WO2023029072A1 - 一种可见光通信照明装置和系统 - Google Patents

一种可见光通信照明装置和系统 Download PDF

Info

Publication number
WO2023029072A1
WO2023029072A1 PCT/CN2021/117617 CN2021117617W WO2023029072A1 WO 2023029072 A1 WO2023029072 A1 WO 2023029072A1 CN 2021117617 W CN2021117617 W CN 2021117617W WO 2023029072 A1 WO2023029072 A1 WO 2023029072A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
communication
visible
source assembly
light source
Prior art date
Application number
PCT/CN2021/117617
Other languages
English (en)
French (fr)
Inventor
陈彬
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Publication of WO2023029072A1 publication Critical patent/WO2023029072A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication

Definitions

  • the present application relates to the technical field of optical communication, in particular to a lighting device and system for visible light communication.
  • VLC visible light communication
  • the main purpose of the present application is to provide a visible light communication lighting device and system, aiming to solve the technical problems in the prior art.
  • the visible light communication lighting device includes:
  • a first light source assembly for generating first light comprising a communication signal
  • a second light source component configured to generate second light
  • the first light and the second light are visible light
  • the power of the second light source component is greater than or equal to the power of the first light source component
  • the first light and the second light are mixed to form visible communication light.
  • the present application provides a visible light communication lighting system.
  • the visible light communication lighting system includes a receiving device and the above-mentioned visible light communication lighting device, and the receiving device is used to receive visible communication light generated by the visible light communication lighting device.
  • the visible light communication illuminating device of the present application includes: a first light source component and a second light source component.
  • the first light source assembly is used to generate first light including communication signals
  • the second light source assembly is used to generate second light.
  • the first light and the second light are visible light
  • the power of the second light source component is greater than or equal to the power of the first light source component
  • the first light and the second light are mixed to form visible communication light. Therefore, through the above method, the first light source assembly and the second light source assembly can be set to generate visible light for communication and visible light for illumination respectively, and mix them to form visible communication light capable of both communication and illumination.
  • the power of the first light source component is relatively small, the visible communication light thus formed can realize high-speed optical communication.
  • Fig. 1 is a schematic structural diagram of an embodiment of a visible light communication illuminating device provided by the present application
  • Fig. 2 is a schematic structural diagram of an embodiment of a visible light communication illuminating device provided by the present application
  • Fig. 3 is a schematic structural diagram of an embodiment of a visible light communication illuminating device provided by the present application.
  • Fig. 4 is a schematic structural diagram of an embodiment of a visible light communication illuminating device provided by the present application.
  • Fig. 5 is a schematic structural diagram of an embodiment of a visible light communication illuminating device provided by the present application.
  • Fig. 6 is a schematic structural diagram of an embodiment of a visible light communication illuminating device provided by the present application.
  • Fig. 7 is a schematic structural diagram of an embodiment of a visible light communication illuminating device provided by the present application.
  • Fig. 8 is a schematic structural diagram of an embodiment of a visible light communication illuminating device provided by the present application.
  • Fig. 9 is a schematic structural diagram of an embodiment of a visible light communication illuminating device provided by the present application.
  • Fig. 10 is a schematic structural diagram of an embodiment of a visible light communication lighting system provided by the present application.
  • visible light communication lighting system 1 visible light communication lighting device 10; receiving device 20; optical filter 30; first light source assembly 100; first light 101; 130; the second light source assembly 200; the second light 201; the second light-emitting element 210; the second driving power supply 220; the substrate 300; the light guide strip 400; the opening 410; the lampshade 500; Groove 610.
  • first”, “second”, and “third” in this application are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, features defined as “first”, “second”, and “third” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined. All directional indications (such as up, down, left, right, front, back%) in the embodiments of the present application are only used to explain the relative positional relationship between the various components in a certain posture (as shown in the drawings) , sports conditions, etc., if the specific posture changes, the directional indication also changes accordingly.
  • the blue LED covers the fluorescent powder to form a white light illumination source. Most of the energy of the blue LED is used to excite the fluorescent powder to form a fluorescent spectrum, and the remaining small part of the blue light is transmitted out of the fluorescent powder and mixed with the fluorescent powder to form white light. Because the fluorescent components have afterglow problems and need to be filtered out, only a small part of the light that can really be used for communication.
  • the present application provides a visible light communication illuminating device 10 .
  • FIG. 1 is a schematic structural diagram of an embodiment of a visible light communication illuminating device 10 provided by the present application.
  • the visible light communication illuminating device 10 may include a first light source assembly 100 and a second light source assembly 200 .
  • the first light source assembly 100 is used to generate first light 101 including communication signals
  • the second light source assembly 200 is used to generate second light 201 .
  • the first light 101 and the second light 201 are visible light
  • the power of the second light source assembly 200 is greater than or equal to the power of the first light source assembly 100
  • the first light 101 and the second light 201 are mixed to form visible communication light (not shown in the figure). ).
  • the first light source assembly 100 and the second light source assembly 200 can be set to generate visible light for communication and visible light for illumination respectively, and mix them to form a visible communication capable of both communication and illumination. Light. Moreover, since the power of the first light source assembly 100 is relatively small, the visible communication light thus formed can realize high-speed optical communication.
  • the power of the second light source assembly 200 may be equal to the power of the first light source assembly 100 .
  • the luminous flux requirement of the visible communication light is 3000 lumens.
  • the brightness of the first light 101 generated by the first light source assembly 100 may be 1500 lumens, and the brightness of the second light 201 generated by the second light source assembly 200 may be 1500 lumens.
  • the luminous flux of the visible communication light formed by mixing the first light 101 and the second light 201 is 3000 lumens. Therefore, in this embodiment, the power of the first light source assembly 100 can be reduced to reduce the junction capacitance of the first light source assembly 100 so as to be able to load high-speed signals.
  • the power of the second light source assembly 200 may be greater than that of the first light source assembly 100 .
  • the power of the second light source assembly 200 may be 1-3 times that of the first light source assembly 100 .
  • the power of the second light source assembly 200 may be 1.5 times, 2 times, 2.5 times or 3 times, etc., of the power of the first light source assembly 100 .
  • the power of the second light source assembly 200 may be twice that of the first light source assembly 100 .
  • the luminous flux requirement of visible communication light is 3000 lumens.
  • the brightness of the first light 101 generated by the first light source assembly 100 may be 1000 lumens, and the brightness of the second light 201 generated by the second light source assembly 200 may be 2000 lumens.
  • the luminous flux of the visible communication light formed by mixing the first light 101 and the second light 201 is 3000 lumens. Therefore, in this embodiment, the power of the first light source assembly 100 can be further reduced, so as to further reduce the junction capacitance of the first light source assembly 100, so as to implement loading of high-speed signals.
  • the visible communication light formed by mixing the first light 101 for loading communication signals and the second light 201 for illumination can realize communication while realizing illumination. Moreover, since the first light source assembly 100 with low power can load high-speed signals, the visible communication light formed by mixing the first light 101 and the second light 201 can also realize high-speed communication.
  • the second light 201 is fluorescence.
  • the second light 201 may be fluorescence obtained by exciting phosphor powder.
  • phosphor powder may be disposed on the second light source assembly 200, and the second light 201 generated by the second light source assembly 200 is irradiated onto the phosphor powder, and the phosphor powder is excited to obtain fluorescence.
  • the second light 201 may be the LED light generated by the LED chip, and the fluorescence may be generated by exciting the phosphor powder by the LED light.
  • the second light 201 is fluorescence, which can solve the problem of poor modulation depth and communication rate of the existing LED lighting source as a visible light communication light source, and can also obtain a continuous spectrum with high color rendering index and adjustable color temperature. lighting light.
  • the second light 201 is LED light.
  • the second light source assembly 200 may include an LED chip, and the light generated by the LED chip without exciting the phosphor powder may be LED light.
  • the second light 201 may be combined RGB light, for example, the second light 201 may be a combination of two or three colors of light in RGB LED chips.
  • the wavelengths of the first light 101 and the second light 201 may be in the range of 420nm-700nm, so that the first light 101 and the second light 201 may be visible light.
  • the wavelength of the first light 101 may be in the range of 430-480 nm, and the wavelength of the second light 201 may be in the range of 430-700 nm.
  • the first light 101 may be blue light, and the first light 101 and the second light 201 may be mixed to form white visible communication light.
  • the wavelength of the first light 101 may be in the range of 430-480nm, and the wavelength of the second light 201 may be in the range of 430-700nm. Therefore, the wavelength ranges of the first light 101 and the second light 201 are both within the range of visible light, that is, both the first light 101 and the second light 201 are visible light.
  • the first light 101 may be blue light.
  • the first light 101 may be blue light generated by a semiconductor laser, or blue light generated by an LED chip.
  • the second light 201 may be fluorescence.
  • the first light 101 can mainly play the role of loading communication signals and coloring the second light 201 .
  • the white visible communication light can be formed by mixing the first light 101 and the second light 201 , and the white visible communication light can not only communicate but also illuminate.
  • the wavelength of the first light 101 may be in the range of 600nm-700nm, and the wavelength of the second light 201 may be in the range of 430nm-700nm.
  • the first light 101 may be red light, and the first light 101 and the second light 201 may be mixed to form white visible communication light.
  • the wavelength of the first light 101 may be in the range of 600nm-700nm, and the wavelength of the second light 201 may be in the range of 430-700nm. Therefore, the wavelength ranges of the first light 101 and the second light 201 are both within the range of visible light, that is, both the first light 101 and the second light 201 are visible light.
  • the first light 101 may be red light.
  • the first light 101 may be red light generated by a semiconductor laser, or red light generated by an LED chip.
  • the second light 201 may be fluorescence.
  • the first light 101 can mainly play the role of loading communication signals and coloring the second light 201 .
  • the white visible communication light can be formed by mixing the first light 101 and the second light 201 , and the white visible communication light can not only communicate but also illuminate.
  • the color of the visible communication light can also be white, red, green, or yellow, etc., and the color of the visible communication light can be adjusted according to actual needs. Specifically, by controlling the colors of the first light 101 and the second light 201, the color of the visible communication light formed by mixing the first light 101 and the second light 201 can be controlled.
  • FIG. 2 is a schematic structural diagram of an embodiment of a visible light communication illuminating device 10 provided by the present application.
  • the first light source assembly 100 may include a first light emitting element 110 , and the first light emitting element 110 may be used to generate the first light 101 .
  • the first light emitting element 110 may be a semiconductor laser or an LED chip, and the first light emitting element 110 may emit first light 101 of different colors.
  • the first light source assembly 100 may further include a first driving power source 120 , and the first driving power source 120 is electrically coupled to the first light emitting element 110 .
  • the first driving power 120 may be a first driving power 120 with a high-speed modulated communication signal.
  • the first light 101 generated by the first light emitting element 110 can realize high-speed optical communication.
  • the second light source assembly 200 includes a second light emitting element 210 for generating second light 201 .
  • the second light emitting element 210 may be an LED chip, and the second light emitting element 210 may emit second light 201 of different colors.
  • the second light source assembly 200 may further include a second driving power source 220 , and the second driving power source 220 is electrically coupled to the second light emitting element 210 .
  • FIG. 3 is a schematic structural diagram of an embodiment of a visible light communication illuminating device 10 provided by the present application.
  • the visible light communication illuminating device 10 may include a scattering layer 130 disposed on the light path of the first light 101 , and the scattering layer 130 is used for receiving and scattering the first light 101 .
  • the scattering layer 130 may be composed of silica gel plus titanium oxide and other scattering particles, and the scattering layer 130 may be a scattering film.
  • the scattering layer 130 may serve to diffuse the first light 101 so that the first light 101 may be sufficiently mixed with the second light 201 .
  • the first light-emitting element 110 can be a semiconductor laser or a plurality of stacked LED chips.
  • the divergence angle of the first light 101 generated by the first light-emitting element 110 is small, and it is difficult to achieve uniformity with the second light 201.
  • a scattering layer 130 can be provided on the optical path of the first light 101 to increase the divergence angle of the first light 101 , so that the first light 101 can be fully mixed with the second light 201 .
  • FIG. 4 is a schematic structural diagram of an embodiment of a visible light communication illuminating device 10 provided by the present application.
  • the visible light communication illuminating device 10 may include a substrate 300 on which the first light-emitting element 110 and the second light-emitting element 210 are disposed.
  • the substrate 300 can be a lamp board or a PCB board, and a driving circuit can be provided in the substrate 300, and the driving circuit can be used to provide power for the first light-emitting part 110 and the second light-emitting part 210, so that the first light-emitting part 110 and the second light-emitting part 210 generates the first light 101 and the second light 201 respectively.
  • the first light emitting element 110 and the second light emitting element 210 may be exposed on the surface of one side of the substrate 300 , and the first light emitting element 110 and the second light emitting element 210 may be disposed adjacent to each other.
  • the first light source assembly 100 may include a plurality of first light emitting elements 110 for generating the first light 101 .
  • the second light source assembly 200 may include a plurality of second light emitting elements 210 for generating the second light 201 .
  • first light-emitting elements 110 and multiple second light-emitting elements 210 there are multiple first light-emitting elements 110 and multiple second light-emitting elements 210 , and the multiple first light-emitting elements 110 and the multiple second light-emitting elements 210 are correspondingly arranged on the substrate 300 .
  • the number of the first light emitting element 110 and the second light emitting element 210 may be more than two, and they are arranged on the substrate 300 .
  • the numbers of the first light emitting elements 110 and the second light emitting elements 210 may be the same or different. Therefore, in this embodiment, by arranging a plurality of first light-emitting elements 110 and a plurality of second light-emitting elements 210 at the same time, and correspondingly arranging them on the substrate 300, the first light 101 generated by the first light-emitting elements 110 can be And the second light 201 generated by the second light emitting element 210 is relatively uniform.
  • FIG. 5 is a schematic structural diagram of an embodiment of a visible light communication illuminating device 10 provided by the present application.
  • the number of the first light emitting elements 110 and the second light emitting elements 210 may be the same, and they are correspondingly arranged on the substrate 300 .
  • the first light-emitting element 110 and the second light-emitting element 210 may present a dot matrix arrangement at the same time.
  • Each first light-emitting element 110 and each second light-emitting element 210 have a one-to-one correspondence, that is, each first light-emitting element 110 is adjacent to a second light-emitting element 210 .
  • the distance between every two adjacent first light-emitting elements 110 may be the same, and the distance between every two adjacent second light-emitting elements 210 may be the same.
  • the plurality of first light emitting elements 110 may be arranged sequentially along the length direction and the width direction of the substrate 300 , so that the plurality of first light emitting elements 110 are regularly arranged on the substrate 300 .
  • the plurality of second light emitting elements 210 may be arranged sequentially along the length direction and the width direction of the substrate 300 , so that the plurality of second light emitting elements 210 are regularly arranged on the substrate 300 .
  • each second light-emitting element 210 can be arranged at the interval between two adjacent first light-emitting elements 110 .
  • a first light emitting element 110 is arranged next to each second light emitting element 210, so that the first light 101 generated by the first light emitting element 110 and the second light generated by the second light emitting element 210
  • the light 201 is relatively uniform.
  • FIG. 6 is a schematic structural diagram of an embodiment of a visible light communication illuminating device 10 provided by the present application.
  • the number of the first light-emitting elements 110 and the second light-emitting elements 210 may be different, and they are correspondingly arranged on the substrate 300 .
  • each first light emitting element 110 may be correspondingly provided with a plurality of second light emitting elements 210 at the same time, that is, the first light emitting element 110 and the second light emitting element 210 present a one-to-many correspondence.
  • one first light-emitting element 110 can be provided with two second light-emitting elements 210 , three second light-emitting elements 210 or more second light-emitting elements 210 at the same time, and multiple second light-emitting elements 210 can
  • the light emitting element 110 is centered and arranged around a first light emitting element 110 .
  • the substrate 300 may be divided into a plurality of regions, and the number of the first light emitting elements 110 and the second light emitting elements 210 in each region may be the same.
  • the arrangement of the first light emitting elements 110 and the second light emitting elements 210 in each area may be the same.
  • the substrate 300 can be divided into four areas, and each area can be provided with four second light-emitting elements 210 and one first light-emitting element 110 , and the four second light-emitting elements 210 can surround the first light-emitting element.
  • 110 is set so that the first light 101 generated by the first light emitting element 110 and the second light 201 generated by the second light emitting element 210 are relatively uniform.
  • the number of divided areas of the substrate 300 and the number of the first light-emitting elements 110 and the second light-emitting elements 210 in each area can be set according to actual needs.
  • FIG. 7 is a schematic structural diagram of an embodiment of a visible light communication illuminating device 10 provided by the present application.
  • the visible light communication illuminating device 10 may further include a light guide strip 400 .
  • the light guide strip 400 may be provided with an opening 410 .
  • the light guide strip 400 receives the first light 101 through the opening 410 .
  • the light guide strip 400 is used for scattering the first light 101 .
  • the light guide strip 400 may be disposed on the substrate 300 , and the second light emitting element 210 is disposed adjacent to the light guide strip 400 .
  • the opening 410 of the light guide bar 400 can be set at the end of the light guide bar 400, and can also be set at other parts of the light guide bar 400.
  • the first light-emitting element 110 can be set at the opening 410 of the light guide bar 400 to pass through the The opening 410 of the light bar 400 guides the generated first light 101 into the light guide bar 400 , the first light 101 introduced into the light guide bar 400 can be transmitted inside the light guide bar 400 , and the first light is scattered by the light guide bar 400 101.
  • the light guide bar 400 may also be provided with a plurality of openings 410 , and each opening 410 may be provided with a first light-emitting element 110 .
  • the light guide strip 400 may be a scattering optical fiber, and the first light 101 may be directly scattered through the light guide strip 400 .
  • the light guide strip 400 can also be a common optical fiber, and light leakage grooves can be provided on the light guide strip 400 to scatter the first light 101 through the light leakage grooves.
  • the light guide strip 400 may be a hollow and bent cylinder, and the light guide strip 400 may be arranged around a plurality of second light emitting elements 210 .
  • the plurality of second light emitting elements 210 may be arranged sequentially along the length direction and the width direction of the substrate 300 , so that the plurality of second light emitting elements 210 are regularly arranged on the substrate 300 .
  • the light guide strip 400 can be disposed in the gap between two adjacent rows or columns, so that the first light 101 generated by the first light emitting element 110 and the second light 201 generated by the second light emitting element 210 are relatively uniform.
  • setting the light guide bar 400 to receive the first light 101 generated by the first light-emitting element 110 can reduce the number of first light-emitting elements 110, facilitate the concentration of the communication signal of the first light 101, and avoid communication
  • the longer signal transmission distance affects the bandwidth, and the light guide strip 400 can also make the scattering of the first light 101 uniform, so that the visible light communication lighting device 10 can simultaneously take into account the characteristics of high bandwidth and high lighting quality.
  • FIG. 8 is a schematic structural diagram of an embodiment of a visible light communication illuminating device 10 provided by the present application.
  • the VLC illuminating device 10 includes a lampshade 500 for receiving and scattering the first light 101 and the second light 201 so as to mix the first light 101 and the second light 201 .
  • the lampshade 500 can be connected with the substrate 300 so that an accommodation space 510 is formed between the lampshade 500 and the substrate 300 , and the first light-emitting element 110 and the second light-emitting element 210 can be arranged in the accommodation space 510 to pass through the lampshade 500 and the substrate 300 Cooperate with the packaging of the first light-emitting part 110 and the second light-emitting part 210, while using the lampshade 500 to scatter the first light 101 and the second light 201 so that the first light 101 and the second light 201 can be mixed evenly, and the first light-emitting part can also be illuminated. 110 and the second light-emitting element 210 play a protective role.
  • FIG. 9 is a schematic structural diagram of an embodiment of a visible light communication illuminating device 10 provided by the present application.
  • the visible light communication illuminating device 10 includes an optical element 600 for receiving and reflecting the first light 101 and the second light 201 to irradiate the first light 101 and the second light 201 to a preset position.
  • the optical element 600 may include a receiving groove 610, the first light-emitting element 110 and the second light-emitting element 210 may be disposed in the receiving groove 610, and the first light 101 and the second light 201 are scattered, and part of the first light 101 and the second light are scattered.
  • the second light 201 can be irradiated on the optical element 600, and the optical element 600 receives the first light 101 and the second light 201, and reflects the first light 101 and the second light 201 to change its outgoing angle, so that the scattered first The light 101 and the second light 201 are gathered and irradiated to a designated position.
  • the optical element 600 may be a reflective cup or a lens.
  • the visible light communication illuminating device 10 provided by the present application can generate the first light 101 mainly used for carrying communication signals and the second light 201 mainly used for illumination, so that the visible communication light formed by mixing can achieve illumination at the same time. Communication is also possible. Moreover, since the first light source assembly 100 can load high-speed signals, the visible communication light formed by mixing the first light 101 and the second light 201 can also realize high-speed communication.
  • FIG. 10 is a schematic structural diagram of an embodiment of a VLC lighting system 1 provided by the present application.
  • the visible light communication lighting system 1 includes a receiving device 20 and a visible light communication lighting device 10 , and the receiving device 20 is configured to receive visible communication light generated by the visible light communication lighting device 10 .
  • the receiving device 20 may be an optical receiver.
  • the receiving device 20 receives the visible communication light to convert the visible communication light into a photocurrent, and then processes the signal to output a photocurrent signal.
  • a filter 30 may also be provided between the visible light communication illuminating device 10 and the receiving device 20 .

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本申请公开了一种可见光通信照明装置和系统。可见光通信照明装置包括:第一光源组件和第二光源组件。第一光源组件用于产生包括通信信号的第一光,第二光源组件用于产生第二光。其中,第一光和所述第二光为可见光,第二光源组件的功率大于或等于第一光源组件的功率,第一光和第二光混合形成可见通信光。因此,通过上述方式,可以设置第一光源组件和第二光源组件以分别产生用于通信的可见光和用于照明的可见光,并将其混合以此形成既能通信又能照明的可见通信光。并且,由于第一光源组件的功率较小,由此形成的可见通信光能够实现高速光通信。

Description

一种可见光通信照明装置和系统 技术领域
本申请涉及光通信技术领域,特别是涉及一种可见光通信照明装置和系统。
背景技术
随着无线通信网络数据量的爆炸式增长,现阶段有限的无线电频率(radiofrequency,RF)频谱越来越无法满足人们的通信需求。在这种情况下,利用可见光频谱的可见光通信(visible light communication,VLC)逐渐成为研究热点。VLC系统以其速率高、成本低等优势,将会成为未来无线通信的新趋势。
而现有的技术中对可见光通信的研究主要集中在通信端,即该技术主要是通信技术领域人员参与研究,少有照明技术领域人员参与研究。
发明内容
本申请的主要目的是提供一种可见光通信照明装置和系统,旨在解决现有技术中的技术问题。
为解决上述问题,本申请提供了一种可见光通信照明装置,可见光通信照明装置包括:
第一光源组件,用于产生包括通信信号的第一光;
第二光源组件,用于产生第二光;
其中,第一光和第二光为可见光,第二光源组件的功率大于或等于第一光源组件的功率,第一光和第二光混合形成可见通信光。
为解决上述问题,本申请提供了一种可见光通信照明系统,可见光通信照明系统包括接收装置和上述的可见光通信照明装置,接收装置用于接收可见光通信照明装置产生的可见通信光。
与现有技术相比,本申请的可见光通信照明装置包括:第一光源组件和第二光源组件。第一光源组件用于产生包括通信信号的第一光,第二光源组件用于产生第二光。其中,第一光和所述第二光为可见光,第二光源组件的功率大于或等于第一光源组件的功率,第一光和第二光混合形成可见通信光。因此,通过上述方式,可以设置第一光源组件和第二光源组件以分别产生用于通信的可见光和用于照明的可见光,将其混合以此形成既能通信又能照明的可见通信光。并且,由于第一光源组件的功率较小,由此形成的可见通信光能够实现高速光通信。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的可见光通信照明装置的一实施例结构示意图;
图2是本申请提供的可见光通信照明装置的一实施例结构示意图;
图3是本申请提供的可见光通信照明装置的一实施例结构示意图;
图4是本申请提供的可见光通信照明装置的一实施例结构示意图;
图5是本申请提供的可见光通信照明装置的一实施例结构示意图;
图6是本申请提供的可见光通信照明装置的一实施例结构示意图;
图7是本申请提供的可见光通信照明装置的一实施例结构示意图;
图8是本申请提供的可见光通信照明装置的一实施例结构示意图;
图9是本申请提供的可见光通信照明装置的一实施例结构示意图;
图10是本申请提供的可见光通信照明系统的一实施例结构示意图。
附图标号:可见光通信照明系统1;可见光通信照明装置10;接收装置20;滤光片30;第一光源组件100;第一光101;第一发光件110;第一驱动电源120;散射层130;第二光源组件200;第二光201;第二发光件210;第二驱动电源220;基板300;导光条400;开口410;灯罩500;容置空间510;光学元件600;容置槽610。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。可以理解的是,此处所描述的具体实施例仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个该特征。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
现有技术中的可见光照明通信可能会出现以下问题:
首先,现有技术的可见光照明通信的研究主要集中在通信端,即该技术主要是通信技术人员在研究,很少有照明领域的人员在研究,因此 普遍基于LED+荧光粉的照明光源的基础上,再研究如何提高通信质量。未想到从光源端去解决通信质量问题,而LED+荧光粉的照明方式中,荧光粉存在荧光余晖的问题,光源明暗状态变化慢,因此会造成通信速度低等问题。
其次,可见光通信希望即能照明又能通信,但是照明所需要的功率较大,LED芯片的结电容也就较大,因此难以实现高速光通信。
再次,蓝光LED覆盖荧光粉形成的白光照明光源,其中蓝光LED大部分能量用来激发荧光粉形成荧光光谱,剩余小部分的蓝光透射出荧光粉,并与荧光混合为白光。因为荧光成分有余晖问题,需要滤除,其真正可用于做通信的光只有小部分。
综上,为了能够解决现有技术中存在的技术问题,本申请提供了一种可见光通信照明装置10。
参见图1,图1是本申请提供的可见光通信照明装置10的一实施例结构示意图。
可见光通信照明装置10可以包括第一光源组件100和第二光源组件200。第一光源组件100用于产生包括通信信号的第一光101,第二光源组件200用于产生第二光201。
其中,第一光101和第二光201为可见光,第二光源组件200的功率大于或等于第一光源组件100的功率,第一光101和第二光201混合形成可见通信光(图未示)。
因此,通过上述方式,可以设置第一光源组件100和第二光源组件200以分别产生用于通信的可见光和用于照明的可见光,并将其混合以此形成既能通信又能照明的可见通信光。并且,由于第一光源组件100的功率较小,由此形成的可见通信光能够实现高速光通信。
第二光源组件200的功率可以等于第一光源组件100的功率。
具体地,在一实施例中,可见通信光的光通量的需求是3000流明。第一光源组件100所产生的第一光101的光亮度可以是1500流明,第二光源组件200所产生的第二光201的光亮度可以是1500流明。由此,第一光101和第二光201混合形成的可见通信光的光通量的是3000流 明。因此,本实施例中,可以降低第一光源组件100的功率,以降低第一光源组件100的结电容,从而能够加载高速信号。
第二光源组件200的功率可以大于第一光源组件100的功率。
具体地,第二光源组件200的功率可以是第一光源组件100的功率的1-3倍。具体地,第二光源组件200的功率可以是第一光源组件100的功率的1.5倍、2倍、2.5倍或3倍等。
在一实施例中,第二光源组件200的功率可以是第一光源组件100的功率的2倍。可见通信光的光通量的需求是3000流明。第一光源组件100所产生的第一光101的光亮度可以是1000流明,第二光源组件200所产生的第二光201的光亮度可以是2000流明。由此,第一光101和第二光201混合形成的可见通信光的光通量的是3000流明。因此,在本实施例中,可以进一步降低第一光源组件100的功率,以进一步降低第一光源组件100的结电容,从而实现加载高速信号。
因此,用于加载通信信号的第一光101和用于照明的第二光201混合所形成的可见通信光在能够实现照明的同时还能够实现通信。并且,由于功率较小的第一光源组件100能够加载高速信号,混合第一光101和第二光201形成的可见通信光也能够实现高速通信。
在一实施例中,第二光201为荧光。
第二光201可以是由激发荧光粉所得到的荧光。具体地,可以在第二光源组件200上设置荧光粉,通过第二光源组件200产生的第二光201照射至荧光粉上,通过激发荧光粉以得到荧光。其中,第二光201可以是LED芯片产生的LED光,荧光可以是通过LED光激发荧光粉产生。
因此,在本实施例中,第二光201为荧光,能够解决现有LED照明光源作为可见光通信光源调制深度和通信速率差的问题,还可以获得显色指数高、色温可调的连续光谱的照明光。
在另一实施例中,第二光201为LED光。
第二光源组件200可以包括LED芯片,LED芯片产生的光且未激发荧光粉的光可以为LED光。第二光201可以是RGB合光,例如,第二光201可以是由RGB的LED芯片中的两种或三种色彩的光的组合。
由此,可以通过第一光101和第二光201混合得到无光衰、对比度高且带有颜色的可见通信光。
其中,第一光101和第二光201的波长可以位于420nm-700nm范围内,以使得第一光101和第二光201可以为可见光。
具体地,在一实施例中,第一光101的波长可以在430-480nm范围内,第二光201的波长可以在430-700nm范围内。第一光101可以为蓝光,第一光101和第二光201混合可以形成白色可见通信光。
第一光101的波长可以在430-480nm范围内,第二光201的波长可以在430-700nm范围内。因此,第一光101和第二光201的波长范围均在可见光的范围内,即第一光101和第二光201均为可见光。
第一光101可以为蓝光。第一光101可以由半导体激光器产生的蓝光,也可以是由LED芯片产生的蓝光。第二光201可以为荧光。
因此,在本实施例中,第一光101可以主要起到加载通信信号和为第二光201调色的作用。由此,通过第一光101和第二光201混合可以形成白色可见通信光,白色可见通信光既能通信又能照明。
在另一实施例中,第一光101的波长可以在600nm-700nm范围内,第二光201的波长可以在430nm-700nm范围内。第一光101可以为红光,第一光101和第二光201混合可以形成白色可见通信光。
第一光101的波长可以在600nm-700nm范围内,第二光201的波长可以在430-700nm范围内。因此,第一光101和第二光201的波长范围均在可见光的范围内,即第一光101和第二光201均为可见光。
第一光101可以为红光。第一光101可以由半导体激光器产生的红光,也可以是由LED芯片产生的红光。第二光201可以为荧光。
因此,在本实施例中,第一光101可以主要起到加载通信信号和为第二光201调色的作用。由此,通过第一光101和第二光201混合可以形成白色可见通信光,白色可见通信光既能通信又能照明。
在其他实施例中,可见通信光的颜色还可以为白色、红色、绿色或黄色等等,可见通信光的色彩可以根据实际需要调试。具体地,可以通过控制第一光101和第二光201的色彩,由此控制通过第一光101和第 二光201混合而成的可见通信光的色彩。
参见图2,图2是本申请提供的可见光通信照明装置10的一实施例结构示意图。
第一光源组件100可以包括第一发光件110,第一发光件110可以用于产生第一光101。
第一发光件110可以为半导体激光器或LED芯片,第一发光件110可以发出不同色彩的第一光101。第一光源组件100还可以包括第一驱动电源120,第一驱动电源120电性耦接第一发光件110。第一驱动电源120可以是带有高速调制通信信号的第一驱动电源120。由此,通过第一发光件110产生的第一光101能够实现高速光通信。
第二光源组件200包括第二发光件210,第二发光件210用于产生第二光201。
第二发光件210可以为LED芯片,第二发光件210可以发出不同色彩的第二光201。第二光源组件200还可以包括第二驱动电源220,第二驱动电源220电性耦接第二发光件210。
参见图3,图3是本申请提供的可见光通信照明装置10的一实施例结构示意图。
可见光通信照明装置10可以包括散射层130,散射层130设置于第一光101的光路上,散射层130用于接收并散射第一光101。
其中,散射层130可以是由硅胶加氧化钛等散射粒子组成,散射层130可以是散射薄膜。散射层130可以用来散射第一光101,以使得第一光101可以充分与第二光201混合。
在一实施例中,第一发光件110可以为半导体激光器或多个堆叠的LED芯片,由第一发光件110所产生的第一光101其发散角度较小,难以实现与第二光201均匀混合,此时可以在第一光101的光路上设置散射层130以让第一光101的发散角变大,使得第一光101可以充分与第二光201混合。参见图4,图4是本申请提供的可见光通信照明装置10的一实施例结构示意图。
可见光通信照明装置10可以包括基板300,第一发光件110和第二 发光件210设置于基板300上。
基板300可以是灯板或PCB板,基板300内可以设有驱动电路,驱动电路可以用来为第一发光件110和第二发光件210提供电源,使得第一发光件110和第二发光件210分别产生第一光101和第二光201。
第一发光件110和第二发光件210可以显露于基板300一侧的表面上,且第一发光件110和第二发光件210可以相邻设置。
其中,第一光源组件100可以包括多个第一发光件110,第一发光件110用于产生第一光101。第二光源组件200可以包括多个第二发光件210,第二发光件210用于产生第二光201。
具体地,第一发光件110为多个,第二发光件210为多个,多个第一发光件110和多个第二发光件210对应排布于基板300上。
第一发光件110可以和第二发光件210的个数可以为两个以上,且排布于基板300上。第一发光件110和第二发光件210的个数可以相同或不同。因此,在本实施例中,通过同时设置多个第一发光件110和多个第二发光件210,且对应排布在基板300上,能够使得通过第一发光件110产生的第一光101和通过第二发光件210产生的第二光201较为均匀。
参见图5,图5是本申请提供的可见光通信照明装置10的一实施例结构示意图。
在本实施例中,第一发光件110和第二发光件210的数量可以相同,且对应排布于基板300上。例如,第一发光件110和第二发光件210可以同时呈现点阵排列。每个第一发光件110和每个第二发光件210呈现一一对应关系,即每个第一发光件110相邻设置有一个第二发光件210。每相邻的两个第一发光件110之间的间距可以相同,每相邻的两个第二发光件210之间的间距可以相同。
具体地,多个第一发光件110可以分别沿基板300的长度方向和宽度方向依次排列,以使得多个第一发光件110规则地排布于基板300上。多个第二发光件210可以分别沿基板300的长度方向和宽度方向依次排列,以使得多个第二发光件210规则地排布于基板300上。且每个第二 发光件210可以排布于相邻两个第一发光件110之间的间隔处。
因此,通过上述方式可以实现在每个第二发光件210的旁边设置一个第一发光件110,以使得通过第一发光件110产生的第一光101和通过第二发光件210产生的第二光201较为均匀。
参见图6,图6是本申请提供的可见光通信照明装置10的一实施例结构示意图。
在本实施例中,第一发光件110和第二发光件210的数量可以不同,且对应排布于基板300上。例如,每个第一发光件110可以同时对应设置有多个第二发光件210,即第一发光件110和第二发光件210呈现一对多的对应关系。例如,一个第一发光件110可以同时对应设置两个第二发光件210、三个第二发光件210或更多数量的第二发光件210,多个第二发光件210可以以一个第一发光件110为中心围绕一个第一发光件110设置。
具体地,可以将基板300分别划分为多个区域,每个区域中的第一发光件110和第二发光件210的数量可以相同。每个区域中的第一发光件110和第二发光件210的排布可以相同。
如图6所示,基板300可以划分为四个区域,每个区域中可以设置有四个第二发光件210和一个第一发光件110,四个第二发光件210可以围绕第一发光件110设置,以使得通过第一发光件110产生的第一光101和通过第二发光件210产生的第二光201较为均匀。
在其他实施例中,基板300的划分的区域的数量以及每个区域中的第一发光件110和第二发光件210的数量均可以根据实际需求而设定。
参见图7,图7是本申请提供的可见光通信照明装置10的一实施例结构示意图。
可见光通信照明装置10还可以包括导光条400,导光条400可以设有开口410,导光条400通过开口410接收第一光101,导光条400用于散射第一光101。
具体地,导光条400可以设置于基板300上,第二发光件210与导光条400相邻设置。
导光条400的开口410可以设置于导光条400的端部,也可以设置于导光条400的其他部位,第一发光件110可以设置于导光条400的开口410处,以通过导光条400的开口410将产生的第一光101导入导光条400中,导入导光条400的第一光101可以在导光条400的内部传输,且通过导光条400散射第一光101。在其他实施例中,导光条400还可以设置有多个开口410,每个开口410处可以设置有一个第一发光件110。
其中,导光条400可以是散射光纤,第一光101可以直接通过导光条400散射。导光条400还可以是普通光导光纤,且在导光条400上可以设置漏光槽,以通过漏光槽散射出第一光101。
导光条400可以是中空且经过弯折的柱体,导光条400可以围绕多个第二发光件210设置。多个第二发光件210可以分别沿基板300的长度方向和宽度方向依次排列,以使得多个第二发光件210规则地排布于基板300上。导光条400可以设置于相邻两行或两列之间的间隙中,以使得通过第一发光件110产生的第一光101和通过第二发光件210产生的第二光201较为均匀。
因此,在本实施例中,设置导光条400来接收第一发光件110所产生的第一光101,可以减少第一发光件110的数量,便于集中第一光101的通信信号,避免通信信号传输距离较长,影响带宽,并且,利用导光条400还可以使第一光101的散射均匀,以使得可见光通信照明装置10能够同时兼顾高带宽和高照明质量的特点。
参见图8,图8是本申请提供的可见光通信照明装置10的一实施例结构示意图。
可见光通信照明装置10包括灯罩500,灯罩500用于接收并散射第一光101和第二光201,以便于第一光101和第二光201混合。
灯罩500可以与基板300连接,以使得灯罩500与基板300之间形成容置空间510,第一发光件110和第二发光件210可以设置于容置空间510内,以通过灯罩500和基板300配合封装第一发光件110和第二发光件210,在利用灯罩500散射第一光101和第二光201以使第一光 101和第二光201混合均匀的同时还能够对第一发光件110和第二发光件210起到保护作用。
参见图9,图9是本申请提供的可见光通信照明装置10的一实施例结构示意图。
可见光通信照明装置10包括光学元件600,光学元件600用于接收并反射第一光101和第二光201,以将第一光101和第二光201照射至预设位置。
光学元件600可以包括容置槽610,第一发光件110和第二发光件210可以设置于容置槽610内,且第一光101和第二光201呈现散射状,部分第一光101和第二光201可以照射至光学元件600的上,光学元件600接收第一光101和第二光201,并反射第一光101和第二光201以改变其出射角度,以将散射的第一光101和第二光201聚集,照射至指定位置。其中,光学元件600可以是反光杯或透镜等。
因此,本申请提供的可见光通信照明装置10可以产生主要用于加载通信信号的第一光101和主要用于照明的第二光201,以此混合所形成的可见通信光在能够实现照明的同时还能够实现通信。并且,由于第一光源组件100能够加载高速信号,混合第一光101和第二光201形成的可见通信光也能够实现高速通信。
参见图10,图10是本申请提供的可见光通信照明系统1的一实施例结构示意图。
可见光通信照明系统1包括接收装置20和可见光通信照明装置10,接收装置20用于接收可见光通信照明装置10产生的可见通信光。接收装置20可以为光接收机。接收装置20接收可见通信光,以将可见通信光转化为光电流,再通过信号处理,以输出光电流信号。
其中,在可见光通信照明装置10与接收装置20之间还可以设置滤光片30。
本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应 用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (10)

  1. 一种可见光通信照明装置,其特征在于,包括:
    第一光源组件,用于产生包括通信信号的第一光;
    第二光源组件,用于产生第二光;
    其中,所述第一光和所述第二光为可见光,所述第二光源组件的功率大于或等于所述第一光源组件的功率,所述第一光和所述第二光混合形成可见通信光。
  2. 根据权利要求1所述的可见光通信照明装置,其特征在于,
    所述第二光为荧光。
  3. 根据权利要求1所述的可见光通信照明装置,其特征在于,
    所述第二光为LED光。
  4. 根据权利要求1所述的可见光通信照明装置,其特征在于,所述可见光通信照明装置包括:
    导光条,设有开口,所述导光条通过所述开口接收所述第一光,所述导光条用于散射所述第一光。
  5. 根据权利要求1所述的可见光通信照明装置,其特征在于,
    所述第一光源组件包括多个第一发光件,所述第一发光件用于产生所述第一光;
    所述第二光源组件包括多个第二发光件,所述第二发光件用于产生所述第二光;
    多个所述第一发光件和多个所述第二发光件对应设置。
  6. 根据权利要求1所述的可见光通信照明装置,其特征在于,所述可见光通信照明装置包括:
    散射层,设置于所述第一光的光路上,所述散射层用于接收并散射所述第一光。
  7. 根据权利要求2所述的可见光通信照明装置,其特征在于,
    所述第一光的波长在430-480nm范围内,所述第二光的波长在430-700nm范围内,所述第一光为蓝光,所述第一光和所述第二光混合 形成白色可见通信光;或
    所述第一光的波长在600nm-700nm范围内,所述第二光的波长在430nm-700nm范围内;
    所述第一光为红光,所述第一光和所述第二光混合形成白色可见通信光。
  8. 根据权利要求1-7任意一项所述的可见光通信照明装置,其特征在于,所述可见光通信照明装置包括:
    灯罩,用于接收并散射所述第一光和所述第二光,以便于所述第一光和所述第二光混合。
  9. 根据权利要求1-7任意一项所述的可见光通信照明装置,其特征在于,所述可见光通信照明装置包括:
    光学元件,用于接收并反射所述第一光和所述第二光,以使所述第一光和所述第二光照射至预设位置。
  10. 一种可见光通信照明系统,其特征在于,包括接收装置和权利要求1-9任意一项所述的可见光通信照明装置,所述接收装置用于接收所述可见光通信照明装置产生的可见通信光。
PCT/CN2021/117617 2021-09-03 2021-09-10 一种可见光通信照明装置和系统 WO2023029072A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111032773.4A CN115765870A (zh) 2021-09-03 2021-09-03 一种可见光通信照明装置和系统
CN202111032773.4 2021-09-03

Publications (1)

Publication Number Publication Date
WO2023029072A1 true WO2023029072A1 (zh) 2023-03-09

Family

ID=85332534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117617 WO2023029072A1 (zh) 2021-09-03 2021-09-10 一种可见光通信照明装置和系统

Country Status (2)

Country Link
CN (1) CN115765870A (zh)
WO (1) WO2023029072A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106961309A (zh) * 2017-05-31 2017-07-18 中国科学技术大学 一种可见光通信收发器与可见光通信系统
CN106961303A (zh) * 2017-02-28 2017-07-18 中天宽带技术有限公司 一种室内可见光通信系统的光源布置方法
CN107611155A (zh) * 2017-08-30 2018-01-19 华南理工大学 照明显示通信共用的GaN基微米尺寸LED阵列芯片及集成模块
CN207217535U (zh) * 2017-08-30 2018-04-10 华南理工大学 一种GaN基微米尺寸LED阵列芯片及集成模块
US20180206303A1 (en) * 2017-01-16 2018-07-19 Osram Opto Semiconductors Gmbh Lighting device and operating method for such a lighting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180206303A1 (en) * 2017-01-16 2018-07-19 Osram Opto Semiconductors Gmbh Lighting device and operating method for such a lighting device
CN106961303A (zh) * 2017-02-28 2017-07-18 中天宽带技术有限公司 一种室内可见光通信系统的光源布置方法
CN106961309A (zh) * 2017-05-31 2017-07-18 中国科学技术大学 一种可见光通信收发器与可见光通信系统
CN107611155A (zh) * 2017-08-30 2018-01-19 华南理工大学 照明显示通信共用的GaN基微米尺寸LED阵列芯片及集成模块
CN207217535U (zh) * 2017-08-30 2018-04-10 华南理工大学 一种GaN基微米尺寸LED阵列芯片及集成模块

Also Published As

Publication number Publication date
CN115765870A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
CN101313171B (zh) 具有多组光源的照明系统
CN206819040U (zh) 光源系统及显示设备
CN201666514U (zh) 背光模块
US20140197432A1 (en) Multicolor light emitting diodes
KR20030020912A (ko) 조명 시스템 및 디스플레이 장치
CN108710257A (zh) 光源装置
CN107515511A (zh) 光源系统及投影设备
JP2004526290A (ja) 照明系およびディスプレイデバイス
TW200410171A (en) Compact lighting system and display device
CN105652572A (zh) 光源系统及投影设备
JP2008258094A (ja) Ledバックライトおよび液晶表示装置
CN102036435A (zh) 一种光色调制方法及光色可变的发光二极管光源模块
CN101641801B (zh) 用于产生混合光的装置和方法
CN105371167A (zh) 面光源装置和液晶显示装置
CN118242571A (zh) 光源系统及照明设备
CN106483712A (zh) 一种量子点膜材结构及其应用
CN105388664A (zh) 面光源装置和液晶显示装置
KR20070054826A (ko) 발광 장치 및 이의 구동 방법
CN105372871A (zh) 面光源装置和液晶显示装置
CN111552144A (zh) 激光光源及照明设备
CN108803214A (zh) 光源系统及显示设备
WO2023029072A1 (zh) 一种可见光通信照明装置和系统
CN203731207U (zh) 用于显示单元的光源模块
CN110207025A (zh) 光源系统及照明装置
US20130242607A1 (en) Backlight module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE