WO2023029297A1 - 一种井下相变调温方法及装置 - Google Patents

一种井下相变调温方法及装置 Download PDF

Info

Publication number
WO2023029297A1
WO2023029297A1 PCT/CN2021/138612 CN2021138612W WO2023029297A1 WO 2023029297 A1 WO2023029297 A1 WO 2023029297A1 CN 2021138612 W CN2021138612 W CN 2021138612W WO 2023029297 A1 WO2023029297 A1 WO 2023029297A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase change
heat dissipation
downhole
medium
control
Prior art date
Application number
PCT/CN2021/138612
Other languages
English (en)
French (fr)
Inventor
谭艳儒
谭佳萌
谭嘉乐
Original Assignee
谭艳儒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 谭艳儒 filed Critical 谭艳儒
Publication of WO2023029297A1 publication Critical patent/WO2023029297A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones

Definitions

  • the invention relates to the technical field of downhole operations, in particular to a downhole phase change temperature regulation method and device.
  • the downhole high temperature environment becomes a huge obstacle for downhole operations.
  • the temperature in the wellbore will gradually increase. For example, in some areas, the geothermal gradient is 30 degrees Celsius/1000 meters, that is, the temperature rises by 30 degrees Celsius for every 1000 meters.
  • the surface temperature is 20 degrees Celsius
  • the underground temperature at a depth of 6,000 meters will reach 200 degrees Celsius. In case of special areas, special formations, adjacent well operations, etc., the temperature of the well will be higher and more irregular.
  • injecting high-temperature steam into an adjacent well to drive oil will make the temperature of this well even higher, and some may reach 230 degrees or higher.
  • the operating time of the instrument and equipment increases in the downhole measurement, its power consumption will increase based on the ambient temperature of the instrument and equipment.
  • the ambient temperature is 170 degrees Celsius.
  • the ambient temperature It is possible to reach more than 180 degrees Celsius or higher.
  • the invention provides a downhole phase change temperature regulation method and device, which solves the above technical problems.
  • the invention provides an underground phase change temperature regulating device, comprising: a refrigeration end, a heat dissipation end, a circulation mechanism and a mechanism for controlling phase change occurrence;
  • the refrigerating end, the heat dissipation end, and the controlling phase change generating mechanism are all in communication with the circulation mechanism; a phase change medium is contained in the circulation mechanism;
  • the control phase change generating mechanism is used to control the phase change medium to undergo an endothermic phase change at the cooling end; and is also used to control the phase change medium after the endothermic phase change to undergo a heat dissipation phase change at the heat dissipation end.
  • the mechanism for controlling phase change includes: a phase change generating mechanism and a control mechanism;
  • the control mechanism is used to control the phase change mechanism to act on the phase change medium so that the phase change medium undergoes an endothermic phase change at the cooling end; it is also used to control the phase change mechanism to act on the endothermic phase
  • the transformed phase change medium causes the phase change medium to undergo a heat dissipation phase change at the heat dissipation end.
  • it also includes: a monitoring component; the monitoring component is arranged on the circulation mechanism.
  • the monitoring component includes sensors and valves.
  • the circulation mechanism is specifically a circulation pipeline that communicates the refrigeration end, the heat dissipation end, and the control phase change generation mechanism with each other;
  • the refrigerating end includes: a tubular shell, an internal pipeline and an end cover; the internal pipeline communicates with the circulation mechanism; the tubular shell is arranged outside the internal pipeline; the end cover is used to close the tubular casing;
  • the heat dissipation end includes a plurality of continuous cavity spaces composed of pipes;
  • the phase change generating mechanism includes: a phase change generator, a driving motor and a control circuit.
  • the phase change generator is used to act on the phase change medium to make the phase change medium undergo an endothermic phase change at the cooling end; it is also used to act on the phase change medium after the endothermic phase change occurs, so that The phase change medium undergoes a heat dissipation phase change at the heat dissipation end.
  • the downhole phase change temperature regulation device is set on downhole equipment.
  • the downhole phase change temperature regulation device is arranged in the drilling sub;
  • the circulation mechanism, the cooling end, the heat dissipation end, the circulation mechanism and the phase change control mechanism are all arranged inside the casing of the drilling nipple;
  • the cooling end is adjacent to the front end of the water hole of the drilling sub;
  • the heat dissipation end is adjacent to the rear end of the water hole of the drilling sub.
  • the present invention also provides an downhole phase change temperature regulation method, which is suitable for downhole phase change temperature regulation devices, including:
  • Step A1 the control phase change mechanism pushes the phase change medium into the cooling end; controls the phase change medium to undergo an endothermic phase change at the cooling end;
  • Step A2 The control phase change mechanism controls the phase change medium after the endothermic phase transition to enter the heat dissipation end, and controls the phase change medium to undergo a heat dissipation phase change at the heat dissipation end.
  • the present invention further provides a downhole phase change temperature regulation method, which includes: controlling the phase change of the phase change medium to realize the transfer of heat and realize the temperature regulation of downhole equipment.
  • the method and device for downhole phase change temperature regulation provided by this invention can use endothermic phase change to absorb heat to achieve cooling, and exothermic phase change can release heat to achieve temperature rise, thereby realizing heat transfer and Temperature control is suitable for controlling the temperature of the working environment of downhole instruments and equipment, so that the instruments and equipment can work normally, stably and reliably in the downhole.
  • Fig. 1 is a schematic structural diagram of a downhole phase change temperature regulation device provided in Embodiment 1 of the present invention
  • Fig. 2 is a structural diagram of an downhole phase change temperature regulation device provided by Embodiment 2 of the present invention.
  • This embodiment provides a downhole phase change temperature regulating device, as shown in Figure 1, including: a cooling end, a heat dissipation end, a circulation mechanism and a mechanism for controlling the phase change occurrence;
  • the refrigerating end, the cooling end and the control phase change generating mechanism are all connected to the circulation mechanism; the circulation mechanism contains a phase change medium;
  • the mechanism for controlling the phase change is used to control the endothermic phase change of the phase change medium at the cooling end; it is also used to control the heat dissipation phase change of the phase change medium after the endothermic phase change occurs at the heat dissipation end.
  • controlling the phase change generating mechanism includes: a phase change generating mechanism and a control mechanism;
  • the control mechanism is used to control the phase change mechanism to act on the phase change medium to cause the phase change medium to undergo an endothermic phase change at the cooling end; it is also used to control the phase change mechanism to act on the phase change medium after the endothermic phase change occurs, so that The phase change medium undergoes a heat dissipation phase change at the heat dissipation end.
  • the downhole phase change temperature regulation device may further include: a monitoring component; the monitoring component is arranged on the circulation mechanism.
  • the monitoring components include sensors and valves.
  • the circulation mechanism is specifically a circulation pipeline that communicates the refrigeration end, the heat dissipation end, and the mechanism for controlling phase change;
  • the refrigeration end includes: a tubular shell, an internal pipeline and an end cover; the internal pipeline communicates with the circulation mechanism; the tubular shell is arranged outside the internal pipeline; the end cap is used to close the tubular shell;
  • the heat dissipation end includes a plurality of continuous cavity spaces composed of pipes;
  • the phase change generating mechanism includes: a phase change generator, a driving motor and a control circuit.
  • the phase change generator is used to act on the phase change medium to make the phase change medium undergo an endothermic phase change at the cooling end; Thermal phase change.
  • the downhole phase change temperature regulation device is set on the downhole instrument and equipment.
  • the downhole phase change temperature regulation device is set in the drilling sub;
  • the circulation mechanism, refrigeration end, heat dissipation end, circulation mechanism and control phase transition mechanism are all set inside the casing of the drilling sub;
  • the cooling end is adjacent to the front end of the water hole of the drilling sub;
  • the cooling end is adjacent to the back end of the water hole of the drilling sub.
  • This embodiment also provides an downhole phase change temperature regulation method, which is suitable for an downhole phase change temperature regulation device, including:
  • Step A1 control the phase change mechanism to promote the phase change medium to enter the refrigeration end; control the phase change medium to undergo an endothermic phase change at the refrigeration end;
  • Step A2 Control the phase change mechanism to control the phase change medium after the endothermic phase transition to enter the heat dissipation end, and control the phase change medium to undergo a heat dissipation phase change at the heat dissipation end.
  • This embodiment also provides a downhole phase change temperature regulation method, including: controlling the phase change medium to undergo phase change to transfer heat, thereby realizing temperature regulation of downhole equipment.
  • the phase change medium undergoes a phase change, specifically, heat transfer through endothermic or exothermic heat is achieved through the change of the state of the phase change medium (gas, liquid, and solid).
  • a phase change medium changes from a liquid state to a gas state
  • heat needs to be absorbed, and an endothermic phase change occurs at this time.
  • the phase change medium changes from gaseous state to liquid state, heat will be released, and what happens at this time is exothermic phase change.
  • This embodiment provides a method and device for downhole phase change temperature adjustment, which controls the phase change medium to undergo an endothermic phase change at the cooling end; controls the phase change medium after the endothermic phase change to undergo a heat dissipation phase change at the heat dissipation end
  • the phase change of the medium realizes the transfer of heat, thereby realizing the temperature adjustment of the downhole equipment.
  • This embodiment provides a downhole phase change temperature regulating device, as shown in Figure 2, which is installed in a section of drilling sub, including: cooling end 3, heat dissipation end 4, circulation mechanism, monitoring component 1 and control phase change generation mechanism
  • the circulation mechanism is specifically: the circulation pipeline 2, and the mechanism for controlling the phase change includes: the phase change generation mechanism 5 and the control mechanism 6.
  • the monitoring component 1 includes a series of sensors and valves, including but not limited to: temperature sensors, pressure sensors, density sensors, flow rate sensors, throttle valves, and equal pressure valves.
  • the sensors and valves of the monitoring component 1 are arranged on the casing of the drilling sub and connected with the circulating pipeline 2 .
  • the monitoring component 1 is used to detect the state of the phase change medium, mainly to determine the degree of phase change of the phase change medium, and according to the detection result of the sensor in the monitoring component 1, the control mechanism 6 controls the phase change generating mechanism 5 to make corresponding adjustments , to ensure that the phase transition occurs at the cooling end 3 and the cooling end 4.
  • Circulation line 2 is a closed, end-to-end pipeline passage. It is a special pipe connecting the monitoring component 1, the circulation pipeline 2, the refrigeration end 3, the heat dissipation end 4, and the phase change generating mechanism 5 with each other.
  • the circulation pipeline 2 is a pipeline for containing the phase-change medium and allowing the phase-change medium to flow and circulate.
  • the circulation pipeline 2 is a pipeline arranged inside the casing of the drilling sub. Its shape, length and thickness match the system in which the sub is placed.
  • the refrigerating end 3 is a sealed tubular structure connected to the circulation line 2 with a thermal insulation shell. It is a mechanism used to lower the temperature and protect internal components.
  • the refrigeration end 3 includes three parts: a tubular shell, an internal pipeline and an end cover.
  • the tubular shell is a long tubular, tubular structure with thermal insulation.
  • the main function of the tubular shell is to prevent the higher temperature from the outside from entering the inside of the tubular shell, and also prevent the lower temperature from the inside from escaping to the outside.
  • the tubular housing withstands higher pressures and protects internal components.
  • the internal pipeline of the refrigeration end 3 is connected to the circulation pipeline 2 .
  • the internal conduit is a slender closed tubular body.
  • the internal pipeline is used to accommodate the phase change medium, and is the main place where the phase change medium undergoes endothermic phase transition.
  • the end cap is a cover for closing the tubular housing of the refrigeration end 3 .
  • a cap that is round and sized to match the tubular housing.
  • the end cover has the function of thermal insulation and protection of internal components.
  • the heat dissipation end 4 is the main part where the exothermic phase transition of the phase change medium occurs. It is a continuous cavity space composed of long pipes. The cavity space is in the lower temperature area of the whole drilling sub. Usually, the area near the rear end of the water eye 7 in the drilling sub is the lowest temperature in the entire sub.
  • the cooling end 4 is connected with the phase change generating mechanism 5 and the cooling end 3 through a circulation pipeline.
  • the heat dissipation end 4 is the main part where the phase-change medium undergoes heat-generating phase transition.
  • the phase change medium in the heat dissipation end 4 undergoes an exothermic phase change under the action of the phase change generating mechanism 5 .
  • the phase change medium releases a large amount of heat, which makes the temperature of the heat dissipation end 4 rise.
  • the phase change mechanism 5 is the main mechanism that forces the phase change medium to undergo phase change in this patent.
  • phase change medium Under the action of the phase change mechanism 5, the phase change medium undergoes an endothermic phase change at the cooling end 3 to absorb heat. The phase change medium undergoes an exothermic phase change at the heat dissipation end 4 to release heat.
  • the phase change generating mechanism 5 includes: a phase change generator, a driving motor and a control circuit.
  • the main function of the control mechanism 6 is to judge the state of the phase change medium according to the data detected by the monitoring component 1.
  • the phase change mechanism 5 is controlled to act on the phase change medium so that the phase change medium undergoes an endothermic phase change at the cooling end 3; it is also used to control the phase change mechanism 5 to act on the endothermic phase change.
  • the phase change medium is used to make the phase change medium undergo a heat dissipation phase change at the heat dissipation end 4 .
  • the phase change generator is a cylinder structure, which can change the pressure of the phase change medium.
  • the phase change generating mechanism 5 can realize isothermal compression by changing the pressure of the phase change medium, so that the phase change medium undergoes a phase change.
  • the functions of the phase change mechanism 5 include but are not limited to realizing phase change by changing the pressure of the medium.
  • the above functions of the phase change generating mechanism 5 are only used as an explanation for describing the method of this patent, and do not become clauses that limit this patent. Nor does it become the only description of the patented method.
  • the phase change generating mechanism 5 can also realize the phase change of the phase change medium in a specific region through physical methods such as temperature and electrification, or chemical methods such as adding chemical reagents.
  • control mechanism 6 controls the phase change generating mechanism 5 to act on the phase change medium, so that the phase change medium undergoes an endothermic phase change at the cooling end 3 under the action of the phase change generating mechanism 5, so that the internal pipeline of the cooling end 3 Absorbs heat, thereby reducing the temperature of the protected equipment element.
  • control mechanism 6 controls the heat-absorbed phase-change medium to flow along the circulation line 2 to the monitoring component 1, and various sensors of the monitoring component 1 detect the state of the phase-change medium.
  • control mechanism 6 controls the phase change medium to pass through the monitoring component 1 and flow through the phase change generator 5 .
  • control mechanism 6 controls and controls the phase change medium to continue to flow through the phase change generator 5, and flows to the heat dissipation end 4, and controls the phase change medium to undergo an exothermic phase change at the heat dissipation end 4. After releasing heat, the phase change medium A phase transition occurs. And control the phase change medium to continue to flow, and carry out the next phase change cycle.
  • the phase change medium undergoes a phase change, specifically, heat transfer through endothermic or exothermic heat is achieved through the change of the state of the phase change medium (gas, liquid, and solid).
  • a phase change medium changes from a liquid state to a gas state
  • heat needs to be absorbed, and an endothermic phase change occurs at this time.
  • the phase change medium changes from gaseous state to liquid state, heat will be released, and what happens at this time is exothermic phase change.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Control Of Temperature (AREA)

Abstract

公开了一种井下相变调温装置,包括:制冷端(3)、散热端(4)、循环机构和控制相变发生机构(5);制冷端(3)、散热端(4)和控制相变发生机构(5)均与循环机构相通;循环机构中容纳有相变介质;控制相变发生机构(5)用于控制相变介质在制冷端(3)发生吸热相变;还用于控制发生吸热相变后的相变介质在散热端(4)发生散热相变;通过利用吸热相变可以吸收热量实现降温,放热相变可以将热量释放出去实现升温,从而实现热量转移和温度控制,适用于控制井下仪器设备工作环境的温度,使仪器设备在井下正常稳定可靠工作;还公开了一种井下相变调温装置的工作方法。

Description

一种井下相变调温方法及装置 技术领域
本发明涉及井下作业技术领域,具体涉及一种井下相变调温方法及装置。
背景技术
井下作业技术领域中,在探索开发利用地下资源时,需要先钻井,之后下仪器设备到井下测量,下仪器设备到井下作业等等。此时井下高温环境成为井下作业巨大的障碍。因为随着打井的深度的增加,井筒里的温度会逐渐升高。比如有的地区地温梯度是30摄氏度/1000米,即每增加1000米温度升高30摄氏度。一口井,地面温度20摄氏度时,6000米深的井下温度就会达到200摄氏度。如遇特殊地区,特殊地层,邻井作业等等,都会使本井温度更高更没规律。比如邻井注入高温蒸汽驱油,就会使本井温度更高,有的会达到230度以上或更高。另外,随着仪器设备在井下测量作业时间的增加,自身功耗会在仪器设备环境温度的基础之上增加,比如环境温度是170摄氏度,随着仪器设备自身功耗随着时间的增加环境温度有可能达到180多摄氏度或更高。
现有技术中受现代电子技术水平,传感器工作温度的限制,测量方法对工作温度范围的要求等等原因,想要仪器设备在井下正常工作或很好的工作,对仪器设备的工作环境温度及温度范围有要求,而目前现有技术中的井下高温工作环境对井下仪器设备的功效有很大的影响,故如何使得井下仪器设备在井下高温环境下高效的工作是当前亟需解决的一个技术问题。
发明内容
本发明提供的一种井下相变调温方法及装置,解决了上述技术问题。
本发明提供了一种井下相变调温装置,包括:制冷端、散热端、循环机构和控制相变发生机构;
所述制冷端、所述散热端和所述控制相变发生机构均与所述循环机构相通; 所述循环机构中容纳有相变介质;
所述控制相变发生机构用于控制所述相变介质在所述制冷端发生吸热相变;还用于控制发生吸热相变后的相变介质在散热端发生散热相变。
可选地,所述控制相变发生机构包括:相变发生机构和控制机构;
所述控制机构,用于控制相变发生机构作用于所述相变介质使所述相变介质在所述制冷端发生吸热相变;还用于控制相变发生机构作用于发生吸热相变后的相变介质,使相变介质在散热端发生散热相变。
可选地,还包括:监控组件;所述监控组件设置在所述循环机构上。
可选地,所述监控组件包括传感器和阀门。
可选地,所述循环机构具体为将所述制冷端、所述散热端和所述控制相变发生机构相互连通的循环管道;
所述制冷端包括:管状外壳、内部管路和端盖;所述内部管路与所述循环机构相通;所述管状外壳设置在所述内部管路外;所述端盖用于封闭所述管状外壳;
所述散热端包括由管道组成的连续多个腔体空间;
所述相变发生机构包括:相变发生器、驱动电机和控制电路。
可选地,所述相变发生器用于作用于相变介质使所述相变介质在所述制冷端发生吸热相变;还用于作用于发生吸热相变后的相变介质,使相变介质在散热端发生散热相变。
可选地,所述井下相变调温装置设置井下仪器设备上。
可选地,所述井下相变调温装置设置在钻井短节内;
所述循环机构、制冷端、散热端、循环机构和控制相变发生机构均设置在钻井短节壳体内部;
所述制冷端与钻井短节的水眼前端邻近;
所述散热端与钻井短节的水眼后端邻近。
本发明还提供了一种井下相变调温方法,适用于井下相变调温装置,包括:
步骤A1:所述控制相变发生机构推动所述相变介质进入制冷端;控制所述相变介质在所述制冷端发生吸热相变;
步骤A2:所述控制相变发生机构控制发生吸热相变后的相变介质进入所述散热端,控制相变介质在所述散热端发生散热相变。
本发明又提供了一种井下相变调温方法,包括:控制相变介质发生相变实现热量的转移,实现对井下设备的调温。
本发明的有益效果:本项发明提供的一种井下相变调温方法及装置,利用吸热相变可以吸收热量实现降温,放热相变可以将热量释放出去实现升温,从而实现热量转移和温度控制,可适用于控制井下仪器设备工作环境的温度,使仪器设备在井下正常稳定可靠工作。
附图说明
图1为本发明实施例1提供的一种井下相变调温装置的结构示意图;
图2为本发明实施例2提供的一种井下相变调温装置的结构图。
具体实施方式
下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本实施例提供了一种井下相变调温装置,如图1所示,包括:制冷端、散热端、循环机构和控制相变发生机构;
制冷端、散热端和控制相变发生机构均与循环机构相通;循环机构中容纳有相变介质;
控制相变发生机构用于控制相变介质在制冷端发生吸热相变;还用于控制 发生吸热相变后的相变介质在散热端发生散热相变。
优选地,控制相变发生机构包括:相变发生机构和控制机构;
控制机构,用于控制相变发生机构作用于相变介质使相变介质在制冷端发生吸热相变;还用于控制相变发生机构作用于发生吸热相变后的相变介质,使相变介质在散热端发生散热相变。
优选地,本实施例提供的一种井下相变调温装置还可以包括:监控组件;监控组件设置在循环机构上。
具体地,监控组件包括传感器和阀门。
优选地,循环机构具体为将制冷端、散热端和控制相变发生机构相互连通的循环管道;
制冷端包括:管状外壳、内部管路和端盖;内部管路与循环机构相通;管状外壳设置在内部管路外;端盖用于封闭管状外壳;
散热端包括由管道组成的连续多个腔体空间;
相变发生机构包括:相变发生器、驱动电机和控制电路。
优选地,相变发生器用于作用于相变介质使相变介质在制冷端发生吸热相变;还用于作用于发生吸热相变后的相变介质,使相变介质在散热端发生散热相变。
优选地,井下相变调温装置设置井下仪器设备上。
优选地,井下相变调温装置设置在钻井短节内;
循环机构、制冷端、散热端、循环机构和控制相变发生机构均设置在钻井短节壳体内部;
制冷端与钻井短节的水眼前端邻近;
散热端与钻井短节的水眼后端邻近。
本实施例还提供了一种井下相变调温方法,适用于井下相变调温装置,包括:
步骤A1:控制相变发生机构推动相变介质进入制冷端;控制相变介质在制冷 端发生吸热相变;
步骤A2:控制相变发生机构控制发生吸热相变后的相变介质进入散热端,控制相变介质在散热端发生散热相变。
本实施例还提供了一种井下相变调温方法,包括:控制相变介质发生相变实现热量的转移,从而实现对井下设备的调温。
本实施例中,相变介质发生相变,具体为,通过相变介质的状态(气,液,固三种相态)的变化实现吸热或放热的热量转移。例如,当相变介质从液态变为气态时,需要吸收热量,此时发生的是吸热相变。而当相变介质气态变为液态时,会放出热量,此时发生的是放热相变。
本实施例提供的一种井下相变调温方法及装置,控制相变介质在制冷端发生吸热相变;控制发生吸热相变后的相变介质在散热端发生散热相变,依靠相变介质的相变实现热量的转移,从而实现对井下设备的调温。
实施例2
本实施例提供了一种井下相变调温装置,如图2所示,设置于一段钻井短节内,包括:制冷端3、散热端4、循环机构、监控组件1和控制相变发生机构;循环机构具体为:循环管线2,控制相变发生机构包括:相变发生机构5和控制机构6。
监控组件1包括一系列传感器和阀门,具体包括但不限于:温度传感器,压力传感器,密度传感器,流速传感器,节流阀,等压阀。
监控组件1的传感器和阀门布设在钻井短节的壳体上,与循环管线2相连接。监控组件1用于检测相变介质的状态,主要为了确定相变介质相变的发生的程度,根据监控组件1中的传感器的检测结果,使得控制机构6控制相变发生机构5进行对应的调整,确保相变发生在制冷端3和散热端4。
循环管线2是一条封闭的,首尾相连的管道通路。是将监控组件1、循环管线2、制冷端3、散热端4、相变发生机构5相互连接起来的专用管道。
循环管线2是容纳相变介质,使相变介质流通循环的管道。
循环管线2是设置在钻井短节壳体内部的管道。其形状,长短和粗细与钻井短节所在的系统相匹配。
制冷端3是一个连接循环管线2的带有保温隔热外壳的密封的管状结构。是用来降低温度,保护内部元件的机构。
制冷端3包括管状外壳,内部管路和端盖三部分。
管状外壳是长管状的,带有保温隔热层的管状结构。管状外壳的主要作用是阻止外部较高的温度进入管状外壳内部,同时也防止内部较低的温度散失到外部。管状外壳可以承受较高的压力,保护内部元件。
制冷端3的内部管路,是连接在循环管线2上。进行热量交换的主要结构。
内部管路是细长封闭的管状机构。内部管路用来容纳相变介质,并且是相变介质发生吸热相变的主要场所。
端盖是用来封闭制冷端3的管状外壳的盖子。是圆形的且大小与管状外壳相匹配的盖子。端盖具有保温隔热,保护内部元件的作用。
散热端4是相变介质发生放热相变的主要部位。是长度很长的管道组成的连续的腔体空间。腔体空间处在整个钻井短节中温度较低的区域。通常情况下钻井短节中靠近水眼7后端的区域是整个短节中温度较低的。
散热端4通过循环管线与相变发生机构5和制冷端3相连。
散热端4是相变介质发生发热相变的主要部分。在散热端4中的相变介质,在相变发生机构5的作用下发生放热相变。发生放热相变的时候,相变介质释放出大量的热量,使得散热端4的温度升高。
相变发生机构5是本专利中迫使相变介质发生相变的主要机构。
在相变发生机构5的作用下,相变介质在制冷端3发生吸热相变,吸收热量。相变介质在散热端4发生放热相变,放出热量。
相变发生机构5包括:一个相变发生器,一个驱动电机和一个控制电路。
控制机构6的主要作用是根据监控组件1检测到的数据判断相变介质的状 态。根据相变介质的状态,控制相变发生机构5作用于相变介质使相变介质在制冷端3发生吸热相变;还用于控制相变发生机构5作用于发生吸热相变后的相变介质,使相变介质在散热端4发生散热相变。
相变发生器,为一个缸体结构,能改变相变介质的压力。
相变发生机构5可以通过改变相变介质的压力,实现恒温压缩,实现等温压缩,使得相变介质发生相变。本实施例中,相变发生机构5的作用包括但不限于通过改变介质压力实现相变。以上的相变发生机构5的作用仅作为描述说明本专利方法的一种说明,不成为限制本专利的条款。也不成为本专利方法的唯一描述。例如相变发生机构5还可以通过比如温度,通电等物理手法或者添加化学试剂等化学方法实现相变介质在特定区域进行相变。
本实施例提供的一种井下相变调温装置的工作方法是:
第一步骤,控制机构6控制相变发生机构5作用于相变介质,使相变介质在相变发生机构5的作用下在制冷端3发生吸热相变,使得制冷端3的内部管路吸收热量,从而使保护的设备元件的温度降低。
第二步骤,控制机构6控制吸收热量后的相变介质沿着循环管线2流动到监控组件1处,通过监控组件1的各种传感器检测相变介质的状态。
第三步骤,控制机构6控制相变介质经过监控组件1,流经相变发生器5。
第四步骤,控制机构6控制控制相变介质在经过相变发生器5,继续流动,流动到散热端4,控制相变介质在散热端4发生放热相变,释放热量后,相变介质发生相变。并控制相变介质继续流动,进行下一次相变循环。
本实施例中,相变介质发生相变,具体为,通过相变介质的状态(气,液,固三种相态)的变化实现吸热或放热的热量转移。例如,当相变介质从液态变为气态时,需要吸收热量,此时发生的是吸热相变。而当相变介质气态变为液态时,会放出热量,此时发生的是放热相变。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何属于本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到 的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (10)

  1. 一种井下相变调温装置,其特征在于,包括:制冷端、散热端、循环机构和控制相变发生机构;
    所述制冷端、所述散热端和所述控制相变发生机构均与所述循环机构相通;所述循环机构中容纳有相变介质;
    所述控制相变发生机构用于控制所述相变介质在所述制冷端发生吸热相变;还用于控制发生吸热相变后的相变介质在散热端发生散热相变。
  2. 根据权利要求1所述的井下相变调温装置,其特征在于,所述控制相变发生机构包括:相变发生机构和控制机构;
    所述控制机构,用于控制相变发生机构作用于所述相变介质使所述相变介质在所述制冷端发生吸热相变;还用于控制相变发生机构作用于发生吸热相变后的相变介质,使相变介质在散热端发生散热相变。
  3. 根据权利要求1所述的井下相变调温装置,其特征在于,还包括:监控组件;所述监控组件设置在所述循环机构上。
  4. 根据权利要求3所述的井下相变调温装置,其特征在于,所述监控组件包括传感器和阀门。
  5. 根据权利要求2所述的井下相变调温装置,其特征在于,所述循环机构具体为将所述制冷端、所述散热端和所述控制相变发生机构相互连通的循环管道;
    所述制冷端包括:管状外壳、内部管路和端盖;所述内部管路与所述循环机构相通;所述管状外壳设置在所述内部管路外;所述端盖用于封闭所述管状外壳;
    所述散热端包括由管道组成的连续多个腔体空间;
    所述相变发生机构包括:相变发生器、驱动电机和控制电路。
  6. 根据权利要求5所述的井下相变调温装置,其特征在于,所述相变发生器用于作用于相变介质使所述相变介质在所述制冷端发生吸热相变;还用于作用于发生吸热相变后的相变介质,使相变介质在散热端发生散热相变。
  7. 根据权利要求1-6中任意一项所述的井下相变调温装置,其特征在于,所述井下相变调温装置设置井下仪器设备上。
  8. 根据权利要求1-6中任意一项所述的井下相变调温装置,其特征在于,所述井下相变调温装置设置在钻井短节内;
    所述循环机构、制冷端、散热端、循环机构和控制相变发生机构均设置在钻井短节壳体内部;
    所述制冷端与钻井短节的水眼前端邻近;
    所述散热端与钻井短节的水眼后端邻近。
  9. 一种井下相变调温方法,适用于如权利要求1-6中任意一项所述的井下相变调温装置,其特征在于,包括:
    步骤A1:所述控制相变发生机构推动所述相变介质进入制冷端;控制所述相变介质在所述制冷端发生吸热相变;
    步骤A2:所述控制相变发生机构控制发生吸热相变后的相变介质进入所述散热端,控制相变介质在所述散热端发生散热相变。
  10. 一种井下相变调温方法,其特征在于,包括:控制相变介质发生相变实现热量的转移,从而实现对井下设备的调温。
PCT/CN2021/138612 2021-09-02 2021-12-16 一种井下相变调温方法及装置 WO2023029297A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111028129.XA CN113738306A (zh) 2021-09-02 2021-09-02 一种井下相变调温方法及装置
CN202111028129.X 2021-09-02

Publications (1)

Publication Number Publication Date
WO2023029297A1 true WO2023029297A1 (zh) 2023-03-09

Family

ID=78735110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138612 WO2023029297A1 (zh) 2021-09-02 2021-12-16 一种井下相变调温方法及装置

Country Status (2)

Country Link
CN (1) CN113738306A (zh)
WO (1) WO2023029297A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117705517A (zh) * 2023-12-08 2024-03-15 河北易高生物燃料有限公司 一种测量烟气重金属含量的可调温采样系统及其控制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113738306A (zh) * 2021-09-02 2021-12-03 谭艳儒 一种井下相变调温方法及装置
CN114526034B (zh) * 2021-12-31 2024-05-28 中国石油天然气集团有限公司 一种降温保温装置、方法及应用、井下电路降温保温系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020020174A1 (en) * 2000-04-20 2002-02-21 Kruip Marcel Jan Marie Cooling apparatus
US20030085039A1 (en) * 2001-01-08 2003-05-08 Baker Hughes, Inc. Downhole sorption cooling and heating in wireline logging and monitoring while drilling
CN102536298A (zh) * 2012-02-29 2012-07-04 四川航天系统工程研究所 用于井下避险装置的环保制冷系统及其制冷方法
CN110529170A (zh) * 2019-08-30 2019-12-03 中国矿业大学 矿井热环境除湿再生系统及方法
CN112414186A (zh) * 2019-08-23 2021-02-26 北京百度网讯科技有限公司 冷却换热系统
CN113738306A (zh) * 2021-09-02 2021-12-03 谭艳儒 一种井下相变调温方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6672093B2 (en) * 2001-01-08 2004-01-06 Baker Hughes Incorporated Downhole sorption cooling and heating in wireline logging and monitoring while drilling
US20080223579A1 (en) * 2007-03-14 2008-09-18 Schlumberger Technology Corporation Cooling Systems for Downhole Tools
NO338979B1 (no) * 2012-02-08 2016-11-07 Visuray Tech Ltd Anordning og fremgangsmåte for kjøling av nedihullsverktøy, samt anvendelse av et forhåndskjølt, massivt kuldekildelegeme som en kuldekilde for en kjølekretstermisk forbundet med et nedihullsverktøy
CN206220990U (zh) * 2016-11-17 2017-06-06 北京科技大学 基于封装相变材料微单元的深井降温系统
CN109653708A (zh) * 2018-12-05 2019-04-19 西安石油大学 一种基于蒸汽压缩循环的冷却井下工具的部件的装置
CN109631469A (zh) * 2018-12-05 2019-04-16 西安石油大学 一种井下工具冷却装置及方法
CN109788714B (zh) * 2019-01-21 2020-09-08 中国石油集团工程技术研究院有限公司 一种随钻井下电路半导体及相变联合降温系统及方法
CN109798089B (zh) * 2019-01-21 2024-09-13 中国石油天然气集团有限公司 一种随钻井下电路主动降温系统
CN111894520A (zh) * 2019-05-06 2020-11-06 中石化石油工程技术服务有限公司 一种基于石蜡材料调控钻井液温度的方法
CN111425187A (zh) * 2020-05-07 2020-07-17 王少斌 一种石油井下偏心隔热承压结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020020174A1 (en) * 2000-04-20 2002-02-21 Kruip Marcel Jan Marie Cooling apparatus
US20030085039A1 (en) * 2001-01-08 2003-05-08 Baker Hughes, Inc. Downhole sorption cooling and heating in wireline logging and monitoring while drilling
CN102536298A (zh) * 2012-02-29 2012-07-04 四川航天系统工程研究所 用于井下避险装置的环保制冷系统及其制冷方法
CN112414186A (zh) * 2019-08-23 2021-02-26 北京百度网讯科技有限公司 冷却换热系统
CN110529170A (zh) * 2019-08-30 2019-12-03 中国矿业大学 矿井热环境除湿再生系统及方法
CN113738306A (zh) * 2021-09-02 2021-12-03 谭艳儒 一种井下相变调温方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117705517A (zh) * 2023-12-08 2024-03-15 河北易高生物燃料有限公司 一种测量烟气重金属含量的可调温采样系统及其控制方法

Also Published As

Publication number Publication date
CN113738306A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
WO2023029297A1 (zh) 一种井下相变调温方法及装置
EP2740890B1 (en) Cooling system and method for a downhole tool
US9657551B2 (en) Thermal component temperature management system and method
US7540165B2 (en) Downhole sorption cooling and heating in wireline logging and monitoring while drilling
US20080277162A1 (en) System and method for controlling heat flow in a downhole tool
NO338366B1 (no) Anordning og fremgangsmåte for varming og kjøling av elektriske komponenter i en borehullsoperasjon
US6978828B1 (en) Heat pipe cooling system
CN102900397B (zh) 一种井下半导体制冷装置
CN108445189B (zh) 含水合物沉积物工程静探参数模拟装置及方法
US11905814B1 (en) Detecting entry into and drilling through a magma/rock transition zone
US9256045B2 (en) Open loop cooling system and method for downhole tools
CN110087439A (zh) 井下仪器电子制冷降温系统
CN105422046A (zh) 井下高效电制冷装置
CN109577948A (zh) 一种井下工具的温度敏感元件的温度管理系统及方法
GB2540788A (en) Downhole tool cooling system
Zhang et al. Research on thermal behavior of ultra-deep horizontal well drilling with dual-channel drillpipe
CN210051713U (zh) 一种测试能量桩换热性能的实验系统
US11035206B2 (en) Downhole on-demand extended-life power source system
CN202914038U (zh) 一种井下半导体制冷装置
Zhang et al. Influence of Inlet Mud Temperature on Bottom Hole Mud Temperature During Horizontal Well Drilling
Sasaki et al. Heat transfer and phase change in deep CO2 injector for CO2 geological storage
RU2386809C2 (ru) Устройство для исследования высокотемпературных скважин
CN215647899U (zh) 一种测井仪器循环散热装置
CN109618530B (zh) 一种井下工具的发热电子设备的冷却系统
Liu et al. First Successful Temperature and Pressure Profile Test for Horizontal Section of Thermal Wells in Offshore Heavy Oilfield China

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21955825

Country of ref document: EP

Kind code of ref document: A1