WO2023029965A1 - 基于双总线控制的灯具电源及照明系统 - Google Patents

基于双总线控制的灯具电源及照明系统 Download PDF

Info

Publication number
WO2023029965A1
WO2023029965A1 PCT/CN2022/112473 CN2022112473W WO2023029965A1 WO 2023029965 A1 WO2023029965 A1 WO 2023029965A1 CN 2022112473 W CN2022112473 W CN 2022112473W WO 2023029965 A1 WO2023029965 A1 WO 2023029965A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
power supply
resistor
control
lamp power
Prior art date
Application number
PCT/CN2022/112473
Other languages
English (en)
French (fr)
Inventor
朱广传
韩全辉
Original Assignee
欧普照明股份有限公司
苏州欧普照明有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧普照明股份有限公司, 苏州欧普照明有限公司 filed Critical 欧普照明股份有限公司
Publication of WO2023029965A1 publication Critical patent/WO2023029965A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/325Pulse-width modulation [PWM]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/355Power factor correction [PFC]; Reactive power compensation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/36Circuits for reducing or suppressing harmonics, ripples or electromagnetic interferences [EMI]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/18Controlling the light source by remote control via data-bus transmission

Definitions

  • the present application relates to the technical field of power supply, in particular to a lamp power supply and lighting system based on dual-bus control.
  • the existing product electronic architecture 100 that can configure control information/data for lamps is shown in Figure 1.
  • the controller electronically configures control information/data for lamps through these two information/data lines.
  • the two separate lines used to configure control information for lamps will only be used when configuring control information/data for lamps, and will not be used at other times, and their utilization rate is very low ;And there is a risk of production adaptation and on-site installation personnel easily confusing input lines, output lines, and configuration lines (that is, if there are more power lead-out lines, it is easier to confuse production adaptation and on-site installation personnel);
  • this method also increases the workload (for example, in order to prevent the two configuration control signal lines from colliding with other lines such as input lines/output lines, protective measures such as wrapping need to be completed); and if the lamp is of high waterproof level If the product has more ports, it will also bring greater difficulty and risk to the waterproof performance of the product.
  • the purpose of this application is that the embodiment of this application provides a lamp power supply and lighting system based on dual-bus control, which aims to directly configure control information/data for lamps through live wire/neutral wire (ie L/N) dual wires , without the need to additionally configure (or introduce) two signal/data lines, which can simplify the structure of the entire lighting power supply, reduce costs, reduce the workload of production personnel (that is, increase the generation rate), and also reduce the workload of on-site installers .
  • live wire/neutral wire ie L/N
  • the embodiment of the present application provides a lamp power supply based on dual-bus control, including an input module for supplying alternating current, a rectification module for converting the input alternating current into direct current, and a
  • the drive module, the input module, the rectifier module and the drive module are connected through a dual bus, and the lamp power supply also includes: a detection module, used to obtain and detect the bus voltage output by the rectifier module; data transmission module, used to transmit configuration control information; a control module, used to send a start signal to the data transmission module when the detection module detects that the bus voltage is lower than the first preset voltage, so as to receive the information provided by the data transmission module configuration control information; wherein, the detection module and the data transmission module are respectively connected to the dual bus through respective wirings, so that both the detection module and the data transmission module are connected to the rectification module.
  • the data transmission module is closed by default.
  • control module can be attached to the drive module or set apart from the drive module.
  • the lamp power supply further includes a filter module, the filter module is arranged between the input module and the rectification module, and is used for filtering alternating current.
  • the lamp power supply further includes a power factor correction module, the power factor correction module is arranged between the rectification module and the driving module, and is used to adjust the power factor received by the driving module.
  • the lamp power supply further includes a power supply module, the power supply module is connected to the dual bus through corresponding wiring, so that the power supply module is connected to the rectification module; the power supply module is used to connect the rectifier
  • the bus voltage provided by the module is adjusted to be a supply voltage to supply power to the control module.
  • control module is further configured to send a shutdown signal to the data transmission module when the detection module detects that the bus voltage is greater than or equal to a first preset voltage, so that the data transmission module enters a shutdown state .
  • control module is further configured to send a control signal to the drive module according to the configuration control information after receiving the configuration control information provided by the data transmission module, so that the drive module responds to The control signal drives the load in the output module, wherein the output module is connected to the driving module through a dual bus.
  • control module includes: a microcontroller, a first regulator tube, a first resistor, a second resistor, a third resistor, a fourth resistor, a fifth resistor, a sixth resistor, a seventh resistor, a first A switch tube, a second switch tube, and a first capacitor; the first end of the first voltage regulator tube is connected to the input end of the control module, and the second end of the first voltage regulator tube is connected to the first voltage regulator tube respectively.
  • the first end of the resistor is connected to the first end of the third resistor; the second end of the first resistor is respectively connected to the first end of the second resistor and the first pin of the microcontroller; the The first end of the second resistor is connected to the first pin of the microcontroller, and the second end of the second resistor is grounded; the second end of the third resistor is connected to the control of the first switch tube respectively.
  • the first terminal is connected to the first terminal of the fourth resistor; the first terminal of the fourth resistor is connected to the control terminal of the first switch tube, and the second terminal of the fourth resistor is grounded; the first switch The first end of the tube is respectively connected to the first end of the sixth resistor and the control end of the second switch tube, and the second end of the first switch tube is grounded; the first end of the sixth resistor is connected to the control terminal of the second switch tube.
  • the control end of the second switch tube is connected, the second end of the sixth resistor is connected to the second pin of the microcontroller; the first end of the second switch tube is connected to the fifth resistor The first end is connected, the second end of the second switch tube is connected to the first end of the seventh resistor; the second end of the fifth resistor is connected to the input end of the control module; the seventh The second end of the resistor is grounded; the seventh pin of the microcontroller is grounded, the eighth pin of the microcontroller is connected to the first end of the first capacitor, and the second end of the first capacitor grounded.
  • the lamp power supply also includes a program data module connected to the dual bus, and the program data module includes a circuit with a burner, and the burner is used to perform programming on a plurality of microcontrollers through a broadcast protocol. recording program, wherein each microcontroller is integrated in the corresponding driver of the driver module.
  • an embodiment of the present application provides a lighting system, which includes the lamp power supply described in any embodiment of the present application and a lamp connected to the lamp power supply.
  • the lighting power supply based on dual-bus control can directly configure control information/data for lighting fixtures, products or equipment through live wire and neutral wire (ie L/N) without additional configuration (or introduction) of two signals.
  • /data line so that the structure can be simplified, the safety risk can be reduced, the wire can be reduced, the risk of wrong wiring can be reduced, and the workload of production personnel and on-site installation personnel can be reduced. The same is true for the lighting system described in the embodiment of the present application.
  • FIG. 1 is a schematic diagram of an existing lamp power supply.
  • FIG. 2 is a schematic structural diagram of a lamp power supply based on dual-bus control provided by an embodiment of the present application.
  • Fig. 3 is a schematic diagram of wiring when the lamp power supply based on dual-bus control is configured with control information according to the embodiment of the present application.
  • Fig. 4 is a schematic diagram of wiring of the lighting power supply based on dual-bus control in normal operation according to the embodiment of the present application.
  • FIG. 5 is a schematic diagram of the circuit connection of the control module shown in FIG. 2 .
  • FIG. 6 is a schematic structural diagram of a lighting power supply based on dual-bus control in another embodiment of the present application.
  • Fig. 7 is a structural diagram of a lighting system provided by an embodiment of the present application.
  • first and second herein are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” or “second” may explicitly or implicitly include one or more of said features. In the description of the present application, “plurality” means two or more, unless otherwise specifically defined.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be mechanically connected, or electrically connected, or can communicate with each other; it can be directly connected, or indirectly connected through an intermediary, and it can be the internal communication of two components or the interaction of two components relation. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
  • FIG. 2 is a schematic structural diagram of a lamp power supply based on dual-bus control provided by an embodiment of the present application.
  • Fig. 3 is a schematic diagram of wiring when the lamp power supply based on dual-bus control is configured with control information according to the embodiment of the present application.
  • Fig. 4 is a schematic diagram of wiring of the lighting power supply based on dual-bus control in normal operation according to the embodiment of the present application.
  • an embodiment of the present application provides a lighting power supply 200 based on dual-bus control, which includes an input module 210 for supplying alternating current and a rectifying module for converting input alternating current into direct current 230.
  • the driving module 250 for controlling load driving.
  • the input module 210, the rectifying module 230 and the driving module 250 are connected through a dual bus 500.
  • the lamp power supply 200 also includes: a detection module 280 for obtaining And detect the bus voltage output by the rectification module 230; the data transmission module 300 is used to transmit configuration control information; the control module 260 is used to send when the detection module 280 detects that the bus voltage is less than the first preset voltage Turn on the signal to the data transmission module 300 to receive the configuration control information provided by the data transmission module 300; The first connection 510 and the third connection 530) are correspondingly connected to the dual bus 500, so that both the detection module 280 and the data transmission module 300 are connected to the rectification module 230.
  • the dual bus 500 described herein refers to a live wire and a neutral (L/N) dual bus
  • the configuration control data line is the wiring for configuring control information or the wiring for configuring control data.
  • the abbreviation of which means that the line can transmit the configured control information, and can also transmit the configured control data, the same below.
  • the lamp power supply 200 based on dual-bus control described in this application can directly configure control information/data for lamps or products or equipment through live wire/neutral wire (ie L/N) dual wires, without additional configuration (or introduction) of two signals /data line, so that the structure can be simplified, the safety risk can be reduced, the wire can be reduced, the risk of wrong wiring can be reduced, and the workload of production personnel and on-site installation personnel can be reduced.
  • live wire/neutral wire ie L/N
  • the lamp power supply 200 based on dual bus control will be further described below with reference to the accompanying drawings.
  • the input module 210 is used to provide alternating current.
  • the rectification module 230 may include a rectification circuit 231 for converting the input AC power into DC power and providing bus voltage for the detection module 280 , the power supply module 290 and the data transmission module 300 described below.
  • the driving module 250 may include a driving PWM (Pulse Width Modulation) circuit, which is used to modulate the width of a series of pulses to obtain the required waveform (including shape and amplitude) equivalently, so as to control the load driving.
  • the input module 210 , the rectification module 230 and the driving module 250 are connected through a dual bus 500 .
  • the dual bus 500 between the input module 210 and the rectifier module 230 may also be referred to as a main electric input line.
  • a filter module 220 is also provided between the input module 210 and the rectifier module 230, and the filter module 220 is connected to the input module 210 and the rectifier module 230 through a dual bus 500 respectively .
  • the filtering module 220 may include a filtering circuit 221 for filtering alternating current.
  • a power factor correction module 240 is also provided between the rectification module 230 and the driving module 250, and the power factor correction module 240 communicates with the rectification module 230 and the The drive module 250 is connected.
  • the power factor correction module 240 includes a power factor correction circuit 241 for adjusting the power factor PF received by the driving module 250 .
  • the lamp power supply 200 further includes a power supply module 290 , and the power supply module 290 is connected to the dual bus 500 through corresponding wiring, so that the power supply module 290 is connected to the rectification module 230 .
  • the power supply module 290 is connected to the rectifier module 230 through the second wire 520 (equivalent to a bus) drawn from the dual bus 500 .
  • the power supply module 290 may include a power supply circuit 291 for adjusting the bus voltage provided by the rectification module 230 to a power supply voltage to supply power to the control module 260 .
  • the lamp power supply 200 further includes: a detection module 280 and a data transmission module 300 .
  • the detection module 280 may include a detection circuit 281 for obtaining and detecting the bus voltage output by the rectification module 230 .
  • the data transmission module 300 may include a data transmission control circuit 301 for transmitting configuration control information.
  • the detection module 280 and the data transmission module 300 are correspondingly connected to the dual bus 500 through respective wirings, so that both the detection module 280 and the data transmission module 300 are connected to the rectification module 230 .
  • the detection module 280 is connected to the rectification module 230 through the first connection 510 (equivalent to a bus) drawn from the dual bus 500 .
  • the data transmission module 300 is connected to the rectification module 230 through a third connection 530 (equivalent to a bus) drawn from the dual bus 500 .
  • the lighting power supply 200 is designed in this way, which can simplify the structure, reduce safety risks, reduce the number of wires, reduce the risk of wrong wiring, and reduce the workload of production personnel and on-site installation personnel.
  • control module 260 is configured to send an enable signal to the data transmission module 300 when the detection module 280 detects that the bus voltage is less than a first preset voltage, so as to receive the The configuration control information provided by the data transmission module 300; the control module 260 is also used to send a shutdown signal to the data transmission module 300 when the detection module 280 detects that the bus voltage is greater than or equal to a first preset voltage, so that the data transmission module 300 enters a closed state.
  • the data transmission module 300 is in an off state by default.
  • the microcontroller 261 or micro control unit, MCU
  • the microcontroller 261 can send a start The signal is sent to the data transmission module 300 to start the data transmission control circuit 301 to make it work.
  • the data transmission control circuit 301 can transmit the configuration control information to the microcontroller 261, so that the microcontroller 261 can control the configuration according to the configuration. information to perform configuration operations, which will be further explained below. And as shown in FIG.
  • the microcontroller 261 when the microcontroller 261 detects that the bus voltage is greater than or equal to the first set value through the detection module 280, the microcontroller 261 can send a closing signal (or an idle signal) to the data transmission module 300 , so that the data transmission control circuit 301 is turned off, and at the same time disconnect the line between the microcontroller 261 and the data transmission control circuit 301 .
  • the microcontroller 261 in the control module 260 After receiving the configuration control information provided by the data transmission module 300, the microcontroller 261 in the control module 260 sends a control signal to the drive module 250 according to the configuration control information, so that the drive module 250 The load in the output module 270 is driven in response to the control signal, wherein the output module 270 is connected to the driving module 250 through a dual bus 500 .
  • the microcontroller 261 controls the drive PWM circuit 251 in the drive module 250 according to these different configuration control information, so that the drive PWM circuit 251 cooperates with the microcontroller 261 When working together, the corresponding output parameters can be output, so as to meet the different needs of different customers.
  • the first set value may be 9V, and in other embodiments, the first set value may be other low voltage values, not limited to 9V. In this embodiment, however, the bus voltage greater than the first set value may be, for example, 36V.
  • control module 260 can be attached to the driving module 250 or set apart from the driving module 250 .
  • control module 260 is attached to the driving module 250 , that is, the two modules are integrated together to form a whole (as shown by the dotted line in FIG. 2 ).
  • the microcontroller 261 in the control module 260 can be integrated into the driver (not shown in the figure) in the driving module 250. Such a design can save the area of the circuit layout and also reduce the cost of materials.
  • FIG. 5 is a schematic diagram of circuit connections of the control module 260 shown in FIG. 2 .
  • the control module 260 may specifically include: a microcontroller 261, a first voltage regulator tube ZD1, a first resistor R1, a second resistor R2, a third resistor R3, a fourth The resistor R4, the fifth resistor R5, the sixth resistor R6, the seventh resistor R7, the first switching tube Q1, the second switching tube Q2 and the first capacitor C1.
  • the first terminal of the first regulator tube ZD1 is connected to the input terminal of the control module 260, and the second terminal of the first regulator tube ZD1 is respectively connected to the first terminal and the third terminal of the first resistor R1.
  • the first end of the resistor R3 is connected.
  • the second terminal of the first resistor R1 is respectively connected to the first terminal of the second resistor R2 and the first pin of the microcontroller 261 .
  • a first end of the second resistor R2 is connected to a first pin of the microcontroller 261 , and a second end of the second resistor R2 is grounded to GND.
  • the second terminal of the third resistor R3 is respectively connected to the control terminal of the first switching transistor Q1 and the first terminal of the fourth resistor R4.
  • a first end of the fourth resistor R4 is connected to the control end of the first switching transistor Q1, and a second end of the fourth resistor R4 is grounded to GND.
  • the first terminal of the first switching transistor Q1 is respectively connected to the first terminal of the sixth resistor R6 and the control terminal of the second switching transistor Q2, and the second terminal of the first switching transistor Q1 is grounded to GND.
  • a first end of the sixth resistor R6 is connected to the control end of the second switch tube Q2 , and a second end of the sixth resistor R6 is connected to the second pin of the microcontroller 261 .
  • a first end of the second switching transistor Q2 is connected to a first end of the fifth resistor R5, and a second end of the second switching transistor Q2 is connected to a first end of the seventh resistor R7.
  • the second end of the fifth resistor R5 is connected to the input end of the control module 260 .
  • the second end of the seventh resistor R7 is grounded to GND.
  • the seventh pin of the microcontroller 261 is grounded to GND, the eighth pin of the microcontroller 261 is connected to the first end of the first capacitor C1, and the second end of the first capacitor C1 is grounded to GND .
  • the first regulator diode ZD1 is used to protect the microcontroller 261 .
  • the first resistor R1 and the second resistor R2 can divide the bus voltage to obtain a TTL level signal, and provide it to the first pin of the microcontroller 261 (that is, the receiving pin, P34 as shown in Figure 5 pin, which is used to receive the sRXD signal).
  • TTL (transistor-transistor logic) level signals are expressed in binary, for example, a low level signal is equivalent to a logic "0" signal, and a high level signal is equivalent to a logic "1" signal.
  • the microcontroller 261 of the control module 260 detects that the bus voltage is less than the first set value, the microcontroller 261 can send a start signal to the data transmission module 300, so that the data transmission control circuit 301 enters the start state. state.
  • the microcontroller 261 Conduction is formed between the second pin (the second pin is a sending pin, such as the P35 pin shown in Figure 5, which is used to send the sTXD signal), the sixth resistor R6 and the first switch tube Q1, this In the process, it is equivalent to the control of the first switch tube Q1, and the potential of the first pin (the first pin is the receiving pin) of the microcontroller 261 is realized from a low potential to a high potential (that is, from "0" to "1”), according to which the configuration control information/data can be transmitted to the microcontroller 261 through the bus.
  • the bus voltage is controlled to be pulled down, that is, when the bus inputs a low-level signal, for example, less than 9V
  • the potential of the common node of the third resistor R3 and the fourth resistor R4 is low, so that the first switching tube Q1 is in the cut-off state
  • the second pin of the microcontroller 261, the sixth resistor R6 and the second switch tube Q2 form a conduction. This process is equivalent to the control of the second switch tube Q2, so that the microcontroller 261 returns data through the bus. This enables two-way communication between the bus and the microcontroller 261 .
  • the microcontroller 261 when the microcontroller 261 detects that the bus voltage is lower than the first set value through the detection module 280, the microcontroller 261 can send a start signal to the data transmission module 300 to turn on the data transmission module 300.
  • the transmission control circuit 301 is made to work. Then use the change of the logic "0" signal received by the microcontroller 261 pin to the logic "1" signal to transmit information to the microcontroller 261 through the bus, and the microcontroller 261 can also return data to the bus. .
  • the bus and the microcontroller 261 can communicate through a specific sequence and protocol, so as to realize data interaction.
  • the microcontroller 261 controls the drive PWM circuit 251 in the drive module 250 according to different configuration control information, so that the drive PWM circuit 251 can output corresponding output parameters when working together with the microcontroller 261, thereby meeting different requirements. Different needs of customers.
  • the lamp power supply 200 described in this application can be configured and designed in this way to directly configure control information/data for lamps or products or equipment without additional configuration of two signal/data lines, thereby simplifying the structure, reducing safety risks, and reducing wires, reduce the risk of misconnection, and reduce the workload of production personnel and on-site installation personnel.
  • the configuration control information (such as the working Parameters, address information of lamps, etc.) are updated online, thereby avoiding the need to disassemble related lamps and related drivers in the prior art, and can achieve the effect of saving manpower and material resources.
  • the lamp power supply 200 further includes a program data module 400 .
  • the program data module 400 is connected to the dual bus (namely, the live wire and neutral wire dual wire in this article).
  • the program data module 400 includes a circuit with a burner 401, which is used to perform a burning program operation on the microcontroller 261 integrated in the driver, that is, parameters or data related to the load can be burned in (for example, the address information of the lamp, the lamp The length of the on/off interval period, etc.), and the information or data associated with the configuration control information can also be programmed.
  • the programmer can be connected to multiple drivers integrated with the microcontroller 261 , and each driver corresponds to a microcontroller 261 .
  • the programmer 401 can use the broadcast protocol to execute the programming operation, so as to realize the simultaneous programming of each microcontroller, or the directional programming of a specified microcontroller, which can improve the programming efficiency.
  • a response protocol can be used to execute the programming operation, thereby ensuring the correctness of the programming data.
  • the working mechanism of the two-way communication between the programmer 401 and the microcontroller 261 can adopt a working mechanism similar to the above-mentioned two-way communication between the bus and the microcontroller 261, that is, the change of the bus voltage ( That is, the change of high and low voltage) to transmit data (such as programming data) or information, when the bus voltage changes from low voltage to high voltage, the programming data is transmitted from the programmer to the microcontroller, and when the bus voltage is lower than the preset
  • the microcontroller 261 returns data through the bus, so that the two-way communication between the programmer and the microcontroller 261 can be realized.
  • the communication method between the programmer 401 and the microcontroller 261 is not limited to this.
  • the lamp power supply 200 can implement a configuration mode in which one programmer corresponds to multiple LED drivers through the programmer 401 and the microcontroller 261 integrated in the driver, thereby improving configuration efficiency and saving manpower and material resources.
  • an embodiment of the present application also provides a lighting system 1000 .
  • Fig. 7 is a structural diagram of a lighting system provided by an embodiment of the present application.
  • the lighting system 1000 in the embodiment of the present application includes the lamp power supply 200 based on dual-bus control described in any embodiment above and the lamp 600 connected to the lamp power supply 200 .
  • the lamp 600 may be an LED lamp, but is not limited thereto, and may also be other lighting lamps matched with the lamp power supply 200 .
  • the lighting system described in this application can also directly configure the control information/data for the lamps through the two-wire line/neutral line, without the need to configure two additional signal/data lines, so that the structure of the entire lighting system can be simplified and the cost can also be reduced .

Abstract

本申请公开一种基于双总线控制的灯具电源及照明系统,包括输入模块、整流模块、驱动模块、检测模块、数据传输模块以及控制模块;当检测模块检测到总线电压小于第一预设电压时,控制模块发送开启信号至数据传输模块;检测模块和数据传输模块通过各自的接线连接至双总线,使得检测模块和数据传输模块均与整流模块连接,实现直接给灯具配置控制信息,无需额外配置信号线,简化结构,降低成本。

Description

基于双总线控制的灯具电源及照明系统
相关申请
本申请要求2021年09月01日申请的,申请号为202111019207.X,名称为“基于双总线控制的灯具电源及照明系统”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及电源技术领域,具体涉及一种基于双总线控制的灯具电源及照明系统。
背景技术
现在的照明电源市场,绝大多数是恒定电流输出,如此设计的好处在于,电子方面相对简单些、成本相对低些。但是,在输出发光二极管(Light Emitting Diode,简称LED)灯为固定的情况下,整个灯的功率、亮度等参数是无法改变的。若对整个灯的功率、亮度等参数有不同需求,于是需要购买、更换其他灯具、电源等方法。为了满足不同需求,也有带可调光的灯具;或是可以给灯具配置控制信息,以调整电子参数来实现不同需求的产品。当然,带可调光的产品,相对成本较高;而可给灯具配置控制信息以调整电子参数来实现不同客户的不同需求的产品,相对成本介于常规产品与可调光产品之间。
现有可给灯具配置控制信息/数据的产品电子架构100如图1所示,在给灯具电子配置控制信息/数据时,是需要额外配置(或引入)单独的两根信息/数据线(其只是配置控制信息之用),控制器通过这两根信息/数据线给灯具电子配置控制信息/数据。
如图1所示,单独的两根用于给灯具配置控制信息的线,只是在给灯具配置控制信息/数据之时会被使用,而在其他时间均不会被使用,其利用率很低;而且存在生产适配、现场安装人员容易将输入线、输出线、配置线这些线混淆的风险(也就是说,若电源引出线越多越容易使得生产适配、现场安装人员产生混淆);此外该方式还增加了工作量(例如,为了避免这两根配置控制信号 线或与输入线/输出线等其他线发生碰线,需要完成包扎等防护措施);而且若灯具为防水等级高的产品,若具有越多的端口,则也会给产品的防水性能带来更大的难度与风险。
因此,需要对现有技术问题提出解决方法。
发明内容
本申请的目的在于,本申请实施例提供一种基于双总线控制的灯具电源及照明系统,其旨在通过火线/零线(即L/N)双线以实现直接给灯具配置控制信息/数据,无需额外配置(或引入)两根信号/数据线,从而能够简化整个灯具电源的结构、降低成本、减轻生产人员的工作量(即提高生成率),而且也能够减轻现场安装人员的工作量。
根据本申请的第一方面,本申请实施例提供一种基于双总线控制的灯具电源,包括用于提供交流电的输入模块、用于将输入的交流电转化为直流电的整流模块、用于控制负载驱动的驱动模块,所述输入模块、所述整流模块和所述驱动模块通过双总线连接,所述灯具电源还包括:检测模块,用于获取并检测所述整流模块所输出的总线电压;数据传输模块,用于传输配置控制信息;控制模块,用于当所述检测模块检测到总线电压小于第一预设电压时,发送开启信号至所述数据传输模块,以接收所述数据传输模块所提供的配置控制信息;其中,所述检测模块和所述数据传输模块分别通过各自的接线相应地连接至所述双总线,使得所述检测模块和所述数据传输模块均与所述整流模块连接。
可选地,所述数据传输模块默认为关闭状态。
可选地,所述控制模块可依附于所述驱动模块设置或分离于所述驱动模块设置。
可选地,所述灯具电源还包括滤波模块,所述滤波模块设置于所述输入模块和所述整流模块之间,用于滤波交流电。
可选地,所述灯具电源还包括功率因素校正模块,所述功率因素校正模块设置于所述整流模块和所述驱动模块之间,用于调整所述驱动模块所接收的功率因素。
可选地,所述灯具电源还包括供电模块,所述供电模块通过相应的接线连 接至所述双总线,使得所述供电模块与所述整流模块连接;所述供电模块用于将所述整流模块所提供的总线电压调整为供电电压,以给所述控制模块供电。
可选地,所述控制模块还用于当所述检测模块检测到总线电压大于或等于第一预设电压时,发送关闭信号至所述数据传输模块,以使所述数据传输模块进入关闭状态。
可选地,所述控制模块还用于在接收到所述数据传输模块所提供的配置控制信息之后,根据所述配置控制信息发送控制信号至所述驱动模块,以使所述驱动模块响应于所述控制信号而驱动输出模块中的负载,其中所述输出模块通过双总线与所述驱动模块连接。
可选地,所述控制模块包括:微控制器、第一稳压管、第一电阻、第二电阻、第三电阻、第四电阻、第五电阻、第六电阻、第七电阻、第一开关管、第二开关管和第一电容;所述第一稳压管的第一端与所述控制模块的输入端连接,所述第一稳压管的第二端分别与所述第一电阻的第一端和第三电阻的第一端连接;所述第一电阻的第二端分别与所述第二电阻的第一端和所述微控制器的第一引脚连接;所述第二电阻的第一端与所述微控制器的第一引脚连接,所述第二电阻的第二端接地;所述第三电阻的第二端分别与所述第一开关管的控制端和所述第四电阻的第一端连接;所述第四电阻的第一端与所述第一开关管的控制端连接,所述第四电阻的第二端接地;所述第一开关管的第一端分别与所述第六电阻的第一端和所述第二开关管的控制端连接,所述第一开关管的第二端接地;所述第六电阻的第一端与所述第二开关管的控制端连接,所述第六电阻的第二端与所述微控制器的第二引脚连接;所述第二开关管的第一端与所述第五电阻的第一端连接,所述第二开关管的第二端与所述第七电阻的第一端连接;所述第五电阻的第二端与所述控制模块的输入端连接;所述第七电阻的第二端接地;所述微控制器的第七引脚接地,所述微控制器的第八引脚与所述第一电容的第一端连接,所述第一电容的第二端接地。
可选地,所述灯具电源还包括连接于双总线的程序数据模块,所述程序数据模块包括具有烧录器的电路,所述烧录器用于通过广播式协议对多个微控制器执行烧录程序的操作,其中每一个微控制器集成于所述驱动模块的相应的驱动器中。
根据本申请的另一方面,本申请一实施例提供了一种照明系统,其包括本申请任一实施例所述的灯具电源以及与所述灯具电源相连的灯具。
本申请实施例所述基于双总线控制的灯具电源通过火线零线(即L/N)双线以实现直接给灯具或产品或设备配置控制信息/数据,无需额外配置(或引入)两根信号/数据线,从而能够简化结构,降低安全风险,而且能够减少线材,降低接错线的风险,以及减轻生产人员和现场安装人员的工作量。本申请实施例所述的照明系统亦是如此。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1为现有的灯具电源的架构示意图。
图2为本申请一实施例所提供的一种基于双总线控制的灯具电源的架构示意图。
图3为本申请所述实施例的基于双总线控制的灯具电源处于配置控制信息时的走线示意图。
图4为本申请所述实施例的基于双总线控制的灯具电源处于正常工作时的走线示意图。
图5为图2所示的控制模块的电路连接示意图。
图6为本申请另一实施例中的基于双总线控制的灯具电源的架构示意图。
图7为本申请一实施例所提供的一种照明系统的架构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
文中的术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、 “第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。
图2为本申请一实施例所提供的一种基于双总线控制的灯具电源的架构示意图。图3为本申请所述实施例的基于双总线控制的灯具电源处于配置控制信息时的走线示意图。图4为本申请所述实施例的基于双总线控制的灯具电源处于正常工作时的走线示意图。
参阅图2至图4所示,本申请一实施例提供了一种基于双总线控制的灯具电源200,其包括用于提供交流电的输入模块210、用于将输入的交流电转化为直流电的整流模块230、用于控制负载驱动的驱动模块250,所述输入模块210、所述整流模块230和所述驱动模块250通过双总线500连接,所述灯具电源200还包括:检测模块280,用于获取并检测所述整流模块230所输出的总线电压;数据传输模块300,用于传输配置控制信息;控制模块260,用于当所述检测模块280检测到总线电压小于第一预设电压时,发送开启信号至所述数据传输模块300,以接收所述数据传输模块300所提供的配置控制信息;其中,所述检测模块280和所述数据传输模块300分别通过各自的接线(如图2所示的第一接线510,第三接线530)相应地连接至所述双总线500,使得所述检测模块280和所述数据传输模块300均与所述整流模块230连接。
需说明的是,本文中所述的双总线500是指火线和零线(L/N)双总线, 配置控制数据线为用于配置控制信息的接线或用于配置控制数据的接线这两者的简称,即表示该线可以传输所配置的控制信息,也可以传输所配置的控制数据,下文相同。
本申请所述基于双总线控制的灯具电源200通过火线/零线(即L/N)双线以实现直接给灯具或产品或设备配置控制信息/数据,无需额外配置(或引入)两根信号/数据线,从而能够简化结构,降低安全风险,而且能够减少线材,降低接错线的风险,以及减轻生产人员和现场安装人员的工作量。
以下将结合附图进一步描述基于双总线控制的灯具电源200。
具体地,所述输入模块210用于提供交流电。所述整流模块230可以包括整流电路231,用于将输入的交流电转化为直流电,并且为下文所述的检测模块280、供电模块290及数据传输模块300提供总线电压。所述驱动模块250可以包括驱动PWM(脉冲宽度调制)电路,用于通过一系列脉冲的宽度进行调制,以等效地获得所需要的波形(含形状和幅值),从而控制负载驱动。所述输入模块210、所述整流模块230和所述驱动模块250通过双总线500连接。其中所述输入模块210连接至所述整流模块230之间的双总线500也可以称为主电输入线。
在一些实施例中,在所述输入模块210和所述整流模块230之间还设置有滤波模块220,所述滤波模块220通过双总线500分别与所述输入模块210和所述整流模块230连接。所述滤波模块220可以包括滤波电路221,用于滤波交流电。
在一些实施例中,在所述整流模块230和所述驱动模块250之间还设置有功率因素校正模块240,所述功率因素校正模块240通过双总线500分别与所述整流模块230和所述驱动模块250连接。所述功率因素校正模块240包括功率因素校正电路241,用于调整所述驱动模块250所接收的功率因素PF。
在本实施例中,所述灯具电源200还包括供电模块290,所述供电模块290通过相应的接线连接至所述双总线500,使得所述供电模块290与所述整流模块230连接。换言之,所述供电模块290通过从双总线500所引出的第二接线520(相当于总线)与所述整流模块230连接。所述供电模块290可以包括供电电路291,用于将所述整流模块230所提供的总线电压调整为供电电压,以 给所述控制模块260供电。
继续参阅图2至图4所示,所述灯具电源200还包括:检测模块280和数据传输模块300。其中,所述检测模块280可以包括检测电路281,用于获取并检测所述整流模块230所输出的总线电压。所述数据传输模块300可以包括数据传输控制电路301,用于传输配置控制信息。
其中,所述检测模块280和所述数据传输模块300分别通过各自的接线相应地连接至所述双总线500,使得所述检测模块280和所述数据传输模块300均与所述整流模块230连接。换言之,所述检测模块280通过从双总线500所引出的第一接线510(相当于总线)与所述整流模块230连接。同样,所述数据传输模块300通过从双总线500所引出的第三接线530(相当于总线)与所述整流模块230连接。由于双总线500为已安装的线路,且从双总线500引出接线比较容易,安装/连接比较方便,因此,相较于现有技术中通过设置专属的配置控制数据线相比,本申请所述灯具电源200如此设计,能够简化结构,降低安全风险,而且能够减少线材,降低接错线的风险,以及减轻生产人员和现场安装人员的工作量。
继续参阅图2至图4所示,所述控制模块260用于当所述检测模块280检测到总线电压小于第一预设电压时,发送开启信号至所述数据传输模块300,以接收所述数据传输模块300所提供的配置控制信息;所述控制模块260还用于当所述检测模块280检测到总线电压大于或等于第一预设电压时,发送关闭信号至所述数据传输模块300,以使所述数据传输模块300进入关闭状态。
具体地,所述数据传输模块300默认为关闭状态。如图3所示,当控制模块260中的微控制器261(或称微控制单元,即MCU)通过检测模块280检测到总线电压小于第一设定值时,微控制器261可以发送一开启信号至所述数据传输模块300,以开启数据传输控制电路301,使其工作,之后,数据传输控制电路301可以将配置控制信息传送给微控制器261,从而使得微控制器261可以根据配置控制信息进行配置操作,下文将进一步说明。而如图4所示,当微控制器261通过检测模块280检测到总线电压大于或等于第一设定值时,微控制器261可以发送一关闭信号(或者一空置信号)至所述数据传输模块300,以使数据传输控制电路301处于关闭状态,同时断开微控制器261与数据传输 控制电路301之间的线路。当控制模块260中的微控制器261在接收到所述数据传输模块300所提供的配置控制信息之后,根据所述配置控制信息发送控制信号至所述驱动模块250,以使所述驱动模块250响应于所述控制信号而驱动输出模块270中的负载,其中所述输出模块270通过双总线500与所述驱动模块250连接。由于配置控制信息可以根据不同的需求而相应定制,因此,微控制器261根据这些不同的配置控制信息来控制所述驱动模块250中的驱动PWM电路251,使得驱动PWM电路251配合微控制器261一起工作时可以输出相应的输出参数,从而能够满足不同客户的不同需求。
如上文所述,在本实施例中,第一设定值可以为9V,在其他部分实施例中,第一设定值可以为其他的低电压值,不仅仅限于9V。而在本实施例中,大于第一设定值的总线电压可以例如为36V。
需说明的是,所述控制模块260可依附于所述驱动模块250设置或分离于所述驱动模块250设置。在本实施例中,所述控制模块260依附于所述驱动模块250设置,即这两个模块集成在一起而形成一体(如图2虚线所示)。具体的,控制模块260中的微控制器261可以集成于驱动模块250中的驱动器(图中未示),如此设计,可以节省电路版图的面积,而且也可以降低材料成本。
图5为图2所示的控制模块260的电路连接示意图。
参阅图5所示,在本实施例中,所述控制模块260可以具体包括:微控制器261、第一稳压管ZD1、第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4、第五电阻R5、第六电阻R6、第七电阻R7、第一开关管Q1、第二开关管Q2和第一电容C1。所述第一稳压管ZD1的第一端与所述控制模块260的输入端连接,所述第一稳压管ZD1的第二端分别与所述第一电阻R1的第一端和第三电阻R3的第一端连接。所述第一电阻R1的第二端分别与所述第二电阻R2的第一端和所述微控制器261的第一引脚连接。所述第二电阻R2的第一端与所述微控制器261的第一引脚连接,所述第二电阻R2的第二端接地GND。所述第三电阻R3的第二端分别与所述第一开关管Q1的控制端和所述第四电阻R4的第一端连接。所述第四电阻R4的第一端与所述第一开关管Q1的控制端连接,所述第四电阻R4的第二端接地GND。所述第一开关管Q1的第一端分别与所述第六电阻R6的第一端和所述第二开关管Q2的控制端连接, 所述第一开关管Q1的第二端接地GND。所述第六电阻R6的第一端与所述第二开关管Q2的控制端连接,所述第六电阻R6的第二端与所述微控制器261的第二引脚连接。所述第二开关管Q2的第一端与所述第五电阻R5的第一端连接,所述第二开关管Q2的第二端与所述第七电阻R7的第一端连接。所述第五电阻R5的第二端与所述控制模块260的输入端连接。所述第七电阻R7的第二端接地GND。所述微控制器261的第七引脚接地GND,所述微控制器261的第八引脚与所述第一电容C1的第一端连接,所述第一电容C1的第二端接地GND。
在上述电路中,第一稳压管ZD1用于保护微控制器261。第一电阻R1和第二电阻R2可以对总线电压进行分压操作,以得到TTL电平信号,并提供给微控制器261的第一引脚(即接收引脚,如图5所示的P34引脚,其用于接收sRXD信号)。其中,TTL(晶体管-晶体管逻辑)电平信号以二进制来表示,例如低电平信号相当于逻辑“0”信号,高电平信号相当于逻辑“1”信号。
进一步而言,在控制模块260的微控制器261检测到总线电压小于第一设定值时,微控制器261可以发送一开启信号至所述数据传输模块300,使得数据传输控制电路301进入开启状态。接着,通过总线输入高电平信号,例如为36V时,第三电阻R3和第四电阻R4的公共节点的电位较高,使得第一开关管Q1进入导通状态,此时微控制器261的第二引脚(该第二引脚为发送引脚,如图5所示的P35引脚,其用于发送sTXD信号)、第六电阻R6和第一开关管Q1之间形成导通,这个过程中相当于通过第一开关管Q1的控制,所述微控制器261的第一引脚(该第一引脚为接收引脚)的电位实现由低电位至高电位(即由“0”至“1”)的变化,据此可以通过总线向微控制器261传输配置控制信息/数据。当总线电压被控制拉低,即总线输入低电平信号,例如小于9V时,第三电阻R3和第四电阻R4的公共节点的电位较低,使得第一开关管Q1为截止状态,此时微控制器261的第二引脚、第六电阻R6和第二开关管Q2之间形成导通,这个过程相当于通过第二开关管Q2的控制,使得微控制器261通过总线回传数据,这样就能够实现总线与微控制器261之间的双向通讯。
因此,通过上述的电路设计,可以实现微控制器261通过检测模块280 检测到总线电压小于第一设定值时,微控制器261可以发送一开启信号至所述数据传输模块300,以开启数据传输控制电路301,使其工作。之后利用微控制器261引脚所接收的逻辑“0”信号至逻辑“1”信号的变化,以实现通过总线给微控制器261传输信息,微控制器261随之也可以回传数据至总线。进一步地,总线与微控制器261之间可以通过特定的时序和协议进行通讯,从而实现数据的交互。因此,微控制器261根据不同的配置控制信息来控制所述驱动模块250中的驱动PWM电路251,使得驱动PWM电路251配合微控制器261一起工作时可以输出相应的输出参数,从而能够满足不同客户的不同需求。
本申请所述灯具电源200通过如此配置和设计,可以实现直接给灯具或产品或设备配置控制信息/数据,无需额外配置两根信号/数据线,从而能够简化结构,降低安全风险,而且能够减少线材,降低接错线的风险,以及减轻生产人员和现场安装人员的工作量。
在一些实施例中,微控制器261接收到数据传输控制电路301所发送的配置控制信息后,并根据配置控制信息,对相对应的负载271(例如灯具)的配置控制信息(例如灯具的工作参数、灯具的地址信息等)进行在线更新,从而避免现有技术中需拆卸相关灯具及相关驱动器的情况,而且能够达到节省人力和物力的效果。
如图6所示,在一些实施例中,灯具电源200还包括程序数据模块400。程序数据模块400连接于双总线(即本文中的火线零线双线)。程序数据模块400包括具有烧录器401的电路,用于对集成于驱动器的微控制器261执行烧录程序操作,即可以烧写入与负载相关的参数或数据(例如灯具的地址信息、灯具的点亮/熄灭间隔周期时长等),也可以烧写入与配置控制信息关联的信息或数据。进一步地,当微控制器261的数量为多个时,烧录器可以与集成微控制器261的多个驱动器相连,每一个驱动器对应一个微控制器261。烧录器401可以采用广播式协议来执行烧录程序操作,以实现对每一个微控制器的同时烧录,或者对指定微控制器的定向烧录,这样能够提高烧录效率。此外,在对同一类型微控制器烧录不同程序时,可以采用应答式协议来执行烧录程序操作,从而能够保证烧写数据的正确性。其中,烧录器401与微控制器261之间的双 向通讯的工作机制可以采用类似于上文所述的总线与微控制器261之间的双向通讯的工作机制,即利用总线电压的变化(即高低电压的变化)来传输数据(例如烧录数据)或信息,当总线电压由低电压变为高电压时,从烧录器传输烧写数据至微控制器,而当总线电压低于预设值时(即总线输入低电平信号),于是微控制器261通过总线回传数据,这样就能够实现烧录器与微控制器261之间的双向通讯。当然,烧录器401与微控制器261之间的通信方式也不限于此。这样,灯具电源200通过烧录器401和集成于驱动器的微控制器261,可以实现一个烧录器对应多个LED驱动器的配置模式,从而提高了配置效率,而且节省人力和物力。
基于同一个发明构思,本申请一实施例还提供一种照明系统1000。
图7为本申请一实施例所提供的一种照明系统的架构图。
参阅图7所示,本申请实施例中的照明系统1000包括上文任意实施例所述的基于双总线控制的灯具电源200以及与灯具电源200相连的灯具600。其中,所述灯具电源200的具体结构和功能,请参阅上文的详述,在此不再赘述。所述灯具600可以为LED灯具,但不限于此,也可以为与灯具电源200相配套的其他照明灯具。
本申请所述照明系统也能够通过火线/零线双线以实现直接给灯具配置控制信息/数据,无需额外配置两根信号/数据线,从而能够简化整个照明系统的结构,而且也能够降低成本。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例所提供的一种基于双总线控制的灯具电源及照明系统进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (11)

  1. 一种基于双总线控制的灯具电源,包括用于提供交流电的输入模块、用于将输入的交流电转化为直流电的整流模块、用于控制负载驱动的驱动模块,所述输入模块、所述整流模块和所述驱动模块通过双总线连接,其中,所述灯具电源还包括:
    检测模块,用于获取并检测所述整流模块所输出的总线电压;
    数据传输模块,用于传输配置控制信息;
    控制模块,用于当所述检测模块检测到总线电压小于第一预设电压时,发送开启信号至所述数据传输模块,以接收所述数据传输模块所提供的配置控制信息;
    其中,所述检测模块和所述数据传输模块分别通过各自的接线相应地连接至所述双总线,使得所述检测模块和所述数据传输模块均与所述整流模块连接。
  2. 如权利要求1所述的灯具电源,其中,所述数据传输模块默认为关闭状态。
  3. 如权利要求1所述的灯具电源,其中,所述控制模块可依附于所述驱动模块设置或分离于所述驱动模块设置。
  4. 如权利要求1所述的灯具电源,其中,所述灯具电源还包括滤波模块,所述滤波模块设置于所述输入模块和所述整流模块之间,用于滤波交流电。
  5. 如权利要求1所述的灯具电源,其中,所述灯具电源还包括功率因素校正模块,所述功率因素校正模块设置于所述整流模块和所述驱动模块之间,用于调整所述驱动模块所接收的功率因素。
  6. 如权利要求1所述的灯具电源,其中,所述灯具电源还包括供电模块,所述供电模块通过相应的接线连接至所述双总线,使得所述供电模块与所述整流模块连接;所述供电模块用于将所述整流模块所提供的总线电压调整为供电电压,以给所述控制模块供电。
  7. 如权利要求1所述的灯具电源,其中,所述控制模块还用于当所述检测模块检测到总线电压大于或等于第一预设电压时,发送关闭信号至所述数据 传输模块,以使所述数据传输模块进入关闭状态。
  8. 如权利要求1所述的灯具电源,其中,所述控制模块还用于在接收到所述数据传输模块所提供的配置控制信息之后,根据所述配置控制信息发送控制信号至所述驱动模块,以使所述驱动模块响应于所述控制信号而驱动输出模块中的负载,其中所述输出模块通过双总线与所述驱动模块连接。
  9. 如权利要求1所述的灯具电源,其中,所述控制模块包括:微控制器、第一稳压管、第一电阻、第二电阻、第三电阻、第四电阻、第五电阻、第六电阻、第七电阻、第一开关管、第二开关管和第一电容;所述第一稳压管的第一端与所述控制模块的输入端连接,所述第一稳压管的第二端分别与所述第一电阻的第一端和第三电阻的第一端连接;所述第一电阻的第二端分别与所述第二电阻的第一端和所述微控制器的第一引脚连接;所述第二电阻的第一端与所述微控制器的第一引脚连接,所述第二电阻的第二端接地;所述第三电阻的第二端分别与所述第一开关管的控制端和所述第四电阻的第一端连接;所述第四电阻的第一端与所述第一开关管的控制端连接,所述第四电阻的第二端接地;所述第一开关管的第一端分别与所述第六电阻的第一端和所述第二开关管的控制端连接,所述第一开关管的第二端接地;所述第六电阻的第一端与所述第二开关管的控制端连接,所述第六电阻的第二端与所述微控制器的第二引脚连接;所述第二开关管的第一端与所述第五电阻的第一端连接,所述第二开关管的第二端与所述第七电阻的第一端连接;所述第五电阻的第二端与所述控制模块的输入端连接;所述第七电阻的第二端接地;所述微控制器的第七引脚接地,所述微控制器的第八引脚与所述第一电容的第一端连接,所述第一电容的第二端接地。
  10. 如权利要求1所述的灯具电源,其中,所述灯具电源还包括连接于双总线的程序数据模块,所述程序数据模块包括具有烧录器的电路,所述烧录器用于通过广播式协议对多个微控制器执行烧录程序的操作,其中每一个微控制器集成于所述驱动模块的相应的驱动器中。
  11. 一种照明系统,其中,包括如权利要求1至权利要求10任一项所述的灯具电源以及与所述灯具电源相连的灯具。
PCT/CN2022/112473 2021-09-01 2022-08-15 基于双总线控制的灯具电源及照明系统 WO2023029965A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111019207.XA CN113709943A (zh) 2021-09-01 2021-09-01 基于双总线控制的灯具电源及照明系统
CN202111019207.X 2021-09-01

Publications (1)

Publication Number Publication Date
WO2023029965A1 true WO2023029965A1 (zh) 2023-03-09

Family

ID=78658594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112473 WO2023029965A1 (zh) 2021-09-01 2022-08-15 基于双总线控制的灯具电源及照明系统

Country Status (2)

Country Link
CN (1) CN113709943A (zh)
WO (1) WO2023029965A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113709943A (zh) * 2021-09-01 2021-11-26 欧普照明股份有限公司 基于双总线控制的灯具电源及照明系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203537628U (zh) * 2013-10-31 2014-04-09 辽宁广达电子科技股份有限公司 Led球泡灯智能驱动控制电源
CN107395228A (zh) * 2017-06-15 2017-11-24 深圳市晟碟半导体有限公司 一种控制电源开关进行数据交互的方法及系统
CN110351922A (zh) * 2019-05-30 2019-10-18 鹰潭阳光照明有限公司 一种智能可调光led灯
WO2021031493A1 (zh) * 2019-08-20 2021-02-25 管德贵 一种采用交流斩波传输数据的灯具控制系统
CN213783648U (zh) * 2020-10-20 2021-07-23 深圳市泛邦通用科技有限公司 一种led灯具
CN113709943A (zh) * 2021-09-01 2021-11-26 欧普照明股份有限公司 基于双总线控制的灯具电源及照明系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205491303U (zh) * 2016-01-20 2016-08-17 深圳市科纳实业有限公司 一种led驱动电路和led灯具
CN108599108B (zh) * 2018-04-30 2023-11-17 上海晶丰明源半导体股份有限公司 保护电路、驱动系统、芯片及电路保护方法、驱动方法
CN215647502U (zh) * 2021-09-01 2022-01-25 欧普照明股份有限公司 基于双总线控制的灯具电源及照明系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203537628U (zh) * 2013-10-31 2014-04-09 辽宁广达电子科技股份有限公司 Led球泡灯智能驱动控制电源
CN107395228A (zh) * 2017-06-15 2017-11-24 深圳市晟碟半导体有限公司 一种控制电源开关进行数据交互的方法及系统
CN110351922A (zh) * 2019-05-30 2019-10-18 鹰潭阳光照明有限公司 一种智能可调光led灯
WO2021031493A1 (zh) * 2019-08-20 2021-02-25 管德贵 一种采用交流斩波传输数据的灯具控制系统
CN213783648U (zh) * 2020-10-20 2021-07-23 深圳市泛邦通用科技有限公司 一种led灯具
CN113709943A (zh) * 2021-09-01 2021-11-26 欧普照明股份有限公司 基于双总线控制的灯具电源及照明系统

Also Published As

Publication number Publication date
CN113709943A (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
US6388396B1 (en) Electronic ballast with embedded network micro-controller
CN102548101B (zh) 一种led调光系统
US9681512B1 (en) Combined wireless voltage controlled dimming interface for an LED driver
US9578711B2 (en) LED driver, lighting device and LED based lighting application
CN201403234Y (zh) 用于发光二极管背光系统的接口整合电路及其背光系统
WO2023029965A1 (zh) 基于双总线控制的灯具电源及照明系统
CN101247687A (zh) 发光装置
CN107432065A (zh) Led 驱动器电路、照明装置和驱动方法
CN104429164B (zh) 具有占空比不平衡补偿的用于线对的数字通信接口电路
CN103781227A (zh) 一种基于dali的智能调光led电源装置
CN106105401A (zh) 用于经由主从系统运行照明装置的电路组件
CN204993396U (zh) PoE中央控制模块
CN215647502U (zh) 基于双总线控制的灯具电源及照明系统
CN103561503B (zh) 一种适用于ac切相调光的led驱动电源
CN205468762U (zh) 一种车内氛围灯的控制电路
CN104411072B (zh) Led调光系统
CN102316647A (zh) 一种led灯色温调节驱动器
US20120019158A1 (en) Polarity-reversible dimming controller having function of switching light source
CN209375969U (zh) 一种led光源模组与控制器的组合结构
CN112996187B (zh) 兼容dmx512协议的恒压调光装置及恒压调光灯具系统
CN211457453U (zh) 一种led调光电路及照明设备
CN114678961A (zh) 一种供电控制系统和供电控制方法
US11737188B2 (en) LED-driver with PFC and wired bus interface
CN101577999B (zh) 发光二极管驱动安定系统的电路装置
CN207835884U (zh) 一种红外遥控无级调光控制电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863105

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022863105

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022863105

Country of ref document: EP

Effective date: 20240402