WO2023029319A1 - 一种增强现实衍射光波导和增强现实显示装置 - Google Patents
一种增强现实衍射光波导和增强现实显示装置 Download PDFInfo
- Publication number
- WO2023029319A1 WO2023029319A1 PCT/CN2021/142505 CN2021142505W WO2023029319A1 WO 2023029319 A1 WO2023029319 A1 WO 2023029319A1 CN 2021142505 W CN2021142505 W CN 2021142505W WO 2023029319 A1 WO2023029319 A1 WO 2023029319A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- area
- grating
- region
- augmented reality
- relay
- Prior art date
Links
- 230000003190 augmentative effect Effects 0.000 title claims abstract description 72
- 230000003287 optical effect Effects 0.000 title claims abstract description 55
- 238000010168 coupling process Methods 0.000 claims abstract description 32
- 238000005859 coupling reaction Methods 0.000 claims abstract description 32
- 239000000758 substrate Substances 0.000 claims abstract description 32
- 230000008878 coupling Effects 0.000 claims abstract description 9
- 239000013598 vector Substances 0.000 claims description 20
- 239000000463 material Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 239000005304 optical glass Substances 0.000 description 4
- 210000001747 pupil Anatomy 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0013—Means for improving the coupling-in of light from the light source into the light guide
- G02B6/0023—Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
- G02B6/0026—Wavelength selective element, sheet or layer, e.g. filter or grating
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B27/0103—Head-up displays characterised by optical features comprising holographic elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/005—Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0123—Head-up displays characterised by optical features comprising devices increasing the field of view
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
- G02B2027/0174—Head mounted characterised by optical features holographic
Definitions
- the present application relates to the field of augmented reality technology, in particular, to an augmented reality diffractive optical waveguide and an augmented reality display device.
- Reality display technology is a new interactive display technology that superimposes virtual information on the real world for human observation.
- the transmission of virtual information is completed by the projection light machine.
- the current mainstream projection solutions include laser beam scanning (LBS, Laser Beam Scanning), free-form surface projection, Bird Bath, geometric array waveguide, and diffractive optical waveguide.
- LBS Laser Beam Scanning
- free-form surface projection Bird Bath
- geometric array waveguide and diffractive optical waveguide.
- the augmented reality display is a head-mounted display, it is sensitive to the quality and size of the projection light machine. Therefore, the waveguide solution with a thin and light display form, especially the diffractive waveguide solution, is favored by major technology giants and is considered to be the mainstream solution for realizing augmented reality display.
- the field of view of the diffractive waveguide in the related art is relatively small, usually only about 50 degrees, which cannot meet the user's needs for immersion. Therefore, it is very necessary to design a diffractive waveguide with a large field of view to improve the field of view of the diffractive waveguide. .
- the present application provides an augmented reality diffractive optical waveguide and an augmented reality display device to improve the viewing angle of the diffractive optical waveguide.
- an augmented reality diffractive optical waveguide may include a waveguide substrate on which an in-coupling grating region and The functional grating area, the functional grating area may include a first grating area for forming the first field of view and a second grating area for forming the second field of view, the first grating area and the second grating area may have overlapping areas and non- The overlapping area, the non-overlapping area of the first grating area may include the first relay area and the first outcoupling area, the non-overlapping area of the second grating area may include the second relay area and the second outcoupling area, the first intermediate area
- the relay area and the second relay area can be used to bend the light beam guided by the coupling-in grating area, and the overlapping area can be used to bend and emit the light beam guided by the first relay area and the second relay area.
- a first outcoupling region and a second outcoupling region can be used for decoup
- the grating periods of the first relay region, the second relay region, the first outcoupling region, the second outcoupling region and the overlapping region are all the same.
- the light beams emitted by the first outcoupling region and the light beams emitted by the overlapping region may form a first field of view
- the light beams emitted by the second outcoupling region and the light beams emitted by the overlapping region may be A second viewing field is formed, and the first viewing field and the second viewing field are spliced to increase the viewing angle of the augmented reality diffractive optical waveguide.
- the grating vectors of the first relay region and the second relay region may be mirror-symmetrical with respect to the grating vectors of the in-coupling grating region, and the grating vectors of the first out-coupling region and the second out-coupling region may be about the in-coupling grating region
- the grating vectors of the first relay area and the first outcoupling area are mirror-symmetric about the grating vectors of the coupling-in grating area; the sum of the clock angles of the first relay area and the second relay area can be 180 degrees
- the sum of the clock angles of the first outcoupling area and the second outcoupling area can be an integer multiple of 180 degrees, and the sum of the clock angles of the first relay area and the first outcoupling area can be an integer of 180 degrees times.
- the distance between the coupling-in grating area and the functional grating area may be 2-25 mm.
- the functional grating area may be a one-dimensional grating area.
- the in-coupling grating area and the functional grating area can form a grating area, the dimension of the grating area along the arrangement direction of the in-coupling grating area and the functional grating area can be less than 70mm, and the dimension of the grating area in the vertical arrangement direction can be less than 40mm.
- the shape and size of the first outcoupling region and the second outcoupling region are equal.
- the first relay area and the second relay area may be areas implementing a one-dimensional grating, so as to realize expansion in the X direction.
- the first outcoupling region and the second outcoupling region may be regions implementing a one-dimensional grating, so as to realize expansion in the Y direction.
- the grating structure coupled into the grating area and the functional grating area may be a holographic volume grating structure.
- the grating structure coupled into the grating area and the functional grating area may be a surface relief grating structure.
- an augmented reality display device may include a microdisplay and any of the augmented reality diffractive optical waveguides described above.
- the coupling of the microdisplay and the augmented reality diffractive optical waveguide The location of the raster area corresponds.
- the present application provides an augmented reality diffractive optical waveguide and an augmented reality display device.
- the augmented reality diffractive optical waveguide may include a waveguide substrate, and an in-coupling grating region and a functional grating region for coupling light beams into the waveguide substrate are arranged on the waveguide substrate
- the functional grating area may include a first grating area for forming a first field of view and a second grating area for forming a second field of view
- the first grating area and the second grating area may have an overlapping area and a non-overlapping area
- the non-overlapping area of the first grating area may include a first relay area and a first outcoupling area
- the non-overlapping area of a second grating area may include a second relay area and a second outcoupling area
- the first relay area and The second relay area can be used to deflect the light beam guided by the coupling-in grating area
- the overlapping area can be used to deflect and exit
- the area and the second outcoupling area can be used for decoupling the light beams conducted via the overlapping area.
- the angle of view supported by the augmented reality diffractive optical waveguide can be effectively expanded by splicing the first field of view and the second field of view.
- the overlapping area can serve as the relay and outcoupling grating of the first field of view (for example, the left field of view), and can also serve as the second field of view (For example, the relay and outcoupling gratings of the right field of view), so that the area of the grating area required for two-dimensional pupil expansion with a large field of view can be effectively reduced, making each grating area of the augmented reality diffractive optical waveguide more compact, and can Effectively reduce the refractive index of the substrate when supporting a large field of view.
- FIG. 1 is one of the structural schematic diagrams of an augmented reality diffractive optical waveguide provided in the embodiment of the present application;
- Fig. 2 is the second structural schematic diagram of an augmented reality diffractive optical waveguide provided by the embodiment of the present application;
- Fig. 3 is the schematic diagram of grating vector and grating line direction
- FIG. 4 is a schematic diagram of an optical path of an augmented reality diffractive optical waveguide provided in an embodiment of the present application
- FIG. 5 is a schematic diagram of an overall field of view of an augmented reality diffractive optical waveguide provided in an embodiment of the present application.
- Icon 10-waveguide substrate; 100-coupling grating area; 110-first coupling area; 120-second coupling area; 200-functional grating area; 211-first relay area; 212-second relay area; 220—overlapping area; 231—first outcoupling area; 232—second outcoupling area; 310—grating scribe line.
- an augmented reality diffractive optical waveguide may include a waveguide substrate 10, and the waveguide substrate 10 may be made of glass, plastic, etc. with high visible light transmittance made of optical materials.
- an in-coupling grating area 100 and a functional grating area 200 formed by gratings may be arranged, and the in-coupling grating
- the region 100 and the functional grating region 200 may be located on the same side of the waveguide substrate 10 , and the coupling-in grating region 100 and the functional grating region 200 are spaced apart.
- the coupling-in grating region 100 and the functional grating region 200 may also be located on opposite sides of the waveguide substrate 10 .
- Coupling into the grating region 100 can make the incident light diffracted and then coupled into the waveguide substrate 10, and the diffraction angle of the beam entering the waveguide substrate 10 can be totally reflected in the waveguide substrate 10 after satisfying the total reflection condition of the waveguide substrate 10.
- the form of is transmitted to the functional grating area 200.
- the functional grating area 200 includes a first grating area for forming a first field of view and a second grating area for forming a second field of view, the first field of view and the second field of view can be respectively Corresponding to the left field of view and the right field of view, wherein the left field of view is responsible for realizing the left half of the overall field of view and the vertical direction of the field of view, and the right side of the field of view is responsible for realizing the right half of the overall field of view and the vertical direction of the field of view Field of view, therefore, the functional grating area 200, that is, the field of view angle of the augmented reality diffractive optical waveguide is the field of view angle of the overall field of view formed by splicing the left field of view and the right field of view, so that the augmented reality can be effectively expanded The field of view supported by the diffractive optical waveguide.
- optical glass (glass, plastic or other materials) with a refractive index of 1.7 you can support a 60-degree field of view; if you choose an optical glass with a refractive index of 1.8 (glass, plastic or other materials), you can support a 70-degree field of view Field of view; choose optical glass (glass, plastic or other materials) with a refractive index of 1.9 to support an 80-degree field of view; choose optical glass (glass, plastic or other materials) with a refractive index of 2.0 to support up to 90-degree viewing angle, as shown in Figure 5, the horizontal viewing angle of the left viewing field is 39.2 degrees, the vertical viewing angle is 44.1 degrees, the horizontal viewing angle of the right viewing field is 39.2 degrees, and the vertical viewing angle is 44.1 degrees.
- the horizontal viewing angle of the overall viewing field after splicing is 78.4 degrees
- the vertical viewing angle is 44.1 degrees
- the diagonal viewing angle is 90 degrees.
- the refractive index of the base material of the diffractive optical waveguide in the related art is 2.5, Still out of reach.
- the first field of view and the second field of view may also correspond to the upper side field of view and the lower side field of view respectively, and the effect is the same.
- the first field of view and the second field of view may be equal parts of the whole field of view, or non-equal parts.
- the first grating area and the second grating area may have a non-overlapping area and an overlapping area 220, wherein the non-overlapping area of the first grating area may include a first relay area 211 and a first outcoupling area 231, and the second grating area's
- the non-overlapping regions may include the second relay region 212 and the second outcoupling region 232 .
- the first relay area 211 and the second relay area 212 can be continuously arranged on the side coupled to the grating area 100, in some embodiments Among them, after the first relay area 211 and the second relay area 212 are spliced, the two may have a certain overlapping area, or may not have an overlapping area.
- the overlapping area 220 is located on the side of the first relay area 211 and the second relay area 212 away from the coupling-in grating area 100, the overlapping area 220 is adjacent to the first relay area 211 and the second relay area 212, and in the overlapping area A first outcoupling region 231 is disposed on one side of the overlapping region 220 , and a second outcoupling region 232 is disposed on the other side of the overlapping region 220 .
- the overlapping area 220 By overlapping the first grating area and the second grating area, the overlapping area 220 is formed, and the overlapping area 220 can bend and emit the light beam at the same time, that is, the overlapping area 220 can simultaneously play the role of relaying and decoupling the grating, In other words, the effect of the overlapping region 220 on the light beam is equivalent to the superposition effect of the relay grating and the outcoupling grating in the related art.
- the overlapping area 220 can serve as the relay and outcoupling grating of the first field of view (for example, the left field of view), and at the same time can Acting as a relay and outcoupling grating for the second field of view (for example, the right field of view), so that the area of the grating area required for two-dimensional pupil expansion with a large field of view can be effectively reduced, and each grating area of the augmented reality diffraction optical waveguide can be effectively reduced. It is more compact and can effectively reduce the refractive index of the substrate when supporting a large field of view.
- the coupling-in grating region 100 can also be divided into continuous first coupling-in regions 110 and second coupling-in regions 120 according to the first field of view and the second field of view.
- an in-coupling grating region 100 and a functional grating region 200 are arranged on the surface of the waveguide substrate 10 .
- the incident light enters the waveguide substrate 10 from the in-coupling grating area 100, it will be transmitted in the form of total reflection, wherein the light beam incident on the first in-coupling area 110 is transmitted toward the first relay area 211, and when it is transmitted to the first In the relay area 211, a turning point occurs in the first relay area 211, and continues to transmit to the overlapping area 220, and the light beam incident on the second in-coupling area 120 is transmitted toward the second relay area 212, when it is transmitted to the second relay area In the area 212 , a turning point occurs in the second relay area 212 and continues to conduct to the overlapping area 220 .
- the overlapping area 220 can act as relay and outcoupling at the same time, after the light beams conducted by the first relay area 211 and the second relay area 212 respectively enter the overlapping area 220, they continuously turn and exit in the overlapping area 220, The emitted light beam enters the eye, and the deflected light beam is transmitted to the first outcoupling region 231 and the second outcoupling region 232 on both sides of the overlapping region 220 .
- the light beam entering the first outcoupling region 231 exits into the eye in the first outcoupling region 231
- the light beam entering the second outcoupling region 232 exits in the second outcoupling region 232 and enters the eye.
- the light beams emitted by the first outcoupling region 231 and the light beams emitted by the overlapping region 220 form the first field of view
- the light beams emitted by the second outcoupling region 232 and the light beams emitted by the overlapping region 220 form the second field of view.
- the splicing of the field of view and the second field of view effectively increases the field of view angle of the augmented reality diffractive optical waveguide.
- the grating periods of the first relay region 211, the second relay region 212, the first outcoupling region 231, the second outcoupling region 232, and the overlapping region 220 are all the same, that is, the grating periods of the entire functional grating region 200 The periods are all the same, so that the overlapping of the first grating area and the second grating area can be realized.
- the relationship between the grating vector k and the direction of the grating line 310 is schematically given, that is, the grating vector k is perpendicular to the direction of the grating line 310, and the direction of every two adjacent grating lines 310 is a grating cycle.
- the grating vectors of the first relay region 211 and the second relay region 212 may be mirror-symmetric about the grating vectors of the in-coupling region 100; The vectors may be symmetrical about the grating vectors coupled into the grating region 100 ; meanwhile, the grating vectors of the first relay region 211 and the first outcoupling region 231 are mirror-symmetric about the grating vectors coupled into the grating region 100 .
- the sum of the clock angles of the first relay area 211 and the second relay area 212 may be an integer multiple of 180 degrees, and the sum of the clock angles of the first outcoupling area 231 and the second outcoupling area 232 may be 180 degrees.
- the sum of the clock angles of the first relay region 211 and the first outcoupling region 231 may be an integer multiple of 180 degrees. In this way, the functional grating area 200 can form the aforementioned multiple grating areas that have different effects on the light beam.
- the distance between the coupling-in grating area 100 and the functional grating area 200 may be 2mm-25mm.
- the distance between the regions is 2mm-25mm, for example, it can be 2mm, 5mm, 10mm, 15mm, 20mm, 25mm and so on in different implementations. In actual design, it can be reasonably selected according to design requirements. In this way, it is helpful to realize a grating structure with a relatively compact structure.
- the coupling-in grating region 100 and the functional grating region 200 can form a grating region, and the size of the grating region along the arrangement direction of the coupling-in grating region 100 and the functional grating region 200 is less than 70 mm.
- the dimension in the vertical alignment direction is less than 40mm. Compared with the size of the grating in the related art, the size can be effectively reduced.
- the first relay area 211 and the second relay area 212 may be areas implementing a one-dimensional grating, for example, implementing expansion in the X direction.
- the first outcoupling region 231 and the second outcoupling region 232 may also be regions implementing a one-dimensional grating, for example, implementing extension in the Y direction.
- the overlapping region 220 can be a region for implementing a one-dimensional grating. Since it is a multiplexing region, expansion in the X and Y directions can be realized at the same time. Thus, after the light beam coupled into the grating region 100 is transmitted to the functional grating region 200, it can Two-dimensional pupil expansion is realized, which effectively enhances the compatibility of the augmented reality diffractive optical waveguide to different users.
- the shape and size of the first outcoupling region 231 and the second outcoupling region 232 are equal, so that the areas of the first and second viewing fields are the same, so that the display effect is more symmetrical.
- the grating structure coupled into the grating region 100 and the functional grating region 200 may be a holographic volume grating structure.
- the grating structure coupled into the grating region 100 and the functional grating region 200 may be a surface relief grating structure.
- an augmented reality display device may include a microdisplay and any of the aforementioned augmented reality diffraction optical waveguides, and the microdisplay and augmented reality diffraction
- the position of the in-coupling grating area 100 of the optical waveguide corresponds, so that after the light beam exits the microdisplay, it enters the interior of the waveguide substrate 10 from the in-coupling grating area 100, and finally emerges from the functional grating area 200 to be spliced by the first field of view and the second field of view
- the overall field of view is formed, so that the volume of the augmented reality display device is reduced while effectively expanding the viewing angle of the augmented reality display device.
- the microdisplay can be a projection light machine, and the projection method can be up and down, side projection, or other oblique projection methods.
- the augmented reality display device it can be a R/G/B monochromatic waveguide, that is, the projection light machine is matched with a waveguide that only transmits one R or G or B color light; it can also be a full-color waveguide composed of RGB , that is, the R waveguide plate transmits the R color light, the G waveguide plate transmits the G color light, and the B waveguide plate transmits the B color light.
- the present application provides an augmented reality diffractive optical waveguide and an augmented reality display device.
- the augmented reality diffractive optical waveguide includes a waveguide substrate, and an in-coupling grating region and a functional grating region for coupling light beams into the waveguide substrate are arranged on the waveguide substrate.
- the functional grating area includes a first grating area for forming a first field of view and a second grating area for forming a second field of view, the first grating area and the second grating area have overlapping areas and non-overlapping areas, and the first grating area
- the non-overlapping area of the area includes the first relay area and the first outcoupling area
- the non-overlapping area of the second grating area includes the second relay area and the second outcoupling area
- the first relay area and the second outcoupling area It is used to deflect the beam guided by the coupling-in grating area
- the overlapping area is used to deflect and exit the beam guided by the first relay area and the second relay area
- the first out-coupling area and the second out-coupling area Used to exit the beam guided by the overlapping area.
- the angle of view supported by the augmented reality diffractive optical waveguide can be effectively expanded by splicing the first field of view and the second field of view.
- the overlapping area can serve as the relay and outcoupling grating of the first field of view (for example, the left field of view), and can also serve as the second field of view (For example, the relay and outcoupling gratings of the right field of view), so that the area of the grating area required for two-dimensional pupil expansion with a large field of view can be effectively reduced, making each grating area of the augmented reality diffractive optical waveguide more compact, and can Effectively reduce the refractive index of the substrate when supporting a large field of view.
- the augmented reality diffractive optical waveguide and augmented reality display device of the present application are reproducible and can be used in various industrial applications.
- the augmented reality diffractive optical waveguide and augmented reality display device of the present application can be used in the field of augmented reality technology.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
本申请提供一种增强现实衍射光波导和增强现实显示装置,涉及增强现实技术领域,在波导基底上设置有用于将光束耦合进入波导基底内的耦入光栅区域和功能光栅区域,功能光栅区域包括用于形成第一视场的第一光栅区域和用于形成第二视场的第二光栅区域,第一光栅区域和第二光栅区域具有重叠区域和非重叠区域,如此,可以通过第一视场和第二视场拼接的方式有效的扩展增强现实衍射光波导可支持的视场角,同时,由于第一光栅区域和第二光栅区域分别为两个视场的拼接,因此,重叠区域能够同时充当第一视场和第二视场的中继和耦出光栅,如此,能够使增强现实衍射光波导各个光栅区域更加紧凑,有效降低支持大视场角时基底的折射率。
Description
相关申请的交叉引用
本申请要求2021年9月2日提交中国国家知识产权局的申请号为202111025380.0、名称为“一种增强现实衍射光波导和增强现实显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及增强现实技术领域,具体而言,涉及一种增强现实衍射光波导和增强现实显示装置。
现实显示技术是一种将虚拟信息叠加到真实世界供人眼观察,并具有交互性的新型显示技术。虚拟信息的传递由投影光机完成,目前主流的投影方案包括激光束扫描(LBS,Laser Beam Scanning)、自由曲面投影、Bird Bath、几何阵列波导以及衍射光波导等方案。由于增强现实显示是一种头部佩戴式的显示,对投影光机的质量和尺寸比较敏感。因此,具有轻薄显示形态的波导方案尤其是衍射波导方案深受各大科技巨头青睐,被认为是实现增强现实显示的主流方案。
相关技术的衍射光波导的视场角比较小,通常只有50度左右,无法满足用户对于沉浸感的需求,因此非常需要大视场角的衍射光波导的设计方案提升衍射光波导的视场角。
发明内容
本申请提供了一种增强现实衍射光波导和增强现实显示装置,以提升衍射光波导的视场角。
本申请实施例采用的技术方案如下:
在本申请的一些实施例中,提供一种增强现实衍射光波导,该增强现实衍射光波导可以包括波导基底,在波导基底上可以设置有用于将光束耦合进入波导基底内的耦入光栅区域和功能光栅区域,功能光栅区域可以包括用于形成第一视场的第一光栅区域和用于形成第二视场的第二光栅区域,第一光栅区域和第二光栅区域可以具有重叠区域和非重叠区域,第一光栅区域的非重叠区域可以包括第一中继区域和第一耦出区域,第二光栅区域的非重叠区域可以包括第二中继区域和第二耦出区域,第一中继区域和第二中继区域可以用于对经耦入光栅区域传导的光束进行转折,重叠区域可以用于对经第一中继区域和第二中继区域传导的光束进行转折和出射,第一耦出区域和第二耦出区域可以用于对经重叠区域传导的光束进行出射。
可选地,第一中继区域、第二中继区域、第一耦出区域、第二耦出区域和重叠区域的光栅周期均相同。
可选地,由所述第一耦出区域出射的光束和所述重叠区域出射的光束可以组成第一视场,由所述第二耦出区域出射的光束和所述重叠区域出射的光束可以组成第二视场,所述第一视场和所述第二视场进行拼接以增大所述增强现实衍射光波导的视场角。
可选地,第一中继区域和第二中继区域的光栅矢量可以关于耦入光栅区域的光栅矢量镜面对称,第一耦出区域和第二耦出区域的光栅矢量可以关于耦入光栅区域的光栅矢量对称,第一中继区域与第一耦出区域的光栅矢量关于耦入光栅区域的光栅矢量镜面对称;第一中继区域和第二中继区域的时钟角之和可以为180度的整数倍,第一耦出区域和第二耦出区域的时钟角之和可以为180度的整数倍,第一中继区域和第一耦出区域的时钟角之和可以为180度的整数倍。
可选地,耦入光栅区域与功能光栅区域的间距可以为2-25mm。
可选地,功能光栅区域可以为一维光栅区域。
可选地,耦入光栅区域和功能光栅区域可以形成光栅区域,光栅区域沿耦入光栅区域和功能光栅区域的排列方向的尺寸可以小于70mm,光栅区域垂直排列方向的尺寸可以小于40mm。
可选地,第一耦出区域和第二耦出区域的形状、大小均相等。
可选地,第一中继区域和第二中继区域可以是实现一维光栅的区域,以实现X方向的扩展。
可选地,第一耦出区域和第二耦出区域可以是实现一维光栅的区域,以实现Y方向的扩展。
可选地,耦入光栅区域和功能光栅区域的光栅结构可以为全息体光栅结构。
可选地,耦入光栅区域和功能光栅区域的光栅结构可以为表面浮雕光栅结构。
在本申请的另一些实施例中,提供一种增强现实显示装置,该增强现实显示装置可以包括微显示器以及上述任一种的增强现实衍射光波导,微显示器与增强现实衍射光波导的耦入光栅区域的位置对应。
本申请的有益效果至少可以包括:
本申请提供了一种增强现实衍射光波导和增强现实显示装置,增强现实衍射光波导可以包括波导基底,在波导基底上设置有用于将光束耦合进入波导基底内的耦入光栅区域和功能光栅区域,功能光栅区域可以包括用于形成第一视场的第一光栅区域和用于形成第二视场的第二光栅区域,第一光栅区域和第二光栅区域可以具有重叠区域和非重叠区域,第一光栅区域的非重叠区域可以包括第一中继区域和第一耦出区域,第二光栅区域的非重叠区域可以包括第二中继区域和第二耦出区域,第一中继区域和第二中继区域可以用于对经耦入光栅区域传导的光束进行转折,重叠区域可以用于对经第一中继区域和第二中继区域 传导的光束进行转折和出射,第一耦出区域和第二耦出区域可以用于对经重叠区域传导的光束进行出射。如此,可以通过第一视场和第二视场拼接的方式有效的扩展增强现实衍射光波导可支持的视场角,同时,由于第一光栅区域和第二光栅区域分别为两个视场的拼接,且第一光栅区域和第二光栅区域具有重叠区域,因此,重叠区域既能够充当第一视场(例如左侧视场)的中继和耦出光栅,同时也能够充当第二视场(例如右侧视场)的中继和耦出光栅,如此,能够有效降低大视场角二维光瞳扩展需要的光栅区域的面积,使增强现实衍射光波导各个光栅区域更加紧凑,并且能够有效降低支持大视场角时基底的折射率。
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例提供的一种增强现实衍射光波导的结构示意图之一;
图2为本申请实施例提供的一种增强现实衍射光波导的结构示意图之二;
图3为光栅矢量和光栅刻线方向的示意图;
图4为本申请实施例提供的一种增强现实衍射光波导的光路示意图;
图5为本申请实施例提供的一种增强现实衍射光波导的整体视场示意图。
图标:10-波导基底;100-耦入光栅区域;110-第一耦入区域;120-第二耦入区域;200-功能光栅区域;211-第一中继区域;212-第二中继区域;220-重叠区域;231-第一耦出区域;232-第二耦出区域;310-光栅刻线。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
应当理解,虽然术语第一、第二等可以在本文中用于描述各种元件,但是这些元件不应受这些术语的限制。这些术语仅用于区域分一个元件与另一个元件。例如,在不脱离本公开的范围的情况下,第一元件可称为第二元件,并且类似地,第二元件可称为第一元件。如本文所使用,术语“和/或”包括相关联的所列项中的一个或多个的任何和所有组合。
应当理解,当一个元件(诸如层、区域或衬底)被称为“在另一个元件上”或“延伸到另一个元件上”时,其可以直接在另一个元件上或直接延伸到另一个元件上,或者也可 以存在介于中间的元件。相反,当一个元件被称为“直接在另一个元件上”或“直接延伸到另一个元件上”时,不存在介于中间的元件。同样,应当理解,当元件(诸如层、区域或衬底)被称为“在另一个元件之上”或“在另一个元件之上延伸”时,其可以直接在另一个元件之上或直接在另一个元件之上延伸,或者也可以存在介于中间的元件。相反,当一个元件被称为“直接在另一个元件之上”或“直接在另一个元件之上延伸”时,不存在介于中间的元件。还应当理解,当一个元件被称为“连接”或“耦接”到另一个元件时,其可以直接连接或耦接到另一个元件,或者可以存在介于中间的元件。相反,当一个元件被称为“直接连接”或“直接耦接”到另一个元件时,不存在介于中间的元件。
除非另外定义,否则本文中使用的所有术语(包括技术术语和科学术语)的含义与本公开所属领域的普通技术人员通常理解的含义相同。还应当理解,本文所使用的术语应解释为含义与它们在本说明书和相关领域的情况下的含义一致,而不能以理想化或者过度正式的意义进行解释,除非本文中已明确这样定义。
本申请实施例的一方面,提供一种增强现实衍射光波导,如图1所示,增强现实衍射光波导可以包括波导基底10,波导基底10可以由玻璃、塑料等具有较高可见光透过率的光学材料制作。
如图1所示,在波导基底10上(可以是在波导基底10表面,也可以是在波导基底10内部)可以设置有由光栅形成的耦入光栅区域100和功能光栅区域200,耦入光栅区域100和功能光栅区域200可以位于波导基底10的同一侧面,并且耦入光栅区域100和功能光栅区域200之间间隔设置。在一些实施方式中,耦入光栅区域100和功能光栅区域200也可以是位于波导基底10的相对两侧面。
耦入光栅区域100能够使得入射光发生衍射后将其耦合进入波导基底10内部,进入波导基底10内部的光束的衍射角在满足波导基底10的全反射条件后能够在波导基底10内以全反射的形式向功能光栅区域200传导。
如图2所示,功能光栅区域200则包括用于形成第一视场的第一光栅区域和用于形成第二视场的第二光栅区域,第一视场和第二视场可以是分别对应左侧视场和右侧视场,其中,左侧视场负责实现整体视场的左半部分和垂直方向的视场,右侧视场负责实现整体视场的右半部分和垂直方向的视场,因此,功能光栅区域200,也即增强现实衍射光波导的视场角为左侧视场和右侧视场拼接形成的整体视场的视场角,如此,可以有效的扩展增强现实衍射光波导可支持的视场角。例如:选用折射率为1.7的光学玻璃(玻璃,塑料或其他材料),即可支持60度视场角;选用折射率为1.8的光学玻璃(玻璃,塑料或其他材料),即可支持70度视场角;选用折射率为1.9的光学玻璃(玻璃,塑料或其他材料),即可支持80度视场角;选用折射率为2.0的光学玻璃(玻璃,塑料或其他材料),可支持高达90 度视场角,如图5所示,左侧视场的水平视场角39.2度、垂直视场角44.1度,右侧视场的水平视场角39.2度、垂直视场角44.1度,因此,拼接后的整体视场的水平视场角78.4度、垂直视场角44.1度、对角视场角为90度,这在相关技术中的衍射光波导的基底材料折射率为2.5时,依然无法达到。当然,在一些实施方式中,第一视场和第二视场还可以是分别对应上侧视场和下侧视场,其效果相同。在一些实施方式中,第一视场和第二视场可以是整体视场的等分,也可以是非等分。
第一光栅区域和第二光栅区域可以具有非重叠区域和重叠区域220,其中,第一光栅区域的非重叠区域可以包括第一中继区域211和第一耦出区域231,第二光栅区域的非重叠区域可以包括第二中继区域212和第二耦出区域232。
如图1所示,为实现第一视场和第二视场的拼接,第一中继区域211和第二中继区域212可以在耦入光栅区域100的一侧连续设置,在一些实施方式中,第一中继区域211和第二中继区域212拼接后,两者可以具有一定的交叠区域,也可以不具有交叠区域。
重叠区域220则位于第一中继区域211和第二中继区域212背离耦入光栅区域100的一侧,重叠区域220与第一中继区域211和第二中继区域212邻接,在重叠区域220的一侧设置有第一耦出区域231,在重叠区域220的另一侧则设置有第二耦出区域232。
通过将第一光栅区域和第二光栅区域重叠,即形成重叠区域220,并且使得重叠区域220能够对光束同时进行转折和出射,即重叠区域220能够同时起到中继和耦出光栅的作用,换言之,重叠区域220对光束所起的作用相当于相关技术的中继光栅和耦出光栅的叠加作用。且由于第一光栅区域和第二光栅区域分别为两个视场的拼接,因此,重叠区域220既能够充当第一视场(例如左侧视场)的中继和耦出光栅,同时也能够充当第二视场(例如右侧视场)的中继和耦出光栅,如此,能够有效降低大视场角二维光瞳扩展需要的光栅区域的面积,使增强现实衍射光波导各个光栅区域更加紧凑,并且能够有效降低支持大视场角时基底的折射率。
在一些实施方式中,如图1所示,耦入光栅区域100也可以根据第一视场和第二视场划分为连续的第一耦入区域110和第二耦入区域120。
如图4所示,在波导基底10表面设置耦入光栅区域100和功能光栅区域200。当入射光从耦入光栅区域100进入波导基底10内后,会通过全反射的形式传导,其中,入射第一耦入区域110的光束朝向第一中继区域211传导,当其传导至第一中继区域211时,在第一中继区域211发生转折,并继续向重叠区域220传导,入射第二耦入区域120的光束朝向第二中继区域212传导,当其传导至第二中继区域212时,在第二中继区域212发生转折,并继续向重叠区域220传导。鉴于重叠区域220能够同时充当中继和耦出的作用,由第一中继区域211和第二中继区域212传导的光束分别进入重叠区域220后,在重叠区域 220的不断发生转折和出射,出射的光束进入眼睛,转折的光束向重叠区域220的两侧的第一耦出区域231和第二耦出区域232传导。进入第一耦出区域231的光束在第一耦出区域231内出射进入眼睛,进入第二耦出区域232的光束在第二耦出区域232内出射进入眼睛。即由第一耦出区域231出射的光束和重叠区域220出射的光束组成第一视场,由第二耦出区域232出射的光束和重叠区域220出射的光束组成第二视场,通过第一视场和第二视场的拼接,有效增大了增强现实衍射光波导的视场角。
在一些实施方式中,第一中继区域211、第二中继区域212、第一耦出区域231、第二耦出区域232和重叠区域220的光栅周期均相同,即整个功能光栅区域200的周期均相同,如此,便可以实现第一光栅区域和第二光栅区域的重叠。
如图3所示,示意性的给出了光栅矢量k与光栅刻线310方向的关系,即光栅矢量k与光栅刻线310方向垂直,每相邻两个光栅刻线310方向即为一个光栅周期。
在一些实施方式中,第一中继区域211和第二中继区域212的光栅矢量可以关于耦入光栅区域100的光栅矢量镜面对称;第一耦出区域231和第二耦出区域232的光栅矢量可以关于耦入光栅区域100的光栅矢量对称;同时,使得第一中继区域211与第一耦出区域231的光栅矢量关于耦入光栅区域100的光栅矢量镜面对称。并且,第一中继区域211和第二中继区域212的时钟角之和可以为180度的整数倍,第一耦出区域231和第二耦出区域232的时钟角之和可以为180度的整数倍,第一中继区域211和第一耦出区域231的时钟角之和可以为180度的整数倍。如此,能够使得功能光栅区域200形成前述的多个对光束起到不同作用的光栅区域。
可选地,耦入光栅区域100与功能光栅区域200的间距可以为2mm-25mm,如图1所示,耦入光栅区域100到第一中继区域211和第二中继区域212形成的连续区域的间距为2mm-25mm,例如在不同实施方式中分别可以为2mm、5mm、10mm、15mm、20mm、25mm等。在实际设计时,可以根据设计需求合理选择。如此,有助于实现结构较为紧凑的光栅结构。
在一些实施方式中,如图1所示,耦入光栅区域100和功能光栅区域200可以形成光栅区域,光栅区域沿耦入光栅区域100和功能光栅区域200的排列方向的尺寸小于70mm,光栅区域垂直排列方向的尺寸小于40mm。相比于相关技术中的光栅的尺寸能够有效减小。
可选地,第一中继区域211和第二中继区域212可以是实现一维光栅的区域,例如实现X方向的扩展。第一耦出区域231和第二耦出区域232也可以是实现一维光栅的区域,例如实现Y方向的扩展。重叠区域220可以是实现一维光栅的区域,由于其为复用区域,因此可以同时实现X、Y方向的扩展,由此,在耦入光栅区域100的光束传导至功能光栅区域200后,能够实现二维扩瞳,有效增强了增强现实衍射光波导对不同用户的兼容性。
可选地,第一耦出区域231和第二耦出区域232的形状、大小均相等,使得第一和第二视场的面积相同,使得显示效果更加对称。
可选地,耦入光栅区域100和功能光栅区域200的光栅结构可以为全息体光栅结构。
可选地,耦入光栅区域100和功能光栅区域200的光栅结构可以为表面浮雕光栅结构。
在本申请的另一些实施例中,提供一种增强现实显示装置,如图4所示,增强现实显示装置可以包括微显示器以及上述任一种的增强现实衍射光波导,微显示器与增强现实衍射光波导的耦入光栅区域100的位置对应,从而在微显示器出射光束后,由耦入光栅区域100进入波导基底10内部,最终由功能光栅区域200出射由第一视场和第二视场拼接形成的整体视场,从而在有效扩大增强实现显示装置的视场角的同时,缩小增强现实显示装置的体积。
微显示器可以是投影光机,投影的方式可以是上打下、侧投,或者其他的倾斜方式投影。在增强现实显示装置中,可以为R/G/B单色波导片,即投影光机搭配仅传递一种R或者G或者B色光的波导片;也可以为RGB组合而成的全彩波导片,即R波导片传递R色光,G波导片传递G色光,B波导片传递B色光。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
本申请提供了一种增强现实衍射光波导和增强现实显示装置,增强现实衍射光波导包括波导基底,在波导基底上设置有用于将光束耦合进入波导基底内的耦入光栅区域和功能光栅区域,功能光栅区域包括用于形成第一视场的第一光栅区域和用于形成第二视场的第二光栅区域,第一光栅区域和第二光栅区域具有重叠区域和非重叠区域,第一光栅区域的非重叠区域包括第一中继区域和第一耦出区域,第二光栅区域的非重叠区域包括第二中继区域和第二耦出区域,第一中继区域和第二中继区域用于对经耦入光栅区域传导的光束进行转折,重叠区域用于对经第一中继区域和第二中继区域传导的光束进行转折和出射,第一耦出区域和第二耦出区域用于对经重叠区域传导的光束进行出射。如此,可以通过第一视场和第二视场拼接的方式有效的扩展增强现实衍射光波导可支持的视场角,同时,由于第一光栅区域和第二光栅区域分别为两个视场的拼接,且第一光栅区域和第二光栅区域具有重叠区域,因此,重叠区域既能够充当第一视场(例如左侧视场)的中继和耦出光栅,同时也能够充当第二视场(例如右侧视场)的中继和耦出光栅,如此,能够有效降低大视场角二维光瞳扩展需要的光栅区域的面积,使增强现实衍射光波导各个光栅区域更加紧凑,并且能够有效降低支持大视场角时基底的折射率。
此外,可以理解的是,本申请的增强现实衍射光波导和增强现实显示装置是可以重现的,并且可以用在多种工业应用中。例如,本申请的增强现实衍射光波导和增强现实显示装置可以用于增强现实技术领域。
Claims (13)
- 一种增强现实衍射光波导,其特征在于,包括波导基底(10),在所述波导基底(10)上设置有用于将光束耦合进入所述波导基底(10)内的耦入光栅区域(100)和功能光栅区域(200),所述功能光栅区域(200)包括用于形成第一视场的第一光栅区域和用于形成第二视场的第二光栅区域,所述第一光栅区域和所述第二光栅区域具有重叠区域(220)和非重叠区域,所述第一光栅区域的非重叠区域包括第一中继区域(211)和第一耦出区域(231),所述第二光栅区域的非重叠区域包括第二中继区域(212)和第二耦出区域(232),所述第一中继区域(211)和所述第二中继区域(212)用于对经所述耦入光栅区域(100)传导的光束进行转折,所述重叠区域(220)用于对经所述第一中继区域(211)和所述第二中继区域(212)传导的光束进行转折和出射,所述第一耦出区域(231)和所述第二耦出区域(232)用于对经所述重叠区域(220)传导的光束进行出射。
- 如权利要求1所述的增强现实衍射光波导,其特征在于,所述第一中继区域(211)、所述第二中继区域(212)、所述第一耦出区域(231)、所述第二耦出区域(232)和所述重叠区域(220)的光栅周期均相同。
- 如权利要求1或2所述的增强现实衍射光波导,其特征在于,由所述第一耦出区域(231)出射的光束和所述重叠区域(220)出射的光束组成第一视场,由所述第二耦出区域(232)出射的光束和所述重叠区域(220)出射的光束组成第二视场,所述第一视场和所述第二视场进行拼接以增大所述增强现实衍射光波导的视场角。
- 如权利要求1至3中的任一项所述的增强现实衍射光波导,其特征在于,所述第一中继区域(211)和所述第二中继区域(212)的光栅矢量关于所述耦入光栅区域(100)的光栅矢量镜面对称,所述第一耦出区域(231)和所述第二耦出区域(232)的光栅矢量关于所述耦入光栅区域(100)的光栅矢量对称,所述第一中继区域(211)与所述第一耦出区域(231)的光栅矢量关于所述耦入光栅区域(100)的光栅矢量镜面对称;所述第一中继区域(211)和所述第二中继区域(212)的时钟角之和为180度的整数倍,所述第一耦出区域(231)和所述第二耦出区域(232)的时钟角之和为180度的整数倍,所述第一中继区域(211)和所述第一耦出区域(231)的时钟角之和为180度的整数倍。
- 如权利要求1至4中的任一项所述的增强现实衍射光波导,其特征在于,所述耦入光栅区域(100)与所述功能光栅区域(200)的间距为2mm-25mm。
- 如权利要求1至5中的任一项所述的增强现实衍射光波导,其特征在于,所述功能光栅区域(200)为一维光栅区域。
- 如权利要求1至6中的任一项所述的增强现实衍射光波导,其特征在于,所述耦入光栅区域(100)和所述功能光栅区域(200)形成光栅区域,所述光栅区域沿所述耦入光 栅区域(100)和所述功能光栅区域(200)的排列方向的尺寸小于70mm,所述光栅区域垂直所述排列方向的尺寸小于40mm。
- 如权利要求1至7中的任一项所述的增强现实衍射光波导,其特征在于,所述第一耦出区域(231)和所述第二耦出区域(232)的形状、大小均相等。
- 如权利要求6所述的增强现实衍射光波导,其特征在于,所述第一中继区域(211)和所述第二中继区域(212)是实现一维光栅的区域,以实现X方向的扩展。
- 如权利要求6所述的增强现实衍射光波导,其特征在于,所述第一耦出区域(231)和所述第二耦出区域(232)是实现一维光栅的区域,以实现Y方向的扩展。
- 如权利要求1至10中的任一项所述的增强现实衍射光波导,其特征在于,所述耦入光栅区域(100)和所述功能光栅区域(200)的光栅结构为全息体光栅结构。
- 如权利要求1至10中的任一项所述的增强现实衍射光波导,其特征在于,所述耦入光栅区域(100)和所述功能光栅区域(200)的光栅结构为表面浮雕光栅结构。
- 一种增强现实显示装置,其特征在于,包括微显示器以及如权利要求1至12中的任一项所述的增强现实衍射光波导,所述微显示器与所述增强现实衍射光波导的耦入光栅区域(100)的位置对应。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111025380.0 | 2021-09-02 | ||
CN202111025380.0A CN113534328A (zh) | 2021-09-02 | 2021-09-02 | 一种增强现实衍射光波导和增强现实显示装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023029319A1 true WO2023029319A1 (zh) | 2023-03-09 |
Family
ID=78092350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/142505 WO2023029319A1 (zh) | 2021-09-02 | 2021-12-29 | 一种增强现实衍射光波导和增强现实显示装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113534328A (zh) |
WO (1) | WO2023029319A1 (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113534328A (zh) * | 2021-09-02 | 2021-10-22 | 浙江水晶光电科技股份有限公司 | 一种增强现实衍射光波导和增强现实显示装置 |
CN116400502A (zh) * | 2021-12-27 | 2023-07-07 | 歌尔股份有限公司 | 光传输结构和头戴显示设备 |
CN114371528B (zh) * | 2022-01-13 | 2023-03-17 | 北京理工大学 | 衍射光波导和基于衍射光波导的显示方法 |
WO2023215339A1 (en) * | 2022-05-06 | 2023-11-09 | Google Llc | Waveguide input coupler multiplexing to reduce exit pupil expansion ray footprint |
CN117761823A (zh) * | 2022-09-19 | 2024-03-26 | 歌尔光学科技有限公司 | 光波导器件及头戴显示设备 |
CN117687204B (zh) * | 2024-01-29 | 2024-09-24 | 南京平行视界技术有限公司 | 基于全息波导的二维扩瞳装置及其扩瞳方法 |
CN117930423B (zh) * | 2024-03-21 | 2024-07-16 | 歌尔光学科技有限公司 | 导光器件、导光组件及显示设备 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170363871A1 (en) * | 2016-06-20 | 2017-12-21 | Tuomas Vallius | Extended field of view in near-eye display using optically stitched imaging |
CN108803023A (zh) * | 2018-02-13 | 2018-11-13 | 成都理想境界科技有限公司 | 单眼大视场近眼显示模组、显示方法及头戴式显示设备 |
CN109073883A (zh) * | 2016-04-13 | 2018-12-21 | 微软技术许可有限责任公司 | 具有扩展视场的波导 |
CN211348856U (zh) * | 2018-09-24 | 2020-08-25 | 威福光学有限公司 | 用于增强现实或虚拟现实显示器的设备及头戴式耳机 |
TW202041919A (zh) * | 2019-03-13 | 2020-11-16 | 南韓商Lg化學股份有限公司 | 繞射光導板以及眼用佩戴品 |
CN112867957A (zh) * | 2018-10-15 | 2021-05-28 | 脸谱科技有限责任公司 | 用于传送视场的多个部分的波导 |
CN113534328A (zh) * | 2021-09-02 | 2021-10-22 | 浙江水晶光电科技股份有限公司 | 一种增强现实衍射光波导和增强现实显示装置 |
-
2021
- 2021-09-02 CN CN202111025380.0A patent/CN113534328A/zh active Pending
- 2021-12-29 WO PCT/CN2021/142505 patent/WO2023029319A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109073883A (zh) * | 2016-04-13 | 2018-12-21 | 微软技术许可有限责任公司 | 具有扩展视场的波导 |
US20170363871A1 (en) * | 2016-06-20 | 2017-12-21 | Tuomas Vallius | Extended field of view in near-eye display using optically stitched imaging |
CN108803023A (zh) * | 2018-02-13 | 2018-11-13 | 成都理想境界科技有限公司 | 单眼大视场近眼显示模组、显示方法及头戴式显示设备 |
CN211348856U (zh) * | 2018-09-24 | 2020-08-25 | 威福光学有限公司 | 用于增强现实或虚拟现实显示器的设备及头戴式耳机 |
CN112867957A (zh) * | 2018-10-15 | 2021-05-28 | 脸谱科技有限责任公司 | 用于传送视场的多个部分的波导 |
TW202041919A (zh) * | 2019-03-13 | 2020-11-16 | 南韓商Lg化學股份有限公司 | 繞射光導板以及眼用佩戴品 |
CN113534328A (zh) * | 2021-09-02 | 2021-10-22 | 浙江水晶光电科技股份有限公司 | 一种增强现实衍射光波导和增强现实显示装置 |
Also Published As
Publication number | Publication date |
---|---|
CN113534328A (zh) | 2021-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023029319A1 (zh) | 一种增强现实衍射光波导和增强现实显示装置 | |
JP7033805B2 (ja) | 合波器、この合波器を用いた画像投影装置及び画像投影システム | |
TWI802601B (zh) | 用於擴增實境系統的波導式光學系統與方法 | |
TWI751262B (zh) | 交疊的反射面構造 | |
US10698217B2 (en) | Diffractive backlight display and system | |
CN110582716B (zh) | 显示元件、个人显示装置、用于在个人显示器上显示图像的方法及用途 | |
KR100669162B1 (ko) | 회절효율 밸런싱용 회절격자 요소 | |
US10386642B2 (en) | Holographic see-through optical device, stereoscopic imaging system, and multimedia head mounted system | |
CN101688977B (zh) | 衍射扩束器和基于衍射扩束器的虚拟显示器 | |
CN109073909A (zh) | 具有反射转向阵列的成像光导 | |
JP2021512357A (ja) | 格子ミラーを有する回折ディスプレイ要素 | |
CN113325506A (zh) | 一种全息光波导镜片及增强现实显示装置 | |
CN110543022A (zh) | 一种增强现实装置及穿戴设备 | |
US20230101961A1 (en) | Apparatus for displaying augmented reality image, and system comprising apparatus | |
WO2006025317A1 (ja) | 光束径拡大光学系及び画像表示装置 | |
KR20210152451A (ko) | 신규 격자 배열체 | |
CN114839779B (zh) | 光波导结构、光学模组以及头戴显示设备 | |
CN113568178B (zh) | 一种波导片模型及ar眼镜 | |
WO2023123920A1 (zh) | 光传输结构和头戴显示设备 | |
CN211928226U (zh) | 一种光波导镜片及三维显示装置 | |
WO2022008378A1 (en) | Reflective in-coupler design with high refractive index element using second diffraction order for near-eye displays | |
JP2017049290A (ja) | 導光装置及び虚像表示装置 | |
KR20220054876A (ko) | 2차원 광도파로, 가상 및 현실 광파 결합기, 및 ar 장치 | |
WO2023011199A1 (zh) | 一种显示设备模组、显示设备以及图像显示方法 | |
CN216144979U (zh) | 一种增强现实衍射光波导和增强现实显示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21955847 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21955847 Country of ref document: EP Kind code of ref document: A1 |