WO2023030222A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2023030222A1
WO2023030222A1 PCT/CN2022/115403 CN2022115403W WO2023030222A1 WO 2023030222 A1 WO2023030222 A1 WO 2023030222A1 CN 2022115403 W CN2022115403 W CN 2022115403W WO 2023030222 A1 WO2023030222 A1 WO 2023030222A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
station
ppdu
wake
field
Prior art date
Application number
PCT/CN2022/115403
Other languages
English (en)
French (fr)
Inventor
黄国刚
淦明
李云波
郭宇宸
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023030222A1 publication Critical patent/WO2023030222A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of wireless communication, and in particular to a communication method and device.
  • multicast data frames are sent to the access point (access point, AP) multi-link device (multi-link device, MLD) All links of the AP MLD need to be copied and sent, while the multicast management frame is sent independently on the corresponding links of the AP MLD.
  • the present application provides a communication method and device for reducing power consumption of multi-link equipment.
  • a communication method is provided, and the method may be implemented through interaction between a first multi-link device and a second multi-link device.
  • the first multi-link device receives a first physical layer protocol data unit (physical protocol data unit, PPDU) from the second multi-link device through the first station, and the first PPDU is used to wake up the second device of the first multi-link device station, the second station is dormant in energy-saving mode.
  • the first multi-link device may determine whether to wake up the second station according to the first PPDU.
  • the first multi-link device includes a first site and a second site
  • the second multi-link device may include a first site and a second site
  • the first multi-link device and the second multi-link device may be connected through a second site
  • a station communicates with a second station. Since the second station of the first multi-link device is in a dormant state, in this method, the second multi-link device can instruct the second station to wake up through the first station, so that the second station The second station wakes up when it needs to be woken up, and is in a sleep state when it is not needed, thereby reducing the power consumption of the multi-link device, which is more conducive to the energy saving of the multi-link device.
  • the first multi-link device may be an AP MLD or a non-AP multi-link device (non-AP MLD), and the second multi-link device may be an AP MLD or a non-AP MLD.
  • the non-AP MLD may be a station (station, STA) MLD.
  • the first station and the second station may be APs or STAs.
  • the first site and the second site included in the multi-link device may be APs; when the multi-link device is a non-AP MLD, the first site and the second site included in the multi-link device
  • the second station may be an STA.
  • the multi-link device here may be a first multi-link device or a second multi-link device. There may be one or more first sites, and one or more second sites.
  • the power management mode of the station includes an active mode and an energy-saving mode, and in the energy-saving mode, the power state of the station may also include an awake state and a sleep state.
  • the station does not transmit message packets in the dormant state, and the power consumption of the station and the multi-link device to which the station belongs is lower.
  • the second station is in a dormant state, and the first station may be in an active mode, or in an awake state in an energy-saving mode.
  • the first site of the first multi-link device corresponds to the first site of the second multi-link device
  • the second site of the first multi-link device corresponds to the first site of the second multi-link device.
  • the two sites correspond.
  • the first PPDU may come from the first station of the second multi-link device, and the corresponding first station of the first multi-link device receives the first PPDU.
  • the first site of the first multi-link device may be connected to the first site of the second multi-link device through the first link
  • the second site of the first multi-link device may be connected to the second site through the second link
  • a second site connection for a second multilink device is to say, the first site (of the first multi-link device and/or the second multi-link device) is the site corresponding to the first link, (the first multi-link device and/or the second multi-link device of) the second site is the site corresponding to the second link.
  • the first link is the main link
  • the first site corresponding to the first link is the main site (such as the main AP)
  • the second link is the non-main link
  • the The second station is a non-active link (for example, a non-active AP).
  • the first multi-link device and the second multi-link device may request to wake up the second station through negotiation, for example, define a new wake-up request frame to wake up the second station.
  • the first PPDU includes a wake-up request frame
  • the wake-up request frame is used to wake up the second station.
  • the wake-up request frame includes one or more of the following information: the access type corresponding to the cached data, the service identifier corresponding to the cached data, the size of the cached data, the identifier of the second station, and the minimum remaining delay of the delay-sensitive service. It can be understood that one or more types of information in the wake-up request frame may be carried in one field or in multiple fields, and the sequence of the fields carrying one or more types of information is not limited.
  • a new wake-up response frame may also be defined to inform the second multi-link device whether it wakes up the second station, or whether it agrees to wake up the second station.
  • the first multi-link device determines whether to wake up the second station according to the first PPDU, it can send a fourth PPDU to the second multi-link device, the fourth PPDU includes a wake-up response frame, and the wake-up response frame is used to inform whether to agree The second station is awakened.
  • the optional wake-up response frame includes the identity of the second station and indication information whether it agrees to be woken up.
  • the second multi-link device may notify the second station to wake up in a notification manner.
  • the first PPDU includes notification information, and the notification information is used to wake up the second station.
  • the second multi-link device may detect the request frame, requesting to wake up the second station.
  • the first PPDU includes a probe request frame, and the probe request frame carries a wake-up request element, and the wake-up request element is used to request to wake up the second station.
  • the second multi-link device can wake up the second station in various ways, which can improve the flexibility of communication.
  • the first multi-link device may send an eighth PPDU to the second multi-link device, where the eighth PPDU is used to notify the second station of a wake-up condition.
  • the wake-up condition may be that the size of the cached data reaches the first data volume, or the minimum remaining delay of the delay-sensitive service reaches the first delay, etc. There is no limitation on the wake-up condition here.
  • the first multi-link device may also send a third PPDU through the first link, the third PPDU includes a first beacon frame, and the first beacon frame is used to indicate the The power state of the second station of the first multi-link device in the energy-saving mode, where the power state includes an awake state or a dormant state.
  • the first beacon frame may include a second field and a third field
  • the second field is used to indicate that the power management mode of the second station is the energy saving mode
  • the third field is used to indicate the power state of the second station.
  • the second field may be a power management mode (power management) field
  • the third field may be a power status (power status) field.
  • the first multi-link device can adjust the power management mode and power state of the stations it includes.
  • the power management mode of the first beacon frame in the third PPDU may be an active mode, or the first beacon frame
  • the power management mode of the frame may be energy-saving mode and the power state may be wake-up state.
  • the first multi-link device sets the second The power state of the station is adjusted to sleep state.
  • the power management mode of the first beacon frame in the third PPDU may be an energy-saving mode and the power state may be a sleep state.
  • the first multi-link device can also inform the second multi-link device whether it is a software access point multi-link device (soft AP MLD), and the specific implementation process can refer to the third aspect and the first The four aspects are not repeated here.
  • soft AP MLD software access point multi-link device
  • the first multi-link device may also send the information of the second site to the second multi-link device.
  • the specific implementation process refer to the fifth aspect and the sixth aspect, which will not be repeated here.
  • the first multi-link device may also send the multicast frame of the second link through the first link.
  • the specific implementation process please refer to the seventh aspect and the eighth aspect, which will not be repeated here.
  • the first multi-link device may also indicate to the second multi-link device that the second site is unavailable through the first link, and the specific implementation process may refer to the ninth aspect and the tenth aspect, here I won't go into details.
  • a communication method is provided, and the method may be implemented through interaction between a first multi-link device and a second multi-link device.
  • the second multi-link device determines a first PPDU, and the first PPDU is used to wake up a second station of the first multi-link device, wherein the second station is in a sleep state in an energy-saving mode.
  • the second multi-link device may send the first PPDU to the first multi-link device through the first station.
  • the first site of the first multi-link device corresponds to the first site of the second multi-link device
  • the second site of the first multi-link device corresponds to the first site of the second multi-link device.
  • the two sites correspond.
  • the first PPDU includes a wake-up request frame, which is used to wake up the second station, and the wake-up request frame includes one or more of the following information: the access type corresponding to the cached data, the Service identification, size of cached data, identification of the second site, minimum remaining delay of delay-sensitive services; or
  • the first PPDU includes notification information, and the notification information is used to wake up the second station;
  • the first PPDU includes a probe request frame, and the probe request frame carries a wake-up request element, and the wake-up request element is used to request to wake up the second station.
  • the second multi-link device may also receive a fourth PPDU from the first multi-link device, the fourth PPDU includes a wake-up response frame, and the wake-up response frame is used to inform whether to agree to the second station being woken up .
  • the wake-up response frame includes the identity of the second station and indication information indicating whether it agrees to be woken up.
  • the first site is a site corresponding to the first link
  • the second site is a site corresponding to the second link.
  • a communication method is provided, and the method may be implemented through interaction between a first multi-link device and a second multi-link device.
  • the first multi-link device sends the second PPDU, and the second multi-link device receives it, and the second PPDU includes a multi-link element (Multi-link element).
  • Multi-link element a multi-link element
  • the second field of the multi-link element is used to indicate whether the first multi-link device is a soft AP MLD.
  • the second field may be a reserved field, and the reserved field may be used to indicate whether the first multi-link device is a soft AP MLD.
  • the reserved field is an undefined field that can be used for multiple choices in the future, that is, the information indicated by the reserved field is undefined. In this method, some or all bits in the reserved field may be used to indicate whether the first multi-link device is a soft AP MLD.
  • the second field may be a simultaneous transceiving frequency interval field, and the simultaneous transceiving frequency interval field is used to indicate whether the first multi-link device is a soft AP MLD.
  • the multi-link element can be carried in the beacon frame.
  • the first multi-link device indicates whether it is a soft AP MLD by carrying the Multi-link element in the beacon frame, and does not rely on the non-simultaneous sending and receiving link pair (NSTR Link Pair) information in the probe response frame to indicate, so that The second multi-link device can know whether the first multi-link device is a Soft AP MLD through the beacon frame.
  • NSTR Link Pair non-simultaneous sending and receiving link pair
  • a communication method is provided, and the method may be implemented through interaction between a first multi-link device and a second multi-link device.
  • the second multilink device receives a second PPDU, the second PPDU includes multilink elements.
  • the first field of the multi-link element is used to indicate whether the first multi-link device is a soft AP MLD.
  • the first field may be a reserved field, or may be a simultaneous transceiving frequency interval field.
  • a communication method is provided, and the method may be implemented through interaction between a first multi-link device and a second multi-link device.
  • the first multi-link device broadcasts a sixth PPDU on the second link, the sixth PPDU includes information about the second station; or
  • the first multi-link device sends a seventh PPDU on the first link, the seventh PPDU includes a second beacon frame, the second beacon frame includes a fourth field, and the fourth field carries information of the second station.
  • the fourth field may be an element field of the second link.
  • the first multi-link device can transmit the information of the second station, which can improve the accuracy of communication.
  • the optional information of the second station includes one or more of the following: time stamp, beacon interval, and timing synchronization function offset.
  • a communication method is provided, and the method may be implemented through interaction between a first multi-link device and a second multi-link device.
  • the second multi-link device receives a sixth PPDU on the second link, the sixth PPDU includes information about the second station; or
  • the second multi-link device receives a seventh PPDU on the first link, the seventh PPDU includes a second beacon frame, the second beacon frame includes a fourth field, and the fourth field carries information of the second station;
  • the fourth field may be an element field of the second link.
  • the information of the second station includes one or more of the following: time stamp, beacon interval, and timing synchronization function offset.
  • a communication method is provided, and the method may be implemented through interaction between a first multi-link device and a second multi-link device.
  • the first multi-link device may also send a fifth PPDU through the first link, where the fifth PPDU includes identification information of the second link and a multicast frame corresponding to the second link.
  • the multicast frame may be a multicast data frame or a multicast management frame, and this method is mainly described by taking the multicast frame as a multicast management frame.
  • the first multi-link device assists the second link to send multicast frames through the first link, and the second station corresponding to the second link can always be in the dormant mode without being adjusted to the active mode, and can The power consumption of the first multi-link device is further reduced.
  • the fifth PPDU includes an address 3 field, and the address 3 field carries identification information of the second link; or the fifth PPDU includes a frame body, and the frame body carries identification information of the second link.
  • a communication method is provided, and the method may be implemented through interaction between a first multi-link device and a second multi-link device.
  • the second multi-link device receives the fifth PPDU through the first link, where the fifth PPDU includes identification information of the second link and a multicast frame corresponding to the second link.
  • the fifth PPDU includes an address 3 field, and the address 3 field carries identification information of the second link; or the fifth PPDU includes a frame body, and the frame body carries identification information of the second link.
  • a communication method is provided, and the method may be implemented through interaction between a first multi-link device and a second multi-link device.
  • the first multi-link device sends a ninth PPDU to the second multi-link device through the first link, where the ninth PPDU is used to indicate that the second station is unavailable.
  • the unavailable specifically may be that the detection and association operations are not allowed to be initiated on the channel where the second station of the first multi-link device is working, or it may be that the second station of the first multi-link device is about to perform channel switching, here During this period, the frame exchange on the second link is prohibited, and the second station of the first multi-link device may also schedule a period of silence or a restricted (restricted) target wakeup time (target wakeup time, TWT), where During this period, legacy STAs are prohibited from transmitting.
  • TWT target wakeup time
  • a communication method is provided, and the method may be implemented through interaction between a first multi-link device and a second multi-link device.
  • the second multi-link device receives a ninth PPDU through the first link, where the ninth PPDU is used to indicate that the second station is unavailable.
  • a communication device is provided, and the communication device may be the above-mentioned first multi-link device or the second multi-link device, or a device set in the first multi-link device or the second multi-link device chip.
  • the communication device can implement the method in any one of the above aspects.
  • the communication device When the communication device is the first multi-link device, optionally, the communication device includes a processing unit and a transceiver unit.
  • the transceiver unit is configured to receive the first physical layer protocol data unit PPDU from the second multi-link device through the first station, and the first PPDU is used to wake up the second station of the communication device, wherein the communication device includes the first station and The second station, the second station is in a dormant state under energy-saving mode;
  • a processing unit configured to determine whether to wake up the second station according to the first PPDU.
  • the transceiver unit is further configured to send a second PPDU, where the second PPDU includes a multi-link element;
  • the reserved field of the multi-link element is used to indicate whether the communication device is a software access point multi-link device soft AP MLD; or the simultaneous sending and receiving frequency interval field of the multi-link element is used to indicate whether the communication device is a soft AP MLD.
  • the first PPDU includes a wake-up request frame, which is used to wake up the second station, and the wake-up request frame includes one or more of the following information: the access type corresponding to the cached data, the Service identification, size of cached data, identification of the second site, minimum remaining delay of delay-sensitive services; or
  • the first PPDU includes notification information, and the notification information is used to wake up the second station;
  • the first PPDU includes a probe request frame, and the probe request frame carries a wake-up request element, and the wake-up request element is used to request to wake up the second station.
  • the first site is a site corresponding to the first link
  • the second site is a site corresponding to the second link.
  • the transceiver unit is further configured to send a third PPDU to the second station through the first link, the third PPDU includes a first beacon frame, and the first beacon frame is used to indicate that the second link Corresponding to the power state of the second station in the energy-saving mode, the power state includes an awake state or a sleep state.
  • the first beacon frame includes a power management mode field and a power state field
  • the power management mode field is used to indicate that the power management mode of the second station is an energy-saving mode
  • the power state field is used to indicate that the second station power status.
  • the processing unit is specifically configured to send a fourth PPDU to the second multi-link device through the transceiver unit, the fourth PPDU includes a wake-up response frame, and the wake-up response frame is used to inform whether to agree to the second station being woken up .
  • the wake-up response frame includes an identifier of the second station and indication information indicating whether to agree to be woken up.
  • the transceiver unit is further configured to broadcast a sixth PPDU on the second link, where the sixth PPDU includes information about the second station; or send a seventh PPDU on the first link, where the seventh PPDU Including a second beacon frame, where the second beacon frame includes an element field of the second link, and the element field of the second link carries information of the second station;
  • the information of the second station includes one or more of the following: time stamp, beacon interval, and timing synchronization function offset.
  • the communication device When the communication device is the second multi-link device, optionally, the communication device includes a processing unit and a transceiver unit.
  • the processing unit is configured to determine a first physical layer protocol data unit PPDU, and the first PPDU is used to wake up the second station of the first multi-link device, wherein the second station is in a sleep state in an energy-saving mode;
  • a transceiver unit configured to send the first PPDU to the first multi-link device through the first station.
  • the transceiver unit is further configured to receive a second PPDU, where the second PPDU includes a multi-link element;
  • the reserved field of the multi-link element is used to indicate whether the first multi-link device is a software access point multi-link device soft AP MLD; or the simultaneous sending and receiving frequency interval field of the multi-link element is used to indicate the first multi-link Whether the device is a soft AP MLD.
  • the first PPDU includes a wake-up request frame, which is used to wake up the second station, and the wake-up request frame includes one or more of the following information: the access type corresponding to the cached data, the Service identification, size of cached data, identification of the second site, minimum remaining delay of delay-sensitive services; or
  • the first PPDU includes notification information, and the notification information is used to wake up the second station;
  • the first PPDU includes a probe request frame, and the probe request frame carries a wake-up request element, and the wake-up request element is used to request to wake up the second station.
  • the transceiver unit is further configured to receive a fourth PPDU from the first multi-link device, where the fourth PPDU includes a wake-up response frame, and the wake-up response frame is used to inform whether to agree to the second station being woken up.
  • the wake-up response frame includes an identifier of the second station and indication information indicating whether to agree to be woken up.
  • the first site is a site corresponding to the first link
  • the second site is a site corresponding to the second link.
  • the transceiver unit is further configured to receive a sixth PPDU on the second link, where the sixth PPDU includes information about the second station; or receive a seventh PPDU on the first link, where the seventh PPDU Including a second beacon frame, where the second beacon frame includes an element field of the second link, and the element field of the second link carries information of the second station;
  • the information of the second station includes one or more of the following: time stamp, beacon interval, and timing synchronization function offset.
  • a communication device including a processor, configured to execute the method in any one of the above aspects.
  • the device further includes a memory, the memory stores instructions, and the processor executes the instructions in the memory so that the method in any one of the above aspects is executed.
  • the memory is located on-device or off-device.
  • the device further includes an interface circuit, and the processor is coupled to the interface circuit.
  • processors there are one or more processors, and one or more memories.
  • the memory can be integrated with the processor, or the memory can be set separately from the processor.
  • the memory can be a non-transitory (non-transitory) memory, such as a read-only memory (read only memory, ROM), which can be integrated with the processor on the same chip, or can be respectively arranged in different On the chip, the embodiment of the present application does not limit the type of the memory and the configuration of the memory and the processor.
  • a non-transitory memory such as a read-only memory (read only memory, ROM)
  • ROM read only memory
  • the communication device can be a chip, and the processor can be implemented by hardware or software.
  • the processor can be a logic circuit, integrated circuit, etc.; when implemented by software, the processing
  • the processor may be a general-purpose processor, and may be implemented by reading software codes stored in a memory.
  • the memory may be integrated in the processor, or it may be located outside the processor and exist independently.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes the method in any one of the above aspects.
  • the above-mentioned processor can be a chip
  • the input circuit can be an input pin
  • the output circuit can be an output pin
  • the processing circuit can be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example but not limited to, the receiver
  • the output signal of the output circuit may be, for example but not limited to, output to the transmitter and transmitted by the transmitter
  • the circuit may be the same circuit, which is used as an input circuit and an output circuit respectively at different times.
  • the embodiment of the present application does not limit the specific implementation manners of the processor and various circuits.
  • a computer program product includes: a computer program (also referred to as code, or an instruction), and when the computer program is executed, the computer executes the method in any one of the above aspects.
  • a computer-readable medium stores a computer program (also referred to as code, or instruction) when it is run on a computer, so that the computer executes the method in any one of the above-mentioned aspects .
  • a chip system in a sixteenth aspect, includes a processor and an interface, configured to support a communication device to implement the functions involved in any one of the above aspects.
  • the chip system further includes a memory, and the memory is used to store necessary information and data of the aforementioned communication device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • a functional entity is provided, and the functional entity is used to implement the method in any one of the above aspects.
  • a communication system including the first multi-link device and the second link device in any one of the above aspects.
  • the technical effect brought about by any one of the design methods in the second to the eighteenth aspect can refer to the technical effect brought about by the above-mentioned first aspect, and will not be repeated here.
  • FIG. 1 is a schematic diagram of a multi-link device
  • Fig. 2 is a schematic diagram of a frame structure of a reduced Neighbor Report Element (Reduced Neighbor Report Element);
  • FIG. 3 is a schematic diagram of a frame structure of a target beacon transmission time (Target beacon transmission Time, TBTT) information field;
  • Fig. 4 is a schematic diagram of the frame structure of a basic service set parameter (BSS Parameter) field;
  • FIG. 5 is a schematic structural diagram of a communication system
  • Fig. 6 is a schematic diagram of a frame structure of a multi-link element (Multi-link Element);
  • FIG. 7 is a schematic diagram of a frame structure of a control frame
  • Fig. 8 is a frame structure diagram of a frame control (Frame Control) field
  • Fig. 9 is a schematic diagram of a frame format of a quiet element (Quiet Element).
  • FIG. 10 is a schematic structural diagram of a communication system
  • FIG. 11 is a schematic diagram of a communication process provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a frame structure of a wake-up request frame provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a frame structure of a wake-up response frame provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of adjusting a power state of a station provided in an embodiment of the present application.
  • FIG. 15 is a schematic diagram of adjusting a power state of a station provided in an embodiment of the present application.
  • FIG. 16 is a schematic diagram of a frame structure of a multi-link element provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • wireless local area network wireless local area network, WLAN
  • long term evolution long term evolution, LTE
  • LTE frequency division duplex frequency division duplex
  • FDD frequency division duplex
  • TDD time division duplex
  • 5th generation, 5G new radio
  • new radio new radio, NR
  • future sixth generation 6th generation, 6G
  • the embodiment of the present application can be applied to the WLAN system, and the embodiment of the present application can be applied to any protocol in the IEEE 802.11 series protocols adopted by the WLAN, such as 802.11a/b/g, 802.11n, 802.11ac , 802.11ax, 802.11be, 802.11bf and future 802.11 protocols.
  • the method provided in this application can be implemented by a communication device in a wireless communication system or a chip or a processor in a communication device, and correspondingly, the communication device supports communication using IEEE 802.11 series protocols.
  • the embodiment of the present application mainly takes the deployment of IEEE 802.11 network as an example, those skilled in the art can easily understand that the various aspects involved in the present application can be extended to other networks using various standards or protocols, for example, BLUETOOTH (Bluetooth), High performance wireless LAN (high performance radio LAN, HIPERLAN) (a wireless standard similar to the IEEE 802.11 standard, mainly used in Europe), and wide area network (WAN), wireless local area network (WLAN), personal area network (personal area network, PAN ) or other networks now known or later developed.
  • BLUETOOTH Bluetooth
  • High performance wireless LAN high performance radio LAN, HIPERLAN
  • WAN wide area network
  • WLAN wireless local area network
  • PAN personal area network
  • the communication system in this application is only an example, and the communication system applicable to this application is not limited thereto, and will be described in a unified manner here, and will not be described in detail below.
  • a multi-link device has multiple radio frequency modules that work on different frequency bands or channels or links (links).
  • non-AP MLD can be station (station, STA) MLD.
  • the MLD includes one or more affiliated stations, where the stations may be APs or STAs.
  • Each affiliated site has its own media access control (MAC) address (address), as shown in Figure 1, STA1 has its own low-level (low) MAC address as link address 1, and STA2 has its own low MAC The address is link address 2.
  • MLD also has a high-level (high) MAC address as MLD MAC address.
  • Software access point multi-link device can use software to realize the function of AP MLD on non-AP MLD.
  • the links corresponding to the two radio frequency modules can operate independently without interfering with each other. If the two links in the MLD support sending data on one link while receiving data on the other link, the two links support simultaneous transmit and receive (STR), otherwise the two links Non-simultaneous transmission and reception (non-STR, NSTR) between two links.
  • the software access point multi-link device (soft access point MLD, soft AP MLD) does not support STR, and other types of AP MLD support STR.
  • the mobile phone can be set with soft AP MLD to allow other devices to associate.
  • one link can be defined as the primary link (Primary Link), and the other link can be defined as the non-primary link (Non-primary Link).
  • the AP corresponding to the primary link is called the primary AP (Primary AP)
  • the non-primary AP Non-primary AP
  • the non-main AP is not allowed to send Beacon (Beacon) frame and reply Probe Response (Probe Response) frame, which can prevent the legacy STA (Legacy STA) from being associated with the non-main AP.
  • Beacon Beacon
  • Probe Response Probe Response
  • the non-AP MLD can carry the related information of the non-main link through the main link to assist in the operation of the non-main link.
  • the STA can discover the existence of the AP through active scanning or passive scanning, so as to associate with the AP and establish a connection.
  • the purpose of establishing a connection between an STA and an AP is to establish one or more links for communication between the STA and the AP.
  • the STA can receive management frames (such as Beacon frames or broadcast Probe Response frames) sent by the AP on the channel. For example, the STA can jump and search for the Beacon frame sent by the AP on different channels.
  • the STA can further communicate with the AP through a Probe Request frame or a Probe Response frame to communicate with the AP. Obtain other information from the AP.
  • the STA can actively broadcast a Probe Request frame without listening to the Beacon frame.
  • the AP receives the Probe Request frame, if certain conditions are met (this embodiment of the application does not limit the conditions) , can initiate a random channel access reply Probe Response frame.
  • the AP can carry the Reduced Neighbor Report Element (Reduced Neighbor Report Element) in the Beacon frame or Probe Response frame to report the relevant information of the corresponding AP, so that the STA can obtain the information of the neighbor AP when scanning. information, and selecting an appropriate AP for association can prevent the STA from constantly scanning the channel, thus reducing the STA's scanning time.
  • 802.11be stipulates that an affiliated AP needs to carry information about other affiliated APs belonging to the same AP MLD through the Reduced Neighbor Report Element.
  • the neighbor AP refers to the neighbor AP of the STA, and for the AP, the neighbor AP refers to the neighbor AP of the AP.
  • the Reduced Neighbor Report Element includes an element identifier (Element ID) field, a length (Length) field, and one or more neighbor AP information (Neighbor AP info) fields.
  • the Neighbor AP info field includes a target beacon transmission time (Target beacon transmission Time, TBTT) header (TBTT info Header) field, an operating class (Operating Class) field, a channel number (Channel Number) field, and one or more TBTT information sets (TBTT info set) field.
  • the TBTT info Header field includes the TBTT info field type (TBTT info Field Type) field, the filtered neighbor AP (Filtered neighbor AP) field, the reserved (Reserved) field, the number of TBTT information (TBTT info Field Type) field, the filtered neighbor AP (Filtered neighbor AP) field, the reserved (Reserved) field, the number of TBTT information (TBTT info Field Type) field, the filtered neighbor AP (Filtered neighbor AP
  • the TBTT info set field includes one or more TBTT information fields (TBTT info field).
  • the Operating Class field is used to indicate the operating class to which the reported AP's working channel belongs. Among them, 0 is the reserved value of the Operating Class field.
  • the Channel Number field is used to indicate the channel number corresponding to the reported working channel of the AP. Among them, 0 is a reserved value of the channel number.
  • the STA side can determine the specific position of the channel of the AP on the frequency band through the Operating Class field and the Channel Number field.
  • the TBTT info Field Type field is used to indicate the type of TBTT info. This field indicates the format of the TBTT info field together with the TBTT info Length field. Among them, 1, 2 and 3 are reserved values of the TBTT info Field Type field.
  • the Filtered neighbor AP field is used to indicate whether the service set identifier (SSID) of all basic service sets (basic service set, BSS) carried in the Neighbor AP info field matches the SSID in the Probe Request frame.
  • SSID service set identifier
  • the Reserved field occupies 1 bit.
  • the TBTT info count field is used to indicate the number of TBTT info fields contained in the TBTT info set field.
  • the TBTT info Length field is used to indicate the length of each TBTT info field.
  • the information format carried by the TBTT info field at different lengths can be shown in Table 1 below.
  • a possible format of the TBTT info field is shown in Figure 3, including the target channel transmission time offset (Neighbor AP TBTT offset) field of the neighbor AP, the basic service set identifier (BSS identifier, BSSID) field, the Short SSID field, BSS parameter (Parameter) field, 20MHZ PSD field and MLD Parameters field.
  • the Neighbor AP TBTT offset field occupies 1 byte (octets), which is used to indicate the offset of the Beacon frame transmission time between the BSS of the report and the BSS of the BSS that sent the report (Report), and the unit is time unit (time unit, TU), that is 1024 microseconds or 1 millisecond.
  • time unit time unit, TU
  • the BSSID field is an optional field, occupies 0 or 6 bytes, and is used to indicate the BSSID corresponding to the reported BSS.
  • the Short SSID field is an optional field, occupies 0 or 4 bytes, and is used to indicate the SSID to which the BSS belongs.
  • the BSS Parameter field is an optional field, occupying 0 or 1 byte, and used to indicate the relevant parameters of the BSS.
  • the BSS Parameter field can include On-channel Tunneling (OCT) recommendation (recommended) , Same (Same) SSID field, Multiple (Multiple) BSSID field, Transmitted (Transmitted) BSSID field, co-located with 2.4/5GHz AP and member of extended service set (Member Of ESS With 2.4/5GHz Co-Located AP) field, Active Probe Response Active (Unsolicited Probe Response Active) field, Co-located AP (Co-located AP) field and Reserved field.
  • OCT On-channel Tunneling
  • Same Shorte
  • Multiple Multiple
  • Transmitted Transmitted
  • co-located with 2.4/5GHz AP and member of extended service set Member Of ESS With 2.4/5GHz Co-Located AP
  • Active Probe Response Active Unsolicited Probe Response Active
  • Co-located AP Co-located AP
  • the OCT recommended field is located at position Bit0, and is used to indicate that the reported BSS expects to exchange management-type media protocol data units (media protocol data unit, MPDU) with it through the OCT mechanism.
  • the Same SSID field is located at position Bit1, and is used to indicate whether the reporting AP and the AP transmitting the Element have the same SSID.
  • the Multiple BSSID field is located at position Bit2, and is used to indicate whether the reported AP is part of a multiple BSSID set.
  • the Transmitted BSSID field is located at position Bit3. If the reported AP is part of a multiple BSSID set, it further indicates whether the reported AP is a Transmitted BSSID or a non-transmitted (non-transmitted) BSSID.
  • the Member Of ESS With 2.4/5GHz Co-Located AP field is located at position Bit4, and is used to indicate whether the reported AP is co-located with a 2.4/5GHz AP (that is, whether it is a 6GHz only AP) and is a member of an extended service set.
  • the Unsolicited Probe Response Active field is located at position Bit5, and is used to indicate whether the reported AP has enabled an active probe response.
  • the Co-located AP field is located at position Bit6, and is used to indicate whether the reported AP is co-located with the AP that transmits the Report.
  • the Reserved field is located at position Bit7.
  • the 20MHZ PSD field is an optional field, occupying 0 or 1 byte, used to indicate the maximum transmit power spectral density.
  • the MLD Parameters field occupies 0 or 3 bytes and is used to indicate related parameters of MLD. This field may include the following subfields: Multilink Device Identifier (MLD ID) field, Link Identifier (Link ID) field, BSS Parameters Change Count (BSS Parameters Change Count) field and Reserved field.
  • MLD ID occupies 8 bits and is used to indicate the identifier of the AP MLD.
  • Link ID occupies 4 bits and is used to indicate the link identifier corresponding to the reported AP.
  • the BSS Parameters Change Count field occupies 8 bits. When a key update occurs to the reported AP, the value of this field increases, otherwise the value of this field remains unchanged.
  • the Reserved field occupies 4 bits.
  • MLD can implement multi-link aggregation technology.
  • AP MLD and STA MLD can establish multiple links, aggregate larger bandwidth, share the MAC layer on multiple links, and transmit message packets flexibly, and can simultaneously send message packets of the same service to the same site.
  • Non-AP MLD can establish multiple links through one link, so as to establish association with multiple links of AP MLD at the same time.
  • the link exchanging Multi-link Association Request/Response (Multi-link Association Request/Response) frames is called the Transmitted Link, and the other links are called Non-transmitted Links.
  • the Multi-link Association Request/Response frame can carry the information of multiple links, so as to associate multiple links at the same time.
  • the non-AP MLD sends an Association Request frame on link 1.
  • the Association Request frame carries the STA side information of link 1 and the STA side information of link 2, where link 1 is Transmitted Link, Link 2 is a Non-transmitted Link.
  • the AP MLD replies with an Association Response frame on link 1, and the Association Response frame carries the AP side information on the link 1 side and also carries the AP side information on the link 2 side.
  • the Association Request frame can carry a multi-link element (Multi-link Element), which is used to carry the information of the MLD and the information of the stations in the MLD.
  • Multi-link Element multi-link element
  • a possible Multi-link Element includes Element ID (Element ID) field, Length field, Element ID Extension (Element ID Extension) field, Multi-Link Control (Multi-Link Control) field, public Information (Common Info) field and link information (Link Info) field, where the Common Info field carries the common information of multiple sites in the MLD, as well as the information of the MLD itself.
  • the Link Info field carries the station information on each link in the MLD, including one or more Per-STA Profile fields.
  • the Per-STA Profile field includes a Subelement ID (Subelement ID) field, a Length field, and a Data (Data) field.
  • the Data field includes a site control (STA Control) field, a site information (STA Info) field and a site configuration (STA Profile) field.
  • STA Control site control
  • STA Info site information
  • STA Profile site configuration
  • the STA Profile field includes one or more fields (field), one or more elements (Element) and non-inheritance element (Non-Inheritance Element) fields.
  • the Multi-Link Control field carries the type of multi-link element (such as the basic variant (Basic variant) and the probe request variant (Probe Request variant) or other types defined by the current protocol), and the existence bitmap ( Presence Bitmap) field to indicate which fields are not present.
  • FIG. 6 A possible frame format is shown in Figure 7, including frame control (Frame Control) field, duration (Duration) field, address (Address) 1 field, Address2 field, Address3 field, sequence control (Sequence Control) field , quality of service control (quality of service Control, QoS Control) field, high throughput (high throughput, HT) Control field, frame body (Frame Body) field and frame check sequence (frame check sequence, FCS) field.
  • frame control Frae Control
  • Duration Duration
  • address Address 1 field
  • Address2 field Address2 field
  • Address3 Address3
  • sequence control Sequence Control
  • quality of service control quality of service Control
  • QoS Control quality of service Control
  • high throughput high throughput
  • HT high throughput
  • FCS frame check sequence
  • the frame format of Frame Control is shown in Figure 8, including the protocol version (Protocol Version) field, type (Type) field, subtype (Subtype) field, going to the distributed system (To distribution system, To DS) field, from DS (From DS) field, More Fragment (More Fragment) field, Retry (Retry) field, Power Management (Power Management) field, More Data (More Data) field, Protected Frame (Protected Frame) field, HT Control field.
  • the Address1 field is used to receive the address (receiver address, RA), Address2 is used to indicate the sending address (transmitter address, TA), and Address3 is used to indicate the address of the AP MLD managed by the receiving end, or the AP associated with the receiving end (referring to the AP The address of the AP in the MLD.
  • Address3 can be used for frame filtering. For example, the receiving end can determine whether the frame belongs to the BSS with Address3, and if not, discard the frame.
  • the frame format of a possible quiet element is shown in Figure 9, including the Element ID field, the Length field, the quiet number (Quiet Count) field, the quiet period (Quiet Period) field, the quiet duration (Quiet Duration) field and Quiet Offset (Quiet Offset) field.
  • the Quiet Count field is used to indicate the number of TBTT intervals from the next quiet period
  • the Quiet Period field is used to indicate the number of TBTT intervals between two adjacent quiet periods
  • the Quiet Duration field is used to indicate the duration of the quiet period
  • the Quiet Offset field It is used to indicate the offset of the Beacon frame closest to the silent period.
  • the communication system shown in FIG. 10 is taken as an example to describe in detail the communication system applicable to the embodiment of the present application.
  • the communication system includes one or more AP MLDs and one or more non-AP MLDs.
  • AP MLD includes AP1 and AP2
  • non-AP MLD includes STA1 and STA2.
  • the communication system may also include one or more Legacy STAs.
  • the frequency band in which the MLD works in the communication system can be sub 1 gigahertz (GHz), 2.4GHz, 5GHz, 6GHz and all or part of the high frequency 60GHz, which is not limited here.
  • an embodiment of the present application provides a communication method.
  • the communication method provided in the embodiment of the present application is described below by taking the interaction between the first multi-link device and the second multi-link device as an example.
  • the first multi-link device includes the first site and the second site
  • the second multi-link device includes the first site and the second site
  • the first multi-link device and the second multi-link device Communication may take place through the first site and the second site.
  • the second station is in a dormant state in energy-saving mode, and the second multi-link device can be awakened by the first station instructing the second station of the first multi-link device, so that the second station can be woken up when it needs to be woken up.
  • the first multi-link device and/or the second multi-link device may perform some or all of the steps in the embodiment of the present application, these steps or operations are only examples, and the embodiment of the present application Other operations or variations of various operations may also be performed.
  • each step may be performed in a different order presented in the embodiment of the present application, and it may not be necessary to perform all operations in the embodiment of the present application.
  • Figure 11 is a possible communication method provided by the embodiment of the present application, including the following steps:
  • the second multi-link device determines a first physical layer protocol data unit (physical layer protocol data unit, PPDU).
  • PPDU physical layer protocol data unit
  • the first PPDU is used to wake up the second station of the first multi-link device.
  • the first multi-link device includes a first site and a second site, and the corresponding second multi-link device may also include a first site and a second site.
  • the first multi-link device and the second multi-link device pass through the first The site communicates with the second site, that is, the first site of the first multi-link device corresponds to the first site of the second multi-link device, and the second site of the first multi-link device communicates with the second multi-link device corresponding to the second site.
  • the power management (Power Management, PM) mode of the first site and the second site can include active (Active) mode or energy-saving (Power Save) mode, and in the energy-saving mode, it also includes the wake-up state (Awake) or sleep state (Doze) Two power states (Power State).
  • the first station corresponds to the first link
  • the second station corresponds to the second link.
  • the first multi-link device may be AP MLD or non-AP MLD
  • the second multi-link device may be AP MLD or non-AP MLD.
  • the first multi-link device is mainly AP MLD
  • the second multi-link device is non-AP MLD
  • the first site of the first multi-link device is Primary AP (AP1)
  • the first The second site of the multi-link device is non-Primary AP (AP2)
  • the first site of the second multi-link device is STA1
  • the second site of the second multi-link device is STA2
  • the first link is the main chain road
  • the second link is a non-primary link as an example for description.
  • the second station of the first multi-link device is in a dormant state in the energy-saving mode.
  • the first PPDU may wake up the second station of the first multi-link device through one or more of the following methods.
  • the first multi-link device and the second multi-link device may wake up the second station of the first multi-link device through negotiation.
  • the first multi-link device sends a wakeup request (Wakeup Request) frame to the second multi-link device, and correspondingly, the second multi-link device replies a wakeup response (Wakeup Response) frame to the first multi-link device, Wakeup Request/ The Response frame is described below.
  • the first PPDU includes a wake-up request frame, and the wake-up request frame is used to wake up the second station of the first multi-link device.
  • the wake-up request frame includes one or more of the following information: the access type corresponding to the cached data, the service identifier corresponding to the cached data, the size of the cached data, the link identifier corresponding to the second station, and the minimum remaining time of the delay-sensitive service Waiting for information. It can be understood that the above one or more types of information may be carried in one field or in multiple fields, and the order of the fields carrying the above one or more types of information is not limited here.
  • the second station corresponds to the second link, and the identifier of the second station may also be represented by the identifier of the second link.
  • the wake-up request frame may be a newly defined frame structure.
  • a possible frame structure of the wakeup request frame is shown in Figure 12, including the category (Category) field, function (Action) field, dialog token (Dialog Token) field and wakeup request element (Wakeup Request Element) field.
  • the Wakeup Request Element field includes one or more of the above information, such as the Elements ID field, the Length field, the Traffic Identifier (TID) Bitmap field, the highest buffer size (Buffer Size High) field, and the total buffer size (Buffer Size All), remaining delay (Remaining Delay) field and Link ID field.
  • the TID Bitmap field is used to indicate which TIDs have data to send, for example, 1 means that the corresponding TID has data to send, and 0 means that there is no data to send.
  • the size of the cached data is indicated by the Buffer Size High field and the Buffer Size All field.
  • Buffer Size High indicates the buffer size of the highest priority TID
  • Buffer Size All indicates the total buffer size of all TIDs.
  • the minimum remaining delay of the delay-sensitive service is indicated by the Remaining Delay field. If the minimum remaining delay is exceeded, the sender needs to discard the cached data.
  • the identifier of the second station is represented by a Link ID, which is used to indicate a target link or a target station requesting to wake up.
  • the wake-up request frame can be used to wake up multiple second stations or multiple links.
  • the wake-up request frame can carry Link IDs of multiple links.
  • the first multi-link device may notify the second multi-link device to wake up the second station of the first multi-link device by means of a notification.
  • the first PPDU includes notification information, and the notification information is used to wake up the second station of the first multi-link device.
  • the notification information may be carried through the A-control, for example, a 16-bit Link bitmap is used to indicate the awakened peer station of the corresponding link. If the first multi-link device is a non-AP MLD and the second multi-link device is an AP MLD, then the second station of the first multi-link device (in a dormant state in energy-saving mode) wakes up after receiving a wake-up request And send a PS-Poll frame to notify the second station of the second multi-link device. When the second site of the second multi-link device set More Data to 0, the second site (in energy-saving mode) of the first multi-link device just switched the dormant state from the wake-up state.
  • the first multi-link device may request to wake up the second station of the first multi-link device through a probe request (Probe Request) frame.
  • Probe Request Probe Request
  • the first PPDU includes a probe request frame, where the probe request frame carries a wakeup request element, and the wakeup request element is used to request to wake up the second station of the first multi-link device.
  • the wake-up request element see method 1, and the similarity is not limited.
  • the second multi-link device may reply to the first multi-link device whether the second station is awakened, or whether it agrees to be awakened.
  • the second multi-link device may save the wake-up condition of the second station of the first multi-link device.
  • the first multi-link device broadcasts/sends an eighth PPDU to the second multi-link device, and the eighth PPDU is used to notify the first multi-link device of the wake-up condition of the second station.
  • the eighth PPDU may include a service identification link notification (TID-to-link Announcement) frame, and the TID-to-link Announcement frame is used to notify the wake-up condition of the second station of the first multi-link device, that is, the second multi-link Under what circumstances can the link device wake up the second station of the first multi-link device.
  • the TID-to-link Announcement frame may include the identity of the second station, the TID bitmap allowed to be transmitted on the second link, or the minimum remaining delay information of the delay-sensitive service.
  • the second multi-link device may learn that the second station is in a dormant state in the energy saving mode. For the second station in the dormant state, the second multi-link device triggers the wakeup of the second station when a wakeup condition is met.
  • the second multi-link device may determine, according to the identifier of the second station included in the TID-to-link Announcement frame, that the second station corresponding to the identifier is in a dormant state in an energy-saving mode.
  • the second station of the first multi-link device may notify the second multi-link device that it is about to enter the dormant state before adjusting to the dormant state.
  • the second station may notify through the power management field in the frame structure shown in FIG. 8 .
  • the second multi-link device may also send second indication information to the first terminal, where the second indication information is used to indicate whether there is data that needs to be sent to the second station of the first multi-link device.
  • the second indication information may be carried in the end of service period (end of service period, EOSP) field of the QoS Control field shown in Figure 7, or carried in the More Data field shown in Figure 8, or carried in the first PPDU .
  • the second multi-link device sends the first PPDU to the first multi-link device through the first station.
  • the corresponding first multi-link device receives the first PPDU through the first station.
  • the second multi-link device may send the first PPDU through the first station in Active mode to request to wake up the second station.
  • the first multi-link device determines whether to wake up the second station according to the first PPDU.
  • the first multi-link device can determine whether to agree to wake up the second station according to the first PPDU. If it agrees to wake up, it means that it is determined to wake up the second station, adjust the second station from the sleep state to the wake-up state, or adjust the power management mode. It is an active mode, if it does not agree to wake up, it means that it is determined not to wake up the second station and keep the second station in a dormant state.
  • the first multi-link device in S1101 uses the first PPDU sent by way 1, then in S1103, the first multi-link device may send a fourth PPDU to the second multi-link device, and the fourth PPDU includes a wake-up response ( Wakeup Response) frame, the Wakeup Response frame is used to inform whether to agree to the second station to be woken up.
  • the wake-up response frame may include information of the second station and/or indication information of whether it agrees to be woken up.
  • a possible frame structure of a wakeup response frame is shown in Figure 13, including a Category field, an Action field, a Dialog Token field, and a Wakeup Response Element field.
  • Wakeup Response Element field includes Elements ID field, Length field, Link ID field and Status Code (Status Code) field.
  • the Link ID field indicates the link identification information corresponding to the second site.
  • the Status Code field indicates whether to agree to the second station being woken up.
  • the wake-up response frame can carry Link IDs of multiple links And the Status Code corresponding to each link.
  • the first multi-link device may indicate the current power management mode and power status of its second station through the first link. For example, the first multi-link device sends a third PPDU on the first link, and the third PPDU includes the first beacon frame.
  • the first beacon frame may be used to indicate the power management mode of the second station corresponding to the second link. At this time, the first beacon frame may indicate that the power management mode of the second station is an active mode or an energy-saving mode. Or the first beacon frame may be used to indicate the power state of the second station in the energy-saving mode. At this time, the first beacon frame may indicate that the power state of the second station in the energy-saving mode is an awake state or a sleep state.
  • the power management mode field is used to indicate that the power management mode of the second station is active mode or energy-saving mode
  • the power state field is used to indicate that the power state of the second station is an awake state or a sleep state.
  • the power status field is further indicated only if the power management mode field is in the energy-saving mode.
  • the Per-STA Profile field in the Multi-link Element of the first beacon frame carries a power management mode field and a power state field.
  • the reduced neighbor report (reduced neighbor report, RNR) element field in the first beacon frame carries a power management mode field and a power state field.
  • the first multi-link device may adjust the power management mode of the second station to the energy-saving mode, and set the second station to the energy-saving mode.
  • the power state of the station is adjusted to sleep state. Setting the first duration can prevent the second multi-link device from frequently waking up the second station through the main link.
  • the threshold of the first duration is arbitrary, for example, the first duration is greater than or equal to the duration required for medium sync recovery (medium sync recovery).
  • the second multi-link device sends a wake-up request to the main AP of the first multi-link device, and the first multi-link device sends an acknowledgment (ACK) message for the wake-up request through the main AP, and then sends a wake-up response , the second multi-link device sends an ACK message for the wake-up response through the master AP.
  • the first multi-link device wakes up the non-active AP, and after a wake-up delay T1, the non-active AP is in an awake state.
  • the main AP when the main AP agrees to wake up the non-main AP, it will return a wake-up response frame only after the non-main AP is woken up; when the main AP refuses to wake up the non-main AP, this restriction is not needed, and the wake-up response frame can be returned immediately.
  • the idle duration of the non-active AP reaches T2
  • the non-active AP of the first multi-link device is in a dormant state.
  • AP power saving may be optional support, it is possible to use reserved bits in the MLD Capabilities field in the Multi-link element to indicate whether the AP MLD and non-AP MLD support the above-mentioned AP MLD energy saving operation.
  • the first multi-link device has no associated second multi-link device, and the first station of the first multi-link device may carry a Quiet Element (Quiet Element) field through the third beacon frame, For example, as shown in Figure 9.
  • the Quiet Element field is used to indicate a period of quiet time and set the power management mode to an energy-saving mode.
  • the silent period starts after the time period T3 after the third beacon frame is sent, and lasts until the next TBTT.
  • the first station is in a dormant state in energy saving mode.
  • the first station During the T3 time period after the first station transmits the third beacon frame, if the first multi-link device receives an association request from the second multi-link device through the first station and successfully associates, the first station will immediately save energy The mode is switched to the active mode, and the first station stops carrying the Quiet Element in the third beacon frame sent subsequently.
  • the Channel Number field in the RNR element may also be set to 0.
  • the second station of the first multi-link device is in a dormant state in the energy-saving mode, and the second multi-link device can wake up the second station of the first multi-link device through the first station, which can The second station of the first multi-link device wakes up when it needs to be woken up, and is in a dormant state when it does not need to be woken up, which is more conducive to energy saving of the multi-link device.
  • non-AP MLD can only judge whether the AP MLD is a soft AP MLD by whether the Per-STA Profile in the Multi-link element carried in the Probe Response frame carries non-simultaneous transceiver link pair (NSTR Link Pair) information.
  • the non-AP MLD cannot know whether the AP MLD is a Soft AP MLD through the Beacon frame. Based on this, the embodiment of the present application provides the following manner to indicate whether the first multi-link device is a Soft AP MLD.
  • the first multilink device may send a second PPDU, the second PPDU including the multilink elements.
  • the first field in the multi-link element may be used to indicate whether the first multi-link device is a Soft AP MLD.
  • the first field may be any field in the multi-link element, for example, it may be a reserved field or a simultaneous sending and receiving frequency interval field.
  • Mode 1 The reserved field of the multi-link element can be used to indicate whether the first multi-link device is a Soft AP MLD.
  • a frame structure of a possible multi-link element can be shown in Figure 16, including the Maximum Number Of Simultaneous Links (Maximum Number Of Simultaneous Links) field, the Single Response Scheduling Support (SRS Support) field, and the service identifier Negotiate with link mapping whether to support (TID-To-Link Map-ping Negotiation Sup-ported) field, simultaneous sending and receiving frequency interval field (Frequency Separation For STR) field and Reserved field.
  • the Reserved field is an undefined field that can be used for multiple options in the future. In this manner, some or all bits in the Reserved field can be used to indicate whether the first multi-link device is a Soft AP MLD. For example, 1 bit in the Reserved field is 0 to indicate non-soft AP MLD, such as regular (Regular) AP MLD, and 1 bit in the Reserved field is 1 to indicate soft AP MLD.
  • the rest of the bits (such as the remaining bits except the first bit) in the Reserved field can also be used to indicate other information, without limitation.
  • frames or elements may also include the Reserved field, and the information indicated by the Reserved fields in different frames or elements may be the same or different.
  • the reserved field of the multi-link element is used to indicate whether the first multi-link device is a Soft AP MLD for illustration, and does not limit the information indicated by the Reserved field in other frames or elements.
  • Mode 2 The simultaneous sending and receiving frequency interval field of the multi-link element can be used to indicate whether the first multi-link device is a Soft AP MLD.
  • the simultaneous sending and receiving frequency interval field can be set to a specific value to indicate that the AP MLD sending the multi-link element is a soft AP MLD.
  • the value is arbitrary and is not limited here. For example, setting the simultaneous transceiver frequency interval field to 31 indicates that the AP MLD for sending the multi-link element is soft AP MLD.
  • the Multi-link Element can be carried in the Beacon frame.
  • the second multi-link device can learn whether the first multi-link device is a Soft AP MLD.
  • This embodiment can be used in combination with the above embodiments.
  • the first multi-link device can send a second PPDU before S1101 to inform the second multi-link device whether it is a Soft AP MLD.
  • 802.11be Draft stipulates that Soft AP MLD cannot send Beacon frames on non-primary links, but the non-primary AP information corresponding to non-primary links needs to be carried in Beacon frames. transmitted to other multilink devices. Based on this, the following method is provided in the embodiment of the present application to ensure that the relevant information of the non-master AP can be transmitted.
  • the second station of the first multi-link device is used as the non-active AP for description.
  • Manner 1 The first multi-link device broadcasts a sixth PPDU on the second link, where the sixth PPDU includes information about the second station.
  • a new broadcast frame (that is, the sixth PPDU) can be defined on the non-primary link, and the information of the second station can be carried by the new broadcast frame.
  • the new broadcast frame may be periodically broadcast by the first multi-link device.
  • the first multi-link device sends a seventh PPDU on the first link, where the seventh PPDU includes a second beacon frame, and the second beacon frame includes a fourth field, and the fourth field carries information of the second station.
  • a Beacon frame can be sent on the main link, and the Beacon carries information about non-main APs.
  • the fourth field may be an element field of the second link.
  • the element field of the second link may be an element field such as a Per-STA Profile sub-element or an RNR Element of the non-main link.
  • the Multi-link Element in the second beacon frame carries the Per-STA Profile sub-element of the non-main link
  • the Per-STA Profile sub-element of the non-main link carries the information of the second station.
  • the Multi-link element in the second beacon frame carries the RNR Element, and the RNR Element, as the element field of the second link, carries the information of the second station.
  • the information of the second station includes one or more of the following: a time stamp (TimeStamp), a beacon interval (Beacon Interval), and a timing synchronization function offset (timing synchronization function Offset, TSF Offset).
  • a time stamp TimeStamp
  • Beacon Interval Beacon Interval
  • a timing synchronization function offset timing synchronization function Offset, TSF Offset
  • no indication may be displayed for the beacon interval.
  • the protocol may stipulate that the beacon interval of the non-master AP is the same as that of the master AP.
  • a management frame carrying time information (for example, in TBTT unit) can be sent on the non-main link (that is, the second link), so that the second multi-link device
  • the time information can be calculated correctly, especially when the management frame does not carry the information of the main AP (assuming that the main AP is used as the reference AP of the non-main AP, and the beacon interval between the two is the same) , the second multi-link device can correctly calculate the time information.
  • the first multi-link device can send the information of the non-main AP on the main link or the non-main link device, which can improve communication accuracy.
  • multicast data frames need to be copied and sent on all links of the AP MLD, while multicast management frames are sent independently on the corresponding links of the AP MLD.
  • this method of sending multicast data frames and multicast management frames (hereinafter referred to as multicast data frames and multicast management frames as multicast frames) requires all links of the AP MLD to wake up periodically to receive buffers on the AP side. multicast frames, which is not conducive to AP MLD energy saving.
  • the non-main link sends the multicast management frame through the main link assistance, so that the non-main AP corresponding to the non-main link can always be in the energy-saving mode, and does not need to be adjusted to the active mode, thereby reducing AP MLD power consumption.
  • the multicast management frame included in the multicast frame is mainly used for illustration, and the method provided in this embodiment may also be used for the multicast data frame included in the multicast frame, and similarities are not repeated here.
  • the first multi-link device sends a fifth PPDU through the first link, and the fifth PPDU includes identification information of the second link and a multicast management frame corresponding to the second link.
  • the multicast frame includes a multicast data frame and/or a multicast management frame.
  • the multicast data frame may only be sent on the first link (referring to the main link), and the second link (referring to the non-main link) does not need to send the multicast data frame.
  • the multicast management frame may be forwarded by the first link by carrying the identification information of the second link, and the second link may not send the multicast management frame.
  • the fifth PPDU includes an address 3 field, and the address 3 field carries identification information of the second link.
  • the address 3 field can be set to the MLD MAC Address of the second multi-link device itself, or Set to the BSSID corresponding to the second link in the second multi-link device.
  • the PN allocated by the first link needs to be used for encryption.
  • the fifth PPDU includes a frame body, and the frame body carries identification information of the second link.
  • the address 3 field and the frame body can be carried in the frame structure shown in FIG. 7 .
  • the first multi-link device sends a ninth PPDU to the second multi-link device on the first link, where the ninth PPDU is used to indicate that the second site of the first multi-link device is unavailable
  • the ninth PPDU may include third indication information, where the third indication information is used to indicate that the second station of the first multi-link device is unavailable.
  • Unavailable specifically may be that it is not allowed to initiate an association process on the channel where the second station of the first multi-link device is working, or it may be that the second station of the first multi-link device is about to perform channel switching.
  • Frame exchange is performed on the second link, and the second station of the first multi-link device may also schedule a silent period or restricted TWT, during which the legacy STA is prohibited from transmitting.
  • the second multi-link device is not allowed to initiate an association process on the channel where the second site of the first multi-link device works. It may be that the second multi-link device is not allowed to work at the second site of the first multi-link device.
  • On the channel send Beacon frame, reply Probe Response frame and reply Association Response frame.
  • the ninth PPDU may include a channel switching status field (Channel Switch Mode field), and the Channel Switch Mode field is used to indicate the switching mode of the channel on which the second station of the first multi-link device works.
  • Channel Switch Mode field When the Channel Switch Mode field is set to 1, it means that it is forbidden to initiate transmission on the channel where the second site of the first multi-link device works before the channel switch is completed, and then set the Channel Number to 0 to indicate the first multi-link The second site for the device is not available.
  • affiliated AP 1 and affiliated AP 3 can be set to not allow the second multi-link device to directly initiate association with it on the working channel, specifically by prohibiting the corresponding affiliated AP 1 and affiliated AP 3 from Send Beacon frame, Probe Response frame and Association Response frame on the channel where it is located.
  • the second multi-link device is only allowed to initiate association through the channel where affiliated AP 2 is located.
  • Non-AP MLD can only establish multiple links by initiating a multi-link association request on link 2, and link 2 must be accepted by AP MLD.
  • AP MLD can set affiliated AP 1 and affiliated AP 3 to energy-saving mode when the load is relatively low, and when non-AP MLD needs to wake up affiliated AP 1 and affiliated AP 3 for transmission, it can further reduce the first Power consumption of multilink devices.
  • link 1 and link 3 are not interfered by legacy STA transmission, which is conducive to the transmission of low-latency services.
  • affiliated AP 1 and affiliated AP 3 which do not allow Pre-very high throughput (extremely high throughput, EHT) STA and single-link (single-link) EHT STA associated AP, you can add a new one in the RNR element Instructions to prevent the client from switching to the channel where affiliated AP 1 and affiliated AP 3 are located to initiate association.
  • EHT extreme high throughput
  • the second multi-link device is not allowed to initiate an association process on the channel where the second site of the first multi-link device works, which may indicate that the second site of the first multi-link device is unavailable or unavailable, or not It allows the second multi-link device to switch to the channel where the Reported AP works and directly initiate detection and association operations.
  • the reason why the second site of the first multi-link device is unavailable or unavailable may be that the site of the first multi-link device is preparing to perform channel switching or the second site of the first multi-link device has scheduled a silent period or restricted TWT.
  • the third indication information may be carried in the RNR Element, and the RNR Element is carried in the ninth PPDU.
  • the first multi-link device may send the third indication information to the second multi-link device in one or more of the following manners.
  • Method 1 The Channel Number field in the RNR Element is set to a reserved value.
  • the value of the reserved value is arbitrary, for example, 0 or 255.
  • the legacy STA reads that the Channel Number field is 0 or 255, because the legacy STA cannot read the field, it cannot obtain the corresponding channel information, so it will not try to jump to the corresponding channel to send the Probe Request and Association Request.
  • EHT STA and non-AP MLD read that the Channel Number field is 0 or 255, they will not try to jump to the corresponding channel to send Probe Request and Association Request.
  • Method 2 Set the TBTT info Field Type field to a reserved value.
  • the value of the reserved value is arbitrary, for example, the value is 1.
  • EHT STA and non-AP MLD read that the TBTT info Field Type field is 1, they will not try to jump to the corresponding channel to send Probe Request and Association Request.
  • the link is non-AP MLD
  • the main link does not allow the second multi-link device to switch to the channel corresponding to the Reported AP to directly initiate detection and association operations.
  • Mode 3 use a reserved bit in the MLD parameter field to indicate.
  • the value of the reserved bit is arbitrary, for example, the value is 1.
  • the reserved bit is set to 1, it means that EHT STA or non-AP MLD is not allowed to send Probe Request and Association Request on the corresponding channel.
  • EHT STA and non-AP MLD read that the reserved bit is 1, they will not try to jump to the corresponding channel to send Probe Request and Association Request.
  • Method 4 Combine method 1 and method 2, or combine method 2 and method 3.
  • the Channel Number field in mode 1 or the TBTT info Field Type field in mode 2 is set to a reserved value to inform legacy STA, and the reserved bits in mode 3 are used to inform EHT STA and Non-AP MLD.
  • the methods and/or steps implemented by the first multi-link device may also be implemented by components (such as chips or circuits) that can be used in the first multi-link device, and implemented by the second multi-link device.
  • the methods and/or steps implemented by the multi-link device may also be implemented by components applicable to the second multi-link device.
  • the methods provided in the embodiments of the present application are introduced from the perspective of interaction between the first multi-link device and the second multi-link device.
  • the first multi-link device and the second multi-link device may include a hardware structure and/or a software module, and a hardware structure, a software module, or a hardware structure plus software
  • the above-mentioned functions are implemented in the form of modules. Whether one of the above-mentioned functions is executed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • FIG 17 is a possible representation of the communication device provided by the embodiment of the present application.
  • the communication device 1700 can be used to implement the functions or steps implemented by the first multi-link device or the second multi-link device in the above method embodiments.
  • the communication device may include an optional processing unit 1701 and a transceiver unit 1702 .
  • a storage unit may also be included, and the storage unit may be used to store instructions (code or program) and/or data.
  • the processing unit 1701 and the transceiver unit 1702 may be coupled to the storage unit, for example, the processing unit 1701 may read instructions (codes or programs) and/or data in the storage unit to implement corresponding methods.
  • Each of the above units can be set independently, or can be partially or fully integrated.
  • the communications apparatus 1700 can correspondingly implement the behaviors and functions of the first multi-link device in the foregoing method embodiments.
  • the communication device 1700 may be an AP MLD, or a component (such as a chip or a circuit) applied in the AP MLD.
  • the transceiver unit 1702 may be configured to perform all the receiving or sending operations performed by the first multi-link device in the foregoing embodiments. For example, S1102 in the embodiment shown in FIG. 11 , and/or other processes used to support the technology described herein; wherein, the processing unit 1701 is configured to perform the steps performed by the first multi-link device in the above embodiments. All operations except transceiving operations, such as determining whether to wake up the second station according to the first PPDU in S1103 of the embodiment shown in FIG. 11 , and/or other processes for supporting the technology described herein.
  • the transceiver unit 1702 is configured to receive the first PPDU from the second multi-link device through the first station, and the first PPDU is used to wake up the second station of the communication device, wherein the communication device includes the first station and the second station, the second station The second station is in a dormant state in energy-saving mode;
  • the processing unit 1701 is configured to determine whether to wake up the second station according to the first PPDU.
  • the transceiver unit 1702 is further configured to send a second PPDU, where the second PPDU includes a multi-link element;
  • the first field of the multi-link element is used to indicate whether the communication device is a software access point multi-link device soft AP MLD.
  • the first field may be a reserved field or a simultaneous sending and receiving frequency interval field.
  • the first PPDU includes a wake-up request frame, which is used to wake up the second station, and the wake-up request frame includes one or more of the following information: the access type corresponding to the cached data, the corresponding service identifier, the size of cached data, the identifier of the second site, and the minimum remaining delay of delay-sensitive services; or
  • the first PPDU includes notification information, and the notification information is used to wake up the second station;
  • the first PPDU includes a probe request frame, and the probe request frame carries a wake-up request element, and the wake-up request element is used to request to wake up the second station.
  • the first site is a site corresponding to the first link
  • the second site is a site corresponding to the second link.
  • the transceiver unit 1702 is further configured to send a third PPDU to the second station through the first link, the third PPDU includes a first beacon frame, and the first beacon frame is used to indicate that the second The power state of the second station corresponding to the link in the energy-saving mode, where the power state includes an awake state or a sleep state.
  • the first beacon frame includes a second field and a third field
  • the second field is used to indicate that the power management mode of the second station is an energy-saving mode
  • the third field is used to indicate that the power management mode of the second station is power state.
  • the second field may be a power management mode field
  • the third field may be a power state field
  • the processing unit 1701 is specifically configured to send a fourth PPDU to the second multi-link device through the transceiver unit, the fourth PPDU includes a wake-up response frame, and the wake-up response frame is used to inform whether the second station agrees to be awakened.
  • the wake-up response frame includes an identifier of the second station and indication information indicating whether it agrees to be woken up.
  • the transceiver unit 1702 is further configured to broadcast a sixth PPDU on the second link, where the sixth PPDU includes information about the second station; or send a seventh PPDU on the first link, where the sixth The seven PPDUs include a second beacon frame, and the second beacon frame includes a fourth field, and the fourth field carries information of the second station.
  • the fourth field may be an element field of the second link.
  • the information of the second station includes one or more of the following: time stamp, beacon interval, and timing synchronization function offset.
  • the communications apparatus 1700 can correspondingly implement the behaviors and functions of the second multi-link device in the foregoing method embodiments.
  • the communication device 1700 may be a STA MLD, or a component (such as a chip or a circuit) applied to the STA MLD.
  • the transceiver unit 1702 may be configured to perform all the receiving or sending operations performed by the second multi-link device in the foregoing embodiments. For example, S1102 in the embodiment shown in FIG.
  • the processing unit 1701 is configured to perform the operations performed by the second communication device in the above embodiments except the transceiving operations All operations other than , such as generating the first PPDU in S1101 of the embodiment shown in FIG. 11 , and/or other processes used to support the technology described herein.
  • the processing unit 1701 is configured to determine a first physical layer protocol data unit PPDU, where the first PPDU is used to wake up the second station of the first multi-link device, where the second station is in a dormant state in an energy-saving mode;
  • the transceiver unit 1702 is configured to send the first PPDU to the first multi-link device through the first station.
  • the transceiver unit 1702 is further configured to receive a second PPDU, where the second PPDU includes a multi-link element;
  • the first field of the multi-link element is used to indicate whether the first multi-link device is a software access point multi-link device soft AP MLD.
  • the first PPDU includes a wake-up request frame, which is used to wake up the second station, and the wake-up request frame includes one or more of the following information: the access type corresponding to the cached data, the corresponding service identifier, the size of cached data, the identifier of the second site, and the minimum remaining delay of delay-sensitive services; or
  • the first PPDU includes notification information, and the notification information is used to wake up the second station;
  • the first PPDU includes a probe request frame, and the probe request frame carries a wake-up request element, and the wake-up request element is used to request to wake up the second station.
  • the transceiver unit 1702 is further configured to receive a fourth PPDU from the first multi-link device, the fourth PPDU includes a wake-up response frame, and the wake-up response frame is used to inform whether to agree to the second station being woken up .
  • the wake-up response frame includes an identifier of the second station and indication information indicating whether it agrees to be woken up.
  • the first site is a site corresponding to the first link
  • the second site is a site corresponding to the second link.
  • the transceiver unit 1702 is further configured to receive a sixth PPDU on the second link, where the sixth PPDU includes information about the second station; or receive a seventh PPDU on the first link, where the The seven PPDUs include a second beacon frame, the second beacon frame includes a fourth field, and the fourth field carries information of the second station;
  • the information of the second station includes one or more of the following: time stamp, beacon interval, and timing synchronization function offset.
  • the communication device 1700 can be used to implement the above-mentioned method embodiments, and the specific steps, descriptions and corresponding beneficial effects can refer to the above-mentioned method embodiments, which will not be repeated here.
  • processing unit 1701 in the embodiment of the present application may be implemented by a processor/processing circuit or a processor/processing circuit related circuit component
  • transceiver unit 1702 may be implemented by a transceiver/transceiving interface or a transceiver/transceiving interface related circuit component or Communication interface implementation.
  • FIG. 18 is a possible representation of the communication device provided in the embodiment of the present application.
  • the communication device 1800 may include: a processor 1801 , a transceiver 1805 , and optionally a memory 1802 .
  • the communication device can be used as a device for generating and sending PPDUs in this application, and can also be used as a device for receiving PPDUs in this application.
  • the transceiver 1805 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 1805 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • Computer program or software code or instructions 1804 may be stored in memory 1802, which may also be referred to as firmware.
  • the processor 1801 can control the MAC layer and the PHY layer by running the computer program or software code or instruction 1803 therein, or by calling the computer program or software code or instruction 1804 stored in the memory 1802, so as to implement the following aspects of the present application.
  • the processor 1801 may be a central processing unit (central processing unit, CPU), and the memory 1802 may be, for example, a read-only memory (read-only memory, ROM) or a random access memory (random access memory, RAM).
  • the processor 1801 and transceiver 1805 described in this application can be implemented in integrated circuit (integrated circuit, IC), analog IC, radio frequency integrated circuit RFIC, mixed signal IC, application specific integrated circuit (application specific integrated circuit, ASIC), printed circuit board (printed circuit board, PCB), electronic equipment, etc.
  • integrated circuit integrated circuit, IC
  • analog IC analog IC
  • radio frequency integrated circuit RFIC mixed signal IC
  • application specific integrated circuit application specific integrated circuit
  • PCB printed circuit board
  • electronic equipment etc.
  • the above-mentioned communication device 1800 may further include an antenna 1806, and each module/unit included in the communication device 1800 is only an example for illustration, and this application is not limited thereto.
  • the communication device 1800 described in the above embodiments may be an AP MLD or a STA MLD, but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may not be limited by FIG. 18 .
  • AP MLD includes one or more APs
  • STA MLD includes one or more STAs.
  • the AP can be multi-antenna/multi-radio or single-antenna/single-radio, and the antenna/radio is used to send/receive data packets.
  • the antenna or the radio frequency part of the AP may be separated from the main part of the AP to form a remote layout structure.
  • the STA may be a single antenna/radio frequency, or a multi-antenna/multi-radio frequency, and may be a device with more than two antennas, and the antenna/radio frequency is used to send/receive data packets.
  • the antenna or radio frequency part of the STA may be separated from the main part of the STA, and form a remote layout structure.
  • a communication device referred to in this application may also be a stand-alone device or may be part of a larger device.
  • the implementation form of the communication device may be:
  • An independent integrated circuit IC, or a chip, or a chip system or subsystem (2) a set of one or more ICs, optionally, the set of ICs can also include storage for storing data and instructions Components; (3) modules that can be embedded in other devices; (4) receivers, smart terminals, wireless devices, handsets, mobile units, vehicle-mounted devices, cloud devices, artificial intelligence devices, etc.; (5) others, etc. .
  • the chip shown in FIG. 19 includes a processor 1901 and an interface 1902 .
  • the number of processors 1901 may be one or more, and the number of interfaces 1902 may be more than one.
  • the interface 1902 is used for receiving and sending signals.
  • the chip or chip system may include a memory 1903 .
  • the memory 1903 is used to store necessary program instructions and data of the chip or chip system.
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored, and when the computer-readable storage medium is executed by a computer, the functions of the above-mentioned method embodiments are realized.
  • the embodiment of the present application also provides a computer program product, which implements the functions of the foregoing method embodiments when executed by a computer.
  • the embodiment of the present application also provides a chip system, the chip system includes a processor and an interface, and is used to support the communication transmission device to implement the functions involved in the access point or station in the above method embodiment, for example, determine or process the At least one of the data and information involved.
  • the chip system further includes a memory, and the memory is used to store necessary information and data of the aforementioned communication device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • An embodiment of the present application provides a functional entity, and the functional entity is used to implement the above communication method.
  • An embodiment of the present application provides a communication system, where the communication system includes a first multi-link device and a second multi-link device that implement the above communication method.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or integrated. to another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separated, and a component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple network units. Part or all of the units may be selected according to actual needs to achieve the purpose of the implementation of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are realized in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical implementation of the present application is essentially or the part that contributes to the prior art or the part of the technical implementation can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods in various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
  • modules/units in the device of the embodiment of the present application can be combined, divided and deleted according to actual needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置,用以降低多链路设备的功耗。该方法中,第一多链路设备通过第一站点接收来自第二多链路设备的第一物理层协议数据单元PPDU,第一PPDU用于唤醒第一多链路设备的第二站点,第二站点处于节能模式下的休眠状态。第一多链路设备可以根据第一PPDU,确定是否唤醒第二站点。本申请应用于支持IEEE 802.11ax下一代WiFi协议,如802.11be,或EHT等802.11系列协议的无线局域网系统。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2021年08月31日提交中国专利局、申请号为202111013775.9、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种通信方法及装置。
背景技术
根据电气与电子工程师协会(institute of electrical and electronics engineers,IEEE)802.11be草案(Draft)规定,组播数据帧在接入点(access point,AP)多链路设备(multi-link device,MLD)的所有链路上都需要复制发送,而组播管理帧则在AP MLD的相应链路上独立发送。
但这种发送组播数据帧和组播管理帧的方式,需要AP MLD的所有链路都定期醒来来接收缓存在AP侧的组播数据帧和组播管理帧,不利于AP MLD节能。
发明内容
本申请提供一种通信方法及装置,用以降低多链路设备的功耗。
第一方面,提供一种通信方法,该方法可以通过第一多链路设备和第二多链路设备的交互来实现。
第一多链路设备通过第一站点接收来自第二多链路设备的第一物理层协议数据单元(physical protocol data unit,PPDU),第一PPDU用于唤醒第一多链路设备的第二站点,第二站点处于节能模式下的休眠状态。第一多链路设备可以根据第一PPDU,确定是否唤醒第二站点。
其中第一多链路设备包括第一站点和第二站点,第二多链路设备可以包括第一站点和第二站点,第一多链路设备与第二多链路设备之间可以通过第一站点和第二站点进行通信,由于第一多链路设备的第二站点处于休眠状态,因此在该方法中,第二多链路设备可以通过第一站点指示该第二站点唤醒,使得第二站点在需要唤醒时进行唤醒,在不需要时处于休眠状态,从而降低多链路设备的功耗,更利于多链路设备的节能。
第一多链路设备可以为AP MLD或非接入点多链路设备(non-AP MLD),第二多链路设备可以为AP MLD或non-AP MLD。示例的,non-AP MLD可以为站点(station,STA)MLD。
第一站点和第二站点可以为AP或STA。例如,多链路设备为AP MLD时,多链路设备包括的第一站点和第二站点可以为AP,多链路设备为non-AP MLD时,多链路设备包括的第一站点和第二站点可以为STA。此处的多链路设备可以为第一多链路设备或第二多链路设备。第一站点可以为一个或多个,第二站点可以为一个或多个。
站点(包括第一站点和/或第二站点)的功率管理模式包括活跃模式和节能模式,在节能模式下,站点的功率状态还可以包括唤醒状态和休眠状态。其中站点在休眠状态下不传输消息包,站点以及站点所属的多链路设备的功耗更低。在该方法中,第二站点处于休眠状态,第一站点可以处于活跃模式,或者处于节能模式下的唤醒状态。
在一种可能的设计中,第一多链路设备的第一站点与第二多链路设备的第一站点对应,第一多链路设备的第二站点与第二多链路设备的第二站点对应。
第一PPDU可以来自第二多链路设备的第一站点,对应的第一多链路设备的第一站点接收该第一PPDU。
可选的,第一多链路设备的第一站点可以通过第一链路与第二多链路设备的第一站点连接,第一多链路设备的第二站点可以通过第二链路与第二多链路设备的第二站点连接。也就是说,(第一多链路设备和/或第二多链路设备的)第一站点为第一链路对应的站点,(第一多链路设备和/或第二多链路设备的)第二站点为第二链路对应的站点。
一种可能的场景下,第一链路为主链路,第一链路对应的第一站点为主站点(例如主AP),第二链路为非主链路,第二链路对应的第二站点为非主链路(例如非主AP)。
在一种可能的设计中,第一多链路设备和第二多链路设备可以通过协商的方式,请求唤醒第二站点,例如定义新的唤醒请求帧,来唤醒第二站点。
示例的,第一PPDU包括唤醒请求帧,唤醒请求帧用于唤醒第二站点。唤醒请求帧包括以下一种或多种信息:缓存数据对应的接入类型、缓存数据对应的业务标识、缓存数据的大小、第二站点的标识、时延敏感业务的最小剩余时延。可以理解的是,唤醒请求帧中的一种或多种信息,可以携带在一个字段,或者携带在多个字段中,并且携带一种或多种信息的字段的先后顺序不做限定。
对应的,还可以定义新的唤醒响应帧,来告知第二多链路设备是否唤醒了第二站点,或者是否同意第二站点被唤醒。
例如,第一多链路设备根据第一PPDU,确定是否唤醒第二站点时,可以向第二多链路设备发送第四PPDU,第四PPDU包括唤醒响应帧,唤醒响应帧用于告知是否同意第二站点被唤醒。可选的唤醒响应帧包括第二站点的标识、是否同意被唤醒的指示信息。
在一种可能的设计中,第二多链路设备可以通过告知的方式,告知唤醒第二站点。
示例的,第一PPDU包括告知信息,告知信息用于唤醒第二站点。
在一种可能的设计中,第二多链路设备可以探测请求帧,请求唤醒第二站点。
示例的,第一PPDU包括探测请求帧,探测请求帧携带唤醒请求元素,唤醒请求元素用于请求唤醒第二站点。
在该方法中,第二多链路设备可以通过多种方式唤醒第二站点,可以提高通信的灵活性。
在一种可能的设计中,第一多链路设备可以向第二多链路设备发送第八PPDU,第八PPDU用于通知第二站点的唤醒条件。
例如唤醒条件可以为缓存数据的大小达到第一数据量,或者时延敏感业务的最小剩余时延达到第一时延等,此处对唤醒条件不做限制。
在一种可能的设计中,第一多链路设备还可以通过第一链路发送第三PPDU,第三PPDU包括第一信标帧,第一信标帧用于指示第二链路对应的第一多链路设备的第二站点在节能模式下的功率状态,功率状态包括唤醒状态或休眠状态。
示例的,第一信标帧可以包括第二字段和第三字段,第二字段用于指示第二站点的功率管理模式为节能模式,第三字段用于指示第二站点的功率状态。可选的,第二字段可以为功率管理模式(power management)字段,第三字段可以为功率状态(power status)字段。
在该设计中,第一多链路设备可以对其包括的站点的功率管理模式和功率状态进行调整。
例如,第一多链路设备根据第一PPDU确定唤醒第一多链路设备的第二站点时,第三PPDU中的第一信标帧的功率管理模式可以为活跃模式,或者第一信标帧的功率管理模式可以为节能模式且功率状态为唤醒状态。
又如,在第二接入点处于节能模式下的唤醒状态,且第二链路的空闲信道评估(clear channel assessment,CCA)空闲时长达到第一时长时,第一多链路设备将第二站点的功率状态调整为休眠状态。第三PPDU中的第一信标帧的功率管理模式可以为节能模式且功率状态为休眠状态。
在一种可能的设计中,第一多链路设备还可以告知第二多链路设备其是否为软件接入点多链路设备(soft AP MLD),具体实现过程可以参见第三方面和第四方面,此处不做赘述。
在一种可能的设计中,第一多链路设备还可以向第二多链路设备发送第二站点的信息,具体实现过程可以参见第五方面和第六方面,此处不做赘述。
在一种可能的设计中,第一多链路设备还可以通过第一链路发送第二链路的组播帧,具体实现过程可以参见第七方面和第八方面,此处不做赘述。
在一种可能的设计中,第一多链路设备还可以通过第一链路向第二多链路设备指示第二站点不可用,具体实现过程可以参见第九方面和第十方面,此处不做赘述。
第二方面,提供一种通信方法,该方法可以通过第一多链路设备和第二多链路设备的交互来实现。
第二多链路设备确定第一PPDU,该第一PPDU用于唤醒第一多链路设备的第二站点,其中第二站点处于节能模式下的休眠状态。第二多链路设备可以通过第一站点向第一多链路设备发送第一PPDU。
在一种可能的设计中,第一多链路设备的第一站点与第二多链路设备的第一站点对应,第一多链路设备的第二站点与第二多链路设备的第二站点对应。
在一种可能的设计中,第一PPDU包括唤醒请求帧,唤醒请求帧用于唤醒第二站点,唤醒请求帧包括以下一种或多种信息:缓存数据对应的接入类型、缓存数据对应的业务标识、缓存数据的大小、第二站点的标识、时延敏感业务的最小剩余时延;或者
第一PPDU包括告知信息,告知信息用于唤醒第二站点;或者
第一PPDU包括探测请求帧,探测请求帧携带唤醒请求元素,唤醒请求元素用于请求唤醒第二站点。
在一种可能的设计中,第二多链路设备还可以接收来自第一多链路设备的第四PPDU,第四PPDU包括唤醒响应帧,唤醒响应帧用于告知是否同意第二站点被唤醒。
可选的,唤醒响应帧包括第二站点的标识、是否同意被唤醒的指示信息。
在一种可能的设计中,第一站点为第一链路对应的站点,第二站点为第二链路对应的站点。
第三方面,提供一种通信方法,该方法可以通过第一多链路设备和第二多链路设备的交互来实现。
第一多链路设备发送第二PPDU,第二多链路设备接收,第二PPDU包括多链路元素(Multi-link element)。
其中多链路元素的第二字段用于指示第一多链路设备是否为soft AP MLD。
示例的,第二字段可以为预留字段,该预留字段可以用于指示第一多链路设备是否为soft AP MLD。其中预留字段是可以用于未来多种选择的未定义的字段,即预留字段指示的信息未定义。在该方法中,可以采用预留字段中的部分比特或全部比特指示第一多链路设备是否为soft AP MLD。
又一示例的,第二字段可以为同时收发频率间隔字段,该同时收发频率间隔字段用于指示第一多链路设备是否为soft AP MLD。
可选的,多链路元素可以携带在信标帧中。第一多链路设备通过信标帧中携带Multi-link element来指示其是否为soft AP MLD,不依赖于探测响应帧中的非同时收发链路对(NSTR Link Pair)信息进行指示,可以让第二多链路设备通过信标帧就可以知道第一多链路设备是否Soft AP MLD。
第四方面,提供一种通信方法,该方法可以通过第一多链路设备和第二多链路设备的交互来实现。
第二多链路设备接收第二PPDU,第二PPDU包括多链路元素。
其中多链路元素的第一字段用于指示第一多链路设备是否为soft AP MLD。
示例的,第一字段可以为预留字段,或者可以为同时收发频率间隔字段。
第五方面,提供一种通信方法,该方法可以通过第一多链路设备和第二多链路设备的交互来实现。
第一多链路设备在第二链路上广播第六PPDU,第六PPDU包括第二站点的信息;或者
第一多链路设备在第一链路上发送第七PPDU,第七PPDU包括第二信标帧,第二信标帧包括第四字段,第四字段携带第二站点的信息。
例如,第四字段可以为第二链路的元素字段。
在该方法中,第一多链路设备可以传输第二站点的信息,可以提高通信的准确性。
可选的第二站点的信息包括以下一种或多种:时间戳、信标间隔、定时同步功能偏移。
第六方面,提供一种通信方法,该方法可以通过第一多链路设备和第二多链路设备的交互来实现。
第二多链路设备在第二链路上接收第六PPDU,第六PPDU包括第二站点的信息;或者
第二多链路设备在第一链路上接收第七PPDU,第七PPDU包括第二信标帧,第二信标帧包括第四字段,第四字段携带第二站点的信息;
例如,第四字段可以为第二链路的元素字段。
可选的,第二站点的信息包括以下一种或多种:时间戳、信标间隔、定时同步功能偏移。
第七方面,提供一种通信方法,该方法可以通过第一多链路设备和第二多链路设备的交互来实现。
第一多链路设备还可以通过第一链路发送第五PPDU,第五PPDU包括第二链路的标识信息,以及第二链路对应的组播帧。
组播帧可以为组播数据帧或组播管理帧,该方法主要以组播帧为组播管理帧进行说明。
在该方法中,第一多链路设备通过第一链路辅助第二链路发送组播帧,第二链路对应的第二站点可以始终处于休眠模式,而不需要调整为活跃模式,可以进一步降低第一多链路设备的功耗。
可选的,第五PPDU包括地址3字段,地址3字段携带第二链路的标识信息;或者第五PPDU包括帧体,帧体携带第二链路的标识信息。
当第二链路的组播管理帧通过第一链路发送时,需要使用第一链路分配的包编号(packet number,PN)加密。
第八方面,提供一种通信方法,该方法可以通过第一多链路设备和第二多链路设备的交互来实现。
第二多链路设备通过第一链路接收第五PPDU,第五PPDU包括第二链路的标识信息,以及第二链路对应的组播帧。
可选的,第五PPDU包括地址3字段,地址3字段携带第二链路的标识信息;或者第五PPDU包括帧体,帧体携带第二链路的标识信息。
第九方面,提供一种通信方法,该方法可以通过第一多链路设备和第二多链路设备的交互来实现。
第一多链路设备通过第一链路向第二多链路设备发送第九PPDU,第九PPDU用于指示第二站点不可用。
其中不可用具体可以是不允许在第一多链路设备的第二站点所工作的信道上发起探测和关联操作,也可以是第一多链路设备的第二站点即将进行信道切换,在此期间禁止在第二链路上进行帧交换,还可以是第一多链路设备的第二站点调度了一段静默期或者受限的(restricted)目标唤醒时间(target wakeup time,TWT),在此期间,禁止legacy STA进行传输。
第十方面,提供一种通信方法,该方法可以通过第一多链路设备和第二多链路设备的交互来实现。
第二多链路设备通过第一链路接收第九PPDU,第九PPDU用于指示第二站点不可用。
第十一方面,提供一种通信装置,该通信装置可以为上述第一多链路设备或第二多链路设备,或者为设置在第一多链路设备或第二多链路设备中的芯片。该通信装置可以实现上述任一方面中的方法。
当该通信装置为第一多链路设备时,可选的,该通信装置包括处理单元和收发单元。
例如,收发单元,用于通过第一站点接收来自第二多链路设备的第一物理层协议数据单元PPDU,第一PPDU用于唤醒通信装置的第二站点,其中通信装置包括第一站点和第二站点,第二站点处于节能模式下的休眠状态;
处理单元,用于根据第一PPDU,确定是否唤醒第二站点。
在一种可能的设计中,收发单元,还用于发送第二PPDU,第二PPDU包括多链路元素;
多链路元素的预留字段用于指示通信装置是否为软件接入点多链路设备soft AP MLD; 或者多链路元素的同时收发频率间隔字段用于指示通信装置是否为soft AP MLD。
在一种可能的设计中,第一PPDU包括唤醒请求帧,唤醒请求帧用于唤醒第二站点,唤醒请求帧包括以下一种或多种信息:缓存数据对应的接入类型、缓存数据对应的业务标识、缓存数据的大小、第二站点的标识、时延敏感业务的最小剩余时延;或者
第一PPDU包括告知信息,告知信息用于唤醒第二站点;或者
第一PPDU包括探测请求帧,探测请求帧携带唤醒请求元素,唤醒请求元素用于请求唤醒第二站点。
在一种可能的设计中,第一站点为第一链路对应的站点,第二站点为第二链路对应的站点。
在一种可能的设计中,收发单元,还用于通过第一链路向第二站点发送第三PPDU,第三PPDU包括第一信标帧,第一信标帧用于指示第二链路对应的第二站点在节能模式下的功率状态,功率状态包括唤醒状态或休眠状态。
在一种可能的设计中,第一信标帧包括功率管理模式字段和功率状态字段,功率管理模式字段用于指示第二站点的功率管理模式为节能模式,功率状态字段用于指示第二站点的功率状态。
在一种可能的设计中,处理单元,具体用于通过收发单元向第二多链路设备发送第四PPDU,第四PPDU包括唤醒响应帧,唤醒响应帧用于告知是否同意第二站点被唤醒。
在一种可能的设计中,唤醒响应帧包括第二站点的标识、是否同意被唤醒的指示信息。
在一种可能的设计中,收发单元,还用于在第二链路上广播第六PPDU,第六PPDU包括第二站点的信息;或者在第一链路上发送第七PPDU,第七PPDU包括第二信标帧,第二信标帧包括第二链路的元素字段,第二链路的元素字段携带第二站点的信息;
第二站点的信息包括以下一种或多种:时间戳、信标间隔、定时同步功能偏移。
当该通信装置为第二多链路设备时,可选的,该通信装置包括处理单元和收发单元。
例如,处理单元,用于确定第一物理层协议数据单元PPDU,第一PPDU用于唤醒第一多链路设备的第二站点,其中第二站点处于节能模式下的休眠状态;
收发单元,用于通过第一站点向第一多链路设备发送第一PPDU。
在一种可能的设计中,收发单元,还用于接收第二PPDU,第二PPDU包括多链路元素;
多链路元素的预留字段用于指示第一多链路设备是否为软件接入点多链路设备soft AP MLD;或者多链路元素的同时收发频率间隔字段用于指示第一多链路设备是否为soft AP MLD。
在一种可能的设计中,第一PPDU包括唤醒请求帧,唤醒请求帧用于唤醒第二站点,唤醒请求帧包括以下一种或多种信息:缓存数据对应的接入类型、缓存数据对应的业务标识、缓存数据的大小、第二站点的标识、时延敏感业务的最小剩余时延;或者
第一PPDU包括告知信息,告知信息用于唤醒第二站点;或者
第一PPDU包括探测请求帧,探测请求帧携带唤醒请求元素,唤醒请求元素用于请求唤醒第二站点。
在一种可能的设计中,收发单元,还用于接收来自第一多链路设备的第四PPDU,第四PPDU包括唤醒响应帧,唤醒响应帧用于告知是否同意第二站点被唤醒。
在一种可能的设计中,唤醒响应帧包括第二站点的标识、是否同意被唤醒的指示信息。
在一种可能的设计中,第一站点为第一链路对应的站点,第二站点为第二链路对应的站点。
在一种可能的设计中,收发单元,还用于在第二链路上接收第六PPDU,第六PPDU包括第二站点的信息;或者在第一链路上接收第七PPDU,第七PPDU包括第二信标帧,第二信标帧包括第二链路的元素字段,第二链路的元素字段携带第二站点的信息;
第二站点的信息包括以下一种或多种:时间戳、信标间隔、定时同步功能偏移。
第十二方面,提供一种通信装置,包括处理器,用于执行上述任一方面中的方法。
可选地,该装置还包括存储器,该存储器中存储有指令,处理器执行存储器中的指令使得上述任一方面中的方法被执行。
可选的,该存储器位于装置内或装置外。
可选地,该装置还包括接口电路,处理器与接口电路耦合。
可选地,该处理器为一个或多个,该存储器为一个或多个。
可选地,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
该通信装置可以是一个芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第十三方面,提供一种处理器,包括:输入电路、输出电路和处理电路。该处理电路用于通过该输入电路接收信号,并通过该输出电路发射信号,使得该处理器执行上述任一方面中的方法。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第十四方面,提供一种计算机程序产品,该计算机程序产品包括:计算机程序(也可以称为代码,或指令),当该计算机程序被运行时,使得计算机执行上述任一方面中的方法。
第十五方面,提供一种计算机可读介质,该计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述任一方面中的方法。
第十六方面,提供一种芯片系统,该芯片系统包括处理器和接口,用于支持通信装置实现上述任一方面中所涉及的功能。在一种可能的设计中,芯片系统还包括存储器,存储器,用于保存前述通信装置的必要的信息和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十七方面,提供一种功能实体,该功能实体用于实现上述任一方面中的方法。
第十八方面,提供一种通信系统,包括上述任一方面的第一多链路设备和第二链路设 备。
其中,第二至第十八方面中任一种设计方式所带来的技术效果可参见上述第一方面所带来的技术效果,此处不再赘述。
值得说明的是,上述第一方面至第十方面所提供的通信方法可以单独使用,也可以结合使用,在此不做限制。
附图说明
图1为一种多链路设备的示意图;
图2为一种精简的邻居汇报元素(Reduced Neighbor Report Element)的帧结构示意图;
图3为一种目标信标传输时间(Target beacon transmission Time,TBTT)信息字段的帧结构示意图;
图4为一种基本服务集参数(BSS Parameter)字段的帧结构示意图;
图5为一种通信系统的结构示意图;
图6为一种多链路元素(Multi-link Element)的帧结构示意图;
图7为一种控制帧的帧结构示意图;
图8为一种帧控制(Frame Control)字段的帧结构示意图;
图9为一种静默元素(Quiet Element)的帧格式示意图;
图10为一种通信系统的结构示意图;
图11为本申请实施例提供的一种通信过程的示意图;
图12为本申请实施例提供的一种唤醒请求帧的帧结构示意图;
图13为本申请实施例提供的一种唤醒响应帧的帧结构示意图;
图14为本申请实施例提供的一种调整站点的功率状态的示意图;
图15为本申请实施例提供的一种调整站点的功率状态的示意图;
图16为本申请实施例提供的一种多链路元素的帧结构示意图;
图17为本申请实施例提供的一种通信装置的结构示意图;
图18为本申请实施例提供的一种通信装置的结构示意图;
图19为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请中的“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本申请中所涉及的至少一个是指一个或多个,多个是指两个或两个以上。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
另外,本申请中,除特殊说明外,各个实施例之间相同或相似的部分可以互相参考。在本申请中各个实施例、以及各实施例中的各个实施方式/实施方法/实现方法中,如果没有特殊说明以及逻辑冲突,不同的实施例之间、以及各实施例中的各个实施方式/实施方法 /实现方法之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例、以及各实施例中的各个实施方式/实施方法/实现方法中的技术特征根据其内在的逻辑关系可以组合形成新的实施例、实施方式、实施方法、或实现方法。以下的本申请实施方式并不构成对本申请保护范围的限定。
本申请实施例的技术方案可以应用于各种通信系统,例如:无线局域网(wireless local area network,WLAN)通信系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、第五代(5th generation,5G)系统、新无线(new radio,NR)、未来的第六代(6th generation,6G)系统等。
以下作为示例性说明,仅以WLAN系统为例,描述本申请实施例的应用场景以及本申请实施例的方法。
具体而言,本申请实施例可以应用于WLAN系统,并且本申请实施例可以适用于WLAN所采用的IEEE 802.11系列协议中的任意一种协议,比如802.11a/b/g、802.11n、802.11ac、802.11ax、802.11be、802.11bf以及未来的802.11协议。本申请提供的方法可以由无线通信系统中的通信设备或通信设备中的芯片或处理器实现,相应地,该通信设备支持采用IEEE 802.11系列协议进行通信。
虽然本申请实施例主要以部署IEEE 802.11的网络为例进行说明,本领域技术人员容易理解,本申请涉及的各个方面可以扩展到采用各种标准或协议的其它网络,例如,BLUETOOTH(蓝牙),高性能无线LAN(high performance radio LAN,HIPERLAN)(一种与IEEE 802.11标准类似的无线标准,主要在欧洲使用)以及广域网(WAN)、无线局域网(WLAN)、个人区域网(personal area network,PAN)或其它现在已知或以后发展起来的网络。因此,无论使用的覆盖范围和无线接入协议如何,本申请提供的各种方面可以适用于任何合适的无线网络。
另外,本申请中的通信系统仅是举例说明,适用本申请的通信系统不限于此,在此统一说明,以下不再赘述。
以下对本申请实施例的部分用语进行解释说明,以便于本领域技术人员理解。
1)多链路设备(multi-link device,MLD),具有多个射频模块,分别工作在不同频段或信道或链路(link)上。
MLD可以为AP MLD或non-AP MLD,例如non-AP MLD可以是站点(station,STA)MLD。
MLD包括一个或多个归属(affiliated)站点,其中站点可以是AP或STA。每个affiliated站点有各自的媒体存取控制(media access control,MAC)地址(address),如图1所示,STA1有自己的低层(low)MAC地址为link address 1,STA2有自己的low MAC地址为link address 2。MLD还有一个高层(high)MAC地址为MLD MAC address。
2)软件接入点多链路设备(soft access point MLD,soft AP MLD),可以利用软件在non-AP MLD上实现AP MLD的功能。
当MLD内两个射频模块所工作的信道间距足够大时,两个射频模块对应的链路可以独立运行,相互之间不干扰。如果MLD中两条链路之间支持在一条链路上发送数据的同时,另一条链路上接收数据,该两条链路之间支持同时收发(simultaneous transmit and receive,STR),否则该两条链路之间非同时收发(non-STR,NSTR)。在802.11be协议中 规定,软件接入点多链路设备(soft access point MLD,soft AP MLD)不支持STR,其余类型AP MLD支持STR。
在一个场景下,可以将手机设置soft AP MLD,允许其他设备进行关联。对于soft AP MLD中的NSTR链路对,可以将其中一条链路定义为主链路(Primary Link),另一条链路定义为非主链路(Non-primary Link)。与主链路对应的AP称为主AP(Primary AP),与非主链路对应的AP称为非主AP(Non-primary AP)。其中非主AP不允许发送信标(Beacon)帧以及回复探测响应(Probe Response)帧,这样可以避免遗留STA(Legacy STA)与非主AP相关联。
non-AP MLD可以通过主链路携带非主链路的相关信息,辅助实现非主链路的操作。
3)AP发现过程,STA可以通过主动扫描或被动扫描的扫描形式发现AP的存在,从而与AP进行关联建立连接。简单理解,STA与AP进行关联建立连接的目的是建立用于STA与AP之间通信的一条或多条链路。
在被动扫描过程中,STA可以接收信道上AP发送的管理帧(如Beacon帧或广播的Probe Response帧)。例如STA可以在不同信道上跳转搜索AP发送的Beacon帧,一旦STA通过Beacon帧获取到AP的管理信息,STA就可以进一步通过探测请求(Probe Request)帧或Probe Response帧与AP进行通信,以在AP中获取到其他信息。
在主动扫描过程中,STA可以在没监听到Beacon帧的情况下,主动广播一个Probe Request帧,AP收到Probe Request帧后如果在满足一定条件(本申请实施例对该条件不做限制)时,可以发起随机信道接入回复Probe Response帧。
为了辅助STA进行快速扫描,AP可以在Beacon帧或Probe Response帧中携带精简的邻居汇报元素(Reduced Neighbor Report Element),来汇报相应AP的相关信息,这样STA在扫描时,可以获取到邻居AP的信息,选择合适的AP进行关联,可以避免STA不停地扫描信道,从而减少STA的扫描时间。802.11be规定,某个Affiliated AP需要通过Reduced Neighbor Report Element携带隶属于同一个AP MLD的其他Affiliated AP的相关信息。其中对于STA来说,邻居AP指该STA的邻居AP,对于AP来说,邻居AP指该AP的邻居AP。
4)Reduced Neighbor Report Element的格式可以如图2所示,Reduced Neighbor Report Element包括元素标识符(Element ID)字段、长度(Length)字段、一个或多个邻居AP信息(Neighbor AP info)字段。Neighbor AP info字段包括目标信标传输时间(Target beacon transmission Time,TBTT)信息头(TBTT info Header)字段、操作类别(Operating Class)字段、信道编号(Channel Number)字段、一个或多个TBTT信息集合(TBTT info set)字段。TBTT info Header字段包括TBTT信息字段类型(TBTT info Field Type)字段、过滤的邻居AP(Filtered neighbor AP)字段、保留(Reserved)字段、TBTT信息个数(
TBTT info count)字段、TBTT信息长度(TBTT info Length)字段。TBTT info set字段包括一个或多个TBTT信息字段(TBTT info field)。
Operating Class字段用于指示汇报的AP的工作信道所属的操作类别。其中,0为Operating Class字段的保留值。
Channel Number字段用于指示汇报的AP的工作信道所对应的信道编号。其中,0为信道编号的保留值。STA端通过Operating Class字段和Channel Number字段可以确定AP的信道在频带上的具体位置。
TBTT info Field Type字段用于指示TBTT info的类型。该字段与TBTT info Length字段一起指示TBTT info field的格式。其中,1,2和3为TBTT info Field Type字段的保留值。
Filtered neighbor AP字段用于指示该Neighbor AP info字段中所携带的所有基本服务集(basic service set,BSS)的服务集标识符(service set identifier,SSID)是否与Probe Request帧中的SSID相匹配。
Reserved字段占1比特(bit)。
TBTT info count字段用于指示TBTT info set字段中含有TBTT info field的个数。
TBTT info Length字段用于指示每个TBTT info field的长度。TBTT info field在不同长度下携带的信息格式可以如下表1所示。
表1
Figure PCTCN2022115403-appb-000001
TBTT info field的一种可能的格式如图3所示,包括邻居AP的目标信道传输时间偏置(Neighbor AP TBTT offset)字段、基本服务集标识符(BSS identifier,BSSID)字段、Short SSID字段、BSS参数(Parameter)字段、20MHZ PSD字段和MLD Parameters字段。
Neighbor AP TBTT offset字段占用1字节(octets),用于指示该汇报的BSS与发送该报告(Report)的BSS的Beacon帧发送时间的偏置,单位为时间单元(time unit,TU),即1024微秒或者1毫秒。其中,该字段为254表示offset为254Tus或者更高,该字段为 255表示不知道具体的offset。
BSSID字段为可选字段,占用0或6字节,用于指示该汇报的BSS所对应的BSSID。
Short SSID字段为可选字段,占用0或4字节,用于指示该BSS所属的SSID。
BSS Parameter字段为可选字段,占用0或1字节,用于指示该BSS的相关参数,如图4所示,BSS Parameter字段可以包括隧道透传(On-channel Tunneling,OCT)推荐(recommended)、相同(Same)SSID字段、多(Multiple)BSSID字段、发送(Transmitted)BSSID字段、与2.4/5GHz AP共位置且为扩展服务集成员(Member Of ESS With 2.4/5GHz Co-Located AP)字段、主动探测响应活跃(Unsolicited Probe Response Active)字段、共位置AP(Co-located AP)字段和Reserved字段。其中OCT recommended字段位于位置Bit0,用于指示该汇报的BSS期望通过OCT机制与其交换管理类型的媒体协议数据单元(media protocol data unit,MPDU)。Same SSID字段位于位置Bit1,用于指示该汇报的AP和传输该Element的AP是否具有相同的SSID。Multiple BSSID字段位于位置Bit2,用于指示该汇报的AP是不是属于某个multiple BSSID集合的一部分。Transmitted BSSID字段位于位置Bit3,如果该汇报的AP是属于某个multiple BSSID集合的一部分,则进一步指示该汇报的AP是Transmitted BSSID还是非发送(non-transmitted)BSSID。Member Of ESS With 2.4/5GHz Co-Located AP字段位于位置Bit4,用于指示该汇报的AP是否与一个2.4/5GHz AP共位置(即是不是6GHz only的AP)且是一个扩展服务集的成员。Unsolicited Probe Response Active字段位于位置Bit5,用于指示该汇报的AP是否开启主动探测响应。Co-located AP字段位于位置Bit6,用于指示该汇报的AP与传输该Report的AP是否共位置。Reserved字段位于位置Bit7。
20MHZ PSD字段为可选字段,占用0或1字节,用于指示最大的发射功率谱密度。
MLD Parameters字段占用0或3字节,用于指示MLD的相关参数。该字段可以包括以下子字段:多链路设备标识符(MLD ID)字段、链路标识符(Link ID)字段、BSS参数更新计数器(BSS Parameters Change Count)字段和Reserved字段。MLD ID字段占用8bits,用于指示AP MLD的标识符。Link ID字段占用4bits,用于指示汇报的AP所对应的链路标识符。BSS Parameters Change Count字段占用8bits,当汇报的AP发生一个关键更新,该字段的取值增大,否则该字段的取值保持不变。Reserved字段占用4bits。
5)802.11be多链路聚合技术:MLD可以实现多链路聚合技术。AP MLD和STA MLD可以通过建立多条链路,聚合更大的宽带,共享多链路上的MAC层,灵活的传输消息包,可以实现同时将同一业务的消息包发送给同一个站点。
non-AP MLD可以通过一条链路进行多链路建立,来实现与AP MLD的多条链路同时建立关联。其中交换多链路关联请求/响应(Multi-link Association Request/Response)帧的链路称为传输链路(Transmitted Link),其他链路称为非传输链路(Non-transmitted Link)。Multi-link Association Request/Response帧可以携带多条链路的信息,实现同时关联多条链路。
如图5所示,non-AP MLD在链路1上发送关联请求Association Request帧,Association Request帧携带链路1的STA侧信息,还携带链路2的STA侧信息,其中链路1为Transmitted Link,链路2为Non-transmitted Link。AP MLD在链路1上回复Association Response帧,Association Response帧携带链路1侧的AP侧信息,还携带链路2的AP侧信息。
non-AP MLD的STA1和STA2分别与AP MLD的AP1和AP2建立关联。Association  Request帧可以携带多链路元素(Multi-link Element),该Multi-link Element用于承载MLD的信息以及MLD中站点的信息。
如图6所示,一种可能的Multi-link Element中包括元素标识(Element ID)字段、Length字段、元素标识扩展(Element ID Extension)字段、多链路控制(Multi-Link Control)字段、公共信息(Common Info)字段和链路信息(Link Info)字段,其中Common Info字段携带MLD中多个站点的共同的信息,以及MLD本身的信息。Link Info字段携带MLD中每条链路上的站点的信息,包括一个或多个各站点配置(Per-STA Profile)字段。Per-STA Profile字段包括子元素标识(Subelement ID)字段、Length字段和数据(Data)字段。Data字段包括站点控制(STA Control)字段、站点信息(STA Info)字段和站点配置(STA Profile)字段。STA Profile字段包括一个或多个字段(field)、一个或多个元素(Element)和非继承元素(Non-Inheritance Element)字段。Multi-Link Control字段携带多链路元素的类型(如现在协议定义的基本变体(Basic variant)和探测请求变体(Probe Request variant)两种变体或其他类型),以及存在比特位图(Presence Bitmap)字段,用于指示哪些字段不出现。
6)一种可能的帧格式如图7所示,包括帧控制(Frame Control)字段、持续时间(Duration)字段、地址(Address)1字段、Address2字段、Address3字段、序列控制(Sequence Control)字段、服务质量控制(quality of service Control,QoS Control)字段、高吞吐量(high throughput,HT)Control字段、帧体(Frame Body)字段和帧校验序列(frame check sequence,FCS)字段。
Frame Control的帧格式如图8所示,包括协议版本(Protocol Version)字段、类型(Type)字段、子类型(Subtype)字段、去往分布式系统(To distribution system,To DS)字段、来自DS(From DS)字段、更多分片(More Fragment)字段、重试(Retry)字段、功率管理(Power Management)字段、更多数据(More Data)字段、受保护帧(Protected Frame)字段、HT Control字段。
Address1字段用于接收地址(receiver address,RA),Address2用于指示发送地址(transmitter address,TA),Address3用于指示与接收端管理的AP MLD的地址,或者与接收端关联的AP(指AP MLD中的AP)的地址。对于管理帧,Address3可以用于帧过滤。例如接收端可以Address3可以确定该帧是否属于BSS,如果不属于,则丢弃该帧。
7)一种可能的静默元素(Quiet Element)的帧格式如图9所示,包括Element ID字段、Length字段、静默数(Quiet Count)字段、静默周期(Quiet Period)字段、静默持续时间(Quiet Duration)字段和静默偏移(Quiet Offset)字段。其中Quiet Count字段用于指示距离下一个静默期间隔的TBTT数,Quiet Period字段用于指示两个相邻的静默期间隔的TBTT数,Quiet Duration字段用于指示静默期的持续时长,Quiet Offset字段用于指示静默期距离最近的Beacon帧的偏移量。
为便于理解本申请实施例,首先以图10中示出的通信系统为例详细说明适用于本申请实施例的通信系统。该通信系统包括一个或多个AP MLD和一个或多个non-AP MLD。其中AP MLD包括AP1和AP2,non-AP MLD包括STA1和STA2。可选的,该通信系统还可以包括一个或多个Legacy STA。该通信系统中MLD工作的频段可以为sub 1吉赫兹(GHz),2.4GHz,5GHz,6GHz以及高频60GHz的全部或者一部分,此处不做限制。
考虑到Soft AP MLD通常为电池供电,因此节能很重要。此外,对于Regular AP MLD, 随着人们对电磁辐射对人体的影响越来越重视,如何减少电磁辐射就成为人们的关注焦点之一。
基于此,本申请实施例提供一种通信方法。下面以第一多链路设备和第二多链路设备进行交互为例,对本申请实施例提供的通信方法进行展开说明。在本申请实施例中,第一多链路设备包括第一站点和第二站点,第二多链路设备包括第一站点和第二站点,第一多链路设备和第二多链路设备可以通过第一站点和第二站点进行通信。第二站点处于节能模式下的休眠状态,第二多链路设备可以通过第一站点指示第一多链路设备的第二站点唤醒,这样可以使得第二站点在需要唤醒时进行唤醒,在不需要时处于休眠状态,可以降低多链路设备的功耗,更利于多链路设备的节能,并且多链路设备中处于唤醒状态的站点越少,对人体的电磁辐射就越低,因此在一定程度上还可以减少电磁辐射。
可以理解的,本申请实施例中,第一多链路设备和/或第二多链路设备可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。
需要说明的是,本申请下述实施例中各个设备之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。以及帧结构中各字段的顺序、名称、所携带的信息或所表示的含义也仅为一个示例,本申请实施例对此不作具体限定。
图11为本申请实施例提供的一种可能的通信方法,包括如下步骤:
S1101:第二多链路设备确定第一物理层协议数据单元(physical layer protocol data unit,PPDU)。
其中第一PPDU用于唤醒第一多链路设备的第二站点。
第一多链路设备包括第一站点和第二站点,对应的第二多链路设备也可以包括第一站点和第二站点,第一多链路设备和第二多链路设备通过第一站点和第二站点通信,也就是说第一多链路设备的第一站点和第二多链路设备的第一站点对应,第一多链路设备的第二站点和第二多链路设备的第二站点对应。第一站点和第二站点的功率管理(Power Management,PM)模式可以包括活跃(Active)模式或节能(Power Save)模式,在节能模式下,又包括唤醒状态(Awake)或休眠状态(Doze)两种功率状态(Power State)。
第一站点和第二站点可以为一个或多个。第一站点对应第一链路,第二站点对应第二链路。第一多链路设备可以为AP MLD或non-AP MLD,第二多链路设备可以为AP MLD或non-AP MLD。在本申请实施例中,主要以第一多链路设备为AP MLD,第二多链路设备为non-AP MLD,第一多链路设备的第一站点为Primary AP(AP1),第一多链路设备的第二站点为non-Primary AP(AP2),第二多链路设备的第一站点为STA1,第二多链路设备的第二站点为STA2,第一链路为主链路,第二链路为非主链路为例进行说明。
其中在该实施例中,第一多链路设备的第二站点处于节能模式下的休眠状态。第一PPDU可以通过如下一种或多种方式,来唤醒第一多链路设备的第二站点。
方式1:第一多链路设备和第二多链路设备可以通过协商的方式,来唤醒第一多链路设备的第二站点。第一多链路设备向第二多链路设备发送唤醒请求(Wakeup Request)帧,相应的,第二多链路设备向第一多链路设备回复唤醒响应(Wakeup Response)帧,Wakeup Request/Response帧在下文中进行描述。
第一PPDU包括唤醒请求帧,该唤醒请求帧用于唤醒第一多链路设备的第二站点。
该唤醒请求帧包括以下一种或多种信息:缓存数据对应的接入类型、缓存数据对应的业务标识、缓存数据的大小、第二站点对应的链路标识、时延敏感业务的最小剩余时延等信息。可以理解的是,上述一种或多种信息可以携带在一个字段或携带在多个字段中,携带上述一种或多种信息的字段之间顺序在此不做限制。其中第二站点与第二链路对应,第二站点的标识也可以通过第二链路的标识表示。可选的,唤醒请求帧可以为新定义的帧结构。
唤醒请求帧一种可能的帧结构如图12所示,包括类别(Category)字段、功能(Action)字段、对话令牌(Dialog Token)字段和唤醒请求元素(Wakeup Request Element)字段。Wakeup Request Element字段包括上述一种或多种信息,例如包括Elements ID字段、Length字段、业务标识(Traffic Identifier,TID)Bitmap字段、最高的缓冲区大小(Buffer Size High)字段、总的缓冲区大小(Buffer Size All)、剩余时延(Remaining Delay)字段和Link ID字段。
TID Bitmap字段用于指示哪些TID有数据要发送,例如1表示对应TID有数据要发送,0表示没有数据需要发送。
缓存数据的大小通过Buffer Size High字段和Buffer Size All字段表示,Buffer Size High表示最高优先级的TID的缓冲区大小,Buffer Size All表示所有TID总的缓冲区大小。时延敏感业务的最小剩余时延通过Remaining Delay字段表示,超过该最小剩余时延,发送端需要丢弃缓存数据。第二站点的标识通过Link ID表示,用于指示请求唤醒的目标链路或目标站点。
其中如果第一多链路设备包括两条以上的链路和站点,唤醒请求帧可以用来唤醒多个第二站点或多条链路。该唤醒请求帧可以携带多条链路的Link ID。
方式2:第一多链路设备可以通过告知的方式,告知第二多链路设备唤醒第一多链路设备的第二站点。
第一PPDU包括告知信息,该告知信息用于唤醒第一多链路设备的第二站点。例如可以通过A-control携带该告知信息,例如采用16比特的Link bitmap来指示唤醒的对应链路的对端站点。如果第一多链路设备为non-AP MLD,第二多链路设备为AP MLD,那么第一多链路设备的第二站点(处于节能模式下休眠状态)在收到唤醒请求后醒来并发送PS-Poll帧来通知第二多链路设备的第二站点。当第二多链路设备的第二站点将More Data置为0时,第一多链路设备的第二站点(处于节能模式)才从唤醒状态切换休眠状态。
方式3:第一多链路设备可以通过探测请求(Probe Request)帧,请求唤醒第一多链路设备的第二站点。
第一PPDU包括探测请求帧,该探测请求帧携带唤醒请求元素,该唤醒请求元素用于请求唤醒第一多链路设备的第二站点。唤醒请求元素可以参见方式1,相似之处不做限制。
在该方式2和3中可选的,第二多链路设备可以向第一多链路设备回复第二站点是否被唤醒,或者是否同意被唤醒的信息。
可选的,第二多链路设备可以保存有第一多链路设备的第二站点的唤醒条件。例如第一多链路设备向第二多链路设备广播/发送第八PPDU,第八PPDU用于通知第一多链路设备的第二站点的唤醒条件。例如第八PPDU可以包括业务标识链路通知(TID-to-link Announcement)帧,该TID-to-link Announcement帧用于通知第一多链路设备的第二站点 的唤醒条件,即第二多链路设备在什么情况下可以唤醒第一多链路设备的第二站点。该TID-to-link Announcement帧可以包括第二站点的标识、允许在第二链路上传输的TID bitmap,或者时延敏感业务的最小剩余时延信息。
在以下可能的情况下,第二多链路设备可以获知第二站点处于节能模式下的休眠状态。第二多链路设备针对休眠状态下的第二站点,在达到唤醒条件下触发第二站点的唤醒。
一种情况下,第二多链路设备可以根据TID-to-link Announcement帧包括的第二站点的标识,确定该标识对应的第二站点处于节能模式下的休眠状态。
另一种情况下,第一多链路设备的第二站点可以在调整为休眠状态之前,告知第二多链路设备其即将处于休眠状态。例如第二站点可以通过图8所示帧结构中的功率管理字段进行告知。
可选的,第二多链路设备还可以向第一终端发送第二指示信息,第二指示信息用于指示是否存在需要发送给第一多链路设备的第二站点的数据。例如,第二指示信息可以携带在图7所示的QoS Control字段的服务周期结束(end of service period,EOSP)字段,或携带在图8所示的More Data字段,或携带在第一PPDU中。
S1102:第二多链路设备通过第一站点向第一多链路设备发送第一PPDU。对应的第一多链路设备通过第一站点接收第一PPDU。
在该实施例中,由于第一多链路设备的第二站点处于休眠状态,因此第二多链路设备可以通过处于Active模式的第一站点发送第一PPDU,以请求唤醒第二站点。
S1103:第一多链路设备根据第一PPDU,确定是否唤醒第二站点。
例如第一多链路设备根据第一PPDU,可以确定是否同意唤醒第二站点,如果同意唤醒,则表示确定唤醒第二站点,将第二站点由休眠状态调整为唤醒状态,或调整功率管理模式为活跃模式,如果不同意唤醒,则表示确定不唤醒第二站点,保持第二站点为休眠状态。
若S1101中第二多链路设备采用方式1发送的第一PPDU,则在该S1103中,第一多链路设备可以向第二多链路设备发送第四PPDU,第四PPDU包括唤醒响应(Wakeup Response)帧,Wakeup Response帧用于告知是否同意第二站点被唤醒。唤醒响应帧可以包括第二站点的信息和/或是否同意被唤醒的指示信息。
唤醒响应帧一种可能的帧结构如图13所示,包括Category字段、Action字段、Dialog Token字段和唤醒响应元素(Wakeup Response Element)字段。Wakeup Response Element字段包括Elements ID字段、Length字段、Link ID字段和状态编码(Status Code)字段。Link ID字段表示第二站点对应的链路标识信息。Status Code字段表示是否同意第二站点被唤醒。
其中如果第一多链路设备包括两条以上的链路和站点,唤醒请求帧用于请求唤醒多个第二站点或多条链路时,该唤醒响应帧可以携带多条链路的Link ID以及每条链路对应的Status Code。
其中第一多链路设备可以通过第一链路来指示其第二站点当前的功率管理模式以及功率状态。例如第一多链路设备在第一链路发送第三PPDU,第三PPDU包括第一信标帧。第一信标帧可以用于指示第二链路对应的第二站点的功率管理模式,此时第一信标帧可以指示第二站点的功率管理模式为活跃模式或节能模式。或者第一信标帧可以用于指示第二站点在节能模式下的功率状态,此时第一信标帧可以指示第二站点在节能模式下的功率状 态为唤醒状态或休眠状态。示例的,第一信标帧包括功率管理模式字段(例如PM=1表示节能模式,PM=0表示活跃模式)和功率状态字段,功率管理模式字段用于指示第二站点的功率管理模式为活跃模式或节能模式,功率状态字段用于指示第二站点的功率状态为唤醒状态或休眠状态。其中如果功率管理模式字段在节能模式下才进一步指示功率状态字段。
在一种实现方式中,第一信标帧的Multi-link Element中的Per-STA Profile字段携带功率管理模式字段和功率状态字段。
另一种实现方式中,第一信标帧中的减少的邻居报告(reduced neighbor report,RNR)元素字段携带功率管理模式字段和功率状态字段。
在第二站点处于节能模式下的唤醒状态时,若第二站点的空闲时长达到第一时长时,第一多链路设备可以将第二站点的功率管理模式调整为节能模式,以及将第二站点的功率状态调整为休眠状态。通过设置第一时长可以避免第二多链路设备频繁通过主链路唤醒第二站点。其中第一时长的阈值任意,例如第一时长大于或等于媒体同步恢复(medium sync recovery)所需时长。
例如图14所示,第二多链路设备向第一多链路设备的主AP发送唤醒请求,第一多链路设备通过主AP发送针对唤醒请求的确认(ACK)消息,然后发送唤醒响应,第二多链路设备通过主AP发送针对唤醒响应的ACK消息。第一多链路设备进行非主AP的唤醒,在经过唤醒时延T1之后,非主AP处于唤醒状态。或者当主AP同意唤醒非主AP时,其只有在非主AP被唤醒之后,再回唤醒响应帧;当主AP拒绝唤醒非主AP时,则不需要此限制,可以立即回唤醒响应帧。在非主AP的空闲时长达到T2时,第一多链路设备的非主AP处于休眠状态。
由于AP的功率节能可能是可选支持的,因此可以通过在Multi-link element中的MLD Capabilities field中利用保留比特来指示AP MLD和non-AP MLD是否支持上述所说的AP MLD的节能操作。
在一种可能的场景下,第一多链路设备没有关联的第二多链路设备,第一多链路设备的第一站点可以通过第三信标帧携带静默元素(Quiet Element)字段,例如图9所示。该Quiet Element字段用于指示一段静默时间,并将功率管理模式设置为节能模式。参见图15所示,该静默时间从发送第三信标帧之后的T3时长后开始,持续到下一个TBTT。在静默期内,第一站点处于节能模式下的休眠状态。在第一站点传输第三信标帧之后的T3时间段内,如果第一多链路设备通过第一站点接收到来自第二多链路设备的关联请求并成功关联,第一站点立刻将节能模式切换到活跃模式,且第一站点在后续发送的第三信标帧中停止携带Quiet Element。
可选的,第一链路上的静默时间(quiet interval)开始时或之后,还可以将RNR元素中的Channel Number字段设置为0。
在本申请实施例中,第一多链路设备的第二站点处于节能模式下的休眠状态,第二多链路设备可以通过第一站点唤醒第一多链路设备的第二站点,这样可以使得第一多链路设备的第二站点在需要唤醒时进行唤醒,在不需要唤醒时处于休眠状态,更利于多链路设备的节能。
目前non-AP MLD只能通过Probe Response帧中携带的Multi-link element中的Per-STA Profile中是否携带非同时收发链路对(NSTR Link Pair)信息来判断该AP MLD是否是soft  AP MLD,non-AP MLD无法通过Beacon帧来获知该AP MLD是否是Soft AP MLD。基于此,本申请实施例提供了如下方式来指示第一多链路设备是否为Soft AP MLD。
第一多链路设备可以发送第二PPDU,第二PPDU包括多链路元素。
多链路元素中的第一字段可以用于指示第一多链路设备是否为Soft AP MLD。其中第一字段可以为多链路元素中的任意字段,例如可以为预留字段或同时收发频率间隔字段等。
方式1:多链路元素的预留字段可以用于指示第一多链路设备是否为Soft AP MLD。
例如多链路元素(Multi-link Element)中的MLD能力子字段(MLD Capability subfield)中的预留(Reserved)字段指示。
一种可能的多链路元素的帧结构可以如图16所示,包括最大同时链路数(Maximum Number Of Simultaneous Links)字段、单响应调度支持(Single Response Scheduling Support,SRS Support)字段、业务标识和链路映射协商是否支持(TID-To-Link Map-ping Negotiation Sup-ported)字段、同时收发频率间隔字段(Frequency Separation For STR)字段和Reserved字段。Reserved字段是可以用于未来多种选择的未定义的字段,在该方式中,可以通过Reserved字段中部分比特或全部比特来指示第一多链路设备是否为Soft AP MLD。例如Reserved字段中的1个比特为0表示非soft AP MLD,如常规(Regular)AP MLD,Reserved字段中的1个比特为1表示soft AP MLD。
如果Reserved字段中部分比特(如第一比特)用于指示第一多链路设备是否为Soft AP MLD,则Reserved字段中其余比特(如除第一比特外的其余比特)也可以用于指示其他信息,此处不做限制。
可以理解的是,其他帧或元素中也可能包括Reserved字段,不同帧或元素中的Reserved字段所指示的信息可以相同或不同。该实施例中仅以多链路元素的预留字段用于指示第一多链路设备是否为Soft AP MLD进行说明,而不对其他帧或元素中的Reserved字段所指示的信息构成限定。
方式2:多链路元素的同时收发频率间隔字段可以用于指示第一多链路设备是否为Soft AP MLD。
由于soft AP MLD不支持STR,因此可以将同时收发频率间隔字段设置为一个特定的数值来表示发送多链路元素的AP MLD为soft AP MLD。该数值任意,在此不做限定,例如将同时收发频率间隔字段设置为31来表示发送多链路元素的AP MLD为soft AP MLD。
可选的,Multi-link Element可以携带在Beacon帧中。
在该实施例中,第二多链路设备可以获知第一多链路设备是否为Soft AP MLD。该实施例可以与上述实施例结合使用,例如第一多链路设备可以在S1101之前发送第二PPDU,来告知第二多链路设备其是否为Soft AP MLD。
目前802.11be Draft中规定Soft AP MLD不能在非主链路上发送Beacon帧,但是非主链路对应的非主AP的信息需要携带在Beacon帧中,这就导致非主AP的相关信息无法被传输到其它多链路设备中。基于此,本申请实施例中提供了如下方式来保证非主AP的相关信息能够被传输。在本申请实施例中以第一多链路设备的第二站点为非主AP进行说明。
方式1:第一多链路设备在第二链路上广播第六PPDU,第六PPDU包括第二站点的信息。
在该方式中可以在非主链路上定义新的广播帧(即第六PPDU),通过该新的广播帧携 带第二站点的信息。其中该新的广播帧可以由第一多链路设备周期性的进行广播。
方式2:第一多链路设备在第一链路上发送第七PPDU,第七PPDU包括第二信标帧,第二信标帧包括第四字段,第四字段携带第二站点的信息。
在该方式中可以在主链路上发送Beacon帧,由Beacon携带非主AP的相关信息。
示例的,该第四字段可以为第二链路的元素字段。第二链路的元素字段可以为非主链路的Per-STA Profile子元素或RNR Element等元素字段等。
例如第二信标帧中的Multi-link Element来携带非主链路的Per-STA Profile子元素,非主链路的Per-STA Profile子元素来携带第二站点的信息。
又如第二信标帧中的Multi-link element携带RNR Element,RNR Element作为第二链路的元素字段,携带第二站点的信息。
示例的,第二站点的信息包括以下一种或多种:时间戳(TimeStamp)、信标间隔(Beacon Interval)、定时同步功能偏移(timing synchronization function Offset,TSF Offset)。
可选的,信标间隔可以不显示指示,例如协议可以规定非主AP的信标间隔与主AP的信标间隔相同。
若第二站点的信息包括信标间隔,在非主链路(即第二链路)上就可以发送携带有时间信息(例如,以TBTT为单位)的管理帧,这样第二多链路设备在非主链路上接收到时间信息后,可以正确计算该时间信息,尤其是在管理帧没有携带主AP(假设主AP作为非主AP的参考AP,两者信标间隔相同)的信息时,第二多链路设备可以正确计算出时间信息。
在该实施例中,第一多链路设备可以在主链路或非主链路设备发送非主AP的信息,可以提高通信的准确性。
根据802.11be草案(Draft)规定,组播数据帧在AP MLD的所有链路上都需要复制发送,而组播管理帧则在AP MLD的相应链路上独立发送。但这种发送组播数据帧和组播管理帧(以下称组播数据帧和组播管理帧为组播帧)的方式,需要AP MLD的所有链路都定期醒来来接收缓存在AP侧的组播帧,不利于AP MLD节能。因此本申请实施例中,通过主链路辅助非链路发送组播管理帧,这样非主链路对应的非主AP就可以始终处于节能模式,而不需要调整为活跃模式,从而降低AP MLD的功耗。在该实施例中主要以组播帧包括的组播管理帧进行说明,对于组播帧包括的组播数据帧也可以采用该实施例提供的方法,相似之处不做赘述。
在该实施例中,第一多链路设备通过第一链路发送第五PPDU,第五PPDU包括第二链路的标识信息,以及第二链路对应的组播管理帧。其中组播帧包括组播数据帧和/或组播管理帧。
具体而言,组播数据帧可以仅在第一链路(指主链路)上发送,第二链路(指非主链路)不需要发送组播数据帧。而组播管理帧可以通过携带第二链路的标识信息来由第一链路进行转发,而第二链路上也可以不发送组播管理帧。
一种实现方式中,第五PPDU包括地址3字段,地址3字段携带第二链路的标识信息。可选的,如果组播管理帧是针对第二多链路设备本身,而非针对某条链路或某个站点,地址3字段可以设置第二多链路设备本身的MLD MAC Address,也可以设置为第二多链路设备中的第二链路所对应的BSSID。
当第二链路的组播管理帧通过第一链路发送时,需要使用第一链路分配的PN进行加密。
值得说明的是,该实施例要求第二链路上不存在Legacy STA的关联。
另一种实现方式中,第五PPDU包括帧体,帧体携带第二链路的标识信息。
其中地址3字段和帧体可以携带在如图7所示的帧结构中。
一种可能的情况下,第一多链路设备在第一链路上向第二多链路设备发送第九PPDU,第九PPDU用于指示第一多链路设备的第二站点不可用,例如第九PPDU可以包括第三指示信息,该第三指示信息用于指示第一多链路设备的第二站点不可用。不可用具体可以是不允许在第一多链路设备的第二站点所工作的信道上发起关联流程,也可以是第一多链路设备的第二站点即将进行信道切换,在此期间禁止在第二链路上进行帧交换,还可以是第一多链路设备的第二站点调度了一段静默期或者restricted TWT,在此期间,禁止legacy STA进行传输。
第二多链路设备不允许在第一多链路设备的第二站点工作的信道上发起关联流程可以是,不允许第二多链路设备在第一多链路设备的第二站点工作的信道上,发送Beacon帧、回复Probe Response帧以及回复Association Response帧。
一种实现方式中,第九PPDU可以包括信道切换状态字段(Channel Switch Mode field),Channel Switch Mode field用于指示第一多链路设备的第二站点工作的信道的切换模式。当Channel Switch Mode field设置为1时,表示在信道切换完成前禁止在第一多链路设备的第二站点工作的信道上发起传输,进而将Channel Number设置为0,以表示第一多链路设备的第二站点不可用。
例如,假设AP MLD有3个affiliated AP,分别为工作在2.4GHz的affiliated AP 1(对应link1),工作在5GHz的Affiliated AP 2(对应link2)和工作在6GHz的Affiliated AP 3(对应link3)。当业务负载比较低时,可以将Affiliated AP 1和Affiliated AP 3设置为不允许第二多链路设备直接在其工作的信道上发起与其关联,具体通过禁止对应的Affiliated AP 1和Affiliated AP 3在其所在的信道上发送Beacon帧,回Probe Response帧以及回Association Response帧。第二多链路设备只允许通过Affiliated AP 2所在的信道上发起关联。Non-AP MLD只可以通过在link 2上发起多链路关联请求以建立多条链路,且link 2必须被AP MLD接受。这样,AP MLD在负载比较低时,可以将Affiliated AP 1和Affiliated AP 3设置为节能模式,当non-AP MLD有需要时才唤醒Affiliated AP 1和Affiliated AP 3用于传输,可以进一步降低第一多链路设备的功耗。另外,link 1和link 3不受legacy STA传输的干扰,有利于低时延业务的传输。
目前802.11be Draft规定,affiliated AP需要在Beacon帧中通过RNR element来汇报同属于同一个AP MLD的在其他affiliated AP的相关信息。对应上面例子,也就是affiliated AP2需要在link 2的Beacon帧中通过RNR element来指示Affiliated AP 1和Affiliated AP 3的相关信息。对于Affiliated AP 1和Affiliated AP 3这种不允许Pre-极高吞吐量(extremely high throughput,EHT)STA和单链路(single-link)的EHT STA关联的AP,可以在RNR element中增加新的指示,以避免客户端切换到Affiliated AP 1和Affiliated AP 3所在的信道上发起关联。
第二多链路设备不允许在第一多链路设备的第二站点工作的信道上发起关联流程可以是表示第一多链路设备的第二站点不可用或者不可获得(unavailable),或者不允许第二多链路设备切换到对应Reported AP所工作的信道上直接发起探测和关联操作。其中第一多链路设备的第二站点不可用或者不可获得的原因可以是第一多链路设备的站点准备进行信道切换或者第一多链路设备的第二站点调度了一段静默期或者restricted TWT。
例如第三指示信息可以携带在RNR Element中,该RNR Element携带在第九PPDU中。
第一多链路设备可以通过如下一种或多种方式,向第二多链路设备发送第三指示信息。
方式1:RNR Element中的Channel Number字段设置为一个保留值。保留值的取值任意,例如为0或者255。当legacy STA读到Channel Number字段为0或者255时,因为legacy STA读不懂字段,因此无法获得相应的信道信息,从而不会尝试跳转到相应信道上发送Probe Request和Association Request。当EHT STA和non-AP MLD读到Channel Number字段为0或者255时,则不会尝试跳转到相应信道上发送Probe Request和Association Request。
方式2:将TBTT info Field Type字段设置为一个保留值。保留值的取值任意,例如取值为1。当legacy STA读到TBTT info Field Type字段为1时,因为legacy STA读不懂,所以可能不会尝试跳转到相应信道上发送Probe Request和Association Request。当EHT STA和non-AP MLD读到TBTT info Field Type字段为1时,则不会尝试跳转到相应信道上发送Probe Request和Association Request。再例如,将TBTT info Field Type字段为1且TBTT info Field Length字段设置为3,因为legacy STA读不懂,所以可能不会尝试跳转到相应信道上发送Probe Request和Association Request。而对于EHT STA和non-AP MLD,当第一多链路设备为soft AP MLD时,且相应的TBTT info Field Type字段为1且TBTT info Field Length字段设置为3时,则该链路为非主链路,不允许第二多链路设备切换到对应Reported AP所工作的信道上直接发起探测和关联操作。
方式3:利用MLD参数字段中的一个预留比特来指示。预留比特的取值任意,例如取值为1。当预留比特设置为1时,表示不允许EHT STA或者non-AP MLD在相应的信道上发送Probe Request和Association Request。当EHT STA和non-AP MLD读到该预留比特为1时,则不会尝试跳转到相应信道上发送Probe Request和Association Request。
方式4:将方式1和方式2结合,或者将方式2和方式3结合。例如方式1中的Channel Number字段或者方式2中的TBTT info Field Type字段设置为保留值用于告诉legacy STA,方式3中的预留比特用于告知EHT STA和Non-AP MLD。
上述各实施例可以单独使用,也可以结合使用。
可以理解的是,以上各个实施例中,由第一多链路设备实现的方法和/或步骤,也可以由可用于第一多链路设备的部件(例如芯片或者电路)实现,由第二多链路设备实现的方法和/或步骤,也可以由可用于第二多链路设备的部件实现。
上述本申请提供的实施例中,分别从第一多链路设备和第二多链路设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,第一多链路设备和第二多链路设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
下面结合附图介绍本申请实施例中用来实现上述方法的通信装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图17为本申请实施例提供的通信装置的一种可能的表现形式,该通信装置1700可用于实现上述方法实施例中由第一多链路设备或第二多链路设备实现的功能或者步骤。该通信装置可以包括可选的处理单元1701和收发单元1702。可选的,还可以包括存储单元,该存储单元可以用于存储指令(代码或者程序)和/或数据。处理单元1701和收发单元1702可以与该存储单元耦合,例如,处理单元1701可以读取存储单元中的指令(代码或者程序)和/或数据,以实现相应的方法。上述各个单元可以独立设置,也可以部分或者全部集成。
在一些可能的实施方式中,通信装置1700能够对应实现上述方法实施例中第一多链路设备的行为和功能。例如通信装置1700可以为AP MLD,也可以为应用于AP MLD中的部件(例如芯片或者电路)。收发单元1702可以用于执行上述实施例中由第一多链路设备所执行的全部接收或发送操作。例如图11所示的实施例中的S1102,和/或用于支持本文所描述的技术的其它过程;其中,处理单元1701用于执行如上述实施例中由第一多链路设备所执行的除了收发操作之外的全部操作,例如图11所示的实施例的S1103中根据第一PPDU确定是否唤醒第二站点,和/或用于支持本文所描述的技术的其它过程。
例如收发单元1702,用于通过第一站点接收来自第二多链路设备的第一PPDU,第一PPDU用于唤醒通信装置的第二站点,其中通信装置包括第一站点和第二站点,第二站点处于节能模式下的休眠状态;
处理单元1701,用于根据第一PPDU,确定是否唤醒第二站点。
在一种可选的方式中,收发单元1702,还用于发送第二PPDU,第二PPDU包括多链路元素;
多链路元素的第一字段用于指示通信装置是否为软件接入点多链路设备soft AP MLD。
第一字段可以为预留字段或者同时收发频率间隔字段。
在一种可选的方式中,第一PPDU包括唤醒请求帧,唤醒请求帧用于唤醒第二站点,唤醒请求帧包括以下一种或多种信息:缓存数据对应的接入类型、缓存数据对应的业务标识、缓存数据的大小、第二站点的标识、时延敏感业务的最小剩余时延;或者
第一PPDU包括告知信息,告知信息用于唤醒第二站点;或者
第一PPDU包括探测请求帧,探测请求帧携带唤醒请求元素,唤醒请求元素用于请求唤醒第二站点。
在一种可选的方式中,第一站点为第一链路对应的站点,第二站点为第二链路对应的站点。
在一种可选的方式中,收发单元1702,还用于通过第一链路向第二站点发送第三PPDU,第三PPDU包括第一信标帧,第一信标帧用于指示第二链路对应的第二站点在节能模式下的功率状态,功率状态包括唤醒状态或休眠状态。
在一种可选的方式中,第一信标帧包括第二字段和第三字段,第二字段用于指示第二站点的功率管理模式为节能模式,第三字段用于指示第二站点的功率状态。
例如第二字段可以为功率管理模式字段,第三字段可以为功率状态字段。
在一种可选的方式中,处理单元1701,具体用于通过收发单元向第二多链路设备发送第四PPDU,第四PPDU包括唤醒响应帧,唤醒响应帧用于告知是否同意第二站点被唤醒。
在一种可选的方式中,唤醒响应帧包括第二站点的标识、是否同意被唤醒的指示信息。
在一种可选的方式中,收发单元1702,还用于在第二链路上广播第六PPDU,第六PPDU包括第二站点的信息;或者在第一链路上发送第七PPDU,第七PPDU包括第二信标帧,第二信标帧包括第四字段,第四字段携带第二站点的信息。
第四字段可以为第二链路的元素字段。
第二站点的信息包括以下一种或多种:时间戳、信标间隔、定时同步功能偏移。
在一些可能的实施方式中,通信装置1700能够对应实现上述方法实施例中第二多链路设备的行为和功能。例如通信装置1700可以为STA MLD,也可以为应用于STA MLD中的部件(例如芯片或者电路)。收发单元1702可以用于执行上述实施例中由第二多链路设备所执行的全部接收或发送操作。例如图11所示的实施例中的S1102,和/或用于支持本文所描述的技术的其它过程;其中,处理单元1701用于执行上述实施例中由第二通信装置所执行的除了收发操作之外的全部操作,例如生成图11所示的实施例的S1101中的第一PPDU,和/或用于支持本文所描述的技术的其它过程。
例如,处理单元1701,用于确定第一物理层协议数据单元PPDU,第一PPDU用于唤醒第一多链路设备的第二站点,其中第二站点处于节能模式下的休眠状态;
收发单元1702,用于通过第一站点向第一多链路设备发送第一PPDU。
在一种可选的方式中,收发单元1702,还用于接收第二PPDU,第二PPDU包括多链路元素;
多链路元素的第一字段用于指示第一多链路设备是否为软件接入点多链路设备soft AP MLD。
在一种可选的方式中,第一PPDU包括唤醒请求帧,唤醒请求帧用于唤醒第二站点,唤醒请求帧包括以下一种或多种信息:缓存数据对应的接入类型、缓存数据对应的业务标识、缓存数据的大小、第二站点的标识、时延敏感业务的最小剩余时延;或者
第一PPDU包括告知信息,告知信息用于唤醒第二站点;或者
第一PPDU包括探测请求帧,探测请求帧携带唤醒请求元素,唤醒请求元素用于请求唤醒第二站点。
在一种可选的方式中,收发单元1702,还用于接收来自第一多链路设备的第四PPDU,第四PPDU包括唤醒响应帧,唤醒响应帧用于告知是否同意第二站点被唤醒。
在一种可选的方式中,唤醒响应帧包括第二站点的标识、是否同意被唤醒的指示信息。
在一种可选的方式中,第一站点为第一链路对应的站点,第二站点为第二链路对应的站点。
在一种可选的方式中,收发单元1702,还用于在第二链路上接收第六PPDU,第六PPDU包括第二站点的信息;或者在第一链路上接收第七PPDU,第七PPDU包括第二信标帧,第二信标帧包括第四字段,第四字段携带第二站点的信息;
第二站点的信息包括以下一种或多种:时间戳、信标间隔、定时同步功能偏移。
需要说明的是,该通信装置1700可用于执行上述方法实施例,具体步骤、说明和相应有益效果可参考前述方法实施例,在此不再赘述。
应理解,本申请实施例中的处理单元1701可以由处理器/处理电路或处理器/处理电路相关电路组件实现,收发单元1702可以由收发器/收发接口或收发器/收发接口相关电路组件或者通信接口实现。
如图18为本申请实施例提供的通信装置的一种可能的表现形式。该通信装置1800可包括:处理器1801、收发器1805,可选的还包括存储器1802。该通信装置可以作为本申请中PPDU的生成和发送装置,也可以作为本申请中PPDU的接收装置。
收发器1805可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1805可以包括接收机和发射机,接收机可以称为接收机或接收电路等,用于实现接收功能;发射机可以称为发送机或发送电路等,用于实现发送功能。
存储器1802中可存储计算机程序或软件代码或指令1804,该计算机程序或软件代码或指令1804还可称为固件。处理器1801可通过运行其中的计算机程序或软件代码或指令1803,或通过调用存储器1802中存储的计算机程序或软件代码或指令1804,对MAC层和PHY层进行控制,以实现本申请下述各实施例提供的PPDU的传输方法。其中,处理器1801可以为中央处理器(central processing unit,CPU),存储器1802例如可以为只读存储器(read-only memory,ROM),或为随机存取存储器(random access memory,RAM)。
本申请中描述的处理器1801和收发器1805可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。
上述通信装置1800还可以包括天线1806,该通信装置1800所包括的各模块/单元仅为示例说明,本申请不对此进行限制。
如前,以上实施例描述中的通信装置1800可以是AP MLD或者STA MLD,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图18的限制。AP MLD包括一个或多个AP,STA MLD包括一个或多个STA。
AP可以是多天线/多射频的,也可以是单天线/单射频的,该天线/射频用于发送/接收数据分组。一种实现中,AP的天线或射频部分可以与AP的主体部分分离,呈拉远布局的结构。一种实现中,STA可以是单个天线/射频的,也可以是多天线/多射频的,并且可以是两个以上天线的设备,该天线/射频用于发送/接收数据分组。一种实现中,STA的天线或射频部分可以与STA的主体部分分离,呈拉远布局的结构。
本申请中涉及的通信装置还可以是独立的设备或者可以是较大设备的一部分。例如通信装置的实现形式可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,指令的存储部件;(3)可嵌入在其他设备内的模块;(4)接收机、智能终端、无线设备、手持机、移动单元、车载设备、云设备、人工智能设备等等;(5)其他等等。
对于通信装置的实现形式是芯片或芯片系统的情况,可参见图19所示的芯片的结构示意图。图19所示的芯片包括处理器1901和接口1902。其中,处理器1901的数量可以是一个或多个,接口1902的数量可以是多个。接口1902用于信号的接收和发送。可选的,该芯片或芯片系统可以包括存储器1903。存储器1903中用于保存芯片或芯片系统必要的程序指令和数据。
本申请实施例并且不限制权利要求书的保护范围和适用性。本领域技术人员可以在不脱离本申请实施例范围的情况下对本申请涉及的元件的功能和部署进行适应性更改,或酌情省略、替代或添加各种过程或组件。
本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机 可读存储介质被计算机执行时实现上述方法实施例的功能。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述方法实施例的功能。
本申请实施例还提供一种芯片系统,该芯片系统包括处理器和接口,用于支持通信传输设备实现上述方法实施例中接入点或站点所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,芯片系统还包括存储器,存储器,用于保存前述通信装置的必要的信息和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
本申请实施例提供了一种功能实体,该功能实体用于实现上述通信方法。
本申请实施例提供了一种通信系统,该通信系统包括实现上述通信方法的第一多链路设备和第二多链路设备。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术实现方式的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例实现方式的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术实现方式本质上或者说对现有技术做出贡献的部分或者该技术实现方式的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本申请实施例装置中的模块/单元可以根据实际需要进行合并、划分和删减。
以上,以上实施例仅用以说明本申请的技术实现方式,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术实现方式进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术实现方式的本质脱离本申请各实施例技术实现方式的范围。

Claims (38)

  1. 一种通信方法,其特征在于,包括:
    所述第一多链路设备通过第一站点接收来自第二多链路设备的第一物理层协议数据单元PPDU,所述第一PPDU用于唤醒所述第一多链路设备的第二站点,其中所述第一多链路设备包括所述第一站点和所述第二站点,所述第二站点处于节能模式下的休眠状态;
    所述第一多链路设备根据所述第一PPDU,确定是否唤醒所述第二站点。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一多链路设备发送第二PPDU,所述第二PPDU包括多链路元素;
    所述多链路元素的第一字段用于指示所述第一多链路设备是否为软件接入点多链路设备soft AP MLD。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一多链路设备的第一站点与所述第二多链路设备的第一站点对应,所述第一PPDU来自所述第二多链路设备的第一站点;
    所述第一多链路设备的第二站点与所述第二多链路设备的第二站点对应。
  4. 如权利要求1-3任一项所述的方法,其特征在于,
    所述第一PPDU包括唤醒请求帧,所述唤醒请求帧用于唤醒所述第二站点,所述唤醒请求帧包括以下一种或多种信息:缓存数据对应的接入类型、缓存数据对应的业务标识、缓存数据的大小、所述第二站点的标识、时延敏感业务的最小剩余时延;或者
    所述第一PPDU包括告知信息,所述告知信息用于唤醒所述第二站点;或者
    所述第一PPDU包括探测请求帧,所述探测请求帧携带唤醒请求元素,所述唤醒请求元素用于请求唤醒所述第二站点。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述第一站点为第一链路对应的站点,所述第二站点为第二链路对应的站点。
  6. 如权利要求5所述的方法,其特征在于,所述方法还包括:
    所述第一多链路设备通过所述第一链路向所述第二站点发送第三PPDU,所述第三PPDU包括第一信标帧,所述第一信标帧用于指示所述第二链路对应的所述第二站点在节能模式下的功率状态,所述功率状态包括唤醒状态或休眠状态。
  7. 如权利要求6所述的方法,其特征在于,所述第一信标帧包括第二字段和第三字段,所述第二字段用于指示所述第二站点的功率管理模式为节能模式,所述第三字段用于指示所述第二站点的功率状态。
  8. 如权利要求4所述的方法,其特征在于,所述第一多链路设备根据所述第一PPDU,确定是否唤醒所述第二站点,具体包括:
    所述第一多链路设备向所述第二多链路设备发送第四PPDU,所述第四PPDU包括唤醒响应帧,唤醒响应帧用于告知是否同意所述第二站点被唤醒。
  9. 如权利要求8所述的方法,其特征在于,所述唤醒响应帧包括所述第二站点的标识、是否同意被唤醒的指示信息。
  10. 如权利要求5-9任一项所述的方法,其特征在于,所述方法还包括:
    所述第一多链路设备通过所述第一链路发送第五PPDU,所述第五PPDU包括所述第二链路的标识信息,以及所述第二链路对应的组播帧。
  11. 如权利要求5-10任一项所述的方法,其特征在于,所述方法还包括:
    所述第一多链路设备在所述第二链路上广播第六PPDU,所述第六PPDU包括所述第二站点的信息;或者
    所述第一多链路设备在所述第一链路上发送第七PPDU,所述第七PPDU包括第二信标帧,所述第二信标帧包括第四字段,所述第四字段携带所述第二站点的信息;
    所述第二站点的信息包括以下一种或多种:时间戳、信标间隔、定时同步功能偏移。
  12. 一种通信方法,其特征在于,包括:
    第二多链路设备确定第一物理层协议数据单元PPDU,所述第一PPDU用于唤醒第一多链路设备的第二站点,其中所述第二站点处于节能模式下的休眠状态;
    所述第二多链路设备通过第一站点向所述第一多链路设备发送所述第一PPDU。
  13. 如权利要求12所述的方法,其特征在于,所述方法还包括:
    所述第二多链路设备接收第二PPDU,所述第二PPDU包括多链路元素;
    所述多链路元素的第一字段用于指示所述第一多链路设备是否为软件接入点多链路设备soft AP MLD。
  14. 如权利要求12或13所述的方法,其特征在于,所述第一多链路设备的第一站点与所述第二多链路设备的第一站点对应;
    所述第一多链路设备的第二站点与所述第二多链路设备的第二站点对应。
  15. 如权利要求12-14任一项所述的方法,其特征在于,
    所述第一PPDU包括唤醒请求帧,所述唤醒请求帧用于唤醒所述第二站点,所述唤醒请求帧包括以下一种或多种信息:缓存数据对应的接入类型、缓存数据对应的业务标识、缓存数据的大小、所述第二站点的标识、时延敏感业务的最小剩余时延;或者
    所述第一PPDU包括告知信息,所述告知信息用于唤醒所述第二站点;或者
    所述第一PPDU包括探测请求帧,所述探测请求帧携带唤醒请求元素,所述唤醒请求元素用于请求唤醒所述第二站点。
  16. 如权利要求12-15任一项所述的方法,其特征在于,所述方法还包括:
    所述第二多链路设备接收来自所述第一多链路设备的第四PPDU,所述第四PPDU包括唤醒响应帧,唤醒响应帧用于告知是否同意所述第二站点被唤醒。
  17. 如权利要求16所述的方法,其特征在于,所述唤醒响应帧包括所述第二站点的标识、是否同意被唤醒的指示信息。
  18. 如权利要求12-17任一项所述的方法,其特征在于,所述第一站点为第一链路对应的站点,所述第二站点为第二链路对应的站点。
  19. 如权利要求18所述的方法,其特征在于,所述方法还包括:
    所述第二多链路设备通过所述第一链路接收第五PPDU,所述第五PPDU包括所述第二链路的标识信息,以及所述第二链路对应的组播帧。
  20. 如权利要求18或19所述的方法,其特征在于,所述方法还包括:
    所述第二多链路设备在所述第二链路上接收第六PPDU,所述第六PPDU包括所述第二站点的信息;或者
    所述第二多链路设备在所述第一链路上接收第七PPDU,所述第七PPDU包括第二信标帧,所述第二信标帧包括所述第四字段,所述第四字段携带所述第二站点的信息;
    所述第二站点的信息包括以下一种或多种:时间戳、信标间隔、定时同步功能偏移。
  21. 一种通信装置,其特征在于,包括:
    收发单元,用于通过第一站点接收来自第二多链路设备的第一物理层协议数据单元PPDU,所述第一PPDU用于唤醒所述通信装置的第二站点,其中所述通信装置包括所述第一站点和所述第二站点,所述第二站点处于节能模式下的休眠状态;
    处理单元,用于根据所述第一PPDU,确定是否唤醒所述第二站点。
  22. 如权利要求21所述的装置,其特征在于,所述收发单元,还用于发送第二PPDU,所述第二PPDU包括多链路元素;
    所述多链路元素的第一字段用于指示所述通信装置是否为软件接入点多链路设备soft AP MLD。
  23. 如权利要求21或22所述的装置,其特征在于,
    所述第一PPDU包括唤醒请求帧,所述唤醒请求帧用于唤醒所述第二站点,所述唤醒请求帧包括以下一种或多种信息:缓存数据对应的接入类型、缓存数据对应的业务标识、缓存数据的大小、所述第二站点的标识、时延敏感业务的最小剩余时延;或者
    所述第一PPDU包括告知信息,所述告知信息用于唤醒所述第二站点;或者
    所述第一PPDU包括探测请求帧,所述探测请求帧携带唤醒请求元素,所述唤醒请求元素用于请求唤醒所述第二站点。
  24. 如权利要求21-23任一项所述的装置,其特征在于,所述第一站点为第一链路对应的站点,所述第二站点为第二链路对应的站点。
  25. 如权利要求24所述的装置,其特征在于,所述收发单元,还用于通过所述第一链路向所述第二站点发送第三PPDU,所述第三PPDU包括第一信标帧,所述第一信标帧用于指示所述第二链路对应的所述第二站点在节能模式下的功率状态,所述功率状态包括唤醒状态或休眠状态。
  26. 如权利要求25所述的装置,其特征在于,所述第一信标帧包括第二字段和第三字段,所述第二字段用于指示所述第二站点的功率管理模式为节能模式,所述第三字段用于指示所述第二站点的功率状态。
  27. 如权利要求23所述的装置,其特征在于,所述处理单元,具体用于通过所述收发单元向所述第二多链路设备发送第四PPDU,所述第四PPDU包括唤醒响应帧,唤醒响应帧用于告知是否同意所述第二站点被唤醒。
  28. 如权利要求27所述的装置,其特征在于,所述唤醒响应帧包括所述第二站点的标识、是否同意被唤醒的指示信息。
  29. 如权利要求24-28任一项所述的装置,其特征在于,所述收发单元,还用于在所述第二链路上广播第六PPDU,所述第六PPDU包括所述第二站点的信息;或者在所述第一链路上发送第七PPDU,所述第七PPDU包括第二信标帧,所述第二信标帧包括所述第四字段,所述第四字段携带所述第二站点的信息;
    所述第二站点的信息包括以下一种或多种:时间戳、信标间隔、定时同步功能偏移。
  30. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一物理层协议数据单元PPDU,所述第一PPDU用于唤醒第一多链路设备的第二站点,其中所述第二站点处于节能模式下的休眠状态;
    收发单元,用于通过第一站点向所述第一多链路设备发送所述第一PPDU。
  31. 如权利要求30所述的装置,其特征在于,所述收发单元,还用于接收第二PPDU, 所述第二PPDU包括多链路元素;
    所述多链路元素的第一字段用于指示所述第一多链路设备是否为软件接入点多链路设备soft AP MLD。
  32. 如权利要求30或31所述的装置,其特征在于,
    所述第一PPDU包括唤醒请求帧,所述唤醒请求帧用于唤醒所述第二站点,所述唤醒请求帧包括以下一种或多种信息:缓存数据对应的接入类型、缓存数据对应的业务标识、缓存数据的大小、所述第二站点的标识、时延敏感业务的最小剩余时延;或者
    所述第一PPDU包括告知信息,所述告知信息用于唤醒所述第二站点;或者
    所述第一PPDU包括探测请求帧,所述探测请求帧携带唤醒请求元素,所述唤醒请求元素用于请求唤醒所述第二站点。
  33. 如权利要求30-32任一项所述的装置,其特征在于,所述收发单元,还用于接收来自所述第一多链路设备的第四PPDU,所述第四PPDU包括唤醒响应帧,唤醒响应帧用于告知是否同意所述第二站点被唤醒。
  34. 如权利要求33所述的装置,其特征在于,所述唤醒响应帧包括所述第二站点的标识、是否同意被唤醒的指示信息。
  35. 如权利要求30-34任一项所述的装置,其特征在于,所述第一站点为第一链路对应的站点,所述第二站点为第二链路对应的站点。
  36. 如权利要求35所述的装置,其特征在于,所述收发单元,还用于在所述第二链路上接收第六PPDU,所述第六PPDU包括所述第二站点的信息;或者在所述第一链路上接收第七PPDU,所述第七PPDU包括第二信标帧,所述第二信标帧包括所述第四字段,所述第四字段携带所述第二站点的信息;
    所述第二站点的信息包括以下一种或多种:时间戳、信标间隔、定时同步功能偏移。
  37. 一种通信装置,其特征在于,包括处理器和存储器,所述处理器与所述存储器耦合;
    存储器存储有计算机程序;
    处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1-20中任一项所述的方法。
  38. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得如权利要求1-20中任一项所述的方法被执行。
PCT/CN2022/115403 2021-08-31 2022-08-29 一种通信方法及装置 WO2023030222A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111013775.9 2021-08-31
CN202111013775.9A CN115734319A (zh) 2021-08-31 2021-08-31 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2023030222A1 true WO2023030222A1 (zh) 2023-03-09

Family

ID=85291904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115403 WO2023030222A1 (zh) 2021-08-31 2022-08-29 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN115734319A (zh)
WO (1) WO2023030222A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110505676A (zh) * 2018-05-16 2019-11-26 智观诚通讯科技(昆山)有限公司 上行链路接入方法及其站点、存储装置
CN113259046A (zh) * 2020-02-12 2021-08-13 联发科技(新加坡)私人有限公司 发送组寻址帧的方法
US20210259033A1 (en) * 2020-01-31 2021-08-19 Lg Electronics Inc. Techniques for performing multi-link communication in wireless local area network system
WO2021167366A1 (ko) * 2020-02-18 2021-08-26 엘지전자 주식회사 멀티 링크 전송을 위한 버퍼 정보 공유

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110505676A (zh) * 2018-05-16 2019-11-26 智观诚通讯科技(昆山)有限公司 上行链路接入方法及其站点、存储装置
US20210259033A1 (en) * 2020-01-31 2021-08-19 Lg Electronics Inc. Techniques for performing multi-link communication in wireless local area network system
CN113259046A (zh) * 2020-02-12 2021-08-13 联发科技(新加坡)私人有限公司 发送组寻址帧的方法
WO2021167366A1 (ko) * 2020-02-18 2021-08-26 엘지전자 주식회사 멀티 링크 전송을 위한 버퍼 정보 공유

Also Published As

Publication number Publication date
CN115734319A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
WO2021089022A1 (zh) 一种多链路设备间的通信方法和装置
US11012932B2 (en) Data communication method and apparatus
US9635614B2 (en) Power management method for station in wireless LAN system and station that supports same
WO2022033593A1 (zh) 适用于多链路的关键bss参数管理方法及相关装置
US11546846B2 (en) State switching method and apparatus
WO2022042268A1 (zh) 多链路通信的链路指示方法及相关装置
CN113395746A (zh) 一种应用于多链路通信中的功率节省方法和装置
WO2023246913A1 (zh) 一种功率状态确定方法及装置
WO2023179315A1 (zh) 一种通信方法及装置
CN116847437A (zh) 一种通信方法及装置
WO2023030222A1 (zh) 一种通信方法及装置
TWI830238B (zh) 通訊方法及裝置
WO2023123241A1 (zh) 无线通信方法、终端设备和网络设备
WO2023197843A1 (zh) 一种通信的方法和装置
WO2023216906A1 (zh) 通信方法、接入点多链路设备和非接入点多链路设备
WO2018086387A1 (zh) 一种通信方法及无线设备
CN117941423A (zh) 一种无线通信方法及装置、设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863358

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022863358

Country of ref document: EP

Effective date: 20240308

NENP Non-entry into the national phase

Ref country code: DE