WO2023029952A1 - 一种本地时钟校准方法、用户终端及计算机可读存储介质 - Google Patents

一种本地时钟校准方法、用户终端及计算机可读存储介质 Download PDF

Info

Publication number
WO2023029952A1
WO2023029952A1 PCT/CN2022/112228 CN2022112228W WO2023029952A1 WO 2023029952 A1 WO2023029952 A1 WO 2023029952A1 CN 2022112228 W CN2022112228 W CN 2022112228W WO 2023029952 A1 WO2023029952 A1 WO 2023029952A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
length
base station
system frame
unit period
Prior art date
Application number
PCT/CN2022/112228
Other languages
English (en)
French (fr)
Inventor
王小建
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023029952A1 publication Critical patent/WO2023029952A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present application relates to the technical field of communications, and in particular to a local clock calibration method, a user terminal and a computer-readable storage medium.
  • the clock calibration method adopts Global Navigation Satellite System (GNSS) technology, and GNSS technology requires a dedicated hardware module and antenna, and the cost of clock calibration through GNSS technology is high and the usability is poor. GNSS signals are easily lost indoors or in areas covered by mountainous areas, making online calibration impossible.
  • GNSS Global Navigation Satellite System
  • the main purpose of the embodiments of the present application is to provide a local clock calibration method, a user terminal, and a computer-readable storage medium.
  • an embodiment of the present application provides a method for calibrating a local clock, which is applied to a user terminal UE.
  • the method includes: acquiring a system frame periodically sent by a base station, where the system frame includes a system information block SIB, and the SIB includes The base station sends the first sending moment of the system frame; determines the second sending moment of the base station sending the SIB according to the first sending moment and the frame length of the system frame; according to the periodically obtained The time interval between the second sending moments determines the length of the reference unit period; adjust the frequency of the crystal oscillator of the UE according to the length of the reference unit period and the period length value sent by the base station, so that the local time of the UE The unit period is synchronized with the reference unit period.
  • the embodiment of the present application provides a user terminal, including a memory, a processor, a program stored on the memory and operable on the processor, and a program for implementing the processor and the memory
  • the communication data bus is connected between them, and when the program is executed by the processor, the local clock calibration method as described in the first aspect of the embodiment of the present application is implemented.
  • a computer-readable storage medium wherein the computer-readable storage medium stores a computer-executable program, and the computer-executable program is used to make a computer execute the local clock calibration method of the first aspect above.
  • FIG. 1 is a schematic diagram of an implementation environment provided by an embodiment of the present application.
  • FIG. 2 is a flowchart of a local clock calibration method provided by an embodiment of the present application
  • Fig. 3 is a calculation flow chart of the second sending moment provided by an embodiment of the present application.
  • FIG. 4 is a flow chart for obtaining the length of a reference unit period provided by an embodiment of the present application.
  • FIG. 5 is a flow chart of obtaining information of a system frame provided by an embodiment of the present application.
  • FIG. 6 is a flow chart of obtaining the receiving time provided by an embodiment of the present application.
  • FIG. 7 is a flow chart of calibrating a local clock provided by an embodiment of the present application.
  • FIG. 8 is another flow chart of calibrating a local clock provided by an embodiment of the present application.
  • FIG. 9 is a flow chart of adjusting the crystal oscillator frequency provided by an embodiment of the present application.
  • GNSS global navigation satellite system
  • the embodiment of the present application provides a method for calibrating a local clock applied to a user terminal (User Equipment, UE), which can still calibrate the local clock in an environment with many obstacles and is easily blocked, and has a wide range of application scenarios.
  • UE User Equipment
  • FIG. 1 is a schematic diagram of an implementation environment provided by an embodiment of the present application.
  • the implementation environment includes a base station 101 and several UEs 102 , and the UE 102 communicates with the base station 101 .
  • the UE 102 may be any electronic device capable of communicating with the base station 101, such as a tablet computer, a smart car, a smart TV, an electric car, and the like.
  • the base station 101 can be a 4G base station, a 5G base station or other mobile communication base stations, wherein the 4G base station adopts the Long Term Evolution (LTE) technology, and the 5G base station adopts the New Radio (NR) technology, and the NR technology is mainly used below
  • LTE Long Term Evolution
  • NR New Radio
  • FIG. 2 is a flow chart of a local clock calibration method provided by an embodiment of the present application.
  • the local clock calibration method is performed by the UE.
  • the method includes but is not limited to step S200, step S300, step S400 and step S500 .
  • Step S200 acquiring system frames periodically sent by the base station.
  • system frame in the embodiment of the present application includes a system information block (System Information Block, SIB), and the SIB includes the first sending moment when the base station sends the system frame.
  • SIB System Information Block
  • the system frame contains the SIB, and the SIB is set in the subframe.
  • the SIB contains the first transmission time when the base station sends the system frame.
  • the base station periodically sends the system frame.
  • the UE receives the system frame and obtains the base station.
  • the first sending moment of the system frame wherein the first sending moment is the moment when the base station sends the frame header of the system frame.
  • the base station sends the system frame by broadcasting.
  • the period of sending the system frame is set by the base station. For example, the period can be 640ms, 320ms, etc.
  • the UE When the period of the base station sending the system frame is 640ms, if the UE receives the first A system frame containing the first sending moment, then the UE receives the second system frame containing the first sending moment at 640 ms, where the second first sending moment received by the UE is the same as the received first sending moment The difference between one sending moment is 640ms.
  • Step S300 Determine the second sending time for the base station to send the SIB according to the first sending time and the frame length of the system frame.
  • the frame length of the system frame in this embodiment is 10 ms.
  • the frame length of the system frame can also be 5 ms, 20 ms, etc.
  • the SIB is located at the head, middle, or tail of the system frame.
  • the second sending time for sending the SIB is equal to the first sending time plus half the frame length of the system frame, that is, when the system frame length is 10ms, the second sending moment for sending the SIB is equal to the first sending moment plus 5ms.
  • the SIB in the 4G LTE technology, the SIB is SIB16, and in the 5G NR technology, the SIB is SIB9. In the process of technology development, the SIB can also be SIB20, SIB30, etc.
  • Step S400 Determine the length of the reference unit period according to the periodically obtained time interval between the second sending moments.
  • the UE receives the first second sending moment and the second second sending moment, and records the first second sending moment and the second second sending moment through the number of oscillations of the local clock cycle of the UE. interval, thus obtaining the length of the reference unit period.
  • the interval between the first second sending moment and the second sending moment is 640ms
  • the clock period of the UE is 1us
  • the reference unit period corresponds to 6.4*10 5 clock periods of the UE.
  • the reference unit period may also correspond to 6.5*10 5 clock cycles or 6.3*10 5 clock cycles.
  • the two second sending moments may be second sending moments in two adjacent periods, or may be second sending moments in two non-adjacent sending periods.
  • Step S500 adjusting the frequency of the crystal oscillator of the UE according to the length of the reference unit period and the period length value sent by the base station, so as to synchronize the local time unit period of the UE with the reference unit period.
  • the 640ms duration of the UE's local time unit period corresponds to 6.4*10 5 clock periods of the UE
  • the 640ms duration of the reference unit period corresponds to 6.5*10 5 clock periods of the UE
  • adjust the crystal oscillator frequency of the UE to adjust
  • the 6.4*10 5 clock cycles of the UE after the adjustment are equal to the 6.5*10 5 clock cycles of the UE before the adjustment, so that the local time unit cycle of the UE is synchronized with the reference unit cycle of the base station, and the calibration of the UE clock is realized.
  • the clock period of the UE is the reciprocal of the UE crystal oscillator frequency.
  • the UE adjusts the local time unit period to be the same as the length of the reference unit period.
  • the local time unit period and the reference unit period The phases of the clocks can be the same or different, and the local time unit period and the reference unit period have the same length so that the local time runs at the same speed, thereby realizing the calibration of the local clock running speed.
  • step S300 includes but is not limited to step S310 and step S320 .
  • Step S310 acquiring the time length corresponding to the frame length of the system frame.
  • the UE obtains the frame length of the system frame by receiving an instruction from the base station, or obtains the length of the system frame through the recording of the length of the system frame by the local clock, wherein the instruction for sending the frame length of the system frame by the base station may be the same as that containing the SIB instruction
  • the system frame of the system frame is the same system frame, or it can be a different system frame.
  • the system frame containing the system frame length sent by the base station is different from the system frame containing the SIB
  • the system frame containing the system frame length can be located in the system frame containing the SIB. Before the frame, it can also be located after the system frame containing the SIB.
  • the frame length of the system frame corresponds to a time length of 10ms.
  • the frame length of the system frame can also be 15ms or 20ms.
  • the frame length of the system frame may also be other possible values.
  • Step S320 adding the first sending time and the frame length of the system frame to obtain the second sending time.
  • the first sending time is the sending time of the system frame
  • the SIB is located at the end of the system frame
  • the first sending time is added to the frame length of the system frame to obtain the sending time of the frame end, that is, the time when the base station sends the SIB.
  • step S400 in the embodiment shown in FIG. 2 includes but is not limited to step S410 , step S420 and step S430 .
  • Step S410 acquiring the second sending time in the first cycle.
  • Step S420 acquiring a second sending time within a second period.
  • the second period is after the first period.
  • the base station sends a system frame containing the SIB according to a certain period
  • the first period includes a system frame containing the SIB
  • the second period includes a system frame containing the SIB
  • the first period is the frame obtained by the UE
  • the second period is the period of any system frame including SIB acquired by the UE after the first period
  • the base station sends the period in the first period at 0 seconds
  • the base station sends the system frame at a period of 640ms
  • the time of the system frame including the SIB in the second period sent by the base station can be the 640th ms, the 1280th ms or the 1920th ms, etc.
  • step S430 the length of the reference unit period is obtained according to the time interval between the second sending moment in the second cycle and the second sending moment in the first cycle.
  • the UE when the UE receives the second sending moment in the first period and the second sending moment in the second period, according to the time between the second sending moment in the first period and the second sending moment in the second period of the UE The number of periods of vibration of the crystal oscillator gives the length of the reference unit period.
  • the second period in the embodiment shown in FIG. 2 is adjacent to the first period, and the local clock calibration method provided in the embodiment of the present application further includes steps S600 and S700 .
  • Step S600 acquiring a first frame number of a system frame corresponding to a first period, and determining a second frame number of a system frame corresponding to a second period according to the first frame number.
  • Step S700 determine the information of the system frame corresponding to the second frame number according to the second frame number.
  • the first period is adjacent to the second period
  • the system frame in the first period and the system frame in the second period are two system frames containing SIBs
  • the UE obtains the first period of the system frame in the first period
  • a frame number, the frame number of the second frame is determined according to the first frame number and the sending period of the system frame, so as to realize the reading of the second frame.
  • the first frame number of the system frame is 12300
  • the sending period of the system frame including the SIB is 64 frames
  • the second frame number is 12364.
  • the UE reads the first frame number of the system frame, it directly checks the frame
  • the second sending moment in the second cycle can be obtained by reading the system frame numbered 12364.
  • step S400 in the embodiment shown in FIG. 2 includes but not limited to step S440 , step S450 and step S460 .
  • Step S440 acquiring channel delay.
  • the UE receives the second sending time, records the time t0 when the second sending time is received, sends a reply message to the base station at time t1, and the base station receives the reply message at time t2.
  • the channel delay from the base station to the UE is equal to half of the time difference between time t0 and the second sending time plus the time difference between time t2 and t1, and the base station sends the obtained signal delay to the UE.
  • the method of obtaining the channel delay can also be that the UE sends a message to the base station first, and the base station then sends the time of receiving the UE message and the time of sending the message to the UE, and the UE sends the message according to the time and The delay is calculated from the time of receiving the message.
  • step S450 the second sending time is added to the channel delay to obtain the receiving time.
  • the second sending moment is the moment when the base station sends the SIB
  • the second sending moment plus channel delay is the moment when the UE receives the SIB
  • the receiving moment is the exact time when the base station transmits to the UE.
  • Step S460 determine the length of the reference unit period according to the periodically obtained time difference of the receiving moment.
  • the reference unit period can be obtained by periodically obtaining the time difference between two receiving moments.
  • the UE receives the receiving moment in the first period and the receiving moment in the second period, and obtains the reference unit period according to the number of vibration periods of the crystal oscillator between the receiving moment in the first period and the receiving moment in the second period of the UE.
  • step S500 in the embodiment shown in FIG. 2 adjusts the frequency of the crystal oscillator of the UE according to the length of the reference unit period and the period length value sent by the base station, including the following two methods.
  • step S510 includes but is not limited to step S510 , step S520 and step S530 .
  • Step S510 acquiring a cycle length value sent by the base station, where the cycle length value is a value of a time interval for periodically sending system frames by the base station.
  • the UE obtains the cycle length value sent by the base station, and the cycle length value is the value of the time interval for the base station to periodically send the system frame, and the time interval is equal to the value of the time interval between two adjacent first sending moments, and is also equal to The value of the time interval between two adjacent second sending moments and the time interval for the UE to receive the two adjacent second sending moments.
  • the cycle length value is sent by the base station, where the cycle length value may be carried in the system frame containing the SIB sent by the base station, or may be sent separately by the base station through an additional system frame.
  • the period length value may be multiple values such as 320ms, 640ms, and so on.
  • Step S520 determining the length of a single period of the local clock of the UE according to the length of the reference unit period.
  • one cycle in which the base station periodically sends system frames may include one or more system frames containing SIBs.
  • the cycle length value sent by the base station contains two system frames containing SIBs
  • the cycle length value is two references The length of a single period of the unit period.
  • Step S530 adjusting the frequency of the crystal oscillator so that the length value of a single period of the UE's local time unit period is equal to the period length value.
  • the length value of a single period of the UE's local time unit period can be 500ms, 700ms or 1s, etc., and the frequency of the crystal oscillator is adjusted so that the length value of a single period of the UE's local time unit period is equal to the period length value, thereby Realize the calibration of the local clock on the UE side.
  • the second method includes but is not limited to step S540 , step S550 and step S560 .
  • step S540 the cycle length value sent by the base station is acquired, and the cycle length value is a value of the time interval for periodically sending the system frame by the base station.
  • the UE obtains the cycle length value sent by the base station, and the cycle length value is the value of the time interval for the base station to periodically send the system frame, and the time interval is equal to the value of the time interval between two adjacent first sending moments, and is also equal to The value of the time interval between two adjacent second sending moments and the time interval for the UE to receive the two adjacent second sending moments.
  • step S550 the period to be adjusted of the local clock of the UE is selected according to the cycle length value.
  • the time to be adjusted is selected according to the period length value when the UE local clock is equal to the period length value. For example, if the period length value is 640ms, then 640ms at the current crystal oscillator vibration frequency of the UE is selected as the period to be adjusted. Time to adjust. Since there may be a deviation between the oscillation frequency of the crystal oscillator set on the UE side and the actual oscillation frequency of the crystal oscillator, the length of time to be adjusted set by the UE side is not equal to the time length of the cycle length value. For example, a time of 640ms is selected on the UE side. The segment is used as the duration to be adjusted, and the actual length of the duration to be adjusted may be 630ms or 650ms.
  • Step S560 adjusting the frequency of the crystal oscillator so that the duration to be adjusted is equal to the length of a single period of the reference unit period.
  • the actual length of the time length to be adjusted is different from the actual length of the cycle length value, and the actual length of the time length to be adjusted is equal to the actual length of the cycle length value by adjusting the frequency of the crystal oscillator, thereby realizing the calibration of the local clock of the UE.
  • step S560 in the embodiment shown in FIG. 8 includes but not limited to step S561 and step S562 .
  • Step S561 when the actual length corresponding to the duration to be adjusted is greater than the actual length of the cycle length value, increase the oscillation frequency of the crystal oscillator.
  • the actual length of the duration to be adjusted may be 650ms.
  • Increase the oscillation frequency of the crystal oscillator so that the actual length of the duration to be adjusted gradually approaches 640ms.
  • the actual length of the duration to be adjusted is less than After 640ms, reduce the oscillation frequency of the crystal oscillator so that the actual length of the time to be adjusted gradually approaches 640ms, and stop frequency modulation when the difference between the actual length of the time to be adjusted and the actual length of the cycle length value is less than the preset time length.
  • the actual length of the cycle length value is the time interval between the two first sending moments.
  • Step S562 when the actual length of the duration to be adjusted is smaller than the actual length of the cycle length value, reduce the oscillation frequency of the crystal oscillator.
  • the time period of 640ms is selected on the UE side as the time to be adjusted.
  • the actual length of the time to be adjusted may be 630ms. Reduce the oscillation frequency of the crystal oscillator so that the actual length of the time to be adjusted gradually approaches 640ms.
  • the actual length of the time to be adjusted After 640ms, increase the oscillation frequency of the crystal oscillator so that the actual length of the time to be adjusted gradually approaches 640ms, and stop frequency modulation when the difference between the actual length of the time to be adjusted and the actual length of the cycle length value is less than the preset time length.
  • the embodiment shown in FIG. 6 also includes adjusting the phase of the local time unit period according to the receiving moment so that the local time unit period is in phase with the reference unit period.
  • the UE adjusts the phase of the local time unit period according to the phase of the reference unit period acquired at the receiving time, so as to realize the calibration of the time of the local clock. For example, if the phase of the reference unit period at the receiving time is 0 degrees and the phase of the local time unit period is 135 degrees, then the phase of the local time unit period is adjusted so that the phase of the local time unit period is the same as that of the reference unit period.
  • another embodiment of the present application also provides a user terminal, where the user terminal includes: a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • the processor and memory can be connected by a data bus or otherwise.
  • memory can be used to store non-transitory software programs and non-transitory computer-executable programs.
  • the memory may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid-state storage devices.
  • the memory optionally includes memory located remotely from the processor, and these remote memories may be connected to the processor via a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the non-transitory software programs and instructions required to realize the local clock calibration method of the above-mentioned embodiment are stored in the memory, and when executed by the processor, the local clock calibration method in the above-mentioned embodiment is executed, for example, executing the above-described Figure 2
  • Method steps S200 to S500 in, method steps S310 and S320 in Fig. 3, method steps S410 to S430 in Fig. 4, method steps S600 and S700 in Fig. 5, method steps S440 to S460 in Fig. 6, Fig. 7 The method steps S510 to S530 in FIG. 8 , the method steps S540 to S560 in FIG. 8 , and the method steps S561 to S562 in FIG. 9 .
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • an embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by a processor or a controller, for example, by the above-mentioned Execution by a processor in the embodiment of the base station can cause the above-mentioned processor to execute the local clock calibration method in the above-mentioned embodiment, for example, execute the method steps S200 to S500 in FIG. 2 described above, the method steps S310 and S320, method steps S410 to S430 in FIG. 4 , method steps S600 and S700 in FIG. 5 , method steps S440 to S460 in FIG. 6 , method steps S510 to S530 in FIG. 7 , method steps S540 to S530 in FIG. 8 S560, method steps S561 to S562 in FIG. 9 .
  • the local clock calibration method provided by the embodiment of the present application has at least the following beneficial effects: receiving the system frame periodically sent by the base station and reading the first sending time contained in the SIB message in the system frame, according to the first sending time and the length of the system frame Determine the second sending moment for sending the SIB, determine the length of the reference unit period according to the time interval between the periodically obtained second sending moments, and adjust the crystal oscillator frequency of the UE according to the length of the reference unit period and the period length value sent by the base station , so that the local time unit period of the UE is consistent with the reference unit period, so as to realize the calibration of the local clock by receiving the time signal of the base station, and enhance the accuracy of the local clock.
  • the embodiment of the present application can receive time information indoors or in areas covered by mountains, so as to realize the calibration of the local clock.
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may be composed of several physical components. Components cooperate to execute.
  • Some or all of the physical components may be implemented as software executed by a processor, such as a central processing unit, digital signal processor, or microprocessor, or as hardware, or as an integrated circuit, such as an application-specific integrated circuit .
  • a processor such as a central processing unit, digital signal processor, or microprocessor
  • Such software may be distributed on computer readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage media includes both volatile and nonvolatile media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data. permanent, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, tape, magnetic disk storage or other magnetic storage devices, or can Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种本地时钟校准方法,应用于用户终端UE,该方法包括:获取基站周期性发送的系统帧,系统帧包括系统消息块SIB,SIB包括基站发送系统帧的第一发送时刻(S200);根据第一发送时刻和系统帧的帧长度确定基站发送SIB的第二发送时刻(S300);根据周期性得到的第二发送时刻之间的时间间隔确定参考单位周期的长度(S400);根据参考单位周期的长度和基站发送的周期长度值调整UE的晶振的频率,以使UE的本地时间单位周期与参考单位周期同步(S500)。

Description

一种本地时钟校准方法、用户终端及计算机可读存储介质
相关申请的交叉引用
本申请基于申请号为202111034407.2、申请日为2021年9月3日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信技术领域,尤其涉及一种本地时钟校准方法、用户终端及计算机可读存储介质。
背景技术
在工业控制、无人汽车、电力通信网等领域要求多个终端间有非常高的同步性,对终端的时钟精准度要求高。相关技术中,时钟校准方法采用全球导航卫星系统(Global Navigation Satellite System,GNSS)技术,而GNSS技术需要专用硬件模组以及天线,通过GNSS技术进行时钟校准需要的成本高且易用性差,遇到室内或者山区遮挡的区域GNSS信号容易造成丢失而导致无法实现在线校准。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例的主要目的在于提出一种本地时钟校准方法、用户终端及计算机可读存储介质。
第一方面,本申请实施例提供了一种本地时钟校准方法,应用于用户终端UE,该方法包括:获取基站周期性发送的系统帧,所述系统帧包括系统消息块SIB,所述SIB包括所述基站发送所述系统帧的第一发送时刻;根据所述第一发送时刻和所述系统帧的帧长度确定所述基站发送所述SIB的第二发送时刻;根据周期性得到的所述第二发送时刻之间的时间间隔确定参考单位周期的长度;根据所述参考单位周期的长度和所述基站发送的周期长度值调整所述UE的晶振的频率,以使所述UE的本地时间单位周期与所述参考单位周期同步。
第二方面,本申请实施例提供了一种用户终端,包括存储器、处理器、存储在所述存储器上并可在所述处理器上运行的程序以及用于实现所述处理器和所述存储器之间的连接通信的数据总线,所述程序被所述处理器执行时实现如本申请实施例第一方面所述的本地时钟校准方法。
第三方面,一种计算机可读存储介质,其中,所述计算机可读存储介质存储有计算机可执行程序,所述计算机可执行程序用于使计算机执行上述第一方面的本地时钟校准方法。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
图1是本申请一个实施例提供的实施环境的示意图;
图2是本申请一个实施例提供的本地时钟校准方法的流程图;
图3是本申请一个实施例提供的第二发送时刻的计算流程图;
图4是本申请一个实施例提供的获取参考单位周期的长度的流程图;
图5是本申请一个实施例提供的获取系统帧的信息的流程图;
图6是本申请一个实施例提供的获取接收时刻的流程图;
图7是本申请一个实施例提供的校准本地时钟的流程图;
图8是本申请一个实施例提供的校准本地时钟的另一流程图;
图9是本申请一个实施例提供的调整晶振频率的流程图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,虽然在系统架构示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
相关技术中,对终端的时钟校准采用全球导航卫星系统GNSS技术,而应用GNSS技术需要专用的硬件模组和天线的支持,在室内或山区等易受到遮挡的区域容易接收不到GNSS信号,从而无法进行终端时钟的校准。
本申请实施例提供了一种应用于用户终端(User Equipment,UE)的本地时钟校准方法,在周围障碍物多、易受遮挡的环境中仍然可以进行本地时钟的校准,应用场景较为广泛。
下面结合附图,对本申请实施例作进一步阐述。
如图1所示,图1是本申请实施例提供的实施环境的示意图,该实施环境包括基站101和若干个UE102,UE102与基站101通信连接。其中,UE102可以是任何一种具有与基站101进行通信功能的电子设备,例如平板电脑、智能车机、智能电视、电动汽车等。基站101可以为4G基站、5G基站或者其他移动通信基站,其中,4G基站采用长期演进(Long Term Evolution,LTE)技术,5G基站采用新空口(New Radio,NR)技术,下面以NR技术为主要应用场景对本申请实施例进行详细介绍。
如图2所示,图2是本申请实施例提供的本地时钟校准方法的流程图,该本地时钟校准方法由UE执行,该方法包括但不限于有步骤S200、步骤S300、步骤S400和步骤S500。
步骤S200,获取基站周期性发送的系统帧。
其中,本申请实施例中的系统帧包括系统消息块(System Information Block,SIB),SIB包括基站发送系统帧的第一发送时刻。
可以理解的是,系统帧内包含有SIB,SIB设置在子帧中,SIB包含有基站发送该系统帧的第一发送时刻,基站周期性的发送系统帧,UE接收到系统帧并获取基站发送系统帧的第一发送时刻,其中,第一发送时刻是基站发送系统帧帧头的时刻。基站通过广播的方式发送系 统帧,发送系统帧的周期由基站端进行设置,例如,周期可以为640ms,320ms等,当基站发送系统帧的周期为640ms时,如UE在第0秒接收到第一个包含第一发送时刻的系统帧,则UE在第640ms接收到第二个包含第一发送时刻的系统帧,其中UE接收到的第二个第一发送时刻与接收到的第一个第一发送时刻相差640ms。
步骤S300,根据第一发送时刻和系统帧的帧长度确定基站发送SIB的第二发送时刻。
需要说明的是,本实施例中系统帧的帧长度为10ms,在后续的技术发展中,本领域技术人员可以想到的是,系统帧的帧长还可以为5ms、20ms等。SIB位于系统帧的头部、中部或尾部等区域,当SIB位于系统帧的中部时,发送SIB的第二发送时刻等于第一发送时刻加系统帧的帧长度的一半,即当系统帧长度为10ms,发送SIB的第二发送时刻等于第一发送时刻加5ms。
可以理解的是,在4G的LTE技术中SIB为SIB16,在5G的NR技术中SIB为SIB9,在技术逐渐发展的过程中,SIB还可以为SIB20、SIB30等。
步骤S400,根据周期性得到的第二发送时刻之间的时间间隔确定参考单位周期的长度。
具体地,UE端接收到第一个第二发送时刻和第二个第二发送时刻,通过UE本地的时钟周期的振荡次数记录下第一个第二发送时刻和第二个第二发送时刻的间隔,从而得到参考单位周期的长度。例如,第一个第二发送时刻和第二个发送时刻的间隔为640ms,UE的时钟周期为1us,而参考单位周期对应UE的6.4*10 5个时钟周期,此时,由于UE中晶振的振荡频率不准确,参考单位周期也可能对应6.5*10 5个时钟周期或6.3*10 5个时钟周期。
可以理解的是,两个第二发送时刻可以为相邻的两个周期内的第二发送时刻,也可以为不相邻的两个发送周期内的第二发送时刻。
步骤S500,根据参考单位周期的长度和所述基站发送的周期长度值调整UE的晶振的频率,以使UE的本地时间单位周期与参考单位周期同步。
例如,UE的本地时间单位周期的640ms时长对应UE的时钟周期为6.4*10 5个,而当参考单位周期的640ms时长对应6.5*10 5个UE的时钟周期时,调整UE的晶振频率使调整后UE的6.4*10 5个时钟周期与调整前UE的6.5*10 5个时钟周期的时长相等,从而使UE的本地时间单位周期与基站的参考单位周期同步,实现UE端时钟的校准。
可以理解的是,UE的时钟周期为UE晶振频率的倒数。
可以理解的是,UE端接收到参考单位周期的长度和所述基站发送的周期长度值后将本地时间单位周期调整到与参考单位周期的长度相同,此时,本地时间单位周期与参考单位周期的相位可以相同也可以不同,通过本地时间单位周期与参考单位周期的长度相同,使本地时间的运行速度相同,从而实现本地时钟运行速度的校准。
参照图3,可以理解的是,图2所示的实施例中的SIB位于系统帧的帧尾,步骤S300包括但不限于有步骤S310和步骤S320。
步骤S310,获取系统帧的帧长度对应的时间长度。
具体地,UE端通过接收基站的指令获取系统帧的帧长度,或者通过本地时钟对系统帧的长度的记录获取系统帧的长度,其中,基站发送系统帧的帧长度的指令可以与包含SIB指令的系统帧为同一个系统帧,也可以为不同的系统帧,当基站发送的包含系统帧长度的系统帧与包含SIB的系统帧不同时,包含系统帧长度的系统帧可以位于包含SIB的系统帧前面,也可以位于包含SIB的系统帧后面。
需要说明的是,系统帧的帧长对应的时间长度为10ms,在可变帧长的系统帧中,系统帧的帧长也可以为15ms或20ms,在技术的发展过程中,本领域技术人员可以理解的是系统帧的帧长还可以为其他可能出现的数值。
步骤S320,将第一发送时刻和系统帧的帧长度相加得到第二发送时刻。
具体地,第一发送时刻为系统帧的发送时刻,SIB位于系统帧的帧尾,第一发送时刻加系统帧的帧长得到帧尾的发送时刻,即基站发送SIB的时刻。
参照图4,可以理解的是,图2所示的实施例中的步骤S400包括但不限于有步骤S410、步骤S420以及步骤S430。
步骤S410,获取第一周期内的第二发送时刻。
步骤S420,获取第二周期内的第二发送时刻。
其中,第二周期在第一周期之后。
可以理解的是,基站按照一定的周期发送包含SIB系统帧,第一周期内包括一个包含SIB的系统帧,第二周期内包括一个包含SIB的系统帧,其中,第一周期为UE获取到的任意一个基站发送的包括SIB的系统帧的周期,第二周期为在第一周期后UE获取到的任意一个包括SIB的系统帧的周期,例如,基站在第0秒发送第一个周期中的包含SIB的系统帧,基站发送系统帧的周期为640ms,则基站发送的第二个周期中的包含SIB的系统帧的时间可以为第640ms、第1280ms或第1920ms等。
步骤S430,根据第二周期内的第二发送时刻与第一周期内的第二发送时刻的时间间隔得到参考单位周期的长度。
具体地,UE接收到第一周期内的第二发送时刻和第二周期内的第二发送时刻,根据UE在第一周期内的第二发送时刻和第二周期内的第二发送时刻之间晶振的振动周期的数量得到参考单位周期的长度。
参照图5,可以理解的是,图2所示的实施例中的第二周期与第一周期相邻,本申请实施例提供的本地时钟校准方法还包括步骤S600和S700。
步骤S600,获取对应第一周期的系统帧的第一帧号,根据第一帧号确定对应第二周期的系统帧的第二帧号。
步骤S700,根据第二帧号确定第二帧号对应的系统帧的信息。
应当注意的是,第一周期与第二周期相邻,第一周期内的系统帧和第二周期内的系统帧为两个包含SIB的系统帧,UE获取到第一周期内系统帧的第一帧号,根据第一帧号和系统帧的发送周期确定第二帧的帧号,从而实现对第二帧的读取。例如,系统帧的第一帧号为12300,包含SIB的系统帧的发送周期为64个帧,则第二帧号为12364,UE端读取到系统帧的第一帧号后,直接对帧号为12364的系统帧进行读取即可得到第二周期内的第二发送时刻。
参照图6,图2所示的实施例中的步骤S400包括但不限于有步骤S440、步骤S450以及步骤S460。
步骤S440,获取信道时延。
具体地,UE端接收第二发送时刻,并记录下接收到第二发送时刻的t0时刻,在t1时刻发送向基站发送回复消息,基站在t2时刻接收到回复消息。基站到UE端的信道时延等于t0时刻与第二发送时刻的时间差加t2时刻与t1时刻的时间差后的一半,基站将求取到的信号时延发送至UE端。
可以理解的是,获取信道时延的方法也可以为UE端先发送消息至基站,基站再将接收到UE消息的时间和向UE发送消息的时间发送至UE,UE根据自身发送消息的时间和接收消息的时间求取出时延。
步骤S450,第二发送时刻与信道时延相加得到接收时刻。
具体地,第二发送时刻为基站发送SIB的时刻,第二发送时刻加信道时延为UE端接收到SIB端时刻,接收时刻即基站传输至UE端的准确时间。
步骤S460,根据周期性得到的接收时刻的时间差确定参考单位周期的长度。
可以理解的是,接收时刻的时间由第二发送时刻与信道时延相加得到,第二发送时刻由第一发送时刻与系统帧的帧长相加得到,第一发送时刻为周期性发送的系统帧中携带的时刻,通过周期性得到的两个接收时刻之间的时间差即可得到参考单位周期。UE接收到第一周期内的接收时刻和第二周期内的接收时刻,根据UE在第一周期内的接收时刻和第二周期内的接收时刻之间晶振的振动周期的数量得到参考单位周期。
参照图7和图8,图2所示的实施例中的步骤S500根据参考单位周期的长度和所述基站发送的周期长度值调整UE的晶振的频率的调整方式包括以下两种。
参照图7,方式一,包括但不限于有步骤S510、步骤S520以及步骤S530。
步骤S510,获取基站发送的周期长度值,周期长度值为基站周期性发送系统帧的时间间隔的数值。
具体地,UE获取基站发送的周期长度值,周期长度值为基站周期性发送系统帧的时间间隔的数值,该时间间隔等于两个相邻的第一发送时刻的时间间隔的数值,同时也等于两个相邻的第二发送时刻的时间间隔和UE接收到两个相邻的第二发送时刻的时间间隔的数值。
需要说明的是,周期长度值由基站发送,其中,周期长度值可以携带在基站发送的包含SIB的系统帧中,也可以由基站通过额外的系统帧另行发送。周期长度值可以为320ms、640ms等多个数值。
步骤S520,根据参考单位周期的长度确定UE的本地时钟的单个周期的长度。
具体地,基站周期性发送系统帧的一个周期内可以包括一个或多个包含SIB的系统帧,当基站发送的周期长度值内包含两个包括SIB的系统帧,则周期长度值为两个参考单位周期的单个周期的长度。
步骤S530,调整晶振的频率以使UE的本地时间单位周期的单个周期的长度数值与周期长度值相等。
可以理解的是,UE的本地时间单位周期的单个周期的长度数值可以为500ms、700ms或者1s等,调整晶振的频率使UE的本地时间单位周期的单个周期的长度数值与周期长度值相等,从而实现UE端本地时钟的校准。
参照图8,方式二,包括但不限于有步骤S540、步骤S550以及步骤S560。
步骤S540,获取基站发送的周期长度值,周期长度值为基站周期性发送系统帧的时间间隔的数值。
具体地,UE获取基站发送的周期长度值,周期长度值为基站周期性发送系统帧的时间间隔的数值,该时间间隔等于两个相邻的第一发送时刻的时间间隔的数值,同时也等于两个相邻的第二发送时刻的时间间隔和UE接收到两个相邻的第二发送时刻的时间间隔的数值。
步骤S550,根据周期长度值选取UE的本地时钟的待调整时长。
应当注意的是,根据周期长度值选取UE本地时钟与周期长度值时间长度相等的时间作为待调整时长,例如,周期长度值为640ms,则选取UE端在当前的晶振的振动频率下的640ms作为待调整时长。由于UE端设定的晶振的振荡频率可能与实际的晶振的振荡频率间存在偏差,使UE端设定的待调整时长与周期长度值的时间长度不相等,例如,在UE端选取640ms的时间段作为待调整时长,待调整时长的实际长度可能为630ms或650ms。
步骤S560,调整晶振的频率以使待调整时长与参考单位周期的单个周期的长度相等。
具体地,待调整时长的实际长度与周期长度值的实际长度不同,通过调整晶振的频率,使待调整时长的实际长度与周期长度值的实际长度相等,从而实现UE端本地时钟的校准。
参照图9,可以理解的是,图8所示的实施例中的步骤S560包括但不限于有步骤S561以及步骤S562。
步骤S561,当待调整时长对应的实际长度大于周期长度值的实际长度,增加晶振的振荡频率。
例如,在UE端选取640ms的时间段作为待调整时长,待调整时长的实际长度可能为650ms,增加晶振的振荡频率,使待调整时长的实际长度逐渐接近640ms,当待调整时长的实际长度小于640ms后,减小晶振的振荡频率,使待调整时长的实际长度逐渐接近640ms,当待调整时长的实际长度与周期长度值的实际长度间的差值小于预设时间长度时结束调频。
可以理解的是,周期长度值的实际长度即是两个第一发送时刻的时间间隔。
步骤S562,当待调整时长的实际长度小于周期长度值的实际长度,减小晶振的振荡频率。
例如,在UE端选取640ms的时间段作为待调整时长,待调整时长的实际长度可能为630ms,减小晶振的振荡频率,使待调整时长的实际长度逐渐接近640ms,当待调整时长的实际长度超过640ms后,增加晶振的振荡频率,使待调整时长的实际长度逐渐接近640ms,当待调整时长的实际长度与周期长度值的实际长度间的差值小于预设时间长度时结束调频。
可以理解的是,图6所示的实施例还包括根据接收时刻调整本地时间单位周期的相位以使本地时间单位周期与参考单位周期同相位。
应当注意的是,UE根据接收时刻获取到的参考单位周期的相位调整本地时间单位周期的相位,从而实现本地时钟的时刻的校准。例如,接收时刻参考单位周期的相位为0度,本地时间单位周期的相位为135度,则调整本地时间单位周期的相位,使本地时间单位周期的相位与参考单位周期的相位相同。
另外,本申请的另一个实施例还提供了一种用户终端,该用户终端包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序。
处理器和存储器可以通过数据总线或者其他方式连接。
存储器作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序。此外,存储器可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器可选包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至该处理器。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
实现上述实施例的本地时钟校准方法所需的非暂态软件程序以及指令存储在存储器中,当被处理器执行时,执行上述实施例中的本地时钟校准方法,例如,执行以上描述的图2中的方法步骤S200至S500、图3中的方法步骤S310及S320、图4中的方法步骤S410至S430、 图5中的方法步骤S600及S700、图6中的方法步骤S440至S460、图7中的方法步骤S510至S530、图8中的方法步骤S540至S560、图9中的方法步骤S561至S562。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
此外,本申请的一个实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个处理器或控制器执行,例如,被上述基站实施例中的一个处理器执行,可使得上述处理器执行上述实施例中的本地时钟校准方法,例如,执行以上描述的图2中的方法步骤S200至S500、图3中的方法步骤S310及S320、图4中的方法步骤S410至S430、图5中的方法步骤S600及S700、图6中的方法步骤S440至S460、图7中的方法步骤S510至S530、图8中的方法步骤S540至S560、图9中的方法步骤S561至S562。
本申请实施例提供的本地时钟校准方法,至少具有如下有益效果:接收基站周期性发送的系统帧并读取系统帧内SIB消息包含的第一发送时刻,根据第一发送时刻和系统帧的长度确定发送SIB的第二发送时刻,根据周期性得到的第二发送时刻之间的时间间隔确定参考单位周期的长度,根据参考单位周期的长度和所述基站发送的周期长度值调整UE的晶振频率,使UE的本地时间单位周期与参考单位周期一致,从而实现接收基站的时间信号对本地时钟校准,增强本地时钟的精准度。本申请实施例能够在室内或山区遮挡的区域接收时间信息,从而实现本地时钟的校准。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、设备中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。
在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上参照附图说明了本申请的一些实施例,并非因此局限本申请的权利范围。本领域技术人员不脱离本申请的范围和实质内所作的任何修改、等同替换和改进,均应在本申请的权利范围之内。

Claims (11)

  1. 一种本地时钟校准方法,应用于用户终端UE,所述方法包括:
    获取基站周期性发送的系统帧,所述系统帧包括系统消息块SIB,所述SIB包括所述基站发送所述系统帧的第一发送时刻;
    根据所述第一发送时刻和所述系统帧的帧长度确定所述基站发送所述SIB的第二发送时刻;
    根据周期性得到的所述第二发送时刻之间的时间间隔确定参考单位周期的长度;
    根据所述参考单位周期的长度和所述基站发送的周期长度值调整所述UE的晶振的频率,以使所述UE的本地时间单位周期与所述参考单位周期同步。
  2. 根据权利要求1所述的本地时钟校准方法,其中,所述SIB位于所述系统帧的帧尾,所述根据所述第一发送时刻和所述系统帧的帧长度确定所述基站发送所述SIB的第二发送时刻包括:
    获取所述系统帧的帧长度对应的时间长度;
    将所述第一发送时刻和所述系统帧的帧长度相加得到第二发送时刻。
  3. 根据权利要求1所述的本地时钟校准方法,其中,所述根据周期性得到的所述第二发送时刻之间的时间间隔确定参考单位周期的长度包括:
    获取第一周期内的所述第二发送时刻;
    获取第二周期内的所述第二发送时刻,所述第二周期在所述第一周期之后;
    根据所述第二周期内的所述第二发送时刻与所述第一周期内的所述第二发送时刻的时间间隔得到参考单位周期的长度。
  4. 根据权利要求3所述的本地时钟校准方法,其中,所述第二周期与所述第一周期相邻,所述方法还包括获取对应所述第一周期的所述系统帧的第一帧号,根据所述第一帧号确定对应所述第二周期的所述系统帧的第二帧号;
    根据所述第二帧号确定所述第二帧号对应的所述系统帧的信息。
  5. 根据权利要求1所述的本地时钟校准方法,其中,所述根据周期性得到的所述第二发送时刻之间的时间间隔确定参考单位周期的长度包括:
    获取信道时延;
    所述第二发送时刻与所述信道时延相加得到接收时刻;
    根据周期性得到的所述接收时刻的时间差确定参考单位周期的长度。
  6. 根据权利要求1至5任一所述的本地时钟校准方法,其中,所述根据所述参考单位周期的长度和所述基站发送的周期长度值调整所述UE的晶振的频率包括:
    获取所述基站发送的周期长度值,所述周期长度值为所述基站周期性发送所述系统帧的时间间隔的数值;
    根据所述参考单位周期的长度确定所述UE的本地时钟的单个周期的长度;
    调整所述晶振的频率以使所述UE的本地时间单位周期的单个周期的长度数值与所述周期长度值相等。
  7. 根据权利要求1至5任一所述的本地时钟校准方法,其中,所述根据所述参考单位周期的长度和所述基站发送的周期长度值调整所述UE的晶振的频率包括:
    获取所述基站发送的周期长度值,所述周期长度值为所述基站周期性发送所述系统帧的时间间隔的数值;
    根据所述周期长度值选取所述UE的本地时钟的待调整时长;
    调整所述晶振的频率以使所述待调整时长与所述参考单位周期的单个周期的长度相等。
  8. 根据权利要求7所述的本地时钟校准方法,其中,所述调整所述晶振的频率以使所述待调整时长与所述参考单位周期的单个周期的长度相等包括:
    当所述待调整时长的实际长度大于所述周期长度值的实际长度,增加所述晶振的振荡频率;
    当所述待调整时长的实际长度小于所述周期长度值的实际长度,减小所述晶振的振荡频率。
  9. 根据权利要求5所述的本地时钟校准方法,其中,还包括根据所述接收时刻调整所述本地时间单位周期的相位以使所述本地时间单位周期与所述参考单位周期同相位。
  10. 一种用户终端,其中,包括存储器、处理器、存储在所述存储器上并可在所述处理器上运行的程序以及用于实现所述处理器和所述存储器之间的连接通信的数据总线,所述程序被所述处理器执行时实现如权利要求1至9任一项所述的本地时钟校准方法。
  11. 一种计算机可读存储介质,其中,所述计算机可读存储介质存储有计算机可执行程序,所述计算机可执行程序用于使计算机执行如权利要求1至9任意一项所述的本地时钟校准方法。
PCT/CN2022/112228 2021-09-03 2022-08-12 一种本地时钟校准方法、用户终端及计算机可读存储介质 WO2023029952A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111034407.2 2021-09-03
CN202111034407.2A CN115767705A (zh) 2021-09-03 2021-09-03 一种本地时钟校准方法、用户终端及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2023029952A1 true WO2023029952A1 (zh) 2023-03-09

Family

ID=85331968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112228 WO2023029952A1 (zh) 2021-09-03 2022-08-12 一种本地时钟校准方法、用户终端及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN115767705A (zh)
WO (1) WO2023029952A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116909351B (zh) * 2023-09-14 2023-12-19 深圳扬兴科技有限公司 一种时钟芯片内部时钟精度校正方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102045638A (zh) * 2009-10-09 2011-05-04 中国移动通信集团公司 一种时间同步的方法和设备
CN105188128A (zh) * 2015-08-21 2015-12-23 北京北方烽火科技有限公司 一种无线授时和空口同步方法、基站、通讯设备及系统
US20190306821A1 (en) * 2016-12-20 2019-10-03 Huawei Technologies Co., Ltd. Method and apparatus for determining clock time deviation between terminal and base station
CN111417186A (zh) * 2019-01-07 2020-07-14 华为技术有限公司 一种时间同步方法和装置
CN111989963A (zh) * 2018-04-18 2020-11-24 三星电子株式会社 用于在无线通信系统中发送或接收同步信号的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102045638A (zh) * 2009-10-09 2011-05-04 中国移动通信集团公司 一种时间同步的方法和设备
CN105188128A (zh) * 2015-08-21 2015-12-23 北京北方烽火科技有限公司 一种无线授时和空口同步方法、基站、通讯设备及系统
US20190306821A1 (en) * 2016-12-20 2019-10-03 Huawei Technologies Co., Ltd. Method and apparatus for determining clock time deviation between terminal and base station
CN111989963A (zh) * 2018-04-18 2020-11-24 三星电子株式会社 用于在无线通信系统中发送或接收同步信号的方法和装置
CN111417186A (zh) * 2019-01-07 2020-07-14 华为技术有限公司 一种时间同步方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Base Station (BS) radio transmission and reception (Release 15)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.104, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. V15.0.0, 9 January 2018 (2018-01-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 121, XP051392565 *

Also Published As

Publication number Publication date
CN115767705A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
KR102626661B1 (ko) 무선 네트워크에서의 타이밍 어드밴스 결정
US11700055B2 (en) Timing advance for satellite-based communications using a satellite with enhanced processing capabilities
US11792758B2 (en) Method and device for determining timing advance
CN110876188B (zh) 用户设备参数的确定方法及装置、存储介质、基站
US20160192273A1 (en) System and method for joining neighbor awareness networking hidden clusters
US11576133B2 (en) Timing synchronization of 5G V2X sidelink transmissions
EP3934363A1 (en) Network device for mpdu transmission, computer readable storage medium and computer program
CN115567092A (zh) 卫星通信的方法和装置
US20230247683A1 (en) User equipment, base station, and information transmission method
WO2023029952A1 (zh) 一种本地时钟校准方法、用户终端及计算机可读存储介质
US10425908B2 (en) Methods and apparatus for enabling spontaneous location determination in a scheduled wireless communication environment
CN110710310B (zh) 超级系统帧号确定方法、通信方法及装置
CN110677212A (zh) 一种时间同步方法、装置、系统及计算机存储介质
WO2023051891A1 (en) Uplink synchronization
CN111641937B (zh) 通信系统及第一节点、网关、网络服务器及时间同步方法
CN114389672A (zh) 上行信号发送和接收方法及装置
CN116939873B (zh) 随机接入方法、定时调整方法、基站和设备
WO2022198648A1 (en) Methods for information configuration in wireless communication
WO2023133705A1 (en) Enhancements on uplink synchronization
US20240031964A1 (en) Adjustment method and determination method for transmission timing, and terminal device
WO2022141414A1 (zh) 公共信息的广播方法、装置、设备及介质
WO2022213368A1 (en) Method and apparatus for determining timing advance value
US20240107624A1 (en) Receipt of satellite assistance information at a user equipment configured for discontinuous operation
JP2007300212A (ja) 無線通信システム、無線基地局及び無線基地局の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863092

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022863092

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022863092

Country of ref document: EP

Effective date: 20240327

NENP Non-entry into the national phase

Ref country code: DE