WO2023026922A1 - バックアップ電源システム、移動体、バックアップ電源システムの制御方法、及びプログラム - Google Patents

バックアップ電源システム、移動体、バックアップ電源システムの制御方法、及びプログラム Download PDF

Info

Publication number
WO2023026922A1
WO2023026922A1 PCT/JP2022/031068 JP2022031068W WO2023026922A1 WO 2023026922 A1 WO2023026922 A1 WO 2023026922A1 JP 2022031068 W JP2022031068 W JP 2022031068W WO 2023026922 A1 WO2023026922 A1 WO 2023026922A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
unit
backup power
current
state
Prior art date
Application number
PCT/JP2022/031068
Other languages
English (en)
French (fr)
Inventor
雄太 永冨
政富美 中村
政利 中世
裕樹 明石
欣也 加藤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US18/569,626 priority Critical patent/US20240275202A1/en
Priority to CN202280048884.0A priority patent/CN117678143A/zh
Priority to JP2023543844A priority patent/JPWO2023026922A1/ja
Publication of WO2023026922A1 publication Critical patent/WO2023026922A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter

Definitions

  • the present disclosure relates to a backup power supply system, a mobile object, a control method for the backup power supply system, and a program. More specifically, the present disclosure relates to a backup power supply system capable of supplying power to a load when the main power supply fails, a mobile object, a method of controlling the backup power supply system, and a program.
  • Patent Document 1 discloses an in-vehicle backup power supply device.
  • the backup power supply device includes a power storage unit and a backup power supply control device.
  • the backup power supply control device puts the input cutoff unit and the output cutoff unit into the allowable state, respectively, and disconnects the first conductive path, the second conductive path, and the third conductive path from the power supply unit.
  • the backup power supply control device puts the input cutoff unit into the cutoff state and the output cutoff unit into the allowable state, and the charging/discharging unit discharges the power storage unit to turn off the output cutoff unit. supply power to the load via
  • the backup power control device determines whether the power supply unit is in a normal state or a failure state based on the voltage of the first conductive path between the power supply unit and the input cutoff unit. is judging.
  • the charging/discharging unit is realized by a bidirectional DC-DC converter or the like that does not require external control
  • the power supply unit main power supply
  • the charging/discharging unit will switch to the second conductive path. It responds to a slight voltage drop and shifts to discharge operation without external control.
  • power is supplied from the charging/discharging section through the input blocking section and the output blocking section that are maintained in the allowable state, so that the voltage of the first conducting path is maintained.
  • the backup power supply control device cannot detect the occurrence of a failure state, and the input cutoff unit is not controlled to be cut off. There was a possibility that the power that could be supplied was reduced.
  • An object of the present disclosure is to provide a backup power supply system, a mobile object, a backup power supply system control method, and a program that can suppress a decrease in power supply to a load.
  • a backup power supply system includes a first terminal, a second terminal, a cutoff section, an auxiliary power supply, a charge/discharge section, a current detection section, and a control section.
  • a main power supply is connected to the first terminal.
  • a load is connected to the second terminal.
  • the breaker is connected between the first terminal and the second terminal, and is switchable between a conducting state and a breaking state.
  • the auxiliary power supply is a power supply for supplying power to the load when the main power supply fails.
  • the charging/discharging unit is connected between a node between the interrupting unit and the second terminal and the auxiliary power supply.
  • the charging/discharging unit receives power from the main power supply and flows charging current to the auxiliary power supply in a non-failure state where the main power supply does not fail, and receives power from the auxiliary power supply in the failure state. Then, a discharge current is applied to the load.
  • the current detection section detects at least the discharge current flowing from the charge/discharge section.
  • the control section controls the interrupting section to be in a conducting state when the current detecting section does not detect the discharge current, and switches the interrupting section to the interrupting state when the current detecting section detects the discharge current. Control.
  • a moving object includes the backup power supply system and a moving object main body.
  • the mobile body carries the backup power supply system, the main power supply, and the load.
  • a control method for a backup power supply system is a control method for the backup power supply system, and includes a detection step and a control step.
  • the detection step the discharge current flowing from the charging/discharging section is detected.
  • the control step when the discharge current is not detected in the detection step, the cutoff section is controlled to be in a conductive state, and when the discharge current is detected in the detection step, the cutoff section is controlled to be in a cutoff state.
  • a program according to one aspect of the present disclosure is a program for causing a computer system to execute the method for controlling the backup power supply system.
  • FIG. 1 is a schematic block diagram of a backup power system according to one embodiment of the present disclosure
  • FIG. FIG. 2 is a partially cutaway side view of a vehicle equipped with the same backup power supply system.
  • FIG. 3 is a schematic circuit diagram of the same backup power supply system.
  • FIG. 4 is a flowchart for explaining the operation of the backup power supply system of the same.
  • FIG. 5 is a schematic circuit diagram of a backup power supply system of Modification 1.
  • FIG. 6 is a schematic circuit diagram of a backup power supply system of Modification 2.
  • FIG. 1 is a schematic block diagram of a backup power system according to one embodiment of the present disclosure
  • FIG. FIG. 2 is a partially cutaway side view of a vehicle equipped with the same backup power supply system.
  • FIG. 3 is a schematic circuit diagram of the same backup power supply system.
  • FIG. 4 is a flowchart for explaining the operation of the backup power supply system of the same.
  • FIG. 5 is a schematic circuit diagram of a backup power supply system
  • the backup power supply system 1 of the present embodiment includes a first terminal T1, a second terminal T2, a cutoff section 10, a current detection section 20, a charging/discharging section 30, and an auxiliary power supply 40. , and a control unit 50 .
  • a main power supply 2 is connected to the first terminal T1.
  • a load 3 is connected to the second terminal T2.
  • the breaker 10 is connected between the first terminal T1 and the second terminal T2.
  • the auxiliary power supply 40 is a power supply for supplying power to the load 3 when the main power supply 2 fails.
  • the charging/discharging section 30 is connected between a node P1 between the interrupting section 10 and the second terminal T2 and the auxiliary power supply 40 .
  • the charging/discharging unit 30 receives power from the main power supply 2 and flows charging current to the auxiliary power supply 40 in a non-failure state in which the main power supply 2 is not in failure, and receives power from the auxiliary power supply 40 in a failure state. discharge current to the load 3.
  • the current detection section 20 detects at least the discharge current flowing from the charging/discharging section 30 .
  • the control unit 50 controls the breaking unit 10 to be conductive when the current detecting unit 20 does not detect the discharge current, and controls the breaking unit 10 to be disconnected when the current detecting unit 20 detects the discharge current. .
  • the first terminal T1 and the second terminal T2 may be parts (terminals) for connecting electric wires or the like, but may be, for example, leads of electronic parts or parts of conductors formed as wiring on a circuit board. good.
  • the node P1 is a part of the electric path connecting between the cutoff portion 10 and the second terminal T2, and is a portion to which the charging/discharging portion 30 is connected.
  • the node P1 may be a part of a conductor formed as wiring on a circuit board, or a part of a lead wire connecting between the cutoff portion 10 and the second terminal T2, or a portion of a lead wire for connecting an electric wire or the like. Parts (terminals) may also be used.
  • a failed state of the main power supply 2 is a failure of the main power supply 2, a ground fault in the main power supply 2 or a circuit connecting the main power supply 2 and the first terminal T1, and the like.
  • the non-failure state of the main power supply 2 means a state in which the voltage input from the main power supply 2 to the first terminal T1 is equal to or higher than the threshold.
  • the predetermined threshold is, for example, preferably set to a voltage lower than the rated voltage of the main power supply 2 and higher than the minimum guaranteed voltage necessary for the load 3 to operate normally.
  • the control section 50 controls the cutoff section 10 to be in a conductive state, so the load 3 is supplied with power from the main power supply 2 via the cutoff section 10 and operates.
  • the charging/discharging section 30 receives power supply from the main power supply 2 , supplies charging current to the auxiliary power supply 40 , and charges the auxiliary power supply 40 .
  • the charging/discharging section 30 receives power from the auxiliary power supply 40 and supplies a discharge current to the load 3 to operate the load 3 .
  • the charge/discharge unit 30 receives power supply from the auxiliary power supply 40 and discharge current flows, the discharge current is detected by the current detection unit 20, and the control unit 50 puts the cutoff unit 10 into the cutoff state. It is possible to suppress the discharge current from flowing to the circuit on the main power supply 2 side via the first terminal T1. Therefore, there is an advantage that a decrease in the power supplied to the load 3 can be suppressed.
  • the backup power supply system 1 of this embodiment is installed in a mobile object such as a vehicle 100 (see FIG. 2). That is, the mobile (vehicle 100) includes a backup power supply system 1 and a mobile main body 101 (for example, the vehicle body of the vehicle 100). A mobile main body 101 is equipped with a backup power supply system 1 , a main power supply 2 , and a load 3 .
  • the backup power supply system 1 supplies electric power from the auxiliary power supply 40 to the load 3 (for example, an electric brake system) when the main power supply 2 of the vehicle 100 (for example, the battery of the vehicle 100) fails.
  • the load 3 can continue to operate by power supply from the auxiliary power supply 40 even if the main power supply 2 fails. Note that FIG.
  • FIG. 2 conceptually shows a state in which the backup power supply system 1 is mounted on the vehicle 100, and does not limit the mounting position of the backup power supply system 1.
  • FIG. The backup power supply system 1 is generally installed at a position from the engine room to the console box on the front side of the vehicle 100, but the installation position of the backup power supply system 1 can be changed as appropriate.
  • the backup power supply system 1 is mounted on the vehicle 100
  • the mobile object is not limited to the vehicle 100, and may be an airplane, a ship, a train, or the like.
  • the backup power supply system 1 is not limited to being mounted on a moving object, and may be installed and used in a facility or the like.
  • FIG. 1 Details Hereinafter, the backup power supply system 1 according to the present embodiment will be described in detail with reference to FIGS. 1 and 3.
  • FIG. 1 Details Hereinafter, the backup power supply system 1 according to the present embodiment will be described in detail with reference to FIGS. 1 and 3.
  • FIG. 3 is a specific circuit diagram of the backup power supply system 1 (see FIG. 1).
  • the backup power supply system 1 includes the first terminal T1, the second terminal T2, the cutoff unit 10, the current detection unit 20, the charging/discharging unit 30, the auxiliary power supply 40, the control unit 50, Prepare.
  • a main power source 2 such as a battery of the vehicle 100 is connected to the first terminal T1.
  • a load 3 is connected to the second terminal T2.
  • the load 3 is, for example, an electric brake system mounted on the vehicle 100 .
  • the load 3 is not limited to the electric brake system, and may include a control system or drive system related to ADAS (Advanced Driver-Assistance Systems).
  • ADAS Advanced Driver-Assistance Systems
  • the load 3 is not limited to one system, and may include multiple systems.
  • the breaking unit 10 is switched between a conductive state in which current flows bidirectionally and a broken state in which current flows in both directions according to a control signal input from the control unit 50 .
  • the cutoff unit 10 includes, for example, two field effect transistors Q1 and Q2 connected in series between the first terminal T1 and the second terminal T2.
  • the two field effect transistors Q1 and Q2 are, for example, P-channel MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors).
  • the source of field effect transistor Q1 is connected to first terminal T1
  • the source of field effect transistor Q2 is connected to second terminal T2.
  • the field effect transistors Q1 and Q2 are electrically connected at their drains and gates, respectively.
  • the field effect transistors Q1 and Q2 are switched on/off according to control signals input from the control section 50 to their respective gates.
  • the cutoff section 10 When the field effect transistors Q1 and Q2 are turned on, the cutoff section 10 is in a conductive state in which current flows bidirectionally, and when the field effect transistors Q1 and Q2 are turned off, the cutoff section 10 is in a cutoff state in which bidirectional current is cut off. Become.
  • the auxiliary power supply 40 includes, for example, an electrical double layer capacitor (EDLC) capable of rapid charging and discharging. That is, the auxiliary power supply 40 includes an electric double layer capacitor.
  • EDLC electrical double layer capacitor
  • Auxiliary power supply 40 may be composed of two or more power storage devices (for example, electric double layer capacitors) electrically connected in parallel, in series, or in parallel and in series. That is, auxiliary power supply 40 may be implemented by a parallel circuit or series circuit of two or more power storage devices, or a combination thereof.
  • the charge/discharge unit 30 includes, for example, a bidirectional DC-DC converter.
  • the bidirectional DC-DC converter includes resistors R1 and R2, switching elements Q3-Q6, a coil L1, and a controller 31.
  • a resistor R1, a switching element Q3, and a switching element Q4 are connected in series between the node P1 and the reference potential.
  • a resistor R2, a switching element Q5, and a switching element Q6 are connected in series between the positive terminal of the auxiliary power supply 40 and the reference potential.
  • a coil L1 is connected between a node to which the switching elements Q3 and Q4 are connected and a node to which the switching elements Q5 and Q6 are connected.
  • the switching elements Q3 to Q6 are, for example, N-channel MOSFETs, and are controlled to be on/off by the controller 31 .
  • the control unit 31 is composed of, for example, a microcomputer having a processor and memory. That is, the control unit 31 is realized by a computer system having a processor and memory. The computer system functions as the control unit 31 by the processor executing appropriate programs. The program may be prerecorded in a memory, or may be provided by being recorded in a non-temporary recording medium such as a memory card or through an electric communication line such as the Internet. Note that the control unit 31 is not limited to being implemented by a computer system, and may be implemented by an analog circuit, a gate drive circuit, or the like.
  • the control unit 31 controls ON/OFF of the switching elements Q3 to Q6 based on the difference between the first voltage V1 at the first end of the resistor R1 opposite to the switching element Q3 and a predetermined set voltage. That is, the control unit 31 compares the first voltage V1, which is the voltage of the main power supply 2, with the set voltage, and if the first voltage V1 is equal to or higher than the set voltage, the charging operation is performed. The on/off of the switching elements Q3 to Q6 is controlled so that the discharge operation is performed when the voltage is less than the set voltage.
  • the charge/discharge unit 30 operates to supply charging current to the auxiliary power supply 40, and if the first voltage V1 is less than the set voltage, the charge/discharge unit 30
  • the auxiliary power supply 40 operates to supply a discharge current.
  • the control unit 31 also has a function of detecting current values of currents flowing through the resistors R1 and R2 based on voltages across the resistors R1 and R2.
  • the control unit 31 detects the current values of the charging current and the discharging current from the current values of the currents flowing through the resistors R1 and R2, respectively, controls the charging current and the discharging current, and prevents the auxiliary power supply 40 from overcharging and overdischarging. Take action to protect.
  • the current detection section 20 detects at least the discharge current flowing from the charging/discharging section 30 .
  • the current detection unit 20 includes a resistor R1 included in the charging/discharging unit 30, and detects whether or not a discharge current is flowing by detecting the direction of the current flowing through the resistor R1.
  • the current detection unit 20 includes an amplifier A1 that amplifies the voltage across the resistor R1 with a predetermined amplification factor, and a comparator CP1 that compares the output voltage of the amplifier A1 with a reference potential.
  • the comparator CP1 compares the output voltage of the amplifier A1 with the reference potential, and the positive/negative of the output voltage of the comparator CP1 changes according to the direction of the current flowing through the resistor R1. For example, when a charging current flows through the resistor R1, the output voltage of the comparator CP1 becomes a positive voltage, and when a discharging current flows through the resistor R1, the output voltage of the comparator CP1 becomes a negative voltage.
  • the circuit configuration of the current detection unit 20 is an example, and the configuration of the current detection unit 20 can be changed as appropriate. Further, it is not essential for the current detection unit 20 to detect the direction of the current flowing through the resistor R1, and it is sufficient if it can detect whether or not the discharge current is flowing.
  • the current detection unit 20 detects the current (charging current or discharging current) flowing through the resistor R1 from the voltage across the resistor R1 provided in the charging/discharging unit 30, a shunt resistor for detecting the current is separately provided. It is not necessary, and the number of parts can be reduced. That is, in this embodiment, the resistor R1 provided in the charge/discharge unit 30 is a shunt resistor connected to the electric path through which the discharge current flows from the auxiliary power supply 40, and the current detection unit 20 includes the resistor R1 as a shunt resistor.
  • the resistor R1 which is a shunt resistor, is connected between the node P1 and the auxiliary power supply 40.
  • the polarity of the voltage across the resistor R1 changes depending on whether the charging current flows through the resistor R1 or the discharging current flows through the resistor R1. It can detect whether current is flowing or discharge current is flowing.
  • the current detection unit 20 and the charging/discharging unit 30 share the resistor R1, which is a shunt resistor.
  • the control unit 50 controls the interrupting unit 10 to be in a conducting state or an interrupting state according to the detection result of the current detection unit 20 .
  • the control unit 50 is composed of, for example, a microcomputer having a processor and memory. That is, the control unit 50 is realized by a computer system having a processor and memory. The computer system functions as the control unit 50 by the processor executing appropriate programs.
  • the program may be prerecorded in a memory, or may be provided by being recorded in a non-temporary recording medium such as a memory card or through an electric communication line such as the Internet.
  • the control unit 50 is not limited to being realized by a computer system, and may be realized by an analog circuit, a gate drive circuit, or the like.
  • the control unit 50 controls the breaking unit 10 to be in a conductive state when the current detection unit 20 does not detect the discharge current.
  • the breaker 10 is controlled to be in a conducting state, the first terminal T1 and the second terminal T2 are electrically connected via the breaker 10 .
  • the charging/discharging unit 30 receives power from the main power supply 2 and feeds the charging current to the auxiliary power supply 40, so that the auxiliary power supply 40 is charged. .
  • the charge/discharge unit 30 receives power supply from the auxiliary power supply 40 to flow a discharge current, and the current detection unit 20 discharge current is detected by When the discharge current is detected by the current detector 20, the controller 50 controls the interrupter 10 to be in the interrupted state.
  • the discharge current from the auxiliary power supply 40 can be suppressed from flowing to the circuit on the main power supply 2 side via the cutoff unit 10, and the power supplied from the auxiliary power supply 40 to the load 3 can be prevented from decreasing in the failure state. can be suppressed.
  • the control unit 50 controls the blocking unit 10 to the blocking state
  • the control unit 50 continues to control the blocking unit 10 to the blocking state until a release signal is input from the ECU (Electronic Control Unit) 4 of the vehicle 100, which is an external system.
  • the control unit 50 controls the breaking unit 10 to be in the breaking state from when the current detection unit 20 detects the discharge current until the release signal is input from the external system (ECU 4).
  • the release signal is a signal indicating that the failure state of the main power supply 2 has been resolved.
  • the ECU 4 of the vehicle 100 has a function of monitoring the state of the main power supply 2, for example, and sends a release signal to the control unit 50 when the failure state of the main power supply 2 is resolved after the main power supply 2 has failed. Output.
  • the control unit 50 controls the interrupting unit 10 to be in the interrupted state until the release signal is input, the discharge current becomes zero depending on the operation state of the load 3, or the regenerative power generated by the load 3 causes the auxiliary power supply to be removed from the load 3. Even if a charging current flows through 40 and a discharging current stops flowing, it is possible to reduce the possibility that the breaker 10 becomes conductive.
  • the external system that outputs the release signal to the control unit 50 is not limited to the ECU 4 of the vehicle 100, and may be a monitoring circuit that monitors the state of the main power supply 2, or the like.
  • the current detection unit 20 detects whether or not a discharge current is flowing through the resistor R1 (step S1). Specifically, the amplifier A1 of the current detection unit 20 amplifies the voltage across the resistor R1, and the comparator CP1 compares the output voltage of the amplifier A1 with the reference potential. Outputs a voltage with a polarity that corresponds to the direction of current flow.
  • the control unit 50 determines whether or not a discharge current is generated depending on whether the output voltage of the comparator CP1 is positive or negative (step S2).
  • step S3 If the discharge current is not generated (step S2: No), the control section 50 controls the cutoff section 10 to be in a conducting state (step S3). If the main power supply 2 does not fail while the cutoff unit 10 is controlled to be in a conductive state, power is supplied from the main power supply 2 to the load 3 . Also, the charging/discharging section 30 receives power supply from the main power supply 2 and flows a charging current to the auxiliary power supply 40 to charge the auxiliary power supply 40 .
  • step S2 determines in step S2 that a discharge current has occurred (step S2: Yes), controls the interrupter 10 to the interrupted state (step S4), and connects the node P1 and the first terminal T1. becomes non-conducting.
  • step S4 controls the interrupter 10 to the interrupted state (step S4), and connects the node P1 and the first terminal T1. becomes non-conducting.
  • control unit 50 controls the interrupter 10 to be in the interrupted state until a release signal is input from an external system (for example, the ECU 4 of the vehicle 100).
  • step S5 if no release signal is input from the external system to the control unit 50 (step S5: No), the control unit 50 maintains the blocking unit 10 in the blocking state (step S4). At this time, the electrical disconnection between the first terminal T1 and the node P1 is maintained. supplied.
  • step S5 when a release signal is input from the external system to the control unit 50 (step S5: Yes), the control unit 50 controls the cutoff unit 10 to be in a conductive state (step S6).
  • the charging/discharging section 30 receives power from the main power supply 2, supplies the charging current to the auxiliary power supply 40, and supplies the charging current to the auxiliary power supply. Charge 40.
  • a control method for the backup power supply system 1 includes a detection step and a control step. In the detection step, the discharge current flowing from the charging/discharging section 30 is detected.
  • a (computer) program is a program for causing a computer system to execute a control method of the backup power supply system 1 .
  • the backup power supply system 1 in the present disclosure includes a computer system for realizing the control unit 50 and the control unit 31, for example.
  • a computer system is mainly composed of a processor and a memory as hardware. Functions of the control unit 50, the control unit 31, and the like are realized by the processor executing a program recorded in the memory of the computer system.
  • the program may be recorded in advance in the memory of the computer system, may be provided through an electric communication line, or may be recorded in a non-temporary recording medium such as a computer system-readable memory card, optical disk, or hard disk drive. may be provided.
  • a processor in a computer system consists of one or more electronic circuits, including semiconductor integrated circuits (ICs) or large scale integrated circuits (LSIs).
  • Integrated circuits such as ICs or LSIs are called differently depending on the degree of integration, and include integrated circuits called system LSI, VLSI (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration).
  • FPGAs Field-Programmable Gate Arrays
  • a plurality of electronic circuits may be integrated into one chip, or may be distributed over a plurality of chips.
  • a plurality of chips may be integrated in one device, or may be distributed in a plurality of devices.
  • a computer system includes a microcontroller having one or more processors and one or more memories. Accordingly, the microcontroller also consists of one or more electronic circuits including semiconductor integrated circuits or large scale integrated circuits.
  • control unit 50 and the control unit 31 is not limited to being implemented by a computer system, and may be implemented by an analog circuit.
  • the backup power system 1 it is not an essential configuration of the backup power system 1 that a plurality of functions in the backup power system 1 are integrated in one housing, and the components of the backup power system 1 are distributed over a plurality of housings. may be provided. Furthermore, at least part of the functions of the backup power supply system 1, for example, part of the functions of the control unit 50, may be realized by the cloud (cloud computing) or the like. Further, when backup power supply system 1 is mounted in vehicle 100 , some functions of control unit 50 may be realized by the ECU of vehicle 100 .
  • “greater than” when comparing binary values such as voltage values, “greater than” may be “greater than”. That is, in the comparison of two values, whether or not the two values are equal can be arbitrarily changed depending on the setting of the reference value, etc., so there is no technical difference between “greater than” and “greater than”. Similarly, “less than” may be “less than”, and there is no technical difference between “less than” and “less than”.
  • (3.1) Modification 1 A backup power supply system 1 of Modification 1 will be described with reference to FIG.
  • the backup power supply system 1 of Modification 1 differs from the above-described embodiment in that the shunt resistor R3 included in the current detection section 20 is provided outside the charging/discharging section 30 . Since the configuration of the backup power supply system 1 other than the current detection unit 20 is the same as that of the above-described embodiment, common components are denoted by the same reference numerals and descriptions thereof are omitted.
  • the current detector 20 includes a shunt resistor R3, an amplifier A1, and a comparator CP1.
  • the shunt resistor R3 is connected between the node P1 and the resistor R1 of the charging/discharging section 30.
  • the shunt resistor R3 is a resistor provided for detecting current, and has a resistance value of several tens of m ⁇ to several hundreds of m ⁇ .
  • the amplifier A1 amplifies the voltage across the shunt resistor R3 with a predetermined amplification factor.
  • the comparator CP1 compares the output voltage of the amplifier A1 and the reference potential, and outputs a voltage having a polarity corresponding to the direction of the current flowing through the shunt resistor R3. That is, the comparator CP1 outputs a voltage whose polarity changes depending on whether or not the discharge current flows through the shunt resistor R3.
  • the control unit 50 can determine whether or not the discharge current is flowing by the positive or negative of the output voltage of the comparator CP1, and controls the breaking unit 10 to the breaking state when the discharge current flows.
  • the position of the shunt resistor R3 is not limited to between the node P1 and the charging/discharging section 30.
  • the shunt resistor R3 may be placed at a position where the direction of the current flowing through the shunt resistor R3 is determined depending on whether the charging current flows or the discharging current flows in the electric path through which the discharge current flows. It may be arranged between the first terminal T1.
  • (3.2) Modification 2 A backup power supply system 1 of Modification 2 will be described with reference to FIG.
  • the backup power supply system 1 of Modification 2 differs from Modification 1 in the circuit configuration of the charging/discharging section 30A. Note that the configuration of the backup power supply system 1 other than the charge/discharge unit 30A is the same as that of the first modification described above, so common components are denoted by the same reference numerals and descriptions thereof are omitted.
  • the charging/discharging section 30A is composed of a parallel circuit of a resistor R4 and a diode D1.
  • a resistor R4 is a resistor for limiting the charging current flowing through the auxiliary power supply 40, and is connected between the node P1 and the auxiliary power supply 40.
  • the diode D1 is connected in parallel with the resistor R4 with its anode facing the auxiliary power supply 40 side and its cathode facing the node P1 side.
  • the control unit 50 determines that the discharge current is flowing through the shunt resistor R3, and controls the breaking unit 10 to be in the breaking state. Operate.
  • circuit configuration of the charge/discharge unit 30A is not limited to the configuration of Modification 1, and can be changed as appropriate.
  • the auxiliary power supply 40 is not limited to the electric double layer capacitor, but is a lithium ion capacitor (LIC) or a lithium ion battery (LIB). It may be a secondary battery such as In the lithium ion capacitor, the positive electrode is made of the same material as EDLC (for example, activated carbon), and the negative electrode is made of the same material as LIB (for example, carbon material such as graphite).
  • EDLC for example, activated carbon
  • LIB lithium ion battery
  • the auxiliary power supply 40 is not limited to an electric double layer capacitor, and may be, for example, an electrochemical device having the configuration described below.
  • the electrochemical device here includes a positive electrode member, a negative electrode member, and a non-aqueous electrolyte.
  • the positive electrode member has a positive electrode current collector and a positive electrode material layer supported by the positive electrode current collector and containing a positive electrode active material.
  • the positive electrode material layer contains a conductive polymer as a positive electrode active material for doping and dedoping anions (dopants).
  • the negative electrode member has a negative electrode material layer containing a negative electrode active material.
  • the negative electrode active material is, for example, a material in which an oxidation-reduction reaction involving the absorption and release of lithium ions proceeds, and specific examples thereof include carbon materials, metal compounds, alloys, ceramic materials, and the like.
  • the non-aqueous electrolyte has lithium ion conductivity, for example. This type of non-aqueous electrolyte contains a lithium salt and a non-aqueous solution that dissolves the lithium salt. An electrochemical device with such a configuration has a higher energy density than an electric double layer capacitor or the like.
  • the current detection unit 20 includes a shunt resistor connected to the electric path through which the discharge current flows, and detects whether or not the discharge current flows based on the polarity of the voltage across the shunt resistor. It is not limited to including shunt resistors.
  • the current detector 20 may be a non-contact current sensor.
  • the current detection unit 20 uses a coil arranged close to an electric path through which a discharge current flows, and detects whether a charging current is flowing in the electric path or not, based on the direction of an induced current generated in the coil when a current flows through the electric path. It may be one that detects whether or not it is flowing.
  • the backup power supply system (1) of the first aspect includes a first terminal (T1), a second terminal (T2), a cutoff section (10), an auxiliary power supply (40), a charging It comprises a discharge section (30), a current detection section (20), and a control section (50).
  • a main power supply (2) is connected to the first terminal (T1).
  • a load (3) is connected to the second terminal (T2).
  • a breaker (10) is connected between the first terminal (T1) and the second terminal (T2) and is switchable between a conducting state and a breaking state.
  • the auxiliary power supply (40) is a power supply for supplying power to the load (3) when the main power supply (2) fails.
  • the charging/discharging part (30) is connected between a node (P1) between the breaking part (10) and the second terminal (T2) and an auxiliary power supply (40).
  • the charge/discharge unit (30) receives power from the main power supply (2) in a non-failure state where the main power supply (2) does not fail, and supplies charging current to the auxiliary power supply (40). Power is supplied from the auxiliary power supply (40) to flow a discharge current to the load (3).
  • a current detection section (20) detects at least the discharge current flowing from the charging/discharging section (30).
  • the control unit (50) controls the interrupting unit (10) to be in a conducting state when the current detecting unit (20) does not detect the discharge current, and interrupts when the current detecting unit (20) detects the discharge current.
  • the part (10) is controlled to be in the cut-off state.
  • the charge/discharge unit (30) receives power supply from the auxiliary power supply (40) to flow a discharge current to the load (3), thereby is running.
  • the charge/discharge unit (30) receives power supply from the auxiliary power supply (40) and discharge current flows, the discharge current is detected by the current detection unit (20), and the control unit (50) shuts off the shutoff unit (10).
  • the discharge current from the auxiliary power supply (40) can be suppressed from flowing into the circuit on the main power supply (2) side. Therefore, there is an advantage that a decrease in the power supplied to the load (3) can be suppressed.
  • the charging/discharging section (30) includes a bidirectional DC-DC converter.
  • the bidirectional DC-DC converter converts the voltage input from the auxiliary power supply (40) into a voltage value required for the load (3), and supplies the load (3) with the voltage. can be done.
  • the current detector (20) includes a shunt resistor (R1, R3).
  • the current detection section (20) can detect the discharge current flowing in the electric path by detecting the voltage across the shunt resistors (R1, R3).
  • the shunt resistors (R1, R3) are connected between the node (P1) and the auxiliary power supply (40).
  • the current detection section (20) and the charging/discharging section (30) share the shunt resistor (R1).
  • the number of parts constituting the backup power supply system (1) can be reduced.
  • the controller (50) controls the external system ( Until the release signal is input from 4), the breaking section (10) is controlled to be in the breaking state.
  • the auxiliary power supply (40) includes an electric double layer capacitor.
  • the auxiliary power supply (40) can be rapidly charged and discharged.
  • the mobile body (100) of the eighth aspect comprises the backup power supply system (1) of any one of the first to seventh aspects and a mobile body (101).
  • a mobile body (101) is equipped with a backup power supply system (1), a main power supply (2), and a load (3).
  • the control method of the backup power supply system (1) of the ninth aspect is the control method of the backup power supply system (1) of any one of the first to seventh aspects, and includes a detection step and a control step.
  • the detection step the discharge current flowing from the charging/discharging section (30) is detected.
  • the control step when no discharge current is detected in the detection step, the breaker (10) is controlled to be in a conductive state, and when the discharge current is detected in the detection step, the breaker (10) is controlled to be in a cut-off state.
  • a program of the tenth aspect is a program for causing a computer system to execute the control method of the backup power supply system (1) of the ninth aspect.
  • Various configurations (including modifications) of the backup power supply system (1) are not limited to the above aspects, and may be a control method of the backup power supply system (1), a (computer) program, or a recorded program. It can be embodied in a non-temporary recording medium or the like.
  • the configurations according to the second to seventh aspects are not essential configurations for the backup power supply system (1), and can be omitted as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

バックアップ電源システム(1)は、第1端子(T1)と、第2端子(T2)と、遮断部(10)と、電流検出部(20)と、充放電部(30)と、補助電源(40)と、制御部(50)と、を備える。遮断部(10)は、主電源(2)が接続される第1端子(T1)と、負荷(3)が接続される第2端子(T2)との間に接続される。充放電部(30)は、遮断部(10)と第2端子(T2)との間の節点(P1)と、補助電源(40)との間に接続される。充放電部(30)は、主電源(2)が失陥していない非失陥状態では主電源(2)から電力供給を受けて補助電源(40)に充電電流を流し、失陥状態では補助電源(40)から電力供給を受けて負荷(3)に放電電流を流す。制御部(50)は、電流検出部(20)が放電電流を検出していない状態では、遮断部(10)を導通状態に制御し、電流検出部(20)が放電電流を検出すると、遮断部(10)を遮断状態に制御する。

Description

バックアップ電源システム、移動体、バックアップ電源システムの制御方法、及びプログラム
 本開示は、バックアップ電源システム、移動体、バックアップ電源システムの制御方法、及びプログラムに関する。より詳細には、本開示は、主電源の失陥時に負荷に対して電力を供給可能なバックアップ電源システム、移動体、バックアップ電源システムの制御方法、及びプログラムに関する。
 特許文献1は、車載用のバックアップ電源装置を開示する。バックアップ電源装置は、蓄電部と、バックアップ電源制御装置と、を備える。バックアップ電源制御装置は、電源部からの電力供給が正常状態のとき、入力遮断部及び出力遮断部をそれぞれ許容状態とし、電源部から第1導電路、第2導電路、及び第3導電路を介して負荷に電力を供給する。正常状態では、充放電部が蓄電部を充電する。電源部からの電力供給が失陥状態となると、バックアップ電源制御装置は、入力遮断部を遮断状態、出力遮断部を許容状態とし、充放電部が、蓄電部から放電させて、出力遮断部を介して負荷に電力を供給する。
国際公開第2020/116260号明細書
 上記特許文献1のバックアップ電源装置では、バックアップ電源制御装置が、電源部と入力遮断部との間の第1導電路の電圧に基づいて、電源部が正常状態であるか失陥状態であるかを判断している。ここで、充放電部が、外部からの制御が不要な双方向DC-DCコンバータ等で実現されている場合、電源部(主電源)が失陥すると、充放電部が、第2導電路のわずかな電圧低下に反応し、外部からの制御無しで放電動作へ移行する。これにより、充放電部から、許容状態に保たれている入力遮断部及び出力遮断部を介して電力供給が行われるため、第1導電路の電圧が維持される。そのため、バックアップ電源制御装置は失陥状態の発生を検知できず、入力遮断部が遮断状態に制御されないため、蓄電部(補助電源)から供給される電力が電源部側に流れてしまい、負荷に供給可能な電力が減る可能性があった。
 本開示の目的は、負荷への供給電力の低下を抑制可能なバックアップ電源システム、移動体、バックアップ電源システムの制御方法、及びプログラムを提供することにある。
 本開示の一態様のバックアップ電源システムは、第1端子と、第2端子と、遮断部と、補助電源と、充放電部と、電流検出部と、制御部と、を備える。前記第1端子には主電源が接続される。前記第2端子には負荷が接続される。前記遮断部は、前記第1端子と前記第2端子との間に接続されて、導通状態及び遮断状態に切替可能である。前記補助電源は、前記主電源が失陥した失陥状態で前記負荷に給電するための電源である。前記充放電部は、前記遮断部と前記第2端子との間の節点と前記補助電源との間に接続される。前記充放電部は、前記主電源が失陥していない非失陥状態では前記主電源から電力供給を受けて前記補助電源に充電電流を流し、前記失陥状態では前記補助電源から電力供給を受けて前記負荷に放電電流を流す。前記電流検出部は、前記充放電部から流れる前記放電電流を少なくとも検出する。前記制御部は、前記電流検出部が前記放電電流を検出していない状態では、前記遮断部を導通状態に制御し、前記電流検出部が前記放電電流を検出すると、前記遮断部を遮断状態に制御する。
 本開示の一態様の移動体は、前記バックアップ電源システムと、移動体本体と、を備える。前記移動体本体は、前記バックアップ電源システム、前記主電源、及び前記負荷を搭載する。
 本開示の一態様のバックアップ電源システムの制御方法は、前記バックアップ電源システムの制御方法であり、検出ステップと、制御ステップと、を含む。前記検出ステップでは、前記充放電部から流れる前記放電電流を検出する。前記制御ステップでは、前記検出ステップにおいて放電電流を検出していない状態では、前記遮断部を導通状態に制御し、前記検出ステップにおいて前記放電電流を検出すると、前記遮断部を遮断状態に制御する。
 本開示の一態様のプログラムは、コンピュータシステムに、前記バックアップ電源システムの制御方法を実行させるためのプログラムである。
 本開示によれば、負荷への供給電力の低下を抑制できる。
図1は、本開示の一実施形態に係るバックアップ電源システムの概略的なブロック図である。 図2は、同上のバックアップ電源システムを搭載した車両の一部を破断した側面図である。 図3は、同上のバックアップ電源システムの概略的な回路図である。 図4は、同上のバックアップ電源システムの動作を説明するフローチャートである。 図5は、変形例1のバックアップ電源システムの概略的な回路図である。 図6は、変形例2のバックアップ電源システムの概略的な回路図である。
 (実施形態)
 (1)概要
 以下に、バックアップ電源システムの実施形態を説明する。以下の実施形態において説明する各図は、模式的な図であり、各図中の各構成要素の大きさ及び厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。
 本実施形態のバックアップ電源システム1は、図1に示すように、第1端子T1と、第2端子T2と、遮断部10と、電流検出部20と、充放電部30と、補助電源40と、制御部50と、を備える。
 第1端子T1には主電源2が接続される。
 第2端子T2には負荷3が接続される。
 遮断部10は第1端子T1と第2端子T2との間に接続される。
 補助電源40は、主電源2が失陥した失陥状態で負荷3に給電するための電源である。
 充放電部30は、遮断部10と第2端子T2との間の節点P1と、補助電源40との間に接続される。充放電部30は、主電源2が失陥していない非失陥状態では主電源2から電力供給を受けて補助電源40に充電電流を流し、失陥状態では補助電源40から電力供給を受けて負荷3に放電電流を流す。
 電流検出部20は、充放電部30から流れる放電電流を少なくとも検出する。
 制御部50は、電流検出部20が放電電流を検出していない状態では、遮断部10を導通状態に制御し、電流検出部20が放電電流を検出すると、遮断部10を遮断状態に制御する。
 ここにおいて、第1端子T1及び第2端子T2は、電線等を接続するための部品(端子)でもよいが、例えば電子部品のリードや、回路基板に配線として形成された導電体の一部でもよい。また、節点P1は、遮断部10と第2端子T2との間を接続する電路の一部であって、充放電部30が接続される部位である。節点P1は、回路基板に配線として形成された導電体の一部でもよいし、遮断部10と第2端子T2との間を接続するリード線の一部でもよく、電線等を接続するための部品(端子)でもよい。
 主電源2の失陥状態とは、主電源2の故障、主電源2又は主電源2と第1端子T1とを接続する回路での地絡等によって、主電源2から第1端子T1に入力される電圧が所定の閾値未満に低下した状態をいう。主電源2の非失陥状態は、主電源2から第1端子T1に入力される電圧が閾値以上である状態をいう。所定の閾値は、例えば、主電源2の定格電圧よりも低い電圧であって、負荷3が正常に動作するのに必要な最低保障電圧より高い電圧に設定されることが好ましい。
 主電源2の非失陥状態では、制御部50が遮断部10を導通状態に制御するので、負荷3は、主電源2から遮断部10を介して電力が供給されて動作する。また、主電源2の非失陥状態では、充放電部30が、主電源2から電力供給を受けて、補助電源40に充電電流を流し、補助電源40を充電する。
 一方、主電源2の失陥状態では、充放電部30は、補助電源40から電力供給を受けて負荷3に放電電流を流し、負荷3を動作させている。充放電部30が補助電源40から電力供給を受けて放電電流を流すと、電流検出部20によって放電電流が検出され、制御部50が遮断部10を遮断状態とするので、補助電源40からの放電電流が第1端子T1を介して主電源2側の回路に流れるのを抑制できる。したがって、負荷3への供給電力の低下を抑制できるという利点がある。
 本実施形態のバックアップ電源システム1は、例えば車両100(図2参照)のような移動体に搭載されている。すなわち、移動体(車両100)は、バックアップ電源システム1と、移動体本体101(例えば車両100の車体)と、を備える。移動体本体101は、バックアップ電源システム1と、主電源2と、負荷3とを搭載する。バックアップ電源システム1は、車両100の主電源2(例えば車両100のバッテリ)が失陥した失陥状態で、補助電源40から負荷3(例えば電動ブレーキシステム等)に電力を供給する。これにより、負荷3は、主電源2の失陥状態でも、補助電源40からの電力供給によって動作を継続可能である。なお、図2は、車両100にバックアップ電源システム1が搭載されている状態を概念的に示した図であり、バックアップ電源システム1の搭載位置を限定するものではない。バックアップ電源システム1は、一般的に、車両100の前側にあるエンジンルームからコンソールボックスまでの位置に搭載されるが、バックアップ電源システム1の搭載位置は適宜変更が可能である。
 なお、本実施形態では、バックアップ電源システム1が車両100に搭載される場合を例示するが、移動体は車両100に限定されず、飛行機、船舶又は電車等でもよい。また、バックアップ電源システム1は移動体に搭載されるものに限定されず、施設等に設置されて使用されるものでもよい。
 (2)詳細
 以下、本実施形態に係るバックアップ電源システム1について図1及び図3を参照して詳しく説明する。
 (2.1)構成
 図3は、バックアップ電源システム1(図1参照)の具体回路図である。バックアップ電源システム1は、上述のように、第1端子T1と、第2端子T2と、遮断部10と、電流検出部20と、充放電部30と、補助電源40と、制御部50と、を備える。
 第1端子T1には、車両100のバッテリのような主電源2が接続されている。
 第2端子T2には、負荷3が接続される。負荷3は、例えば車両100に搭載された電動ブレーキシステム等である。なお、負荷3は電動ブレーキシステムに限定されず、ADAS(Advanced Driver-Assistance Systems)関連の制御系又は駆動系のシステムを含んでもよい。また、負荷3は1つのシステムに限定されず、複数のシステムを含んでもよい。
 遮断部10は、制御部50から入力される制御信号に応じて、双方向に電流が流れる導通状態、及び、双方向の電流を遮断する遮断状態のいずれかに切り替えられる。
 遮断部10は、例えば、第1端子T1と第2端子T2との間に直列に接続された2つの電界効果トランジスタQ1,Q2を含む。2つの電界効果トランジスタQ1,Q2は、例えば、Pチャネル型MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)である。電界効果トランジスタQ1のソースは第1端子T1に接続され、電界効果トランジスタQ2のソースは第2端子T2に接続されている。電界効果トランジスタQ1,Q2は、ドレイン同士及びゲート同士がそれぞれ電気的に接続されている。電界効果トランジスタQ1,Q2は、制御部50から各々のゲートに入力される制御信号に応じて、オン/オフが切り替えられる。電界効果トランジスタQ1,Q2がオンになると、遮断部10は双方向に電流が流れる導通状態となり、電界効果トランジスタQ1,Q2がオフになると、遮断部10は双方向の電流を遮断する遮断状態となる。
 補助電源40は、例えば、急速な充放電が可能な電気二重層キャパシタ(EDLC:Electrical Double Layer Capacitor)を含む。つまり、補助電源40は、電気二重層キャパシタを含んでいる。補助電源40は、電気的に並列、直列、又は並列かつ直列に接続された、2個以上の蓄電装置(例えば電気二重層キャパシタ)にて構成されていてもよい。すなわち、補助電源40は、2個以上の蓄電装置の並列回路若しくは直列回路、又はその組み合わせによって実現されてもよい。
 充放電部30は、例えば双方向DC-DCコンバータを含む。双方向DC-DCコンバータは、抵抗R1,R2と、スイッチング素子Q3~Q6と、コイルL1と、制御部31と、を含む。節点P1と基準電位との間には、抵抗R1と、スイッチング素子Q3と、スイッチング素子Q4とが直列に接続されている。また、補助電源40の正極側の端子と基準電位との間には、抵抗R2と、スイッチング素子Q5と、スイッチング素子Q6とが直列に接続されている。スイッチング素子Q3,Q4が接続される節点と、スイッチング素子Q5,Q6が接続される節点との間には、コイルL1が接続されている。スイッチング素子Q3~Q6は、例えば、Nチャネル型MOSFETであり、制御部31によってオン/オフが制御される。
 制御部31は、例えば、プロセッサ及びメモリを有するマイクロコンピュータで構成されている。つまり、制御部31は、プロセッサ及びメモリを有するコンピュータシステムで実現されている。そして、プロセッサが適宜のプログラムを実行することにより、コンピュータシステムが制御部31として機能する。プログラムは、メモリに予め記録されていてもよいし、インターネット等の電気通信回線を通じて、又はメモリカード等の非一時的記録媒体に記録されて提供されてもよい。なお、制御部31はコンピュータシステムで実現されるものに限定されず、アナログ回路、ゲートドライブ回路等で実現されてもよい。
 制御部31は、抵抗R1におけるスイッチング素子Q3と反対側の第1端の第1電圧V1と、所定の設定電圧との高低に基づいて、スイッチング素子Q3~Q6のオン/オフを制御する。つまり、制御部31は、主電源2の電圧である第1電圧V1と、設定電圧との高低を比較し、第1電圧V1が設定電圧以上であれば充電動作を行い、第1電圧V1が設定電圧未満であれば放電動作を行うように、スイッチング素子Q3~Q6のオン/オフを制御する。こにより、第1電圧V1が設定電圧以上であれば、充放電部30は補助電源40に充電電流を流すように動作し、第1電圧V1が設定電圧未満であれば、充放電部30は補助電源40から放電電流を流すように動作する。また、制御部31は、抵抗R1,R2の両端電圧に基づいて抵抗R1,R2にそれぞれ流れる電流の電流値を検出する機能を有している。制御部31は、抵抗R1,R2にそれぞれ流れる電流の電流値から、充電電流及び放電電流の電流値を検出し、充電電流及び放電電流を制御したり、補助電源40を過充電及び過放電から保護する動作を行う。
 電流検出部20は、充放電部30から流れる放電電流を少なくとも検出する。本実施形態では、電流検出部20は、充放電部30が備える抵抗R1を含み、抵抗R1に流れる電流の向きを検出することによって、放電電流が流れているか否かを検出する。
 具体的には、電流検出部20は、抵抗R1の両端電圧を所定の増幅率で増幅するアンプA1と、アンプA1の出力電圧と基準電位とを比較するコンパレータCP1と、を含む。コンパレータCP1は、アンプA1の出力電圧と基準電位との高低を比較しており、コンパレータCP1の出力電圧の正負は、抵抗R1に流れる電流の向きに応じて変化する。例えば、抵抗R1に充電電流が流れている場合、コンパレータCP1の出力電圧は正の電圧となり、抵抗R1に放電電流が流れている場合、コンパレータCP1の出力電圧は負の電圧となる。なお、電流検出部20の回路構成は一例であり、電流検出部20の構成は適宜変更が可能である。また、電流検出部20が、抵抗R1に流れる電流の向きを検出することは必須ではなく、放電電流が流れているか否かを検出できればよい。
 なお、電流検出部20は、充放電部30が備える抵抗R1の両端電圧から抵抗R1に流れる電流(充電電流又は放電電流)を検出しているので、電流を検出するためのシャント抵抗を別途設ける必要がなく、部品点数を削減できる。つまり、本実施形態では、充放電部30が備える抵抗R1が、補助電源40から放電電流が流れる電路に接続されたシャント抵抗となり、電流検出部20はシャント抵抗となる抵抗R1を含んでいる。ここで、シャント抵抗である抵抗R1は、節点P1と補助電源40との間に接続されている。これにより、抵抗R1に充電電流が流れる場合と放電電流が流れる場合とで、抵抗R1の両端電圧の極性が変化するので、電流検出部20は、抵抗R1の両端電圧の極性に基づいて、充電電流が流れているか放電電流が流れているかを検出できる。また、本実施形態では、電流検出部20と充放電部30がシャント抵抗である抵抗R1を共有しているので、バックアップ電源システム1を構成する部品の数を削減できるという利点もある。
 制御部50は、電流検出部20の検出結果に応じて、遮断部10を導通状態又は遮断状態に制御する。制御部50は、例えば、プロセッサ及びメモリを有するマイクロコンピュータで構成されている。つまり、制御部50は、プロセッサ及びメモリを有するコンピュータシステムで実現されている。そして、プロセッサが適宜のプログラムを実行することにより、コンピュータシステムが制御部50として機能する。プログラムは、メモリに予め記録されていてもよいし、インターネット等の電気通信回線を通じて、又はメモリカード等の非一時的記録媒体に記録されて提供されてもよい。なお、制御部50はコンピュータシステムで実現されるものに限定されず、アナログ回路、ゲートドライブ回路等で実現されてもよい。
 制御部50は、電流検出部20によって放電電流が検出されていない状態では、遮断部10を導通状態に制御する。遮断部10が導通状態に制御されている場合、第1端子T1と第2端子T2との間が遮断部10を介して導通する。このとき、主電源2が失陥していない非失陥状態であれば、充放電部30は主電源2から電力供給を受けて補助電源40に充電電流を流し、補助電源40が充電される。
 一方、遮断部10が導通状態に制御されている場合に、主電源2の失陥状態が発生すると、充放電部30は補助電源40から電力供給を受けて放電電流を流し、電流検出部20によって放電電流が検出される。制御部50は、電流検出部20によって放電電流が検出されると、遮断部10を遮断状態に制御する。これにより、補助電源40からの放電電流が遮断部10を介して主電源2側の回路に流れるのを抑制でき、失陥状態において補助電源40から負荷3に供給される電力が低下するのを抑制できる。
 なお、制御部50は、遮断部10を遮断状態に制御すると、外部システムである車両100のECU(Electronic Control Unit)4から解除信号が入力されるまで、遮断部10を遮断状態に制御し続ける。換言すると、制御部50は、電流検出部20が放電電流を検出してから、外部システム(ECU4)から解除信号が入力されるまでの間、遮断部10を遮断状態に制御する。解除信号は、主電源2の失陥状態が解消したことを示す信号である。車両100のECU4は、例えば、主電源2の状態を監視する機能を有しており、主電源2が失陥状態となった後に失陥状態が解消すると、制御部50に対して解除信号を出力する。制御部50は、解除信号が入力されるまで遮断部10を遮断状態に制御するので、負荷3の動作状態によって放電電流がゼロになったり、負荷3が発生した回生電力によって負荷3から補助電源40に充電電流が流れたりして、放電電流が流れなくなったとしても、遮断部10が導通状態となる可能性を低減できる。なお、制御部50に対して解除信号を出力する外部システムは、車両100のECU4に限定されず、主電源2の状態を監視する監視回路等でもよい。
 (2.2)動作
 本実施形態のバックアップ電源システム1の動作を図4のフローチャートに基づいて説明する。なお、図4に示すフローチャートは、本実施形態に係るバックアップ電源システム1の制御方法の一例に過ぎず、処理の順序が適宜変更されてもよいし、処理が適宜追加又は省略されてもよい。
 電流検出部20は、抵抗R1に放電電流が流れているか否かを検出している(ステップS1)。具体的には、電流検出部20のアンプA1が抵抗R1の両端電圧を増幅し、コンパレータCP1がアンプA1の出力電圧と基準電位との高低を比較しており、コンパレータCP1は、抵抗R1に流れる電流の向きに応じた極性の電圧を出力する。
 制御部50は、コンパレータCP1の出力電圧の正負に応じて、放電電流が発生しているか否かを判断する(ステップS2)。
 制御部50は、放電電流が発生していないと(ステップS2:No)、遮断部10を導通状態に制御する(ステップS3)。遮断部10が導通状態に制御されている状態で、主電源2が失陥していない場合、主電源2から負荷3に電力が供給される。また、充放電部30が主電源2から電力供給を受けて補助電源40に充電電流を流し、補助電源40を充電する。
 一方、遮断部10が導通状態に制御されている状態で、主電源2が失陥すると、充放電部30は、補助電源40から電力供給を受けて放電電流を流し、補助電源40から負荷3に電力が供給される。この場合、制御部50は、ステップS2の判断で放電電流が発生したと判断し(ステップS2:Yes)、遮断部10を遮断状態に制御し(ステップS4)、節点P1と第1端子T1との間が非導通となる。これにより、補助電源40からの放電電流が主電源2側の回路に流れるのを抑制でき、失陥状態において補助電源40から負荷3に供給される電力が低下するのを抑制できる。
 制御部50は、遮断部10を導通状態から遮断状態に切り替えると、外部システム(例えば車両100のECU4)から解除信号が入力されるまでは、遮断部10を遮断状態に制御する。
 すなわち、外部システムから制御部50に解除信号が入力されなければ(ステップS5:No)、制御部50は、遮断部10を遮断状態に維持する(ステップS4)。このとき、第1端子T1と節点P1との間が電気的に遮断された状態が維持されるので、補助電源40からの放電電流は、主電源2側の回路には流れず、負荷3に供給される。
 一方、外部システムから制御部50に解除信号が入力されると(ステップS5:Yes)、制御部50は、遮断部10を導通状態に制御する(ステップS6)。このとき、第1端子T1と節点P1との間が遮断部10を介して導通するので、充放電部30は主電源2から電力供給を受けて、補助電源40に充電電流を流し、補助電源40を充電する。
 (3)変形例
 上記実施形態は、本開示の様々な実施形態の一つに過ぎない。上記実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。また、バックアップ電源システム1と同様の機能は、バックアップ電源システム1の制御方法、コンピュータプログラム、又はプログラムを記録した非一時的な記録媒体等で具現化されてもよい。一態様に係るバックアップ電源システム1の制御方法は、検出ステップと、制御ステップと、を含む。検出ステップでは、充放電部30から流れる放電電流を検出する。制御ステップでは、検出ステップにおいて放電電流を検出していない状態では、遮断部10を導通状態に制御し、検出ステップにおいて放電電流を検出すると、遮断部10を遮断状態に制御する。一態様に係る(コンピュータ)プログラムは、コンピュータシステムに、バックアップ電源システム1の制御方法を実行させるためのプログラムである。
 以下、上記の実施形態の変形例を列挙する。以下に説明する変形例は、適宜組み合わせて適用可能である。
 本開示におけるバックアップ電源システム1は、例えば制御部50及び制御部31等を実現するためにコンピュータシステムを含んでいる。コンピュータシステムは、ハードウェアとしてのプロセッサ及びメモリを主構成とする。コンピュータシステムのメモリに記録されたプログラムをプロセッサが実行することによって、制御部50及び制御部31等の機能が実現される。プログラムは、コンピュータシステムのメモリに予め記録されてもよく、電気通信回線を通じて提供されてもよく、コンピュータシステムで読み取り可能なメモリカード、光学ディスク、ハードディスクドライブ等の非一時的記録媒体に記録されて提供されてもよい。コンピュータシステムのプロセッサは、半導体集積回路(IC)又は大規模集積回路(LSI)を含む1ないし複数の電子回路で構成される。ここでいうIC又はLSI等の集積回路は、集積の度合いによって呼び方が異なっており、システムLSI、VLSI(Very Large Scale Integration)、又はULSI(Ultra Large Scale Integration)と呼ばれる集積回路を含む。さらに、LSIの製造後にプログラムされる、FPGA(Field-Programmable Gate Array)、又はLSI内部の接合関係の再構成若しくはLSI内部の回路区画の再構成が可能な論理デバイスについても、プロセッサとして採用することができる。複数の電子回路は、1つのチップに集約されていてもよいし、複数のチップに分散して設けられていてもよい。複数のチップは、1つの装置に集約されていてもよいし、複数の装置に分散して設けられていてもよい。ここでいうコンピュータシステムは、1以上のプロセッサ及び1以上のメモリを有するマイクロコントローラを含む。したがって、マイクロコントローラについても、半導体集積回路又は大規模集積回路を含む1ないし複数の電子回路で構成される。
 なお、制御部50及び制御部31の各々は、コンピュータシステムによって実現されるものに限定されず、アナログ回路によって実現されてもよい。
 また、バックアップ電源システム1における複数の機能が、1つの筐体内に集約されていることはバックアップ電源システム1に必須の構成ではなく、バックアップ電源システム1の構成要素は、複数の筐体に分散して設けられていてもよい。さらに、バックアップ電源システム1の少なくとも一部の機能、例えば、制御部50の一部の機能がクラウド(クラウドコンピューティング)等によって実現されてもよい。また、バックアップ電源システム1が車両100に搭載される場合、制御部50の一部の機能が車両100のECUによって実現されてもよい。
 上記の実施形態において、電圧値等の2値の比較において、「以上」としているところは「より大きい」であってもよい。つまり、2値の比較において、2値が等しい場合を含むか否かは、基準値等の設定次第で任意に変更できるので、「以上」か「より大きい」かに技術上の差異はない。同様に、「未満」としているところは「以下」であってもよく、「未満」であるか「以下」であるかに技術上の差異はない。
 (3.1)変形例1
 変形例1のバックアップ電源システム1について図5を参照して説明する。変形例1のバックアップ電源システム1は、電流検出部20が備えるシャント抵抗R3が、充放電部30の外部に設けられている点で上記実施形態と相違する。なお、電流検出部20以外のバックアップ電源システム1の構成は上記の実施形態と同様であるので、共通する構成要素には同一の符号を付してその説明は省略する。
 変形例1のバックアップ電源システム1では、電流検出部20が、シャント抵抗R3と、アンプA1と、コンパレータCP1と、を含む。
 シャント抵抗R3は、節点P1と、充放電部30の抵抗R1との間に接続されている。シャント抵抗R3は、電流を検出するために設けられた抵抗器であり、抵抗値が数十mΩ~数百mΩ程度の抵抗器である。
 アンプA1は、シャント抵抗R3の両端電圧を所定の増幅率で増幅する。
 コンパレータCP1は、アンプA1の出力電圧と基準電位との高低を比較し、シャント抵抗R3に流れる電流の向きに応じた極性の電圧を出力する。つまり、コンパレータCP1は、シャント抵抗R3に放電電流が流れるか否かで極性が変化する電圧を出力する。
 制御部50は、コンパレータCP1の出力電圧の正負で放電電流が流れているか否かを判断でき、放電電流が流れると遮断部10を遮断状態に制御する。
 なお、シャント抵抗R3は、節点P1と充放電部30との間に接続されているが、シャント抵抗R3の位置は節点P1と充放電部30との間に限定されない。シャント抵抗R3は、放電電流が流れる電路において、充電電流が流れる場合と、放電電流が流れる場合とで、シャント抵抗R3に流れる電流の向きが判定される位置に配置されればよく、節点P1と第1端子T1との間に配置されてもよい。
 (3.2)変形例2
 変形例2のバックアップ電源システム1について図6を参照して説明する。変形例2のバックアップ電源システム1は、充放電部30Aの回路構成が変形例1と相違する。なお、充放電部30A以外のバックアップ電源システム1の構成は上記の変形例1と同様であるので、共通する構成要素には同一の符号を付してその説明は省略する。
 変形例2のバックアップ電源システム1では、充放電部30Aが、抵抗R4と、ダイオードD1との並列回路で構成されている。
 抵抗R4は、補助電源40に流れる充電電流を制限するための抵抗器であり、節点P1と補助電源40との間に接続されている。
 ダイオードD1は、アノードを補助電源40側、カソードを節点P1側に向け、抵抗R4と並列に接続されている。
 主電源2の非失陥状態において、主電源2の電圧が補助電源40の充電電圧よりも高い場合は、主電源2からシャント抵抗R3及び抵抗R4を介して補助電源40に充電電流が流れ、補助電源40が充電される。このとき、制御部50は、シャント抵抗R3に放電電流が流れていないと判断し、遮断部10を導通状態に制御する。遮断部10が導通状態に制御されていると、主電源2から遮断部10を介して負荷3に電力が供給されて負荷3が動作する。また、主電源2から遮断部10、シャント抵抗R3、及び抵抗R4を介して補助電源40に充電電流が流れ、補助電源40が充電される。
 また、主電源2の失陥状態において、主電源2の電圧が補助電源40の充電電圧よりも低くなると、補助電源40からダイオードD1及びシャント抵抗R3を介して放電電流が流れる。このとき、制御部50は、シャント抵抗R3に放電電流が流れていると判断し、遮断部10を遮断状態に制御するので、補助電源40からの放電電流が負荷3に供給され、負荷3が動作する。
 なお、充放電部30Aの回路構成は変形例1の構成に限定されず、適宜変更が可能である。
 (3.3)その他の変形例
 上記の実施形態において、補助電源40は、電気二重層キャパシタに限らず、リチウムイオンキャパシタ(LIC:Lithium Ion Capacitor)、又はリチウムイオン電池(LIB:Lithium Ion Battery)等の二次電池であってもよい。リチウムイオンキャパシタでは、EDLCと同様の材質(例えば活性炭)で正極が形成され、LIBと同様の材質(例えば黒鉛等の炭素材料)で負極が形成される。
 また、補助電源40は、電気二重層キャパシタに限らず、例えば、以下に説明する構成を有する電気化学デバイスであってもよい。ここでいう電気化学デバイスは、正極部材と、負極部材と、非水電解液と、を備える。正極部材は、正極集電体と、正極集電体に担持され正極活物質を含む正極材料層と、を有する。正極材料層は、アニオン(ドーパント)をドープ及び脱ドープする正極活物質として導電性高分子を含む。負極部材は、負極活物質を含む負極材料層を有する。負極活物質は、一例として、リチウムイオンの吸蔵及び放出を伴う酸化還元反応が進行する物質であり、具体的には、炭素材料、金属化合物、合金又はセラミックス材料等である。非水電解液は、一例として、リチウムイオン伝導性を有する。この種の非水電解液は、リチウム塩と、リチウム塩を溶解させる非水溶液と、を含んでいる。このような構成の電気化学デバイスは、電気二重層キャパシタ等に比べて、高いエネルギ密度を有する。
 電流検出部20は、放電電流が流れる電路に接続されたシャント抵抗を含み、シャント抵抗の両端電圧の極性に基づいて、放電電流が流れるか否かを検出しているが、電流検出部20はシャント抵抗を含むものに限定されない。電流検出部20は、非接触の電流センサでもよい。電流検出部20は、例えば、放電電流が流れる電路に近接配置されたコイルを用い、電路に電流が流れることによってコイルに発生する誘導電流の向きから、電路に充電電流が流れているか放電電流が流れているかを検出するものでもよい。
 (まとめ)
 以上説明したように、第1の態様のバックアップ電源システム(1)は、第1端子(T1)と、第2端子(T2)と、遮断部(10)と、補助電源(40)と、充放電部(30)と、電流検出部(20)と、制御部(50)と、を備える。第1端子(T1)には主電源(2)が接続される。第2端子(T2)には負荷(3)が接続される。遮断部(10)は、第1端子(T1)と第2端子(T2)との間に接続されて、導通状態及び遮断状態に切替可能である。補助電源(40)は、主電源(2)が失陥した失陥状態で負荷(3)に給電するための電源である。充放電部(30)は、遮断部(10)と第2端子(T2)との間の節点(P1)と補助電源(40)との間に接続される。充放電部(30)は、主電源(2)が失陥していない非失陥状態では主電源(2)から電力供給を受けて補助電源(40)に充電電流を流し、失陥状態では補助電源(40)から電力供給を受けて負荷(3)に放電電流を流す。電流検出部(20)は、充放電部(30)から流れる放電電流を少なくとも検出する。制御部(50)は、電流検出部(20)が放電電流を検出していない状態では、遮断部(10)を導通状態に制御し、電流検出部(20)が放電電流を検出すると、遮断部(10)を遮断状態に制御する。
 この態様によれば、主電源(2)の失陥状態では、充放電部(30)は、補助電源(40)から電力供給を受けて負荷(3)に放電電流を流し、負荷(3)を動作させている。充放電部(30)が補助電源(40)から電力供給を受けて放電電流を流すと、電流検出部(20)によって放電電流が検出され、制御部(50)が遮断部(10)を遮断状態とするので、補助電源(40)からの放電電流が主電源(2)側の回路に流れるのを抑制できる。したがって、負荷(3)への供給電力の低下を抑制できるという利点がある。
 第2の態様のバックアップ電源システム(1)では、第1の態様において、充放電部(30)は、双方向DC-DCコンバータを含む。
 この態様によれば、双方向DC-DCコンバータは、補助電源(40)から入力される電圧を、負荷(3)に必要な電圧値の電圧に変換して、負荷(3)に供給することができる。
 第3の態様のバックアップ電源システム(1)では、第1又は第2の態様において、電流検出部(20)は、補助電源(40)から放電電流が流れる電路に接続されたシャント抵抗(R1,R3)を含む。
 この態様によれば、電流検出部(20)は、シャント抵抗(R1,R3)の両端電圧を検出することによって、電路に流れる放電電流を検出することができる。
 第4の態様のバックアップ電源システム(1)では、第3の態様において、シャント抵抗(R1,R3)は、節点(P1)と補助電源(40)との間に接続されている。
 この態様によれば、主電源(2)の失陥状態において、補助電源(40)から流れる放電電流を確実に検出することができる。
 第5の態様のバックアップ電源システム(1)では、第3又は第4の態様において、電流検出部(20)と充放電部(30)がシャント抵抗(R1)を共有する。
 この態様によれば、バックアップ電源システム(1)を構成する部品の数を削減できる。
 第6の態様のバックアップ電源システム(1)では、第1~第5のいずれかの態様において、制御部(50)は、電流検出部(20)が放電電流を検出してから、外部システム(4)から解除信号が入力されるまでの間、遮断部(10)を遮断状態に制御する。
 この態様によれば、主電源(2)の失陥状態で補助電源(40)から負荷(3)に給電している場合に、負荷(3)の動作状態等によって放電電流が流れなくなっても、遮断部(10)が導通状態となる可能性を低減できる。
 第7の態様のバックアップ電源システム(1)では、第1~第6のいずれかの態様において、補助電源(40)は、電気二重層キャパシタを含む。
 この態様によれば、補助電源(40)に急速に充放電することができる。
 第8の態様の移動体(100)は、第1~第7のいずれかの態様のバックアップ電源システム(1)と、移動体本体(101)と、を備える。移動体本体(101)は、バックアップ電源システム(1)、主電源(2)、及び負荷(3)を搭載する。
 この態様によれば、負荷(3)への供給電力の低下を抑制できるという利点がある。
 第9の態様のバックアップ電源システム(1)の制御方法は、第1~第7のいずれかの態様のバックアップ電源システム(1)の制御方法であり、検出ステップと、制御ステップと、を含む。検出ステップでは、充放電部(30)から流れる放電電流を検出する。制御ステップでは、検出ステップにおいて放電電流を検出していない状態では、遮断部(10)を導通状態に制御し、検出ステップにおいて放電電流を検出すると、遮断部(10)を遮断状態に制御する。
 この態様によれば、負荷(3)への供給電力の低下を抑制できるという利点がある。
 第10の態様のプログラムは、コンピュータシステムに、第9の態様のバックアップ電源システム(1)の制御方法を実行させるためのプログラムである。
 この態様によれば、負荷(3)への供給電力の低下を抑制できるという利点がある。
 上記態様に限らず、上記の実施形態に係るバックアップ電源システム(1)の種々の構成(変形例を含む)は、バックアップ電源システム(1)の制御方法、(コンピュータ)プログラム、又はプログラムを記録した非一時的記録媒体等で具現化可能である。
 第2~第7の態様に係る構成については、バックアップ電源システム(1)に必須の構成ではなく、適宜省略可能である。
 1 バックアップ電源システム
 2 主電源
 3 負荷
 4 外部システム
 10 遮断部
 20 電流検出部
 30 充放電部
 40 補助電源
 50 制御部
 100 車両(移動体)
 101 移動体本体
 P1 節点
 R1 抵抗(シャント抵抗)
 R3 シャント抵抗
 T1 第1端子
 T2 第2端子

Claims (10)

  1.  主電源が接続される第1端子と、
     負荷が接続される第2端子と、
     前記第1端子と前記第2端子との間に接続されて導通状態及び遮断状態に切替可能な遮断部と、
     前記主電源が失陥した失陥状態で前記負荷に給電するための補助電源と、
     前記遮断部と前記第2端子との間の節点と前記補助電源との間に接続され、前記主電源が失陥していない非失陥状態では前記主電源から電力供給を受けて前記補助電源に充電電流を流し、前記失陥状態では前記補助電源から電力供給を受けて前記負荷に放電電流を流す充放電部と、
     前記充放電部から流れる前記放電電流を少なくとも検出する電流検出部と、
     前記電流検出部が前記放電電流を検出していない状態では、前記遮断部を導通状態に制御し、前記電流検出部が前記放電電流を検出すると、前記遮断部を遮断状態に制御する制御部と、を備える、
     バックアップ電源システム。
  2.  前記充放電部は、双方向DC-DCコンバータを含む、
     請求項1に記載のバックアップ電源システム。
  3.  前記電流検出部は、前記補助電源から前記放電電流が流れる電路に接続されたシャント抵抗を含む、
     請求項1又は2に記載のバックアップ電源システム。
  4.  前記シャント抵抗は、前記節点と前記補助電源との間に接続されている、
     請求項3に記載のバックアップ電源システム。
  5.  前記電流検出部と前記充放電部が前記シャント抵抗を共有する、
     請求項3又は4に記載のバックアップ電源システム。
  6.  前記制御部は、前記電流検出部が前記放電電流を検出してから、外部システムから解除信号が入力されるまでの間、前記遮断部を遮断状態に制御する、
     請求項1~5のいずれか1項に記載のバックアップ電源システム。
  7.  前記補助電源は、電気二重層キャパシタを含む、
     請求項1~6のいずれか1項に記載のバックアップ電源システム。
  8.  請求項1~7のいずれか1項に記載のバックアップ電源システムと、
     前記バックアップ電源システム、前記主電源、及び前記負荷を搭載する移動体本体と、を備える、
     移動体。
  9.  請求項1~7のいずれか1項に記載のバックアップ電源システムの制御方法であって、
     前記充放電部から流れる前記放電電流を検出する検出ステップと、
     前記検出ステップにおいて前記放電電流を検出していない状態では、前記遮断部を導通状態に制御し、前記検出ステップにおいて前記放電電流を検出すると、前記遮断部を遮断状態に制御する制御ステップと、を含む、
     バックアップ電源システムの制御方法。
  10.  コンピュータシステムに、
      請求項9に記載のバックアップ電源システムの制御方法を実行させるための、
     プログラム。
PCT/JP2022/031068 2021-08-27 2022-08-17 バックアップ電源システム、移動体、バックアップ電源システムの制御方法、及びプログラム WO2023026922A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/569,626 US20240275202A1 (en) 2021-08-27 2022-08-17 Backup power supply system, mobile object, backup power supply system controlling method, and program
CN202280048884.0A CN117678143A (zh) 2021-08-27 2022-08-17 备用电源系统、移动体、备用电源系统的控制方法以及程序
JP2023543844A JPWO2023026922A1 (ja) 2021-08-27 2022-08-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021139309 2021-08-27
JP2021-139309 2021-08-27

Publications (1)

Publication Number Publication Date
WO2023026922A1 true WO2023026922A1 (ja) 2023-03-02

Family

ID=85322000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031068 WO2023026922A1 (ja) 2021-08-27 2022-08-17 バックアップ電源システム、移動体、バックアップ電源システムの制御方法、及びプログラム

Country Status (4)

Country Link
US (1) US20240275202A1 (ja)
JP (1) JPWO2023026922A1 (ja)
CN (1) CN117678143A (ja)
WO (1) WO2023026922A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008054363A (ja) * 2006-08-22 2008-03-06 Matsushita Electric Ind Co Ltd 電源装置
JP2009219176A (ja) * 2008-03-07 2009-09-24 Ricoh Co Ltd 電子回路のバックアップ電源回路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008054363A (ja) * 2006-08-22 2008-03-06 Matsushita Electric Ind Co Ltd 電源装置
JP2009219176A (ja) * 2008-03-07 2009-09-24 Ricoh Co Ltd 電子回路のバックアップ電源回路

Also Published As

Publication number Publication date
US20240275202A1 (en) 2024-08-15
CN117678143A (zh) 2024-03-08
JPWO2023026922A1 (ja) 2023-03-02

Similar Documents

Publication Publication Date Title
US10861663B2 (en) Relay device and a method to detect open-circuit failures
US10985551B2 (en) Double fusing of the module store interface
TWI418109B (zh) 電池設備、用於電池系統之積體電路及電池保護方法
US10811897B2 (en) Relay device and power supply device
JP7539117B2 (ja) 蓄電装置及びそれを備える車両
JP2008043009A (ja) 電池パックおよび制御方法
US20220006305A1 (en) Battery system
US20060267557A1 (en) Battery protection circuit
US20170346314A1 (en) Battery protection board, battery and mobile terminal
EP3751693B1 (en) Battery protective circuit and battery pack comprising same
JP2022547614A (ja) 燃料電池スタック保護方法、デバイス、および燃料電池電源システム
KR20200086621A (ko) 전지 시스템용 제어 시스템, 전지 시스템, 차량, 및 전지 시스템의 동작 방법
KR102555491B1 (ko) 전지 시스템용 제어 유닛, 전지 시스템 및 전지 시스템의 동작 방법
WO2023026922A1 (ja) バックアップ電源システム、移動体、バックアップ電源システムの制御方法、及びプログラム
CN111971871B (zh) 蓄电设备用的放电电路、蓄电系统以及具备其的车辆
US20240313765A1 (en) Backup power supply system, mobile object, and backup power supply system controlling method, and program
EP3534485A1 (en) Battery pack, battery management system, and method therefor
KR20190013651A (ko) 배터리 셀 관리 시스템
KR102065735B1 (ko) 배터리 팩 관리 장치 및 관리 방법
KR102546826B1 (ko) 배터리 제어 장치 및 이의 단락 검출 방법
KR102586100B1 (ko) 전지 시스템, 그리고 전지 시스템을 위한 제어 유닛 및 dc-dc 컨버터
US9529054B2 (en) Detecting disconnection fault in device monitoring circuit connected in multiple stages for battery cells connected in series
EP3958376B1 (en) Heating pad control apparatus
WO2024189966A1 (ja) バックアップ電源システム
JP7437231B2 (ja) 電源システムの制御装置および制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861210

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023543844

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280048884.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22861210

Country of ref document: EP

Kind code of ref document: A1