WO2023029545A1 - 中央空调系统处理方法、装置和电子设备 - Google Patents

中央空调系统处理方法、装置和电子设备 Download PDF

Info

Publication number
WO2023029545A1
WO2023029545A1 PCT/CN2022/091246 CN2022091246W WO2023029545A1 WO 2023029545 A1 WO2023029545 A1 WO 2023029545A1 CN 2022091246 W CN2022091246 W CN 2022091246W WO 2023029545 A1 WO2023029545 A1 WO 2023029545A1
Authority
WO
WIPO (PCT)
Prior art keywords
conditioning system
central air
energy consumption
load
energy efficiency
Prior art date
Application number
PCT/CN2022/091246
Other languages
English (en)
French (fr)
Inventor
李元阳
方兴
王聪
黄漫宁
梁锐
阎杰
Original Assignee
上海美控智慧建筑有限公司
广东美的暖通设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海美控智慧建筑有限公司, 广东美的暖通设备有限公司 filed Critical 上海美控智慧建筑有限公司
Priority to EP22862688.3A priority Critical patent/EP4328505A1/en
Publication of WO2023029545A1 publication Critical patent/WO2023029545A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • F24F11/47Responding to energy costs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/58Remote control using Internet communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption

Definitions

  • the present application relates to the technical field of air conditioners, in particular to a central air conditioning system processing method, device and electronic equipment.
  • the energy consumption of the HVAC system in public buildings generally accounts for more than 50% of the total energy consumption of the building.
  • the majority of HVAC systems in public buildings do not have a centralized monitoring system, or the monitoring system is installed but the data is not effectively recorded, which sets up obstacles for evaluating the actual energy efficiency level and energy saving potential of HVAC systems.
  • the energy efficiency evaluation method of the related technology is to connect to the existing building management system (BMS, Building Management System) system, collect operation data for a certain period of time through the BMS, and calculate the operation energy efficiency of the HVAC system.
  • BMS Building Management System
  • the quality of BMS data for most public buildings is poor, which cannot guarantee the accuracy of energy efficiency calculations.
  • the present application provides a central air-conditioning system processing method, device and electronic equipment, so as to improve the accuracy of energy efficiency calculation and accurately evaluate the energy efficiency level of the central air-conditioning system.
  • the central air-conditioning system processing method may include: acquiring the operating temperature data of the central air-conditioning system, and determining the load of the central air-conditioning system based on the operating temperature data; The operating status data of the equipment; input the load and operating status data of the central air-conditioning system into the energy efficiency evaluation model, and output the energy consumption and/or energy efficiency of the central air-conditioning system.
  • the chilled water main pipe of the above-mentioned central air-conditioning system may be provided with a heat meter; the step of obtaining the operating temperature data of the central air-conditioning system may include: obtaining the operating temperature data of the central air-conditioning system collected by the heat meter .
  • the above heat meter may be an ultrasonic heat meter.
  • the above-mentioned building where the central air-conditioning system is installed may be provided with a building management system; the step of obtaining the operating temperature data of the central air-conditioning system may include: obtaining the operating temperature of the central air-conditioning system collected by the building management system data.
  • the load of the central air-conditioning system: Q c ⁇ M ch,des ⁇ (T chw,in -T chw,out ); among them, Q is the load of the central air-conditioning system, c is the specific heat of water, and M ch,des is the central The rated flow rate of the chiller of the air conditioning system, T chw,in is the chilled water inlet temperature, and T chw,out is the chilled water outlet temperature.
  • the above-mentioned step of determining the load of the central air-conditioning system based on the operating temperature data may include: determining the load of each chiller unit of the central air-conditioning system through the following formula: Among them, Q ch,i is the load of the i-th chiller, S i is the pipe network resistance coefficient of the i-th chiller, and k is the total number of chillers in the central air-conditioning system.
  • the above-mentioned step of determining the operating status data of each device of the central air-conditioning system may include: acquiring the image of the equipment status display lights of the central air-conditioning system collected by the camera device; wherein, the central air-conditioning system's The operating status of the equipment corresponds to the color of the equipment status display light; image recognition processing is performed on the image to obtain the operating status data of each equipment of the central air-conditioning system.
  • the electromechanical equipment of the central air-conditioning system may be equipped with a high-voltage control cabinet, and the device status display lamp may be installed on the door of the control cabinet.
  • the above-mentioned camera equipment may be installed on a wall opposite to the control cabinet of the central air-conditioning system, or the camera equipment may be ceiling-mounted in the middle aisle of the control cabinet of the central air-conditioning system.
  • the above-mentioned energy efficiency evaluation model may include an energy consumption evaluation sub-model and an energy efficiency evaluation sub-model; input the load and operating status data of the central air-conditioning system into the energy efficiency evaluation model, and output the energy consumption of the central air-conditioning system
  • the step of energy efficiency may include: input the operating state data of the central air-conditioning system into the energy consumption evaluation sub-model, and output the energy consumption of the central air-conditioning system under the corresponding working conditions of the operating state; and/or, input the central air-conditioning system
  • the load and energy consumption are input into the energy efficiency evaluation sub-model, and the energy efficiency of the central air-conditioning system is output.
  • the above-mentioned step of inputting the operating state data of the central air-conditioning system into the energy consumption evaluation sub-model, and outputting the energy consumption of the central air-conditioning system under the working condition corresponding to the operating state may include:
  • the energy consumption assessment sub-model determines the actual power of the chilled water pump through the following formula: Among them, P chw is the actual power of the chilled water pump, P chw,des,i is the rated power of the i-type chilled water pump, N chw,i is the operating number of the i-type chilled water pump, l is the number of types of chilled water pumps;
  • the consumption evaluation sub-model determines the actual power of the cooling water pump through the following formula: Among them, P cdw is the actual power of the cooling water pump, P cdw,des,i is the rated power of the i-type cooling water pump, N cdw,i is the operating number of the i-type cooling water pump, m is the type number of the cooling water pump;
  • the consumption estimation submodel determines the actual power of the cooling tower by the following formula: Among them, P ct is the actual power of the cooling tower, P ct,des,i is the rated power of the i-type cooling tower,
  • the above-mentioned step of inputting the load and energy consumption of the central air-conditioning system into the energy efficiency assessment sub-model and outputting the energy efficiency of the central air-conditioning system includes: the energy efficiency assessment sub-model determines the central air-conditioning system by the following formula energy efficiency: Among them, COP sys is the energy efficiency of the central air-conditioning system, Q is the load of the central air-conditioning system, and P sys is the energy consumption of the central air-conditioning system.
  • the central air-conditioning system processing method may further include: if the energy efficiency of the central air-conditioning system is less than a preset threshold, adjusting the central air-conditioning system The operating status of each device.
  • a central air-conditioning system processing device which may include: an operating temperature data acquisition module configured to acquire the operating temperature data of the central air-conditioning system, and determine the central air-conditioning system based on the operating temperature data. load; the operating state data determination module is configured to determine the operating state data of each device of the central air-conditioning system; the energy efficiency output module is configured to input the load and operating state data of the central air-conditioning system into the energy efficiency evaluation model, and output Energy consumption and/or energy efficiency of central air conditioning systems.
  • an operating temperature data acquisition module configured to acquire the operating temperature data of the central air-conditioning system, and determine the central air-conditioning system based on the operating temperature data. load
  • the operating state data determination module is configured to determine the operating state data of each device of the central air-conditioning system
  • the energy efficiency output module is configured to input the load and operating state data of the central air-conditioning system into the energy efficiency evaluation model, and output Energy consumption and/or energy efficiency of central air conditioning systems.
  • Some other embodiments of the present application also provide an electronic device, including a processor and a memory, where the memory can store computer-executable instructions that can be executed by the processor, and the processor executes the computer-executable instructions to implement the above-mentioned central Air conditioning system treatment methods.
  • a central air-conditioning system processing method, device, and electronic equipment provided in the embodiments of the present application determine the load of the central air-conditioning system based on the obtained operating temperature data of the central air-conditioning system, and combine the load of the air-conditioning system with the acquired data of the central air-conditioning system
  • the operating status data of the equipment is input into the energy efficiency evaluation model, and the energy consumption and/or energy efficiency of the central air-conditioning system can be output.
  • the rated parameters of the equipment and a small amount of collected data can be used to more accurately evaluate the energy efficiency level of the air conditioning system, thereby improving the accuracy of the energy efficiency calculation of the central air conditioning system.
  • Fig. 1 is the flow chart of a kind of central air-conditioning system processing method provided by the embodiment of the present application;
  • Fig. 2 is a flowchart of another central air-conditioning system processing method provided by the embodiment of the present application.
  • Fig. 3 is a schematic diagram of a heat meter installation method provided by the embodiment of the present application.
  • Fig. 4 is a schematic diagram of the principle of the chilled water side of an air-conditioning machine room provided by the embodiment of the present application;
  • Fig. 5 is a schematic diagram of an equipment strong current control cabinet provided in the embodiment of the present application.
  • FIG. 6 is a schematic diagram of an installation method of a network camera provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another network camera installation method provided by the embodiment of the present application.
  • FIG. 8 is a schematic diagram of a central air-conditioning system processing module provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another central air-conditioning system processing module provided by the embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of a processing device for a central air-conditioning system provided in an embodiment of the present application
  • Fig. 11 is a schematic structural view of another central air-conditioning system processing device provided in the embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the energy efficiency evaluation method of the related technology collects operation data for a certain period of time through the BMS, and calculates the operation energy efficiency of the HVAC system.
  • the quality of BMS data for most public buildings is poor, which cannot guarantee the accuracy of energy efficiency calculations.
  • the embodiment of the present application provides a central air-conditioning system processing method, device and electronic equipment, the method is applied to the server of the central air-conditioning system, and specifically relates to an image recognition-based energy-saving diagnosis method for the air-conditioning system.
  • An embodiment of the present application provides a central air-conditioning system processing method, referring to the flowchart of a central air-conditioning system processing method shown in Figure 1, the central air-conditioning system processing method may include the following steps:
  • Step S102 acquiring the operating temperature data of the central air-conditioning system, and determining the load of the central air-conditioning system based on the operating temperature data.
  • the method provided in this embodiment can be applied to an independent control device, for example, a server of a central air conditioner, or a certain control module of any other device (including the central air conditioner itself), which is not limited in this embodiment.
  • an independent control device for example, a server of a central air conditioner, or a certain control module of any other device (including the central air conditioner itself), which is not limited in this embodiment.
  • the central air-conditioning system in this embodiment may be an HVAC system, and the method provided in this embodiment may be applied to a server.
  • the server may be a physical server or a cloud server, which is not limited in this embodiment.
  • the operating temperature data of the central air-conditioning system may at least include: the inlet water temperature and the return water temperature of each equipment of the central air-conditioning system, wherein, the types of equipment of the central air-conditioning system in this embodiment may include: water chillers, chilled water pumps, cooling Water pumps and cooling towers.
  • the load of the central air-conditioning system in this embodiment may include the cooling capacity of each device of the central air-conditioning system, and may also include the total cooling capacity of each device of the central air-conditioning system.
  • Step S104 determining the operation status data of each equipment of the central air-conditioning system.
  • the operating state of the central air-conditioning system in this embodiment may include: working state, fault state, standby state, and the like.
  • the running state data in this embodiment may be expressed in the form of digital quantities, for example: 1 represents the working state, 0 represents the fault state, and so on.
  • Step S106 input the load and operating state data of the central air-conditioning system into the energy efficiency assessment model, and output the energy consumption and/or energy efficiency of the central air-conditioning system.
  • the energy efficiency evaluation model can be pre-trained and set in the server for evaluating the energy efficiency of the central air-conditioning system, wherein the energy efficiency evaluation model can also include an energy consumption evaluation model, and the energy consumption evaluation model is used to evaluate the energy consumption of the central air-conditioning system.
  • the energy consumption assessment model and the energy efficiency assessment model may be integrated into one neural network model, which is not limited in this embodiment.
  • the energy consumption and energy efficiency of the central air-conditioning system can be output through the energy consumption assessment model and the energy efficiency assessment model, the energy consumption of the central air-conditioning system can also be output only through the energy consumption assessment model, and the central air-conditioning system can also be output only through the energy efficiency assessment model
  • the energy efficiency of the system is not limited in this embodiment.
  • the rated parameters of the equipment can also be input into the energy consumption assessment model and the energy efficiency assessment model, so as to assist in calculating the energy consumption and energy efficiency of the central air-conditioning system.
  • a central air-conditioning system processing method determines the load of the central air-conditioning system based on the obtained operating temperature data of the central air-conditioning system, and combines the load of the air-conditioning system with the obtained operating state data of each device of the central air-conditioning system As input into the energy efficiency evaluation model, the energy consumption and/or energy efficiency of the central air-conditioning system can be output.
  • the rated parameters of the equipment and a small amount of collected data can be used to more accurately evaluate the energy efficiency level of the air conditioning system, thereby improving the accuracy of the energy efficiency calculation of the central air conditioning system.
  • FIG. 1 Another embodiment of the present application provides another central air-conditioning system processing method, which is implemented on the basis of the above-mentioned embodiments, as shown in Figure 2, the flow chart of another central air-conditioning system processing method, in this embodiment
  • the processing method of the central air-conditioning system may include the following steps:
  • Step S202 acquiring the operating temperature data of the central air-conditioning system, and determining the load of the central air-conditioning system based on the operating temperature data.
  • the chilled water main pipe of the central air-conditioning system can be provided with a heat meter. If the method provided in this embodiment is applied to The server and the heat meter can communicate with the server; by installing a heat meter on the chilled water main pipe, the real-time total load of the central air-conditioning system can be obtained, for example: to obtain the operating temperature data of the central air-conditioning system collected by the heat meter.
  • the heat meter can obtain parameters such as chilled water inlet temperature (also called chilled water supply temperature), chilled water outlet temperature (also called chilled water return temperature), and total chilled water flow as operating temperature data.
  • the wireless communication gateway is installed on site, and the real-time data collected by the heat meter can be uploaded to the cloud platform (that is, the server in this embodiment) for calculation of the energy consumption evaluation model and the energy efficiency evaluation model of the air conditioning system.
  • the heat meter is preferably an external clamp type ultrasonic heat meter.
  • the operating temperature data collected by the on-site BMS can be exported or recorded, for example: to obtain the central air-conditioning collected by the building management system System operating temperature data.
  • the operating temperature data may include: chilled water inlet temperature and chilled water outlet temperature
  • Q can be understood as the total load of the air-conditioning system, that is, the sum of the loads of the various equipment of the central air-conditioning system.
  • the rated flow rate of the chiller can be obtained directly from the nameplate of each equipment.
  • the load of the central air-conditioning system can be determined through the following steps: obtain the outdoor wet bulb temperature; input the outdoor wet bulb temperature and chilled water outlet temperature into the pre-trained load forecasting model, and output the central air-conditioning system load.
  • the specific form of the above load forecasting model can be obtained by methods such as linear regression, ridge regression, and Lasso regression.
  • the outdoor wet bulb temperature data can be obtained by calling the meteorological database through the API (Application Programming Interface, application programming interface).
  • the real-time load of the air conditioning system can be predicted more accurately based on the limited data collected.
  • the load of each air-conditioning system equipment can be further divided.
  • the load of each chiller unit of the central air-conditioning system can be determined by the following formula: Among them, Q ch,i is the load of the i-th chiller, S i is the pipe network resistance coefficient of the i-th chiller, and k is the total number of chillers in the central air-conditioning system.
  • FIG. 4 See Figure 4 for a schematic diagram of the principle of the chilled water side of an air-conditioning machine room.
  • Each chiller is connected in series with a chilled water pump, and they are turned on and off at the same time. Assuming that there are k chillers running at the same time, the relationship between the total load of the air conditioning system and the load of each chiller is as follows:
  • Q ch,i is the load of the i-th chiller
  • M ch,i is the rated flow of the i-th chiller (obtained from the equipment nameplate)
  • ⁇ T ch,i is the temperature difference between the supply and return water of the i-th chiller .
  • Si is the resistance coefficient of the pipe network, which can be calculated from the rated parameters of the pump.
  • the load on each chiller can be:
  • Step S204 determining the operation status data of each equipment of the central air-conditioning system.
  • image recognition can be used to determine the operating status data of each equipment of the central air-conditioning system, for example: to obtain the image of the equipment status display lights of the central air-conditioning system collected by the camera equipment; wherein, the operating status of the equipment of the central air-conditioning system is related to The colors of the equipment status display lights correspond to each other; image recognition processing is performed on the image to obtain the operating status data of each equipment of the central air-conditioning system.
  • the electromechanical equipment of the air-conditioning system is generally equipped with a corresponding strong current control cabinet.
  • the control cabinet door is equipped with a status indicator light of the equipment, and the image of the status display light through the camera equipment
  • the screen can identify the real-time operating status of the device, and then output it to the energy efficiency evaluation model of the cloud platform to calculate the operating energy efficiency of the device.
  • the camera equipment can be a network camera, and the network camera can be in the form of pan-tilt-type, gun-type, fish-eye-type, spherical-type, hemispherical-type, etc.
  • the network camera can be used to realize the function of image acquisition and recognition of the control cabinet. By installing network cameras at appropriate locations in the power distribution room, all equipment control cabinets can be covered with as few as possible.
  • the network camera installation method can be divided into two types
  • the camera equipment is installed on the opposite wall of the control cabinet of the central air-conditioning system, or the camera equipment is installed on the ceiling in the middle aisle of the control cabinet of the central air-conditioning system.
  • the control cabinet can be arranged against the wall, and the network camera is installed on the other wall opposite to the control cabinet; or, the control cabinets can be arranged side by side, and the network camera is installed on the ceiling in the middle aisle to ensure that each control cabinet can be covered.
  • the number of network cameras can be determined according to the number and arrangement of field device control cabinets.
  • a 4G/5G gateway can be installed on site to connect with the network camera through the network bus.
  • the video signal of the control cabinet collected by the network camera can be compressed by an efficient compression chip, and transmitted to the cloud platform server through the gateway.
  • the image recognition algorithm deployed on the cloud platform can identify the running/stop status of each device according to the collected image, and make the device run
  • the /stop state is processed into digital quantities and transmitted to the air conditioning system energy consumption evaluation model and energy efficiency evaluation model.
  • the embodiment of the present application proposes an image recognition-based method for identifying the operating state of the air-conditioning system, which can identify the operating state of the air-conditioning system in real time by installing a network camera in the air-conditioning machine room.
  • Step S206 input the load and operating state data of the central air-conditioning system into the energy efficiency evaluation model, and output the energy consumption and/or energy efficiency of the central air-conditioning system.
  • the energy consumption of the central air-conditioning system can also be measured.
  • the energy efficiency assessment model includes the energy consumption assessment sub-model and the energy efficiency assessment sub-model; the energy consumption of the central air-conditioning system can be measured through the following steps: run the central air-conditioning system Input the state data into the energy consumption evaluation sub-model, and output the energy consumption of the central air-conditioning system under the corresponding operating conditions; and/or input the load and energy consumption of the central air-conditioning system into the energy efficiency evaluation sub-model, and output the central air-conditioning system energy efficiency.
  • the energy consumption evaluation sub-model can determine the actual power of the chilled water pump through the following formula: Among them, P chw is the actual power of the chilled water pump, P chw,des,i is the rated power of the i-type chilled water pump, N chw,i is the operating number of the i-type chilled water pump, and l is the number of types of chilled water pumps;
  • the energy consumption evaluation sub-model can determine the actual power of the cooling water pump through the following formula: Among them, P cdw is the actual power of the cooling water pump, P cdw,des,i is the rated power of the i-type cooling water pump, N cdw,i is the operating number of the i-type cooling water pump, and m is the number of types of cooling water pumps;
  • the energy consumption assessment sub-model can determine the actual power of the cooling tower through the following formula: Among them, P ct is the actual power of the cooling tower, P ct,des,i is the rated power of the i-type cooling tower, N ct,i is the operating number of the i-type cooling tower, and n is the number of types of cooling towers;
  • the energy consumption evaluation sub-model can determine the actual power of the chiller through the following formula: Among them, P ch is the actual power of the chiller, Q ch,i is the load of the i-th chiller; T wb is the outdoor wet bulb temperature, and r is the real type number of the chiller;
  • the water-cooled central air-conditioning machine room of public buildings can usually be composed of four types of electromechanical equipment: water chillers, chilled water pumps, cooling water pumps and cooling towers.
  • water chillers For most air-conditioning equipment rooms that need to undergo energy-saving renovation, each equipment in them operates at a fixed frequency.
  • the rated power Pdes of the equipment can be known through on-site investigation of the nameplate parameters of the equipment, so as to establish the energy consumption of chilled water pumps, cooling water pumps, and cooling towers. Evaluate the submodel as follows:
  • P chw is the actual power of the chilled water pump
  • P chw,des,i is the rated power of the i-type chilled water pump
  • N chw,i is the operating number of the i-type chilled water pump
  • l is the number of types of chilled water pumps
  • P cdw is the actual power of the cooling water pump
  • P cdw,des,i is the rated power of the i-type cooling water pump
  • N cdw,i is the operating number of the i-type cooling water pump
  • m is the type number of the cooling water pump
  • P ct is the cooling The actual power of the tower
  • P ct,des,i is the rated power of the i-type cooling tower
  • N ct,i is the operating number of the i-type cooling tower
  • n is the number of types of cooling towers.
  • the operating power is mainly related to the air-conditioning load, chilled water outlet temperature and cooling water return temperature.
  • the chilled water outlet temperature is usually a fixed value (such as 7°C)
  • the difference between the cooling water return water temperature and the outdoor wet bulb temperature is also a fixed value (such as 3°C).
  • the air-conditioning system room consumption model and energy efficiency model are only related to the load of the central air-conditioning system, the outdoor wet-bulb temperature and the operating status of the equipment.
  • the load of the central air-conditioning system can be obtained by the method in the preceding steps, and the outdoor wet-bulb temperature can be obtained through the API
  • the interface calls the meteorological database to obtain, and the operating status of each device in the air-conditioning room is obtained through the method of the foregoing steps.
  • Step S208 if the energy efficiency of the central air-conditioning system is less than the preset threshold, adjust the operating status of each device of the central air-conditioning system.
  • the energy efficiency COP sys of the central air-conditioning system is less than the preset threshold, it means that the central air-conditioning system has a large room for energy-saving improvement.
  • the above threshold can be set to 3.5.
  • Both the energy consumption evaluation model and the energy efficiency evaluation model of the air conditioning system can be deployed on the cloud platform, and the cloud platform is used as a server.
  • the cloud platform converts the monitoring image of the equipment control cabinet into the start-stop status data of the equipment through the image recognition algorithm, and transmits it to the energy consumption evaluation model and energy efficiency evaluation model to obtain the air conditioner Real-time energy consumption and energy efficiency of the computer room.
  • the ultimate goal of air conditioning system control is to ensure the stability of the ambient temperature in the building.
  • wireless temperature sensors are arranged in the building for collection, and the collected temperature is transmitted to the cloud platform through the gateway.
  • the collection of operating parameters collected by the cloud platform from the project site is: ⁇ T in , T wb , Q, N ch , N chw , N cdw , N ct ⁇ .
  • Deploy big data clustering analysis algorithms (such as K-means, DBSCAN, GMM, etc.) on the cloud platform to perform cluster analysis on the operating condition parameters ( ⁇ T in ,T wb ,Q ⁇ ) of the air conditioning system, and obtain N groups of operating condition categories.
  • the operating status data of each device of the central air-conditioning system can be collected through a network camera Collect the operating temperature data of the central air-conditioning system through the heat meter or BMS and calculate the load of the air-conditioning system, collect the indoor temperature through the wireless temperature sensor, and obtain the wet-bulb temperature through the meteorological database.
  • the image recognition algorithm is used in the cloud platform server , energy consumption assessment model and energy efficiency assessment model to calculate the energy efficiency and energy consumption of the central air-conditioning system, and adjust the operating status of each equipment of the central air-conditioning system according to the output results.
  • the above-mentioned method provided by the embodiment of the present application aims at the problem of energy efficiency evaluation in the energy-saving renovation of the existing public building HVAC system, and proposes to evaluate the energy efficiency of the HVAC system by using the equipment energy consumption evaluation model and the system operation status detection method.
  • the equipment energy consumption assessment model includes the chiller energy consumption assessment model, the chilled water pump energy consumption assessment model, the cooling water pump energy consumption assessment model and the cooling tower energy consumption assessment model.
  • the system operation status detection is to install the network camera in the air-conditioning power distribution room to identify the operation status of the equipment in real time, so as to use it as the input of the equipment energy consumption evaluation model to calculate the energy efficiency of the system under different operating conditions.
  • an energy-saving diagnosis method for air-conditioning systems based on image recognition is proposed.
  • the operating status of the air-conditioning system can be judged in real time, and combined with the energy efficiency of the air-conditioning equipment's energy consumption evaluation model, the computer room is more accurate. Evaluate the energy efficiency level of the air-conditioning room.
  • Air conditioning system treatment units may include:
  • the operating temperature data acquisition module 1001 is configured to acquire the operating temperature data of the central air-conditioning system, and determine the load of the central air-conditioning system based on the operating temperature data;
  • the operating state data determining module 1002 is configured to determine the operating state data of each equipment of the central air-conditioning system
  • the energy efficiency output module 1003 is configured to input the load and operating state data of the central air-conditioning system into the energy efficiency evaluation model, and output the energy consumption and/or energy efficiency of the central air-conditioning system.
  • a central air-conditioning system processing device determines the load of the central air-conditioning system based on the acquired operating temperature data of the central air-conditioning system, and combines the load of the air-conditioning system with the acquired operating status data of each device of the central air-conditioning system As input into the energy efficiency evaluation model, the energy consumption and/or energy efficiency of the central air-conditioning system can be output.
  • the rated parameters of the equipment and a small amount of collected data can be used to more accurately evaluate the energy efficiency level of the air conditioning system, thereby improving the accuracy of the energy efficiency calculation of the central air conditioning system.
  • the chilled water main pipe of the above-mentioned central air-conditioning system may be provided with a heat meter; the above-mentioned operating temperature data acquisition module is used to obtain the operating temperature data of the central air-conditioning system collected by the heat meter.
  • the above heat meter is an ultrasonic heat meter.
  • the building where the central air-conditioning system is installed above can be equipped with a building management system; the above-mentioned operating temperature data acquisition module is used to acquire the operating temperature data of the central air-conditioning system collected by the building management system.
  • the above-mentioned operating temperature data may include: chilled water outlet temperature; the above-mentioned operating temperature data acquisition module is configured to obtain the outdoor wet bulb temperature; input the outdoor wet bulb temperature and the chilled water outlet temperature into the pre-trained load forecasting model, and output The load on the central air conditioning system.
  • the above-mentioned operating temperature data acquisition module is configured to determine the load of each chiller of the central air-conditioning system through the following formula: Among them, Q ch,i is the load of the i-th chiller, S i is the pipe network resistance coefficient of the i-th chiller, and k is the total number of chillers in the central air-conditioning system.
  • the above-mentioned operating state data determination module is configured to obtain the image of the equipment status display lamp of the central air-conditioning system collected by the camera device; wherein, the operation status of the equipment of the central air-conditioning system corresponds to the color of the equipment status display lamp; Image recognition processing to obtain the operating status data of each equipment of the central air-conditioning system.
  • the above-mentioned camera equipment can be installed on the wall opposite to the control cabinet of the central air-conditioning system, or the above-mentioned camera equipment can be installed on the ceiling at the middle aisle of the control cabinet of the central air-conditioning system.
  • the above-mentioned energy efficiency evaluation model may include an energy consumption evaluation sub-model and an energy efficiency evaluation sub-model; the above-mentioned energy efficiency output module is configured to input the load and operation status data of the central air-conditioning system into the pre-trained energy consumption evaluation sub-model, and output the central The energy consumption of the air-conditioning system under the working condition corresponding to the operating state; and/or, input the load and energy consumption of the central air-conditioning system into the pre-trained energy efficiency evaluation sub-model, and output the energy efficiency of the central air-conditioning system.
  • the above-mentioned energy efficiency output module is configured to determine the actual power of the chilled water pump through the following formula for the energy consumption assessment sub-model: Among them, P chw is the actual power of the chilled water pump, P chw,des,i is the rated power of the i-type chilled water pump, N chw,i is the operating number of the i-type chilled water pump, l is the number of types of chilled water pumps;
  • the consumption evaluation sub-model determines the actual power of the cooling water pump through the following formula: Among them, P cdw is the actual power of the cooling water pump, P cdw,des,i is the rated power of the i-type cooling water pump, N cdw,i is the operating number of the i-type cooling water pump, m is the type number of the cooling water pump;
  • the consumption estimation submodel determines the actual power of the cooling tower by the following formula: Among them, P ct is the actual power of the cooling tower, P ct,des,i
  • the above-mentioned energy efficiency output module is configured to determine the energy efficiency of the central air-conditioning system by the energy efficiency evaluation sub-model through the following formula: Among them, COP sys is the energy efficiency of the central air-conditioning system, Q is the load of the central air-conditioning system, and P sys is the energy consumption of the central air-conditioning system.
  • the central air-conditioning system processing device may also include: a central air-conditioning system adjustment module 1004, connected to the energy efficiency output module 1003, and the central air-conditioning system adjustment module 1004 is configured as If the energy efficiency of the central air-conditioning system is less than a preset threshold, the operating status of each device of the central air-conditioning system is adjusted.
  • the electronic device may include a memory 100 and a processor 101, wherein The memory 100 may be configured to store one or more computer instructions, and the one or more computer instructions are executed by the processor 101 to implement the above-mentioned central air-conditioning system processing method.
  • the electronic device shown in FIG. 12 may further include a bus 102 and a communication interface 103 , and the processor 101 , the communication interface 103 and the memory 100 may be connected through the bus 102 .
  • the memory 100 may include a high-speed random access memory (RAM, Random Access Memory), and may also include a non-volatile memory (non-volatile memory), such as at least one disk memory.
  • RAM Random Access Memory
  • non-volatile memory such as at least one disk memory.
  • the communication connection between the system network element and at least one other network element is realized through at least one communication interface 103 (which may be wired or wireless), and the Internet, wide area network, local network, metropolitan area network, etc. can be used.
  • the bus 102 may be an ISA bus, a PCI bus, or an EISA bus, etc.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one double-headed arrow is used in FIG. 12 , but it does not mean that there is only one bus or one type of bus.
  • the processor 101 may be an integrated circuit chip with signal processing capability. In the implementation process, each step of the above-mentioned method may be completed by an integrated logic circuit of hardware in the processor 101 or an instruction in the form of software.
  • Above-mentioned processor 101 can be general-purpose processor, comprises central processing unit (Central Processing Unit, be called for short CPU), network processor (Network Processor, be called for short NP) etc.; Can also be Digital Signal Processor (Digital Signal Processor, be called for short DSP) ), Application Specific Integrated Circuit (ASIC for short), Field Programmable Gate Array (Field-Programmable Gate Array, FPGA for short) or other programmable logic devices, discrete gate or transistor logic devices, and discrete hardware components.
  • Central Processing Unit be called for short CPU
  • Network Processor Network Processor
  • NP Network Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, and the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium may be located in the memory 100, and the processor 101 may read information in the memory 100, and complete the steps of the method in the foregoing embodiments in combination with its hardware.
  • the embodiment of the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium can store computer-executable instructions. When the computer-executable instructions are invoked and executed by a processor, the computer-executable instructions can cause processing
  • the device realizes the above-mentioned central air-conditioning system processing method, and the specific implementation may refer to the method embodiment, and details are not repeated here.
  • the central air-conditioning system processing method, device, and computer program product of electronic equipment provided in the embodiments of the present application may include a computer-readable storage medium storing program codes, and the instructions included in the program codes may be used to execute the methods in the previous method embodiments For specific implementation, refer to the method embodiments, and details are not repeated here.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , or integrally connected; may be mechanically connected, may also be electrically connected; may be directly connected, may also be indirectly connected through an intermediary, and may be internal communication between two components.
  • installation should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , or integrally connected; may be mechanically connected, may also be electrically connected; may be directly connected, may also be indirectly connected through an intermediary, and may be internal communication between two components.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .
  • the present application provides a central air-conditioning system processing method, device and electronic equipment.
  • the method includes: obtaining the operating temperature data of the central air-conditioning system, and determining the load of the central air-conditioning system based on the operating temperature data; determining the operating state data of each device of the central air-conditioning system; inputting the load and operating state data of the central air-conditioning system
  • the energy efficiency evaluation model the energy consumption and/or energy efficiency of the central air-conditioning system are output.
  • the rated parameters of the equipment and a small amount of collected data can be used to more accurately evaluate the energy efficiency level of the air conditioning system, thereby improving the accuracy of the energy efficiency calculation of the central air conditioning system.
  • the central air-conditioning system processing method, device and electronic equipment of the present application are reproducible and can be applied in various industrial applications.
  • the central air-conditioning system processing method of the present application can be applied to the field of air conditioners.

Abstract

本申请提供了一种中央空调系统处理方法、装置和电子设备。其中,该方法包括:获取中央空调系统的运行温度数据,并基于运行温度数据确定中央空调系统的负荷;确定中央空调系统的各个设备的运行状态数据;将中央空调系统的负荷和运行状态数据输入能效评估模型中,输出中央空调系统的能耗和/或能效。该方式中可以利用设备的额定参数和少量的采集数据较为准确地评估出空调系统的能效水平,从而提高中央空调系统能效计算的准确性。

Description

中央空调系统处理方法、装置和电子设备
相关申请的交叉引用
本申请要求于2021年9月3日提交中国国家知识产权局的申请号为202111034255.6、名称为“中央空调系统处理方法、装置和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及空调器技术领域,尤其是涉及一种中央空调系统处理方法、装置和电子设备。
背景技术
公共建筑中的暖通空调系统的能耗一般占建筑总能耗的50%以上,是名副其实的用能大户,因此暖通空调系统的节能对建筑节能意义重大。目前绝大多数公共建筑的暖通空调系统没有安装集中监控系统,或者安装有监控系统但是数据没有进行有效记录,为评估暖通空调系统的实际能效水平和节能潜力设置了障碍。
相关技术的能效评估方法是接入既有楼宇管理系统(BMS,Building Management System)系统,通过BMS采集一定时间的运行数据,计算出暖通空调系统的运行能效。然而,大多数公共建筑的BMS数据质量较差,无法保证能效计算的准确性。
发明内容
有鉴于此,本申请提供了一种中央空调系统处理方法、装置和电子设备,以提高能效计算的准确性,准确地评估出中央空调系统的能效水平。
本申请一些实施例提供了一种中央空调系统处理方法,中央空调系统处理方法可以包括:获取中央空调系统的运行温度数据,并基于运行温度数据确定中央空调系统的负荷;确定中央空调系统的各个设备的运行状态数据;将中央空调系统的负荷和运行状态数据输入能效评估模型中,输出中央空调系统的能耗和/或能效。
在本申请可选的实施例中,上述中央空调系统的冷冻水总管可以设置有热量表;获取中央空调系统的运行温度数据的步骤,可以包括:获取热量表采集的中央空调系统的运行温度数据。
在本申请可选的实施例中,上述热量表可以为超声波热量表。
在本申请可选的实施例中,上述安装中央空调系统的楼宇可以设置有楼宇管理系统;获取中央空调系统的运行温度数据的步骤,可以包括:获取楼宇管理系统采集的中央空调系统的运行温度数据。
在本申请可选的实施例中,上述运行温度数据可以包括:冷冻水进水温度和冷冻水出水温度;基于运行温度数据确定中央空调系统的负荷的步骤,可以包括:通过下述算式数据确定中央空调系统的负荷:Q=c×M ch,des×(T chw,in-T chw,out);其中,Q为中央空调系统的负荷,c为水的比热,M ch,des为中央空调系统的冷水机组的额定流量,T chw,in为冷冻水进水温度,T chw,out为冷冻水出水温度。
在本申请可选的实施例中,上述运行温度数据可以包括:冷冻水出水温度;上述基于运行温度数据确定中央空调系统的负荷的步骤,可以包括:获取室外湿球温度;将室外湿球温度和冷冻水出水温度输入负荷预测模型中,输出中央空调系统的负荷。
在本申请可选的实施例中,上述基于运行温度数据确定中央空调系统的负荷的步骤,可以包括:通过下述算式确定中央空调系统的各个冷水机组的负荷:
Figure PCTCN2022091246-appb-000001
其中,Q ch,i为第i台冷水机组的负荷,S i为第i台冷水机组的管网阻力系数,k为中央空调系统的冷水机组的总数。
在本申请可选的实施例中,上述确定中央空调系统的各个设备的运行状态数据的步骤,可以包括:获取摄像设备采集的中央空调系统的设备状态显示灯的图像;其中,中央空调系统的设备的运行状态与设备状态显示灯的颜色相对应;对图像进行图像识别处理,得到中央空调系统的各个设备的运行状态数据。
在本申请可选的实施例中,中央空调系统的机电设备可以配有强电控制柜,所述控制柜的门上可以装有所述设备状态显示灯。
在本申请可选的实施例中,上述摄像设备可以安装在中央空调系统的控制柜相对的墙上,或者,摄像设备可以在中央空调系统的控制柜的中间过道处吊顶安装。
在本申请可选的实施例中,上述能效评估模型可以包括能耗评估子模型和能效评估子模型;将中央空调系统的负荷和运行状态数据输入能效评估模型中,输出中央空调系统的能耗和/或能效的步骤,可以包括:将中央空调系统的运行状态数据输入能耗评估子模型中,输出中央空调系统在运行状态对应的工况下的能耗;和/或,将中央空调系统的负荷和能耗输入能效评估子模型中,输出中央空调系统的能效。
在本申请可选的实施例中,上述将中央空调系统的运行状态数据输入能耗评估子模型中,输出中央空调系统在运行状态对应的工况下的能耗的步骤,可以包括:
能耗评估子模型通过下述算式确定冷冻水泵的实际功率:
Figure PCTCN2022091246-appb-000002
其中,P chw为冷冻水泵的实际功率,P chw,des,i为第i类冷冻水泵的额定功率,N chw,i为第i类冷冻水泵的运行台数,l为冷冻水泵的类型数;能耗评估子模型通过下述算式确定冷却水泵的实际功率:
Figure PCTCN2022091246-appb-000003
其中,P cdw为冷却水泵的实际功率,P cdw,des,i 为第i类冷却水泵的额定功率,N cdw,i为第i类冷却水泵的运行台数,m为冷却水泵的类型数;能耗评估子模型通过下述算式确定冷却塔的实际功率:
Figure PCTCN2022091246-appb-000004
其中,P ct为冷却塔的实际功率,P ct,des,i为第i类冷却塔的额定功率,N ct,i为第i类冷却塔的运行台数,n为冷却塔的类型数;能耗评估子模型通过下述算式确定冷水机组的实际功率:
Figure PCTCN2022091246-appb-000005
其中,P ch为冷水机组的实际功率,Q ch,i为第i台冷水机组的负荷;T wb为室外湿球温度,r为冷水机组的实类型数;能耗评估子模型通过下述算式确定中央空调系统的能耗:P sys=P ch+P chw+P cdw+P ct;能耗评估子模型基于中央空调系统的能耗和运行状态确定中央空调系统在运行状态对应的工况下的能耗。
在本申请可选的实施例中,上述将中央空调系统的负荷和能耗输入能效评估子模型中,输出中央空调系统的能效的步骤,包括:能效评估子模型通过下述算式确定中央空调系统的能效:
Figure PCTCN2022091246-appb-000006
其中,COP sys为中央空调系统的能效,Q为中央空调系统的负荷,P sys为中央空调系统的能耗。
在本申请可选的实施例中,上述输出中央空调系统的能耗和能效的步骤之后,中央空调系统处理方法还可以包括:如果中央空调系统的能效小于预设的阈值,调整中央空调系统的各个设备的运行状态。
本申请另一些实施例还提供了一种中央空调系统处理装置,该装置可以包括:运行温度数据获取模块,配置成用于获取中央空调系统的运行温度数据,并基于运行温度数据确定中央空调系统的负荷;运行状态数据确定模块,配置成用于确定中央空调系统的各个设备的运行状态数据;能效输出模块,配置成用于将中央空调系统的负荷和运行状态数据输入能效评估模型中,输出中央空调系统的能耗和/或能效。
本申请又一些实施例还提供了一种电子设备,包括处理器和存储器,该存储器可以存储有能够被该处理器执行的计算机可执行指令,该处理器执行该计算机可执行指令以实现上述中央空调系统处理方法。
本申请再一些实施例还提供了一种计算机可读存储介质,该计算机可读存储介质可以存储有计算机可执行指令,该计算机可执行指令在被处理器调用和执行时,计算机可执行指令促使处理器实现上述中央空调系统处理方法。
本申请实施例可以带来至少以下有益效果:
本申请实施例提供的一种中央空调系统处理方法、装置和电子设备,基于获取的述中央空调系统的运行温度数据确定中央空调系统的负荷,将空调系统的负荷和获取的中央空调系统的各个设备的运行状态数据输入能效评估模型中,可以输出中央空调系统的能耗和/或能效。该方式中可以利用设备的额定参数和少量的采集数据较为准确地评估出空调系统 的能效水平,从而提高中央空调系统能效计算的准确性。
本申请的其他特征和优点将在随后的说明书中阐述,或者,部分特征和优点可以从说明书推知或毫无疑义地确定,或者通过实施本申请的上述技术即可得知。
为使本申请的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种中央空调系统处理方法的流程图;
图2为本申请实施例提供的另一种中央空调系统处理方法的流程图;
图3为本申请实施例提供的一种热量表安装方式的示意图;
图4为本申请实施例提供的一种空调机房的冷冻水侧原理的示意图;
图5为本申请实施例提供的一种设备强电控制柜示意图;
图6为本申请实施例提供的一种网络摄像机安装方式的示意图;
图7为本申请实施例提供的另一种网络摄像机安装方式的示意图;
图8为本申请实施例提供的一种中央空调系统处理的模块示意图;
图9为本申请实施例提供的另一种中央空调系统处理的模块示意图;
图10为本申请实施例提供的一种中央空调系统处理装置的结构示意图;
图11为本申请实施例提供的另一种中央空调系统处理装置的结构示意图;
图12为本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
目前,相关技术的能效评估方法通过BMS采集一定时间的运行数据,计算出暖通空调系统的运行能效。然而,大多数公共建筑的BMS数据质量较差,无法保证能效计算的准确性。基于此,本申请实施例提供的一种中央空调系统处理方法、装置和电子设备,该方法应用于中央空调系统的服务器中,具体涉及一种基于图像识别的空调系统节能诊断方法。
为便于对本实施例进行理解,首先对本申请实施例所公开的一种中央空调系统处理方法进行详细介绍。
本申请一实施例提供了一种中央空调系统处理方法,参见图1所示的一种中央空调系统处理方法的流程图,该中央空调系统处理方法可以包括如下步骤:
步骤S102,获取中央空调系统的运行温度数据,并基于运行温度数据确定中央空调系统的负荷。
本实施例提供的方法可以应用于一个独立的控制设备,例如:中央空调的服务器,或是其他任意设备(包括中央空调本身)的某个控制模块,本实施例对此不做限定。
本实施例中的中央空调系统可以为暖通空调系统,本实施例提供的方法可以应用于服务器中,上述服务器可以是物理服务器,也可以是云服务器,本实施例对此不做限定。
中央空调系统的运行温度数据可以至少包括:中央空调系统的各个设备的进水温度和回水温度,其中,本实施例中的中央空调系统的设备的类型可以包括:冷水机组、冷冻水泵、冷却水泵及冷却塔。本实施例中的中央空调系统的负荷可以包括中央空调系统的各个设备的制冷量,也可以包括中央空调系统的各个设备的制冷总量。
步骤S104,确定中央空调系统的各个设备的运行状态数据。
本实施例中的中央空调系统的运行状态可以包括:工作状态、故障状态、待机状态等。其中,本实施例的运行状态数据可以采用数字量的形式表示运行状态,例如:1代表工作状态,0代表故障状态等。
步骤S106,将中央空调系统的负荷和运行状态数据输入能效评估模型中,输出中央空调系统的能耗和/或能效。
能效评估模型可以预先训练并设置在服务器中,用于评价中央空调系统的能效,其中,能效评估模型还可以包括能耗评估模型,能耗评估模型用于评价中央空调系统的能耗。能耗评估模型和能效评估模型可以集成在一个神经网络模型中,本实施例对此不做限定。本实施例既可以通过能耗评估模型和能效评估模型输出中央空调系统的能耗和能效,也可以仅通过能耗评估模型输出中央空调系统的能耗,还可以仅通过能效评估模型输出中央空调系统的能效,本实施例对此不做限定。
此外,本实施例中还可以将设备的额定参数也输入至能耗评估模型和能效评估模型中,以辅助计算中央空调系统的能耗和能效。
本申请实施例提供的一种中央空调系统处理方法,基于获取的述中央空调系统的运行温度数据确定中央空调系统的负荷,将空调系统的负荷和获取的中央空调系统的各个设备 的运行状态数据输入能效评估模型中,可以输出中央空调系统的能耗和/或能效。该方式中可以利用设备的额定参数和少量的采集数据较为准确地评估出空调系统的能效水平,从而提高中央空调系统能效计算的准确性。
本申请另一实施例提供了另一种中央空调系统处理方法,该方法在上述实施例的基础上实现,如图2所示的另一种中央空调系统处理方法的流程图,本实施例中的中央空调系统处理方法可以包括如下步骤:
步骤S202,获取中央空调系统的运行温度数据,并基于运行温度数据确定中央空调系统的负荷。
其中,对于现场安装施工条件允许的空调机房,可以参见图3所示的一种热量表安装方式的示意图,中央空调系统的冷冻水总管可以设置有热量表,如果本实施例提供的方法应用于服务器,热量表可以与服务器通信连接;通过在冷冻水总管上安装1个热量表的方式获取中央空调系统的实时总负荷,例如:获取热量表采集的中央空调系统的运行温度数据。
热量表可以获取冷冻水进水温度(也称为冷冻水供水温度)、冷冻水出水温度(也称为冷冻水回水温度)、冷冻水总流量等参数作为运行温度数据。现场安装无线通讯网关,将热量表实时采集数据就可以上传至云平台(即本实施例中的服务器),以供空调系统能耗评估模型与能效评估模型计算。为了方便现场施工,其中,热量表优先采用外夹式超声波热量表。
对于现场安装施工条件不允许的空调机房,如果安装中央空调系统的楼宇设置有楼宇管理系统(BMS),可以通过导出或记录现场BMS采集的运行温度数据,例如:获取楼宇管理系统采集的中央空调系统的运行温度数据。
具体来说,运行温度数据可以包括:冷冻水进水温度和冷冻水出水温度,可以通过下述算式数据确定中央空调系统的负荷:Q=c×M ch,des×(T chw,in-T chw,out);其中,Q为中央空调系统的负荷,c为水的比热,M ch,des为中央空调系统的冷水机组的额定流量,T chw,in为冷冻水进水温度,T chw,out为冷冻水出水温度。
这里需要说明的是,Q可以理解为空调系统的总负荷,即中央空调系统的各个设备的负荷的和。冷水机组的额定流量可以通过各设备的铭牌直接获取。
获取了运行温度数据之后,可以通过下述步骤确定中央空调系统的负荷:获取室外湿球温度;将室外湿球温度和冷冻水出水温度输入预先训练完成的负荷预测模型中,输出中央空调系统的负荷。
其中,室外湿球温度可以从气象数据库获取,也可以自行测量得到;负荷预测模型通过下述算式确定中央空调系统的负荷:Q=f(T wb,T chw,out);其中,Q为中央空调系统的负荷,T wb为室外湿球温度,T chw,out为冷冻水出水温度。
其中,可以基于BMS采集的历史运行温度数据建立包括空调系统负荷与室外湿球温度、冷冻水出水温度对应关系的负荷预测模型:Q=f(T wb,T chw,out)。
上述负荷预测模型的具体形式可以采用线性回归、岭回归、Lasso回归等方法获取。室外湿球温度数据可以通过API(Application Programming Interface,应用程序接口)调用气象数据库获取。
通过建立空调系统负荷与室外湿球温度、冷冻水出水温度的负荷预测模型,可以基于采集的有限数据较为准确地预测出空调系统的实时负荷。
除此以外,在采用上述方法获取空调系统总负荷的基础上,可以进一步对每台空调系统的设备的负荷进行划分,例如:通过下述算式确定中央空调系统的各个冷水机组的负荷:
Figure PCTCN2022091246-appb-000007
其中,Q ch,i为第i台冷水机组的负荷,S i为第i台冷水机组的管网阻力系数,k为中央空调系统的冷水机组的总数。
参见图4所示的一种空调机房的冷冻水侧原理的示意图,每台冷水机组与一台冷冻水泵串联连接,且同开同关。假设有k台冷水机组同时运行,则空调系统总负荷与每台冷水机组负荷的关系如下:
Figure PCTCN2022091246-appb-000008
其中,Q ch,i为第i台冷水机组的负荷,M ch,i为第i台冷水机组的额定流量(通过设备铭牌获取),ΔT ch,i为第i台冷水机组的供回水温差。
由于每台冷水机组的供回水温差相同,则上式可以转化为:
Figure PCTCN2022091246-appb-000009
在额定工况下,单台冷冻水泵i的额定扬程H i与额定流量M ch,i的关系如下式所示:
Figure PCTCN2022091246-appb-000010
其中,Si为管网阻力系数,可通过水泵额定参数计算得到。
当冷水机组并联运行时,每台水泵的扬程相同,从而有:
Figure PCTCN2022091246-appb-000011
特别地,当所有运行的冷水机组型号相同时,每台冷水机组的负荷可以为:
Figure PCTCN2022091246-appb-000012
步骤S204,确定中央空调系统的各个设备的运行状态数据。
本实施例可以采用图像识别的方式确定中央空调系统的各个设备的运行状态数据,例 如:获取摄像设备采集的中央空调系统的设备状态显示灯的图像;其中,中央空调系统的设备的运行状态与设备状态显示灯的颜色相对应;对图像进行图像识别处理,得到中央空调系统的各个设备的运行状态数据。
参见图5所示的一种设备强电控制柜示意图,空调系统的机电设备一般配有相应的强电控制柜,通常控制柜门上装有设备的状态显示灯,通过摄像设备状态显示灯的图像画面可以判别设备的实时运行状态,从而输出给云平台的能效评估模型,计算出设备的运行能效。
摄像设备可以为网络摄像机,网络摄像机可以采用云台型、枪型、鱼眼型、球型、半球型等形式。网络摄像机可以用来实现控制柜图像采集与识别的功能。通过在配电房合适的位置安装网络摄像机,用尽可能少的数量能够覆盖到全部设备控制柜。
参见图6所示的一种网络摄像机安装方式的示意图和图7所示的另一种网络摄像机安装方式的示意图,根据强电控制柜的现场布置形式,网络摄像机的安装方式可以分为两种:摄像设备安装在中央空调系统的控制柜相对的墙上,或者,摄像设备在中央空调系统的控制柜的中间过道处吊顶安装。
控制柜可以靠墙布置,网络摄像机安装在与控制柜相对的另一面墙上;或者,控制柜可以并排布置,网络摄像机在中间过道处吊顶安装,保证能覆盖到每个控制柜。网络摄像机的数量可以根据现场设备控制柜的数量和布置方式确定。
为了将网络摄像机采集的图像信号传输至云端,现场可以加装一个4G/5G网关,通过网络总线与网络摄像机连接。网络摄像机采集的控制柜视频信号可以由高效压缩芯片压缩,通过网关传送到云平台服务器,部署在云平台的图像识别算法,根据采集图像识别出每台设备的运行/停止状态,并将设备运行/停止状态处理成数字量的形式传输给空调系统能耗评估模型、能效评估模型。
本申请实施例提出了一种基于图像识别的空调系统运行状态识别方法,通过在空调机房加装网络摄像机实时判别空调系统的运行状态。
步骤S206,将中央空调系统的负荷和运行状态数据输入能效评估模型中,输出中央空调系统能耗和/或能效。
本实施例中还可以测量中央空调系统的能耗。以能效评估模型既可以测量能效,也可以测量能耗为例,能效评估模型包括能耗评估子模型和能效评估子模型;可以通过下述步骤测量中央空调系统的能耗:将中央空调系统运行状态数据输入能耗评估子模型中,输出中央空调系统在运行状态对应的工况下的能耗;和/或,将中央空调系统的负荷和能耗输入能效评估子模型中,输出中央空调系统的能效。
具体地,能耗评估子模型可以通过下述算式确定冷冻水泵的实际功率:
Figure PCTCN2022091246-appb-000013
Figure PCTCN2022091246-appb-000014
其中,P chw为冷冻水泵的实际功率,P chw,des,i为第i类冷冻水泵的额定功率,N chw,i为第i类冷冻水泵的运行台数,l为冷冻水泵的类型数;
能耗评估子模型可以通过下述算式确定冷却水泵的实际功率:
Figure PCTCN2022091246-appb-000015
Figure PCTCN2022091246-appb-000016
其中,P cdw为冷却水泵的实际功率,P cdw,des,i为第i类冷却水泵的额定功率,N cdw,i为第i类冷却水泵的运行台数,m为冷却水泵的类型数;
能耗评估子模型可以通过下述算式确定冷却塔的实际功率:
Figure PCTCN2022091246-appb-000017
其中,P ct为冷却塔的实际功率,P ct,des,i为第i类冷却塔的额定功率,N ct,i为第i类冷却塔的运行台数,n为冷却塔的类型数;
能耗评估子模型可以通过下述算式确定冷水机组的实际功率:
Figure PCTCN2022091246-appb-000018
其中,P ch为冷水机组的实际功率,Q ch,i为第i台冷水机组的负荷;T wb为室外湿球温度,r为冷水机组的实类型数;
能耗评估子模型可以通过下述算式确定中央空调系统的能耗:P sys=P ch+P chw+P cdw+P ct;能耗评估子模型基于中央空调系统的能耗和运行状态确定中央空调系统在运行状态对应的工况下的能耗。
公共建筑水冷中央空调机房通常可以由四类机电设备组成:冷水机组、冷冻水泵、冷却水泵及冷却塔。对于大多数需要进行节能改造的空调机房而言,其中各设备均为定频运行,通过现场勘察设备的铭牌参数,可以获知设备额定功率Pdes,从而建立冷冻水泵、冷却水泵及冷却塔的能耗评估子模型如下:
Figure PCTCN2022091246-appb-000019
Figure PCTCN2022091246-appb-000020
Figure PCTCN2022091246-appb-000021
其中,P chw为冷冻水泵的实际功率,P chw,des,i为第i类冷冻水泵的额定功率,N chw,i为第i类冷冻水泵的运行台数,l为冷冻水泵的类型数;P cdw为冷却水泵的实际功率,P cdw,des,i为第i类冷却水泵的额定功率,N cdw,i为第i类冷却水泵的运行台数,m为冷却水泵的类型数;P ct为冷却塔的实际功率,P ct,des,i为第i类冷却塔的额定功率,N ct,i为第i类冷却塔的运行台数,n为冷却塔的类型数。
对于定频冷水机组,其运行功率主要与空调负荷、冷冻水出水温度及冷却水回水温度有关。当空调系统处于稳定运行的时段内,冷冻水出水温度通常为一个固定值(如7℃),冷却水回水温度与室外湿球温度之差也为一个固定值(如3℃),因此单台冷水机组的能耗评估子模型可以写成以下形式:P ch,i=f(Q ch,i,T wb);其中,P ch,i为第i台冷水机组的实际 功率,Q ch,i为第i台冷水机组的负荷。
上述各个能耗评估子模型的具体形式同样可以采用线性回归、岭回归、Lasso回归等方法获取。
综合上述空调设备的能耗评估子模型,可得出空调机房的能耗评估子模型与能效评估子模型:P sys=P ch+P chw+P cdw+P ct
Figure PCTCN2022091246-appb-000022
可以看出,空调系机房耗模型与能效模型只与中央空调系统的负荷、室外湿球温度及设备运行状态有关,其中中央空调系统的负荷前述步骤的方法可以获取,室外湿球温度可以通过API接口调用气象数据库获取,空调机房内各设备的运行状态通过前述步骤的方法获取。
步骤S208,如果中央空调系统的能效小于预设的阈值,调整中央空调系统的各个设备的运行状态。
如果中央空调系统的能效COP sys小于预设的阈值,则说明中央空调系统具有较大的节能提升空间。具体地,根据ASHRAE(American Society of Heating,Refrigerating and Air-Conditioning Engineers,美国采暖,制冷与空调工程师学会美国暖气和空调工程师学会)的标准,上述阈值可以设置为3.5。
空调系统的能耗评估模型与能效评估模型可以均部署在云平台,将云平台作为服务器。云平台根据项目现场采集的热量表负荷数据与设备控制柜监控图像,通过图像识别算法将设备控制柜监控图像转换为设备的启停状态数据,传输给能耗评估模型与能效评估模型,获取空调机房的实时能耗与能效。
空调系统控制的最终目标是为了保证建筑内环境温度的稳定,为了采集室内环境温度T in,通过在建筑内布置无线温度传感器进行采集,采集温度通过网关传输到云平台。云平台从项目现场采集的运行参数集合为:{T in,T wb,Q,N ch,N chw,N cdw,N ct}。在云平台部署大数据聚类分析算法(如K-means、DBSCAN、GMM等)对空调系统工况参数({T in,T wb,Q})进行聚类分析,得到N组工况类别。在每一组工况类别中,寻找设备运行台数最小的集合min{N ch,N chw,N cdw,N ct}作为节能运行模式,当实际运行设备台数大于min{N ch,N chw,N cdw,N ct},则说明该运行模式产生了能耗浪费,需要对控制策略进行调整。
综上,参见图8所示的一种中央空调系统处理的模块示意图和图9所示的另一种中央空调系统处理的模块示意图,可以通过网络摄像机采集中央空调系统的各个设备的运行状态数据,通过热量表或者BMS采集中央空调系统的运行温度数据并计算空调系统的负荷,通过无线温度传感器采集室内温度,通过气象数据库获取湿球温度,在云平台服务器中基于上述数据,采用图像识别算法、能耗评估模型和能效评估模型来计算中央空调系统的能 效和能耗,并根据输出的结果调整中央空调系统的各个设备的运行状态。
本申请实施例提供的上述方法,针对既有公共建筑暖通空调系统节能改造中能效评估的问题,提出采用设备能耗评估模型和系统运行状态检测的方法对暖通空调系统的能效进行评估。其中,设备能耗评估模型包括冷水机组能耗评估模型、冷冻水泵能耗评估模型、冷却水泵能耗评估模型以及冷却塔能耗评估模型。系统运行状态检测则通过在空调配电房安装网络摄像机实时识别设备的运行状态,从而作为设备能耗评估模型的输入,计算出系统在不同运行工况下的能效。
该方式中提出一种基于图像识别的空调系统节能诊断方法,通过在空调机房加装网络摄像机对空调系统的运行状态实时判别,并结合空调设备的能耗评估模型计算机房能效值,从而较为准确地对空调机房能效水平进行评估。本申请有助于工程师在节能改造前期快速确定节能改造方案,实施过程简易,且成本较低。
对应于上述方法实施例,本申请又一实施例提供了一种中央空调系统处理装置,应用于中央空调系统的服务器,参见图10所示的一种中央空调系统处理装置的结构示意图,该中央空调系统处理装置可以包括:
运行温度数据获取模块1001,配置成用于获取中央空调系统的运行温度数据,并基于运行温度数据确定中央空调系统的负荷;
运行状态数据确定模块1002,配置成用于确定中央空调系统的各个设备的运行状态数据;
能效输出模块1003,配置成用于将中央空调系统的负荷和运行状态数据输入能效评估模型中,输出中央空调系统的能耗和/或能效。
本申请实施例提供的一种中央空调系统处理装置,基于获取的述中央空调系统的运行温度数据确定中央空调系统的负荷,将空调系统的负荷和获取的中央空调系统的各个设备的运行状态数据输入能效评估模型中,可以输出中央空调系统的能耗和/或能效。该方式中可以利用设备的额定参数和少量的采集数据较为准确地评估出空调系统的能效水平,从而提高中央空调系统能效计算的准确性。
上述中央空调系统的冷冻水总管可以设置有热量表;上述运行温度数据获取模块,用于获取热量表采集的中央空调系统的运行温度数据。上述热量表为超声波热量表。
上述安装中央空调系统的楼宇可以设置有楼宇管理系统;上述运行温度数据获取模块,用于获取楼宇管理系统采集的中央空调系统的运行温度数据。
上述运行温度数据可以包括:冷冻水进水温度和冷冻水出水温度;上述运行温度数据 获取模块,配置成用于基于运行温度数据确定中央空调系统的负荷的步骤,可以包括:通过下述算式数据确定中央空调系统的负荷:Q=c×M ch,des×(T chw,in-T chw,out);其中,Q为中央空调系统的负荷,c为水的比热,M ch,des为中央空调系统的冷水机组的额定流量,T chw,in为冷冻水进水温度,T chw,out为冷冻水出水温度。
上述运行温度数据可以包括:冷冻水出水温度;上述运行温度数据获取模块,配置成用于获取室外湿球温度;将室外湿球温度和冷冻水出水温度输入预先训练完成的负荷预测模型中,输出中央空调系统的负荷。
上述运行温度数据获取模块,配置成用于通过下述算式确定中央空调系统的各个冷水机组的负荷:
Figure PCTCN2022091246-appb-000023
其中,Q ch,i为第i台冷水机组的负荷,S i为第i台冷水机组的管网阻力系数,k为中央空调系统的冷水机组的总数。
上述运行状态数据确定模块,配置成用于获取摄像设备采集的中央空调系统的设备状态显示灯的图像;其中,中央空调系统的设备的运行状态与设备状态显示灯的颜色相对应;对图像进行图像识别处理,得到中央空调系统的各个设备的运行状态数据。
上述摄像设备可以安装在中央空调系统的控制柜相对的墙上,或者,上述摄像设备可以在中央空调系统的控制柜的中间过道处吊顶安装。
上述能效评估模型可以包括能耗评估子模型和能效评估子模型;上述能效输出模块,配置成用于将中央空调系统的负荷和运行状态数据输入预先训练完成的能耗评估子模型中,输出中央空调系统在运行状态对应的工况下的能耗;和/或,将中央空调系统的负荷和能耗输入预先训练完成的能效评估子模型中,输出中央空调系统的能效。
上述能效输出模块,配置成用于能耗评估子模型通过下述算式确定冷冻水泵的实际功率:
Figure PCTCN2022091246-appb-000024
其中,P chw为冷冻水泵的实际功率,P chw,des,i为第i类冷冻水泵的额定功率,N chw,i为第i类冷冻水泵的运行台数,l为冷冻水泵的类型数;能耗评估子模型通过下述算式确定冷却水泵的实际功率:
Figure PCTCN2022091246-appb-000025
其中,P cdw为冷却水泵的实际功率,P cdw,des,i为第i类冷却水泵的额定功率,N cdw,i为第i类冷却水泵的运行台数,m为冷却水泵的类型数;能耗评估子模型通过下述算式确定冷却塔的实际功率:
Figure PCTCN2022091246-appb-000026
其中,P ct为冷却塔的实际功率,P ct,des,i为第i类冷却塔的额定功率,N ct,i为第i类冷却塔的运行台数,n为冷却塔的类型数;能耗评估子模型通过下述算式确定冷水机组的实际功率:
Figure PCTCN2022091246-appb-000027
其中,P ch为冷水机组的实际功率,Q ch,i为第i台冷水机组的负荷;T wb为室外湿球温度,r为冷水机组的实类型数;能耗评估子模型通过下述算式确定中央空调系统的能耗:P sys=P ch+P chw+P cdw+P ct;能耗评估子模型基于中央空调系统的能耗和运行状态确定中央空调系统在运行状态对应的工 况下的能耗。
上述能效输出模块,配置成用于能效评估子模型通过下述算式确定中央空调系统的能效:
Figure PCTCN2022091246-appb-000028
其中,COP sys为中央空调系统的能效,Q为中央空调系统的负荷,P sys为中央空调系统的能耗。
参见图11所示的另一种中央空调系统处理装置的结构示意图,该中央空调系统处理装置还可以包括:中央空调系统调整模块1004,与能效输出模块1003连接,中央空调系统调整模块1004配置成用于如果中央空调系统的能效小于预设的阈值,调整中央空调系统的各个设备的运行状态。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的中央空调系统处理装置的具体工作过程,可以参考前述的中央空调系统处理方法的实施例中的对应过程,在此不再赘述。
本申请再一实施例提供了一种电子设备,用于运行上述中央空调系统处理方法;参见图12所示的一种电子设备的结构示意图,该电子设备可以包括存储器100和处理器101,其中,存储器100可以配置成用于存储一条或多条计算机指令,一条或多条计算机指令被处理器101执行,以实现上述中央空调系统处理方法。
可选地,图12所示的电子设备还可以包括总线102和通信接口103,处理器101、通信接口103和存储器100可以通过总线102连接。
其中,存储器100可能包含高速随机存取存储器(RAM,Random Access Memory),也可能还包括非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。通过至少一个通信接口103(可以是有线或者无线)实现该系统网元与至少一个其他网元之间的通信连接,可以使用互联网,广域网,本地网,城域网等。总线102可以是ISA总线、PCI总线或EISA总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一个双向箭头表示,但并不表示仅有一根总线或一种类型的总线。
处理器101可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器101中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器101可以是通用处理器,包括中央处理器(Central Processing Unit,简称CPU)、网络处理器(Network Processor,简称NP)等;还可以是数字信号处理器(Digital Signal Processor,简称DSP)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)、现场可编程门阵列(Field-Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公 开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质可以位于存储器100,处理器101可以读取存储器100中的信息,结合其硬件完成前述实施例的方法的步骤。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质可以存储有计算机可执行指令,该计算机可执行指令在被处理器调用和执行时,计算机可执行指令可以促使处理器实现上述中央空调系统处理方法,具体实现可参见方法实施例,在此不再赘述。
本申请实施例所提供的中央空调系统处理方法、装置和电子设备的计算机程序产品,可以包括存储了程序代码的计算机可读存储介质,程序代码包括的指令可用于执行前面方法实施例中的方法,具体实现可参见方法实施例,在此不再赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统和/或装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
另外,在本申请实施例的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方 位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
最后应说明的是:以上所述实施例,仅为本申请的具体实施方式,用以说明本申请的技术方案,而非对其限制,本申请的保护范围并不局限于此,尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本申请实施例技术方案的精神和范围,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。
工业实用性
本申请提供了一种中央空调系统处理方法、装置和电子设备。其中,该方法包括:获取中央空调系统的运行温度数据,并基于运行温度数据确定中央空调系统的负荷;确定中央空调系统的各个设备的运行状态数据;将中央空调系统的负荷和运行状态数据输入能效评估模型中,输出中央空调系统的能耗和/或能效。该方式中可以利用设备的额定参数和少量的采集数据较为准确地评估出空调系统的能效水平,从而提高中央空调系统能效计算的准确性。
此外,可以理解的是,本申请的中央空调系统处理方法、装置和电子设备是可以重现的,并且可以应用在多种工业应用中。例如,本申请的中央空调系统处理方法可以应用于空调器领域。

Claims (17)

  1. 一种中央空调系统处理方法,其特征在于,所述中央空调系统处理方法包括:
    获取中央空调系统的运行温度数据,并基于所述运行温度数据确定所述中央空调系统的负荷;
    确定所述中央空调系统的各个设备的运行状态数据;
    将所述中央空调系统的负荷和所述运行状态数据输入能效评估模型中,输出所述中央空调系统的能耗和/或能效。
  2. 根据权利要求1所述的中央空调系统处理方法,其特征在于,所述中央空调系统的冷冻水总管设置有热量表;获取中央空调系统的运行温度数据的步骤,包括:获取所述热量表采集的中央空调系统的运行温度数据。
  3. 根据权利要求2所述的中央空调系统处理方法,其特征在于,所述热量表为超声波热量表。
  4. 根据权利要求1所述的中央空调系统处理方法,其特征在于,安装所述中央空调系统的楼宇设置有楼宇管理系统;获取中央空调系统的运行温度数据的步骤,包括:获取所述楼宇管理系统采集的中央空调系统的运行温度数据。
  5. 根据权利要求1至4中的任一项所述的中央空调系统处理方法,其特征在于,所述运行温度数据包括:冷冻水进水温度和冷冻水出水温度;基于所述运行温度数据确定所述中央空调系统的负荷的步骤,包括:
    通过下述算式数据确定所述中央空调系统的负荷:Q=c×M ch,des×(T chw,in-T chw,out);
    其中,Q为所述中央空调系统的负荷,c为水的比热,M ch,des为所述中央空调系统的冷水机组的额定流量,T chw,in为所述冷冻水进水温度,T chw,out为所述冷冻水出水温度。
  6. 根据权利要求1至4中的任一项所述的中央空调系统处理方法,其特征在于,所述运行温度数据包括:冷冻水出水温度;基于所述运行温度数据确定所述中央空调系统的负荷的步骤,包括:
    获取室外湿球温度;
    将所述室外湿球温度和所述冷冻水出水温度输入负荷预测模型中,输出所述中央空调系统的负荷。
  7. 根据权利要求1至4中的任一项所述的中央空调系统处理方法,其特征在于,基于所述运行温度数据确定所述中央空调系统的负荷的步骤,包括:
    通过下述算式确定所述中央空调系统的各个冷水机组的负荷:
    Figure PCTCN2022091246-appb-100001
    其中, Q ch,i为第i台冷水机组的负荷,S i为第i台冷水机组的管网阻力系数,k为所述中央空调系统的冷水机组的总数。
  8. 根据权利要求1至7中的任一项所述的中央空调系统处理方法,其特征在于,确定所述中央空调系统的各个设备的运行状态数据的步骤,包括:
    获取摄像设备采集的所述中央空调系统的设备状态显示灯的图像;其中,所述中央空调系统的设备的运行状态与所述设备状态显示灯的颜色相对应;
    对所述图像进行图像识别处理,得到所述中央空调系统的各个设备的运行状态数据。
  9. 根据权利要求8所述的中央空调系统处理方法,其特征在于,所述中央空调系统的机电设备配有强电控制柜,所述控制柜的门上装有所述设备状态显示灯。
  10. 根据权利要求8所述的中央空调系统处理方法,其特征在于,所述摄像设备安装在所述中央空调系统的控制柜相对的墙上,或者,所述摄像设备在所述中央空调系统的控制柜的中间过道处吊顶安装。
  11. 根据权利要求1至4中的任一项所述的中央空调系统处理方法,其特征在于,所述能效评估模型包括能耗评估子模型和能效评估子模型;将所述中央空调系统的负荷和所述运行状态数据输入能效评估模型中,输出所述中央空调系统的能耗和/或能效的步骤,包括:
    将所述中央空调系统的所述运行状态数据输入所述能耗评估子模型中,输出所述中央空调系统在所述运行状态对应的工况下的能耗;
    和/或,将所述中央空调系统的负荷和所述能耗输入所述能效评估子模型中,输出所述中央空调系统的能效。
  12. 根据权利要求11所述的中央空调系统处理方法,其特征在于,将所述中央空调系统的所述运行状态数据输入所述能耗评估子模型中,输出所述中央空调系统在所述运行状态对应的工况下的能耗的步骤,包括:
    所述能耗评估子模型通过下述算式确定冷冻水泵的实际功率:
    Figure PCTCN2022091246-appb-100002
    Figure PCTCN2022091246-appb-100003
    其中,P chw为所述冷冻水泵的实际功率,P chw,des,i为第i类所述冷冻水泵的额定功率,N chw,i为第i类所述冷冻水泵的运行台数,l为所述冷冻水泵的类型数;
    所述能耗评估子模型通过下述算式确定冷却水泵的实际功率:
    Figure PCTCN2022091246-appb-100004
    Figure PCTCN2022091246-appb-100005
    其中,P cdw为所述冷却水泵的实际功率,P cdw,des,i为第i类所述冷却水泵的额定功率,N cdw,i为第i类冷却水泵的运行台数,m为所述冷却水泵的类型数;
    所述能耗评估子模型通过下述算式确定冷却塔的实际功率:
    Figure PCTCN2022091246-appb-100006
    其中,P ct为所述冷却塔的实际功率,P ct,des,i为第i类所述冷却塔的额定功率,N ct,i为第i类所述冷却塔的运行台数,n为所述冷却塔的类型数;
    所述能耗评估子模型通过下述算式确定冷水机组的实际功率:
    Figure PCTCN2022091246-appb-100007
    其中,P ch为所述冷水机组的实际功率,Q ch,i为第i台所述冷水机组的负荷;T wb为所述室外湿球温度,r为所述冷水机组的实类型数;
    所述能耗评估子模型通过下述算式确定所述中央空调系统的能耗:P sys=P ch+P chw+P cdw+P ct
    所述能耗评估子模型基于中央空调系统的能耗和所述运行状态确定所述中央空调系统在所述运行状态对应的工况下的能耗。
  13. 根据权利要求11所述的中央空调系统处理方法,其特征在于,将所述中央空调系统的负荷和所述能耗输入能效评估子模型中,输出所述中央空调系统的能效的步骤,包括:
    所述能效评估子模型通过下述算式确定所述中央空调系统的能效:
    Figure PCTCN2022091246-appb-100008
    其中,COP sys为所述中央空调系统的能效,Q为所述中央空调系统的负荷,P sys为中央空调系统的能耗。
  14. 根据权利要求1至13中的任一项所述的中央空调系统处理方法,其特征在于,输出所述中央空调系统的能耗和能效的步骤之后,所述中央空调系统处理方法还包括:
    如果所述中央空调系统的能效小于预设的阈值,调整所述中央空调系统的各个设备的运行状态。
  15. 一种中央空调系统处理装置,其特征在于,所述中央空调系统处理装置包括:
    运行温度数据获取模块,配置成用于获取中央空调系统的运行温度数据,并基于所述运行温度数据确定所述中央空调系统的负荷;
    运行状态数据确定模块,配置成用于确定所述中央空调系统的各个设备的运行状态数据;
    能效输出模块,配置成用于将所述中央空调系统的负荷和所述运行状态数据输入能效评估模型中,输出所述中央空调系统的能耗和/或能效。
  16. 一种电子设备,其特征在于,包括处理器和存储器,所述存储器存储有能够被所述处理器执行的计算机可执行指令,所述处理器执行所述计算机可执行指令以实现权利要求1至14中的任一项所述的中央空调系统处理方法。
  17. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令在被处理器调用和执行时,计算机可执行指令促使处理器实现权利要求1至14中的任一项所述的中央空调系统处理方法。
PCT/CN2022/091246 2021-09-03 2022-05-06 中央空调系统处理方法、装置和电子设备 WO2023029545A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22862688.3A EP4328505A1 (en) 2021-09-03 2022-05-06 Central air conditioning system processing method and apparatus and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111034255.6A CN113654215A (zh) 2021-09-03 2021-09-03 中央空调系统处理方法、装置和电子设备
CN202111034255.6 2021-09-03

Publications (1)

Publication Number Publication Date
WO2023029545A1 true WO2023029545A1 (zh) 2023-03-09

Family

ID=78482830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091246 WO2023029545A1 (zh) 2021-09-03 2022-05-06 中央空调系统处理方法、装置和电子设备

Country Status (3)

Country Link
EP (1) EP4328505A1 (zh)
CN (1) CN113654215A (zh)
WO (1) WO2023029545A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113654215A (zh) * 2021-09-03 2021-11-16 上海美控智慧建筑有限公司 中央空调系统处理方法、装置和电子设备
CN114427742B (zh) * 2022-01-27 2022-09-30 广州施杰节能科技有限公司 中央空调冷站能效控制方法、装置、设备以及存储介质
CN114693365B (zh) * 2022-04-13 2022-11-15 重庆伏特猫科技有限公司 一种中央空调效能测评系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63231133A (ja) * 1987-03-20 1988-09-27 Hitachi Ltd ヒ−トポンプ式空気調和機
CN107314498A (zh) * 2017-05-25 2017-11-03 中国农业大学 一种中央空调系统的能效在线监测方法及装置
CN111027181A (zh) * 2019-11-19 2020-04-17 广西电网有限责任公司 一种基于动态能效参数评估中央空调冷水主机能耗的方法
CN113654215A (zh) * 2021-09-03 2021-11-16 上海美控智慧建筑有限公司 中央空调系统处理方法、装置和电子设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4936961B2 (ja) * 2007-04-04 2012-05-23 株式会社東芝 空調システム制御装置
CN101363653A (zh) * 2008-08-22 2009-02-11 日滔贸易(上海)有限公司 中央空调制冷系统的能耗控制方法及装置
CN103234256A (zh) * 2013-04-17 2013-08-07 上海达希能源科技有限公司 动态负荷跟踪的中央空调冷源全局最优节能控制方法
JP6965624B2 (ja) * 2017-08-10 2021-11-10 株式会社大林組 空調システム選定装置、空調システム選定方法、プログラム及び記録媒体
CN108489013A (zh) * 2018-01-30 2018-09-04 深圳市新环能科技有限公司 基于遗传算法和负荷在线修正的中央空调控制方法及装置
CN109631282B (zh) * 2018-12-21 2021-01-05 深圳市紫衡技术有限公司 一种中央空调系统控制方法及其系统、设备、存储介质
CN109945402A (zh) * 2019-03-07 2019-06-28 东南大学 一种中央空调水系统节能方法
CN111076345B (zh) * 2019-12-11 2021-03-30 珠海格力电器股份有限公司 中央空调系统的预测装置、方法及终端设备
CN111237989B (zh) * 2020-02-04 2021-06-08 青岛海信网络科技股份有限公司 一种基于负荷预测的楼宇通风空调控制方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63231133A (ja) * 1987-03-20 1988-09-27 Hitachi Ltd ヒ−トポンプ式空気調和機
CN107314498A (zh) * 2017-05-25 2017-11-03 中国农业大学 一种中央空调系统的能效在线监测方法及装置
CN111027181A (zh) * 2019-11-19 2020-04-17 广西电网有限责任公司 一种基于动态能效参数评估中央空调冷水主机能耗的方法
CN113654215A (zh) * 2021-09-03 2021-11-16 上海美控智慧建筑有限公司 中央空调系统处理方法、装置和电子设备

Also Published As

Publication number Publication date
EP4328505A1 (en) 2024-02-28
CN113654215A (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
WO2023029545A1 (zh) 中央空调系统处理方法、装置和电子设备
US10775067B2 (en) Method for controlling activation of air conditioning device and apparatus therefor
CN100523635C (zh) 中央空调智能群控系统
CN107220514B (zh) 基于大数据的空调负荷预测方法及系统
CN107036238B (zh) 动态预测外气与负载智慧节能控制方法
CN104075403A (zh) 一种空调能耗监测与诊断系统和方法
CN104121666A (zh) 用于中央空调风系统的逐时变频供风系统及控制方法
CN114239972A (zh) 基于人工智能技术的校园能效与电气安全管理方法和系统
CN114923265B (zh) 一种基于物联网的中央空调节能控制系统
US11466885B2 (en) Air-conditioning control device, air-conditioning system, and air-conditioning control method
CN108644980B (zh) 地铁车站通风空调系统的功耗计算方法、系统及存储介质
CN108444056A (zh) 中央空调监控系统及其监控方法
CN110726219B (zh) 空调的控制方法、装置和系统,存储介质及处理器
CN110306865B (zh) 一种基于空间块单元的智慧建筑控制方法及其系统
CN208312636U (zh) 中央空调监控系统
JP2004234302A (ja) プロセス管理装置
CN110388723A (zh) 空调与照明设备能效监测方法、装置、服务器和存储介质
CN110986288A (zh) 一种bas系统的节能控制方法、装置、电子设备及存储介质
CN203928297U (zh) 用于中央空调风系统的逐时变频供风系统
CN115754513A (zh) 基于电耗数据的建筑空调能效诊断系统
TW202009427A (zh) 空調系統及使用其之空調控制方法
TWI598549B (zh) Dynamic indoor air quality control and energy saving system and method
CN113932282A (zh) 一种城市供暖监管方法和系统
CN112161385A (zh) 一种中央空调集控系统
CN212842111U (zh) 一种集中空调能耗调适系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22862688

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022862688

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022862688

Country of ref document: EP

Effective date: 20231124