WO2023027611A1 - Magnus-effect aircraft - Google Patents

Magnus-effect aircraft Download PDF

Info

Publication number
WO2023027611A1
WO2023027611A1 PCT/RU2022/050253 RU2022050253W WO2023027611A1 WO 2023027611 A1 WO2023027611 A1 WO 2023027611A1 RU 2022050253 W RU2022050253 W RU 2022050253W WO 2023027611 A1 WO2023027611 A1 WO 2023027611A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
gas
outlet
impeller
flow
Prior art date
Application number
PCT/RU2022/050253
Other languages
French (fr)
Russian (ru)
Inventor
Владимир Александрович ВЬЮРКОВ
Роман Дмитриевич ЛЕБЕДЕВ
Original Assignee
Акционерное общество "ЗЕНТОРН"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "ЗЕНТОРН" filed Critical Акционерное общество "ЗЕНТОРН"
Publication of WO2023027611A1 publication Critical patent/WO2023027611A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C23/00Influencing air flow over aircraft surfaces, not otherwise provided for
    • B64C23/08Influencing air flow over aircraft surfaces, not otherwise provided for using Magnus effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft

Definitions

  • the invention relates to the field of aviation, in particular to the design of vertical takeoff and landing unmanned aerial vehicles.
  • An unmanned aerial vehicle (quadcopter) is known, which is a radio-controlled flying device with four propellers that rotate in opposite directions diagonally: one pair of propellers rotates clockwise, and the second - counterclockwise.
  • the task facing the author is to create a low-noise vertical takeoff and landing unmanned aerial vehicle with a large payload.
  • the essence of the invention is the possibility of increasing the carrying capacity of unmanned aerial vehicles and reducing noise during their operation, thanks to the claimed device, with closed propellers (impellers), during the rotation of which, forced gas (air) flows are created, directed to the rotating cylinders, ultimately creating the effect Magnus.
  • the claimed invention is a
  • the device is a multifaceted housing, for example, rectangular, around the perimeter of which the cylinders 1 are installed, with the possibility of rotation.
  • a gas intake and supply zone in which, top and bottom, centrifugal disks are installed 2, the gas to which enters through the inlet/outlet holes 3 in the housing; disks 2 allow the device to rotate around its axis.
  • a centrifugal cylindrical fan 4 is installed, each impeller 5 of which is made the entire length of the cylinder 1 of the device.
  • the fan casing 4 on the one hand, has an inlet 6, which goes outside, for taking gas and supplying it to the impeller 5, and on the other hand, it has an outlet 7 for forced gas flow, passing into the flow conduit, which is cells 8, passing into the tunnel 9, tapering at the outlet just before cylinder 1.
  • the upper and lower flows are independent and not connected to each other. All rotating parts of the structure are driven by engines 10 (electric, internal combustion engines (ICE)).
  • engines 10 electric, internal combustion engines (ICE)
  • FIG. 1 shows the internal structure of an aircraft with a rectangular body (side view) and the direction of movement of forced flows, shown (arrows).
  • the letters H and B denote the areas of low (H) and high (B) pressure, and the high pressure area moves to the left, with an increase in the speed of the oncoming flow.
  • FIG. 2 schematically shows the direction of movement of the impeller when creating a forced flow to the cylinders.
  • FIG. 3 shows an exemplary view of the cells.
  • Gas (liquid) gets inside the casing through the inlets 6 of the casing of centrifugal fans.
  • gas (liquid) gets taken and distributed.
  • the forced oncoming flow of gas (liquid), through the outlet 7 of the casing enters cells 8 of the stream guide, which allows you to break one continuous stream into several small ones, and makes it uniform for the entire length of the cylinders 1.
  • the flows pass through the tunnel 9 in which they narrow and fall on the rotating cylinders 1.
  • the narrowing of the gas (liquid) flows increases its speed, but reduces its impact on the area of cylinder 1. Forcibly oncoming, on rotating cylinders 1, the flow creates a Magnus effect on each cylinder 1.
  • FIG. 2 shows the distribution of flows that occurs at the top and bottom of the cylinders, while the calculated area is halved.
  • p*(v + u) 2/2 + P2 p*(v - u) 2/2 + Pl
  • S is the surface area of the cylinder
  • the organization of the control of the invention is due to the arrangement of the cylinders, by changing the Magnus force on each cylinder. Also, if you control the moment of rotation during the intake and distribution of flows, then you can organize rotation in another plane.
  • the claimed invention can be used for reconnaissance, delivery of goods, people and vehicles (if the device is made larger and more powerful), in construction, meteorology, emergency medical care, mail, etc. Also, the claimed device can work by creating forced flows not only gas, but also liquids, i.e. work underwater.

Abstract

The invention relates to the design of unmanned vertical takeoff and landing aircraft. The claimed device comprises a multisided body having rotatable cylinders (1) mounted about the perimeter thereof. Situated inside the body is a gas intake and supply zone, at the top and bottom of which are mounted centrifugal disks (2) that are impinged upon by gas supplied via inlet/outlet openings (3) in the body; the disks (2) allow the device to rotate about its own axis. Further mounted inside the body, at the top and bottom thereof, proximal each cylinder (1) is a cylindrical centrifugal fan (4), each impeller (5) of which is as long as a cylinder (1) of the device. A casing of the fan (4) has, on one side, an outwardly extending inlet (6) for taking in gas and supplying same to the impeller (5); on the other side is an outlet (7) for a forced flow of gas, said outlet opening into a flow conduit in the form of cells (8) which open into a tunnel (9) that narrows at its outlet immediately upstream of a cylinder (1). The upper and lower flow conduits are independent of one another and are not interconnected. The result is a reduction in noise and an increase in lifting capacity.

Description

ЛЕТАТЕЛЬНЫЙ АППАРАТ НА ОСНОВЕ ЭФФЕКТА МАГНУСА AIRCRAFT BASED ON THE MAGNUS EFFECT
Изобретение относится к области авиации, в частности к конструкции беспилотных летательных аппаратов вертикального взлета и посадки.The invention relates to the field of aviation, in particular to the design of vertical takeoff and landing unmanned aerial vehicles.
Известны беспилотный летательный аппарат (квадракоптер) представляющий собой радиоуправляемый летающий прибор с четырьмя винтами, которые вращаются в противоположные стороны по диагонали: одна пара пропеллеров вращается по часовой стрелке, а вторая - против часовой стрелки.
Figure imgf000003_0001
An unmanned aerial vehicle (quadcopter) is known, which is a radio-controlled flying device with four propellers that rotate in opposite directions diagonally: one pair of propellers rotates clockwise, and the second - counterclockwise.
Figure imgf000003_0001
Недостатками известных аналогов является малая грузоподъемность и шумность, создаваемая при вращении открытыми винтами. The disadvantages of the known analogues is the low carrying capacity and the noise generated by the rotation of the open screws.
Задачей стоящей перед автором является создание малошумного беспилотного летательного аппарата вертикального взлета и посадки с большой грузоподъемностью. The task facing the author is to create a low-noise vertical takeoff and landing unmanned aerial vehicle with a large payload.
Задача решается за счет сущности заявляемого изобретения. The problem is solved due to the essence of the claimed invention.
Сущностью изобретения является, возможность увеличения грузоподъемности беспилотных летательных аппаратов и уменьшения шума при их работе, благодаря заявляемому устройству, с закрытыми винтами (рабочими колесами), при вращении которых, создаются принудительные потоки газа (воздуха), направленные на вращающиеся цилиндры, создавая в итоге эффект Магнуса. The essence of the invention is the possibility of increasing the carrying capacity of unmanned aerial vehicles and reducing noise during their operation, thanks to the claimed device, with closed propellers (impellers), during the rotation of which, forced gas (air) flows are created, directed to the rotating cylinders, ultimately creating the effect Magnus.
Заявляемое изобретение представляет собой The claimed invention is
Устройство представляет собой многогранный корпус, например, прямоугольный, по периметру которого установлены цилиндры 1, с возможностью вращения. Внутри корпуса расположена зона забора и подачи газа, в которой, сверху и снизу, установлены центробежные диски 2, газ на которые поступает через входные/выходные отверстия 3 в корпусе; диски 2 позволяют поворачиваться устройству вокруг своей оси. Также, внутри корпуса, сверху и снизу, у каждого цилиндра 1, установлен центробежный цилиндрический вентилятор 4, каждое рабочее колесо 5 которого, выполнено во всю длину цилиндра 1 устройства. Кожух вентилятора 4 с одной стороны имеет, выходящий наружу, вход 6 для забора газа и подачи его на рабочее колесо 5, а с другой стороны имеет выход 7 для принудительного потока газа, переходящий в потоковод, представляющий собой ячейки 8, переходящие в туннель 9, сужающийся на выходе непосредственно перед цилиндром 1. Верхние и нижние потоководы независимы и не соединены между собой. Все вращающиеся детали конструкции приводятся в движение двигателями 10 (электрическими, двигателями внутреннего сгорания (ДВС)). The device is a multifaceted housing, for example, rectangular, around the perimeter of which the cylinders 1 are installed, with the possibility of rotation. Inside the housing there is a gas intake and supply zone, in which, top and bottom, centrifugal disks are installed 2, the gas to which enters through the inlet/outlet holes 3 in the housing; disks 2 allow the device to rotate around its axis. Also, inside the housing, top and bottom, at each cylinder 1, a centrifugal cylindrical fan 4 is installed, each impeller 5 of which is made the entire length of the cylinder 1 of the device. The fan casing 4, on the one hand, has an inlet 6, which goes outside, for taking gas and supplying it to the impeller 5, and on the other hand, it has an outlet 7 for forced gas flow, passing into the flow conduit, which is cells 8, passing into the tunnel 9, tapering at the outlet just before cylinder 1. The upper and lower flows are independent and not connected to each other. All rotating parts of the structure are driven by engines 10 (electric, internal combustion engines (ICE)).
На фиг. 1 показано внутреннее устройство летательного аппарата с прямоугольным корпусом (вид сбоку) и направление движения принудительных потоков, показано (стрелочками). Буквами Н и В обозначены области низкого (Н) и высокого (В) давления, причем область высокого давления перемещается в лево, с увеличением скорости набегающего потока. In FIG. 1 shows the internal structure of an aircraft with a rectangular body (side view) and the direction of movement of forced flows, shown (arrows). The letters H and B denote the areas of low (H) and high (B) pressure, and the high pressure area moves to the left, with an increase in the speed of the oncoming flow.
На фиг. 2 схематично показано направление движения рабочего колеса при создании принудительного потока на цилиндры. In FIG. 2 schematically shows the direction of movement of the impeller when creating a forced flow to the cylinders.
На фиг. 3 показан примерный вид ячеек. In FIG. 3 shows an exemplary view of the cells.
Способ работы устройства How the device works
Внутрь корпуса, через входы 6 кожуха центробежных вентиляторов, попадает газ (жидкость). При вращении рабочих колес 5 вентиляторов 4 (верхние вращаются по часовой стрелке, а нижние против) осуществляется забор и раздача газа (жидкости). Принудительно набегающий поток газа (жидкости), через выход 7 кожуха, попадает в ячейки 8 потоковода, что позволяет разбить один сплошной поток на несколько маленьких, и делает его подачу равномерной на всю длину цилиндров 1. После ячеек 8 потоки проходят через туннель 9 в котором сужаются и попадают на вращающиеся цилиндры 1. Сужение потоков газа (жидкости) увеличивает его скорость, но уменьшает его воздействие на площадь цилиндра 1. Принудительно набегающий, на вращающиеся цилиндры 1, поток создает эффект Магнуса на каждом цилиндре 1. Gas (liquid) gets inside the casing through the inlets 6 of the casing of centrifugal fans. When the impellers 5 of the fans 4 rotate (the upper ones rotate clockwise, and the lower ones counterclockwise), gas (liquid) is taken and distributed. The forced oncoming flow of gas (liquid), through the outlet 7 of the casing, enters cells 8 of the stream guide, which allows you to break one continuous stream into several small ones, and makes it uniform for the entire length of the cylinders 1. After the cells 8, the flows pass through the tunnel 9 in which they narrow and fall on the rotating cylinders 1. The narrowing of the gas (liquid) flows increases its speed, but reduces its impact on the area of cylinder 1. Forcibly oncoming, on rotating cylinders 1, the flow creates a Magnus effect on each cylinder 1.
На фиг. 2 показана раздача потоков, которая происходит вверху и внизу цилиндров, при этом расчетная площадь уменьшается в два раза. p*(v + u)2/2 + Р2 = p*(v - u)2/2 + Pl In FIG. 2 shows the distribution of flows that occurs at the top and bottom of the cylinders, while the calculated area is halved. p*(v + u) 2/2 + P2 = p*(v - u) 2/2 + Pl
ДР = p*(v+u)2/2 - p*(v-u)2/2 DR \u003d p * (v + u) 2 / 2 - p * (vu) 2 / 2
AP = p/2*((v2 + 2*v*u + u2) - (v2 - 2*v*u + u2)) AP = p/2*((v 2 + 2*v*u + u 2 ) - (v 2 - 2*v*u + u 2 ))
ДР = p/2*4*v*u DR \u003d p / 2 * 4 * v * u
AP = p*2*v*u AP = p*2*v*u
F = AP*S/2 [ 1 ] F = AP*S/2 [ 1 ]
S = 2*n*R*L S = 2*n*R*L
F = AP*2*n*R*L/2 F = AP*2*n*R*L/2
F = p*2*v*u*2*n*R*L/2 F = p*2*v*u*2*n*R*L/2
F = p*v*u*2*n*R*L F = p*v*u*2*n*R*L
Где: p - Плотность потока; v - Скорость цилиндра; u - Скорость потока; Where: p - Flux density; v is the speed of the cylinder; u - flow rate;
Р2 и Pl - Давление потоков сверху и снизу цилиндра; P2 and Pl - Pressure flows from above and below the cylinder;
ДР - Разница давлений сверху и снизу цилиндра; DR - Pressure difference above and below the cylinder;
S - Площадь поверхности цилиндра; S is the surface area of the cylinder;
F - Сила тяги от эффекта Магнуса; F - Thrust from the Magnus effect;
R - Радиус цилиндра; R - Radius of the cylinder;
L - Длина цилиндра; L - Length of the cylinder;
Так как v = w*R, где w - угловая скорость вращения цилиндра, то Since v \u003d w * R, where w is the angular velocity of rotation of the cylinder, then
F = p*w*u*2*n*R2*L Расчет модели (пример): диаметр каждого цилиндра - 0,1 м; длина каждого цилиндра - 0,5 м; обороты цилиндра - 6000 об/мин; скорость набегающего потока создаваемая центробежным вентилятором - 17 м/с; F = p*w*u*2*n*R 2 *L Model calculation (example): the diameter of each cylinder is 0.1 m; the length of each cylinder is 0.5 m; cylinder speed - 6000 rpm; free flow velocity created by centrifugal fan - 17 m/s;
Сила Магнуса будет 431,8 Н. The force of Magnus will be 431.8 N.
Организация управления изобретением, обусловлена расположением цилиндров, путем изменения силы Магнуса на каждом цилиндре. Так же если управлять моментом вращения при заборе и раздаче потоков, то можно организовать вращение еще и в другой плоскости. The organization of the control of the invention is due to the arrangement of the cylinders, by changing the Magnus force on each cylinder. Also, if you control the moment of rotation during the intake and distribution of flows, then you can organize rotation in another plane.
Заявляемое изобретение может применяться для разведки, доставки грузов, людей и машин (если сделать устройство габаритнее и мощнее), в строительстве, метеорологии, скорой доставки медицинской помощи, почте и др. Так же, заявляемое устройство, может работать, создавая принудительные потоки не только газа, но и жидкости, т.е. работать под водой. The claimed invention can be used for reconnaissance, delivery of goods, people and vehicles (if the device is made larger and more powerful), in construction, meteorology, emergency medical care, mail, etc. Also, the claimed device can work by creating forced flows not only gas, but also liquids, i.e. work underwater.
Малошумность работы во время полета обеспечивается отсутствием внешних несущих винтов. Большая грузоподъемность обеспечивается за счет эффекта Магнуса. Quiet operation during the flight is ensured by the absence of external rotors. High load capacity is provided by the Magnus effect.
Таким образом, поставленная перед автором задача, выполнена. Thus, the task assigned to the author is completed.

Claims

ФОРМУЛА FORMULA
Летательный аппарат на основе эффекта Магнуса представляющий собой многогранный корпус с входными/выходными отверстиями для поступления газа внутрь корпуса, по периметру которого установлены вращательные цилиндры с двигателями, также внутри корпуса, сверху и снизу, установлены центробежные диски с двигателями, также, внутри корпуса, сверху и снизу, у каждого цилиндра, установлен центробежный цилиндрический вентилятор, каждое рабочее колесо которого, выполнено во всю длину цилиндра, кожух вентилятора с одной стороны имеет, выходящий наружу, вход для забора газа и подачи его на рабочее колесо, а с другой стороны имеет выход для принудительного потока газа, переходящий в потоковод, представляющий собой ячейки, переходящие в туннель, сужающийся на выходе непосредственно перед цилиндром, верхние и нижние потоководы независимы и не соединены между собой. An aircraft based on the Magnus effect, which is a multifaceted body with inlet / outlet openings for gas to enter the body, along the perimeter of which rotational cylinders with engines are installed, also inside the body, above and below, centrifugal disks with engines are installed, also, inside the body, on top and from below, at each cylinder, a centrifugal cylindrical fan is installed, each impeller of which is made in the entire length of the cylinder, the fan casing on one side has an inlet that goes outside for gas intake and its supply to the impeller, and on the other side it has an outlet for a forced gas flow, passing into the flow duct, which is a cell, turning into a tunnel, narrowing at the outlet just before the cylinder, the upper and lower flow ducts are independent and not connected to each other.
5 5
PCT/RU2022/050253 2021-08-25 2022-08-18 Magnus-effect aircraft WO2023027611A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2021125192A RU2762906C1 (en) 2021-08-25 2021-08-25 Aircraft based on the magnus effect
RU2021125192 2021-08-25

Publications (1)

Publication Number Publication Date
WO2023027611A1 true WO2023027611A1 (en) 2023-03-02

Family

ID=80039133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2022/050253 WO2023027611A1 (en) 2021-08-25 2022-08-18 Magnus-effect aircraft

Country Status (2)

Country Link
RU (1) RU2762906C1 (en)
WO (1) WO2023027611A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3071334A (en) * 1959-02-05 1963-01-01 Joseph C Barnes Vertical lift aircraft
US3630470A (en) * 1970-02-13 1971-12-28 Frederick Thomas Elliott Vertical takeoff and landing vehicle
RU2203199C2 (en) * 1995-06-07 2003-04-27 Вильям В. ДЖЕСВАЙН Method of setting in motion by means of acceleration and control of direction of fluid medium
WO2010043834A1 (en) * 2008-10-14 2010-04-22 Nikolas Andrew Corbas Lift machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3071334A (en) * 1959-02-05 1963-01-01 Joseph C Barnes Vertical lift aircraft
US3630470A (en) * 1970-02-13 1971-12-28 Frederick Thomas Elliott Vertical takeoff and landing vehicle
RU2203199C2 (en) * 1995-06-07 2003-04-27 Вильям В. ДЖЕСВАЙН Method of setting in motion by means of acceleration and control of direction of fluid medium
WO2010043834A1 (en) * 2008-10-14 2010-04-22 Nikolas Andrew Corbas Lift machine

Also Published As

Publication number Publication date
RU2762906C1 (en) 2021-12-23

Similar Documents

Publication Publication Date Title
US10875658B2 (en) Ejector and airfoil configurations
US9783291B2 (en) Hybrid axial/cross-flow fan multi-rotor aerial vehicle
US8157520B2 (en) Fan, airfoil and vehicle propulsion systems
US20120111994A1 (en) Cross-flow fan propulsion system
US6113029A (en) Aircraft capable of hovering and conventional flight
US3212735A (en) Thrust means for powering aircraft
US3465988A (en) Aerodynamic lift producing devices
US10513333B2 (en) Ducted fan propulsion engine
WO2009068835A1 (en) Static wing for an aircraft
GB2438848A (en) Static wing for an aircraft
KR20170024960A (en) Unmanned Aerial Vehicle Capable of flying Without Propeller
US6669138B1 (en) Rotary aeronautical lifting cell
WO2023027611A1 (en) Magnus-effect aircraft
WO2023027612A1 (en) Magnus-effect aircraft and operating method thereof
RU121488U1 (en) AIRCRAFT
CN111655580B (en) Winglet injector structure
TWI742727B (en) Propulsion device with double layers of guiding assembly and flying vehicle thereof
KR20050016643A (en) Ducted air power plant
RU105883U1 (en) AIRCRAFT
CN113799990A (en) Propulsion device with double-layer flow guide assembly and flight carrier with propulsion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861793

Country of ref document: EP

Kind code of ref document: A1