WO2023026945A1 - Slave circuit and remote control system using same - Google Patents

Slave circuit and remote control system using same Download PDF

Info

Publication number
WO2023026945A1
WO2023026945A1 PCT/JP2022/031183 JP2022031183W WO2023026945A1 WO 2023026945 A1 WO2023026945 A1 WO 2023026945A1 JP 2022031183 W JP2022031183 W JP 2022031183W WO 2023026945 A1 WO2023026945 A1 WO 2023026945A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
slave
capacitor
bus
voltage
Prior art date
Application number
PCT/JP2022/031183
Other languages
French (fr)
Japanese (ja)
Inventor
望 古謝
信 桝谷
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to JP2023543857A priority Critical patent/JPWO2023026945A1/ja
Publication of WO2023026945A1 publication Critical patent/WO2023026945A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines

Definitions

  • the present disclosure relates to a slave circuit controlled by a master circuit.
  • a power supply voltage is supplied from a master circuit to one or more slave circuits connected to it via a bus, and communication is performed between the master circuit and the slave circuits by modulating the voltage of the bus.
  • a system referred to as a remote control system.
  • the present disclosure has been made in this context, and one exemplary purpose of certain aspects thereof is to provide a slave circuit that can be reliably activated.
  • An aspect of the present disclosure relates to a slave circuit connected to a master circuit via a bus.
  • the slave circuit has an input terminal connected to the bus and a rectifier circuit configured to charge the capacitor, and compares the voltage of the capacitor with a predetermined release threshold so that the voltage of the capacitor exceeds the release threshold.
  • a start-up monitoring circuit that asserts an enable signal when exceeded, and an internal circuit that becomes active after the enable signal is asserted and executes a predetermined start-up sequence.
  • FIG. 1 is a block diagram of a telecommunications system according to an embodiment.
  • FIG. 2 is a circuit diagram of a slave circuit according to the embodiment.
  • FIG. 3 is a waveform diagram at startup of the telecommunication system of FIG.
  • FIG. 4 is an equivalent circuit diagram explaining the drop in the input voltage VIN .
  • FIG. 5 is a waveform diagram of a startup sequence in the comparative technique.
  • a slave circuit is connected to a master circuit via a bus.
  • the slave circuit has an input terminal connected to the bus and a rectifier circuit configured to charge the capacitor, and compares the voltage of the capacitor with a predetermined release threshold so that the voltage of the capacitor exceeds the release threshold.
  • a start-up monitoring circuit that asserts an enable signal when exceeded, and an internal circuit that becomes active after the enable signal is asserted and executes a predetermined start-up sequence.
  • the slave circuit can be reliably activated.
  • An embodiment may further include a reset circuit that resets the slave circuit when the voltage of the capacitor falls below a predetermined reset threshold.
  • a release threshold may be defined such that the voltage on the capacitor does not drop below the reset threshold after the internal circuitry has been activated but before the start-up sequence is completed.
  • the slave circuit may comprise a capacitor pin connected with the output of the rectifier circuit.
  • the capacitor may be externally attached to the capacitor pin.
  • the internal circuitry may include a microcontroller. After power-on, the microcontroller needs to read the program, which requires a boot sequence. According to this configuration, the microcontroller can be reliably activated.
  • the slave circuit when transmitting a signal from the slave circuit to the master circuit, it may further include a transmission circuit that sinks current from the bus to change the voltage of the bus.
  • the internal circuitry may be able to communicate with the master circuitry using the transmission circuitry after activation is complete.
  • the rectifier circuit may include a diode bridge circuit.
  • the busbar may include a first wire and a second wire.
  • the slave circuit may be monolithically integrated on one semiconductor substrate.
  • Integrated integration includes the case where all circuit components are formed on a semiconductor substrate, and the case where the main components of a circuit are integrated.
  • a resistor, capacitor, or the like may be provided outside the semiconductor substrate.
  • a state in which member A is connected to member B refers to a case in which member A and member B are physically directly connected, as well as a case in which member A and member B are electrically connected to each other. It also includes the case of being indirectly connected through other members that do not substantially affect the physical connection state or impair the functions and effects achieved by their combination.
  • the state in which member C is connected (provided) between member A and member B refers to the case where member A and member C or member B and member C are directly connected. In addition, it also includes the case of being indirectly connected through other members that do not substantially affect their electrical connection state or impair the functions and effects achieved by their combination.
  • FIG. 1 is a block diagram of a telecommunications system 10 according to an embodiment.
  • Telecommunications system 10 comprises master circuitry 20 , slave circuitry 30 and bus 12 .
  • Master circuit 20 and slave circuit 30 are connected via bus 12 .
  • the busbar 12 includes a first wire W1 and a second wire W2.
  • Master circuit 20 supplies power supply voltage V DC (power) to slave circuit 30 via bus 12 .
  • the master circuit 20 generates a potential difference corresponding to the power supply voltage VDC between the first wire W1 and the second wire W2.
  • the potential difference is not particularly limited, but may be 5V, 6V, 8V, 12V, 24V, and the like.
  • the slave circuit 30 is configured to be operable using the potential difference between the first wire W1 and the second wire W2 as the power supply voltage. Master circuit 20 and slave circuit 30 are configured to communicate via bus 12 . Specifically, the master circuit 20 transmits a signal to the slave circuit 30 by changing the potential difference between the first wire W1 and the second wire W2. Similarly, the slave circuit 30 also transmits a signal to the master circuit 20 by changing the potential difference between the first wire W1 and the second wire W2.
  • a plurality of slave circuits 30 may be connected to the bus 12 .
  • an identification number (ID) is assigned to the plurality of slave circuits 30 .
  • the master circuit 20 embeds an identification number in the head part (preamble) of communication to specify the communication partner.
  • the preamble of the received signal contains its own identification number, the plurality of slave circuits 30 determine that they themselves are the object of communication and respond to the signal from the master circuit 20 .
  • FIG. 2 is a circuit diagram of the slave circuit 30 according to the embodiment.
  • the slave circuit 30 is a functional IC (Integrated Circuit) integrated on one semiconductor substrate, and includes a first input pin IN1, a second input pin IN2, a rectifying circuit 32, an internal circuit 34, a receiving circuit 40, and a transmitting circuit 50. Prepare.
  • IC Integrated Circuit
  • the rectifier circuit 32 has an input terminal connected to the bus 12 and is configured to charge the capacitor C1.
  • Rectifier circuit 32 is, for example, a diode bridge circuit, and its inputs are connected to first input pin IN1 and second input pin IN2.
  • a rectifier circuit 32 rectifies the voltage VIN between the two wires W1 and W2.
  • Power supply voltage Vcc of slave circuit 30 is generated using the voltage after rectification by rectification circuit 32 .
  • the slave circuit 30 has a capacitor pin CP, to which a capacitor C1 is externally attached, and the voltage generated in the capacitor C1 becomes the power supply voltage VCC of the slave circuit 30.
  • a rectifying element such as a diode D1 may be inserted between the output node of the rectifying circuit 32 and the capacitor C1.
  • the diode D1 is built in (integrated) in the slave circuit 30, but the diode D1 may be externally attached to the slave circuit 30.
  • the internal circuit 34 has functions according to the application of the slave circuit 30, executes processing according to control commands from the master circuit 20, and responds to inquiries from the master circuit 20.
  • the internal circuit 34 includes, for example, a microcontroller, and becomes operable through a predetermined startup sequence.
  • the receiving circuit 40 receives signals transmitted from the master circuit 20 .
  • the master circuit 20 switches the voltage VDC on the bus 12 when transmitting signals to the slave circuit 30 .
  • the receiving circuit 40 generates a receiving signal RX based on changes in the input voltage VIN .
  • the internal circuit 34 generates a transmission signal TX when transmitting a signal from the slave circuit 30 to the master circuit 20 .
  • the transmission circuit 50 sinks the current ITX from the bus 12 and changes the voltage VDC of the bus 12 according to the transmission signal TX.
  • Start-up monitor circuit 60 compares voltage VCC on capacitor C1 with a predetermined release threshold VTH1 and asserts enable signal EN when voltage VCC on capacitor C1 exceeds release threshold VTH1 .
  • the internal circuit 34 becomes active after the enable signal EN is asserted, and executes a predetermined startup sequence.
  • the consumption current IDD of the internal circuit 34 increases during the activation sequence, and after the completion of the activation sequence, the sleep state is entered, and the consumption current IDD decreases.
  • Reset circuit 62 resets slave circuit 30 (internal circuit 34) when voltage VCC of capacitor C1 falls below a predetermined reset threshold VTH2 . After being reset, the internal circuit 34 executes the activation sequence again when the enable signal EN is asserted again.
  • FIG. 3 is a waveform diagram at startup of the telecommunications system 10 of FIG. FIG. 3 representatively shows the operation of one of the plurality of slave circuits 30 of FIG.
  • telecommunications system 10 Prior to time t10 , telecommunications system 10 has shut down and the DC voltage VDC applied to bus 12 by master circuit 20 is 0V .
  • slave circuit 30 consumes zero current.
  • the master circuit 20 applies a DC voltage VDC of a predetermined voltage level (12V or 24V) to the bus 12, which triggers the activation of a plurality of slave circuits 30, and the entire telecommunication system 10. starts up.
  • the enable signal EN is asserted by the activation monitoring circuit 60.
  • FIG. Triggered by the assertion of the enable signal EN the internal circuit 34 shifts to the activation sequence.
  • an operating current IDD having a current amount I1 flows.
  • the internal circuit 34 is operating in the slave circuit 30, and the other circuits (the receiving circuit 40 and the transmitting circuit 50) are stopped . It is equal to the operating current I1 of the internal circuit 34.
  • FIG. 4 is an equivalent circuit diagram explaining the drop in the input voltage VIN .
  • a parasitic resistance (wiring resistance) R is included in the bus 12 .
  • the magnitude of the voltage drop is small in the slave circuit 30 closer to the master circuit 20 and larger in the slave circuit 30 farther from the master circuit 20 .
  • the slave circuit 30 consumes a current amount I1 while the internal circuit 34 executes the start-up sequence.
  • the startup sequence when the current I1 consumed by the internal circuit 34 exceeds the charging current supplied from the rectifier circuit 32 to the capacitor C1, the power supply voltage VCC of the capacitor C1 decreases over time.
  • the power supply voltage V CC of capacitor C1 maintains a voltage level higher than the reset threshold V TH2 until the start-up sequence is completed.
  • the release threshold VTH1 is defined such that the voltage VCC on capacitor C1 does not fall below the reset threshold VTH2 after the internal circuit 34 becomes active but before the start-up sequence is completed. , and the capacitance of the capacitor C1 is determined.
  • the slave circuit 30 transitions to sleep state.
  • the internal circuit 34 in sleep state consumes an amount of current I 0 ( ⁇ I 1 ). Since the amount of current I0 is small, the voltage drop V DROP at the bus 12 is small, and the input voltage V IN rises to near the DC voltage V DC .
  • the capacitor C1 since the charging current by the rectifier circuit 32 is larger than the operating current I0 of the internal circuit 34, the voltage VCC of the capacitor C1 rises with time.
  • each slave circuit 30 can be reliably activated.
  • the advantages of telecommunication system 10 are made clear by contrast with comparative technologies.
  • the power supply voltage VCC generated in the capacitor C1 is compared with the release threshold value VTH1 and the reset threshold value VTH2 .
  • the comparison technique when the input voltage VIN exceeds the release threshold VTH1 , the internal circuit 34 becomes active and the start-up sequence begins.
  • FIG. 5 is a waveform diagram of a startup sequence in the comparative technique.
  • telecommunications system 10 Prior to time t20 , telecommunications system 10 has shut down and the DC voltage VDC applied to bus 12 by master circuit 20 is 0V . During shutdown, slave circuit 30 consumes zero current.
  • the master circuit 20 applies a DC voltage VDC of a predetermined voltage level (12 V or 24 V) to the bus line 12 .
  • VDC a predetermined voltage level
  • the input voltage VIN across the two input pins IN1 and IN2 rises accordingly.
  • the release threshold VTH1 the internal circuit 34 becomes active and the start-up sequence starts.
  • This time t21 is earlier than time t11 in FIG. 3, and therefore power supply voltage VCC at time t21 is lower than power supply voltage VCC at time t11.
  • the power supply voltage VCC of the capacitor C1 drops to the reset threshold value VTH2 at time t22 before the start-up is completed. Then, the reset signal RST is asserted by the reset circuit 62, and the internal circuit 34 is initialized.
  • the enable signal EN is asserted and the internal circuit 34 repeats the startup sequence again from the beginning. Then, at time t24 before the startup sequence is completed, the power supply voltage VCC drops to the reset threshold value VTH2 , and the internal circuit 34 is reset again.
  • the internal circuit 34 may fail to start and fall into a state of repeated starting. This is because the power supply voltage VCC of the capacitor C1 is low when starting the internal circuit 34. According to the embodiment, after the power supply voltage VCC of the capacitor C1 becomes sufficiently high, the start-up sequence Since it starts, the internal circuit 34 can be reliably activated.
  • the slave circuit 30 is a temperature sensor, a vibration sensor, or the like centrally managed by the master circuit 20, and responds to control from the master circuit 20 and sends back the measured temperature and acceleration to the master circuit 20.
  • the slave circuit 30 may be electrical or mechanical components such as relays and switches that are centrally managed by the master circuit 20 .
  • a slave circuit connected to a master circuit via a bus, a rectifier circuit having an input terminal connected to the bus and configured to charge a capacitor; an activation monitoring circuit that compares the voltage of the capacitor with a predetermined release threshold and asserts an enable signal when the voltage of the capacitor exceeds the release threshold; an internal circuit that becomes active after the enable signal is asserted and executes a predetermined startup sequence; a slave circuit.
  • (Item 2) further comprising a reset circuit for resetting the slave circuit when the voltage of the capacitor falls below a predetermined reset threshold; 2.
  • the release threshold is defined such that the voltage of the capacitor does not fall below the reset threshold after the internal circuit becomes active but before the start-up sequence is completed. slave circuit.
  • (Item 4) A slave circuit according to any one of items 1 to 3, wherein the internal circuitry comprises a microcontroller.
  • (Item 5) further comprising a transmission circuit that sinks current from the bus to change the voltage of the bus when transmitting a signal from the slave circuit to the master circuit; 5.
  • the slave circuit according to any one of items 1 to 4, wherein the internal circuit is capable of communicating with the master circuit using the transmission circuit after activation is completed.
  • (Item 7) A slave circuit according to any preceding item, wherein the bus bar includes a first wire and a second wire.
  • a remote control system comprising:
  • the present disclosure relates to a slave circuit controlled by a master circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Dc Digital Transmission (AREA)

Abstract

This slave circuit 30 is connected to a master circuit 20 via a bus bar 12. A rectification circuit 32 has an input terminal connected to the bus bar 12 and is constituted to be capable of charging a capacitor C1. A boot monitoring circuit 60 compares a voltage VCC of the capacitor C1 with a prescribed release threshold VTH1 and asserts an enable signal EN when the voltage VCC of the capacitor C1 exceeds the release threshold VTH1. An internal circuit 34 becomes active after the assertion of the enable signal EN and executes a prescribed boot sequence.

Description

スレーブ回路およびそれを用いた遠隔制御システムSLAVE CIRCUIT AND REMOTE CONTROL SYSTEM USING THE SAME
 本開示は、マスター回路により制御されるスレーブ回路に関する。 The present disclosure relates to a slave circuit controlled by a master circuit.
 あるマスター回路から、それに接続されるひとつまたは複数のスレーブ回路に対して、母線を介して電源電圧を供給しつつ、母線の電圧を変調することにより、マスター回路とスレーブ回路の間で通信を行うシステム(遠隔制御システムという)がある。 A power supply voltage is supplied from a master circuit to one or more slave circuits connected to it via a bus, and communication is performed between the master circuit and the slave circuits by modulating the voltage of the bus. There is a system (referred to as a remote control system).
特許第6808814号公報Japanese Patent No. 6808814
 本開示は係る状況においてなされたものであり、そのある態様の例示的な目的のひとつは、確実に起動することが可能なスレーブ回路の提供にある。 The present disclosure has been made in this context, and one exemplary purpose of certain aspects thereof is to provide a slave circuit that can be reliably activated.
 本開示のある態様は、母線を介してマスター回路と接続されるスレーブ回路に関する。スレーブ回路は、母線と接続される入力端子を有し、キャパシタを充電可能に構成される整流回路と、キャパシタの電圧を所定の解除しきい値と比較し、キャパシタの電圧が解除しきい値を越えると、イネーブル信号をアサートする起動監視回路と、イネーブル信号のアサート後にアクティブとなり、所定の起動シーケンスを実行する内部回路と、を備える。 An aspect of the present disclosure relates to a slave circuit connected to a master circuit via a bus. The slave circuit has an input terminal connected to the bus and a rectifier circuit configured to charge the capacitor, and compares the voltage of the capacitor with a predetermined release threshold so that the voltage of the capacitor exceeds the release threshold. A start-up monitoring circuit that asserts an enable signal when exceeded, and an internal circuit that becomes active after the enable signal is asserted and executes a predetermined start-up sequence.
 なお、以上の構成要素を任意に組み合わせたもの、あるいは本開示の表現を、方法、装置などの間で変換したものもまた、本発明の態様として有効である。 Arbitrary combinations of the above components, or conversions of the expressions of the present disclosure between methods, devices, etc. are also effective as aspects of the present invention.
 本開示のある態様によれば、スレーブ回路を確実に起動することができる。 According to an aspect of the present disclosure, it is possible to reliably activate the slave circuit.
図1は、実施形態に係る遠隔通信システムのブロック図である。FIG. 1 is a block diagram of a telecommunications system according to an embodiment. 図2は、実施形態に係るスレーブ回路の回路図である。FIG. 2 is a circuit diagram of a slave circuit according to the embodiment. 図3は、図1の遠隔通信システムの起動時の波形図である。FIG. 3 is a waveform diagram at startup of the telecommunication system of FIG. 図4は、入力電圧VINの低下を説明する等価回路図である。FIG. 4 is an equivalent circuit diagram explaining the drop in the input voltage VIN . 図5は、比較技術における起動シーケンスの波形図である。FIG. 5 is a waveform diagram of a startup sequence in the comparative technique.
(実施形態の概要)
 本開示のいくつかの例示的な実施形態の概要を説明する。この概要は、後述する詳細な説明の前置きとして、実施形態の基本的な理解を目的として、1つまたは複数の実施形態のいくつかの概念を簡略化して説明するものであり、発明あるいは開示の広さを限定するものではない。この概要は、考えられるすべての実施形態の包括的な概要ではなく、すべての実施形態の重要な要素または重要な要素を特定することも、一部またはすべての態様の範囲を線引きすることも意図していない。便宜上、「一実施形態」は、本明細書に開示するひとつの実施形態(実施例や変形例)または複数の実施形態(実施例や変形例)を指すものとして用いる場合がある。
(Overview of embodiment)
SUMMARY OF THE INVENTION Several exemplary embodiments of the disclosure are summarized. This summary presents, in simplified form, some concepts of one or more embodiments, as a prelude to the more detailed description that is presented later, and for the purpose of a basic understanding of the embodiments. The size is not limited. This summary is not an extensive overview of all possible embodiments, but is intended to neither identify key or key elements of all embodiments nor delineate the scope of some or all aspects. not. For convenience, "one embodiment" may be used to refer to one embodiment (example or variation) or multiple embodiments (examples or variations) disclosed herein.
 一実施形態に係るスレーブ回路は、母線を介してマスター回路と接続される。スレーブ回路は、母線と接続される入力端子を有し、キャパシタを充電可能に構成される整流回路と、キャパシタの電圧を所定の解除しきい値と比較し、キャパシタの電圧が解除しきい値を越えると、イネーブル信号をアサートする起動監視回路と、イネーブル信号のアサート後にアクティブとなり、所定の起動シーケンスを実行する内部回路と、を備える。 A slave circuit according to one embodiment is connected to a master circuit via a bus. The slave circuit has an input terminal connected to the bus and a rectifier circuit configured to charge the capacitor, and compares the voltage of the capacitor with a predetermined release threshold so that the voltage of the capacitor exceeds the release threshold. A start-up monitoring circuit that asserts an enable signal when exceeded, and an internal circuit that becomes active after the enable signal is asserted and executes a predetermined start-up sequence.
 キャパシタの電圧が十分に高くなった後に、内部回路の起動シーケンスを開始することにより、起動シーケンスの途中で、キャパシタの電圧が不足する状況に陥るのを防止できる。これにより、スレーブ回路を確実に起動させることができる。 By starting the start-up sequence of the internal circuit after the voltage of the capacitor has become sufficiently high, it is possible to prevent a situation in which the voltage of the capacitor is insufficient during the start-up sequence. As a result, the slave circuit can be reliably activated.
 一実施形態において、キャパシタの電圧が所定のリセットしきい値を下回ると、スレーブ回路をリセットするリセット回路をさらに備えてもよい。内部回路がアクティブとなった後、起動シーケンスが完了する前に、キャパシタの電圧が、リセットしきい値を下回らないように、解除しきい値が規定されてもよい。 An embodiment may further include a reset circuit that resets the slave circuit when the voltage of the capacitor falls below a predetermined reset threshold. A release threshold may be defined such that the voltage on the capacitor does not drop below the reset threshold after the internal circuitry has been activated but before the start-up sequence is completed.
 一実施形態において、スレーブ回路は、整流回路の出力と接続されたキャパシタピンを備えてもよい。キャパシタは、キャパシタピンに外付けされてもよい。 In one embodiment, the slave circuit may comprise a capacitor pin connected with the output of the rectifier circuit. The capacitor may be externally attached to the capacitor pin.
 一実施形態において、内部回路はマイクロコントローラを含んでもよい。マイクロコントローラは、電源投入後、プログラムを読み出す必要があり、起動シーケンスが必要となる。この構成によれば、マイクロコントローラを確実に起動できる。 In one embodiment, the internal circuitry may include a microcontroller. After power-on, the microcontroller needs to read the program, which requires a boot sequence. According to this configuration, the microcontroller can be reliably activated.
 一実施形態において、スレーブ回路からマスター回路に信号を伝送する際に、母線から電流をシンクして母線の電圧を変化させる送信回路をさらに備えてもよい。内部回路は、起動完了後に、送信回路を利用してマスター回路と通信が可能となってもよい。 In one embodiment, when transmitting a signal from the slave circuit to the master circuit, it may further include a transmission circuit that sinks current from the bus to change the voltage of the bus. The internal circuitry may be able to communicate with the master circuitry using the transmission circuitry after activation is complete.
 一実施形態において、整流回路は、ダイオードブリッジ回路を含んでもよい。 In one embodiment, the rectifier circuit may include a diode bridge circuit.
 一実施形態において、母線は、第1ワイヤおよび第2ワイヤを含んでもよい。 In one embodiment, the busbar may include a first wire and a second wire.
 一実施形態において、スレーブ回路は、ひとつの半導体基板に一体集積化されてもよい。「一体集積化」とは、回路の構成要素のすべてが半導体基板上に形成される場合や、回路の主要構成要素が一体集積化される場合が含まれ、回路定数の調節用に一部の抵抗やキャパシタなどが半導体基板の外部に設けられていてもよい。回路を1つのチップ上に集積化することにより、回路面積を削減することができるとともに、回路素子の特性を均一に保つことができる。 In one embodiment, the slave circuit may be monolithically integrated on one semiconductor substrate. "Integrated integration" includes the case where all circuit components are formed on a semiconductor substrate, and the case where the main components of a circuit are integrated. A resistor, capacitor, or the like may be provided outside the semiconductor substrate. By integrating the circuits on one chip, the circuit area can be reduced and the characteristics of the circuit elements can be kept uniform.
(実施形態)
 以下、好適な実施の形態について、図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、開示および発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも開示および発明の本質的なものであるとは限らない。
(embodiment)
Preferred embodiments will be described below with reference to the drawings. The same or equivalent constituent elements, members, and processes shown in each drawing are denoted by the same reference numerals, and duplication of description will be omitted as appropriate. Moreover, the embodiments are illustrative rather than limiting of the disclosure and invention, and not all features or combinations thereof described in the embodiments are necessarily essential to the disclosure and invention. do not have.
 本明細書において、「部材Aが、部材Bと接続された状態」とは、部材Aと部材Bが物理的に直接的に接続される場合のほか、部材Aと部材Bが、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。 In this specification, "a state in which member A is connected to member B" refers to a case in which member A and member B are physically directly connected, as well as a case in which member A and member B are electrically connected to each other. It also includes the case of being indirectly connected through other members that do not substantially affect the physical connection state or impair the functions and effects achieved by their combination.
 同様に、「部材Cが、部材Aと部材Bの間に接続された(設けられた)状態」とは、部材Aと部材C、あるいは部材Bと部材Cが直接的に接続される場合のほか、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。 Similarly, "the state in which member C is connected (provided) between member A and member B" refers to the case where member A and member C or member B and member C are directly connected. In addition, it also includes the case of being indirectly connected through other members that do not substantially affect their electrical connection state or impair the functions and effects achieved by their combination.
 図1は、実施形態に係る遠隔通信システム10のブロック図である。遠隔通信システム10は、マスター回路20、スレーブ回路30、母線12を備える。マスター回路20とスレーブ回路30は、母線12を介して接続されている。母線12は、第1ワイヤW1および第2ワイヤW2を含んでいる。マスター回路20は、スレーブ回路30に対して、母線12を介して電源電圧VDC(電力)を供給する。具体的には、マスター回路20は、第1ワイヤW1と第2ワイヤW2の間に、電源電圧VDCに相当する電位差を発生する。電位差は特に限定されないが、5V,6V,8V,12V,24Vなどでありうる。 FIG. 1 is a block diagram of a telecommunications system 10 according to an embodiment. Telecommunications system 10 comprises master circuitry 20 , slave circuitry 30 and bus 12 . Master circuit 20 and slave circuit 30 are connected via bus 12 . The busbar 12 includes a first wire W1 and a second wire W2. Master circuit 20 supplies power supply voltage V DC (power) to slave circuit 30 via bus 12 . Specifically, the master circuit 20 generates a potential difference corresponding to the power supply voltage VDC between the first wire W1 and the second wire W2. The potential difference is not particularly limited, but may be 5V, 6V, 8V, 12V, 24V, and the like.
 スレーブ回路30は、第1ワイヤW1と第2ワイヤW2の電位差を電源電圧として動作可能に構成される。マスター回路20とスレーブ回路30は、母線12を介して通信可能に構成される。具体的には、マスター回路20は、第1ワイヤW1と第2ワイヤW2の電位差を変化させることにより、スレーブ回路30に信号を送信する。またスレーブ回路30も同様に、第1ワイヤW1と第2ワイヤW2の電位差を変化させることにより、マスター回路20に信号を送信する。 The slave circuit 30 is configured to be operable using the potential difference between the first wire W1 and the second wire W2 as the power supply voltage. Master circuit 20 and slave circuit 30 are configured to communicate via bus 12 . Specifically, the master circuit 20 transmits a signal to the slave circuit 30 by changing the potential difference between the first wire W1 and the second wire W2. Similarly, the slave circuit 30 also transmits a signal to the master circuit 20 by changing the potential difference between the first wire W1 and the second wire W2.
 母線12には、複数のスレーブ回路30が接続されてもよい。その場合、複数のスレーブ回路30には、識別番号(ID)が割り当てられている。マスター回路20は、通信の先頭部分(プリアンブル)に通信相手を特定するために識別番号を埋め込む。複数のスレーブ回路30は、受信した信号のプリアンブルに自分の識別番号が含まれているとき、自身が通信対象であると判定し、マスター回路20からの信号に応答する。 A plurality of slave circuits 30 may be connected to the bus 12 . In that case, an identification number (ID) is assigned to the plurality of slave circuits 30 . The master circuit 20 embeds an identification number in the head part (preamble) of communication to specify the communication partner. When the preamble of the received signal contains its own identification number, the plurality of slave circuits 30 determine that they themselves are the object of communication and respond to the signal from the master circuit 20 .
 図2は、実施形態に係るスレーブ回路30の回路図である。スレーブ回路30は、ひとつの半導体基板に集積化された機能IC(Integrated Circuit)であり、第1入力ピンIN1、第2入力ピンIN2、整流回路32、内部回路34、受信回路40、送信回路50を備える。 FIG. 2 is a circuit diagram of the slave circuit 30 according to the embodiment. The slave circuit 30 is a functional IC (Integrated Circuit) integrated on one semiconductor substrate, and includes a first input pin IN1, a second input pin IN2, a rectifying circuit 32, an internal circuit 34, a receiving circuit 40, and a transmitting circuit 50. Prepare.
 整流回路32は、母線12と接続される入力端子を有し、キャパシタC1を充電可能に構成される。整流回路32はたとえばダイオードブリッジ回路であり、その入力は、第1入力ピンIN1および第2入力ピンIN2と接続されている。整流回路32によって、2本のワイヤW1,W2の間の電圧VINが整流される。整流回路32による整流後の電圧を利用して、スレーブ回路30の電源電圧Vccが生成される。本実施形態では、スレーブ回路30はキャパシタピンCPを有しており、このキャパシタピンCPには、キャパシタC1が外付けされ、キャパシタC1に発生する電圧が、スレーブ回路30の電源電圧VCCとなる。整流回路32の出力ノードとキャパシタC1の間には、ダイオードD1などの整流素子を挿入してもよい。この例ではダイオードD1は、スレーブ回路30に内蔵(集積化)されるが、ダイオードD1はスレーブ回路30に外付けしてもよい。 The rectifier circuit 32 has an input terminal connected to the bus 12 and is configured to charge the capacitor C1. Rectifier circuit 32 is, for example, a diode bridge circuit, and its inputs are connected to first input pin IN1 and second input pin IN2. A rectifier circuit 32 rectifies the voltage VIN between the two wires W1 and W2. Power supply voltage Vcc of slave circuit 30 is generated using the voltage after rectification by rectification circuit 32 . In this embodiment, the slave circuit 30 has a capacitor pin CP, to which a capacitor C1 is externally attached, and the voltage generated in the capacitor C1 becomes the power supply voltage VCC of the slave circuit 30. . A rectifying element such as a diode D1 may be inserted between the output node of the rectifying circuit 32 and the capacitor C1. In this example, the diode D1 is built in (integrated) in the slave circuit 30, but the diode D1 may be externally attached to the slave circuit 30. FIG.
 内部回路34は、スレーブ回路30の用途に応じた機能を有し、マスター回路20からの制御指令に応じた処理を実行し、またマスター回路20からの問い合わせに応答する。内部回路34はたとえばマイクロコントローラを含んでおり、所定の起動シーケンスを経て、動作可能な状態となる。 The internal circuit 34 has functions according to the application of the slave circuit 30, executes processing according to control commands from the master circuit 20, and responds to inquiries from the master circuit 20. The internal circuit 34 includes, for example, a microcontroller, and becomes operable through a predetermined startup sequence.
 受信回路40は、マスター回路20から送信される信号を受信する。マスター回路20は、スレーブ回路30に信号を伝送する際に、母線12の電圧VDCをスイッチングする。受信回路40は、入力電圧VINの変化にもとづいて、受信信号RXを生成する。 The receiving circuit 40 receives signals transmitted from the master circuit 20 . The master circuit 20 switches the voltage VDC on the bus 12 when transmitting signals to the slave circuit 30 . The receiving circuit 40 generates a receiving signal RX based on changes in the input voltage VIN .
 内部回路34は、スレーブ回路30からマスター回路20に信号を伝送する際に、送信信号TXを生成する。送信回路50は、送信信号TXに応じて、母線12から電流ITXをシンクして母線12の電圧VDCを変化させる。 The internal circuit 34 generates a transmission signal TX when transmitting a signal from the slave circuit 30 to the master circuit 20 . The transmission circuit 50 sinks the current ITX from the bus 12 and changes the voltage VDC of the bus 12 according to the transmission signal TX.
 起動監視回路60は、キャパシタC1の電圧VCCを所定の解除しきい値VTH1と比較し、キャパシタC1の電圧VCCが解除しきい値VTH1を越えると、イネーブル信号ENをアサートする。 Start-up monitor circuit 60 compares voltage VCC on capacitor C1 with a predetermined release threshold VTH1 and asserts enable signal EN when voltage VCC on capacitor C1 exceeds release threshold VTH1 .
 内部回路34は、イネーブル信号ENのアサート後にアクティブとなり、所定の起動シーケンスを実行する。内部回路34の消費電流IDDは、起動シーケンス中は大きくなり、起動シーケンスの完了後はスリープ状態となり、その消費電流IDDが減少する。 The internal circuit 34 becomes active after the enable signal EN is asserted, and executes a predetermined startup sequence. The consumption current IDD of the internal circuit 34 increases during the activation sequence, and after the completion of the activation sequence, the sleep state is entered, and the consumption current IDD decreases.
 リセット回路62は、キャパシタC1の電圧VCCが所定のリセットしきい値VTH2を下回ると、スレーブ回路30(内部回路34)をリセットする。内部回路34はリセット後、再度、イネーブル信号ENがアサートされると、再び起動シーケンスを実行する。 Reset circuit 62 resets slave circuit 30 (internal circuit 34) when voltage VCC of capacitor C1 falls below a predetermined reset threshold VTH2 . After being reset, the internal circuit 34 executes the activation sequence again when the enable signal EN is asserted again.
 以上が遠隔通信システム10の構成である。続いてその動作を説明する。 The above is the configuration of the remote communication system 10. Next, the operation will be explained.
 図3は、図1の遠隔通信システム10の起動時の波形図である。図3には、図1の複数のスレーブ回路30のうちの一つの動作が代表して示される。時刻t10より前において遠隔通信システム10はシャットダウンしており、マスター回路20が母線12に印加する直流電圧VDCは0Vである。シャットダウン中は、スレーブ回路30の消費電流はゼロである。 FIG. 3 is a waveform diagram at startup of the telecommunications system 10 of FIG. FIG. 3 representatively shows the operation of one of the plurality of slave circuits 30 of FIG. Prior to time t10 , telecommunications system 10 has shut down and the DC voltage VDC applied to bus 12 by master circuit 20 is 0V . During shutdown, slave circuit 30 consumes zero current.
 時刻t10にマスター回路20が直流電圧VDCを所定の電圧レベル(12Vや24V)を母線12に印加すると、それがトリガとなって、複数のスレーブ回路30が起動し、遠隔通信システム10全体が起動する。 At time t10 , the master circuit 20 applies a DC voltage VDC of a predetermined voltage level (12V or 24V) to the bus 12, which triggers the activation of a plurality of slave circuits 30, and the entire telecommunication system 10. starts up.
 直流電圧VDCが上昇すると、それにともなって2つの入力ピンIN1,IN2の間の入力電圧VINが上昇する。その結果、整流回路32によってキャパシタC1が充電され、キャパシタC1に生ずる電源電圧VCCが上昇する。 As the DC voltage VDC rises, the input voltage VIN across the two input pins IN1 and IN2 rises accordingly. As a result, the capacitor C1 is charged by the rectifier circuit 32, and the power supply voltage VCC generated across the capacitor C1 increases.
 時刻t11に電源電圧VCCが解除しきい値VTH1まで上昇すると、起動監視回路60によってイネーブル信号ENがアサートされる。イネーブル信号ENのアサートをトリガとして、内部回路34が起動シーケンスに移行する。内部回路34が起動シーケンスに移行すると、電流量Iの動作電流IDDが流れる。起動シーケンス中は、スレーブ回路30内において、内部回路34のみが動作しており、他の回路(受信回路40や送信回路50)は停止しているから、スレーブ回路30の動作電流IDDは、内部回路34の動作電流Iと等しい。 When the power supply voltage VCC rises to the release threshold value VTH1 at time t11 , the enable signal EN is asserted by the activation monitoring circuit 60. FIG. Triggered by the assertion of the enable signal EN, the internal circuit 34 shifts to the activation sequence. When the internal circuit 34 shifts to the startup sequence, an operating current IDD having a current amount I1 flows. During the activation sequence, only the internal circuit 34 is operating in the slave circuit 30, and the other circuits (the receiving circuit 40 and the transmitting circuit 50) are stopped . It is equal to the operating current I1 of the internal circuit 34.
 この動作電流IDDは複数のスレーブ回路30において一斉に流れるため、母線12における電圧降下VDROPが大きくなり、入力電圧VINが低下する。 Since this operating current IDD flows simultaneously in the plurality of slave circuits 30, the voltage drop VDROP on the bus line 12 increases and the input voltage VIN decreases.
 図4は、入力電圧VINの低下を説明する等価回路図である。母線12には、寄生抵抗(配線抵抗)Rが含まれる。スレーブ回路30に動作電流IDDが流れると、配線抵抗Rにおいて電圧降下が発生する。電圧降下の大きさは、マスター回路20から近いスレーブ回路30では小さく、マスター回路20から遠いスレーブ回路30の方が大きくなる。 FIG. 4 is an equivalent circuit diagram explaining the drop in the input voltage VIN . A parasitic resistance (wiring resistance) R is included in the bus 12 . When the operating current IDD flows through the slave circuit 30, a voltage drop occurs in the wiring resistance R. The magnitude of the voltage drop is small in the slave circuit 30 closer to the master circuit 20 and larger in the slave circuit 30 farther from the master circuit 20 .
 図3に戻る。スレーブ回路30は、内部回路34が起動シーケンスを実行する間は、電流量Iの電流を消費する。起動シーケンスの間、整流回路32からキャパシタC1に供給される充電電流よりも、内部回路34が消費する電流Iが多くなると、キャパシタC1の電源電圧VCCは時間とともに低下していく。 Return to FIG. The slave circuit 30 consumes a current amount I1 while the internal circuit 34 executes the start-up sequence. During the startup sequence, when the current I1 consumed by the internal circuit 34 exceeds the charging current supplied from the rectifier circuit 32 to the capacitor C1, the power supply voltage VCC of the capacitor C1 decreases over time.
 キャパシタC1の電源電圧VCCは、起動シーケンスが完了するまで、リセットしきい値VTH2より高い電圧レベルを維持している。言い換えると、内部回路34がアクティブとなった後、起動シーケンスが完了する前に、キャパシタC1の電圧VCCが、リセットしきい値VTH2を下回らないように、解除しきい値VTH1が規定され、またキャパシタC1の容量が決定される。 The power supply voltage V CC of capacitor C1 maintains a voltage level higher than the reset threshold V TH2 until the start-up sequence is completed. In other words, the release threshold VTH1 is defined such that the voltage VCC on capacitor C1 does not fall below the reset threshold VTH2 after the internal circuit 34 becomes active but before the start-up sequence is completed. , and the capacitance of the capacitor C1 is determined.
 時刻t12に、内部回路34の起動シーケンスが完了すると、スレーブ回路30(内部回路34)はスリープ状態に移行する。スリープ状態における内部回路34は、電流量I(<I)を消費する。電流量Iは少ないため、母線12における電圧降下VDROPは小さくなり、入力電圧VINは、直流電圧VDC付近まで上昇する。またキャパシタC1に関しては、内部回路34の動作電流Iよりも、整流回路32による充電電流の方が多くなるため、キャパシタC1の電圧VCCは時間とともに上昇していく。 At time t12 , when the activation sequence of the internal circuit 34 is completed, the slave circuit 30 (internal circuit 34) transitions to sleep state. The internal circuit 34 in sleep state consumes an amount of current I 0 (<I 1 ). Since the amount of current I0 is small, the voltage drop V DROP at the bus 12 is small, and the input voltage V IN rises to near the DC voltage V DC . As for the capacitor C1, since the charging current by the rectifier circuit 32 is larger than the operating current I0 of the internal circuit 34, the voltage VCC of the capacitor C1 rises with time.
 以上が遠隔通信システム10の起動動作である。この遠隔通信システム10によれば、複数のスレーブ回路30が一斉に起動開始するシステムにおいて、個々のスレーブ回路30を確実に起動させることができる。 The above is the startup operation of the remote communication system 10 . According to this remote communication system 10, in a system in which a plurality of slave circuits 30 are simultaneously activated, each slave circuit 30 can be reliably activated.
 遠隔通信システム10の利点は、比較技術との対比によって明確となる。実施形態では、キャパシタC1に発生する電源電圧VCCを、解除しきい値VTH1およびリセットしきい値VTH2と比較する構成を採っていた。これに対して比較技術では、入力電圧VINが解除しきい値VTH1を超えると、内部回路34がアクティブとなり、起動シーケンスが開始する。 The advantages of telecommunication system 10 are made clear by contrast with comparative technologies. In the embodiment, the power supply voltage VCC generated in the capacitor C1 is compared with the release threshold value VTH1 and the reset threshold value VTH2 . In contrast, in the comparison technique, when the input voltage VIN exceeds the release threshold VTH1 , the internal circuit 34 becomes active and the start-up sequence begins.
 図5は、比較技術における起動シーケンスの波形図である。時刻t20より前において遠隔通信システム10はシャットダウンしており、マスター回路20が母線12に印加する直流電圧VDCは0Vである。シャットダウン中は、スレーブ回路30の消費電流はゼロである。 FIG. 5 is a waveform diagram of a startup sequence in the comparative technique. Prior to time t20 , telecommunications system 10 has shut down and the DC voltage VDC applied to bus 12 by master circuit 20 is 0V . During shutdown, slave circuit 30 consumes zero current.
 時刻t20にマスター回路20が直流電圧VDCを所定の電圧レベル(12Vや24V)を母線12に印加する。直流電圧VDCが上昇すると、それにともなって2つの入力ピンIN1,IN2の間の入力電圧VINが上昇する。入力電圧VINが解除しきい値VTH1に達すると、内部回路34がアクティブとなり、起動シーケンスがスタートする。この時刻t21は、図3における時刻t11より時間的に前であり、したがって時刻t21における電源電圧VCCは、時刻t11における電源電圧VCCよりも低い。 At time t20 , the master circuit 20 applies a DC voltage VDC of a predetermined voltage level (12 V or 24 V) to the bus line 12 . As the DC voltage VDC rises, the input voltage VIN across the two input pins IN1 and IN2 rises accordingly. When the input voltage VIN reaches the release threshold VTH1 , the internal circuit 34 becomes active and the start-up sequence starts. This time t21 is earlier than time t11 in FIG. 3, and therefore power supply voltage VCC at time t21 is lower than power supply voltage VCC at time t11.
 内部回路34が起動シーケンスに移行すると、電流量Iの動作電流IDDが流れ、母線12における電圧降下により、入力電圧VINが低下する。 When the internal circuit 34 shifts to the start-up sequence, an operating current IDD having a current amount I1 flows, and the voltage drop in the bus 12 causes the input voltage VIN to drop.
 起動シーケンス中、内部回路34に電流量Iの電流が流れることにより、キャパシタC1の電源電圧VCCは時間とともに低下していく。 During the start-up sequence, a current of current amount I1 flows through the internal circuit 34, so that the power supply voltage VCC of the capacitor C1 decreases with time.
 そして、内部回路34の起動には所定時間を要するところ、起動が完了するより前の時刻t22に、キャパシタC1の電源電圧VCCが、リセットしきい値VTH2まで低下する。そうすると、リセット回路62によってリセット信号RSTがアサートされ、内部回路34が初期化される。 Although it takes a predetermined time to start up the internal circuit 34, the power supply voltage VCC of the capacitor C1 drops to the reset threshold value VTH2 at time t22 before the start-up is completed. Then, the reset signal RST is asserted by the reset circuit 62, and the internal circuit 34 is initialized.
 そして入力電圧VINが上昇して、時刻t23に再び解除しきい値VTH1に達すると、イネーブル信号ENがアサートされ、内部回路34が再び起動シーケンスを最初から繰り返す。そして、起動シーケンスが完了するより前の時刻t24に、電源電圧VCCがリセットしきい値VTH2まで低下し、内部回路34が再度、リセットされる。 Then, when the input voltage VIN rises and reaches the release threshold value VTH1 again at time t23 , the enable signal EN is asserted and the internal circuit 34 repeats the startup sequence again from the beginning. Then, at time t24 before the startup sequence is completed, the power supply voltage VCC drops to the reset threshold value VTH2 , and the internal circuit 34 is reset again.
 このように比較技術では、内部回路34が起動に失敗し、起動を繰り返す状態に陥る可能性がある。これは内部回路34の起動開始時におけるキャパシタC1の電源電圧VCCが低いことが原因であるところ、実施形態によれば、キャパシタC1の電源電圧VCCが十分に高くなった後に、起動シーケンスが開始するため、内部回路34を確実に起動させることができる。 Thus, in the comparison technique, the internal circuit 34 may fail to start and fall into a state of repeated starting. This is because the power supply voltage VCC of the capacitor C1 is low when starting the internal circuit 34. According to the embodiment, after the power supply voltage VCC of the capacitor C1 becomes sufficiently high, the start-up sequence Since it starts, the internal circuit 34 can be reliably activated.
 上述の遠隔通信システム10は、さまざまな用途に使用することができる。たとえば、スレーブ回路30は、マスター回路20によって集中管理される温度センサや振動センサなどであり、マスター回路20からの制御に応答して、測定した温度や加速度をマスター回路20に送り返す。あるいはスレーブ回路30は、マスター回路20によって集中管理されるリレーやスイッチなどの電気部品、機械部品であってもよい。 The telecommunication system 10 described above can be used for various purposes. For example, the slave circuit 30 is a temperature sensor, a vibration sensor, or the like centrally managed by the master circuit 20, and responds to control from the master circuit 20 and sends back the measured temperature and acceleration to the master circuit 20. Alternatively, the slave circuit 30 may be electrical or mechanical components such as relays and switches that are centrally managed by the master circuit 20 .
 実施形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにさまざまな変形例が存在すること、またそうした変形例も本開示に含まれ、また本発明の範囲を構成しうることは当業者に理解されるところである。 The embodiments are examples, and it should be noted that there are various modifications in the combination of each component and each processing process, and such modifications are included in the present disclosure and can constitute the scope of the present invention. It is understood by those skilled in the art.
(付記)
 本明細書には以下の技術が開示される。
(Appendix)
The following techniques are disclosed in this specification.
(項目1)
 母線を介してマスター回路と接続されるスレーブ回路であって、
 前記母線と接続される入力端子を有し、キャパシタを充電可能に構成される整流回路と、
 前記キャパシタの電圧を所定の解除しきい値と比較し、前記キャパシタの電圧が前記解除しきい値を越えると、イネーブル信号をアサートする起動監視回路と、
 前記イネーブル信号のアサート後にアクティブとなり、所定の起動シーケンスを実行する内部回路と、
 を備える、スレーブ回路。
(Item 1)
A slave circuit connected to a master circuit via a bus,
a rectifier circuit having an input terminal connected to the bus and configured to charge a capacitor;
an activation monitoring circuit that compares the voltage of the capacitor with a predetermined release threshold and asserts an enable signal when the voltage of the capacitor exceeds the release threshold;
an internal circuit that becomes active after the enable signal is asserted and executes a predetermined startup sequence;
a slave circuit.
(項目2)
 前記キャパシタの電圧が所定のリセットしきい値を下回ると、前記スレーブ回路をリセットするリセット回路をさらに備え、
 前記内部回路がアクティブとなった後、前記起動シーケンスが完了する前に、前記キャパシタの電圧が、前記リセットしきい値を下回らないように、前記解除しきい値が規定される、項目1に記載のスレーブ回路。
(Item 2)
further comprising a reset circuit for resetting the slave circuit when the voltage of the capacitor falls below a predetermined reset threshold;
2. According to item 1, the release threshold is defined such that the voltage of the capacitor does not fall below the reset threshold after the internal circuit becomes active but before the start-up sequence is completed. slave circuit.
(項目3)
 前記整流回路の出力と接続されたキャパシタピンを備え、
 前記キャパシタは、前記キャパシタピンに外付けされる、項目1または2に記載のスレーブ回路。
(Item 3)
a capacitor pin connected to the output of the rectifier circuit;
3. A slave circuit according to item 1 or 2, wherein the capacitor is externally attached to the capacitor pin.
(項目4)
 前記内部回路はマイクロコントローラを含む、項目1から3のいずれかに記載のスレーブ回路。
(Item 4)
4. A slave circuit according to any one of items 1 to 3, wherein the internal circuitry comprises a microcontroller.
(項目5)
 前記スレーブ回路から前記マスター回路に信号を伝送する際に、前記母線から電流をシンクして前記母線の電圧を変化させる送信回路をさらに備え、
 前記内部回路は、起動完了後に、前記送信回路を利用して前記マスター回路と通信が可能となる、項目1から4のいずれかに記載のスレーブ回路。
(Item 5)
further comprising a transmission circuit that sinks current from the bus to change the voltage of the bus when transmitting a signal from the slave circuit to the master circuit;
5. The slave circuit according to any one of items 1 to 4, wherein the internal circuit is capable of communicating with the master circuit using the transmission circuit after activation is completed.
(項目6)
 前記整流回路は、ダイオードブリッジ回路を含む、項目1から5のいずれかに記載のスレーブ回路。
(Item 6)
6. The slave circuit according to any one of items 1 to 5, wherein the rectifier circuit includes a diode bridge circuit.
(項目7)
 前記母線は、第1ワイヤおよび第2ワイヤを含む、項目1から6のいずれかに記載のスレーブ回路。
(Item 7)
7. A slave circuit according to any preceding item, wherein the bus bar includes a first wire and a second wire.
(項目8)
 ひとつの半導体基板に一体集積化された、項目1から7のいずれかに記載のスレーブ回路。
(Item 8)
8. The slave circuit according to any one of items 1 to 7, monolithically integrated on one semiconductor substrate.
(項目9)
 マスター回路と、
 項目1から8のいずれかに記載のスレーブ回路と、
 前記マスター回路と前記スレーブ回路を結線する母線と、
 を備える、遠隔制御システム。
(Item 9)
a master circuit;
a slave circuit according to any one of items 1 to 8;
a bus that connects the master circuit and the slave circuit;
A remote control system comprising:
 本開示は、マスター回路により制御されるスレーブ回路に関する。 The present disclosure relates to a slave circuit controlled by a master circuit.
 W1 第1ワイヤ
 IN1 第1入力ピン
 W2 第2ワイヤ
 IN2 第2入力ピン
 10 遠隔通信システム
 12 母線
 20 マスター回路
 30 スレーブ回路
 32 整流回路
 34 内部回路
 40 受信回路
 50 送信回路
 60 起動監視回路
 62 リセット回路
W1 first wire IN1 first input pin W2 second wire IN2 second input pin 10 telecommunication system 12 busbar 20 master circuit 30 slave circuit 32 rectifier circuit 34 internal circuit 40 receiver circuit 50 transmitter circuit 60 activation monitor circuit 62 reset circuit

Claims (9)

  1.  母線を介してマスター回路と接続されるスレーブ回路であって、
     前記母線と接続される入力端子を有し、キャパシタを充電可能に構成される整流回路と、
     前記キャパシタの電圧を所定の解除しきい値と比較し、前記キャパシタの電圧が前記解除しきい値を越えると、イネーブル信号をアサートする起動監視回路と、
     前記イネーブル信号のアサート後にアクティブとなり、所定の起動シーケンスを実行する内部回路と、
     を備える、スレーブ回路。
    A slave circuit connected to a master circuit via a bus,
    a rectifier circuit having an input terminal connected to the bus and configured to charge a capacitor;
    an activation monitoring circuit that compares the voltage of the capacitor with a predetermined release threshold and asserts an enable signal when the voltage of the capacitor exceeds the release threshold;
    an internal circuit that becomes active after the enable signal is asserted and executes a predetermined startup sequence;
    a slave circuit.
  2.  前記キャパシタの電圧が所定のリセットしきい値を下回ると、前記スレーブ回路をリセットするリセット回路をさらに備え、
     前記内部回路がアクティブとなった後、前記起動シーケンスが完了する前に、前記キャパシタの電圧が、前記リセットしきい値を下回らないように、前記解除しきい値が規定される、請求項1に記載のスレーブ回路。
    further comprising a reset circuit for resetting the slave circuit when the voltage of the capacitor falls below a predetermined reset threshold;
    2. The reset threshold of claim 1, wherein the release threshold is defined such that the voltage of the capacitor does not drop below the reset threshold after the internal circuitry becomes active and before the start-up sequence is completed. Described slave circuit.
  3.  前記整流回路の出力と接続されたキャパシタピンを備え、
     前記キャパシタは、前記キャパシタピンに外付けされる、請求項1または2に記載のスレーブ回路。
    a capacitor pin connected to the output of the rectifier circuit;
    3. A slave circuit as claimed in claim 1 or 2, wherein the capacitor is externally attached to the capacitor pin.
  4.  前記内部回路はマイクロコントローラを含む、請求項1から3のいずれかに記載のスレーブ回路。 A slave circuit according to any one of claims 1 to 3, wherein said internal circuit comprises a microcontroller.
  5.  前記スレーブ回路から前記マスター回路に信号を伝送する際に、前記母線から電流をシンクして前記母線の電圧を変化させる送信回路をさらに備え、
     前記内部回路は、起動完了後に、前記送信回路を利用して前記マスター回路と通信が可能となる、請求項1から4のいずれかに記載のスレーブ回路。
    further comprising a transmission circuit that sinks current from the bus to change the voltage of the bus when transmitting a signal from the slave circuit to the master circuit;
    5. The slave circuit according to any one of claims 1 to 4, wherein said internal circuit is enabled to communicate with said master circuit using said transmission circuit after completion of activation.
  6.  前記整流回路は、ダイオードブリッジ回路を含む、請求項1から5のいずれかに記載のスレーブ回路。 The slave circuit according to any one of claims 1 to 5, wherein said rectifier circuit includes a diode bridge circuit.
  7.  前記母線は、第1ワイヤおよび第2ワイヤを含む、請求項1から6のいずれかに記載のスレーブ回路。 The slave circuit according to any one of claims 1 to 6, wherein said bus bar includes a first wire and a second wire.
  8.  ひとつの半導体基板に一体集積化された、請求項1から7のいずれかに記載のスレーブ回路。 The slave circuit according to any one of claims 1 to 7, which is monolithically integrated on one semiconductor substrate.
  9.  マスター回路と、
     請求項1から8のいずれかに記載のスレーブ回路と、
     前記マスター回路と前記スレーブ回路を結線する母線と、
     を備える、遠隔制御システム。
    a master circuit;
    a slave circuit according to any one of claims 1 to 8;
    a bus that connects the master circuit and the slave circuit;
    A remote control system comprising:
PCT/JP2022/031183 2021-08-26 2022-08-18 Slave circuit and remote control system using same WO2023026945A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023543857A JPWO2023026945A1 (en) 2021-08-26 2022-08-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-137907 2021-08-26
JP2021137907 2021-08-26

Publications (1)

Publication Number Publication Date
WO2023026945A1 true WO2023026945A1 (en) 2023-03-02

Family

ID=85321980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031183 WO2023026945A1 (en) 2021-08-26 2022-08-18 Slave circuit and remote control system using same

Country Status (2)

Country Link
JP (1) JPWO2023026945A1 (en)
WO (1) WO2023026945A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041625A1 (en) * 2007-09-26 2009-04-02 Daikin Industries, Ltd. Load driving method and load driving device
JP2013006557A (en) * 2011-06-27 2013-01-10 Denso Corp Communication network system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041625A1 (en) * 2007-09-26 2009-04-02 Daikin Industries, Ltd. Load driving method and load driving device
JP2013006557A (en) * 2011-06-27 2013-01-10 Denso Corp Communication network system

Also Published As

Publication number Publication date
JPWO2023026945A1 (en) 2023-03-02

Similar Documents

Publication Publication Date Title
US8541908B2 (en) Powered device capable of working in continuation in case of power failure
CN102907002B (en) For the apparatus and method that host power-on reset controls
EP3065348B1 (en) Static address allocation by passive electronics
US20050160301A1 (en) Controller area network wake-up system and method
US10209730B2 (en) Serial bus apparatus with controller circuit and related uses
EP3065347B1 (en) Static data bus address allocation
CN108933627B (en) Optical module and optical network system
US20150061631A1 (en) Semiconductor device and current amount control method
US9819518B2 (en) Semiconductor device, semiconductor system including the same, and control method of semiconductor device
US7683686B2 (en) Power-on circuit for computer
WO2023026945A1 (en) Slave circuit and remote control system using same
US20200301866A1 (en) Bus subscriber and method for operating a bus subscriber
US9436247B2 (en) Rack server system
CN111541443A (en) Signal transmission circuit
US20070096684A1 (en) Apparatus for controlling electric power for electric vehicle
US20220068111A1 (en) Power failure detection device and method
JP7087141B2 (en) Communication method
CN114784892A (en) Apparatus for receiving signal, method of operating the same, and signal transmission system
US10181684B1 (en) Power connector
WO2023022190A1 (en) Power supply management circuit and electronic device
US20140042826A1 (en) Power adaptor system
TWI792840B (en) Usb chip and operation method thereof
JP5678843B2 (en) Integrated circuit device
JP2002259357A (en) Microcomputer
CN114152897A (en) Power failure detection device and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861233

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023543857

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE