WO2023030083A1 - 非连续接收方法、设备及可读存储介质 - Google Patents

非连续接收方法、设备及可读存储介质 Download PDF

Info

Publication number
WO2023030083A1
WO2023030083A1 PCT/CN2022/114134 CN2022114134W WO2023030083A1 WO 2023030083 A1 WO2023030083 A1 WO 2023030083A1 CN 2022114134 W CN2022114134 W CN 2022114134W WO 2023030083 A1 WO2023030083 A1 WO 2023030083A1
Authority
WO
WIPO (PCT)
Prior art keywords
wake
receiving
signal
preamble
preamble sequence
Prior art date
Application number
PCT/CN2022/114134
Other languages
English (en)
French (fr)
Inventor
曲鑫
潘学明
沈晓冬
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023030083A1 publication Critical patent/WO2023030083A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application belongs to the technical field of communication, and in particular relates to a discontinuous reception method, device and readable storage medium.
  • beacon Beacon
  • TSF Timing Synchronization Function
  • the receiver updates the local TSF time according to the received TSF information, so that the TSF time on the receiving side and the sending side are consistent , but the method of sending beacons carrying TSF information requires more signaling overhead and greater receiver decoding power consumption, and when the receiver fails to decode beacon data, timing information cannot be obtained.
  • Embodiments of the present application provide a discontinuous reception method, device, and readable storage medium, which can solve the problems of sending beacons carrying TSF information that require more signaling overhead and greater receiver decoding power consumption in the prior art. question.
  • a method for discontinuous reception including:
  • the terminal periodically receives the preamble sequence from the sender
  • the terminal determines a start position of a time window for receiving a wake-up signal in a next DRX cycle according to the time position of the preamble sequence.
  • a device for discontinuous reception including:
  • the first receiving module is used for the terminal to periodically receive the preamble sequence from the sending end;
  • the determining module is used for the terminal to determine the start position of the time window for receiving the wake-up signal in the next DRX cycle according to the time position of the preamble sequence.
  • a terminal including: a processor, a memory, and a program stored in the memory and operable on the processor, and when the program is executed by the processor, the terminal described in the first aspect can be implemented. steps of the method described above.
  • a readable storage medium where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the method as described in the first aspect is implemented.
  • a computer program product is provided, the program product is stored in a non-transitory storage medium, and the computer program product is executed by at least one processor to implement the steps of the method described in the first aspect.
  • a sixth aspect provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, the processor is used to run programs or instructions, and implement the method as described in the first aspect .
  • an electronic device configured to execute the steps of the method described in the first aspect.
  • the reference time information is periodically updated for the low-power wake-up receiver through the preamble sequence received periodically, so that the starting position of the time window for receiving the wake-up signal in the DRX cycle can be determined, effectively solving the problem of low clock accuracy.
  • it can reduce the signaling overhead and the complexity of decoding and extracting time information by low-power wake-up receivers.
  • FIG. 1a is a schematic structural diagram of a wireless communication system provided by an embodiment of the present application.
  • Figure 1b is a schematic diagram of the working principle of the existing low-power wake-up receiver
  • Fig. 1c is a schematic diagram of the working principle of the existing discontinuous reception
  • Figure 1d is a schematic structural diagram of the existing WUR beacon signal
  • FIG. 2a is a schematic flow diagram of a discontinuous reception method provided by an embodiment of the present application.
  • Fig. 2b is a schematic diagram of a terminal structure provided by an embodiment of the present application.
  • FIG. 2c is a schematic diagram of the DRX cycle of the wake-up signal provided by the embodiment of the present application.
  • FIGS 3a-3d are schematic diagrams of application scenarios provided by the embodiments of the present application.
  • FIG. 4 is a schematic structural diagram of a discontinuous receiving device provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a terminal structure provided by an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specified order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used for the above-mentioned system and radio technology, and can also be used for other systems and radio technologies.
  • NR New Radio
  • the following description describes the New Radio (NR) system for exemplary purposes, and uses NR terminology in most of the following descriptions, and these technologies can also be applied to applications other than NR system applications, such as the 6th generation (6 th Generation, 6G) communication system.
  • 6G 6th Generation
  • Fig. 1a shows a block diagram of a wireless communication system to which the embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer, TPC), a laptop computer (Laptop Computer, LC) or a notebook Computer, personal digital assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR )/virtual reality (virtual reality, VR) equipment, robot, wearable device (Wearable Device, WD), vehicle equipment (Vehicle User Equipment, VUE), pedestrian terminal (Pedestrian User Equipment, PUE), smart home (with wireless Household devices with communication functions, such as refrigerators, TVs, washing machines or furniture,
  • the network side device 12 may be a base station or a core network, where a base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (Base TransceiverStation, BTS), a radio base station, a radio transceiver, a basic service set (BasicServiceSet, BSS), ExtendedServiceSet (ExtendedServiceSet, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, Wireless Local Area Networks (WLAN) access point , wireless fidelity (Wireless Fidelity, WiFi) node, transmitting and receiving point (Transmitting Receiving Point, TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to the specified technical vocabulary, It should be noted that, in the embodiment of the present application, only the base station in the
  • a low-power wake-up receiver can be used in an existing Wi-Fi scenario. As shown in FIG. 1b, the low-power wake-up receiver includes two parts: a main receiver and a wake-up receiver.
  • the main receiver is used to send and receive wireless fidelity data
  • the wake-up receiver is used to wake up the main receiver. Before being woken up, the main receiver is in a closed state and does not send and receive data.
  • the wake-up receiver receives the wake-up signal sent by the transmitter (such as an Access Point (AP)), and the wake-up signal can be an On-Off Keying (OOK) modulated signal, so that the wake-up receiver can use an envelope
  • the wake-up signal is detected by wave detection, which can reduce the power consumption to the order of hundreds of microwatts, which greatly reduces the power consumption of users.
  • the method of discontinuous reception of the wake-up signal is also adopted.
  • the user and the AP determine the period and starting position of the discontinuous reception of the wake-up signal through the Wake-up Radio (WUR) mode establishment process. and receiving time length.
  • WUR Wake-up Radio
  • the duty cycle service period (duty cycle service period) of the user in each duty cycle receives the wake-up signal through the wake-up receiver, where the duty cycle period (duty cycle period) is related to the duty cycle
  • the length of the service period is notified to the AP by the user by sending a WUR mode element (mode element).
  • the length of the duty cycle service period is less than or equal to the length of the duty cycle period, and the length of the duty cycle service period must be greater than or equal to the minimum wakeup period indicated by the AP.
  • the AP replies to confirm the length of the duty cycle period and duty cycle service period carried in the user's WUR mode element, the user takes them as the parameters of the user's discontinuous period.
  • the starting position of the duty cycle service period that is, the starting point (start point) shown in Figure 1c, is indicated by the mode element sent by the AP, using 64 bits to indicate the TSF time of the starting position, and the time unit is micro Second.
  • the WUR beacon signal is periodically sent to transmit the time information.
  • the type dependent control of the WUR beacon MAC frame carries the timing synchronization function of the AP ( Timing Synchronization Function, TSF) clock (timer) [5:16] 12 bits of information in 64 bits, after the user receives the 12 bits of information, according to the time update criteria, update the user's local TSF timer, so as to achieve synchronization with the AP the goal of.
  • TSF Timing Synchronization Function
  • timer timer
  • the transmission period of WUR beacon and the offset of the transmission start position are indicated by the operation element (operation element) sent by the AP.
  • the period is the minimum number of TSF time units between two beacon transmissions, and the start position is offset relative to TSF0. Number of TSF time units.
  • CSMA Carrier Sense Multiple Access
  • an embodiment of the present application provides a method for discontinuous reception, where the subject of execution of the method may be a terminal, and the specific steps include:
  • Step 201 The terminal periodically receives the preamble sequence from the sender
  • Step 202 The terminal determines the starting position of the time window for receiving the wake-up signal in the next Discontinuous Reception (DRX) cycle according to the time position of the preamble sequence;
  • DRX Discontinuous Reception
  • the terminal in the embodiment of the present application may be a mobile terminal applied to the NR system, and its specific structure may be shown in Figure 2b, which includes two modules, the first module is the main communication module for mobile communication For data transmission and reception, the second module is a low-power wake-up receiving module for receiving wake-up signals.
  • the main communication module does not receive or send data for a period of time, it enters the shutdown or sleep state.
  • the second module detects the wake-up signal sent by the sender, and the wake-up signal contains the information of the receiver, it triggers to wake up the first module.
  • One module enters the working state, and can receive and send data.
  • the first module is in the off or sleep state, and does not receive or send data.
  • the second module can receive the wake-up signal discontinuously, as shown in Figure 2c, the second module wakes up for a period of time in each DRX cycle, receives the wake-up signal within the wake-up signal time window, and enters the sleep state during the rest of the time, to further save power.
  • the reference time information is periodically updated for the low-power wake-up receiver through the periodically received preamble, so that the starting position of the time window for receiving the wake-up signal in the discontinuous reception period can be determined, effectively solving the problem of clock
  • the problem of time drift caused by poor precision, and the relative time information carried by the sequence, compared with the use of signaling to explicitly indicate the time information, can reduce the complexity of signaling overhead and low-power wake-up receiver decoding to extract time information .
  • the method also includes:
  • the terminal receives the first configuration from the sending end, and the first configuration includes one or more of the following:
  • the terminal as the execution subject in the embodiment of this application is the receiving end
  • configure the time and frequency domain settings for receiving the wake-up signal The location, wherein the location in the time domain includes one or more configurations above.
  • the preamble sequence is a dedicated preamble sequence used for detection of one or a group of terminals, or the preamble sequence is a common preamble sequence used for detection of multiple or multiple groups of terminals.
  • the terminal determines the start position of the time window for receiving the wake-up signal in the next discontinuous reception DRX cycle according to the time position of the preamble sequence, including:
  • the terminal determines the start position of the time window for receiving the wakeup signal in the next DRX cycle according to the detected time position of the dedicated preamble sequence in the current DRX cycle.
  • the first configuration further includes one or more of the following:
  • the terminal determines the start position of the time window for receiving the wake-up signal in the next discontinuous reception DRX cycle according to the time position of the preamble sequence, including:
  • the terminal determines the start position of the time window for receiving the wake-up signal in the next DRX cycle according to the time position of the latest detected common preamble sequence.
  • the terminal determines the start position of the time window for receiving the wake-up signal in the next discontinuous reception DRX cycle according to the time position of the preamble sequence, and further includes:
  • the terminal When the terminal detects the dedicated preamble between the two common preambles, the terminal updates the start position of the time window for receiving the wake-up signal in the next DRX cycle according to the time position of the dedicated preamble.
  • the preamble sequence is a dedicated preamble sequence, and the method flow is as follows:
  • the location of the time and frequency domains for receiving the wake-up signal configures the location of the time and frequency domains for receiving the wake-up signal, where the location of the time domain includes one or more of the following configurations:
  • the sending end sends a dedicated preamble sequence at a fixed position in each DRX cycle of the wake-up signal, and the fixed position in the cycle is determined according to the offset in the DRX cycle of receiving the wake-up signal, and the dedicated preamble sequence is dedicated to the receiving end or the receiving end group
  • the low-power wake-up receiving module at the receiving end determines the start position of the time window for receiving the wake-up signal in the next DRX cycle of the wake-up signal according to the detected time position of the dedicated preamble sequence of the current DRX cycle.
  • the specific method is: the receiving end determines the starting position of the sequence according to the dedicated preamble sequence detected in the n-1th DRX cycle, which is marked as t' n-1 , and the receiving end uses t' n-1 as the new The reference time position, plus a T DRX time offset, minus a delta, the starting position of the time window for receiving the wake-up signal in the nth DRX cycle is t' n-1 +T DRX -delta, where T DRX is the length of the DRX cycle, delta is to further reduce the error impact caused by the clock drift of the low-power wake-up receiver module, delta can be determined through network configuration or the receiving end according to the implementation method, and the value is greater than or equal to 0.
  • the receiving end After the receiving end detects the preamble sequence in each DRX cycle, it determines it as a new reference time position, and based on this determines the start position of the time window for receiving the wake-up signal in the next DRX cycle, as shown in Figure 3a.
  • the receiving end successfully detects the dedicated preamble sequence in the n-1 DRX cycle, but fails to detect it in the n-th DRX cycle, the reference time position will not be updated, and t' n-1 is still used as the reference time position, plus two T DRX time offset, the starting position of the time window for receiving the wake-up signal in the n+1th DRX cycle is t' n-1 +2*T DRX -delta.
  • the sender selects the format of the wake-up signal according to whether the receiver needs to be woken up in one DRX cycle.
  • the sender In the nth DRX cycle, if there is no need to wake up, the sender only sends a dedicated preamble.
  • the starting position of the dedicated preamble is marked as t n ; if there is a wake-up demand, the sender sends a dedicated preamble sequence and a data load, as shown in Figure 3b, to indicate whether there is a data load after the dedicated preamble sequence, for the same receiver (group), two different Dedicated preamble sequence, sequence one indicates that there is a subsequent data load, and sequence two indicates that there is no subsequent data load.
  • the data load also includes at least one receiving terminal. The identification of at least one receiving end in the end group is used to determine the receiving end to be woken up.
  • the sending end is a base station
  • the receiving end is a user, which are users 1-8 respectively, wherein users 1-4 form a user group, identified as user group 1, and users 5-8 form another user group, identified as For user group 2.
  • both the sending end and the receiving end may be users.
  • the base station configures the cycle of receiving the wake-up signal for user group 1 and user group 2 through the high-level signaling of the main communication module, such as RRC signaling, the offset of the starting position of receiving the wake-up signal; the offset in the DRX cycle of receiving the wake-up signal ; The size of the time window for receiving the wake-up signal; marked as T1 DRX , t1 start , t1 shift , W1 , and T2 DRX , t2 start , t2 shift , W2 .
  • the DRX configurations of the two user groups can be the same or different, and t1 start and t2 start are time offsets relative to the system frame SFN0.
  • the low-power wake-up receiving module monitors the wake-up signal according to the DRX cycle, that is, wakes up in each DRX cycle to monitor the dedicated preamble and subsequent data, and the low-power wake-up receiving module is also in a sleep state during the rest of the time, thereby saving power.
  • the dedicated preamble sequences used by user group 1 are sequences 1 and 2, where sequence 1 is used to indicate that there is no data load after the sequence, and the low-power wake-up receiving module can directly enter the sleep state after receiving the sequence.
  • Sequence 2 is used to indicate that there is a data load after the sequence.
  • the dedicated preamble sequences used by user group 2 are sequences 3 and 4, where sequence 3 is used to indicate that there is no data load after the sequence, and the low-power wake-up receiving module can directly enter the sleep state after receiving the sequence. Sequence 4 is used to indicate that there is a data load after the sequence. After the data is received and decoded to determine the wake-up user ID, the low-power wake-up receiving module of the user whose user ID is not included in the data load enters a sleep state, and other users trigger the master The communication module wakes up and enters the working state.
  • the relationship between user groups and dedicated preamble sequences can be displayed and configured by the high-level signaling of the base station, and can also be calculated by preset rules. For example, users 1-4 use a similar paging user ID based on each user's identity, such as TMSI.
  • the grouping modulo operation is used to obtain the label of the user group. In this embodiment, it is assumed that the calculated label is 1, and there are two leading sequence pools in the system, pool 1 and pool 2.
  • the preset criterion can be from pool 1 and pool 2. In pool 2, preambles labeled 1 are selected as dedicated preamble 1 and dedicated preamble 2 of user group 1 respectively.
  • the base station transmits a dedicated preamble sequence 1 or 2 in each DRX cycle of user group 1, and transmits a data payload at the same time when transmitting sequence 2.
  • Users 1 and 2 in user group 1 obtain T1 DRX , t1 start , t1 shift , and W1 from the high-level signaling of the base station through the main communication module, and users 1 and 2 have established downlink synchronization with the base station through the main communication module, so it can be determined
  • the value of X makes the time position of starting to monitor the wake-up signal not later than the time when the main module enters the off and sleep state.
  • users 1 and 2 wake up to monitor the wake-up signal every cycle, and the base station sends a dedicated preamble sequence 2 and data payload in the n-1 DRX cycle, where the data payload Contains the identity of user 2, users 1 and 2 detect the preamble sequence 2 in the n-1 DRX cycle, and determine the starting position of the sequence, marked as t' n-1 , then users 1 and 2 use t' n-1 as the new reference time position, plus a T DRX time offset, minus a delta, the starting position of the time window for receiving the wake-up signal in the nth DRX cycle is t' n-1 +T DRX -delta, the data payload after users 1 and 2 decode sequence 2, and user 2 confirms that its user ID is included in the data payload, thus triggering the main communication module to wake up and enter the working state.
  • the low power of user 1 wakes up the receiving module and returns to
  • the users 5 and 8 of the user group 2 determine the start position of the time window for receiving the wake-up signal in the next DRX cycle of the wake-up signal by listening to the dedicated sequences 3 and 4 . And determine whether to wake up the main communication module according to the user identification included in the data load.
  • the preamble sequence and the data load can adopt the OOK modulation mode. Therefore, in order to facilitate time accumulation at the receiving end, the period T DRX can adopt a value that is an integer multiple of the OOK symbol length.
  • the preamble sequence is a public preamble sequence, and the method flow is as follows:
  • the sending end periodically sends a common preamble, and multiple receiving ends or groups of receiving ends periodically detect the common preamble.
  • DRX cycle the cycle of receiving the wake-up signal, T DRX ;
  • time domain positions For multiple receivers or groups of receivers, configure the time and frequency domain positions for receiving the common preamble, where the time domain positions include one or more of the following configurations:
  • the low-power wake-up receiver determines the start position of the time window for receiving the wake-up signal in the next DRX cycle of the wake-up signal according to the detected time position of the latest common preamble. Between two common preambles, if a given receiver or receiver group detects its dedicated preamble, the start position of the next wake-up signal DRX cycle is updated according to the time position of the dedicated preamble.
  • the sending end periodically sends the common preamble sequence
  • the sending period is T preamble
  • the starting position is t 0
  • multiple receiving ends or groups of receiving ends periodically detect the common preamble sequence according to T preamble .
  • the sending end sends a wake-up signal when there is a wake-up demand
  • the sending cycle is T DRX
  • the starting position is t 0 +T offset , where T offset is relative to the starting position of the common preamble sequence Time offset at t 0
  • the low-power wake-up receiver at the receiving end wakes up periodically according to T preamble and T DRX to monitor the common preamble sequence and wake-up signal, and stays in a sleep state for the rest of the time.
  • the receiving end if the receiving end detects its dedicated preamble, it will update the starting position of the next wake-up signal DRX cycle according to the time position of the dedicated preamble.
  • the dedicated preamble sequence detected in n-1 DRX cycles the starting position of the sequence is determined to be t' n-1 , which is used as the new reference time position, plus a TDRX time offset, minus a delta,
  • the start position of the time window for monitoring the wake-up signal in the nth DRX cycle of the wake-up signal is t' n-1 + T DRX -delta.
  • the sending end sends a wake-up signal only when there is a need to wake up the user in a DRX cycle, otherwise, no signal is sent.
  • an alternative method is that the sending end does not periodically send the common preamble sequence, the sending end sends the common preamble sequence in the DRX cycle when the receiving end does not send a wake-up signal, and the receiving end only wakes up according to the DRX cycle to receive Wake up signal for sequence detection.
  • the receiving end does not detect the common preamble according to T preamble .
  • the specific method is: the receiving end determines the starting position of the sequence according to the dedicated preamble sequence or the common preamble sequence detected in the n-1th DRX cycle, which is marked as t' n-1 , and the receiving end uses t' n -1 as the new reference time position, add a T DRX time offset, and subtract a delta, the starting position of the time window for receiving the wake-up signal in the nth DRX cycle is t' n-1 +T DRX - delta, where T DRX is the length of the DRX cycle, delta is to further reduce the error impact caused by the clock drift of the low-power wake-up receiver module, delta can be determined through the network configuration or the receiving end according to the implementation method, and the value is greater than or equal to 0.
  • the sending end is a base station
  • the receiving end is a user, which are users 1-8 respectively, wherein users 1-4 form a user group, identified as user group 1, and users 5-8 form another user group, identified as For user group 2.
  • both the sending end and the receiving end may be users.
  • the base station configures the starting position t0 and the period T preamble of the common preamble transmission through high-level signaling of the main communication module, such as SIB signaling.
  • high-level signaling of the main communication module such as RRC signaling
  • the size of the time window for receiving the wake-up signal marked as T1 DRX , T1 offset , T1 shift , W1 , and T2 DRX , T2 offset , T2 shift , W2 .
  • the DRX configurations of the two user groups may be the same or different, and T1 offset and T2 offset are time offsets relative to t0.
  • the two users turn off or sleep the main communication module, and wake up the receiving module through low power consumption to monitor the wake-up signal according to the T1 DRX cycle, that is Wake up in each DRX cycle to monitor whether to wake up the main module.
  • the user wakes up to monitor the common preamble during each period of the common preamble, and wakes up with low power consumption of users 1 and 2 at times other than listening to the common preamble and wake-up signals
  • the receiving module is in a sleep state to save power.
  • the dedicated preamble sequence used by user group 1 is sequence 1
  • the user ID is included in the data load.
  • the wake-up receiving module triggers the main communication module to wake up and enter the working state, and the low power consumption of other users wakes up the receiving module to enter the sleep state.
  • the relationship between user groups and dedicated preamble sequences can be displayed and configured by the high-level signaling of the base station, and can also be calculated through preset rules. For example, users 1-4 are based on the identification of each user, such as Temporary Mobile Subscription Identifier, TMSI), using a grouping modulo operation similar to paging (paging) users, to obtain the label of the user group, assuming in this embodiment that the calculated label is 1, and there is a dedicated preamble pool in the setting system, then The preset criterion may be to select a preamble labeled 1 from the dedicated preamble pool as the dedicated preamble of user group 1 .
  • TMSI Temporary Mobile Subscription Identifier
  • the base station sends the common preamble sequence according to the starting position t0 and the cycle T preamble, and at the same time, when it is necessary to wake up users 1 and 2, press T1 DRX , T1 offset , T1 shift to send a wake-up signal in the latest wake-up signal DRX cycle of user group 1 Signal.
  • the time to start listening to the common preamble sequence is t0+X*T preamble
  • the time to start listening to the wake-up signal can also be determined to be t0+T1 offset +T1 shift +X'*T1 DRX , where the values of X and X' make the time position of starting to monitor the common preamble sequence and wake-up signal no later than the time when the main module enters the off and sleep state.
  • users 1 and 2 start to wake up and listen to the common preamble every cycle, starting from time t0+T1 offset +T1 shift +X'*T1 DRX , users 1 and 2 start to Wake up in one cycle to monitor the wake-up signal.
  • Users 1 and 2 wake up at t' n-1 to monitor the wake-up signal, determine the symbol position of the data load according to the detected dedicated preamble sequence, decode the data, and obtain the identification of user 1 in the data load, then user 1 triggers the master
  • the communication module wakes up and enters the working state, and the low power of user 2 wakes up the receiving module and returns to the sleep state.
  • the wake-up signal can also be in the form of Figure 3d, sending a section break before the dedicated preamble sequence, before the section break is not detected correctly, the low-power wake-up
  • the receiver is only in a mode with very low energy consumption, and the matching detection of the preamble sequence is performed only after the section break is detected, which can further reduce power consumption compared with continuous sequence detection.
  • the preamble sequence and the data load can adopt the OOK modulation mode. Therefore, in order to facilitate the time accumulation at the receiving end, the period TDRX can adopt a value that is an integer multiple of the length of the OOK symbol.
  • an alternative method is that the sending end does not periodically send the common preamble, the sending end sends the common preamble in the DRX cycle when the receiving end does not send a wake-up signal, and the receiving end only wakes up according to the DRX cycle to receive Wake up signal for sequence detection.
  • the receiving end does not detect the common preamble according to T preamble .
  • the specific method is: the receiving end determines the starting position of the sequence according to the dedicated preamble sequence or the common preamble sequence detected in the n-1th DRX cycle, which is marked as t' n-1 , and the receiving end uses t' n -1 as the new reference time position, add a T DRX time offset, and subtract a delta, the starting position of the time window for receiving the wake-up signal in the nth DRX cycle is t' n-1 +T DRX - delta, where T DRX is the length of the DRX cycle, delta is to further reduce the error impact caused by the clock drift of the low-power wake-up receiver module, delta can be determined through the network configuration or the receiving end according to the implementation method, and the value is greater than or equal to 0.
  • an embodiment of the present application provides a discontinuous reception device 400, including:
  • the first receiving module 401 is used for the terminal to periodically receive the preamble sequence from the sending end;
  • the determination module 402 is used for the terminal to determine the start position of the time window for receiving the wake-up signal in the next DRX cycle according to the time position of the preamble sequence.
  • the device also includes:
  • the second receiving module is configured for the terminal to receive a first configuration from the sending end, where the first configuration includes one or more of the following:
  • the size of the time window for receiving wakeup signals is the size of the time window for receiving wakeup signals.
  • the preamble sequence is a dedicated preamble sequence used for detection of one or a group of terminals, or the preamble sequence is a common preamble sequence used for detection of multiple or multiple groups of terminals.
  • the determining module is further configured to:
  • the terminal determines the start position of the time window for receiving the wake-up signal in the next DRX cycle according to the detected time position of the dedicated preamble sequence in the current DRX cycle .
  • the first configuration further includes one or more of the following:
  • the determination module is further used for:
  • the terminal determines the start position of the time window for receiving the wake-up signal in the next DRX cycle according to the latest detected time position of the common preamble sequence.
  • the determining module is further configured to:
  • the terminal When the terminal detects the dedicated preamble between the two common preambles, the terminal updates the time window for receiving the wake-up signal in the next DRX cycle according to the time position of the dedicated preamble. starting point.
  • FIG. 5 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 500 includes but not limited to: a radio frequency unit 501, a network module 502, an audio output unit 503, an input unit 504, a sensor 505, a display unit 506, a user input unit 507, an interface unit 508, a memory 509, and a processor 510, etc. .
  • the terminal 500 can also include a power supply (such as a battery) for supplying power to various components, and the power supply can be logically connected to the processor 510 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 5 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange different components, which will not be repeated here.
  • the input unit 504 may include a graphics processor (Graphics Processing Unit, GPU) 5041 and a microphone 5042, and the graphics processor 5041 is used for the image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 506 may include a display panel 5061, and the display panel 5061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 507 includes a touch panel 5061 and other input devices 5072 .
  • the touch panel 5061 is also called a touch screen.
  • the touch panel 5061 may include two parts, a touch detection device and a touch controller.
  • Other input devices 5072 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, and joysticks, which will not be described in detail here.
  • the radio frequency unit 501 receives the downlink data from the network side device, and processes it to the processor 510; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 501 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 509 can be used to store software programs or instructions as well as various data.
  • the memory 509 may mainly include a program or instruction storage area and a data storage area, wherein the program or instruction storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 509 may include a high-speed random access memory, and may also include a nonvolatile memory, wherein the nonvolatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • the processor 510 may include one or more processing units; optionally, the processor 510 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly handle wireless communications, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 510 .
  • the above-mentioned processor 510 is used for:
  • the terminal periodically receives the preamble sequence from the sender
  • the terminal determines a start position of a time window for receiving a wake-up signal in a next DRX cycle according to the time position of the preamble sequence.
  • processor 510 is further configured to:
  • the terminal receives a first configuration from the sending end, and the first configuration includes one or more of the following:
  • the size of the time window for receiving wakeup signals is the size of the time window for receiving wakeup signals.
  • the preamble sequence is a dedicated preamble sequence used for detection of one or a group of terminals, or the preamble sequence is a common preamble sequence used for detection of multiple or multiple groups of terminals.
  • processor 510 is further configured to:
  • the terminal determines the start position of the time window for receiving the wake-up signal in the next DRX cycle according to the detected time position of the dedicated preamble sequence in the current DRX cycle .
  • the first configuration further includes one or more of the following:
  • the processor 510 is further configured to:
  • the terminal determines the start position of the time window for receiving the wake-up signal in the next DRX cycle according to the latest detected time position of the common preamble sequence.
  • processor 510 is further configured to:
  • the terminal When the terminal detects the dedicated preamble between the two common preambles, the terminal updates the time window for receiving the wake-up signal in the next DRX cycle according to the time position of the dedicated preamble. starting point.
  • An embodiment of the present application further provides a program product, the program product is stored in a non-volatile storage medium, and the program product is executed by at least one processor to implement the steps of the method as shown in FIG. 2a.
  • the embodiment of the present application also provides a readable storage medium, the readable storage medium stores a program or an instruction, and when the program or instruction is executed by the processor, the various processes of the above-mentioned method embodiment shown in Figure 2a are implemented, and can To achieve the same technical effect, in order to avoid repetition, no more details are given here.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes computer readable storage medium, such as computer read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a network-side device program or instruction to implement the above described in Figure 2a
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run a network-side device program or instruction to implement the above described in Figure 2a
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the embodiment of the present application also provides a communication device configured to execute each process of the method embodiment shown in FIG. 2a above, and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or the part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD) contains several instructions to enable a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in various embodiments of the present application.
  • a terminal which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种非连续接收方法、设备及可读存储介质,属于通信技术领域,方法包括:终端周期性从发送端接收前导序列;终端根据前导序列的时间位置,确定下一个DRX周期接收唤醒信号的时间窗的起始位置。

Description

非连续接收方法、设备及可读存储介质
相关申请的交叉引用
本申请主张在2021年08月30日在中国提交的中国专利申请No.202111005687.4的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种非连续接收方法、设备及可读存储介质。
背景技术
现有技术通过发送信标(beacon)携带发送侧定时同步功能(Timing Synchronization Function,TSF)信息,接收机根据收到的TSF信息更新本地的TSF时间,从而使得接收侧和发送侧TSF时间保持一致,但发送beacon携带TSF信息的方式需要较多的信令开销及较大的接收机译码功耗,并且当接收机译码beacon数据失败时则无法获得定时信息。
发明内容
本申请实施例提供一种非连续接收方法、设备及可读存储介质,能够解决现有技术中发送beacon携带TSF信息的方式需要较多的信令开销及较大的接收机译码功耗的问题。
第一方面,提供一种非连续接收方法,包括:
终端周期性从发送端接收前导序列;
所述终端根据所述前导序列的时间位置,确定下一个DRX周期接收唤醒信号的时间窗的起始位置。
第二方面,提供一种非连续接收装置,包括:
第一接收模块,用于终端周期性从发送端接收前导序列;
确定模块,用于所述终端根据所述前导序列的时间位置,确定下一个DRX周期接收唤醒信号的时间窗的起始位置。
第三方面,提供一种终端,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法。
第五方面,提供一种计算机程序产品,所述程序产品被存储在非瞬态的存储介质中,所述计算机程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤。
第六方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
第七方面,提供了一种电子设备,所述电子设备被配置为执行如第一方面所述的方法的步骤。
在本申请实施例中,通过周期性接收的前导序列,为低功耗唤醒接收机周期性更新参考时间信息,从而能够确定DRX周期接收唤醒信号的时间窗的起始位置,有效解决时钟精度较差导致的时间漂移的问题,并且通过序列携带相对时间信息,与采用信令显式指示时间信息相比,可降低信令开销和低功耗唤醒接收机译码提取时间信息的复杂度。
附图说明
图1a是本申请实施例提供的无线通信系统的结构示意图;
图1b是现有低功耗唤醒接收机工作原理示意图;
图1c是现有非连续接收的工作原理示意图;
图1d是现有WUR beacon信号的结构示意图;
图2a是本申请实施例提供的非连续接收方法流程示意图;
图2b是本申请实施例提供的终端结构示意图;
图2c是本申请实施例提供的唤醒信号的DRX周期示意图;
图3a-图3d是本申请实施例提供的应用场景示意图;
图4是本申请实施例提供的非连续接收装置结构示意图;
图5是本申请实施例提供的终端结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述指定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图1a示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal  Computer,TPC)、膝上型电脑(Laptop Computer,LC)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device,WD)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装、游戏机等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base TransceiverStation,BTS)、无线电基站、无线电收发机、基本服务集(BasicServiceSet,BSS)、扩展服务集(ExtendedServiceSet,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、无线局域网络(Wireless Local Area Networks,WLAN)接入点、无线保真(Wireless Fidelity,WiFi)节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于指定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
为更好理解本申请实施例的方案,首先对以下内容进行介绍:
低功耗唤醒
现有无线保真场景中可以采用一种低功耗唤醒接收机,如图1b所示,低功耗唤醒接收机包含两个部分:主接收机与唤醒接收机。主接收机用来进行无线保真数据发送和接收,唤醒接收机用来唤醒主接收机,未被唤醒前,主接收机处于关闭状态,不进行数据发送和接收。唤醒接收机接收发送端(例如接入点(Access Point,AP))发送的唤醒信号,唤醒信号可以为开关键控(On-Off Keying,OOK)调制信号,从而使得唤醒接收机可以采用包络检波的方式检测唤醒信号,可将功耗降低至几百微瓦量级,大大降低了用户的功 耗。
唤醒信号非连续接收
为进一步降低唤醒接收机的功耗,还采用唤醒信号非连续接收的方式,用户与AP通过唤醒无线电(Wake-up Radio,WUR)模式建立过程确定唤醒信号非连续接收的周期,起始位置,与接收时间长度。如图1c所示,用户在每个工作周期(duty cycle)内的占空比服务期(duty cycle service period)通过唤醒接收机接收唤醒信号,其中占空比周期(duty cycle period)与duty cycle service period的长度由用户通过发送WUR模式元素(mode element)告知给AP,duty cycle service period的长度小于或等于duty cycle period的长度,且duty cycle service period的长度要大于或等于AP指示的最小醒来时间长度,当AP回复确认用户WUR mode element中所携带的duty cycle period与duty cycle service period的长度后,用户将它们作为该用户非连续周期的参数。另一方面,duty cycle service period的起始位置,即图1c中所示起始点(start point),由AP发送的mode element所指示,采用64比特指示起始位置的TSF时间,时间单位为微秒。
WUR beacon信号
为保持低功耗唤醒接收机与AP间同步,采用周期性发送WUR beacon信号来传递时间信息,如图1d所,WUR beacon MAC frame的类型相关控制(type dependent control)携带AP的定时同步功能(Timing Synchronization Function,TSF)时钟(timer)64比特中的[5:16]共12比特信息,用户收到该12比特信息后,根据时间更新准则,更新用户本地的TSF timer,从而达到与AP同步的目的。WUR beacon的发送周期和发送起始位置的偏移量由AP发送的操作单元(operation element)指示,周期为两次beacon发送间最少的TSF时间单元数,起始位置为相对于TSF0偏移的TSF时间单元数。当发生载波监听多路访问(Carrier Sense Multiple Access,CSMA)延迟(deferrals),WUR beacon在当前周期会延迟发送,但在后续周期仍按WUR beacon的发送周期和发送起始位置确定的位置发送。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的方法及装置进行详细地说明。
参见图2a,本申请实施例提供一种非连续接收方法方法,该方法的执行主体可以为终端,具体步骤包括:
步骤201:终端周期性从发送端接收前导序列;
步骤202:终端根据前导序列的时间位置,确定下一个非连续接收(Discontinuous Reception,DRX)周期接收唤醒信号的时间窗的起始位置;
具体地,本申请实施例中的终端具体可以是应用到NR系统中的移动终端,其具体结构可以如图2b中所示,包含两个模块,第一模块为主通信模块,用于移动通信数据的收发,第二模块为低功耗唤醒接收模块,用于接收唤醒信号。主通信模块一段时间无数据的接收和发送时,进入关闭或睡眠状态,当第二模块检测到发送端发送的唤醒信号,且该唤醒信号包含本接收端信息,则触发唤醒第一模块,第一模块进入工作状态,可进行数据接收和发送,未被第二模块唤醒时第一模块处于关闭或睡眠状态,不接收发送数据。
进一步地,第二模块可采用非连续接收唤醒信号,如图2c所示,第二模块在每个DRX周期醒来一段时间,在唤醒信号时间窗内接收唤醒信号,在其余时间进入睡眠状态,以进一步省电。
在本申请实施例中,通过周期性接收的前导序列,为低功耗唤醒接收机周期性更新参考时间信息,从而能够确定非连续接收周期接收唤醒信号的时间窗的起始位置,有效解决时钟精度较差导致的时间漂移的问题,并且通过序列携带相对时间信息,与采用信令显式指示时间信息相比,可降低信令开销和低功耗唤醒接收机译码提取时间信息的复杂度。
在一种可能的实施方式中,方法还包括:
终端从发送端接收第一配置,第一配置中包括以下一项或者多项:
(1)接收唤醒信号的周期;
(2)接收唤醒信号的起始位置偏移量;
(3)接收唤醒信号的DRX周期内偏移量
(4)接收唤醒信号的时间窗口的大小。
在本申请实施例中,对于一个给定的接收端(本申请实施例中作为执行主体的终端即为接收端),或一组给定的接收端,配置接收唤醒信号的时间和频率域的位置,其中时间域的位置的包括上述的一个或者多个配置。
前导序列为用于一个或一组终端检测的专用前导序列,或者,前导序列为用于多个或多组终端检测的公共前导序列。
在一种可能的实施方式中,终端根据前导序列的时间位置,确定下一个非连续接收DRX周期接收唤醒信号的时间窗的起始位置,包括:
在前导序列为专用前导序列的情况下,终端根据检测到的当前DRX周期的专用前导序列的时间位置,确定下一个DRX周期接收唤醒信号的时间窗的起始位置。
在一种可能的实施方式中,在所述前导序列为所述公共前导序列的情况下,所述第一配置还包括以下一项或者多项:
接收公共前导序列的周期;
接收公共前导序列的起始位置偏移量;
终端根据前导序列的时间位置,确定下一个非连续接收DRX周期接收唤醒信号的时间窗的起始位置,包括:
在前导序列为公共前导序列的情况下,终端根据检测到的最新的公共前导序列的时间位置,确定下一个DRX周期接收唤醒信号的时间窗的起始位置。
在一种可能的实施方式中,终端根据前导序列的时间位置,确定下一个非连续接收DRX周期接收唤醒信号的时间窗的起始位置,还包括:
在两个公共前导序列之间,终端检测到专用前导序列的情况下,终端根据专用前导序列的时间位置,更新下一个DRX周期接收唤醒信号的时间窗的起始位置。
下面按照前导序列为公共前导序列和专用前导序列的情况,对本申请的方案做具体描述:
方案一、前导序列为专用前导序列,方法流程如下:
对于一个给定的接收端,或一组给定的接收端,配置接收唤醒信号的时间和频率域的位置,其中时间域的位置的包括以下的一个或者多个配置:
(1)DRX周期–接收唤醒信号的周期;
(2)接收唤醒信号的起始位置偏移量;
(3)接收唤醒信号的DRX周期内偏移量
(4)接收唤醒信号的时间窗口的大小;
发送端在该唤醒信号的每个DRX周期的固定位置发送专用前导序列,周期内的固定位置根据接收唤醒信号的DRX周期内偏移量确定,专用前导序列为该接收端或该接收端组专用,接收端的低功率唤醒接收模块根据检测到的当前DRX周期的专用前导序列的时间位置,确定唤醒信号下一个DRX周期接收唤醒信号的时间窗的起始位置。
具体方法为:接收端根据在第n-1个DRX周期检测到的专用前导序列,确定得到该序列的起始位置,标记为t’ n-1,则接收端以t’ n-1作为新的参考时间位置,加上一个T DRX时间偏移,减去一个delta,得到第n个DRX周期的接收唤醒信号的时间窗的起始位置为t’ n-1+T DRX-delta,其中T DRX为DRX周期的长度,delta为进一步降低低功耗唤醒接收机模块时钟漂移带来的误差影响,delta可以通过网络配置或接收端根据实现方式确定,值大于等于0。
类似地,接收端在每个DRX周期检测到前导序列后,确定为新的参考时间位置,并基于此确定下一个DRX周期接收唤醒信号的时间窗的起始位置,如图3a所示。
若接收端在第n-1个DRX周期检测专用前导序列成功,但在第n个DRX周期检测失败,则不更新参考时间位置,仍以t’ n-1作为参考时间位置,加上二个T DRX时间偏移,得到第n+1个DRX周期接收唤醒信号的时间窗的起始位置为t’ n-1+2*T DRX-delta.
进一步地,发送端根据在一个DRX周期是否需要唤醒接收端,选择唤醒信号格式,在第n个DRX周期,若无唤醒需求,发送端仅发送专用前导序列,专用前导序列的起始位置标记为t n;若有唤醒需求,则发送端发送专用前导序列和数据负载,如图3b所示,为指示专用前导序列后是否有数据负载,对于同一个接收端(组),可以采用两个不同专用前导序列,序列一指示后续有数据负载,序列二指示后续无数据负载。另外,不同接收端(组)间可以采用不同专用前导序列,用来识别接收端(组),当唤醒信号对应一个接收端组且组内包含大于一个接收端时,数据负载中还至少包含接收端组中的至少一个接收端标识,用以确定待唤醒的接收端。
针对上述方案一,提供一种具体应用实施例:
在本实施例中,发送端为基站,接收端为用户,分别为用户1-8,其中用 户1-4组成一个用户组,标识为用户组1,用户5-8组成另一个用户组,标识为用户组2。在实际应用中,发送端和接收端还可以都为用户。
基站通过主通信模块高层信令,如RRC信令为用户组1和用户组2分别配置接收唤醒信号的周期,接收唤醒信号的起始位置偏移量;接收唤醒信号的DRX周期内偏移量;接收唤醒信号的时间窗口的大小;标记为T1 DRX,t1 start,t1 shift,W1,及T2 DRX,t2 start,t2 shift,W2。两个用户组的DRX配置可以相同或不同,t1 start和t2 start为相对系统帧SFN0的时间偏移。
假定用户组1中的用户1和2以及用户组2中的用户5和8在一段时间内均无数据的接收和发送,因此用户1和2以及用户5和8将主通信模块关闭或睡眠,通过低功耗唤醒接收模块按照DRX周期监听唤醒信号,即在每个DRX周期醒来监听专用前导序列以及后续数据,在其余时间低功耗唤醒接收模块也处于睡眠状态,从而省电。
假定用户组1采用的专用前导序列为序列1和2,其中序列1用来指示序列后无数据负载,低功耗唤醒接收模块在接收序列后可直接进入睡眠状态。序列2用来指示序列后有数据负载,在接收完数据并译码确定唤醒用户标识后,用户标识包含在数据负载中的用户的低功耗唤醒接收模块触发主通信模块醒来进入工作状态,其它用户的低功耗唤醒接收模块进入睡眠状态。
类似地,用户组2采用的专用前导序列为序列3和4,其中序列3用来指示序列后无数据负载,低功耗唤醒接收模块在接收序列后可直接进入睡眠状态。序列4用来指示序列后有数据负载,在接收完数据并译码确定唤醒用户标识后,用户标识未被包含在数据负载中的用户的低功耗唤醒接收模块进入睡眠状态,其它用户触发主通信模块醒来进入工作状态。
其中用户组与专用前导序列的关联关系可以由基站的高层信令显示配置,还可以通过预设规则计算得到,比如用户1-4根据每个用户的标识,如TMSI,采用类似于paging用户的分组取模运算,得到用户组的标号,在本实施例中假设计算得到标号为1,设定系统中共有两个前导序列池,池1和池2,则预设准则可以为从池1和池2中分别选择标号为1的前导序列分别作为用户组1的专用前导序列1和专用前导序列2。
参照图3a,基站在用户组1的每个DRX周期发送专用前导序列1或2, 当发送序列2时还同时发送数据负载。用户组1中的用户1和2通过主通信模块由基站的高层信令得到T1 DRX,t1 start,t1 shift,W1,且用户1和2通过主通信模块已和基站建立下行同步,因此可以确定一个启动监听唤醒信号的起始位置t1 start+X*T1 DRX+t1 shift其中X的取值使得启动监听唤醒信号的时间位置不晚于主模块进入关闭和睡眠状态的时间。因此,从时刻t1 start+X*T1 DRX+t1 shift开始,用户1和2每个周期醒来监听唤醒信号,基站在第n-1个DRX周期发送专用前导序列2和数据负载,其中数据负载中包含用户2的标识,用户1和2在第n-1个DRX周期检测到前导序列2,确定得到该序列的起始位置,标记为t’ n-1,则用户1和2以t’ n-1作为新的参考时间位置,加上一个T DRX时间偏移,减去一个delta,得到第n个DRX周期的接收唤醒信号的时间窗的起始位置为t’ n-1+T DRX-delta,用户1和2译码序列2后的数据负载,用户2确定其用户标识包含在数据负载中,因此触发主通信模块醒来进入工作状态。用户1的低功率唤醒接收模块回到睡眠状态。
类似地,用户组2的用户5和8通过监听专用序列3和4来确定唤醒信号下一个DRX周期接收唤醒信号的时间窗的起始位置。以及根据数据负载所包含的用户标识确定是否唤醒主通信模块。
在以上实施例中,前导序列和数据负载可以采用OOK调制方式,因此,为便于接收端时间累计,周期T DRX可以采用OOK符号长度的整数倍的数值。
方案二、前导序列为公共前导序列,方法流程如下:
发送端周期性发送公共前导序列,多个接收端或多组接收端周期性检测公共前导序列。
对于一个给定的接收端,或一个给定的接收端组,配置接收唤醒信号的时间和频率域的位置,其中时间域的位置的包括以下的一个或者多个配置:
(1)DRX周期:接收唤醒信号的周期,T DRX
(2)接收唤醒信号的起始位置偏移量,T offset
(3)接收唤醒信号的DRX周期内偏移量,T shift
(4)接收唤醒信号的时间窗口的大小;
对于多个接收端或多组接收端,配置接收公共前导序列的时间和频率域的位置,其中时间域的位置的包括以下的一个或者多个配置:
(1)周期:接收公共前导序列的周期;
(2)接收公共前导序列的起始位置偏移量;
低功率唤醒接收机根据检测到的最新公共前导序列的时间位置,确定唤醒信号下一个DRX周期接收唤醒信号的时间窗的起始位置。在两个公共前导序列间,若一个给定的接收端或接收端组检测到其专用前导序列,则根据专用前导序列的时间位置,更新下一个唤醒信号DRX周期的起始位置。
具体方法为:如图3c所示,发送端周期性发送公共前导序列,发送周期为T preamble,起始位置为t 0,多个接收端或多组接收端按T preamble周期性检测公共前导序列。对于一个给定的接收端或接收组,发送端当有唤醒需求时发送唤醒信号,发送周期为T DRX,起始位置为t 0+T offset,其中T offset为相对于公共前导序列起始位置t 0的时间偏移。接收端低功率唤醒接收机按照T preamble和T DRX周期性醒来监听公共前导序列和唤醒信号,其余时间处于睡眠状态。
接收端根据在第m-1个周期检测到的公共前导序列,确定得到该序列的起始位置,标记为t’ m-1,则接收端以t’ m-1作为新的参考时间位置,加上一个时间差T gap,得到唤醒信号第n-1个DRX周期监听唤醒信号时间窗的起始位置为t’ n-1=t’ m-1+T gap,其中时间差为T gap=T offset+T shift+(n-2)*T DRX-(m-2)*T preamble-delta。更进一步地,在两个公共前导序列间,若接收端检测到其专用前导序列,则根据专用前导序列的时间位置,更新下一个唤醒信号DRX周期的起始位置,因此,接收端根据在第n-1个DRX周期检测到的专用前导序列,确定得到该序列的起始位置为t’ n-1,将其作为新的参考时间位置,加上一个TDRX时间偏移,减去一个delta,得到唤醒信号第n个DRX周期监听唤醒信号时间窗的起始位置为t’ n-1+T DRX–delta。
进一步地,发送端在一个DRX周期仅当有唤醒用户需求时,发送唤醒信号,否则不发送任何信号。
在本方案二中,一种替代的方法为,发送端不周期性发送公共前导序列,发送端在接收端未发送唤醒信号的DRX周期,发送公共前导序列,接收端仅按照DRX周期醒来接收唤醒信号进行序列检测。接收端不按照T preamble检测公共前导序列。
具体方法为:接收端根据在第n-1个DRX周期检测到的专用前导序列或 公共前导序列,确定得到该序列的起始位置,标记为t’ n-1,则接收端以t’ n-1作为新的参考时间位置,加上一个T DRX时间偏移,减去一个delta,得到第n个DRX周期的接收唤醒信号的时间窗的起始位置为t’ n-1+T DRX-delta,其中T DRX为DRX周期的长度,delta为进一步降低低功耗唤醒接收机模块时钟漂移带来的误差影响,delta可以通过网络配置或接收端根据实现方式确定,值大于等于0。
针对上述方案二,提供一种具体应用实施例:
在本实施例中,发送端为基站,接收端为用户,分别为用户1-8,其中用户1-4组成一个用户组,标识为用户组1,用户5-8组成另一个用户组,标识为用户组2。在实际应用中,发送端和接收端还可以都为用户。
基站通过主通信模块高层信令,如SIB信令配置公共前导序列发送的起始位置t0和周期T preamble。通过主通信模块高层信令,如RRC信令为用户组1和用户组2分别配置唤醒信号发送的DRX周期,接收唤醒信号的起始位置偏移量,接收唤醒信号的DRX周期内偏移量,接收唤醒信号的时间窗口的大小,标记为T1 DRX,T1 offset,T1 shift,W1,及T2 DRX,T2 offset,T2 shift,W2。两个用户组的DRX配置可以相同或不同,T1 offset和T2 offset为相对t0的时间偏移。
假定用户组1中的用户1和2在一段时间内均无数据的接收和发送,因此两个用户将主通信模块关闭或睡眠,通过低功耗唤醒接收模块按照T1 DRX周期监听唤醒信号,即在每个DRX周期醒来监听是否要唤醒主模块。为更准确确定每个DRX周期起始位置的时间,用户在每个公共前导序列的周期醒来监听公共前导序列,在监听公共前导序列和唤醒信号以外的时间用户1和2的低功耗唤醒接收模块处于睡眠状态,从而省电。
假定用户组1采用的专用前导序列为序列1,当用户1和2检测到序列1,并在接收完数据并译码确定唤醒用户标识后,用户标识包含在数据负载中的用户的低功耗唤醒接收模块触发主通信模块醒来进入工作状态,其它用户的低功耗唤醒接收模块进入睡眠状态。
其中用户组与专用前导序列的关联关系可以由基站的高层信令显示配置,还可以通过预设规则计算得到,比如用户1-4根据每个用户的标识,如临时移动签约标识(Temporary Mobile Subscription Identifier,TMSI),采用类似于 寻呼(paging)用户的分组取模运算,得到用户组的标号,在本实施例中假设计算得到标号为1,设定系统中共有一个专用前导序列池,则预设准则可以为从专用前导序列池中选择标号为1的前导序列作为用户组1的专用前导序列。
参照图3c,基站按起始位置t0和周期T preamble发送公共前导序列,同时当需要唤醒用户1和2时,按T1 DRX,T1 offset,T1 shift在用户组1最近的唤醒信号DRX周期发送唤醒信号。用户1和2在主模块关闭或睡眠前已经和基站建立下行同步,因此可以确定一个开始监听公共前导序列的时间为t0+X*T preamble,还可以确定开始监听唤醒信号的时间为t0+T1 offset+T1 shift+X’*T1 DRX,其中X,X’的取值使得开始监听公共前导序列和唤醒信号的时间位置不晚于主模块进入关闭和睡眠状态的时间。
因此,从时刻t0+X*T preamble开始,用户1和2开始每个周期醒来监听公共前导序列,从时刻t0+T1 offset+T1 shift+X’*T1 DRX开始,用户1和2开始每个周期醒来监听唤醒信号。
用户1和2根据在第m-1个周期检测到的公共前导序列,确定得到该序列的起始位置,标记为t’ m-1,则接收端以t’ m-1作为新的参考时间位置,加上一个时间差T gap,得到唤醒信号第n-1个DRX周期监听唤醒信号时间窗的起始位置为t’ n-1=t’ m-1+T gap,其中时间差为T gap=T offset+T shift+(n-2)*T DRX-(m-2)*T preamble-delta。用户1和2在t’ n-1醒来监听唤醒信号,根据检测到的专用前导序列,确定数据负载的符号位置,译码数据,得到数据负载中包含用户1的标识,则用户1触发主通信模块醒来进入工作状态,用户2的低功率唤醒接收模块回到睡眠状态。
为更一步降低低功耗唤醒接收机的功耗,唤醒信号还可以采用如图3d的形式,在专用前导序列前发送一个分节符,在未正确检测到分节符前,低功耗唤醒接收机仅处在能耗非常低的模式,而仅在检测到分节符后才进行前导序列的匹配检测,较一直进行序列检测相比,可进一步降低功耗。
在以上实施例中,前导序列和数据负载可以采用OOK调制方式,因此,为便于接收端时间累计,周期TDRX可以采用OOK符号长度的整数倍的数值。
在本实施例中,一种替代的方法为,发送端不周期性发送公共前导序列,发送端在接收端未发送唤醒信号的DRX周期,发送公共前导序列,接收端仅按照DRX周期醒来接收唤醒信号进行序列检测。接收端不按照T preamble检测公共前导序列。
具体方法为:接收端根据在第n-1个DRX周期检测到的专用前导序列或公共前导序列,确定得到该序列的起始位置,标记为t’ n-1,则接收端以t’ n-1作为新的参考时间位置,加上一个T DRX时间偏移,减去一个delta,得到第n个DRX周期的接收唤醒信号的时间窗的起始位置为t’ n-1+T DRX-delta,其中T DRX为DRX周期的长度,delta为进一步降低低功耗唤醒接收机模块时钟漂移带来的误差影响,delta可以通过网络配置或接收端根据实现方式确定,值大于等于0。
参见图4,本申请实施例提供一种非连续接收装置400,,包括:
第一接收模块401,用于终端周期性从发送端接收前导序列;
确定模块402,用于所述终端根据所述前导序列的时间位置,确定下一个DRX周期接收唤醒信号的时间窗的起始位置。
在一种可能的实施方式中,所述装置还包括:
第二接收模块,用于所述终端从所述发送端接收第一配置,所述第一配置中包括以下一项或者多项:
接收唤醒信号的周期;
接收唤醒信号的起始位置偏移量;
接收唤醒信号的DRX周期内偏移量
接收唤醒信号的时间窗口的大小。
在一种可能的实施方式中,所述前导序列为用于一个或一组终端检测的专用前导序列,或者,所述前导序列为用于多个或多组终端检测的公共前导序列。
在一种可能的实施方式中,所述确定模块,进一步用于:
在所述前导序列为所述专用前导序列的情况下,所述终端根据检测到的当前DRX周期的所述专用前导序列的时间位置,确定下一个DRX周期接收唤醒信号的时间窗的起始位置。
在一种可能的实施方式中,在所述前导序列为所述公共前导序列的情况下,所述第一配置还包括以下一项或者多项:
接收公共前导序列的周期;
接收公共前导序列的起始位置偏移量;
所述确定模块,进一步用于:
在所述前导序列为所述公共前导序列的情况下,所述终端根据检测到的最新的所述公共前导序列的时间位置,确定下一个DRX周期接收唤醒信号的时间窗的起始位置。
在一种可能的实施方式中,所述确定模块,进一步用于:
在两个所述公共前导序列之间,所述终端检测到所述专用前导序列的情况下,所述终端根据所述专用前导序列的时间位置,更新下一个DRX周期接收唤醒信号的时间窗的起始位置。
图5为实现本申请实施例的一种终端的硬件结构示意图。
该终端500包括但不限于:射频单元501、网络模块502、音频输出单元503、输入单元504、传感器505、显示单元506、用户输入单元507、接口单元508、存储器509、以及处理器510等部件。
本领域技术人员可以理解,终端500还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器510逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图5中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元504可以包括图形处理器(Graphics Processing Unit,GPU)5041和麦克风5042,图形处理器5041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元506可包括显示面板5061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板5061。用户输入单元507包括触控面板5061以及其他输入设备5072。触控面板5061,也称为触摸屏。触控面板5061可包括触摸检测装置和触摸控制器两个部分。其他输入设备5072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关 按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元501将来自网络侧设备的下行数据接收后,给处理器510处理;另外,将上行的数据发送给网络侧设备。通常,射频单元501包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器509可用于存储软件程序或指令以及各种数据。存储器509可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器509可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器510可包括一个或多个处理单元;可选的,处理器510可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器510中。
上述处理器510,用于:
终端周期性从发送端接收前导序列;
所述终端根据所述前导序列的时间位置,确定下一个DRX周期接收唤醒信号的时间窗的起始位置。
可选地,所述处理器510,还用于:
所述终端从所述发送端接收第一配置,所述第一配置中包括以下一项或者多项:
接收唤醒信号的周期;
接收唤醒信号的起始位置偏移量;
接收唤醒信号的DRX周期内偏移量
接收唤醒信号的时间窗口的大小。
可选地,所述前导序列为用于一个或一组终端检测的专用前导序列,或者,所述前导序列为用于多个或多组终端检测的公共前导序列。
可选地,所述处理器510,进一步用于:
在所述前导序列为所述专用前导序列的情况下,所述终端根据检测到的当前DRX周期的所述专用前导序列的时间位置,确定下一个DRX周期接收唤醒信号的时间窗的起始位置。
可选地,在所述前导序列为所述公共前导序列的情况下,所述第一配置还包括以下一项或者多项:
接收公共前导序列的周期;
接收公共前导序列的起始位置偏移量;
所述处理器510,进一步用于:
在所述前导序列为所述公共前导序列的情况下,所述终端根据检测到的最新的所述公共前导序列的时间位置,确定下一个DRX周期接收唤醒信号的时间窗的起始位置。
可选地,所述处理器510,进一步用于:
在两个所述公共前导序列之间,所述终端检测到所述专用前导序列的情况下,所述终端根据所述专用前导序列的时间位置,更新下一个DRX周期接收唤醒信号的时间窗的起始位置。
本申请实施例还提供一种程序产品,所述程序产品被存储在非易失的存储介质中,所述程序产品被至少一个处理器执行以实现如图2a所述的方法的步骤。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述图2a所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令, 实现上述图2a所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例还提供了一种通信设备,被配置为执行如上述图2a所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (17)

  1. 一种非连续接收方法,包括:
    终端周期性从发送端接收前导序列;
    所述终端根据所述前导序列的时间位置,确定下一个非连续接收DRX周期接收唤醒信号的时间窗的起始位置。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述终端从所述发送端接收第一配置,所述第一配置中包括以下一项或者多项:
    接收唤醒信号的周期;
    接收唤醒信号的起始位置偏移量;
    接收唤醒信号的DRX周期内偏移量
    接收唤醒信号的时间窗口的大小。
  3. 根据权利要求1所述的方法,其中,所述前导序列为用于一个或一组终端检测的专用前导序列,或者,所述前导序列为用于多个或多组终端检测的公共前导序列。
  4. 根据权利要求3所述的方法,其中,所述终端根据所述前导序列的时间位置,确定下一个非连续接收DRX周期接收唤醒信号的时间窗的起始位置,包括:
    在所述前导序列为所述专用前导序列的情况下,所述终端根据检测到的当前DRX周期的所述专用前导序列的时间位置,确定下一个DRX周期接收唤醒信号的时间窗的起始位置。
  5. 根据权利要求3所述的方法,其中,在所述前导序列为所述公共前导序列的情况下,所述第一配置还包括以下一项或者多项:
    接收公共前导序列的周期;
    接收公共前导序列的起始位置偏移量;
    所述终端根据所述前导序列的时间位置,确定下一个非连续接收DRX周期接收唤醒信号的时间窗的起始位置,包括:
    在所述前导序列为所述公共前导序列的情况下,所述终端根据检测到的 最新的所述公共前导序列的时间位置,确定下一个DRX周期接收唤醒信号的时间窗的起始位置。
  6. 根据权利要求5所述的方法,其中,所述终端根据所述前导序列的时间位置,确定下一个非连续接收DRX周期接收唤醒信号的时间窗的起始位置,还包括:
    在两个所述公共前导序列之间,所述终端检测到所述专用前导序列的情况下,所述终端根据所述专用前导序列的时间位置,更新下一个DRX周期接收唤醒信号的时间窗的起始位置。
  7. 一种非连续接收装置,包括:
    第一接收模块,用于终端周期性从发送端接收前导序列;
    确定模块,用于所述终端根据所述前导序列的时间位置,确定下一个DRX周期接收唤醒信号的时间窗的起始位置。
  8. 根据权利要求7所述的装置,其中,所述装置还包括:
    第二接收模块,用于所述终端从所述发送端接收第一配置,所述第一配置中包括以下一项或者多项:
    接收唤醒信号的周期;
    接收唤醒信号的起始位置偏移量;
    接收唤醒信号的DRX周期内偏移量
    接收唤醒信号的时间窗口的大小。
  9. 根据权利要求7所述的装置,其中,所述前导序列为用于一个或一组终端检测的专用前导序列,或者,所述前导序列为用于多个或多组终端检测的公共前导序列。
  10. 根据权利要求9所述的装置,其中,所述确定模块,进一步用于:
    在所述前导序列为所述专用前导序列的情况下,所述终端根据检测到的当前DRX周期的所述专用前导序列的时间位置,确定下一个DRX周期接收唤醒信号的时间窗的起始位置。
  11. 根据权利要求9所述的装置,其中,在所述前导序列为所述公共前导序列的情况下,所述第一配置还包括以下一项或者多项:
    接收公共前导序列的周期;
    接收公共前导序列的起始位置偏移量;
    所述确定模块,进一步用于:
    在所述前导序列为所述公共前导序列的情况下,所述终端根据检测到的最新的所述公共前导序列的时间位置,确定下一个DRX周期接收唤醒信号的时间窗的起始位置。
  12. 根据权利要求11所述的装置,其中,所述确定模块,进一步用于:
    在两个所述公共前导序列之间,所述终端检测到所述专用前导序列的情况下,所述终端根据所述专用前导序列的时间位置,更新下一个DRX周期接收唤醒信号的时间窗的起始位置。
  13. 一种终端,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,其中,所述程序被所述处理器执行时实现如权利要求1至6中任一项所述的方法的步骤。
  14. 一种可读存储介质,所述可读存储介质上存储程序或指令,其中,所述程序或指令被处理器执行时实现如权利要求1至6中任一项所述的方法的步骤。
  15. 一种芯片,包括处理器和通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至6中任一项所述的方法的步骤。
  16. 一种计算机程序产品,其中,所述计算机程序产品被存储在非易失的存储介质中,所述计算机程序产品被至少一个处理器执行时实现如权利要求1至6中任一项所述的方法的步骤。
  17. 一种通信设备,被配置为执行如权利要求1至6中任一项所述的方法的步骤。
PCT/CN2022/114134 2021-08-30 2022-08-23 非连续接收方法、设备及可读存储介质 WO2023030083A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111005687.4A CN115734401A (zh) 2021-08-30 2021-08-30 非连续接收方法、设备及可读存储介质
CN202111005687.4 2021-08-30

Publications (1)

Publication Number Publication Date
WO2023030083A1 true WO2023030083A1 (zh) 2023-03-09

Family

ID=85290882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114134 WO2023030083A1 (zh) 2021-08-30 2022-08-23 非连续接收方法、设备及可读存储介质

Country Status (2)

Country Link
CN (1) CN115734401A (zh)
WO (1) WO2023030083A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107682921A (zh) * 2017-10-18 2018-02-09 哈尔滨工业大学(威海) 无线终端的低功耗唤醒方法
CN110754120A (zh) * 2017-05-04 2020-02-04 索尼公司 传输包括同步信令的唤醒信号的电信装置和方法
CN111316198A (zh) * 2017-09-07 2020-06-19 Oppo广东移动通信有限公司 非连续接收的方法、网络设备和终端设备
CN111699753A (zh) * 2020-04-30 2020-09-22 北京小米移动软件有限公司 唤醒信号配置、唤醒方法及装置、存储介质
US20210212002A1 (en) * 2018-08-10 2021-07-08 Lenovo (Singapore) Pte. Ltd. Identifying synchronization signal/physical broadcast channel block occasions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110754120A (zh) * 2017-05-04 2020-02-04 索尼公司 传输包括同步信令的唤醒信号的电信装置和方法
CN111316198A (zh) * 2017-09-07 2020-06-19 Oppo广东移动通信有限公司 非连续接收的方法、网络设备和终端设备
CN107682921A (zh) * 2017-10-18 2018-02-09 哈尔滨工业大学(威海) 无线终端的低功耗唤醒方法
US20210212002A1 (en) * 2018-08-10 2021-07-08 Lenovo (Singapore) Pte. Ltd. Identifying synchronization signal/physical broadcast channel block occasions
CN111699753A (zh) * 2020-04-30 2020-09-22 北京小米移动软件有限公司 唤醒信号配置、唤醒方法及装置、存储介质

Also Published As

Publication number Publication date
CN115734401A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
CN106604221B (zh) 一种连接管理的方法、终端以及网络侧设备
US9439147B2 (en) Mechanisms of reducing power consumption for NAN devices
WO2022033425A1 (zh) 非连续发送方法、信号发送处理方法及相关设备
WO2022143861A1 (zh) 能量提供方法、装置及通信设备
US20220070780A1 (en) Communication Method And Device
US20220399973A1 (en) Reference Signal Transmission Method and Related Device
US20160255584A1 (en) User equipment power optimization
CN114980283A (zh) 状态的切换方法及装置、信标信号的发送及装置
WO2023030083A1 (zh) 非连续接收方法、设备及可读存储介质
WO2024017198A1 (zh) 信道信号传输方法及装置、终端及网络侧设备
WO2018171087A1 (zh) 无线唤醒的方法、控制设备和站点设备
WO2023030084A9 (zh) 确定唤醒链路质量的方法、设备及可读存储介质
WO2024002071A1 (zh) 基于lp-wus的寻呼方法、装置、设备、系统及存储介质
WO2022268077A1 (zh) 成功切换报告shr的生成方法、装置、终端及介质
WO2024017051A1 (zh) 唤醒信号监听、监听指示方法、装置、终端及网络侧设备
WO2024056018A1 (zh) 同步信息的获取方法、终端及网络侧设备
WO2023179472A1 (zh) 信息发送方法、信息接收方法、发送端及接收端
WO2023169571A1 (zh) 唤醒信号接收方法、装置、终端及网络侧设备
WO2024027678A1 (zh) 扩展非连续接收的配置方法及装置、通信设备
WO2022257934A1 (zh) Pdcch监听方法、终端及网络侧设备
WO2024002339A1 (zh) 唤醒信号监听方法、装置、电子设备、网络设备及介质
WO2024017052A1 (zh) 唤醒信号监听、监听指示方法、装置、终端及网络侧设备
WO2023280070A1 (zh) 唤醒方法、装置及终端
WO2023169397A1 (zh) 非连续接收drx参数配置方法、装置、终端及网络侧设备
WO2023216985A1 (zh) 信号监听方法、配置方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863222

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022863222

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022863222

Country of ref document: EP

Effective date: 20240402