supply circuit and control method therefor
US10411502B2 (en) UPS circuit
CN112072766A (zh) 充电设备
CN202794915U (zh) 一种隔离式待机零功耗电路
CN209844635U (zh) 一种智能冗余电源转换装置
WO2023030274A1 (zh) 供电电路
CN112362943A (zh) 一种残压检测电路及检测方法
CN110970992A (zh) 一种双电源切换装置
US12046945B2 (en) Power supply apparatus and power supply system
US20190089156A1 (en) Power source input device for both ac and dc power sources
CN202889180U (zh) 一种交流和直流输入自适应电路
CN113972817B (zh) 固态变压器故障处理系统
CN205791789U (zh) 水电站厂用电源切换装置
CN212343314U (zh) 一种用于电源模组的可关断电源ic的主备电转换检测电路
CN113054736B (zh) 一种四进线配电系统的控制方法和四进线配电系统
US9583974B1 (en) Uninterruptible power supply for an electric apparatus
CN110808688A (zh) 一种纺织设备及其供电电路
CN214479700U (zh) 一种开关电路及充电器
CN110753434A (zh) 一种开关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22863409

Country of ref document: EP

Kind code of ref document: A1