WO2023027012A1 - Cobalt-chromium alloy member, and method for producing same and device using same - Google Patents

Cobalt-chromium alloy member, and method for producing same and device using same Download PDF

Info

Publication number
WO2023027012A1
WO2023027012A1 PCT/JP2022/031532 JP2022031532W WO2023027012A1 WO 2023027012 A1 WO2023027012 A1 WO 2023027012A1 JP 2022031532 W JP2022031532 W JP 2022031532W WO 2023027012 A1 WO2023027012 A1 WO 2023027012A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt
chromium alloy
less
alloy material
alloy member
Prior art date
Application number
PCT/JP2022/031532
Other languages
French (fr)
Japanese (ja)
Inventor
浩一 土谷
サンミン リ
ジャンホ イ
Original Assignee
国立研究開発法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人物質・材料研究機構 filed Critical 国立研究開発法人物質・材料研究機構
Priority to JP2023543893A priority Critical patent/JPWO2023027012A1/ja
Publication of WO2023027012A1 publication Critical patent/WO2023027012A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present invention provides cobalt chromium that is suitably used for medical devices such as stents, medical tubes, and medical guide wires, devices for gas turbines used in high-temperature and corrosive environments, and devices for other industrial equipment.
  • the present invention relates to an alloy member and its manufacturing method.
  • the present invention relates to improvements in cobalt-chromium alloy materials that are excellent in corrosion resistance, biocompatibility, high strength, and excellent ductility, and that are suitable for indwelling medical devices.
  • Metal parts used in medical equipment especially metal parts implanted in the human body, require metals with excellent corrosion resistance and biocompatibility, as well as high mechanical properties.
  • Stainless steel, nickel-titanium alloys, Cobalt-chromium alloys and the like have been used.
  • a biocompatible alloy for example, a cobalt-chromium alloy for dental casting (JIS T6115) is known, and a nickel-containing alloy is known as a dental stainless steel wire (JIS T6103).
  • stents are hollow tubular objects intended to expand and maintain stenosed body vessels, and are broadly classified into self-expanding stents and balloon-expanding stents.
  • a self-expanding stent is fixed to the tip of a catheter and given self-expandability by using a superelastic alloy or shape memory alloy from the catheter at a predetermined position.
  • a nickel-titanium alloy stent is practically used. has been made
  • a balloon-expandable stent is fixed to a balloon catheter by compressing the diameter of the tube and expands the diameter of the tube by expanding the balloon at a predetermined position. For example, when stenosis occurs in a blood vessel, the stenosis is widened with a balloon catheter and left in place to support the inner wall of the blood vessel from the inside and prevent restenosis. As for the insertion of the stent, the stent is attached to the distal end of the catheter in a reduced diameter state outside the deflated balloon, and is inserted into the blood vessel together with the balloon portion.
  • the stent is expanded by inflating the balloon portion, and the stent is left in the expanded state of the stenosis portion, and the balloon catheter is withdrawn.
  • ASTM F90-14 Co-20Cr-15W-10Ni alloy (L605 alloy)
  • ASTM F562-13 Co-20Cr-10Mo-35Ni alloy (MP35N alloy)
  • SUS316L are used as surgical implant materials. known (see Non-Patent Documents 1, 3, and 4).
  • a guide wire assists in inserting a diagnostic or therapeutic catheter used in a blood vessel to a predetermined position in the blood vessel, and has a structure in which a thin wire is wrapped around a core wire.
  • the guide wire is required to have sufficient strength and ductility so that the rotation of the tip follows the rotation of the hand, torque transmission, and to prevent breakage during treatment.
  • Non-Patent Document 2 describes a general relationship between strength and hardness.
  • L605 which is a Co--Cr alloy and Ti--Ni alloy, which are currently used, are materials that are difficult to cold work, and their processing costs are very high compared to SUS316.
  • cobalt-chromium alloy members having high mechanical strength and ductility that are suitable for medical devices, gas turbine devices, and other industrial equipment devices.
  • indwelling medical devices such as stents in blood vessels with fine and complicated shapes such as nerve defects and cerebral vessels. It is necessary to make it thin, and even so, a material with as high strength as possible is required in order to secure a sufficient blood vessel holding force. This also leads to a reduction in the amount of metal placed in the body.
  • a wire that is as thin as possible for the guide wire makes it easier to insert it into a fine blood vessel, but it needs to be as strong as possible in order to achieve even better torque transmissibility. Furthermore, a ductile material is desirable to prevent breakage during use.
  • An object of the present invention is to provide a cobalt-chromium alloy member suitable for use in medical devices, gas turbine devices, and other industrial equipment devices.
  • another object of the present invention is to provide a cobalt-chromium alloy member suitable for a guide wire that facilitates the insertion of an indwelling medical device such as a stent into a fine blood vessel.
  • the cobalt-chromium alloy member of the present invention employs the following configuration.
  • KAM value Local crystal orientation variation
  • the cobalt-chromium alloy member according to [1] is preferably It is preferable that the cobalt-chromium alloy material having the above composition is cold-plastic-worked into a predetermined shape, and the as-processed cobalt-chromium alloy material is heat-treated at a heat treatment temperature exceeding the recrystallization temperature of the cobalt-chromium alloy material.
  • the cobalt-chromium alloy member according to [1] or [2] preferably contains 25 to 29% Ni, 37 to 48% Co, and 9 to 11% Mo in mass%, The remainder contains Cr and inevitable impurities, 23 ⁇ [Cr%] + [Mo%] + [% of unavoidable impurities] ⁇ 38, It is preferable that the composition satisfies [4]
  • the cobalt-chromium alloy member according to [3] is The as-processed cobalt-chromium alloy material obtained by cold plastic working the cobalt-chromium alloy material having the above composition into a predetermined shape is subjected to heat treatment at a heat treatment temperature exceeding the recrystallization temperature of the cobalt-chromium alloy material at a temperature of 800 ° C. or more and 1100 ° C. The heat treatment may be performed for 1 minute or more and 60 minutes or less as follows.
  • the inevitable impurities contain Ti, Mn, Fe, Nb, W, Al, Zr, B, and C in mass%, Ti is 1.0% or less, Mn is 1.0% or less, and Fe is 1 .0% or less, Nb is 1.0% or less, W is 1.0% or less, Al is 0.5% or less, Zr is 0.1% or less, B is 0.01% or less and C is 0.1% % or less.
  • the predetermined shape that has been plastically worked in the cold is a tubular shape
  • the average value of the crystal grain size is 2 to 15 ⁇ m
  • the local crystal orientation change amount (KAM value) is 0.1 or more and 0.8 or less
  • the cobalt-chromium alloy member preferably exhibits a tensile strength of 800 to 1000 MPa and a breaking elongation of 30 to 80%.
  • the predetermined shape that has been plastically worked in the cold is a wire shape
  • the average crystal grain size is 4 to 15 ⁇ m
  • the local crystal orientation change amount (KAM value) is 0.0 or more and 1.0 or less
  • the cobalt-chromium alloy member preferably exhibits a tensile strength of 1000 to 1200 MPa and a breaking elongation of 30 to 60%.
  • the device is a medical device, gas turbine device, or other industrial device.
  • the device according to [8] is preferably a medical device such as a stent, tube, wire, or implant.
  • the device of [9] is for any of the combustor and exhaust components of aeronautical and industrial gas turbine engines, such as transition pieces, combustor cans, spray bars, frame holders, afterburners, tail pipes, etc. It is preferable that it is a device for a gas turbine.
  • the device described in [9] is a device for industrial equipment used in waste incinerators, boilers, high-temperature reaction vessels and rotary calciners, as well as petrochemical production plants and synthesis gas plants. Good.
  • the homogenized cobalt-chromium alloy material is subjected to cold plastic working into a tubular or wire-like shape to obtain an as-processed cobalt-chromium alloy material,
  • the as-worked cobalt-chromium alloy material that has been plastically worked by cold is subjected to a heat treatment at a temperature exceeding the recrystallization temperature of the cobalt-chromium alloy material to 1100 ° C.
  • a face-centered cubic lattice fcc
  • the average grain size is 2 to 15 ⁇ m
  • the local crystal orientation A method for producing a cobalt-chromium alloy member, characterized in that the amount of change (KAM value) is 0.0 or more and 1.0 or less.
  • the cobalt-chromium alloy member of the present invention has a crystal structure consisting of a face-centered cubic lattice (fcc) or a face-centered cubic lattice (fcc) and a hexagonal system by heat treatment above the recrystallization temperature after cold plastic working. Since it has a crystal structure consisting of a lattice (hcp), the average crystal grain size is 2 to 15 ⁇ m, and the local crystal orientation change amount (KAM value) is 0.0 or more and 1.0 or less, It has excellent mechanical properties such as improved strength and ductility, and is more reliable than existing products.
  • an alloy mainly composed of Co, Ni, Cr, and Mo is subjected to cold plastic working, and then subjected to heat treatment at a recrystallization temperature or higher to obtain a face-centered cubic lattice (fcc). Phase stabilizes.
  • fcc face-centered cubic lattice
  • hcp hexagonal lattice
  • cobalt-chromium alloy member of the present invention further contains solute atoms such as Mo and Nb, they can be segregated at stacking faults of dislocation cores or extended dislocations to make it difficult for cross slip to occur, and work hardening. further increases the mechanical strength.
  • FIG. 3 is a comparative diagram of low cycle fatigue life of cobalt-chromium alloy materials used in the present invention.
  • As-processed cobalt-chromium alloy material (upper) produced by cold-working a cobalt-chromium alloy material according to an embodiment of the present invention into a tubular shape, and cobalt-chromium alloy member (lower) obtained by heat-treating this at 1050° C. for 5 minutes.
  • 1 is a photograph of the overall appearance of the tube.
  • 1 is an external appearance photograph (enlarged photograph) of a main part of a tube of .
  • 1 is an overall appearance photograph of a wire as a cobalt-chromium alloy member according to the present invention.
  • 4 is an external view photograph (enlarged photograph) of a main part of a wire as a cobalt-chromium alloy member according to the present invention.
  • FIG. 4 is a strain diagram
  • 1 is a drawing showing the relationship between yield stress, tensile strength, elongation at break, and heat treatment temperature for a cobalt-chromium alloy member as a wire according to the present invention.
  • the cobalt-chromium alloy member of the present invention is a cobalt-chromium alloy obtained by cold plastic working (hereinafter also simply referred to as "cold working") a cobalt-chromium alloy material having a specific composition into a predetermined shape such as a tube or wire.
  • a crystal structure consisting of a face-centered cubic lattice (fcc), or from a face-centered cubic lattice (fcc) and a hexagonal lattice (hcp)
  • the average crystal grain size is 2 to 15 ⁇ m
  • the local crystal orientation change amount (KAM value) is 0.0 or more and 1.0 or less
  • the tensile strength is 800 to A member is obtained which exhibits a tensile strength of 1200 MPa and an elongation at break of 30-80%.
  • the cobalt-chromium alloy member of the present invention is characterized in that a member having a local crystal orientation variation (KAM value) of 0.0 or more and 1.0 or less can be obtained.
  • KAM value local crystal orientation variation
  • the cobalt-chromium alloy material of the present invention contains 23 to 32% Ni, 37 to 48% Co, and 8 to 12% Mo, and the balance contains Cr and inevitable impurities, and 20 ⁇ [Cr%]+
  • the composition satisfies [Mo %] + [% of unavoidable impurities] ⁇ 40.
  • the unavoidable impurity is not an intentionally added ingredient, but an ingredient that is unavoidably mixed due to the material or process.
  • the components of the unavoidable impurities are not particularly limited, but are, for example, Ti, Mn, Fe, Nb, W, Al, Zr, B, C, etc., and may not be included.
  • the cobalt-chromium alloy material of the present invention is not particularly limited as long as it has a specific composition range. It may be hot-worked or machined into a specific shape by cutting or the like.
  • the reason for limiting the composition range of the cobalt-chromium alloy material of the present invention will be explained below.
  • the content of each component in the cobalt-chromium alloy material is the content (% by mass, hereinafter simply referred to as "%") when the entire cobalt-chromium alloy material is taken as 100% by mass.
  • the numerical range of the present invention includes upper and lower limits. The same applies not only to the composition range shown below, but also to the range of temperature treatment, the range of tensile strength, the range of elongation at break and the range of uniform elongation. However, this does not apply when it is specified that the numerical range does not include the upper limit or lower limit, such as "more than” or "less than”.
  • Ni (nickel) stabilizes the face-centered cubic lattice phase, maintains workability, improves corrosion resistance, improves low-cycle fatigue life, and increases strength and ductility by heat treatment above the recrystallization temperature after cold working. It has the effect of improving
  • the Ni content of the present invention is 23 to 32%, preferably 25 to 29%. Thereby, the effect of improving strength and ductility is further obtained.
  • Co (cobalt) itself has a large work hardening ability, reduces notch brittleness, increases fatigue strength, increases high temperature strength, improves low cycle fatigue life, and exceeds the recrystallization temperature after cold working.
  • This heat treatment has the effect of improving strength and ductility. If the Co content is less than 37%, the effect is weak, and if it exceeds 48% in the present composition, the matrix becomes too hard and processing becomes difficult, and the heat treatment above the recrystallization temperature after cold working increases the strength and strength. The effect of improving ductility is lost. Therefore, the Co content of the present invention is 37-48%, preferably 40-45%. Thereby, the effect of improving strength and ductility is further obtained.
  • Mo mobdenum
  • Mo has the effect of solid-solving into the matrix to strengthen it, the effect of increasing work hardening ability, and the effect of increasing corrosion resistance when coexisting with Cr.
  • the content of Mo in the present invention is 8-12%, preferably 9-11%. Thereby, the effect of improving strength and ductility is further obtained.
  • the hexagonal lattice (hcp) phase becomes stable when the total content of the cobalt-chromium alloy material is 100%, and when it exceeds 40%, the face-centered cubic lattice The (fcc) phase becomes unstable and a body-centered cubic (bcc) layer tends to appear. That is, when the total content of Cr, Mo, and unavoidable impurities is not 20 to 40%, the fcc phase is difficult to stabilize. Transformation from fcc to hcp is difficult to occur, and low cycle fatigue life along with excellent ductility cannot be obtained.
  • the total content of Cr, Mo and unavoidable impurities in the present invention is 20-40%, preferably 23-38%. This provides low cycle fatigue life along with excellent ductility.
  • the content of the inevitable impurities may be 0%, and when it exceeds 0%, the composition of the inevitable impurities is such that the total is 100% based on the composition ratio of Co, Ni, Cr, and Mo. Proportions are adjusted.
  • Cr chromium
  • the Cr content in the present invention is preferably 12-28%, more preferably 14-27%, still more preferably 18-22%.
  • it is 12% or more, excellent corrosion resistance is likely to be obtained, and when it is 28% or less, it is difficult for the workability and toughness to rapidly decrease. This provides better corrosion resistance while ensuring workability and toughness.
  • Ti titanium
  • ⁇ phase Ni 3 Ti precipitates, reducing toughness.
  • the content of Ti in the invention is desirably 1.0% or less as an unavoidable impurity.
  • Mn manganese
  • Mn manganese
  • the upper limit as an unavoidable impurity is 1.0% or less.
  • Fe has the function of stabilizing the face-centered cubic lattice phase and improving workability. % or less.
  • C carbon
  • C (carbon) forms a solid solution in the matrix and also forms carbides with Cr, Mo, etc., and has the effect of preventing coarsening of crystal grains.
  • the content of C in the invention is desirably 0.1% or less.
  • Nb (niobium) dissolves in the matrix and strengthens it, and has the effect of increasing the work hardening ability. Therefore, the content of Nb in the present invention is desirably 3.0% or less. More desirably, the upper limit as an unavoidable impurity is 1.0% or less.
  • W tungsten
  • the content of W in the invention is desirably 5.0% or less. More desirably, the upper limit as an unavoidable impurity is 1.0% or less.
  • Al (aluminum) has the effect of deoxidizing and improving oxidation resistance, but if it is too much, deterioration of corrosion resistance etc. will occur, so the content of Al in the present invention is 0.5% or less. desirable.
  • Zr zirconium
  • B (boron) has the effect of improving hot workability, but if it is too much, the hot workability decreases and cracks easily. It is desirable to have
  • the as-worked cobalt-chromium alloy material of the present invention is obtained by cold-working the cobalt-chromium alloy material into a predetermined shape.
  • fcc deformation twins and hcp phase ( ⁇ phase) are introduced by twinning deformation and induced transformation during cold working, and a belt-like deformation band structure with high density is formed. This gives very high strength.
  • crystal grains are refined by cold working, and higher strength can be easily obtained.
  • the predetermined shape is not particularly limited, it is preferably tubular or wire-like, for example. This allows for use in tube or wire shaped medical or aerospace devices.
  • the cobalt-chromium alloy member of the present invention is obtained by subjecting the as-processed cobalt-chromium alloy material to a specific heat treatment above the crystallization temperature.
  • the cobalt-chromium alloy member of the present invention has the same composition as the cobalt-chromium alloy material, and contains 23 to 32% Ni, 37 to 48% Co, and 8 to 12% Mo in mass%, The remainder contains Cr and inevitable impurities, and has a composition that satisfies 20 ⁇ [Cr%] + [Mo%] + [% of inevitable impurities] ⁇ 40.
  • Ni is 25 to 29% in mass%
  • the unavoidable impurities include Ti, Mn, Fe, Nb, W, Al, Zr, B, and C in mass %, Ti being 1.0% or less, Mn being 1.0% or less, and Fe being 1.0%. 0% or less, Nb 1.0% or less, W 1.0% or less, Al 0.5% or less, Zr 0.1% or less, B 0.01% or less and C 0.1% It should be below. As a result, high work hardening ability and excellent mechanical strength and ductility can be easily obtained.
  • the cobalt-chromium alloy member of the present invention has a crystal structure consisting of a face-centered cubic lattice (fcc) or a crystal structure consisting of a face-centered cubic lattice (fcc) and a hexagonal lattice (hcp). That is, in the present invention, fcc deformation twins or hcp phases in the as-worked cobalt-chromium alloy material are transformed into fcc phases by heat treatment. Due to the formation of the fcc phase, when the cobalt-chromium alloy member is deformed, fcc-twin deformation or deformation-induced transformation from fcc to hcp occurs again.
  • the cobalt-chromium alloy member of the present invention in which such deformation and transformation occur, is excellent in mechanical strength and ductility.
  • the cobalt-chromium alloy member of the present invention has a local crystal orientation change amount (KAM value) of 0.0 or more and 1.0 or less.
  • KAM value is, for example, a local change in crystal orientation obtained by back electron scattering diffraction (EBSD) measurement, and can be represented by the local misorientation (Kernel Average Misorientation: KAM) defined by the following formula (1).
  • ⁇ i,j denotes the crystal misorientation between measurement points i and j.
  • the KAM value takes a high value in a region with a high density of lattice defects such as dislocations or in a region where the curvature of the crystal lattice plane is remarkable.
  • the KAM value can be used to evaluate the strain distribution within the crystal grains.
  • the KAM value is as low as 0.0 or more and 1.0 or less, and the density of lattice defects such as dislocations is low, so that the cobalt-chromium alloy member of the present invention is excellent in mechanical strength.
  • the crystal grains are easily homogenized, excellent crystallinity and homogenized mechanical properties are easily obtained.
  • the average grain size of the cobalt-chromium alloy member of the present invention is 2 ⁇ m or more and 15 ⁇ m or less, preferably 4 ⁇ m or more and 15 ⁇ m or less, and more preferably 4 ⁇ m or more and 10 ⁇ m or less. Thereby, high mechanical strength is likely to be secured.
  • the average grain size is calculated by an area fraction method based on EBSD. Specifically, the average grain size is determined according to JIS G0551 "Steel-Microscopic Test Method for Grain Size" and ASTM E112-13 "Standard Test Methods for Determining Average Grain Size (Standard Test Method for Determining Average Grain Size). can be calculated according to
  • the cobalt-chromium alloy member of the present invention has a tensile strength of 800-1200 MPa.
  • the cobalt-chromium alloy member has an elongation at break of 30 to 80%, preferably 30 to 60%, more preferably 50 to 60%.
  • Tensile strength and elongation at break are measured, for example, by a tensile test using an autograph manufactured by Shimadzu Corporation.
  • a cobalt-chromium alloy member having the above physical properties is excellent in mechanical strength and ductility.
  • Cobalt-chromium alloy members preferably have a uniform elongation of 25 to 60%, more preferably 30 to 60%, even more preferably 50 to 60%. Uniform elongation is measured, for example, by a tensile test using an autograph manufactured by Shimadzu Corporation. A cobalt-chromium alloy member having the above physical properties is superior in mechanical strength and ductility.
  • the cobalt-chromium alloy member of the present invention has a tubular shape with a hollow interior and a peripheral surface surrounded by a cobalt-chromium alloy, the average grain size is 2 to 15 ⁇ m, and the local crystal orientation is It is preferred that the amount of change (KAM value) is 0.1 or more and 0.8 or less, the tensile strength is 800 to 1000 MPa, and the elongation at break is 30 to 80%.
  • the cobalt-chromium alloy member of the present invention has a wire-like cross-sectional shape such as a circular cross-section, an elliptical cross-section, a flat cross-section, a concave or convex irregular cross-section, etc.
  • the average grain size is 4 to 15 ⁇ m.
  • the local crystal orientation change (KAM value) is 0.0 or more and 1.0 or less
  • the tensile strength is 1000 to 1200 MPa
  • the breaking elongation is 30 to 60%. This results in higher strength and better ductility.
  • the cobalt-chromium alloy member of the present invention is preferably obtained by heat treatment under the following conditions.
  • the temperature of the heat treatment of the present invention is preferably higher than the recrystallization temperature of the cobalt-chromium alloy material and 1100°C or less, more preferably 800°C or more and 1100°C or less, and still more preferably 900°C or more and 1100°C or less.
  • the recrystallization temperature of the cobalt-chromium alloy material is, for example, in the range of 780° C. to 820° C. for the Co-20Cr-10Mo-26Ni alloy, which is the composition of the present embodiment, but may range from 750° C. to 820° C.
  • the alloy composition of the cobalt-chromium alloy material may be in the range of 1000°C.
  • the temperature above the recrystallization temperature recrystallization occurs and the fcc phase is stabilized.
  • the temperature By setting the temperature to 1100° C. or less, coarsening of the crystal grain size is suppressed. As a result, a cobalt alloy member having tensile strength, uniform elongation and elongation at break within the above ranges and having high mechanical strength and ductility can be obtained.
  • the heat treatment time of the present invention is preferably 1 minute or more and 60 minutes or less. By setting the time to 1 minute or longer, the recrystallization is sufficiently performed, and the fcc phase is stabilized. Coarsening of the crystal grain size can be suppressed by setting the heating time to 60 minutes or less. Thereby, it is easy to obtain a cobalt alloy member having tensile strength, uniform elongation and breaking elongation within the above ranges and having high mechanical strength and ductility.
  • the cobalt-chromium alloy member is heat-treated at a heat treatment temperature exceeding the recrystallization temperature of the cobalt-chromium alloy material for 1 minute or more and 60 minutes or less for 1 minute or more and 60 minutes or less. It is preferably obtained by heat treatment.
  • the cobalt-chromium alloy member of the present invention may have a belt-shaped deformation band structure.
  • the band-shaped deformation band structure of the present invention is an aggregate structure of dislocation cells in which a large number of dislocations generated by cold working are densely packed. It is a nearby tissue.
  • the cobalt-chromium alloy member of the present invention has a low stacking fault energy, and high work hardening ability is obtained by the movement of partial dislocations during deformation and the formation of fine plate-like fcc twins and hcp phases.
  • solute atoms such as Mo and Nb, which have atomic radii larger or similar, are resistant to stacking faults of dislocation cores or extended dislocations. It is attracted and segregates, making it difficult for cross-slip to occur, resulting in high work hardening ability.
  • the high work hardening ability of the cobalt-chromium alloy member of the present invention is exhibited not only at around body temperature but also at high temperatures, it is characterized by high high-temperature strength characteristics. Therefore, the application of the cobalt-chromium alloy member is not limited to medical use, and the cobalt-chromium alloy member of the present invention is suitable for use under more severe conditions for industrial equipment such as aerospace and steam turbines. It is tolerable.
  • a method for manufacturing a cobalt-chromium alloy member includes the steps of preparing a cobalt-chromium alloy material, homogenizing the prepared cobalt-chromium alloy material at 1100° C. to 1300° C., and dispersing the homogenized cobalt-chromium alloy material. a step of subjecting a tube-shaped or wire-shaped shape to cold plastic working to obtain an as-worked cobalt-chromium alloy material; It includes a step of performing a heat treatment at a temperature above the recrystallization temperature of 1100° C. or less for 1 minute or more and 60 minutes or less. The recrystallization temperature of the cobalt-chromium alloy material is, for example, 800.degree. Thereby, a cobalt-chromium alloy member having high mechanical strength and ductility can be obtained.
  • the above cobalt alloy material is used in the step of preparing the cobalt chromium alloy material.
  • the cobalt-chromium alloy cold-worked material can be obtained in the form of a tube or a wire.
  • the step of heat-treating the unprocessed cobalt-chromium alloy material the cobalt-chromium alloy member is obtained.
  • the cobalt-chromium alloy material is heat-treated at 1100° C. to 1300° C. to uniformly disperse each composition. This ensures the uniformity of the mechanical properties in the subsequent cold working process.
  • the homogenization treatment temperature By setting the homogenization treatment temperature to 1100 ° C. or higher, it is possible to efficiently homogenize the material, and by setting it to 1300 ° C. or lower, it is possible to prevent the crystal grains from becoming excessively coarse, and the material surface can prevent significant oxidation of Other conditions for the homogenization treatment can be appropriately set within a range that does not impair the physical properties of the cobalt-chromium alloy member to be obtained.
  • the cobalt-chromium alloy material to be homogenized may be any cobalt-chromium alloy material having the specific composition described above, and may be, for example, an alloy ingot produced by high-frequency melting. Further, the cobalt-chromium alloy material after the homogenization treatment may be hot-worked into a shape that is easily cold-worked, such as a round bar.
  • the as-processed cobalt-chromium alloy material obtained by cold-working the cobalt-chromium alloy material into a plate material for a stent is subjected to heat treatment at a recrystallization temperature or higher and 1100° C. or lower, and then subjected to 200°C.
  • the aging treatment may be performed at a temperature of 0° C. or more and the recrystallization temperature or less.
  • an alloy ingot having the same composition as the cobalt-chromium alloy material is produced by high-frequency melting, hot forged at 1100° C. to 1300° C., homogenized, and hot rolled. It is obtained by cutting a round bar with a diameter of 8 mm and a length of 270 mm.
  • a crystal structure consisting of a face-centered cubic lattice (fcc), or a crystal structure consisting of a face-centered cubic lattice (fcc) and a hexagonal lattice (hcp), and having an average crystal grain size is 2 to 15 ⁇ m, and the amount of local crystal orientation change (KAM value) is 0.0 or more and 1.0 or less.
  • a first embodiment of the present invention uses the cobalt-chromium alloy material of the present invention to form a tubular member. That is, a tube material having a diameter of 1.6 mm, a thickness of 0.1 mm, and a length of 1 m was obtained by cold working the cobalt-chromium alloy material. This tube material corresponds to the cobalt-chromium alloy as-processed material. Further, the tube material was subjected to a predetermined heat treatment to impart ductility to obtain a cobalt-chromium alloy member as a tube material.
  • Table 1 shows the composition of the cobalt-chromium alloy material used in this example. The unit is % by mass.
  • Example 1 to 4 the Cr content was constant at 20% by mass and the Mo content was 10% by mass, and the Co content was varied with respect to the Ni content. The Ni content was varied in the range of 23 to 32% by mass.
  • Comparative Examples 1 to 4 as comparative materials, commercially available Co-20Cr-10Mo-35Ni alloy (hereinafter simply referred to as "MP35N alloy"), Co-20Cr-10Mo-20Ni alloy, Co-20Cr-15W -10Ni alloy (hereinafter simply referred to as "L605 alloy”) and SUS316L (manufactured by Hayes) were used.
  • MP35N alloy Co-20Cr-10Mo-35Ni alloy
  • L605 alloy Co-20Cr-15W -10Ni alloy
  • SUS316L manufactured by Hayes
  • Examples 1 to 4 were confirmed to have a crystal structure consisting of a face-centered cubic lattice (fcc) or a crystal structure consisting of a face-centered cubic lattice (fcc) and a hexagonal lattice (hcp).
  • Example 1 The test results are shown in Fig. 1. All of Examples 1 to 4 had a good fatigue life of 3000 cycles or more.
  • the cobalt-chromium alloy materials of 23% by mass Ni (Example 4), 26% by mass Ni (Example 3), and 29% by mass Ni (Example 2) were used in any of Comparative Examples 1 to 4. Improvement in low cycle fatigue life was observed compared to the product.
  • cobalt-chromium alloy materials of Examples 1 to 4 and the alloys of Comparative Examples 1 to 4 which were hot-worked into bars and then heat-treated at 1200 ° C. for 1 minute, were subjected to Tensilon tensile tests manufactured by Y&D. A tensile test was performed using a machine at a strain rate of 2.5 ⁇ 10 ⁇ 4 s ⁇ 1 , and the results are shown in Table 2.
  • the cobalt-chromium alloy materials according to Examples 1 to 4 exhibited tensile strengths of 848 to 886 MPa, exhibiting high tensile strength unique to cobalt-chromium alloys, which is equivalent to MP35N alloy (Comparative Example 1).
  • FIG. 2 shows a cobalt-chromium alloy as-processed material (upper), 1050, produced by cold-working the Co-20Cr-10Mo-26Ni alloy material according to Example 3, which has the best fatigue life among cobalt-chromium alloy materials.
  • 2A is an overall photograph
  • FIG. 2B is an enlarged photograph of a main part, showing the external appearance of a tube as a cobalt-chromium alloy member (lower) heat-treated at °C for 5 minutes. It has an outer diameter of 1.6 mm, a thickness of 0.1 mm, and a length of 980 to 1280 mm, and has good surface properties.
  • FIG. 3 shows the produced Co-20Cr-10Mo-26Ni alloy tube material, which is a cobalt-chromium alloy as-processed material after cold working (hereinafter also simply referred to as "as-processed material”) and as-processed material.
  • the horizontal axis indicates strain [%]
  • the vertical axis indicates stress [MPa].
  • the tensile test was performed using an autograph manufactured by Shimadzu Corporation at a test speed of 1.2 mm/s and a gauge length of 110 mm.
  • Table 3 also shows the 0.2% proof stress [MPa], tensile strength [MPa], and elongation at break [%] obtained from FIG.
  • Those heat-treated at 650° C. and 750° C. also referred to simply as “650° C. and 750° C. heat-treated materials”, etc.
  • Heat treatment at a temperature of 850°C or higher reduces the tensile strength, but increases the ductility. there were.
  • Fig. 4 shows the relationship between yield stress (YS), tensile strength (UTS), breaking elongation (Total elongation) and annealing temperature for the Co-20Cr-10Mo-26Ni alloy tube material. .
  • the yield stress was shown as 0.2% proof stress ( ⁇ 0.2 ).
  • Figure 5 shows the yield stress ( ⁇ 0.0. 2 ), tensile strength ( ⁇ UTS ), and elongation at break (Total elongation) in comparison with literature values (see Non-Patent Document 2) of L605 alloy.
  • Yield stress and tensile strength [MPa] are plotted on the vertical axis, and elongation strain at break [%] is plotted on the horizontal axis.
  • a solid line indicates the tube as the cobalt-chromium alloy member according to the present embodiment, and a dotted line indicates the L605 alloy tube.
  • the yield stress of the tube of the present invention is higher than that of the L605 alloy tube which exhibits comparable elongation. In addition, it exhibits a greater elongation than L605, which exhibits a comparable yield stress.
  • the material heat-treated at a temperature of 850° C. or higher for 5 minutes has a strength comparable to that of the L605 material, but exhibits a greater elongation at break.
  • Fig. 6 shows an as-processed material obtained by cold working a Co-20Cr-10Mo-26Ni alloy material into a tubular shape, and a heat-treated material obtained by heat-treating this at temperatures of 650°C, 750°C, 850°C, 950°C, and 1050°C for 5 minutes.
  • IQ map obtained by electron back scattering diffraction (EBSD) method for .
  • the IQ map also called an image quality map, is a map that indicates whether the crystallinity is good or bad. It is a plot of the intensity of peaks showing bands in the Hough space when the EBSD pattern is Hough transformed (a method of converting a straight line into a point). take a value. What appears linear in FIG.
  • the as-worked material and the material heat-treated at 650° C. and 750° C. have a high dislocation density and a worked structure remains, but the heat-treated material heat-treated at a temperature of 850° C. or higher has a recrystallized structure. Also, as the heat treatment temperature increases, the crystal grain size increases.
  • FIG. 7 shows the as-processed material obtained by cold working a Co-20Cr-10Mo-26Ni alloy material into a tubular shape, and the heat-treated material obtained by heat-treating this at temperatures of 650° C., 750° C., 850° C., 950° C., and 1050° C. for 5 minutes.
  • the KAM value is calculated by the above formula (1), and the numerical values in the figure are the average KAM values within the field of view.
  • the as-processed material and the material heat-treated at 650°C and 750°C have a high dislocation density, and the processed structure remains, so the average KAM value is as high as 1 or more.
  • the KAM value of the as-processed material is 1.32 ⁇ 0.74
  • the KAM value of the 650 ° C heat-treated material which is lower than the recrystallization temperature
  • the 750 ° C heat-treated material is 1.25 ⁇ 0.69.
  • it is 0.48 ⁇ 0.30 for the material heat-treated at 850°C, which is higher than the recrystallization temperature, 0.47 ⁇ 0.30 for the material heat-treated at 950°C, and 0.32 ⁇ 0.15 for the material heat-treated at 1050°C. is.
  • Fig. 8 shows as-processed material obtained by cold working a Co-20Cr-10Mo-26Ni alloy material into a tubular shape, and heat-treated material obtained by heat-treating this at temperatures of 650 ° C, 750 ° C, 850 ° C, 950 ° C and 1050 ° C for 5 minutes. showed a grain size of The crystal grain size was calculated from a crystal orientation map (a map showing the distribution of specified crystal orientations) measured by EBSD.
  • the average crystal grain size of the as-processed material is 5.1 ⁇ m, while that of the material heat-treated at 650° C., which is lower than the recrystallization temperature, is 5.3 ⁇ m, and that of the material heat-treated at 750° C.
  • the material heat-treated at 850° C. which is higher than the recrystallization temperature, has a thickness of 2.3 ⁇ m
  • the material heat-treated at 950° C. has a thickness of 3.2 ⁇ m
  • the material heat-treated at 1050° C. has a thickness of 7.6 ⁇ m.
  • fine crystal grains of 2.3 ⁇ m are obtained by recrystallization.
  • a second embodiment of the present invention uses the cobalt-chromium alloy material of the third embodiment of the present invention to form a wire-shaped member. That is, a wire material having a diameter of 0.5 mm and a length of 1 m was obtained by cold working a cobalt-chromium alloy material. This wire material corresponds to the unprocessed cobalt-chromium alloy material. Further, the wire material was subjected to a predetermined heat treatment to impart ductility to obtain a cobalt-chromium alloy member as a wire material.
  • FIG. 9 is a photograph of the appearance of a wire-shaped cobalt-chromium processed raw material produced by cold working, FIG. 9A being an overall photograph, and FIG. 9B being an enlarged photograph of a main part. It has a diameter of 0.5 mm and a length of 1000 mm, and has a good appearance.
  • FIG. 10 shows a heat-treated material obtained by heat-treating the Co-20Cr-10Mo-26Ni alloy material as-processed, which is obtained by cold-working the Co-20Cr-10Mo-26Ni alloy material into a wire shape, at 650° C., 850° C., and 1050° C. for 5 minutes.
  • the horizontal axis shows the strain [%] and the vertical axis shows the stress [MPa].
  • the tensile test was performed using an autograph manufactured by Shimadzu Corporation at a test speed of 1.2 mm/s and a gauge length of 110 mm. No. 1 produced under the same conditions. 1 and 2 gave similar results.
  • Table 4 shows the as-worked cobalt-chromium alloy material cold-worked into the wire shape of the present invention, and the cobalt obtained by heat-treating the as-worked wire-shaped material at 450°C, 650°C, 850°C, and 1050°C for 5 minutes.
  • the tensile strength [MPa] and elongation at break [%] of the wire as the chromium alloy member and the comparative wire are shown.
  • Table 5 compares the tensile strength and elongation at break of a wire as a cobalt-chromium alloy member according to an example of the present invention with SUS316L, L605 alloy, and MP35N alloy.
  • the cobalt-chromium alloy members produced in Table 5 were produced under the same conditions as the cobalt-chromium alloy members produced in Table 4, and similar results were obtained.
  • a wire as a cobalt-chromium alloy member according to an embodiment of the present invention exhibits a strength exceeding that of SUS316L, which is most widely used as a guide wire, and exhibits tensile strength and elongation at break comparable to those of L605 alloy and MP35N wires. (Fig. 10, Table 5).
  • Fig. 11 shows the relationship between yield stress, tensile strength, elongation at break and heat treatment temperature for the Co-20Cr-10Mo-26Ni alloy wire.
  • the heat treatment temperature is 850° C. or higher, the yield stress and tensile strength decrease, and the elongation at break remarkably increases.
  • FIG. 12 shows the as-processed material obtained by cold working the Co-20Cr-10Mo-26Ni alloy material into a wire shape, and the heat-treated material obtained by heat-treating this at temperatures of 450 ° C., 650 ° C., 850 ° C. and 1050 ° C. for 5 minutes.
  • IQ map obtained by EBSD.
  • the as-processed material and the material heat-treated at 450° C. and 650° C. have a high dislocation density and retain a worked structure. Also, as the heat treatment temperature increases, the crystal grain size increases.
  • FIG. 13 shows the as-processed material obtained by cold-working the Co-20Cr-10Mo-26Ni alloy material into a wire shape, and the heat-treated material obtained by heat-treating this at temperatures of 450 ° C., 650 ° C., 850 ° C., and 1050 ° C. for 5 minutes.
  • KAM map obtained by EBSD That is, the KAM value of the as-processed material is 1.76 ⁇ 0.93, whereas the KAM value of the material heat-treated at 450 ° C., which is lower than the recrystallization temperature, is 2.34 ⁇ 1.07, and the value of the material heat-treated at 650 ° C. is 2.04 ⁇ 1.05.
  • the 850° C. heat treated material which is higher than the recrystallization temperature
  • 0.96 ⁇ 0.61 for the 1050° C. heat treated material 0.33 ⁇ 0.43 for the 850° C. heat treated material, which is higher than the recrystallization temperature
  • the as-worked material and the 450°C and 650°C heat-treated materials have a high KAM value of 1.76 to 2.01, high dislocation density, and a worked structure remaining, but the temperature is 850°C, which is higher than the recrystallization temperature.
  • the samples heat-treated at the above temperatures have a KAM value of 1 or less, and the density of defects such as dislocations is reduced.
  • FIG. 14 shows the as-processed material obtained by cold working a Co-20Cr-10Mo-26Ni alloy material into a tubular shape and the heat-treated material obtained by heat-treating this at temperatures of 450 ° C, 650 ° C, 850 ° C and 1050 ° C for 5 minutes with EBSD.
  • the grain size calculated from the measured crystal orientation map is shown. That is, the average crystal grain size of the as-processed material is 9.04 ⁇ m, while that of the material heat-treated at 450° C., which is lower than the recrystallization temperature, is 10.3 ⁇ m, and that of the material heat-treated at 650° C. is 7.78 ⁇ m. .
  • the material heat-treated at 850° C. which is higher than the recrystallization temperature, is 4.43 ⁇ m, and the material heat-treated at 1050° C. is 12.1 ⁇ m.
  • the heat treatment at 850° C. which is a temperature higher than the recrystallization temperature, fine crystal grains of 4.4 ⁇ m are obtained by recrystallization.
  • the cobalt-chromium alloy material having the alloy composition of the present invention is cold-worked into a predetermined shape such as a tube or wire, and then subjected to heat treatment above the recrystallization temperature of the cobalt alloy material. By doing so, a cobalt-chromium alloy member having high strength and high ductility can be obtained.
  • a cobalt-chromium alloy member is suitable for use in medical devices, gas turbine devices, or other industrial equipment devices because it uses a cobalt-chromium alloy member with a long fatigue life.
  • Medical devices include indwelling medical devices such as stents, catheters, fastening cables, guide rods, orthopedic cables, heart valves, and implants. Other medical devices include bone drill bits and gallstone removal wires.
  • Gas turbine devices include combustor and exhaust components of aeronautical and industrial gas turbine engines such as transition pieces, combustor cans, spray bars, frame holders, afterburners, tail pipes, and the like.
  • Industrial equipment devices are used in waste incinerators, boilers, high temperature reactors and rotary calciners, as well as petrochemical production plants and synthesis gas plants.

Abstract

Provided is a cobalt-chromium alloy member suitable for use in medical devices, devices for gas turbines, or devices for other industrial equipment. This cobalt-chromium alloy member comprises a composition that contains, expressed in terms of mass%, 23-32% Ni, 37-48% Co, and 8-12% Mo with the balance being Cr and unavoidable impurities, wherein the composition also satisfies 20 ≤ [Cr%] + [Mo%] + [unavoidable impurities%] ≤ 40. The cobalt-chromium alloy member has a crystal structure composed of the face-centered cubic lattice (fcc), or has a crystal structure composed of the face-centered cubic lattice (fcc) and the hexagonal close-packed lattice (hcp), and has an average crystal grain size of 2-15 µm, a local crystal orientation variation (KAM value) of 0.0-1.0, both inclusive, a tensile strength of 800-1,200 MPa, and an elongation at break of 30-80%.

Description

コバルトクロム合金部材及びその製造方法、並びにこれを用いたデバイスCobalt-chromium alloy member, manufacturing method thereof, and device using the same
 本発明は、ステント、医療用チューブ、医療用ガイドワイヤーなどの医療用デバイスや、高温環境や腐食性環境で使用されるガスタービン用デバイス、又はその他の産業機器用デバイスに好適に用いられるコバルトクロム合金部材及びその製造方法に関する。特に、耐腐食特性と生体親和性に優れ、かつ高強度で延性に優れ、体内留置型医療用デバイスに好適なコバルトクロム合金素材の改良に関する。 The present invention provides cobalt chromium that is suitably used for medical devices such as stents, medical tubes, and medical guide wires, devices for gas turbines used in high-temperature and corrosive environments, and devices for other industrial equipment. The present invention relates to an alloy member and its manufacturing method. In particular, the present invention relates to improvements in cobalt-chromium alloy materials that are excellent in corrosion resistance, biocompatibility, high strength, and excellent ductility, and that are suitable for indwelling medical devices.
 医療機器に用いられる金属部材、特に、体内にインプラントされる金属部材には、耐腐食特性と生体親和性に優れ、しかも高い機械的性質を有する金属が求められ、ステンレス鋼、ニッケル・チタン合金、コバルトクロム合金等が用いられてきた。このような生体適合性の合金として、例えば、歯科鋳造用コバルトクロム合金(JIS T6115)が知られており、ニッケル含有合金には歯科用ステンレス鋼線(JIS T6103)が知られている。 Metal parts used in medical equipment, especially metal parts implanted in the human body, require metals with excellent corrosion resistance and biocompatibility, as well as high mechanical properties. Stainless steel, nickel-titanium alloys, Cobalt-chromium alloys and the like have been used. As such a biocompatible alloy, for example, a cobalt-chromium alloy for dental casting (JIS T6115) is known, and a nickel-containing alloy is known as a dental stainless steel wire (JIS T6103).
 コバルトクロム合金部材のうち、ステントは狭窄した体内脈管を拡張して維持することを目的とした中空の管状物であり、大きく分けて自己拡張型ステントとバルーン拡張型ステントがある。
 自己拡張型ステントはカテーテル先端に固定し、所定の位置にてカテーテルより超弾性合金、形状記憶合金を用いることで自己拡張性を付与したものであり、例えばニッケル・チタン合金を用いたステントが実用化されている。
Among cobalt-chromium alloy members, stents are hollow tubular objects intended to expand and maintain stenosed body vessels, and are broadly classified into self-expanding stents and balloon-expanding stents.
A self-expanding stent is fixed to the tip of a catheter and given self-expandability by using a superelastic alloy or shape memory alloy from the catheter at a predetermined position. For example, a nickel-titanium alloy stent is practically used. has been made
 バルーン拡張型ステントは管径圧縮によりバルーンカテーテルに固定し、所定の位置にてバルーンの拡張により管径拡張するステントであり、主にステンレス鋼SUS316Lやコバルトクロム系合金が実用化されている。例えば血管内に狭窄が生じた場合、その狭窄部をバルーンカテーテルにより広げた後に留置され、血管内壁を内側から支持し、再狭窄を防止するために使用される。ステントの挿入に関しては、ステントは収縮状態のバルーンの外側に縮径状態でカテーテル先端に装着され、バルーン部と一緒に血管内に挿入される。バルーン部を狭窄部位に位置させた後、バルーン部を膨らませる事によりステントを拡張させ、狭窄部を拡張した状態でステントを留置させ、バルーンカテーテルが引き抜かれる。
 バルーン拡張型ステント用合金としては外科インプラント材料としてASTMF90-14(Co-20Cr-15W-10Ni合金(L605合金))、ASTMF562-13(Co-20Cr-10Mo-35Ni合金(MP35N合金))、SUS316Lが知られている(非特許文献1、3、4参照)。
A balloon-expandable stent is fixed to a balloon catheter by compressing the diameter of the tube and expands the diameter of the tube by expanding the balloon at a predetermined position. For example, when stenosis occurs in a blood vessel, the stenosis is widened with a balloon catheter and left in place to support the inner wall of the blood vessel from the inside and prevent restenosis. As for the insertion of the stent, the stent is attached to the distal end of the catheter in a reduced diameter state outside the deflated balloon, and is inserted into the blood vessel together with the balloon portion. After the balloon portion is positioned at the stenosis site, the stent is expanded by inflating the balloon portion, and the stent is left in the expanded state of the stenosis portion, and the balloon catheter is withdrawn.
As alloys for balloon expandable stents, ASTM F90-14 (Co-20Cr-15W-10Ni alloy (L605 alloy)), ASTM F562-13 (Co-20Cr-10Mo-35Ni alloy (MP35N alloy)), and SUS316L are used as surgical implant materials. known (see Non-Patent Documents 1, 3, and 4).
 一方、整形外科領域におけるインプラントした金属の破断や、循環器内科領域におけるステントの早期破断が報告され、より疲労特性に優れた金属部材への要求がある。我々は、冠動脈ステント材料として最も一般的に用いられているL605(Co-20Cr-15W-10Ni)合金、MP35N(Co-20Cr-10Mo-35Ni)合金に対して、低サイクル疲労特性を改善した合金を提案している(特許文献1参照)。この合金は組成が質量%で、Crが10~27%、Moが3~12%、Niが22~34%で残部は実質的にCo及び不可避不純物からなるが、Coは37~48%が望ましい。 On the other hand, fracture of implanted metal in the field of orthopedic surgery and early fracture of stents in the field of cardiovascular medicine have been reported, and there is a demand for metal members with better fatigue properties. We have developed an alloy with improved low cycle fatigue properties compared to L605 (Co-20Cr-15W-10Ni) alloy and MP35N (Co-20Cr-10Mo-35Ni) alloy, which are most commonly used as coronary stent materials. has been proposed (see Patent Document 1). The composition of this alloy is mass %, Cr is 10 to 27%, Mo is 3 to 12%, Ni is 22 to 34%, and the balance is substantially Co and unavoidable impurities, but Co is 37 to 48%. desirable.
 ガイドワイヤーは血管内で用いる診断用あるいは治療用のカテーテルを血管内の所定の位置まで挿入するのを補助するものであり、芯材ワイヤーに細いワイヤーを巻き付けた構造をしている。ガイドワイヤーには先端の回転が手元の回転に追従するトルク伝達性や施術時に破断しない為に充分な強度と延性が必要とされる。なお、非特許文献2には、強度と硬さの一般的な関係が説明されている。 A guide wire assists in inserting a diagnostic or therapeutic catheter used in a blood vessel to a predetermined position in the blood vessel, and has a structure in which a thin wire is wrapped around a core wire. The guide wire is required to have sufficient strength and ductility so that the rotation of the tip follows the rotation of the hand, torque transmission, and to prevent breakage during treatment. Non-Patent Document 2 describes a general relationship between strength and hardness.
特開2019-147982号公報JP 2019-147982 A
 現在用いられているCo-Cr系合金であるL605やTi-Ni合金は冷間加工が難しい材料でありSUS316と比較すると加工コストが非常に高くなる。
 また最近では、医療用デバイスや、ガスタービン用デバイスや、その他の産業機器用デバイスに好適であって、高い機械的強度と延性を有するコバルトクロム合金部材が求められる。
 特に、神経欠陥や脳血管などの微細で複雑な形状の血管にステントなどの体内留置型医療用デバイスを用いる要求があり、その為には薄く細いチューブを用いてステントの金属部分であるストラットを細くする必要があり、それでも充分な血管保持力を確保するためにはできるだけ高強度の材料が必要である。これはまた体内に留置する金属量の低減にもつながる。
 ガイドワイヤーにおいてもできるだけ細いワイヤーを用いる事で、微細な血管に挿入しやすくなるが、さらに良好なトルク伝達性を実現するにはできるだけ強度が高い必要がある。さらに使用時の破断を防ぐためには延性のある材料が望ましい。
L605, which is a Co--Cr alloy and Ti--Ni alloy, which are currently used, are materials that are difficult to cold work, and their processing costs are very high compared to SUS316.
Recently, there is a demand for cobalt-chromium alloy members having high mechanical strength and ductility that are suitable for medical devices, gas turbine devices, and other industrial equipment devices.
In particular, there is a demand for the use of indwelling medical devices such as stents in blood vessels with fine and complicated shapes such as nerve defects and cerebral vessels. It is necessary to make it thin, and even so, a material with as high strength as possible is required in order to secure a sufficient blood vessel holding force. This also leads to a reduction in the amount of metal placed in the body.
Using a wire that is as thin as possible for the guide wire makes it easier to insert it into a fine blood vessel, but it needs to be as strong as possible in order to achieve even better torque transmissibility. Furthermore, a ductile material is desirable to prevent breakage during use.
 本発明の目的は、医療用デバイス、ガスタービン用デバイス、その他の産業機器用デバイスに用いて好適なコバルトクロム合金部材を提供することにある。
 特に、本発明の他の目的は、ステントなどの体内留置型医療用デバイスを微細な血管に挿入し易くするガイドワイヤーに好適なコバルトクロム合金部材を提供することである。
An object of the present invention is to provide a cobalt-chromium alloy member suitable for use in medical devices, gas turbine devices, and other industrial equipment devices.
In particular, another object of the present invention is to provide a cobalt-chromium alloy member suitable for a guide wire that facilitates the insertion of an indwelling medical device such as a stent into a fine blood vessel.
 上記目的を達成するために本発明のコバルトクロム合金部材は以下の構成を採用した。
[1]質量%で、Niが23~32%、Coが37~48%、Moが8~12%であって、残部にCrと不可避不純物が含まれると共に、
  20≦[Cr%]+[Mo%]+[不可避不純物%]≦40、
を満たす組成からなり、
 面心立方格子(fcc)からなる結晶構造、または面心立方格子(fcc)及び六方晶系格子(hcp)からなる結晶構造を有し、結晶粒径の平均値は2~15μmであって、局所的な結晶方位変化量(KAM値)が0.0以上1.0以下であると共に、
 引張強度が800~1200MPa、かつ破断伸びが30~80%を示す
 コバルトクロム合金部材。
In order to achieve the above objects, the cobalt-chromium alloy member of the present invention employs the following configuration.
[1] In mass%, Ni is 23 to 32%, Co is 37 to 48%, Mo is 8 to 12%, and the balance contains Cr and inevitable impurities,
20 ≤ [Cr%] + [Mo%] + [% of unavoidable impurities] ≤ 40,
It consists of a composition that satisfies
It has a crystal structure consisting of a face-centered cubic lattice (fcc), or a crystal structure consisting of a face-centered cubic lattice (fcc) and a hexagonal lattice (hcp), and has an average crystal grain size of 2 to 15 μm, Local crystal orientation variation (KAM value) is 0.0 or more and 1.0 or less,
A cobalt-chromium alloy member having a tensile strength of 800-1200 MPa and a breaking elongation of 30-80%.
[2][1]に記載のコバルトクロム合金部材は、好ましくは、
 前記組成からなるコバルトクロム合金素材を所定形状に冷間で塑性加工したコバルトクロム合金加工まま材に対して、前記コバルトクロム合金素材の再結晶温度を超える熱処理温度で熱処理して得られるとよい。
[3][1]又は[2]に記載のコバルトクロム合金部材は、好ましくは、質量%で、Niが25~29%、Coが37~48%、Moが9~11%であって、残部にCrと不可避不純物が含まれると共に、
  23≦[Cr%]+[Mo%]+[不可避不純物%]≦38、
を満たす組成からなるとよい。
[4][3]に記載のコバルトクロム合金部材は、
 前記組成からなるコバルトクロム合金素材を所定形状に冷間で塑性加工したコバルトクロム合金加工まま材に対して、前記コバルトクロム合金素材の再結晶温度を超える熱処理温度で熱処理として、800℃以上1100℃以下で、1分以上60分間以下で熱処理されるとよい。
[2] The cobalt-chromium alloy member according to [1] is preferably
It is preferable that the cobalt-chromium alloy material having the above composition is cold-plastic-worked into a predetermined shape, and the as-processed cobalt-chromium alloy material is heat-treated at a heat treatment temperature exceeding the recrystallization temperature of the cobalt-chromium alloy material.
[3] The cobalt-chromium alloy member according to [1] or [2] preferably contains 25 to 29% Ni, 37 to 48% Co, and 9 to 11% Mo in mass%, The remainder contains Cr and inevitable impurities,
23 ≤ [Cr%] + [Mo%] + [% of unavoidable impurities] ≤ 38,
It is preferable that the composition satisfies
[4] The cobalt-chromium alloy member according to [3] is
The as-processed cobalt-chromium alloy material obtained by cold plastic working the cobalt-chromium alloy material having the above composition into a predetermined shape is subjected to heat treatment at a heat treatment temperature exceeding the recrystallization temperature of the cobalt-chromium alloy material at a temperature of 800 ° C. or more and 1100 ° C. The heat treatment may be performed for 1 minute or more and 60 minutes or less as follows.
[5][1]乃至[4]の何れかに記載のコバルトクロム合金部材において、
 前記不可避不純物は、Ti、Mn、Fe、Nb、W、Al、Zr、B、およびCの含有量が質量%で、Tiが1.0%以下、Mnが1.0%以下、Feが1.0%以下、Nbが1.0%以下、Wが1.0%以下、Alが0.5%以下、Zrが0.1%以下、Bが0.01%以下およびCが0.1%以下であるとよい。
[5] In the cobalt-chromium alloy member according to any one of [1] to [4],
The inevitable impurities contain Ti, Mn, Fe, Nb, W, Al, Zr, B, and C in mass%, Ti is 1.0% or less, Mn is 1.0% or less, and Fe is 1 .0% or less, Nb is 1.0% or less, W is 1.0% or less, Al is 0.5% or less, Zr is 0.1% or less, B is 0.01% or less and C is 0.1% % or less.
[6][1]乃至[5]の何れかに記載の組成を有するコバルトクロム合金部材において、
 前記冷間で塑性加工された所定形状はチューブ状であり、
 結晶粒径の平均値は2~15μmであって、局所的な結晶方位変化量(KAM値)が0.1以上0.8以下であると共に、
 引張強度が800~1000MPa、かつ破断伸びが30~80%を示す
 コバルトクロム合金部材であるとよい。
[7][1]乃至[5]の何れかに記載の組成を有するコバルトクロム合金部材において、
 前記冷間で塑性加工された所定形状はワイヤー状であり、
 結晶粒径の平均値は4~15μmであって、局所的な結晶方位変化量(KAM値)が0.0以上1.0以下であると共に、
 引張強度が1000~1200MPa、かつ破断伸びが30~60%を示す
 コバルトクロム合金部材であるとよい。
[6] A cobalt-chromium alloy member having the composition according to any one of [1] to [5],
The predetermined shape that has been plastically worked in the cold is a tubular shape,
The average value of the crystal grain size is 2 to 15 μm, and the local crystal orientation change amount (KAM value) is 0.1 or more and 0.8 or less,
The cobalt-chromium alloy member preferably exhibits a tensile strength of 800 to 1000 MPa and a breaking elongation of 30 to 80%.
[7] A cobalt-chromium alloy member having the composition according to any one of [1] to [5],
The predetermined shape that has been plastically worked in the cold is a wire shape,
The average crystal grain size is 4 to 15 μm, and the local crystal orientation change amount (KAM value) is 0.0 or more and 1.0 or less,
The cobalt-chromium alloy member preferably exhibits a tensile strength of 1000 to 1200 MPa and a breaking elongation of 30 to 60%.
[8][1]乃至[7]の何れか1項に記載のコバルトクロム合金部材を使用したデバイスであるとよい。好ましく、このデバイスは医療用デバイス、ガスタービン用デバイス、又はその他の産業機器用デバイスであるとよい。 [8] A device using the cobalt-chromium alloy member according to any one of [1] to [7]. Preferably, the device is a medical device, gas turbine device, or other industrial device.
[9][8]に記載の前記デバイスは、ステント、チューブ、ワイヤー、インプラントの何れかの医療用デバイスであるとよい。
[10][9]に記載の前記デバイスは、尾筒、燃焼筒、スプレーバー、フレームホルダー、アフターバーナー、テールパイプなどの航空用および産業用ガスタービンエンジンの燃焼器および排気構成部品の何れかのガスタービン用デバイスであるとよい。
[11][9]に記載の前記デバイスは、廃棄物焼却炉、ボイラ、高温反応容器および回転式仮焼炉、並びに石油化学製品の製造プラントおよび合成ガスプラントに用いられる産業機器用デバイスであるとよい。
[9] The device according to [8] is preferably a medical device such as a stent, tube, wire, or implant.
[10] The device of [9] is for any of the combustor and exhaust components of aeronautical and industrial gas turbine engines, such as transition pieces, combustor cans, spray bars, frame holders, afterburners, tail pipes, etc. It is preferable that it is a device for a gas turbine.
[11] The device described in [9] is a device for industrial equipment used in waste incinerators, boilers, high-temperature reaction vessels and rotary calciners, as well as petrochemical production plants and synthesis gas plants. Good.
[12]質量%で、Niが23~32%、Coが37~48%、Moが8~12%であって、残部にCrと不可避不純物が含まれると共に、
  20≦[Cr%]+[Mo%]+[不可避不純物%]≦40、
を満たす組成からなるコバルトクロム合金素材を準備し、
 前記準備したコバルトクロム合金素材を1100℃~1300℃で均質化処理し、
 前記均質化処理したコバルトクロム合金素材を、チューブ状又はワイヤー状の形状に冷間で塑性加工を施し、コバルトクロム合金加工まま材を得て、
 前記冷間で塑性加工されたコバルトクロム合金加工まま材に対して、前記コバルトクロム合金素材の再結晶温度を超え1100℃以下で、1分以上60分間以下の熱処理を行ない、面心立方格子(fcc)からなる結晶構造、または面心立方格子(fcc)及び六方晶系格子(hcp)からなる結晶構造を有し、結晶粒径の平均値は2~15μmであって、局所的な結晶方位変化量(KAM値)が0.0以上1.0以下であることを特徴とするコバルトクロム合金部材を得る
 コバルトクロム合金部材の製造方法。
[12] 23 to 32% by mass of Ni, 37 to 48% of Co, and 8 to 12% of Mo, with the balance containing Cr and inevitable impurities,
20 ≤ [Cr%] + [Mo%] + [% of unavoidable impurities] ≤ 40,
Prepare a cobalt-chromium alloy material with a composition that satisfies
Homogenizing the prepared cobalt-chromium alloy material at 1100° C. to 1300° C.,
The homogenized cobalt-chromium alloy material is subjected to cold plastic working into a tubular or wire-like shape to obtain an as-processed cobalt-chromium alloy material,
The as-worked cobalt-chromium alloy material that has been plastically worked by cold is subjected to a heat treatment at a temperature exceeding the recrystallization temperature of the cobalt-chromium alloy material to 1100 ° C. or less for 1 minute or more and 60 minutes or less to obtain a face-centered cubic lattice ( fcc), or a crystal structure consisting of a face-centered cubic lattice (fcc) and a hexagonal lattice (hcp), the average grain size is 2 to 15 μm, and the local crystal orientation A method for producing a cobalt-chromium alloy member, characterized in that the amount of change (KAM value) is 0.0 or more and 1.0 or less.
 本発明のコバルトクロム合金部材は、冷間で塑性加工した後の再結晶温度を超えた熱処理により、面心立方格子(fcc)からなる結晶構造、または面心立方格子(fcc)及び六方晶系格子(hcp)からなる結晶構造を有し、結晶粒径の平均値は2~15μmであって、局所的な結晶方位変化量(KAM値)が0.0以上1.0以下となるため、強度や延性が改善されるなどの機械的特性に優れており、既存製品よりも信頼性が高い。このことより、例えば本発明のコバルトクロム合金部材を用いてステントのような体内留置型医療用デバイスを作製すると、装着時のステント信頼性が高まり、患部への装着がより容易となる。 The cobalt-chromium alloy member of the present invention has a crystal structure consisting of a face-centered cubic lattice (fcc) or a face-centered cubic lattice (fcc) and a hexagonal system by heat treatment above the recrystallization temperature after cold plastic working. Since it has a crystal structure consisting of a lattice (hcp), the average crystal grain size is 2 to 15 μm, and the local crystal orientation change amount (KAM value) is 0.0 or more and 1.0 or less, It has excellent mechanical properties such as improved strength and ductility, and is more reliable than existing products. For this reason, when a medical device to be placed in the body such as a stent is manufactured using the cobalt-chromium alloy member of the present invention, the reliability of the stent during mounting is enhanced, and the mounting of the stent on the affected area is facilitated.
 本発明のコバルトクロム合金部材では、Co、Ni、Cr、Moを主成分とする合金を冷間で塑性加工した後、再結晶温度以上での熱処理を施すことにより、面心立方格子(fcc)相が安定化される。これにより、形成されたfcc相では、コバルトクロム合金部材の変形に際して、fcc双晶変形および変形誘起によるfccから六方晶系格子(hcp)への変態が生じ、高い加工硬化能と優れた機械的強度・延性を示す。
 なお、本発明のコバルトクロム合金部材において、Mo,Nb等の溶質原子をさらに含有する場合には、転位芯ないしは拡張転位の積層欠陥に偏析させて交差すべりを起き難くすることができ、加工硬化により、機械的強度がさらに高くなる。
In the cobalt-chromium alloy member of the present invention, an alloy mainly composed of Co, Ni, Cr, and Mo is subjected to cold plastic working, and then subjected to heat treatment at a recrystallization temperature or higher to obtain a face-centered cubic lattice (fcc). Phase stabilizes. As a result, in the formed fcc phase, transformation from fcc to hexagonal lattice (hcp) occurs due to fcc twinning deformation and deformation induction during deformation of the cobalt-chromium alloy member, resulting in high work hardenability and excellent mechanical properties. Shows strength and ductility.
When the cobalt-chromium alloy member of the present invention further contains solute atoms such as Mo and Nb, they can be segregated at stacking faults of dislocation cores or extended dislocations to make it difficult for cross slip to occur, and work hardening. further increases the mechanical strength.
本発明に用いられるコバルトクロム合金素材の低サイクル疲労寿命の比較図である。FIG. 3 is a comparative diagram of low cycle fatigue life of cobalt-chromium alloy materials used in the present invention. 本発明の一実施例にかかるコバルトクロム合金素材を冷間加工によりチューブ状に作製したコバルトクロム合金加工まま材(上)、およびこれを1050℃で5分間熱処理したコバルトクロム合金部材(下)としてのチューブの全体の外観写真である。As-processed cobalt-chromium alloy material (upper) produced by cold-working a cobalt-chromium alloy material according to an embodiment of the present invention into a tubular shape, and cobalt-chromium alloy member (lower) obtained by heat-treating this at 1050° C. for 5 minutes. 1 is a photograph of the overall appearance of the tube. 本発明の一実施例にかかるコバルトクロム合金素材を冷間加工によりチューブ状に作製したコバルトクロム合金加工まま材(上)、およびこれを1050℃で5分間熱処理したコバルトクロム合金部材(下)としてのチューブの要部の外観写真(拡大写真)である。As-processed cobalt-chromium alloy material (upper) produced by cold-working a cobalt-chromium alloy material according to an embodiment of the present invention into a tubular shape, and cobalt-chromium alloy member (lower) obtained by heat-treating this at 1050° C. for 5 minutes. 1 is an external appearance photograph (enlarged photograph) of a main part of a tube of . 本発明の一実施例にかかるコバルトクロム合金素材を冷間加工によりチューブ状に作製した加工まま材、およびこれを650℃、750℃、850℃、950℃、1050℃の温度で5分間熱処理をした熱処理材についての引張試験で得られた応力-歪み線図である。An as-processed material obtained by cold-working a cobalt-chromium alloy material according to an embodiment of the present invention into a tubular shape, and heat-treating this at temperatures of 650°C, 750°C, 850°C, 950°C, and 1050°C for 5 minutes. It is a stress-strain diagram obtained in a tensile test for a heat-treated material. 本発明の一実施例にかかるコバルトクロム合金素材を冷間加工によりチューブ状に作製した加工まま材、およびこれをさらに各温度で熱処理をした熱処理材についての降伏応力、引張強度、及び破断伸びと、熱処理温度との関係を示す図面である。Yield stress, tensile strength, and elongation at break of an as-processed material obtained by cold-working a cobalt-chromium alloy material according to an embodiment of the present invention into a tubular shape, and a heat-treated material obtained by further heat-treating this at each temperature. , and heat treatment temperature. 本発明のコバルトクロム合金部材としてのチューブ(実線)およびL605合金チューブ(破線)についての降伏応力(σ0.2)、引張強度(σUTS)、および破断伸び(Total elongation:全伸び)を比較した図面である。Comparison of yield stress (σ 0.2 ), tensile strength (σ UTS ), and total elongation at break for the tube (solid line) and the L605 alloy tube (dashed line) as the cobalt-chromium alloy member of the present invention It is a drawing. 本発明にかかる合金素材をチューブ状に冷間加工した加工まま材、およびこれを650℃、750℃、850℃、950℃、1050℃の温度で5分間熱処理した熱処理材についてのEBSDにより得られたIQマップである。Obtained by EBSD for the as-processed material obtained by cold working the alloy material according to the present invention into a tubular shape, and the heat-treated material obtained by heat-treating this for 5 minutes at temperatures of 650 ° C., 750 ° C., 850 ° C., 950 ° C., and 1050 ° C. It is an IQ map. 本発明にかかる合金素材をチューブ状に冷間加工した加工まま材、およびこれを650℃、750℃、850℃、950℃、1050℃の温度で5分間熱処理した熱処理材についてのEBSDにより得られたKAMマップである。Obtained by EBSD for the as-processed material obtained by cold working the alloy material according to the present invention into a tubular shape, and the heat-treated material obtained by heat-treating this for 5 minutes at temperatures of 650 ° C., 750 ° C., 850 ° C., 950 ° C., and 1050 ° C. is a KAM map. 本発明にかかるチューブ状に冷間加工した加工まま材、およびこれを650℃、750℃、850℃、950℃、1050℃の温度で5分間熱処理した熱処理材について、結晶方位マップから算出した結晶粒径を示す図面である。Crystals calculated from the crystal orientation map for the as-processed material cold-worked into a tubular shape according to the present invention and the heat-treated material obtained by heat-treating this at temperatures of 650 ° C., 750 ° C., 850 ° C., 950 ° C., and 1050 ° C. for 5 minutes. It is drawing which shows a particle size. 本発明にかかるコバルトクロム合金部材としてのワイヤーの全体の外観写真である。1 is an overall appearance photograph of a wire as a cobalt-chromium alloy member according to the present invention. 本発明にかかるコバルトクロム合金部材としてのワイヤーの要部の外観写真(拡大写真)である。4 is an external view photograph (enlarged photograph) of a main part of a wire as a cobalt-chromium alloy member according to the present invention. 本発明にかかるコバルトクロム合金素材をワイヤー状に冷間加工した加工まま材に対して、650℃、850℃、1050℃の温度で5分間熱処理した熱処理材について、引張試験で得られた応力―歪み線図である。The stress obtained in the tensile test for the heat-treated material obtained by heat-treating the as-processed material obtained by cold-working the cobalt-chromium alloy material according to the present invention into a wire shape at temperatures of 650°C, 850°C, and 1050°C for 5 minutes- FIG. 4 is a strain diagram; 本発明にかかるワイヤーとしてのコバルトクロム合金部材について、降伏応力、引張強度、および破断伸びと、熱処理温度との関係を示した図面である。1 is a drawing showing the relationship between yield stress, tensile strength, elongation at break, and heat treatment temperature for a cobalt-chromium alloy member as a wire according to the present invention. 本発明にかかるワイヤー状に冷間加工した加工まま材、およびこれを450℃、650℃、850℃、1050℃の温度で5分間熱処理した熱処理材についてのEBSDにより得られたIQマップである。It is an IQ map obtained by EBSD for the as-processed material cold-worked into a wire according to the present invention and the heat-treated material obtained by heat-treating this at temperatures of 450°C, 650°C, 850°C, and 1050°C for 5 minutes. 本発明にかかるワイヤーについて加工まま材、およびこれを450℃、650℃、850℃、1050℃の温度で5分間熱処理した熱処理材についてのEBSDにより得られたKAMマップである。It is a KAM map obtained by EBSD for the wire according to the present invention as-processed material and heat-treated material obtained by heat-treating this at temperatures of 450° C., 650° C., 850° C., and 1050° C. for 5 minutes. 本発明にかかるワイヤー状に冷間加工した加工まま材、およびこれを450℃、650℃、850℃、1050℃の温度で5分間熱処理した熱処理材について、EBSDで測定した結晶方位マップから算出した結晶粒径を示す図面ある。Calculated from the crystal orientation map measured by EBSD for the as-processed material cold-worked into a wire shape according to the present invention and the heat-treated material obtained by heat-treating this for 5 minutes at temperatures of 450 ° C., 650 ° C., 850 ° C., and 1050 ° C. There is a drawing showing the grain size.
[本発明の概要]
 本発明のコバルトクロム合金部材は、特定の組成からなるコバルトクロム合金素材をチューブ状やワイヤー状などの所定形状に冷間で塑性加工(以下、単に「冷間加工」ともいう)したコバルトクロム合金加工まま材に対して、再結晶温度を超えた特定の熱処理をすることで、面心立方格子(fcc)からなる結晶構造、または面心立方格子(fcc)及び六方晶系格子(hcp)からなる結晶構造を有し、結晶粒径の平均値は2~15μmであって、局所的な結晶方位変化量(KAM値)が0.0以上1.0以下であると共に、引張強度が800~1200MPa、かつ破断伸びが30~80%を示す部材が得られる。特に、本発明のコバルトクロム合金部材は、局所的な結晶方位変化量(KAM値)が0.0以上1.0以下である部材が得られることに特徴を有する。これにより、高い加工硬化能と優れた機械的強度・延性を示すコバルトクロム合金部材が得られる。
 以下、本発明の詳細について説明する。
[Overview of the present invention]
The cobalt-chromium alloy member of the present invention is a cobalt-chromium alloy obtained by cold plastic working (hereinafter also simply referred to as "cold working") a cobalt-chromium alloy material having a specific composition into a predetermined shape such as a tube or wire. By subjecting the as-processed material to a specific heat treatment above the recrystallization temperature, a crystal structure consisting of a face-centered cubic lattice (fcc), or from a face-centered cubic lattice (fcc) and a hexagonal lattice (hcp) The average crystal grain size is 2 to 15 μm, the local crystal orientation change amount (KAM value) is 0.0 or more and 1.0 or less, and the tensile strength is 800 to A member is obtained which exhibits a tensile strength of 1200 MPa and an elongation at break of 30-80%. In particular, the cobalt-chromium alloy member of the present invention is characterized in that a member having a local crystal orientation variation (KAM value) of 0.0 or more and 1.0 or less can be obtained. As a result, a cobalt-chromium alloy member exhibiting high work hardening ability and excellent mechanical strength and ductility can be obtained.
The details of the present invention will be described below.
[本発明の詳細]
(コバルトクロム合金素材)
 本発明のコバルトクロム合金素材は、Niが23~32%、Coが37~48%、Moが8~12%であって、残部にCrと不可避不純物が含まれると共に20≦[Cr%]+[Mo%]+[不可避不純物%]≦40を満たす組成からなる。
 不可避不純物とは、意図的に添加した成分ではなく、材料あるいは工程に由来して不可避的に混入した成分をいう。不可避不純物の成分は、特に限定されないが、例えば、Ti、Mn、Fe、Nb、W、Al、Zr、B、又はC等であり、含まれなくてもよい。
 また、本発明のコバルトクロム合金素材は、特定の組成範囲を有すれば特に限定されず、後述するように、均質化処理されたものであってもよく、熱間圧延や熱間鍛造等の熱間加工されたものであってもよく、切削加工などにより特定の形状に加工されたものであってもよい。
[Details of the present invention]
(cobalt-chromium alloy material)
The cobalt-chromium alloy material of the present invention contains 23 to 32% Ni, 37 to 48% Co, and 8 to 12% Mo, and the balance contains Cr and inevitable impurities, and 20≦[Cr%]+ The composition satisfies [Mo %] + [% of unavoidable impurities] ≤ 40.
The unavoidable impurity is not an intentionally added ingredient, but an ingredient that is unavoidably mixed due to the material or process. The components of the unavoidable impurities are not particularly limited, but are, for example, Ti, Mn, Fe, Nb, W, Al, Zr, B, C, etc., and may not be included.
In addition, the cobalt-chromium alloy material of the present invention is not particularly limited as long as it has a specific composition range. It may be hot-worked or machined into a specific shape by cutting or the like.
 本発明のコバルトクロム合金素材の組成範囲を限定した理由を以下に説明する。
 尚、コバルトクロム合金素材の各成分の含有量は、コバルトクロム合金素材全体を100質量%としたときの含有量(質量%、以下単に「%」と示す。)である。
 また、本発明の数値範囲は、上限値と下限値を含む。以下に示す組成範囲だけでなく、温度処理の範囲、引張強度の範囲、破断伸びや均一伸びの範囲においても同様とする。但し、『超える』とか『未満』のように、数値範囲に上限値又は下限値を含まないことを明記した場合はこの限りでない。
The reason for limiting the composition range of the cobalt-chromium alloy material of the present invention will be explained below.
The content of each component in the cobalt-chromium alloy material is the content (% by mass, hereinafter simply referred to as "%") when the entire cobalt-chromium alloy material is taken as 100% by mass.
Also, the numerical range of the present invention includes upper and lower limits. The same applies not only to the composition range shown below, but also to the range of temperature treatment, the range of tensile strength, the range of elongation at break and the range of uniform elongation. However, this does not apply when it is specified that the numerical range does not include the upper limit or lower limit, such as "more than" or "less than".
 Ni(ニッケル)は、面心立方格子相を安定化し、加工性を維持し、耐食性を高め、低サイクル疲労寿命を改善し、冷間加工後の再結晶温度を超えた熱処理により強度や延性を改善する効果がある。しかし、本発明のコバルトクロム合金素材のCo、Cr、Moの組成範囲において、Niの含有量が23%未満では当該熱処理による強度や延性の改善効果を得ることが困難であると共に、32%を越えても当該熱処理による強度や延性の改善効果を得ることが困難であることから、本発明のNi含有量は、23~32%であり、好ましくは、25~29%である。これにより、強度及び延性の改善効果が一層得られる。 Ni (nickel) stabilizes the face-centered cubic lattice phase, maintains workability, improves corrosion resistance, improves low-cycle fatigue life, and increases strength and ductility by heat treatment above the recrystallization temperature after cold working. It has the effect of improving However, in the composition range of Co, Cr, and Mo of the cobalt-chromium alloy material of the present invention, if the Ni content is less than 23%, it is difficult to obtain the effect of improving strength and ductility by the heat treatment, and 32% is not. Since it is difficult to obtain the effect of improving strength and ductility by the heat treatment even if it exceeds, the Ni content of the present invention is 23 to 32%, preferably 25 to 29%. Thereby, the effect of improving strength and ductility is further obtained.
 Co(コバルト)は、それ自体加工硬化能が大きく、切り欠け脆さを減じ、疲労強度を高め、高温強度を高めると共に、低サイクル疲労寿命を改善し、冷間加工後の再結晶温度を超えた熱処理により強度や延性を改善する効果がある。
 Coの含有量は、37%未満ではその効果が弱く、本組成では48%を越えるとマトリクスが硬くなり過ぎて加工困難となると共に、冷間加工後の再結晶温度を超えた熱処理により強度や延性を改善する効果がなくなる。このため、本発明のCoの含有量は、37~48%であり、好ましくは40~45%である。これにより、強度及び延性の改善効果が一層得られる。
Co (cobalt) itself has a large work hardening ability, reduces notch brittleness, increases fatigue strength, increases high temperature strength, improves low cycle fatigue life, and exceeds the recrystallization temperature after cold working. This heat treatment has the effect of improving strength and ductility.
If the Co content is less than 37%, the effect is weak, and if it exceeds 48% in the present composition, the matrix becomes too hard and processing becomes difficult, and the heat treatment above the recrystallization temperature after cold working increases the strength and strength. The effect of improving ductility is lost. Therefore, the Co content of the present invention is 37-48%, preferably 40-45%. Thereby, the effect of improving strength and ductility is further obtained.
 Mo(モリブデン)は、マトリクスに固溶してこれを強化する効果、加工硬化能を増大させる効果、及びCrとの共存において耐食性を高める効果がある。しかし、Moの含有量が8%未満では所望する効果が得られず、12%を越えると加工性が急激に低下すること、及び脆いσ相が生成しやすくなる。このことから、本発明のMoの含有量は、8~12%であり、好ましくは、9~11%である。これにより、強度及び延性の改善効果が一層得られる。 Mo (molybdenum) has the effect of solid-solving into the matrix to strengthen it, the effect of increasing work hardening ability, and the effect of increasing corrosion resistance when coexisting with Cr. However, if the Mo content is less than 8%, the desired effect cannot be obtained, and if it exceeds 12%, the workability drops sharply and a brittle σ phase tends to form. Therefore, the content of Mo in the present invention is 8-12%, preferably 9-11%. Thereby, the effect of improving strength and ductility is further obtained.
 Cr、Mo、及び不可避不純物の合計含有量が、コバルトクロム合金素材全体を100%として、20%未満では六方晶系格子(hcp)相が安定になり、40%を越えると、面心立方格子(fcc)相が不安定になり体心立方格子(bcc)層が出現しやすくなる。つまり、Cr、Mo、及び不可避不純物の合計含有量が20~40%でない場合、fcc相が安定化しにくく、これにより得られたコバルトクロム合金部材を変形した際、fcc双晶変形や、変形誘起によるfccからhcpへの変態が生じにくく、優れた延性と共に低サイクル疲労寿命が得られない。このことから、本発明のCr、Mo、及び不可避不純物の合計含有量は、20~40%であり、好ましくは23~38%である。これにより、優れた延性と共に低サイクル疲労寿命が得られる。
 尚、不可避不純物の含有量は、0%であってもよく、0%を超える場合には、Co、Ni、Cr、Moの組成割合を基準に全体が100%となるように不可避不純物の組成割合が調整される。
When the total content of Cr, Mo, and inevitable impurities is less than 20%, the hexagonal lattice (hcp) phase becomes stable when the total content of the cobalt-chromium alloy material is 100%, and when it exceeds 40%, the face-centered cubic lattice The (fcc) phase becomes unstable and a body-centered cubic (bcc) layer tends to appear. That is, when the total content of Cr, Mo, and unavoidable impurities is not 20 to 40%, the fcc phase is difficult to stabilize. Transformation from fcc to hcp is difficult to occur, and low cycle fatigue life along with excellent ductility cannot be obtained. Accordingly, the total content of Cr, Mo and unavoidable impurities in the present invention is 20-40%, preferably 23-38%. This provides low cycle fatigue life along with excellent ductility.
The content of the inevitable impurities may be 0%, and when it exceeds 0%, the composition of the inevitable impurities is such that the total is 100% based on the composition ratio of Co, Ni, Cr, and Mo. Proportions are adjusted.
 Cr(クロム)は耐食性を確保するのに不可欠な成分であり、またマトリクスを強化する効果がある。不可避不純物が0%の場合、本発明のCrの含有量は、好ましくは12~28%であり、より好ましくは14~27%であり、更に好ましくは18~22%である。12%以上で優れた耐食性が得られやすく、28%以下で、加工性及び靱性が急激に低下しにくい。これにより、加工性及び靱性を確保しながら、より優れた耐食性が得られる。  Cr (chromium) is an essential component for ensuring corrosion resistance, and also has the effect of strengthening the matrix. When the amount of unavoidable impurities is 0%, the Cr content in the present invention is preferably 12-28%, more preferably 14-27%, still more preferably 18-22%. When it is 12% or more, excellent corrosion resistance is likely to be obtained, and when it is 28% or less, it is difficult for the workability and toughness to rapidly decrease. This provides better corrosion resistance while ensuring workability and toughness.
 Ti(チタン)は強い脱酸、脱窒、脱硫の効果があるが、多過ぎると合金中に介在物が増えたり、η相(NiTi)が析出して靱性が低下することから、本発明のTiの含有量は、不可避不純物として1.0%以下であることが望ましい。 Ti (titanium) has strong deoxidizing, denitrifying, and desulfurizing effects, but if it is too large, inclusions increase in the alloy and η phase (Ni 3 Ti) precipitates, reducing toughness. The content of Ti in the invention is desirably 1.0% or less as an unavoidable impurity.
 Mn(マンガン)は脱酸、脱硫の効果、及び面心立方格子相を安定化する効果があるが、多過ぎると耐食性、耐酸化性を劣化させるため、本発明のMnの含有量は、1.5%以下であることが望ましい。より望ましくは不可避不純物としての上限は1.0%以下である。 Mn (manganese) has the effect of deoxidizing and desulfurizing, and the effect of stabilizing the face-centered cubic lattice phase. 0.5% or less is desirable. More desirably, the upper limit as an unavoidable impurity is 1.0% or less.
 Fe(鉄)は、面心立方格子相を安定化し加工性を向上させる働きがあるが、多過ぎると耐酸化性が低下するため、本発明のFeの含有量は、不可避不純物として1.0%以下であることが望ましい。 Fe (iron) has the function of stabilizing the face-centered cubic lattice phase and improving workability. % or less.
 C(炭素)はマトリクスに固溶するほか、Cr、Mo等と炭化物を形成し、結晶粒の粗大化の防止効果があるが、多過ぎると靭性の低下、耐食性の劣化等が生じるため、本発明のCの含有量は、0.1%以下であることが望ましい。 C (carbon) forms a solid solution in the matrix and also forms carbides with Cr, Mo, etc., and has the effect of preventing coarsening of crystal grains. The content of C in the invention is desirably 0.1% or less.
 Nb(ニオブ)はマトリクスに固溶してこれを強化し、加工硬化能を増大させる効果があるが、3.0%を越えるとσ相やδ相(NiNb)が析出して靭性が低下することから、本発明のNbの含有量は、3.0%以下であることが望ましい。より望ましくは不可避不純物としての上限は1.0%以下である。 Nb (niobium) dissolves in the matrix and strengthens it, and has the effect of increasing the work hardening ability. Therefore, the content of Nb in the present invention is desirably 3.0% or less. More desirably, the upper limit as an unavoidable impurity is 1.0% or less.
 W(タングステン)は、マトリクスに固溶してこれを強化し、加工硬化能を著しく増大させる効果があるが、5.0%を越えるとσ相を析出して靭性が低下することから、本発明のWの含有量は、5.0%以下であることが望ましい。より望ましくは、不可避不純物としての上限は1.0%以下である。 W (tungsten) dissolves in the matrix and strengthens it, and has the effect of significantly increasing the work hardening ability. The content of W in the invention is desirably 5.0% or less. More desirably, the upper limit as an unavoidable impurity is 1.0% or less.
 Al(アルミ)は、脱酸、及び耐酸化性を向上させる効果があるが、多過ぎると耐食性の劣化等が生じるため、本発明のAlの含有量は、0.5%以下であることが望ましい。 Al (aluminum) has the effect of deoxidizing and improving oxidation resistance, but if it is too much, deterioration of corrosion resistance etc. will occur, so the content of Al in the present invention is 0.5% or less. desirable.
 Zr(ジルコニウム)は、高温での結晶粒界強度を上げて、熱間加工性を向上させる効果があるが、多過ぎると逆に加工性が悪くなるため、本発明のZrの含有量は、0.1%以下であることが望ましい。 Zr (zirconium) has the effect of increasing the grain boundary strength at high temperatures and improving hot workability. It is desirable to be 0.1% or less.
 B(ホウ素)は、熱間加工性を改善する効果があるが、多過ぎると逆に熱間加工性が低下し割れやすくなるため、本発明のBの含有量は、0.01%以下であることが望ましい。 B (boron) has the effect of improving hot workability, but if it is too much, the hot workability decreases and cracks easily. It is desirable to have
(コバルトクロム合金加工まま材)
 本発明のコバルトクロム合金加工まま材は、上記コバルトクロム合金素材を所定形状に冷間加工して得られる。
 本発明では、冷間加工中に双晶変形や誘起変態が生じることで、fcc変形双晶やhcp相(ε相)が導入され、高い密度の帯状の変形帯組織が形成される。これにより、非常に高い強度が得られる。その他、本発明では冷間加工により、結晶粒が微細化され、さらに高い強度が得られやすい。
(as-processed cobalt-chromium alloy material)
The as-worked cobalt-chromium alloy material of the present invention is obtained by cold-working the cobalt-chromium alloy material into a predetermined shape.
In the present invention, fcc deformation twins and hcp phase (ε phase) are introduced by twinning deformation and induced transformation during cold working, and a belt-like deformation band structure with high density is formed. This gives very high strength. In addition, in the present invention, crystal grains are refined by cold working, and higher strength can be easily obtained.
 所定形状はとしては、特に限定されないが、例えば、チューブ状、ワイヤー状であることが好ましい。これにより、チューブやワイヤー形状の医療用又は航空宇宙用のデバイスに用いることができる。 Although the predetermined shape is not particularly limited, it is preferably tubular or wire-like, for example. This allows for use in tube or wire shaped medical or aerospace devices.
(コバルトクロム合金部材)
 本発明のコバルトクロム合金部材は、上記コバルトクロム合金加工まま材を結晶温度以上の特定の熱処理をして得られる。
 本発明のコバルトクロム合金部材は、上記コバルトクロム合金素材と同様の組成を有し、質量%で、Niが23~32%、Coが37~48%、Moが8~12%であって、残部にCrと不可避不純物が含まれると共に、20≦[Cr%]+[Mo%]+[不可避不純物%]≦40を満たす組成からなり、好ましくは、質量%で、Niが25~29%、Coが37~48%、Moが9~11%であって、残部にCrと不可避不純物が含まれると共に、23≦[Cr%]+[Mo%]+[不可避不純物%]≦38を満たす組成からなるとよい。
(Cobalt-chromium alloy member)
The cobalt-chromium alloy member of the present invention is obtained by subjecting the as-processed cobalt-chromium alloy material to a specific heat treatment above the crystallization temperature.
The cobalt-chromium alloy member of the present invention has the same composition as the cobalt-chromium alloy material, and contains 23 to 32% Ni, 37 to 48% Co, and 8 to 12% Mo in mass%, The remainder contains Cr and inevitable impurities, and has a composition that satisfies 20 ≤ [Cr%] + [Mo%] + [% of inevitable impurities] ≤ 40. Preferably, Ni is 25 to 29% in mass%, A composition containing 37 to 48% Co and 9 to 11% Mo, the balance containing Cr and inevitable impurities, and satisfying 23 ≤ [Cr%] + [Mo%] + [% of inevitable impurities] ≤ 38 It should consist of
 不可避不純物は、Ti、Mn、Fe、Nb、W、Al、Zr、B、およびCの含有量が質量%で、Tiが1.0%以下、Mnが1.0%以下、Feが1.0%以下、Nbが1.0%以下、Wが1.0%以下、Alが0.5%以下、Zrが0.1%以下、Bが0.01%以下およびCが0.1%以下であるとよい。
 これにより、高い加工硬化能と優れた機械的強度・延性が得られやすい。
The unavoidable impurities include Ti, Mn, Fe, Nb, W, Al, Zr, B, and C in mass %, Ti being 1.0% or less, Mn being 1.0% or less, and Fe being 1.0%. 0% or less, Nb 1.0% or less, W 1.0% or less, Al 0.5% or less, Zr 0.1% or less, B 0.01% or less and C 0.1% It should be below.
As a result, high work hardening ability and excellent mechanical strength and ductility can be easily obtained.
 本発明のコバルトクロム合金部材は、面心立方格子(fcc)からなる結晶構造、または面心立方格子(fcc)及び六方晶系格子(hcp)からなる結晶構造を有する。
 すなわち、本発明では、熱処理をすることでコバルトクロム合金加工まま材におけるfcc変形双晶又はhcp相が、fcc相に変化する。fcc相が形成されることで、コバルトクロム合金部材を変形させた際、再び、fcc双晶変形又は変形誘起によるfccからhcpへの変態が生じる。このような変形や変態が生じる本発明のコバルトクロム合金部材は、機械的強度及び延性に優れる。
The cobalt-chromium alloy member of the present invention has a crystal structure consisting of a face-centered cubic lattice (fcc) or a crystal structure consisting of a face-centered cubic lattice (fcc) and a hexagonal lattice (hcp).
That is, in the present invention, fcc deformation twins or hcp phases in the as-worked cobalt-chromium alloy material are transformed into fcc phases by heat treatment. Due to the formation of the fcc phase, when the cobalt-chromium alloy member is deformed, fcc-twin deformation or deformation-induced transformation from fcc to hcp occurs again. The cobalt-chromium alloy member of the present invention, in which such deformation and transformation occur, is excellent in mechanical strength and ductility.
 本発明のコバルトクロム合金部材は、局所的な結晶方位変化量(KAM値)が0.0以上1.0以下である。
 KAM値は、例えば、後方電子散乱回折(EBSD)測定によって得られる結晶方位の局所的な変化であり、次式(1)で定義される局所方位差(Kernel Average Misorientation: KAM)で表すことができる。
Figure JPOXMLDOC01-appb-M000001
           (1)
 ここで、αi,jは測定点iとjの間の結晶方位差を示す。具体的な計算手順は、例えば佐々木孔英他、『微視的な塑性ひずみ分布と結晶方位差の関係』日本金属学会誌、第74巻、467頁-474頁(2010)に記載されている。KAM値は、転位などの格子欠陥密度の高い領域や結晶格子面の湾曲が著しい領域で高い値をとる。
 KAM値により、結晶粒内の歪分布を評価することができる。本発明では、KAM値が0.0以上1.0以下と低く、転位などの格子欠陥密度が低いことで、本発明のコバルトクロム合金部材は機械的強度に優れる。また、結晶粒子が均一化されやすいことで、結晶性に優れ、均質化された機械的特性が得られやすい。
The cobalt-chromium alloy member of the present invention has a local crystal orientation change amount (KAM value) of 0.0 or more and 1.0 or less.
The KAM value is, for example, a local change in crystal orientation obtained by back electron scattering diffraction (EBSD) measurement, and can be represented by the local misorientation (Kernel Average Misorientation: KAM) defined by the following formula (1). can.
Figure JPOXMLDOC01-appb-M000001
(1)
where α i,j denotes the crystal misorientation between measurement points i and j. A specific calculation procedure is described, for example, in Koei Sasaki et al., "Relationship between microscopic plastic strain distribution and crystal misorientation", Journal of the Japan Institute of Metals, Vol. 74, pp. 467-474 (2010). . The KAM value takes a high value in a region with a high density of lattice defects such as dislocations or in a region where the curvature of the crystal lattice plane is remarkable.
The KAM value can be used to evaluate the strain distribution within the crystal grains. In the present invention, the KAM value is as low as 0.0 or more and 1.0 or less, and the density of lattice defects such as dislocations is low, so that the cobalt-chromium alloy member of the present invention is excellent in mechanical strength. In addition, since the crystal grains are easily homogenized, excellent crystallinity and homogenized mechanical properties are easily obtained.
 本発明のコバルトクロム合金部材の結晶粒径の平均値は、2μm以上15μm以下であり、好ましくは4μm以上15μm以下であり、より好ましくは4μm以上10μm以下である。これにより、高い機械的強度が確保されやすい。
 結晶粒径の平均値は、EBSDによるエリアフラクション法により算出される。詳細には、結晶粒径の平均値は、JIS G0551「鋼-結晶粒度の顕微鏡試験方法」やASTM E112-13「Standard Test Methods for Determining Average Grain Size(平均結晶粒度決定のための標準試験方法)に準拠し算出できる。
The average grain size of the cobalt-chromium alloy member of the present invention is 2 μm or more and 15 μm or less, preferably 4 μm or more and 15 μm or less, and more preferably 4 μm or more and 10 μm or less. Thereby, high mechanical strength is likely to be secured.
The average grain size is calculated by an area fraction method based on EBSD. Specifically, the average grain size is determined according to JIS G0551 "Steel-Microscopic Test Method for Grain Size" and ASTM E112-13 "Standard Test Methods for Determining Average Grain Size (Standard Test Method for Determining Average Grain Size). can be calculated according to
 本発明のコバルトクロム合金部材では、引張強度が800~1200MPaである。
 コバルトクロム合金部材では、破断伸びが30~80%であり、好ましくは30~60%であり、更に好ましくは50~60%である。
 引張強度、破断伸びは、例えば、島津製作所製オートグラフを用いた引張試験により測定される。
 上記物性を有するコバルトクロム合金部材は、機械的強度及び延性に優れる。
The cobalt-chromium alloy member of the present invention has a tensile strength of 800-1200 MPa.
The cobalt-chromium alloy member has an elongation at break of 30 to 80%, preferably 30 to 60%, more preferably 50 to 60%.
Tensile strength and elongation at break are measured, for example, by a tensile test using an autograph manufactured by Shimadzu Corporation.
A cobalt-chromium alloy member having the above physical properties is excellent in mechanical strength and ductility.
 コバルトクロム合金部材では、均一伸びが25~60%であることが好ましく、より好ましくは30~60%であり、更に好ましくは50~60%である。
 均一伸びは、例えば、島津製作所製オートグラフを用いた引張試験により測定される。
 上記物性を有するコバルトクロム合金部材は、機械的強度及び延性により優れる。
Cobalt-chromium alloy members preferably have a uniform elongation of 25 to 60%, more preferably 30 to 60%, even more preferably 50 to 60%.
Uniform elongation is measured, for example, by a tensile test using an autograph manufactured by Shimadzu Corporation.
A cobalt-chromium alloy member having the above physical properties is superior in mechanical strength and ductility.
 特に、本発明のコバルトクロム合金部材が、内部が中空で周面がコバルトクロム合金で囲われたチューブ状である場合、結晶粒径の平均値は2~15μmであって、局所的な結晶方位変化量(KAM値)が0.1以上0.8以下であると共に、引張強度が800~1000MPa、かつ破断伸びが30~80%を示すことが好ましい。
 本発明のコバルトクロム合金部材が、断面形状が円形断面、楕円形断面、平板状断面、凹状や凸状の異形断面等のワイヤー状である場合、結晶粒径の平均値は4~15μmであって、局所的な結晶方位変化量(KAM値)が0.0以上1.0以下であると共に、引張強度が1000~1200MPa、かつ破断伸びが30~60%を示すことが好ましい。
 これにより、より高い強度と優れた延性が得られる。
In particular, when the cobalt-chromium alloy member of the present invention has a tubular shape with a hollow interior and a peripheral surface surrounded by a cobalt-chromium alloy, the average grain size is 2 to 15 μm, and the local crystal orientation is It is preferred that the amount of change (KAM value) is 0.1 or more and 0.8 or less, the tensile strength is 800 to 1000 MPa, and the elongation at break is 30 to 80%.
When the cobalt-chromium alloy member of the present invention has a wire-like cross-sectional shape such as a circular cross-section, an elliptical cross-section, a flat cross-section, a concave or convex irregular cross-section, etc., the average grain size is 4 to 15 μm. It is preferable that the local crystal orientation change (KAM value) is 0.0 or more and 1.0 or less, the tensile strength is 1000 to 1200 MPa, and the breaking elongation is 30 to 60%.
This results in higher strength and better ductility.
 本発明のコバルトクロム合金部材は、以下の条件の熱処理により得られることが好ましい。
 本発明の熱処理の温度は、コバルトクロム合金素材の再結晶温度を超え1100℃以下であることが好ましく、より好ましくは800℃以上1100℃以下であり、更に好ましくは900℃以上1100℃以下である。コバルトクロム合金素材の再結晶温度は、例えば本実施例の組成であるCo-20Cr-10Mo-26Ni合金では780℃~820℃の範囲にあるが、コバルトクロム合金素材の合金組成によっては750℃~1000℃の範囲にあることもある。
 再結晶化温度以上とすることで、再結晶化され、fcc相が安定化する。1100℃以下とすることで、結晶粒径の粗大化が抑えられる。
 これにより、上記範囲の引張強度、均一伸び、破断伸びを有し、高い機械的強度及び延性を有するコバルト合金部材が得られる。
The cobalt-chromium alloy member of the present invention is preferably obtained by heat treatment under the following conditions.
The temperature of the heat treatment of the present invention is preferably higher than the recrystallization temperature of the cobalt-chromium alloy material and 1100°C or less, more preferably 800°C or more and 1100°C or less, and still more preferably 900°C or more and 1100°C or less. . The recrystallization temperature of the cobalt-chromium alloy material is, for example, in the range of 780° C. to 820° C. for the Co-20Cr-10Mo-26Ni alloy, which is the composition of the present embodiment, but may range from 750° C. to 820° C. depending on the alloy composition of the cobalt-chromium alloy material. It may be in the range of 1000°C.
By setting the temperature above the recrystallization temperature, recrystallization occurs and the fcc phase is stabilized. By setting the temperature to 1100° C. or less, coarsening of the crystal grain size is suppressed.
As a result, a cobalt alloy member having tensile strength, uniform elongation and elongation at break within the above ranges and having high mechanical strength and ductility can be obtained.
 本発明の熱処理の時間は、1分以上60分間以下であることが好ましい。1分以上とすることで、充分に再結晶化され、fcc相が安定化する。60分以下とすることで、結晶粒径の粗大化が抑えられる。
 これにより、上記範囲の引張強度、均一伸び、破断伸びを有し、高い機械的強度及び延性を有するコバルト合金部材が得られやすい。
The heat treatment time of the present invention is preferably 1 minute or more and 60 minutes or less. By setting the time to 1 minute or longer, the recrystallization is sufficiently performed, and the fcc phase is stabilized. Coarsening of the crystal grain size can be suppressed by setting the heating time to 60 minutes or less.
Thereby, it is easy to obtain a cobalt alloy member having tensile strength, uniform elongation and breaking elongation within the above ranges and having high mechanical strength and ductility.
 特に、コバルトクロム合金部材は、コバルトクロム合金加工まま材に対して、前記コバルトクロム合金素材の再結晶温度を超える熱処理温度で熱処理として、800℃以上1100℃以下で、1分以上60分間以下で熱処理して得られることが好ましい。 In particular, the cobalt-chromium alloy member is heat-treated at a heat treatment temperature exceeding the recrystallization temperature of the cobalt-chromium alloy material for 1 minute or more and 60 minutes or less for 1 minute or more and 60 minutes or less. It is preferably obtained by heat treatment.
 本発明のコバルトクロム合金部材は、帯状の変形帯組織を有してもよい。本発明の帯状の変形帯組織とは、冷間加工により生じた多数の転位が密集した転位セルの集合体組織であり、冷間加工時に導入されたfcc変形双晶やhcp相(ε相)近傍にある組織である。 The cobalt-chromium alloy member of the present invention may have a belt-shaped deformation band structure. The band-shaped deformation band structure of the present invention is an aggregate structure of dislocation cells in which a large number of dislocations generated by cold working are densely packed. It is a nearby tissue.
 本発明のコバルトクロム合金部材は、積層欠陥エネルギーが低く、変形に際し部分転位が運動しプレート状の微細なfcc双晶およびhcp相が形成することによって、高い加工硬化能が得られる。また、原子半径の大きさが1.25ÅであるCo、Ni、Crに比べ、原子半径が大きいかあるいは近似しているMo,Nb等の溶質原子が、転位芯ないしは拡張転位の積層欠陥に強く引き付けられて偏析して交差すべりが起き難くなるため、高い加工硬化能が発現する。 The cobalt-chromium alloy member of the present invention has a low stacking fault energy, and high work hardening ability is obtained by the movement of partial dislocations during deformation and the formation of fine plate-like fcc twins and hcp phases. In addition, compared to Co, Ni, and Cr, whose atomic radius is 1.25 Å, solute atoms such as Mo and Nb, which have atomic radii larger or similar, are resistant to stacking faults of dislocation cores or extended dislocations. It is attracted and segregates, making it difficult for cross-slip to occur, resulting in high work hardening ability.
 また、本発明のコバルトクロム合金部材の高い加工硬化能は体温付近のみならず高温下においても発現するため、高温強度特性も高いという特徴を有している。そこで、コバルトクロム合金部材の用途は、医療用に限定されるものではなく、航空宇宙用や蒸気タービン用等の産業機器用として本発明のコバルトクロム合金部材はより過酷な条件下での使用に耐えるものである。 In addition, since the high work hardening ability of the cobalt-chromium alloy member of the present invention is exhibited not only at around body temperature but also at high temperatures, it is characterized by high high-temperature strength characteristics. Therefore, the application of the cobalt-chromium alloy member is not limited to medical use, and the cobalt-chromium alloy member of the present invention is suitable for use under more severe conditions for industrial equipment such as aerospace and steam turbines. It is tolerable.
(コバルトクロム合金部材の製造方法)
 コバルトクロム合金部材の製造方法は、コバルトクロム合金素材を準備する工程と、上記準備したコバルトクロム合金素材を1100℃~1300℃で均質化処理する工程と、上記均質化処理したコバルトクロム合金素材を、チューブ状又はワイヤー状の形状に冷間で塑性加工を施し、コバルトクロム合金加工まま材を得る工程と、上記冷間で塑性加工されたコバルトクロム合金加工まま材を、上記コバルトクロム合金素材の再結晶温度を超え1100℃以下で、1分以上60分間以下の熱処理を行う工程を含む。上記コバルトクロム合金素材の再結晶温度は、例えば800℃である。
 これにより、高い機械的強度及び延性を有するコバルトクロム合金部材が得られる。
(Manufacturing method of cobalt-chromium alloy member)
A method for manufacturing a cobalt-chromium alloy member includes the steps of preparing a cobalt-chromium alloy material, homogenizing the prepared cobalt-chromium alloy material at 1100° C. to 1300° C., and dispersing the homogenized cobalt-chromium alloy material. a step of subjecting a tube-shaped or wire-shaped shape to cold plastic working to obtain an as-worked cobalt-chromium alloy material; It includes a step of performing a heat treatment at a temperature above the recrystallization temperature of 1100° C. or less for 1 minute or more and 60 minutes or less. The recrystallization temperature of the cobalt-chromium alloy material is, for example, 800.degree.
Thereby, a cobalt-chromium alloy member having high mechanical strength and ductility can be obtained.
 コバルトクロム合金素材を準備する工程では、上記コバルト合金素材が用いられる。
 冷間で塑性加工を施す工程では、チューブ状又はワイヤー状に冷間加工した上記コバルトクロム合金加工まま材が得られる。
 コバルトクロム合金加工まま材に対して熱処理を行う工程では、上記コバルトクロム合金部材が得られる。
The above cobalt alloy material is used in the step of preparing the cobalt chromium alloy material.
In the step of cold plastic working, the cobalt-chromium alloy cold-worked material can be obtained in the form of a tube or a wire.
In the step of heat-treating the unprocessed cobalt-chromium alloy material, the cobalt-chromium alloy member is obtained.
 均質化処理では、コバルトクロム合金素材に対して、1100℃~1300℃で熱処理を行うことで、各組成を均一に分散させる。これにより、後工程の冷間加工において機械的特性の均一性が確保される。
 均質化処理温度を1100℃以上とすることで、効率よく材料の均質化が可能となり、1300℃以下とすることで、結晶粒子が過度に粗大化するのを防ぐことができ、かつ、材料表面の著しい酸化を防ぐことができる。その他の均質化処理の条件は、得られるコバルトクロム合金部材の物性を損なわない範囲で適宜設定可能である。
 均質化処理されるコバルトクロム合金素材は、上記特定の組成を有するコバルトクロム合金素材であればよく、例えば、高周波溶解により作製された合金インゴットであってもよい。
 また、均質化処理後のコバルトクロム合金素材は、丸棒状などの冷間加工しやすい形状に熱間加工されてもよい。
In the homogenization treatment, the cobalt-chromium alloy material is heat-treated at 1100° C. to 1300° C. to uniformly disperse each composition. This ensures the uniformity of the mechanical properties in the subsequent cold working process.
By setting the homogenization treatment temperature to 1100 ° C. or higher, it is possible to efficiently homogenize the material, and by setting it to 1300 ° C. or lower, it is possible to prevent the crystal grains from becoming excessively coarse, and the material surface can prevent significant oxidation of Other conditions for the homogenization treatment can be appropriately set within a range that does not impair the physical properties of the cobalt-chromium alloy member to be obtained.
The cobalt-chromium alloy material to be homogenized may be any cobalt-chromium alloy material having the specific composition described above, and may be, for example, an alloy ingot produced by high-frequency melting.
Further, the cobalt-chromium alloy material after the homogenization treatment may be hot-worked into a shape that is easily cold-worked, such as a round bar.
 また、本発明のコバルトクロム合金部材の製造方法では、コバルトクロム合金素材をステント用の板材に冷間加工したコバルトクロム合金加工まま材に対して、再結晶温度以上1100℃以下の熱処理後、200℃以上再結晶温度以下の温度で時効処理がなされてもよい。これにより、転位芯ないしは拡張転位の積層欠陥にMo等の溶質原子が引き付けられ転位を固着する、いわゆる静的ひずみ時効により、一層高い強度特性が得られる。 Further, in the method for producing a cobalt-chromium alloy member of the present invention, the as-processed cobalt-chromium alloy material obtained by cold-working the cobalt-chromium alloy material into a plate material for a stent is subjected to heat treatment at a recrystallization temperature or higher and 1100° C. or lower, and then subjected to 200°C. The aging treatment may be performed at a temperature of 0° C. or more and the recrystallization temperature or less. As a result, solute atoms such as Mo are attracted to stacking faults of dislocation cores or extended dislocations to fix the dislocations, so-called static strain aging, whereby higher strength characteristics can be obtained.
 本発明のコバルトクロム合金素材は、上記コバルトクロム合金素材と同様の組成を有する合金インゴットを、高周波溶解にて作製し、1100℃~1300℃で熱間鍛造及び均質化処理をし、熱間圧延と切削加工により直径8mm、長さ270mmの丸棒を作成することで得られる。 For the cobalt-chromium alloy material of the present invention, an alloy ingot having the same composition as the cobalt-chromium alloy material is produced by high-frequency melting, hot forged at 1100° C. to 1300° C., homogenized, and hot rolled. It is obtained by cutting a round bar with a diameter of 8 mm and a length of 270 mm.
 本発明の上記製造方法により、面心立方格子(fcc)からなる結晶構造、または面心立方格子(fcc)及び六方晶系格子(hcp)からなる結晶構造を有し、結晶粒径の平均値は2~15μmであって、局所的な結晶方位変化量(KAM値)が0.0以上1.0以下であることを特徴とするコバルトクロム合金部材が得られる。 According to the above production method of the present invention, a crystal structure consisting of a face-centered cubic lattice (fcc), or a crystal structure consisting of a face-centered cubic lattice (fcc) and a hexagonal lattice (hcp), and having an average crystal grain size is 2 to 15 μm, and the amount of local crystal orientation change (KAM value) is 0.0 or more and 1.0 or less.
 本発明の第1の実施例は、本発明のコバルトクロム合金素材を用いて、チューブ状の部材としたものである。
 即ち、上記のコバルトクロム合金素材を冷間加工する事で直径1.6mm、厚さ0.1mm,長さ1mのチューブ材を得た。このチューブ材がコバルトクロム合金加工まま材に相当する。さらにこのチューブ材に、所定の熱処理を施すことによって延性を付与して、チューブ材としてのコバルトクロム合金部材を得た。
A first embodiment of the present invention uses the cobalt-chromium alloy material of the present invention to form a tubular member.
That is, a tube material having a diameter of 1.6 mm, a thickness of 0.1 mm, and a length of 1 m was obtained by cold working the cobalt-chromium alloy material. This tube material corresponds to the cobalt-chromium alloy as-processed material. Further, the tube material was subjected to a predetermined heat treatment to impart ductility to obtain a cobalt-chromium alloy member as a tube material.
 本実施例に使用されたコバルトクロム合金素材の組成を表1に示す。単位は質量%である。
Figure JPOXMLDOC01-appb-T000002
Table 1 shows the composition of the cobalt-chromium alloy material used in this example. The unit is % by mass.
Figure JPOXMLDOC01-appb-T000002
 実施例1~4では、Cr20質量%とMo10質量%と含有量を一定にし、Niの含有量に対しCoの含有量を変化させた。Niの含有量は、23~32質量%の範囲で変化させた。
 比較例1~4では、比較材料として、それぞれ、市販されているCo-20Cr-10Mo-35Ni合金(以下、単に「MP35N合金」という)、Co-20Cr-10Mo-20Ni合金、Co-20Cr-15W-10Ni合金(以下、単に「L605合金」という」)、SUS316L(Hayes社製)を用いた。実施例1~4では、面心立方格子(fcc)からなる結晶構造、または面心立方格子(fcc)及び六方晶系格子(hcp)からなる結晶構造を有することを確認している。
In Examples 1 to 4, the Cr content was constant at 20% by mass and the Mo content was 10% by mass, and the Co content was varied with respect to the Ni content. The Ni content was varied in the range of 23 to 32% by mass.
In Comparative Examples 1 to 4, as comparative materials, commercially available Co-20Cr-10Mo-35Ni alloy (hereinafter simply referred to as "MP35N alloy"), Co-20Cr-10Mo-20Ni alloy, Co-20Cr-15W -10Ni alloy (hereinafter simply referred to as "L605 alloy") and SUS316L (manufactured by Hayes) were used. Examples 1 to 4 were confirmed to have a crystal structure consisting of a face-centered cubic lattice (fcc) or a crystal structure consisting of a face-centered cubic lattice (fcc) and a hexagonal lattice (hcp).
 棒状に熱間加工後、1200℃で1分間熱処理をした実施例1~4の組成のコバルトクロム合金素材及び比較例1~4の組成の合金について、歪み振幅0.01での低サイクル疲労試験を行った。 A low cycle fatigue test at a strain amplitude of 0.01 was performed on the cobalt-chromium alloy materials having the compositions of Examples 1 to 4 and the alloys having the compositions of Comparative Examples 1 to 4, which were hot-worked into bars and then heat-treated at 1200°C for 1 minute. did
 試験結果を図1に示した。実施例1~4では、いずれも疲労寿命が3000回以上と良好であった。特に、23質量%のNi(実施例4)、26質量%のNi(実施例3)、29質量%のNi(実施例2)のコバルトクロム合金素材は、比較例1~4のいずれの既製品に比べ、低サイクル疲労寿命に改善が認められた。 The test results are shown in Fig. 1. All of Examples 1 to 4 had a good fatigue life of 3000 cycles or more. In particular, the cobalt-chromium alloy materials of 23% by mass Ni (Example 4), 26% by mass Ni (Example 3), and 29% by mass Ni (Example 2) were used in any of Comparative Examples 1 to 4. Improvement in low cycle fatigue life was observed compared to the product.
 また、棒状に熱間加工後、1200℃で1分間熱処理をした実施例1~4の組成のコバルトクロム合金素材及び比較例1~4の組成の合金について、ヱイ・アンド・デイ製テンシロン引張試験機を用いて歪み速度2.5×10-4-1で引張試験を実施し、その結果を表2に示した。実施例1~4に係るコバルトクロム合金素材では、848~886MPaの引張強度を示し、MP35N合金(比較例1)と同等のコバルトクロム合金特有の高い引張強度を示した。
Figure JPOXMLDOC01-appb-T000003
In addition, the cobalt-chromium alloy materials of Examples 1 to 4 and the alloys of Comparative Examples 1 to 4, which were hot-worked into bars and then heat-treated at 1200 ° C. for 1 minute, were subjected to Tensilon tensile tests manufactured by Y&D. A tensile test was performed using a machine at a strain rate of 2.5×10 −4 s −1 , and the results are shown in Table 2. The cobalt-chromium alloy materials according to Examples 1 to 4 exhibited tensile strengths of 848 to 886 MPa, exhibiting high tensile strength unique to cobalt-chromium alloys, which is equivalent to MP35N alloy (Comparative Example 1).
Figure JPOXMLDOC01-appb-T000003
 図2は、コバルトクロム合金素材において、最も優れた疲労寿命を有する、実施例3に係るCo-20Cr-10Mo-26Ni合金素材の冷間加工により作製したコバルトクロム合金加工まま材(上)、1050℃で5分間熱処理したコバルトクロム合金部材(下)としてのチューブの外観写真で、図2Aは全体写真、図2Bは要部の拡大写真である。サイズは外径1.6mm、厚さ0.1mm、長さ980~1280mmであり、良好な表面性状を有している。 FIG. 2 shows a cobalt-chromium alloy as-processed material (upper), 1050, produced by cold-working the Co-20Cr-10Mo-26Ni alloy material according to Example 3, which has the best fatigue life among cobalt-chromium alloy materials. 2A is an overall photograph, and FIG. 2B is an enlarged photograph of a main part, showing the external appearance of a tube as a cobalt-chromium alloy member (lower) heat-treated at ℃ for 5 minutes. It has an outer diameter of 1.6 mm, a thickness of 0.1 mm, and a length of 980 to 1280 mm, and has good surface properties.
 図3は作製したCo-20Cr-10Mo-26Ni合金のチューブ材であって、冷間加工あがりの状態のコバルトクロム合金加工まま材(以下、単に「加工まま材」ともいう)と、加工まま材に対して、650℃、750℃、850℃、950℃、1050℃で5分間熱処理をしたコバルトクロム合金部材(以下、単に「熱処理材」ともいう)製チューブの引張強度測定結果を示した図面で、横軸が歪[%]、縦軸が応力[MPa]を示している。引張試験は島津製作所製オートグラフを用い、試験速度1.2mm/s、標点間距離110mmで行った。 FIG. 3 shows the produced Co-20Cr-10Mo-26Ni alloy tube material, which is a cobalt-chromium alloy as-processed material after cold working (hereinafter also simply referred to as "as-processed material") and as-processed material. A drawing showing the tensile strength measurement results of cobalt-chromium alloy members (hereinafter also simply referred to as “heat-treated materials”) tubes that have been heat-treated at 650°C, 750°C, 850°C, 950°C, and 1050°C for 5 minutes. , the horizontal axis indicates strain [%] and the vertical axis indicates stress [MPa]. The tensile test was performed using an autograph manufactured by Shimadzu Corporation at a test speed of 1.2 mm/s and a gauge length of 110 mm.
 また表3には、図3から得られた0.2%耐力[MPa]、引張強度[MPa]、破断伸び[%]を示した。650℃、750℃で熱処理したもの(単に、「650℃、750℃熱処理材」等ともいう。)は加工まま材に比べて高い引張強度と低い延性を示した。850℃以上の温度で熱処理により引張強度は低下するが延性は高くなり、1050℃,5分の熱処理したものは破断伸び63.7%、降伏応力が561.1MPa、引張強度は1040.6MPaであった。
Figure JPOXMLDOC01-appb-T000004
Table 3 also shows the 0.2% proof stress [MPa], tensile strength [MPa], and elongation at break [%] obtained from FIG. Those heat-treated at 650° C. and 750° C. (also referred to simply as “650° C. and 750° C. heat-treated materials”, etc.) exhibited higher tensile strength and lower ductility than as-processed materials. Heat treatment at a temperature of 850°C or higher reduces the tensile strength, but increases the ductility. there were.
Figure JPOXMLDOC01-appb-T000004
 図4にCo-20Cr-10Mo-26Ni合金のチューブ材についての、降伏応力(YS)、引張強度(UTS)、破断伸び(Total elongation:全伸び)と熱処理温度(Annealing temperature)の関係を示した。尚、降伏応力は0.2%耐力(σ0.2)として示した。熱処理温度が850℃以上になると降伏応力と引張強度が低下するとともに、破断伸びが顕著に大きくなる。
 図5はCo-20Cr-10Mo-26Ni合金のチューブ材(加工まま材)、及び650℃、750℃、850℃、950℃、1050℃で5分間熱処理をした熱処理材における降伏応力(σ0.2)と引張強度(σUTS)、破断伸び(Total elongation:全伸び)の値をL605合金の文献値(非特許文献2参照)と比較した図面である。縦軸は降伏応力と引張強度[MPa]、横軸は破断伸び歪み[%]である。実線が本実施例に係るコバルトクロム合金部材としてのチューブを示し、点線がL605合金チューブを示す。引張強度の文献値と比較すると、本発明のチューブの降伏応力は同程度の伸びを示すL605合金チューブよりも高い。また同程度の降伏応力を示すL605よりも大きな伸びを示す。また850℃以上の温度で5分間熱処理した材料はL605材と同程度の強度で、より大きな破断伸びを示す。
Fig. 4 shows the relationship between yield stress (YS), tensile strength (UTS), breaking elongation (Total elongation) and annealing temperature for the Co-20Cr-10Mo-26Ni alloy tube material. . The yield stress was shown as 0.2% proof stress (σ 0.2 ). When the heat treatment temperature is 850° C. or higher, the yield stress and tensile strength decrease, and the elongation at break remarkably increases.
Figure 5 shows the yield stress (σ 0.0. 2 ), tensile strength (σ UTS ), and elongation at break (Total elongation) in comparison with literature values (see Non-Patent Document 2) of L605 alloy. Yield stress and tensile strength [MPa] are plotted on the vertical axis, and elongation strain at break [%] is plotted on the horizontal axis. A solid line indicates the tube as the cobalt-chromium alloy member according to the present embodiment, and a dotted line indicates the L605 alloy tube. When compared to literature values for tensile strength, the yield stress of the tube of the present invention is higher than that of the L605 alloy tube which exhibits comparable elongation. In addition, it exhibits a greater elongation than L605, which exhibits a comparable yield stress. Also, the material heat-treated at a temperature of 850° C. or higher for 5 minutes has a strength comparable to that of the L605 material, but exhibits a greater elongation at break.
 図6はCo-20Cr-10Mo-26Ni合金素材をチューブ状に冷間加工した加工まま材、およびこれを650℃、750℃、850℃、950℃、1050℃の温度で5分間熱処理した熱処理材についての後方電子散乱回折(EBSD)法により得られたIQマップである。IQマップとは、イメージクォリティーマップとも呼ばれ、結晶性の良し悪しを記すマップである。EBSDパターンをHough変換(直線を点に変換する手法)した際のHough空間上のバンドを示すピークの強度をプロットしたもので、バンドが鮮明なほどパターンの発生領域の結晶性が良くIQは高い値をとる。
 図6で線状に見えるのは結晶粒界または転位、積層欠陥などの結晶性の悪い領域である。加工まま材や、650℃、750℃熱処理材は転位密度が高く、加工組織が残存しているが、850℃以上の温度で熱処理した熱処理材は再結晶組織となっている。また熱処理温度が高くなると結晶粒径が大きくなっている。
Fig. 6 shows an as-processed material obtained by cold working a Co-20Cr-10Mo-26Ni alloy material into a tubular shape, and a heat-treated material obtained by heat-treating this at temperatures of 650°C, 750°C, 850°C, 950°C, and 1050°C for 5 minutes. IQ map obtained by electron back scattering diffraction (EBSD) method for . The IQ map, also called an image quality map, is a map that indicates whether the crystallinity is good or bad. It is a plot of the intensity of peaks showing bands in the Hough space when the EBSD pattern is Hough transformed (a method of converting a straight line into a point). take a value.
What appears linear in FIG. 6 is a region of poor crystallinity such as grain boundaries, dislocations, and stacking faults. The as-worked material and the material heat-treated at 650° C. and 750° C. have a high dislocation density and a worked structure remains, but the heat-treated material heat-treated at a temperature of 850° C. or higher has a recrystallized structure. Also, as the heat treatment temperature increases, the crystal grain size increases.
 図7はCo-20Cr-10Mo-26Ni合金素材をチューブ状に冷間加工した加工まま材およびこれを650℃、750℃、850℃、950℃、1050℃の温度で5分間熱処理した熱処理材についてのEBSDにより得られたKAM値を示すKAMマップである。KAM値は上記式(1)より算出され、図中の数値は視野内の平均のKAM値である。
 加工まま材、650℃、750℃熱処理材は転位密度が高く、加工組織が残存しており平均のKAM値が1以上と高いが、850℃以上の温度で熱処理した熱処理材はKAM値が1以下と低く欠陥密度の低い再結晶組織となっている。また熱処理温度が高くなると結晶粒径が大きくなっている。
 即ち、加工まま材のKAM値は、1.32±0.74であるのに対して、再結晶温度よりも低い温度である650℃熱処理材は1.26±0.71、750℃熱処理材は1.25±0.69である。他方で、再結晶温度よりも高い温度である850℃熱処理材は0.48±0.30、950℃熱処理材は0.47±0.30、1050℃熱処理材は0.32±0.15である。
FIG. 7 shows the as-processed material obtained by cold working a Co-20Cr-10Mo-26Ni alloy material into a tubular shape, and the heat-treated material obtained by heat-treating this at temperatures of 650° C., 750° C., 850° C., 950° C., and 1050° C. for 5 minutes. is a KAM map showing the KAM values obtained by EBSD of . The KAM value is calculated by the above formula (1), and the numerical values in the figure are the average KAM values within the field of view.
The as-processed material and the material heat-treated at 650°C and 750°C have a high dislocation density, and the processed structure remains, so the average KAM value is as high as 1 or more. It is a recrystallized structure with a low defect density as low as below. Also, as the heat treatment temperature increases, the crystal grain size increases.
That is, the KAM value of the as-processed material is 1.32 ± 0.74, whereas the KAM value of the 650 ° C heat-treated material, which is lower than the recrystallization temperature, is 1.26 ± 0.71, and the 750 ° C heat-treated material is 1.25±0.69. On the other hand, it is 0.48±0.30 for the material heat-treated at 850°C, which is higher than the recrystallization temperature, 0.47±0.30 for the material heat-treated at 950°C, and 0.32±0.15 for the material heat-treated at 1050°C. is.
 図8はCo-20Cr-10Mo-26Ni合金素材をチューブ状に冷間加工した加工まま材、およびこれを650℃、750℃、850℃、950℃、1050℃の温度で5分間熱処理した熱処理材の結晶粒径を示した。結晶粒径は、EBSDで測定した結晶方位マップ(指定した結晶方位の分布状況を示すマップ)から算出した。
 加工まま材の平均結晶粒径は、5.1μmであるのに対して、再結晶温度よりも低い温度である650℃熱処理材は5.3μm、750℃熱処理材は4.3μmである。他方で、再結晶温度よりも高い温度である850℃熱処理材は2.3μm、950℃熱処理材は3.2μm、1050℃熱処理材は7.6μmである。850℃の熱処理では再結晶により2.3μmの微細な結晶粒が得られている。
Fig. 8 shows as-processed material obtained by cold working a Co-20Cr-10Mo-26Ni alloy material into a tubular shape, and heat-treated material obtained by heat-treating this at temperatures of 650 ° C, 750 ° C, 850 ° C, 950 ° C and 1050 ° C for 5 minutes. showed a grain size of The crystal grain size was calculated from a crystal orientation map (a map showing the distribution of specified crystal orientations) measured by EBSD.
The average crystal grain size of the as-processed material is 5.1 μm, while that of the material heat-treated at 650° C., which is lower than the recrystallization temperature, is 5.3 μm, and that of the material heat-treated at 750° C. is 4.3 μm. On the other hand, the material heat-treated at 850° C., which is higher than the recrystallization temperature, has a thickness of 2.3 μm, the material heat-treated at 950° C. has a thickness of 3.2 μm, and the material heat-treated at 1050° C. has a thickness of 7.6 μm. In the heat treatment at 850° C., fine crystal grains of 2.3 μm are obtained by recrystallization.
 本発明の第2の実施例は、本発明の実施例3のコバルトクロム合金素材を用いて、ワイヤー状の部材としたものである。即ち、コバルトクロム合金素材について、冷間加工により、直径0.5mm、長さ1mのワイヤー材を得た。このワイヤー材がコバルトクロム合金加工まま材に相当する。さらにこのワイヤー材に、所定の熱処理を施すことによって延性を付与して、ワイヤー材としてのコバルトクロム合金部材を得た。
 図9は冷間加工で作製したワイヤー状のコバルトクロム加工まま材の外観の写真で、図9Aは全体写真、図9Bは要部の拡大写真である。直径0.5mm、長さは1000mmであり、良好な外観を呈している。
A second embodiment of the present invention uses the cobalt-chromium alloy material of the third embodiment of the present invention to form a wire-shaped member. That is, a wire material having a diameter of 0.5 mm and a length of 1 m was obtained by cold working a cobalt-chromium alloy material. This wire material corresponds to the unprocessed cobalt-chromium alloy material. Further, the wire material was subjected to a predetermined heat treatment to impart ductility to obtain a cobalt-chromium alloy member as a wire material.
FIG. 9 is a photograph of the appearance of a wire-shaped cobalt-chromium processed raw material produced by cold working, FIG. 9A being an overall photograph, and FIG. 9B being an enlarged photograph of a main part. It has a diameter of 0.5 mm and a length of 1000 mm, and has a good appearance.
 図10は、作製したCo-20Cr-10Mo-26Ni合金素材をワイヤー状に冷間加工したコバルトクロム加工まま材に対して、650℃、850℃、1050℃で5分間保持の熱処理をした熱処理材について、引張強度測定結果を示した図面で、横軸が歪[%]、縦軸が応力[MPa]を示している。引張試験は島津製作所製オートグラフを用い、試験速度1.2mm/s、標点間距離110mmで行った。同条件にて作製されたNo.1,2では、同様の結果が得られた。 FIG. 10 shows a heat-treated material obtained by heat-treating the Co-20Cr-10Mo-26Ni alloy material as-processed, which is obtained by cold-working the Co-20Cr-10Mo-26Ni alloy material into a wire shape, at 650° C., 850° C., and 1050° C. for 5 minutes. In the drawing showing the tensile strength measurement results, the horizontal axis shows the strain [%] and the vertical axis shows the stress [MPa]. The tensile test was performed using an autograph manufactured by Shimadzu Corporation at a test speed of 1.2 mm/s and a gauge length of 110 mm. No. 1 produced under the same conditions. 1 and 2 gave similar results.
 表4は本発明のワイヤー状に冷間加工したコバルトクロム合金加工まま材、およびこのワイヤー状の加工まま材に対して、450℃、650℃、850℃、1050℃で5分間熱処理をしたコバルトクロム合金部材としてのワイヤー、並びに比較材ワイヤーの引張強度[MPa]と破断伸び[%]を示したものである。
Figure JPOXMLDOC01-appb-T000005
Table 4 shows the as-worked cobalt-chromium alloy material cold-worked into the wire shape of the present invention, and the cobalt obtained by heat-treating the as-worked wire-shaped material at 450°C, 650°C, 850°C, and 1050°C for 5 minutes. The tensile strength [MPa] and elongation at break [%] of the wire as the chromium alloy member and the comparative wire are shown.
Figure JPOXMLDOC01-appb-T000005
 表5は、本発明の一実施例にかかるコバルトクロム合金部材としてのワイヤーの引張強度と破断伸びのSUS316L、L605合金、およびMP35N合金との比較である。表5で作製したコバルトクロム合金部材は、表4で作製したコバルトクロム合金部材と同様の条件により作製され、同様の結果が得られた。
Figure JPOXMLDOC01-appb-T000006
比較例 SUS316L:引張強度480MPa、破断伸び40%、
表5中の「比較例L605」及び「比較例MP35N」の数値(%)は、冷間加工率を示す。
Table 5 compares the tensile strength and elongation at break of a wire as a cobalt-chromium alloy member according to an example of the present invention with SUS316L, L605 alloy, and MP35N alloy. The cobalt-chromium alloy members produced in Table 5 were produced under the same conditions as the cobalt-chromium alloy members produced in Table 4, and similar results were obtained.
Figure JPOXMLDOC01-appb-T000006
Comparative example SUS316L: tensile strength 480 MPa, elongation at break 40%,
The numerical values (%) of "Comparative Example L605" and "Comparative Example MP35N" in Table 5 indicate the cold working rate.
 本発明の一実施例にかかるコバルトクロム合金部材としてのワイヤーは、ガイドワイヤーとして最も広く用いられているSUS316Lを上回る強度を示し、L605合金及びMP35Nのワイヤーとは同程度の引張強度と破断伸びを示した(図10、表5)。 A wire as a cobalt-chromium alloy member according to an embodiment of the present invention exhibits a strength exceeding that of SUS316L, which is most widely used as a guide wire, and exhibits tensile strength and elongation at break comparable to those of L605 alloy and MP35N wires. (Fig. 10, Table 5).
 図11にはCo-20Cr-10Mo-26Ni合金ワイヤーについて降伏応力、引張強度、破断伸びと熱処理温度の関係を示した。熱処理温度が850℃以上になると降伏応力と引張強度が低下するとともに、破断伸びが顕著に大きくなる。 Fig. 11 shows the relationship between yield stress, tensile strength, elongation at break and heat treatment temperature for the Co-20Cr-10Mo-26Ni alloy wire. When the heat treatment temperature is 850° C. or higher, the yield stress and tensile strength decrease, and the elongation at break remarkably increases.
 図12にはCo-20Cr-10Mo-26Ni合金素材をワイヤー状に冷間加工した加工まま材、およびこれを450℃、650℃、850℃、1050℃の温度で5分間熱処理した熱処理材についてのEBSDにより得られたIQマップである。加工まま材、450℃、650℃熱処理材は転位密度が高く、加工組織が残存しているが、850℃以上の温度で熱処理した熱処理材は再結晶組織となっている。また熱処理温度が高くなると結晶粒径が大きくなっている。 FIG. 12 shows the as-processed material obtained by cold working the Co-20Cr-10Mo-26Ni alloy material into a wire shape, and the heat-treated material obtained by heat-treating this at temperatures of 450 ° C., 650 ° C., 850 ° C. and 1050 ° C. for 5 minutes. IQ map obtained by EBSD. The as-processed material and the material heat-treated at 450° C. and 650° C. have a high dislocation density and retain a worked structure. Also, as the heat treatment temperature increases, the crystal grain size increases.
 図13にはCo-20Cr-10Mo-26Ni合金素材をワイヤー状に冷間加工した加工まま材、およびこれを450℃、650℃、850℃、1050℃の温度で5分間熱処理した熱処理材についてのEBSDにより得られたKAMマップである。
 即ち、加工まま材のKAM値は、1.76±0.93であるのに対して、再結晶温度よりも低い温度である450℃熱処理材は2.34±1.07、650℃熱処理材は2.04±1.05である。他方で、再結晶温度よりも高い温度である850℃熱処理材は0.33±0.43、1050℃熱処理材は0.96±0.61である。
 加工まま材、450℃、650℃熱処理材はKAM値が1.76~2.01と高く、転位密度が高く、加工組織が残存しているが、再結晶温度よりも高い温度である850℃以上の温度で熱処理した試料はKAM値が1以下に低下しており、転位などの欠陥の密度が低下している。
FIG. 13 shows the as-processed material obtained by cold-working the Co-20Cr-10Mo-26Ni alloy material into a wire shape, and the heat-treated material obtained by heat-treating this at temperatures of 450 ° C., 650 ° C., 850 ° C., and 1050 ° C. for 5 minutes. KAM map obtained by EBSD.
That is, the KAM value of the as-processed material is 1.76 ± 0.93, whereas the KAM value of the material heat-treated at 450 ° C., which is lower than the recrystallization temperature, is 2.34 ± 1.07, and the value of the material heat-treated at 650 ° C. is 2.04±1.05. On the other hand, it is 0.33±0.43 for the 850° C. heat treated material, which is higher than the recrystallization temperature, and 0.96±0.61 for the 1050° C. heat treated material.
The as-worked material and the 450°C and 650°C heat-treated materials have a high KAM value of 1.76 to 2.01, high dislocation density, and a worked structure remaining, but the temperature is 850°C, which is higher than the recrystallization temperature. The samples heat-treated at the above temperatures have a KAM value of 1 or less, and the density of defects such as dislocations is reduced.
 図14はCo-20Cr-10Mo-26Ni合金素材をチューブ状に冷間加工した加工まま材とこれを450℃、650℃、850℃、1050℃の温度で5分間熱処理した熱処理材について、EBSDで測定した結晶方位マップから算出した結晶粒径を示した。
 即ち、加工まま材の平均結晶粒径は、9.04μmであるのに対して、再結晶温度よりも低い温度である450℃熱処理材は10.3μm、650℃熱処理材は7.78μmである。他方で、再結晶温度よりも高い温度である850℃熱処理材は4.43μm、1050℃熱処理材は12.1μmである。再結晶温度よりも高い温度である850℃の熱処理では再結晶により4.4μmの微細な結晶粒が得られている。
FIG. 14 shows the as-processed material obtained by cold working a Co-20Cr-10Mo-26Ni alloy material into a tubular shape and the heat-treated material obtained by heat-treating this at temperatures of 450 ° C, 650 ° C, 850 ° C and 1050 ° C for 5 minutes with EBSD. The grain size calculated from the measured crystal orientation map is shown.
That is, the average crystal grain size of the as-processed material is 9.04 μm, while that of the material heat-treated at 450° C., which is lower than the recrystallization temperature, is 10.3 μm, and that of the material heat-treated at 650° C. is 7.78 μm. . On the other hand, the material heat-treated at 850° C., which is higher than the recrystallization temperature, is 4.43 μm, and the material heat-treated at 1050° C. is 12.1 μm. In the heat treatment at 850° C., which is a temperature higher than the recrystallization temperature, fine crystal grains of 4.4 μm are obtained by recrystallization.
 以上詳細に説明したように、本発明の合金組成を有するコバルトクロム合金素材を冷間加工により、チューブやワイヤーのような所定形状に作製してから、コバルト合金素材の再結晶温度を超える熱処理をすることで高強度と高延性を有するコバルトクロム合金部材が得られる。このようなコバルトクロム合金部材は、疲労寿命の長いコバルトクロム合金部材を用いている関係で、医療用デバイス、ガスタービン用デバイス、又はその他の産業機器用デバイスでの利用に適している。 As described in detail above, the cobalt-chromium alloy material having the alloy composition of the present invention is cold-worked into a predetermined shape such as a tube or wire, and then subjected to heat treatment above the recrystallization temperature of the cobalt alloy material. By doing so, a cobalt-chromium alloy member having high strength and high ductility can be obtained. Such a cobalt-chromium alloy member is suitable for use in medical devices, gas turbine devices, or other industrial equipment devices because it uses a cobalt-chromium alloy member with a long fatigue life.
 医療用デバイスとしては、ステント、カテーテル、締結ケーブル、ガイドロッド、整形外科用ケーブル、心臓弁、インプラント等の体内留置型医療用デバイスがある。その他の医療用デバイスとしては、骨ドリルビットや胆石の除去用ワイヤーとしても使用できる。
 ガスタービン用デバイスとしては、尾筒、燃焼筒、スプレーバー、フレームホルダー、アフターバーナー、テールパイプなどの航空用および産業用ガスタービンエンジンの燃焼器および排気構成部品がある。産業機器用デバイスとしては、廃棄物焼却炉、ボイラ、高温反応容器および回転式仮焼炉、並びに石油化学製品の製造プラントおよび合成ガスプラントに用いられる。
Medical devices include indwelling medical devices such as stents, catheters, fastening cables, guide rods, orthopedic cables, heart valves, and implants. Other medical devices include bone drill bits and gallstone removal wires.
Gas turbine devices include combustor and exhaust components of aeronautical and industrial gas turbine engines such as transition pieces, combustor cans, spray bars, frame holders, afterburners, tail pipes, and the like. Industrial equipment devices are used in waste incinerators, boilers, high temperature reactors and rotary calciners, as well as petrochemical production plants and synthesis gas plants.

Claims (12)

  1.  質量%で、Niが23~32%、Coが37~48%、Moが8~12%であって、残部にCrと不可避不純物が含まれると共に、
      20≦[Cr%]+[Mo%]+[不可避不純物%]≦40、
    を満たす組成からなり、
     面心立方格子(fcc)からなる結晶構造、または面心立方格子(fcc)及び六方晶系格子(hcp)からなる結晶構造を有し、結晶粒径の平均値は2~15μmであって、局所的な結晶方位変化量(KAM値)が0.0以上1.0以下であると共に、
     引張強度が800~1200MPa、かつ破断伸びが30~80%を示す
     コバルトクロム合金部材。
    In mass %, Ni is 23 to 32%, Co is 37 to 48%, Mo is 8 to 12%, and the balance contains Cr and inevitable impurities,
    20 ≤ [Cr%] + [Mo%] + [% of unavoidable impurities] ≤ 40,
    It consists of a composition that satisfies
    It has a crystal structure consisting of a face-centered cubic lattice (fcc), or a crystal structure consisting of a face-centered cubic lattice (fcc) and a hexagonal lattice (hcp), and has an average crystal grain size of 2 to 15 μm, Local crystal orientation variation (KAM value) is 0.0 or more and 1.0 or less,
    A cobalt-chromium alloy member having a tensile strength of 800-1200 MPa and a breaking elongation of 30-80%.
  2.  前記組成からなるコバルトクロム合金素材を所定形状に冷間で塑性加工したコバルトクロム合金加工まま材に対して、前記コバルトクロム合金素材の再結晶温度を超える熱処理温度で熱処理して得られる
     請求項1に記載のコバルトクロム合金部材。
    1. Obtained by heat-treating an as-processed cobalt-chromium alloy material obtained by cold plastic working a cobalt-chromium alloy material having the above composition into a predetermined shape at a heat treatment temperature exceeding the recrystallization temperature of the cobalt-chromium alloy material. Cobalt-chromium alloy member according to.
  3.  質量%で、Niが25~29%、Coが37~48%、Moが9~11%であって、残部にCrと不可避不純物が含まれると共に、
      23≦[Cr%]+[Mo%]+[不可避不純物%]≦38、
    を満たす組成からなる
     請求項1又は2に記載のコバルトクロム合金部材。
    In mass %, Ni is 25 to 29%, Co is 37 to 48%, Mo is 9 to 11%, and the balance contains Cr and inevitable impurities,
    23 ≤ [Cr%] + [Mo%] + [% of unavoidable impurities] ≤ 38,
    3. The cobalt-chromium alloy member according to claim 1, wherein the composition satisfies the following:
  4.  前記組成からなるコバルトクロム合金素材を所定形状に冷間で塑性加工したコバルトクロム合金加工まま材に対して、前記コバルトクロム合金素材の再結晶温度を超える熱処理温度で熱処理として、800℃以上1100℃以下で、1分以上60分間以下で熱処理して得られる
     請求項3に記載のコバルトクロム合金部材。
    The as-processed cobalt-chromium alloy material obtained by cold plastic working the cobalt-chromium alloy material having the above composition into a predetermined shape is subjected to heat treatment at a heat treatment temperature exceeding the recrystallization temperature of the cobalt-chromium alloy material at a temperature of 800 ° C. or more and 1100 ° C. The cobalt-chromium alloy member according to claim 3, which is obtained by heat-treating for 1 minute or more and 60 minutes or less.
  5.  前記不可避不純物は、Ti、Mn、Fe、Nb、W、Al、Zr、B、およびCの含有量が質量%で、Tiが1.0%以下、Mnが1.0%以下、Feが1.0%以下、Nbが1.0%以下、Wが1.0%以下、Alが0.5%以下、Zrが0.1%以下、Bが0.01%以下およびCが0.1%以下である
     請求項1乃至4の何れか1項に記載のコバルトクロム合金部材。
    The inevitable impurities contain Ti, Mn, Fe, Nb, W, Al, Zr, B, and C in mass%, Ti is 1.0% or less, Mn is 1.0% or less, and Fe is 1 .0% or less, Nb is 1.0% or less, W is 1.0% or less, Al is 0.5% or less, Zr is 0.1% or less, B is 0.01% or less and C is 0.1% % or less, the cobalt-chromium alloy member according to any one of claims 1 to 4.
  6.  前記冷間で塑性加工された所定形状はチューブ状であり、
     結晶粒径の平均値は2~15μmであって、局所的な結晶方位変化量(KAM値)が0.1以上0.8以下であると共に、
     引張強度が1000~1200MPa、かつ破断伸びが30~80%を示す
     請求項1乃至5の何れか1項に記載のコバルトクロム合金部材。
    The predetermined shape that has been plastically worked in the cold is a tubular shape,
    The average value of the crystal grain size is 2 to 15 μm, and the local crystal orientation change amount (KAM value) is 0.1 or more and 0.8 or less,
    The cobalt-chromium alloy member according to any one of claims 1 to 5, having a tensile strength of 1000 to 1200 MPa and an elongation at break of 30 to 80%.
  7.  前記冷間で塑性加工された所定形状はワイヤー状であり、
     結晶粒径の平均値は4~15μmであって、局所的な結晶方位変化量(KAM値)が0.0以上1.0以下であると共に、
     引張強度が1000~1200MPa、かつ破断伸びが30~60%を示す
     請求項1乃至5の何れか1項に記載のコバルトクロム合金部材。
    The predetermined shape that has been plastically worked in the cold is a wire shape,
    The average crystal grain size is 4 to 15 μm, and the local crystal orientation change amount (KAM value) is 0.0 or more and 1.0 or less,
    The cobalt-chromium alloy member according to any one of claims 1 to 5, having a tensile strength of 1000 to 1200 MPa and a breaking elongation of 30 to 60%.
  8.  請求項1乃至7の何れか1項に記載のコバルトクロム合金部材を使用したデバイス。 A device using the cobalt-chromium alloy member according to any one of claims 1 to 7.
  9.  前記デバイスは、ステント、チューブ、ワイヤー、インプラントの何れかの医療用デバイスである
     請求項8に記載のデバイス。
    9. The device of claim 8, wherein the device is a medical device such as a stent, tube, wire or implant.
  10.  前記デバイスは、尾筒、燃焼筒、スプレーバー、フレームホルダー、アフターバーナー、テールパイプなどの航空用および産業用ガスタービンエンジンの燃焼器および排気構成部品の何れかのガスタービン用デバイスである
     請求項8に記載のデバイス。
    8. The device is a gas turbine device of any of the combustor and exhaust components of aeronautical and industrial gas turbine engines, such as transition pieces, combustor cans, spray bars, flame holders, afterburners, tail pipes. devices described in .
  11.  前記デバイスは、廃棄物焼却炉、ボイラ、高温反応容器および回転式仮焼炉、並びに石油化学製品の製造プラントおよび合成ガスプラントでの用途の産業機器用デバイスである
     請求項8に記載のデバイス。
    9. The device of claim 8, wherein the device is an industrial equipment device for use in waste incinerators, boilers, high temperature reactors and rotary calciners, and petrochemical production and synthesis gas plants.
  12.  質量%で、Niが23~32%、Coが37~48%、Moが8~12%であって、残部にCrと不可避不純物が含まれると共に、
      20≦[Cr%]+[Mo%]+[不可避不純物%]≦40、
    を満たす組成からなるコバルトクロム合金素材を準備し、
     前記準備したコバルトクロム合金素材を1100℃~1300℃で均質化処理し、
     前記均質化処理したコバルトクロム合金素材を、チューブ状又はワイヤー状に冷間で塑性加工を施し、コバルトクロム合金加工まま材を得て、
     前記冷間で塑性加工されたコバルトクロム合金加工まま材に対して、前記コバルトクロム合金素材の再結晶温度を超え1100℃以下で、1分以上60分間以下の熱処理を行ない、面心立方格子(fcc)からなる結晶構造、または面心立方格子(fcc)及び六方晶系格子(hcp)からなる結晶構造を有し、結晶粒径の平均値は2~15μmであって、局所的な結晶方位変化量(KAM値)が0.0以上1.0以下であることを特徴とするコバルトクロム合金部材を得る
     コバルトクロム合金部材の製造方法。
    In mass %, Ni is 23 to 32%, Co is 37 to 48%, Mo is 8 to 12%, and the balance contains Cr and inevitable impurities,
    20 ≤ [Cr%] + [Mo%] + [% of unavoidable impurities] ≤ 40,
    Prepare a cobalt-chromium alloy material with a composition that satisfies
    Homogenizing the prepared cobalt-chromium alloy material at 1100° C. to 1300° C.,
    The homogenized cobalt-chromium alloy material is subjected to cold plastic working into a tubular or wire shape to obtain an as-processed cobalt-chromium alloy material,
    The as-worked cobalt-chromium alloy material that has been plastically worked by cold is subjected to a heat treatment at a temperature exceeding the recrystallization temperature of the cobalt-chromium alloy material to 1100 ° C. or less for 1 minute or more and 60 minutes or less to obtain a face-centered cubic lattice ( fcc), or a crystal structure consisting of a face-centered cubic lattice (fcc) and a hexagonal lattice (hcp), the average grain size is 2 to 15 μm, and the local crystal orientation A method for producing a cobalt-chromium alloy member, characterized in that the amount of change (KAM value) is 0.0 or more and 1.0 or less.
PCT/JP2022/031532 2021-08-26 2022-08-22 Cobalt-chromium alloy member, and method for producing same and device using same WO2023027012A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023543893A JPWO2023027012A1 (en) 2021-08-26 2022-08-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021137738 2021-08-26
JP2021-137738 2021-08-26

Publications (1)

Publication Number Publication Date
WO2023027012A1 true WO2023027012A1 (en) 2023-03-02

Family

ID=85322769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031532 WO2023027012A1 (en) 2021-08-26 2022-08-22 Cobalt-chromium alloy member, and method for producing same and device using same

Country Status (2)

Country Link
JP (1) JPWO2023027012A1 (en)
WO (1) WO2023027012A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043688A1 (en) * 2005-10-11 2007-04-19 Japan Science And Technology Agency FUNCTIONAL MEMBER FROM Co-BASED ALLOY AND PROCESS FOR PRODUCING THE SAME
WO2022014564A1 (en) * 2020-07-17 2022-01-20 国立研究開発法人物質・材料研究機構 Cobalt-chromium alloy member, method for producing same, and medical or aerospace device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043688A1 (en) * 2005-10-11 2007-04-19 Japan Science And Technology Agency FUNCTIONAL MEMBER FROM Co-BASED ALLOY AND PROCESS FOR PRODUCING THE SAME
WO2022014564A1 (en) * 2020-07-17 2022-01-20 国立研究開発法人物質・材料研究機構 Cobalt-chromium alloy member, method for producing same, and medical or aerospace device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAZAKI, WATARU. SAWAGUCHI, TAKAHIRO. ONUMA, IKUO. NAGASHIMA, NOBUO. TAKAMORI, SUSUMU. TSUCHIYA, KOICHI: "Effects of FCC/HCP phase stability and deformation mode of Co-20Cr-10Mo-xNi alloy on tensile and fatigue characteristics", COLLECTED ABSTRACTS OF SPRING MEETING OF THE JAPAN INSTITUTE OF METALS, vol. 162, 5 March 2018 (2018-03-05) - 21 March 2018 (2018-03-21), pages 255, XP009543880, ISSN: 2433-3093 *

Also Published As

Publication number Publication date
JPWO2023027012A1 (en) 2023-03-02

Similar Documents

Publication Publication Date Title
US7780798B2 (en) Medical devices including hardened alloys
EP1604691B1 (en) Biocompatible alloy for implantable medical devices
US20120004718A1 (en) Platinum Enhanced Alloy and Intravascular or Implantable Medical Devices Manufactured Therefrom
EP1632257A1 (en) Improved material for high strength controlled recoil stent
JPH0784634B2 (en) Titanium alloy with high strength, low elastic modulus, ductility and biocompatibility
AU2002306990A1 (en) Platinum - stainless alloy and radiopaque stents
WO2022014564A1 (en) Cobalt-chromium alloy member, method for producing same, and medical or aerospace device
Biscarini et al. Enhanced nitinol properties for biomedical applications
JP2021525152A (en) Beta phase titanium and tungsten alloy
EP1604692B1 (en) Cobalt-nickel-chromium biocompatible alloy for implantable medical devices
EP1657318A1 (en) Quaternary cobalt-nickel-chromium-molybdenum fatigue resistant alloy for intravascular medical devices
EP1655384A1 (en) A cobalt-chromium-molybdenum fatigue resistant alloy for intravascular medical devices
US20130096669A1 (en) Partially annealed stent
WO2023027012A1 (en) Cobalt-chromium alloy member, and method for producing same and device using same
CA2511149C (en) Improved magnetic resonance imaging compatibility alloy for implantable medical devices
Herliansyah et al. The effect of annealing temperature on the physical and mechanical properties of stainless steel 316L for stent application
JP6999934B2 (en) Alloys for stents and stents
EP2634277B1 (en) Co-based alloy for living body and stent
Lourenço et al. The Influence of Thermomechanical Treatments on the Structure, Microstructure, and Mechanical Properties of Ti-5Mn-Mo Alloys. Metals 2022, 12, 527
CN115055532A (en) Preparation method of cobalt-chromium-based alloy seamless tube with high strength and high plasticity
WO2023239573A1 (en) Processing of cobalt-tungsten alloys
EP4107303A1 (en) Bioresorbable pseudoelastic fe-mn-x-y alloys for medical implants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861300

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023543893

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2401001058

Country of ref document: TH