WO2023026668A1 - Monitoring system - Google Patents

Monitoring system Download PDF

Info

Publication number
WO2023026668A1
WO2023026668A1 PCT/JP2022/025284 JP2022025284W WO2023026668A1 WO 2023026668 A1 WO2023026668 A1 WO 2023026668A1 JP 2022025284 W JP2022025284 W JP 2022025284W WO 2023026668 A1 WO2023026668 A1 WO 2023026668A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
information
failure
group
error information
Prior art date
Application number
PCT/JP2022/025284
Other languages
French (fr)
Japanese (ja)
Inventor
聡子 清水
善之 奈須野
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2023543722A priority Critical patent/JPWO2023026668A1/ja
Publication of WO2023026668A1 publication Critical patent/WO2023026668A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers

Definitions

  • the present invention relates to a monitoring system that extracts and monitors power generation facilities that may fail based on power generation facilities that have shown signs of failure.
  • Photovoltaic power generation systems are rapidly spreading as a clean energy source that does not emit carbon dioxide in recent years. With the spread of photovoltaic power generation systems, rare cases of fires caused by failures of photovoltaic power generation systems have appeared. Power generation equipment such as a photovoltaic power generation system is often installed with a power generation module outdoors such as on a roof, and it takes a considerable amount of time for an indoor fire detector of a building to respond. As a result, there is a concern that residents of the building will be late to escape, and a concern that the response cost on the side of the housing manufacturer will increase in the event of a fire accident.
  • Patent Document 1 As a measure for early detection of a failure that causes a serious accident such as a fire, for example, Patent Document 1 is known.
  • the photovoltaic power generation system of Patent Document 1 detects that the amount of power generation has decreased due to contamination or failure of the photovoltaic power generation panel, and detects the amount of power generated by the power generation panel in the past, or the amount of power generated by another power generation system, or other
  • the power generation amount of the power generation panel is compared with the power generation amount for a predetermined period close to the current time. By doing so, it is possible to detect a decrease in the amount of power generated by the photovoltaic power generation panel and reduce false detections regardless of weather conditions and sunshine conditions.
  • Patent Literature 1 determines an abnormality of each device after a serious abnormality occurs. Therefore, there is a problem that the fire risk cannot be determined unless a serious abnormality actually occurs.
  • an object of the present invention is to provide a monitoring system capable of extracting and monitoring power generation facilities that may experience serious anomalies in the future.
  • One aspect of the present invention for solving the above problems is a plurality of power generation equipment, an error information creation unit for creating error information for each power generation equipment, and data for accumulating installation information and error information for each power generation equipment a storage unit, a prediction unit that predicts a failure sign group indicating a sign of failure from among the plurality of power generation facilities based on error information of each power generation facility, and installation information of the predicted failure sign group and the power generation facility
  • the monitoring system includes an extraction unit that identifies common specific information and extracts, from among the plurality of power generation equipment, power generation equipment that includes the specific information in installation information as a failure recovery group.
  • the common specific information is extracted from the installation information of the power generation equipment belonging to the failure sign group showing the signs of failure, and the power generation equipment including the specific information as the installation information is extracted as the failure backup group, so that future It is possible to monitor a failure reserve group in which serious abnormalities may occur. As a result, it is possible to prevent serious abnormalities from occurring in the future.
  • a preferred aspect includes a point assigning unit that assigns points to each of the error information, and the prediction unit accumulates the points of each error information in each power generation facility, and selects the power generation facility whose total score is equal to or greater than a predetermined threshold. It is to predict failure symptoms.
  • a point is assigned to each error information, the error information is weighted, and the total number of points is used to predict the group of signs of failure. can be identified.
  • the error information includes an error code
  • the score assignment unit assigns a score to the error code
  • the prediction unit assigns a score corresponding to each error code in each power generation facility.
  • the power generating equipment having the total score of the error information in the first period equal to or greater than a predetermined threshold value is predicted as the failure indication group from among the plurality of power generating equipment.
  • a more preferable aspect is that the points are weighted and set based on the safety of the power generation equipment.
  • points assigned to error information there are differences in the points assigned to error information, and points are assigned based on safety. For example, giving a high score to a product with low safety (high possibility of failure) and a low score to high safety (low possibility of failure). can accurately detect signs of failure.
  • the power generation equipment is connected to a management server via a network
  • the error information includes an error code and communication information regarding a communication state between the power generation equipment and the management server. There is associated communication error information.
  • the power generation equipment has one or more power generation modules, and the error information includes a power generation amount error in which an error code and power generation information related to the power generation amount of the power generation module are linked. There is information.
  • the installation information includes manufacturing information on manufacturing of each power generation facility, provision information on provision of each power generation facility, construction information on construction of the power generation facility, user information on users of the power generation facility, and the power generation It includes at least one piece of information selected from the group consisting of environmental information relating to the installation environment of the facility.
  • a preferable aspect is to have a point allocation unit that allocates points to each of the error information, and in each power generation facility belonging to the failure protection group, add up the points of each error information to calculate a total point every predetermined time, and The moving average value of the total number of error information points is calculated, and the display unit displays the time-series transition of the moving average value of the power generation equipment belonging to the failure recovery group.
  • the transition of the moving average value of the total points of the failure recovery group is displayed on the display, so it is easy to predict the tendency of serious abnormalities to occur in the future.
  • a preferable aspect is to have a point allocation unit that allocates points to each of the error information, and in each power generation facility belonging to the backup failure group, add up the points of each error information to calculate a total point at predetermined time intervals, An average value of the total points is calculated every two periods, and a display unit is provided for displaying the time-series transition of the average total points of the power generation equipment belonging to the failure recovery group.
  • the extraction unit identifies a plurality of common specific information from the failure indication group and the installation information of the predicted power generation equipment, and from among the plurality of power generation equipment, each specific information is identified as a failure recovery group It is to extract the power generation equipment.
  • the monitoring system of the present invention it is possible to extract and monitor power generation facilities that may experience serious abnormalities in the future.
  • FIG. 1 is a block diagram of a monitoring system according to a first embodiment of the invention
  • FIG. FIG. 2 is an explanatory diagram of the monitoring system of FIG. 1, where (a) is an explanatory diagram when predicting a failure sign group, and (b) is an explanatory diagram when extracting a failure recovery group
  • FIG. 2 is a flow chart of a failure symptom group prediction operation of the monitoring system of FIG. 1
  • FIG. 2 is a flow chart of a score calculation operation of the monitoring system of FIG. 1
  • FIG. 2 is a flow chart of a failure recovery group monitoring operation of the monitoring system of FIG. 1
  • FIG. FIG. 1 is a block diagram of a monitoring system according to a first embodiment of the invention
  • FIG. FIG. 2 is an explanatory diagram of the monitoring system of FIG. 1, where (a) is an explanatory diagram when predicting a failure sign group, and (b) is an explanatory diagram when extracting a failure recovery group
  • FIG. 2 is a flow chart of a
  • FIG. 4 is an explanatory diagram showing the relationship between error codes, phenomena, and scores; It is explanatory drawing of an example at the time of calculating the total score of power generation equipment.
  • FIG. 10 is an explanatory diagram of an example of an extracted failure recovery group, showing transition of time-series data of a moving average of total points in each piece of specific information;
  • FIG. 10 is a flow chart of the failure recovery group monitoring operation of the monitoring system according to the second embodiment of the present invention;
  • a monitoring system 1 includes a management server 2, a plurality of power generation facilities 3, and one or a plurality of client terminals 5, as shown in FIG. and a client terminal 5 are interconnected via a network 6 such as the Internet or an intranet.
  • a network 6 such as the Internet or an intranet.
  • the monitoring system 1 predicts the power generation equipment 3 that shows signs of failure from among the plurality of power generation equipment 3 as a failure symptom group, and extracts specific information common to the extracted power generation equipment 3 (for example, specific information b1 and specific information c3) are extracted. Then, the power generation equipment 3 having the specific information extracted from the plurality of power generation equipment 3 (for example, the specific information b1 and the specific information c3 in FIG. 2B) is extracted as a failure recovery group and monitored. is one of Based on this fact, a detailed description will be given below.
  • the management server 2 is a server that manages the operational status of each power generation facility 3 .
  • the management server 2 has a hardware configuration including a central processing unit composed of a control unit for controlling each device and an arithmetic unit for performing calculations on data, a storage device for storing data, an input device for inputting data from the outside, It is a computer equipped with an output device that outputs data to the outside.
  • the management server 2 includes, as main components, a symptom prediction unit 10 (prediction unit), a preliminary group extraction unit 11 (extraction unit), a score allocation unit 12, a data storage unit 13, an error It is composed of an information creation unit 14 , a server-side display unit 16 (display unit), and a server-side communication unit 17 .
  • the symptom prediction unit 10 is a part that predicts a failure symptom group indicating a symptom of failure from among the plurality of power generation facilities 3 .
  • the backup group extraction unit 11 is a part that extracts a backup failure group that has a high possibility of failure in the future from among the plurality of power generation facilities 3 .
  • the score allocation unit 12 is a unit that allocates a score for each piece of error information that has occurred in each power generation facility 3, and more specifically, a unit that allocates a score according to the type of error code.
  • the data accumulation unit 13 is a part that accumulates information about each power generation facility 3, such as the score of each power generation facility 3, error information, installation information, whether it belongs to a failure indication group, whether it belongs to a failure recovery group, and the like.
  • the installation information is information related to the installation conditions of each power generation equipment 3, and includes, for example, identification information, manufacturing information, provision information, construction information, user information, environment information, and the like.
  • the identification information is information relating to identification of each power generation facility 3, and includes information such as an identification code and an identification number of the power generation facility 3, for example.
  • the manufacturing information is information related to the manufacturing of each power generation equipment 3, and includes, for example, the model of the power generation module 60, the serial number of the power generation module 60, the model of the power converter 51, the serial number of the power converter 51, and the model of the power storage device 52. , the serial number of the power storage device 52, and the like.
  • the provided information is information possessed by the provider, and is information related to the provision of each power generation facility 3, and includes information such as the installation year of the power generation facility 3 and the warranty period of the power generation facility 3, for example.
  • the construction information is information related to the construction of each power generation facility 3, and includes information such as the name of the builder of the power generation facility 3, for example.
  • the user information is information about the user of each power generation facility 3, and includes information such as the location of the power generation facility 3, for example.
  • the environmental information is information about the installation environment of each power generation equipment 3, and includes information such as the number of installed power generation modules 60 in each power generation equipment 3 and the inclination angle of the light receiving surface of the power generation module 60, for example.
  • the error information creation unit 14 is a part that creates error information in which an error code is linked to an error content (error event).
  • the error information creation unit 14 determines the device abnormality using the device information emitted from each device measured or collected by the data measurement unit 53, and when the device is abnormal, the error code and each device of the power generation facility 3 It is possible to create error information (device error information A, which will be described later) in which device information sent from is linked.
  • the error information creation unit 14 checks the communication status between the management server 2 and each power generation facility 3 by transmitting a communication confirmation command such as a Ping command to each power generation facility 3.
  • error code and error information (communication error information B, which will be described later) in which communication information relating to the communication state between the management server 2 and the power generation equipment 3 is linked.
  • the error information creation unit 14 determines whether there is an abnormality in the power generation amount using the power generation information regarding the power generation amount of the power generation module 60 measured or collected by the data measurement unit 53, which will be described later. It is possible to create error information (power generation amount error information C described later) in which power generation information related to the power generation amount of the power generation module 60 is linked.
  • the server-side display unit 16 is a part that displays the transition of the score of each power generation equipment 3 belonging to the backup failure group extracted by the backup group extraction unit 11 .
  • the server-side communication unit 17 is a unit capable of mutual communication of data with the network 6 wirelessly or by wire.
  • the server-side communication unit 17 of this embodiment is wirelessly or wiredly connected to the server-side router, and is connected to the network 6 via the server-side router.
  • the power generation equipment 3 is a photovoltaic power generation equipment that mainly generates electricity from sunlight.
  • the power generation equipment 3 includes, as main components, a module group 50, a power conversion device 51, a power storage device 52, a data measurement unit 53, a power generation side display unit 56, and a power generation side communication unit 57.
  • the module group 50 is composed of one or more power generation modules 60 .
  • the power generation module 60 is a photoelectric conversion device that converts light energy into electric energy, and is a solar cell module that generates DC power using light such as sunlight.
  • the power conversion device 51 is a device that converts power between DC power and AC power.
  • the power conversion device 51 converts the DC power generated by the power generation module 60 and the DC power stored in the power storage device 52 into AC power. It's a power conditioner.
  • the power storage device 52 is a device that incorporates one or more secondary batteries, temporarily stores the power generated by the power generation module 60, and supplies the stored power according to power demand.
  • the data measuring unit 53 is a part that measures or collects device information (device data) emitted from the module group 50, the power conversion device 51, and the power storage device 52, and is a part that measures or collects power generation information (power generation data) regarding the power generation amount of the power generation module 60. It is also a part that measures or collects
  • the data measurement unit 53 can process the measured or collected device information and power generation information as necessary and transfer them to the management server 2 .
  • the power generation side display unit 56 is a part that displays the transition of the score of each power generation equipment 3 belonging to the backup failure group extracted by the backup group extraction unit 11 .
  • the power generation side communication unit 57 is a unit capable of mutual communication of data with the network 6 wirelessly or by wire.
  • the power generation side communication unit 57 of the present embodiment is wirelessly or wiredly connected to the power generation side router, and is connected to the network 6 via the power generation side router. That is, the power generation equipment 3 can transmit each operation data measured by the data measurement unit 53 to the management server 2 via the power generation side communication unit 57 .
  • the client terminal 5 is a mobile terminal or fixed terminal owned by a maintenance worker or the like.
  • the client terminal 5 has a hardware configuration including a central processing unit composed of a control device for controlling each device and an arithmetic device for performing calculations on data, a storage device for storing data, an input device for inputting data from the outside, It is a computer equipped with an output device that outputs data to the outside.
  • the client terminal 5 includes a client-side display section 80 and a client-side communication section 81 as main components.
  • the client-side display section 80 is a section that displays the transition of the score of each power generation equipment 3 belonging to the backup failure group extracted by the backup group extraction section 11 .
  • the client-side communication unit 81 is a unit capable of mutual communication of data with the network 6 wirelessly or by wire.
  • the client-side communication unit 81 of this embodiment is connected wirelessly or by wire to the client-side router, and is connected to the network 6 via the client-side router.
  • the abnormality monitoring operation of this embodiment is composed of a failure symptom group prediction operation and a failure recovery group monitoring operation.
  • the failure indication group prediction operation is an operation performed for each power generation equipment 3 and is an operation for predicting a failure indication group from among the power generation equipment 3 .
  • the failure symptom group prediction operation first, as shown in FIG. 3, the first timer is turned on (step S1-1), and the score calculation operation is executed (step S1-2).
  • the second timer is turned on (step S2-1) and it is checked whether there is any error information (step S2-2).
  • the error information is associated with an error code and an error content (error event).
  • the error information is created by linking the date and time of error occurrence and the content of the error measured or collected by the data measurement unit 53 with the error code by the error information creation unit 14 .
  • the error information is roughly divided into apparatus error information A, communication error information B, and power generation amount error information C, as shown in FIG.
  • the device error information A is error information in which an error code and device information issued from each device of the power generation facility 3 are linked. That is, the device error information A is error information issued from each device of the power generation facility 3, and is error information set by the manufacturer of each device.
  • the communication error information B is error information in which an error code and communication information regarding the communication state between the management server 2 and the power generation equipment 3 are linked.
  • the communication error information B includes the following error information (1) to (4) regarding communication disruption. (1) Communication interruption between the power conversion device 51 and the data measurement unit 53 (2) Communication interruption between the data measurement unit 53 and the power generation side communication unit 57 (3) Communication interruption between the power generation side communication unit 57 and the power generation side router Communication Disruption (4) Communication Disruption between Power Generation Side Router and Management Server 2
  • the power generation amount error information C is error information in which an error code and power generation information related to the power generation amount of the power generation module 60 are linked. That is, the power generation amount error information C is error information regarding the power generation amount abnormality of the power generation module 60 .
  • step S2-2 of FIG. 4 if there is error information (Yes in step S2-2), the score assigning unit 12 assigns a score that is weighted and assigned based on safety for each error code in the error information. Give (step S2-3).
  • the error code A-01 in FIG. 6 corresponds to detecting as an error that the temperature of the power converter 51 exceeds the reference value.
  • the high temperature of the power conversion device 51 may be caused by a high ambient temperature of the power conversion device 51 or an electric leak in the power conversion device 51, and there is a high possibility of a serious abnormality such as ignition. , has a large impact on safety and is given a high score (100 points).
  • the error code B-01 in FIG. 6 corresponds to detection of a communication interruption for one day or less. Communication disruption is caused by communication failure between the power generation equipment 3 and the network 6, communication failure between the network 6 and the management server 2, etc.
  • error code B-02 in FIG. 6 it corresponds to detection of communication interruption for two weeks or more, and compared to error code B-01, communication interruption is detected over a long period of time. , and error code B-01, a higher score (5 points) than error code B-01 is given because the probability of occurrence of an abnormality is greater than that of error code B-01.
  • error code C-01 in FIG. 6 it corresponds to detecting that the power generation amount of the power generation equipment 3 fell below the power generation amount abnormality threshold once.
  • the decrease in the amount of power generated is caused by weather such as bad weather and snowfall, deterioration of the power generation equipment 3 over time, damage to the power generation module 60, and defects in wiring.
  • a low score (5 points) is given because there is a high possibility that this is due to a temporary abnormality.
  • error code C-02 in Figure 6 it corresponds to the fact that it has been detected that the amount of power generation has been below the threshold for abnormal power generation for three consecutive months.
  • a higher score (50 points) than the case of the error code C-01 is given because there is a possibility that an abnormality has occurred without the error code C-01.
  • step S2-4 it is checked whether a predetermined time t1 has elapsed since the second timer was turned on (step S2-4).
  • the predetermined time t1 at this time is not particularly limited, it is preferably 10 minutes or more and 6 hours or less, and more preferably 30 minutes or more and 2 hours or less.
  • step S2-4 if the predetermined time t1 has elapsed (Yes at step S2-4), the second timer is reset (step S2-5), and the point calculation operation is terminated.
  • step S2-2 If there is no error information in step S2-2, the process proceeds to step S2-4.
  • step S2-4 if the predetermined time t1 has not elapsed (step S2-4), the process proceeds to step S2-2.
  • step S1-2 when the point calculation operation ends in step S1-2, it is checked whether the first period T1 has elapsed since the first timer was turned on (step S1-3).
  • the first period T1 at this time is not particularly limited as long as it is a period longer than the predetermined time t1. The following are more preferable.
  • the first period T1 in this embodiment is 30 days.
  • step S1-3 if the first period T1 has passed (Yes in step S1-3), the total score of the power generation equipment 3 is calculated, and it is confirmed whether the total score is equal to or greater than the threshold (step S1 -4). That is, the symptom prediction unit 10 compares the total score associated with the error code during the first period T1 with the threshold.
  • FIG. 1 shows error information that occurred in one power generation facility 3 in chronological order.
  • No. 1 in the first period T1, the high temperature of the power conversion device 51 (abnormal temperature of the power conversion device 51), the communication interruption between the management server 2 and the power generation device 3, and the decrease in the power generation amount of the power generation module 60 3 types of errors have occurred.
  • no. For the power generation facility 3 of No. 1, points are added to the error codes associated with the respective errors, and the total score of the points associated with the error codes during the first period T1 is 171 points.
  • the threshold is set to 150 points, No.
  • the power generation equipment 3 of No. 1 has a total threshold of more than 150 points, so it is equal to or higher than the threshold. Also, for example, if the threshold is set to 180 points, No. The power generation equipment 3 of 1 is below the threshold because the total threshold is below 180 points.
  • step S1-4 of FIG. 3 if the total score is equal to or greater than the threshold (Yes in step S1-4), it is predicted that there is a failure symptom group (step S1-5), and the first timer is reset. (Step S1-6), the failure sign group prediction operation is terminated.
  • step S1-4 if the total score is less than the threshold (No in step S1-4), it does not correspond to the failure symptom group, so the first timer is reset (step S1-6), and the failure symptom End the group prediction operation.
  • step S1-3 if the first period T1 has not elapsed, the process proceeds to step S1-2.
  • the failure protection group monitoring operation is an operation of monitoring the time-series transition of the points of the failure protection group.
  • the installation information is compared between the failure symptom group and the predicted power generation equipment 3 (step S3-1), and it is confirmed whether there is common specific information (step S3-2).
  • step S3-2 if there is one or a plurality of common specific information (Yes in step S3-2), for each specific information, the power generation equipment 3 having the specific information is extracted as a failure recovery group (step S3-3).
  • step S3-3 specific information common to various types of information constituting the installation information is extracted, and the power generating equipment 3 having the extracted specific information is extracted as a failure recovery group.
  • the point calculation operation is performed for the power generation equipment 3 extracted as the failure recovery group (step S3-4), and the total points of the power generation equipment 3 belonging to the same failure recovery group are calculated (step S3-5 ), the n-term moving average of the total points of the failure protection group is calculated (step S3-6).
  • the number of sections n at this time is appropriately set depending on the length of the predetermined time t1 and the like, but is preferably 3 or more and 10 or less.
  • step S3-6 time-series transition data representing the time-series transition of the moving average value calculated for each failure protection group is created or updated (step S3-7), and the data It is stored in the storage unit 13, and it is checked whether there is an operation end request (step S3-8).
  • the administrator acquires the time-series transition data and causes the server-side display unit 16 to display the time-series data.
  • each specific information, the number of power generation facilities 3 having each specific information, and the transition of the moving average value of the total points for each day in each specific information are displayed as time-series data in an image. be done.
  • the administrator checks the time-series transition of the moving average value of the total points from the image displayed on the server-side display unit 16, determines whether maintenance is necessary for each failure protection group, and determines whether the total points are small or not.
  • an operation termination request is input to terminate the failure recovery group monitoring operation.
  • step S3-8 in FIG. 5 if there is an operation termination request (Yes at step S3-8), the failure protection group monitoring operation is terminated.
  • step S3-2 if there is no common specific information between the failure indication group and the predicted power generating equipment 3 (No in step S3-2), the failure recovery group cannot be extracted, so the failure recovery group monitoring operation is performed. Terminate, and execute the failure symptom group prediction operation again.
  • step S3-8 if there is no operation end request (No at step S3-8), the process proceeds to step S3-4.
  • common specific information in the installation information is specified among the power generation equipment 3 belonging to the abnormality sign group in which the abnormality sign is seen, and the power generation equipment having the specific information for each specific information 3 is extracted as a failure reserve group.
  • the transition of the moving average value of the total points of the failure protection group is displayed on the server-side display unit 16 at predetermined time intervals t1. can be expected.
  • the management server 2, the power generation equipment 3, and the client terminal 5 are connected via the network 6, and the management server 2, the power generation equipment 3, and the client terminal 5 each have a display unit 16, 56, and 80 are provided, images displaying time-series data of moving average values of each specific information and the total points corresponding to each specific information can be confirmed on the display units 16, 56, and 80, respectively.
  • the failure recovery group monitoring operation differs from the failure recovery group monitoring operation of the first embodiment.
  • the failure recovery group monitoring operation of the second embodiment has many steps in common with the failure recovery group monitoring operation of the first embodiment, and some steps are the same as those of the first embodiment. Different from behavior. Therefore, steps similar to those of the failure recovery group monitoring operation of the first embodiment are given the same step numbers, and descriptions thereof are omitted.
  • the installation information is compared between the failure indication group and the predicted power generating equipment 3 (step S3-1), and the common installation information is identified. If there is information (Yes in step S3-2), the power generating equipment 3 having the specific information is extracted as a failure recovery group for each specific information (step S3-3).
  • the third timer is turned on (step S4-1), the score calculation operation is executed (step S4-2), and the total score of each failure protection group is calculated (step S4-3). ).
  • step S4-4 When the total points for each backup failure group are calculated, it is checked whether the second period T2 has elapsed since the third timer was turned on (step S4-4).
  • the second period T2 at this time is not particularly limited as long as it is a period longer than the predetermined time t1. is more preferable.
  • the second period T2 in this embodiment is one day (24 hours).
  • step S4-4 if the second period T2 has passed (Yes in step S4-4), the average value (arithmetic mean value) of the total points of each potential failure group in the second period T2 is calculated. (Step S4-5), create or update time-series transition data representing the time-series transition of the average value of total points calculated in each failure protection group, and store it in the data storage unit 13 (step S4-6). Then, the third timer is reset (step S4-7), and it is checked whether there is an operation end request (step S4-8).
  • step S4-8 if there is an operation termination request (Yes in step S4-8), the failure recovery group monitoring operation is terminated, and if there is no operation termination request (step S4-8: No), step Move to S4-1.
  • step S4-4 if the second period T2 has not elapsed since the timer was turned on, the process proceeds to step S4-2.
  • the transition of the average value of the total points of the failure protection group can be displayed on the server-side display unit 16 every second period T2. It is easy to identify what has happened.
  • the total score of each power generation equipment 3 is compared with a threshold value, and the power generation equipment 3 having a score equal to or higher than the threshold value is extracted as a failure indication group, but the present invention is not limited to this.
  • the standard normal distribution is taken with the total points of all the power generation facilities 3, those falling within the top X1% may be uniformly extracted as the failure symptom group.
  • X1 is appropriately set according to the total number of power generation facilities 3, but is preferably set within a range of 1 or more and 30 or less, for example.
  • the standard normal distribution is taken with the total points of all the power generation facilities 3, the ones that fall within the top X2 units may be uniformly extracted as the failure sign group.
  • X2 is appropriately set according to the total number of power generation facilities 3, but is preferably set to a number in the range of 1% to 30% of the total number of power generation facilities 3, for example.
  • the threshold is a uniquely fixed constant, but the present invention is not limited to this, and the threshold may be a variable.
  • the threshold value may be a value in the range of the top 1% to the top 30% of the total points of all the power generation facilities 3 .
  • the server-side display unit 16 of the management server 2 displays the moving average value of the total points or the time-series transition of the average value, but the present invention is not limited to this.
  • the moving average value of the total points or the time-series transition of the average value may be displayed on the other display unit 56 on the power generation side or the display unit 80 on the client side.
  • the error code and the score are linked by the error information creation unit 14 on the management server 2 side, but the present invention is not limited to this.
  • An error information creation unit 14 may be provided on the power generation equipment 3 side to associate the error code with the score. That is, the error information creation unit 14 may be provided on the power generation equipment 3 side, the error information creation unit 14 may determine an error, and error information may be created by linking an error code to the content of the error.
  • the management server 2 is preferably provided with an error information acquisition unit that acquires error information from the power generation equipment 3 side. By doing so, error information can be centrally managed on the management server 2 side.
  • management server 2 and the power generation equipment 3 are provided separately in the above embodiment, the present invention is not limited to this.
  • the management server 2 and the power generation equipment 3 may be integrated.
  • the arithmetic mean value is used as the average value of the total points, but the present invention is not limited to this.
  • An average value obtained by another calculation method may be used as the average value of the total points.
  • a weighted average value or a geometric average value may be used as the average value of the total points.
  • the symptom prediction unit 10 and the preliminary group extraction unit 11 are provided in the management server 2, but the present invention is not limited to this.
  • the symptom prediction unit 10 and/or the backup group extraction unit 11 may be provided in the power generation equipment 3 .
  • each communication section 17, 57, 81 was connected to the network 6 via a router, but the present invention is not limited to this.
  • Each communication section 17, 57, 81 may be connected to the network 6 via a radio base station.
  • the power generation equipment 3 includes the power storage device 52, but the present invention is not limited to this.
  • the power generation equipment 3 may not include the power storage device 52 .
  • the error information generating unit 14 uses the device information emitted from each device measured or collected by the data measuring unit 53 to determine device abnormality, but the present invention is not limited to this. do not have.
  • a management company that monitors the operating status of each device may determine whether the device is abnormal using the device information that is measured or collected by the data measuring unit 53 and emitted from each device.
  • the error information creation unit 14 creates error information (device error information A ).
  • each constituent member can be freely replaced or added between the embodiments.
  • monitoring system 2 management server 3 power generation facility 6 network 10 symptom prediction unit (prediction unit) 11 Preliminary group extraction unit (extraction unit) 12 Score allocation unit 13 Data storage unit 14 Error information creation unit 16 Server side display unit (display unit) 56 power generation side display unit (display unit) 60 power generation module 80 client side display unit (display unit)

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The present invention provides a monitoring system that can extract and monitor power generation facilities in which serious anomalies may occur in the future. This monitoring system comprises: a plurality of power generation facilities; an error information creating unit that creates error information on the power generation facilities; a data accumulation unit that accumulates installation information and error information on the power generation facilities; a prediction unit that predicts a failure sign group presenting a sign of a failure from among the plurality of power generation facilities on the basis of the error information on each power generation facility; and an extraction unit that identifies common specific information in the installation information on the power generation facilities predicted as the failure sign group and extracts, as a failure candidate group, the power generation facilities including the specific information in the installation information from among the plurality of power generation facilities.

Description

監視システムMonitoring system
 本発明は、故障の兆候を示した発電設備を元に故障する可能性のある発電設備を抽出し監視する監視システムに関する。 The present invention relates to a monitoring system that extracts and monitors power generation facilities that may fail based on power generation facilities that have shown signs of failure.
 近年の二酸化炭素を排出しないクリーンなエネルギー源として太陽光発電システムが急速に普及してきている。
 太陽光発電システムの普及に伴い、稀に太陽光発電システムの故障によって火災が生じる事例が現れてきている。
 太陽光発電システム等の発電設備は、発電モジュールが屋根等の屋外に設置されることが多く、建物の屋内火災検知器では反応するまでにかなりの時間を要してしまう。その結果、建物の住人が逃げ遅れる懸念や、火災事故に至った場合に住宅メーカー側の対応コストが大きくなる懸念がある。
Photovoltaic power generation systems are rapidly spreading as a clean energy source that does not emit carbon dioxide in recent years.
With the spread of photovoltaic power generation systems, rare cases of fires caused by failures of photovoltaic power generation systems have appeared.
Power generation equipment such as a photovoltaic power generation system is often installed with a power generation module outdoors such as on a roof, and it takes a considerable amount of time for an indoor fire detector of a building to respond. As a result, there is a concern that residents of the building will be late to escape, and a concern that the response cost on the side of the housing manufacturer will increase in the event of a fire accident.
 そこで、火災等の重大事故を引き起こす故障を早期に検知する方策として、例えば、特許文献1がある。
 特許文献1の太陽光発電システムは、太陽光発電パネルの汚損又は故障により発電量が低下したことを検知し、かつ過去の発電パネルの発電量、又は他の発電システムの発電量、又は他の発電パネルの発電量と現在時刻に近い所定期間の発電量とを比較する。こうすることで、気象条件や日照条件に左右されずに太陽光発電パネルの発電量低下を検知し、誤検知を減少させることが可能とされている。
Therefore, as a measure for early detection of a failure that causes a serious accident such as a fire, for example, Patent Document 1 is known.
The photovoltaic power generation system of Patent Document 1 detects that the amount of power generation has decreased due to contamination or failure of the photovoltaic power generation panel, and detects the amount of power generated by the power generation panel in the past, or the amount of power generated by another power generation system, or other The power generation amount of the power generation panel is compared with the power generation amount for a predetermined period close to the current time. By doing so, it is possible to detect a decrease in the amount of power generated by the photovoltaic power generation panel and reduce false detections regardless of weather conditions and sunshine conditions.
特開2014-60365号公報JP 2014-60365 A
 しかしながら、特許文献1の太陽光発電システムは、1つの機器ごとに、その機器の異常を、重大な異常が発生した後に判定するものである。そのため、実際に重大な異常が発生しないと、火災リスクを判断できない問題がある。 However, the photovoltaic power generation system of Patent Literature 1 determines an abnormality of each device after a serious abnormality occurs. Therefore, there is a problem that the fire risk cannot be determined unless a serious abnormality actually occurs.
 そこで、本発明は、将来的に重大な異常が発生する可能性のある発電設備を抽出し監視可能な監視システムを提供することを目的とする。 Therefore, an object of the present invention is to provide a monitoring system capable of extracting and monitoring power generation facilities that may experience serious anomalies in the future.
 上記した課題を解決するための本発明の一つの様相は、複数の発電設備と、各発電設備のエラー情報を作成するエラー情報作成部と、各発電設備の設置情報とエラー情報を蓄積するデータ蓄積部と、各発電設備のエラー情報に基づいて前記複数の発電設備の中から故障の兆候を示す故障兆候群を予測する予測部と、前記故障兆候群と予測された発電設備の設置情報において共通する特定情報を特定し、前記複数の発電設備の中から、設置情報に前記特定情報を含む発電設備を故障予備群として抽出する抽出部を備える、監視システムである。 One aspect of the present invention for solving the above problems is a plurality of power generation equipment, an error information creation unit for creating error information for each power generation equipment, and data for accumulating installation information and error information for each power generation equipment a storage unit, a prediction unit that predicts a failure sign group indicating a sign of failure from among the plurality of power generation facilities based on error information of each power generation facility, and installation information of the predicted failure sign group and the power generation facility The monitoring system includes an extraction unit that identifies common specific information and extracts, from among the plurality of power generation equipment, power generation equipment that includes the specific information in installation information as a failure recovery group.
 本様相によれば、故障の兆候を示した故障兆候群に属する発電設備の設置情報において共通する特定情報を抽出し、設置情報として特定情報を含む発電設備を故障予備群として抽出するので、将来的に重大な異常が発生する可能性のある故障予備群を監視できる。その結果、将来的に重大な異常が生じることを未然に防ぐことができる。 According to this aspect, the common specific information is extracted from the installation information of the power generation equipment belonging to the failure sign group showing the signs of failure, and the power generation equipment including the specific information as the installation information is extracted as the failure backup group, so that future It is possible to monitor a failure reserve group in which serious abnormalities may occur. As a result, it is possible to prevent serious abnormalities from occurring in the future.
 好ましい様相は、前記エラー情報ごとに点数を割り当てる点数割当部を有し、前記予測部は、各発電設備において各エラー情報の点数を積算し、合計点数が所定の閾値以上となる発電設備を前記故障兆候群と予測することである。 A preferred aspect includes a point assigning unit that assigns points to each of the error information, and the prediction unit accumulates the points of each error information in each power generation facility, and selects the power generation facility whose total score is equal to or greater than a predetermined threshold. It is to predict failure symptoms.
 本様相によれば、エラー情報ごとに点数を割り当ててエラー情報に重み付けをし、合計点数によって故障兆候群を予測するので、より精度良く将来的に重大な異常が発生する可能性のある発電設備を特定できる。 According to this aspect, a point is assigned to each error information, the error information is weighted, and the total number of points is used to predict the group of signs of failure. can be identified.
 より好ましい様相は、前記エラー情報は、エラーコードを含み、前記点数割当部は、エラーコードに対して点数を割り当てるものであり、前記予測部は、各発電設備において各エラーコードに対応する点数を積算し、第1期間における前記エラー情報の合計点数が所定の閾値以上となる発電設備を前記複数の発電設備の中から前記故障兆候群と予測することである。 In a more preferred aspect, the error information includes an error code, the score assignment unit assigns a score to the error code, and the prediction unit assigns a score corresponding to each error code in each power generation facility. The power generating equipment having the total score of the error information in the first period equal to or greater than a predetermined threshold value is predicted as the failure indication group from among the plurality of power generating equipment.
 本様相によれば、エラーコードごとに点数を割り当てるので、エラーコードの要因に合わせて点数に重み付けを行うことができ、より精度良く将来的に重大な異常が発生する可能性のある発電設備を特定できる。 According to this aspect, since points are assigned to each error code, it is possible to weight the points according to the cause of the error code, and more accurately identify power generation facilities that may cause serious abnormalities in the future. can be identified.
 より好ましい様相は、前記点数は、前記発電設備の安全性を基準に重み付けがなされて設定されていることである。 A more preferable aspect is that the points are weighted and set based on the safety of the power generation equipment.
 本様相によれば、エラー情報間で割り当てる点数に差異があり、安全性を基準に点数が割り当てられている。例えば、安全性が低いもの(故障が発生している可能性が高いもの)に高い点数をつけ、安全性が高いもの(故障が発生している可能性が低いもの)に低い点数をつけることで、故障の兆候を正確に検知できる。 According to this aspect, there are differences in the points assigned to error information, and points are assigned based on safety. For example, giving a high score to a product with low safety (high possibility of failure) and a low score to high safety (low possibility of failure). can accurately detect signs of failure.
 より好ましい様相は、前記発電設備は、ネットワークを介して管理サーバーに接続されており、前記エラー情報の中には、エラーコードと、前記発電設備と前記管理サーバー間の通信状態に関する通信情報とが紐づけられた通信エラー情報があることである。 In a more preferred aspect, the power generation equipment is connected to a management server via a network, and the error information includes an error code and communication information regarding a communication state between the power generation equipment and the management server. There is associated communication error information.
 より好ましい様相は、前記発電設備は、一又は複数の発電モジュールを有し、前記エラー情報の中には、エラーコードと、前記発電モジュールの発電量に関する発電情報とが紐づけられた発電量エラー情報があることである。 In a more preferred aspect, the power generation equipment has one or more power generation modules, and the error information includes a power generation amount error in which an error code and power generation information related to the power generation amount of the power generation module are linked. There is information.
 上記した様相によれば、将来的に重大な異常が発生する可能性のある発電設備をより精度良く特定できる。  According to the above aspect, it is possible to more accurately identify power generation facilities that may experience serious anomalies in the future.
 好ましい様相は、前記設置情報は、各発電設備の製造に関する製造情報、各発電設備の提供に関する提供情報、前記発電設備の施工に関する施工情報、前記発電設備の利用者に関する利用者情報、及び前記発電設備の設置環境に関する環境情報からなる群から選ばれる少なくとも1つの情報を含むことである。 In a preferred aspect, the installation information includes manufacturing information on manufacturing of each power generation facility, provision information on provision of each power generation facility, construction information on construction of the power generation facility, user information on users of the power generation facility, and the power generation It includes at least one piece of information selected from the group consisting of environmental information relating to the installation environment of the facility.
 本様相によれば、設置情報から特定情報を抽出しやすい。 According to this aspect, it is easy to extract specific information from installation information.
 好ましい様相は、前記エラー情報ごとに点数を割り当てる点数割当部を有し、前記故障予備群に属する各発電設備において、各エラー情報の点数を積算して所定時間ごとに合計点数を算出し、前記エラー情報の合計点数の移動平均値を算出するものであり、前記故障予備群に属する発電設備の前記移動平均値の時系列の推移を表示する表示部を備えることである。 A preferable aspect is to have a point allocation unit that allocates points to each of the error information, and in each power generation facility belonging to the failure protection group, add up the points of each error information to calculate a total point every predetermined time, and The moving average value of the total number of error information points is calculated, and the display unit displays the time-series transition of the moving average value of the power generation equipment belonging to the failure recovery group.
 本様相によれば、表示部に故障予備群の合計点数の移動平均値の推移が表示されるので、将来的に重大な異常が発生する傾向を予期しやすい。 According to this aspect, the transition of the moving average value of the total points of the failure recovery group is displayed on the display, so it is easy to predict the tendency of serious abnormalities to occur in the future.
 好ましい様相は、前記エラー情報ごとに点数を割り当てる点数割当部を有し、前記故障予備群に属する各発電設備において、各エラー情報の点数を積算して所定時間ごとに合計点数を算出し、第2期間ごとに前記合計点数の平均値を算出するものであり、前記故障予備群に属する発電設備の前記合計点数の平均値の時系列の推移を表示する表示部を備えることである。 A preferable aspect is to have a point allocation unit that allocates points to each of the error information, and in each power generation facility belonging to the backup failure group, add up the points of each error information to calculate a total point at predetermined time intervals, An average value of the total points is calculated every two periods, and a display unit is provided for displaying the time-series transition of the average total points of the power generation equipment belonging to the failure recovery group.
 本様相によれば、表示部に故障予備群の合計点数の平均値の推移が表示されるので、故障が生じた場合に、どの時点で故障が生じたかを視覚的にも特定しやすい。 According to this aspect, since the transition of the average value of the total points of the failure recovery group is displayed on the display unit, it is easy to visually identify at what point in time the failure occurred.
 好ましい様相は、前記抽出部は、前記故障兆候群と予測された発電設備の設置情報から共通する複数の特定情報を特定し、前記複数の発電設備の中から、各特定情報において故障予備群として発電設備を抽出することである。 In a preferred aspect, the extraction unit identifies a plurality of common specific information from the failure indication group and the installation information of the predicted power generation equipment, and from among the plurality of power generation equipment, each specific information is identified as a failure recovery group It is to extract the power generation equipment.
 本様相によれば、特定情報ごとに故障予備群を抽出するので、故障が生じた場合に故障の原因を特定情報と結びつけやすい。 According to this aspect, since a failure reserve group is extracted for each specific information, when a failure occurs, it is easy to associate the cause of the failure with the specific information.
 本発明の監視システムによれば、将来的に重大な異常が発生する可能性のある発電設備を抽出し監視可能である。  According to the monitoring system of the present invention, it is possible to extract and monitor power generation facilities that may experience serious abnormalities in the future.
本発明の第1実施形態の監視システムのブロック図である。1 is a block diagram of a monitoring system according to a first embodiment of the invention; FIG. 図1の監視システムの説明図であり、(a)は故障兆候群を予測する際の説明図であり、(b)は故障予備群を抽出する際の説明図である。FIG. 2 is an explanatory diagram of the monitoring system of FIG. 1, where (a) is an explanatory diagram when predicting a failure sign group, and (b) is an explanatory diagram when extracting a failure recovery group; 図1の監視システムの故障兆候群予測動作のフローチャートである。FIG. 2 is a flow chart of a failure symptom group prediction operation of the monitoring system of FIG. 1; FIG. 図1の監視システムの点数算出動作のフローチャートである。2 is a flow chart of a score calculation operation of the monitoring system of FIG. 1; 図1の監視システムの故障予備群監視動作のフローチャートである。FIG. 2 is a flow chart of a failure recovery group monitoring operation of the monitoring system of FIG. 1; FIG. エラーコードと現象と点数の関係を示す説明図である。FIG. 4 is an explanatory diagram showing the relationship between error codes, phenomena, and scores; 発電設備の合計点数を算出する際の一例の説明図である。It is explanatory drawing of an example at the time of calculating the total score of power generation equipment. 抽出された故障予備群の一例の説明図であり、各特定情報における合計点数の移動平均の時系列データの推移を表している。FIG. 10 is an explanatory diagram of an example of an extracted failure recovery group, showing transition of time-series data of a moving average of total points in each piece of specific information; 本発明の第2実施形態の監視システムの故障予備群監視動作のフローチャートである。FIG. 10 is a flow chart of the failure recovery group monitoring operation of the monitoring system according to the second embodiment of the present invention; FIG.
 以下、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 本発明の第1実施形態の監視システム1は、図1のように、管理サーバー2と、複数の発電設備3と、一又は複数のクライアント端末5を有し、管理サーバー2と各発電設備3とクライアント端末5がインターネットやイントラネット等のネットワーク6を介して相互に接続されたものである。 A monitoring system 1 according to the first embodiment of the present invention includes a management server 2, a plurality of power generation facilities 3, and one or a plurality of client terminals 5, as shown in FIG. and a client terminal 5 are interconnected via a network 6 such as the Internet or an intranet.
 監視システム1は、図2(a)のように、複数の発電設備3の中から故障の兆候を示した発電設備3を故障兆候群として予測し、抽出した発電設備3で共通する特定情報(例えば、特定情報b1や特定情報c3)を抽出する。そして、複数の発電設備3の中から抽出した特定情報(例えば、図2(b)の特定情報b1や特定情報c3)をもつ発電設備3をそれぞれ故障予備群として抽出し、監視することを特徴の一つとしている。
 このことを踏まえて、以下、詳細に説明する。
As shown in FIG. 2( a ), the monitoring system 1 predicts the power generation equipment 3 that shows signs of failure from among the plurality of power generation equipment 3 as a failure symptom group, and extracts specific information common to the extracted power generation equipment 3 ( For example, specific information b1 and specific information c3) are extracted. Then, the power generation equipment 3 having the specific information extracted from the plurality of power generation equipment 3 (for example, the specific information b1 and the specific information c3 in FIG. 2B) is extracted as a failure recovery group and monitored. is one of
Based on this fact, a detailed description will be given below.
 管理サーバー2は、各発電設備3の運転状況を管理するサーバーである。
 管理サーバー2は、ハードウェア構成として、各装置を制御する制御装置とデータに対する演算を行う演算装置で構成される中央処理装置と、データを記憶する記憶装置、外部からデータを入力する入力装置、外部にデータを出力する出力装置を備えたコンピュータである。
 管理サーバー2は、図1のように、主要構成部として、兆候予測部10(予測部)と、予備群抽出部11(抽出部)と、点数割当部12と、データ蓄積部13と、エラー情報作成部14と、サーバー側表示部16(表示部)と、サーバー側通信部17で構成されている。
The management server 2 is a server that manages the operational status of each power generation facility 3 .
The management server 2 has a hardware configuration including a central processing unit composed of a control unit for controlling each device and an arithmetic unit for performing calculations on data, a storage device for storing data, an input device for inputting data from the outside, It is a computer equipped with an output device that outputs data to the outside.
As shown in FIG. 1, the management server 2 includes, as main components, a symptom prediction unit 10 (prediction unit), a preliminary group extraction unit 11 (extraction unit), a score allocation unit 12, a data storage unit 13, an error It is composed of an information creation unit 14 , a server-side display unit 16 (display unit), and a server-side communication unit 17 .
 兆候予測部10は、複数の発電設備3の中から故障する兆候を示す故障兆候群を予測する部位である。
 予備群抽出部11は、複数の発電設備3の中から、今後故障する可能性が高い故障予備群を抽出する部位である。
 点数割当部12は、各発電設備3で発生したエラー情報ごとに点数を割り当てる部位であり、具体的にはエラーコードの種類で点数を割り当てる部位である。
The symptom prediction unit 10 is a part that predicts a failure symptom group indicating a symptom of failure from among the plurality of power generation facilities 3 .
The backup group extraction unit 11 is a part that extracts a backup failure group that has a high possibility of failure in the future from among the plurality of power generation facilities 3 .
The score allocation unit 12 is a unit that allocates a score for each piece of error information that has occurred in each power generation facility 3, and more specifically, a unit that allocates a score according to the type of error code.
 データ蓄積部13は、各発電設備3の点数やエラー情報、設置情報、故障兆候群に属するか否か、故障予備群に属するか否かなどの各発電設備3に関する情報を蓄積する部位である。
 設置情報は、各発電設備3の設置条件に関する情報であり、例えば、識別情報、製造情報、提供情報、施工情報、利用者情報、環境情報などの情報がある。
 識別情報は、各発電設備3の識別に関する情報であり、例えば、発電設備3の識別コードや識別番号などの情報がある。
 製造情報は、各発電設備3の製造に関する情報であり、例えば、発電モジュール60の型式、発電モジュール60の製造番号、電力変換装置51の型式、電力変換装置51の製造番号、蓄電装置52の型式、蓄電装置52の製造番号などの情報がある。
 提供情報は、提供者がもつ情報であって、各発電設備3の提供に関する情報であり、例えば、発電設備3の設置年や発電設備3の保証期間などの情報がある。
 施工情報は、各発電設備3の施工に関する情報であり、例えば、発電設備3の施工者名などの情報がある。
 利用者情報は、各発電設備3の利用者に関する情報であり、例えば、発電設備3の所在地などの情報がある。
 環境情報は、各発電設備3の設置環境に関する情報であり、例えば、各発電設備3における発電モジュール60の設置枚数、発電モジュール60の受光面の傾斜角度などの情報がある。
The data accumulation unit 13 is a part that accumulates information about each power generation facility 3, such as the score of each power generation facility 3, error information, installation information, whether it belongs to a failure indication group, whether it belongs to a failure recovery group, and the like. .
The installation information is information related to the installation conditions of each power generation equipment 3, and includes, for example, identification information, manufacturing information, provision information, construction information, user information, environment information, and the like.
The identification information is information relating to identification of each power generation facility 3, and includes information such as an identification code and an identification number of the power generation facility 3, for example.
The manufacturing information is information related to the manufacturing of each power generation equipment 3, and includes, for example, the model of the power generation module 60, the serial number of the power generation module 60, the model of the power converter 51, the serial number of the power converter 51, and the model of the power storage device 52. , the serial number of the power storage device 52, and the like.
The provided information is information possessed by the provider, and is information related to the provision of each power generation facility 3, and includes information such as the installation year of the power generation facility 3 and the warranty period of the power generation facility 3, for example.
The construction information is information related to the construction of each power generation facility 3, and includes information such as the name of the builder of the power generation facility 3, for example.
The user information is information about the user of each power generation facility 3, and includes information such as the location of the power generation facility 3, for example.
The environmental information is information about the installation environment of each power generation equipment 3, and includes information such as the number of installed power generation modules 60 in each power generation equipment 3 and the inclination angle of the light receiving surface of the power generation module 60, for example.
 エラー情報作成部14は、エラーコードをエラーの内容(エラーの事象)に対して紐づけたエラー情報を作成する部位である。
 エラー情報作成部14は、データ計測部53で計測又は収集した各装置から発せられる装置情報を用いて装置異常を判定し、装置異常である場合には、エラーコードと、発電設備3の各装置から発せられる装置情報が紐づけられたエラー情報(後述する装置エラー情報A)を作成することが可能となっている。
 エラー情報作成部14は、Pingコマンド等の通信確認コマンドを各発電設備3に送信することで管理サーバー2と各発電設備3の間の通信状態を確認し、通信途絶が確認された場合には、エラーコードと、管理サーバー2と発電設備3間の通信状態に関する通信情報が紐づけられたエラー情報(後述する通信エラー情報B)を作成することが可能となっている。
 エラー情報作成部14は、後述するデータ計測部53で計測又は収集した発電モジュール60の発電量に関する発電情報を用いて発電量異常を判定し、発電量異常である場合には、エラーコードと、発電モジュール60の発電量に関する発電情報が紐づけられたエラー情報(後述する発電量エラー情報C)を作成することが可能となっている。
The error information creation unit 14 is a part that creates error information in which an error code is linked to an error content (error event).
The error information creation unit 14 determines the device abnormality using the device information emitted from each device measured or collected by the data measurement unit 53, and when the device is abnormal, the error code and each device of the power generation facility 3 It is possible to create error information (device error information A, which will be described later) in which device information sent from is linked.
The error information creation unit 14 checks the communication status between the management server 2 and each power generation facility 3 by transmitting a communication confirmation command such as a Ping command to each power generation facility 3. , error code and error information (communication error information B, which will be described later) in which communication information relating to the communication state between the management server 2 and the power generation equipment 3 is linked.
The error information creation unit 14 determines whether there is an abnormality in the power generation amount using the power generation information regarding the power generation amount of the power generation module 60 measured or collected by the data measurement unit 53, which will be described later. It is possible to create error information (power generation amount error information C described later) in which power generation information related to the power generation amount of the power generation module 60 is linked.
 サーバー側表示部16は、予備群抽出部11で抽出された故障予備群に属する各発電設備3の点数の推移を表示する部位である。
 サーバー側通信部17は、無線又は有線によってネットワーク6とデータの相互通信が可能な部位である。
 本実施形態のサーバー側通信部17は、無線又は有線でサーバー側ルータに接続し、サーバー側ルータを介してネットワーク6と接続されている。
The server-side display unit 16 is a part that displays the transition of the score of each power generation equipment 3 belonging to the backup failure group extracted by the backup group extraction unit 11 .
The server-side communication unit 17 is a unit capable of mutual communication of data with the network 6 wirelessly or by wire.
The server-side communication unit 17 of this embodiment is wirelessly or wiredly connected to the server-side router, and is connected to the network 6 via the server-side router.
 発電設備3は、主に太陽光から電気を発電する太陽光発電設備である。
 発電設備3は、図1のように、主要構成部として、モジュール群50と、電力変換装置51と、蓄電装置52と、データ計測部53と、発電側表示部56と、発電側通信部57で構成されている。
 モジュール群50は、一又は複数の発電モジュール60で構成されている。
 発電モジュール60は、光エネルギーを電気エネルギーに変換する光電変換装置であり、太陽光等の光によって直流電力を発生させる太陽電池モジュールである。
 電力変換装置51は、直流電力と交流電力の間で電力を変換する装置であり、本実施形態では発電モジュール60で発電した直流電力や蓄電装置52に蓄電された直流電力を交流電力に変換するパワーコンディショナーである。
 蓄電装置52は、一又は複数の二次電池を内蔵し、発電モジュール60で発生した電力を一時的に蓄電し、電力需要に応じて蓄えた電力を供給する装置である。
The power generation equipment 3 is a photovoltaic power generation equipment that mainly generates electricity from sunlight.
As shown in FIG. 1, the power generation equipment 3 includes, as main components, a module group 50, a power conversion device 51, a power storage device 52, a data measurement unit 53, a power generation side display unit 56, and a power generation side communication unit 57. consists of
The module group 50 is composed of one or more power generation modules 60 .
The power generation module 60 is a photoelectric conversion device that converts light energy into electric energy, and is a solar cell module that generates DC power using light such as sunlight.
The power conversion device 51 is a device that converts power between DC power and AC power. In this embodiment, the power conversion device 51 converts the DC power generated by the power generation module 60 and the DC power stored in the power storage device 52 into AC power. It's a power conditioner.
The power storage device 52 is a device that incorporates one or more secondary batteries, temporarily stores the power generated by the power generation module 60, and supplies the stored power according to power demand.
 データ計測部53は、モジュール群50、電力変換装置51、及び蓄電装置52から発せられる装置情報(装置データ)を計測又は収集する部位であり、発電モジュール60の発電量に関する発電情報(発電データ)を計測又は収集する部位でもある。
 データ計測部53は、計測又は収集した装置情報及び発電情報を必要に応じて加工し、管理サーバー2に転送可能となっている。
 発電側表示部56は、予備群抽出部11で抽出された故障予備群に属する各発電設備3の点数の推移を表示する部位である。
 発電側通信部57は、無線又は有線によってネットワーク6とデータの相互通信が可能な部位である。
 本実施形態の発電側通信部57は、無線又は有線で発電側ルータに接続し、発電側ルータを介してネットワーク6と接続されている。
 すなわち、発電設備3は、発電側通信部57を介して、データ計測部53で計測した各運転データを管理サーバー2に送信可能となっている。
The data measuring unit 53 is a part that measures or collects device information (device data) emitted from the module group 50, the power conversion device 51, and the power storage device 52, and is a part that measures or collects power generation information (power generation data) regarding the power generation amount of the power generation module 60. It is also a part that measures or collects
The data measurement unit 53 can process the measured or collected device information and power generation information as necessary and transfer them to the management server 2 .
The power generation side display unit 56 is a part that displays the transition of the score of each power generation equipment 3 belonging to the backup failure group extracted by the backup group extraction unit 11 .
The power generation side communication unit 57 is a unit capable of mutual communication of data with the network 6 wirelessly or by wire.
The power generation side communication unit 57 of the present embodiment is wirelessly or wiredly connected to the power generation side router, and is connected to the network 6 via the power generation side router.
That is, the power generation equipment 3 can transmit each operation data measured by the data measurement unit 53 to the management server 2 via the power generation side communication unit 57 .
 クライアント端末5は、メンテナンス作業者等が所有する携帯端末又は固定端末である。
 クライアント端末5は、ハードウェア構成として、各装置を制御する制御装置とデータに対する演算を行う演算装置で構成される中央処理装置と、データを記憶する記憶装置、外部からデータを入力する入力装置、外部にデータを出力する出力装置を備えたコンピュータである。
 クライアント端末5は、図1のように、主要構成部として、クライアント側表示部80と、クライアント側通信部81を備えている。
 クライアント側表示部80は、予備群抽出部11で抽出された故障予備群に属する各発電設備3の点数の推移を表示する部位である。
 クライアント側通信部81は、無線又は有線によってネットワーク6とデータの相互通信が可能な部位である。
 本実施形態のクライアント側通信部81は、無線又は有線でクライアント側ルータに接続し、クライアント側ルータを介してネットワーク6と接続されている。
The client terminal 5 is a mobile terminal or fixed terminal owned by a maintenance worker or the like.
The client terminal 5 has a hardware configuration including a central processing unit composed of a control device for controlling each device and an arithmetic device for performing calculations on data, a storage device for storing data, an input device for inputting data from the outside, It is a computer equipped with an output device that outputs data to the outside.
As shown in FIG. 1, the client terminal 5 includes a client-side display section 80 and a client-side communication section 81 as main components.
The client-side display section 80 is a section that displays the transition of the score of each power generation equipment 3 belonging to the backup failure group extracted by the backup group extraction section 11 .
The client-side communication unit 81 is a unit capable of mutual communication of data with the network 6 wirelessly or by wire.
The client-side communication unit 81 of this embodiment is connected wirelessly or by wire to the client-side router, and is connected to the network 6 via the client-side router.
 続いて、本発明の監視システム1における異常監視動作について説明する。 Next, the abnormality monitoring operation in the monitoring system 1 of the present invention will be explained.
 本実施形態の異常監視動作は、故障兆候群予測動作と、故障予備群監視動作で構成されている。
 故障兆候群予測動作は、各発電設備3のそれぞれに対して実行される動作であり、発電設備3の中から故障兆候群を予測する動作である。
The abnormality monitoring operation of this embodiment is composed of a failure symptom group prediction operation and a failure recovery group monitoring operation.
The failure indication group prediction operation is an operation performed for each power generation equipment 3 and is an operation for predicting a failure indication group from among the power generation equipment 3 .
 故障兆候群予測動作では、まず、図3のように、第1タイマーをオンにし(ステップS1-1)、点数算出動作を実行する(ステップS1-2)。 In the failure symptom group prediction operation, first, as shown in FIG. 3, the first timer is turned on (step S1-1), and the score calculation operation is executed (step S1-2).
 点数算出動作では、図4のように、第2タイマーをオンにし(ステップS2-1)、エラー情報があるか確認する(ステップS2-2)。 In the point calculation operation, as shown in FIG. 4, the second timer is turned on (step S2-1) and it is checked whether there is any error information (step S2-2).
 このとき、エラー情報は、図6のように、エラーコードと、エラーの内容(エラーの事象)が紐づけられている。具体的には、エラー情報は、データ計測部53で計測又は収集したエラーの発生日時とエラーの内容をエラー情報作成部14によってエラーコードと紐付けして作成される。
 エラー情報には、図6のように、大別して、装置エラー情報Aと、通信エラー情報Bと、発電量エラー情報Cがある。
 装置エラー情報Aは、エラーコードと、発電設備3の各装置から発せられる装置情報が紐づけられたエラー情報である。すなわち、装置エラー情報Aは、発電設備3の各装置から発せられるエラー情報であり、各装置の製造会社が設定するエラー情報である。
 通信エラー情報Bは、エラーコードと、管理サーバー2と発電設備3間の通信状態に関する通信情報が紐づけられたエラー情報である。
 通信エラー情報Bには、以下の(1)~(4)の通信途絶に関するエラー情報がある。
(1)電力変換装置51とデータ計測部53の間の通信途絶
(2)データ計測部53と発電側通信部57の間の通信途絶
(3)発電側通信部57と発電側ルータの間の通信途絶
(4)発電側ルータと管理サーバー2の間の通信途絶
 発電量エラー情報Cは、エラーコードと、発電モジュール60の発電量に関する発電情報が紐づけられたエラー情報である。すなわち、発電量エラー情報Cは、発電モジュール60の発電量異常に関するエラー情報である。
At this time, as shown in FIG. 6, the error information is associated with an error code and an error content (error event). Specifically, the error information is created by linking the date and time of error occurrence and the content of the error measured or collected by the data measurement unit 53 with the error code by the error information creation unit 14 .
The error information is roughly divided into apparatus error information A, communication error information B, and power generation amount error information C, as shown in FIG.
The device error information A is error information in which an error code and device information issued from each device of the power generation facility 3 are linked. That is, the device error information A is error information issued from each device of the power generation facility 3, and is error information set by the manufacturer of each device.
The communication error information B is error information in which an error code and communication information regarding the communication state between the management server 2 and the power generation equipment 3 are linked.
The communication error information B includes the following error information (1) to (4) regarding communication disruption.
(1) Communication interruption between the power conversion device 51 and the data measurement unit 53 (2) Communication interruption between the data measurement unit 53 and the power generation side communication unit 57 (3) Communication interruption between the power generation side communication unit 57 and the power generation side router Communication Disruption (4) Communication Disruption between Power Generation Side Router and Management Server 2 The power generation amount error information C is error information in which an error code and power generation information related to the power generation amount of the power generation module 60 are linked. That is, the power generation amount error information C is error information regarding the power generation amount abnormality of the power generation module 60 .
 図4のステップS2-2において、エラー情報がある場合には(ステップS2-2でYes)、点数割当部12がエラー情報におけるエラーコードごとに安全性を基準に重み付けされて割り当てられた点数を付与する(ステップS2-3)。 In step S2-2 of FIG. 4, if there is error information (Yes in step S2-2), the score assigning unit 12 assigns a score that is weighted and assigned based on safety for each error code in the error information. Give (step S2-3).
 このとき、各発電設備3において、エラー情報に含まれるエラーコードごとに安全性に基づいて点数が割り当てられる。
 例えば、図6のエラーコードA-01の場合、電力変換装置51の温度が基準値を上回ったことをエラーとして検知したことに対応している。
 電力変換装置51が高温であることは、電力変換装置51の周囲温度が高いことや電力変換装置51内で漏電したことなどが原因として挙げられ、発火等の重大な異常の可能性が高いので、安全性に与える影響が大きく、高得点(100点)が付与されている。
 一方、図6のエラーコードB-01の場合、1日以下の通信途絶を検知したことに対応している。
 通信途絶は、発電設備3とネットワーク6間の通信障害やネットワーク6と管理サーバー2間の通信障害などが原因として挙げられ、短期間の場合、ほとんどの場合が一時的なものであり、電力変換装置51が高温であるようなエラーに比べて安全性が著しく損なわれないので、安全性に与える影響が小さく、低得点(1点)となる。
 図6のエラーコードB-02の場合、2週間以上の通信途絶を検知したことに対応しており、エラーコードB-01の場合に比べて長期間に亘って通信途絶を検知しているので、エラーコードB-01の場合に比べて異常が生じている確度が大きいとして、エラーコードB-01の場合よりも高得点(5点)が付与されている。
 図6のエラーコードC-01の場合、発電設備3の発電量が発電量異常の閾値を1回下回ったことを検知したことに対応している。
 発電量の低下は、悪天候や積雪などの天候による影響や、発電設備3の経年劣化、発電モジュール60の損傷、配線中の不具合などが原因として挙げられ、短期間の場合、天候等の影響による一時的な異常による可能性が高いので、低得点(5点)としている。
 図6のエラーコードC-02の場合、発電量異常の閾値を3か月間連続で下回ったことを検知したことに対応しており、長期的に発電量異常が生じており、天候による影響ではなく異常が生じている可能性があるので、エラーコードC-01の場合に比べて高得点(50点)が付与されている。
At this time, in each power generation equipment 3, points are assigned based on safety for each error code included in the error information.
For example, the error code A-01 in FIG. 6 corresponds to detecting as an error that the temperature of the power converter 51 exceeds the reference value.
The high temperature of the power conversion device 51 may be caused by a high ambient temperature of the power conversion device 51 or an electric leak in the power conversion device 51, and there is a high possibility of a serious abnormality such as ignition. , has a large impact on safety and is given a high score (100 points).
On the other hand, the error code B-01 in FIG. 6 corresponds to detection of a communication interruption for one day or less.
Communication disruption is caused by communication failure between the power generation equipment 3 and the network 6, communication failure between the network 6 and the management server 2, etc. Since the safety is not markedly compromised compared to the error that the device 51 is at a high temperature, the impact on the safety is small and the score is low (1 point).
In the case of error code B-02 in FIG. 6, it corresponds to detection of communication interruption for two weeks or more, and compared to error code B-01, communication interruption is detected over a long period of time. , and error code B-01, a higher score (5 points) than error code B-01 is given because the probability of occurrence of an abnormality is greater than that of error code B-01.
In the case of error code C-01 in FIG. 6, it corresponds to detecting that the power generation amount of the power generation equipment 3 fell below the power generation amount abnormality threshold once.
The decrease in the amount of power generated is caused by weather such as bad weather and snowfall, deterioration of the power generation equipment 3 over time, damage to the power generation module 60, and defects in wiring. A low score (5 points) is given because there is a high possibility that this is due to a temporary abnormality.
In the case of error code C-02 in Figure 6, it corresponds to the fact that it has been detected that the amount of power generation has been below the threshold for abnormal power generation for three consecutive months. A higher score (50 points) than the case of the error code C-01 is given because there is a possibility that an abnormality has occurred without the error code C-01.
 図4のステップS2-3において点数が付与されると、第2タイマーがオンになってから、所定時間t1が経過したか確認する(ステップS2-4) When points are given in step S2-3 of FIG. 4, it is checked whether a predetermined time t1 has elapsed since the second timer was turned on (step S2-4).
 このときの所定時間t1は、特に限定されるものではないが、例えば、10分以上6時間以下であることが好ましく、30分以上2時間以下であることがより好ましい。 Although the predetermined time t1 at this time is not particularly limited, it is preferably 10 minutes or more and 6 hours or less, and more preferably 30 minutes or more and 2 hours or less.
 ステップS2-4において、所定時間t1が経過している場合には(ステップS2-4でYes)、第2タイマーをリセットし(ステップS2-5)、点数算出動作を終了する。 At step S2-4, if the predetermined time t1 has elapsed (Yes at step S2-4), the second timer is reset (step S2-5), and the point calculation operation is terminated.
 ステップS2-2において、エラー情報がない場合には、ステップS2-4に移行する。 If there is no error information in step S2-2, the process proceeds to step S2-4.
 ステップS2-4において、所定時間t1が経過していない場合には(ステップS2-4)、ステップS2-2に移行する。 In step S2-4, if the predetermined time t1 has not elapsed (step S2-4), the process proceeds to step S2-2.
 図3のように、ステップS1-2にて点数算出動作が終了すると、第1タイマーがオンになってから、第1期間T1が経過したか確認する(ステップS1-3)。 As shown in FIG. 3, when the point calculation operation ends in step S1-2, it is checked whether the first period T1 has elapsed since the first timer was turned on (step S1-3).
 このときの第1期間T1は、所定時間t1よりも長い期間であれば、特に限定されるものではないが、例えば、1日以上6か月以下であることが好ましく、1週間以上2か月以下であることがより好ましい。本実施形態の第1期間T1は、30日である。 The first period T1 at this time is not particularly limited as long as it is a period longer than the predetermined time t1. The following are more preferable. The first period T1 in this embodiment is 30 days.
 ステップS1-3において、第1期間T1が経過している場合には(ステップS1-3でYes)、発電設備3の合計点数を算出し、合計点数が閾値以上であるか確認する(ステップS1-4)。すなわち、兆候予測部10が第1期間T1中のエラーコードに紐付けされた点数の合計点数を閾値と比較する。 In step S1-3, if the first period T1 has passed (Yes in step S1-3), the total score of the power generation equipment 3 is calculated, and it is confirmed whether the total score is equal to or greater than the threshold (step S1 -4). That is, the symptom prediction unit 10 compares the total score associated with the error code during the first period T1 with the threshold.
 閾値は、エラーコードに紐づけられた点数や設置状況によって適宜設定される定数である。
 ここで、ステップS1-4の具体例である図7について説明すると、図7は、識別番号がNo.1の発電設備3で生じたエラー情報を時系列順に示している。
 No.1の発電設備3では、第1期間T1において、電力変換装置51の高温(電力変換装置51の温度異常)、管理サーバー2と発電設備3間の通信途絶、及び発電モジュール60の発電量の低下の3種類のエラーが生じている。
 そして、No.1の発電設備3は、それぞれのエラーに紐づけられたエラーコードに対して点数が加算され、第1期間T1中のエラーコードに紐付けされた点数の合計点数が171点となる。
 ここで、例えば、閾値を150点と設定すると、No.1の発電設備3は、合計閾値が150点を上回るので閾値以上となる。また、例えば、閾値が180点と設定すると、No.1の発電設備3は、合計閾値が180点を下回るので閾値未満となる。
The threshold is a constant appropriately set according to the number of points associated with the error code and the installation situation.
Now, referring to FIG. 7, which is a specific example of step S1-4, FIG. 1 shows error information that occurred in one power generation facility 3 in chronological order.
No. 1, in the first period T1, the high temperature of the power conversion device 51 (abnormal temperature of the power conversion device 51), the communication interruption between the management server 2 and the power generation device 3, and the decrease in the power generation amount of the power generation module 60 3 types of errors have occurred.
And no. For the power generation facility 3 of No. 1, points are added to the error codes associated with the respective errors, and the total score of the points associated with the error codes during the first period T1 is 171 points.
Here, for example, if the threshold is set to 150 points, No. The power generation equipment 3 of No. 1 has a total threshold of more than 150 points, so it is equal to or higher than the threshold. Also, for example, if the threshold is set to 180 points, No. The power generation equipment 3 of 1 is below the threshold because the total threshold is below 180 points.
 図3のステップS1-4において、合計点数が閾値以上である場合には(ステップS1-4でYes)、故障兆候群であると予測し(ステップS1-5)、第1タイマーをリセットして(ステップS1-6)、故障兆候群予測動作を終了する。 In step S1-4 of FIG. 3, if the total score is equal to or greater than the threshold (Yes in step S1-4), it is predicted that there is a failure symptom group (step S1-5), and the first timer is reset. (Step S1-6), the failure sign group prediction operation is terminated.
 ステップS1-4において、合計点数が閾値未満である場合には(ステップS1-4でNo)、故障兆候群には該当しないので、第1タイマーをリセットして(ステップS1-6)、故障兆候群予測動作を終了する。 In step S1-4, if the total score is less than the threshold (No in step S1-4), it does not correspond to the failure symptom group, so the first timer is reset (step S1-6), and the failure symptom End the group prediction operation.
 ステップS1-3において、第1期間T1を経過していない場合にはステップS1-2に移行する。 In step S1-3, if the first period T1 has not elapsed, the process proceeds to step S1-2.
 上記の故障兆候群予測動作によって故障兆候群が予測された場合には、故障予備群監視動作を実行する。
 故障予備群監視動作は、故障予備群の点数の時系列推移を監視する動作である。
 故障予備群監視動作では、まず、図5のように、故障兆候群と予測された発電設備3間で設置情報を比較し(ステップS3-1)、共通する特定情報があるか確認する(ステップS3-2)。
When a failure symptom group is predicted by the failure symptom group prediction operation, a failure recovery group monitoring operation is executed.
The failure protection group monitoring operation is an operation of monitoring the time-series transition of the points of the failure protection group.
In the failure recovery group monitoring operation, first, as shown in FIG. 5, the installation information is compared between the failure symptom group and the predicted power generation equipment 3 (step S3-1), and it is confirmed whether there is common specific information (step S3-2).
 ステップS3-2において、共通する一又は複数の特定情報がある場合には(ステップS3-2でYes)、特定情報ごとに、特定情報を有する発電設備3を故障予備群としてそれぞれ抽出する(ステップS3-3)。 In step S3-2, if there is one or a plurality of common specific information (Yes in step S3-2), for each specific information, the power generation equipment 3 having the specific information is extracted as a failure recovery group (step S3-3).
 例えば、図8では、共通する特定情報として、利用者情報が東京都である発電設備3を故障予備群として抽出する場合、施工情報が〇×△工務店である発電設備3を故障予備群として抽出する場合、製造情報が電力変換装置51の型式である発電設備3を故障予備群として抽出する場合を示している。
 このように、ステップS3-3では、設置情報を構成する各種情報で共通する特定情報を抽出し、抽出した特定情報をもつ発電設備3を故障予備群として抽出する。
For example, in FIG. 8, as common specific information, when extracting the power generation equipment 3 whose user information is Tokyo as a failure backup group, the construction information is ○ × △ construction company as a failure backup group When extracting, the case where the power generation equipment 3 whose manufacturing information is the model of the power conversion device 51 is extracted as a failure reserve group is shown.
In this way, in step S3-3, specific information common to various types of information constituting the installation information is extracted, and the power generating equipment 3 having the extracted specific information is extracted as a failure recovery group.
 図5のように、故障予備群として抽出された発電設備3において点数算出動作を行い(ステップS3-4)、同じ故障予備群に属する発電設備3の合計点数をそれぞれ算出し(ステップS3-5)、故障予備群の合計点数のn項の移動平均値を算出する(ステップS3-6)。 As shown in FIG. 5, the point calculation operation is performed for the power generation equipment 3 extracted as the failure recovery group (step S3-4), and the total points of the power generation equipment 3 belonging to the same failure recovery group are calculated (step S3-5 ), the n-term moving average of the total points of the failure protection group is calculated (step S3-6).
 このときの区間数nは、所定時間t1の長さ等によって適宜設定されるが、3以上10以下であることが好ましい。 The number of sections n at this time is appropriately set depending on the length of the predetermined time t1 and the like, but is preferably 3 or more and 10 or less.
 ステップS3-6で合計点数の移動平均値が算出されると、各故障予備群において算出した移動平均値の時系列推移を表す時系列推移データを作成又は更新し(ステップS3-7)、データ蓄積部13に記憶し、動作終了要求があるか確認する(ステップS3-8)。 When the moving average value of the total points is calculated in step S3-6, time-series transition data representing the time-series transition of the moving average value calculated for each failure protection group is created or updated (step S3-7), and the data It is stored in the storage unit 13, and it is checked whether there is an operation end request (step S3-8).
 このとき、管理者は、時系列推移データを取得してサーバー側表示部16に時系列データを表示させる。本実施形態では、図8のように、各特定情報と、各特定情報をもつ発電設備3の数、各特定情報における1日の合計点数の移動平均値の推移が時系列データとして画像で表示される。
 そして、管理者は、サーバー側表示部16に表示された画像から合計点数の移動平均値の時系列推移を確認し、故障予備群ごとにメンテナンスの要否を判断し、合計点数が小さい場合や監視システム1のメンテナンスが必要な場合等には動作終了要求を入力し、故障予備群監視動作を終了させる。
At this time, the administrator acquires the time-series transition data and causes the server-side display unit 16 to display the time-series data. In this embodiment, as shown in FIG. 8, each specific information, the number of power generation facilities 3 having each specific information, and the transition of the moving average value of the total points for each day in each specific information are displayed as time-series data in an image. be done.
Then, the administrator checks the time-series transition of the moving average value of the total points from the image displayed on the server-side display unit 16, determines whether maintenance is necessary for each failure protection group, and determines whether the total points are small or not. When maintenance of the monitoring system 1 is required, an operation termination request is input to terminate the failure recovery group monitoring operation.
 図5のステップS3-8において、動作終了要求がある場合には(ステップS3-8でYes)、故障予備群監視動作を終了する。 At step S3-8 in FIG. 5, if there is an operation termination request (Yes at step S3-8), the failure protection group monitoring operation is terminated.
 ステップS3-2において、故障兆候群と予測された発電設備3間で共通する特定情報がない場合には(ステップS3-2でNo)、故障予備群を抽出できないので、故障予備群監視動作を終了し、再度、故障兆候群予測動作を実行する。 In step S3-2, if there is no common specific information between the failure indication group and the predicted power generating equipment 3 (No in step S3-2), the failure recovery group cannot be extracted, so the failure recovery group monitoring operation is performed. Terminate, and execute the failure symptom group prediction operation again.
 ステップS3-8において、動作終了要求がない場合には(ステップS3-8でNo)、ステップS3-4に移行する。 At step S3-8, if there is no operation end request (No at step S3-8), the process proceeds to step S3-4.
 本実施形態の監視システム1によれば、異常の兆候が見られた異常兆候群に属する発電設備3間で設置情報内における共通する特定情報を特定し、特定情報ごとに特定情報を有する発電設備3を故障予備群として抽出する。そして、管理者等がその故障予備群の合計点数の移動平均値の時系列推移を監視することで、将来重大な異常が発生する可能性の高い発電設備3を予測し、対策を打つことができる。 According to the monitoring system 1 of the present embodiment, common specific information in the installation information is specified among the power generation equipment 3 belonging to the abnormality sign group in which the abnormality sign is seen, and the power generation equipment having the specific information for each specific information 3 is extracted as a failure reserve group. By monitoring the time-series transition of the moving average value of the total points of the failure recovery group by the administrator, etc., it is possible to predict the power generation equipment 3 that is likely to experience a serious abnormality in the future and take countermeasures. can.
 本実施形態の監視システム1によれば、所定時間t1ごとにサーバー側表示部16に故障予備群の合計点数の移動平均値の推移が表示されるので、将来的に重大な異常が発生する傾向を予期できる。 According to the monitoring system 1 of the present embodiment, the transition of the moving average value of the total points of the failure protection group is displayed on the server-side display unit 16 at predetermined time intervals t1. can be expected.
 本実施形態の監視システム1によれば、ネットワーク6を介して管理サーバー2と発電設備3とクライアント端末5がそれぞれ接続されており、管理サーバー2と発電設備3とクライアント端末5のそれぞれに表示部16,56,80が設けられているので、それぞれの表示部16,56,80で各特定情報と各特定情報に対応する合計点数の移動平均値の時系列データが表示された画像を確認できる。 According to the monitoring system 1 of this embodiment, the management server 2, the power generation equipment 3, and the client terminal 5 are connected via the network 6, and the management server 2, the power generation equipment 3, and the client terminal 5 each have a display unit 16, 56, and 80 are provided, images displaying time-series data of moving average values of each specific information and the total points corresponding to each specific information can be confirmed on the display units 16, 56, and 80, respectively. .
 続いて、本発明の第2実施形態の監視システムについて説明する。 Next, a monitoring system according to the second embodiment of the present invention will be described.
 第2実施形態の監視システムは、故障予備群監視動作が第1実施形態の故障予備群監視動作と異なる。 In the monitoring system of the second embodiment, the failure recovery group monitoring operation differs from the failure recovery group monitoring operation of the first embodiment.
 第2実施形態の故障予備群監視動作は、図9のように、第1実施形態の故障予備群監視動作と多くのステップが共通し、一部のステップが第1実施形態の故障予備群監視動作と異なる。そこで、第1実施形態の故障予備群監視動作と同様のステップについては同様のステップ番号を付して、説明を省略する。 As shown in FIG. 9, the failure recovery group monitoring operation of the second embodiment has many steps in common with the failure recovery group monitoring operation of the first embodiment, and some steps are the same as those of the first embodiment. Different from behavior. Therefore, steps similar to those of the failure recovery group monitoring operation of the first embodiment are given the same step numbers, and descriptions thereof are omitted.
 第2実施形態の故障予備群監視動作では、図9のように、まず、故障兆候群と予測された発電設備3間で設置情報を比較し(ステップS3-1)、設置情報に共通する特定情報がある場合には(ステップS3-2でYes)、特定情報ごとに特定情報を有する発電設備3を故障予備群として抽出する(ステップS3-3)。 In the failure recovery group monitoring operation of the second embodiment, first, as shown in FIG. 9, the installation information is compared between the failure indication group and the predicted power generating equipment 3 (step S3-1), and the common installation information is identified. If there is information (Yes in step S3-2), the power generating equipment 3 having the specific information is extracted as a failure recovery group for each specific information (step S3-3).
 故障予備群が抽出されると、第3タイマーをオンにし(ステップS4-1)、点数算出動作を実行し(ステップS4-2)、各故障予備群の合計点数を算出する(ステップS4-3)。 When the failure recovery group is extracted, the third timer is turned on (step S4-1), the score calculation operation is executed (step S4-2), and the total score of each failure protection group is calculated (step S4-3). ).
 各故障予備群の合計点数が算出されると、第3タイマーをオンにしてから第2期間T2を経過したか確認する(ステップS4-4)。 When the total points for each backup failure group are calculated, it is checked whether the second period T2 has elapsed since the third timer was turned on (step S4-4).
 このときの第2期間T2は、所定時間t1よりも長い期間であれば、特に限定されるものではないが、例えば6時間以上1週間以下であることが好ましく、12時間以上2日以下であることがより好ましい。本実施形態の第2期間T2は、1日(24時間)である。 The second period T2 at this time is not particularly limited as long as it is a period longer than the predetermined time t1. is more preferable. The second period T2 in this embodiment is one day (24 hours).
 ステップS4-4において、第2期間T2を経過している場合には(ステップS4-4でYes)、第2期間T2における各故障予備群の合計点数の平均値(算術平均値)を算出し(ステップS4-5)、各故障予備群において算出した合計点数の平均値の時系列推移を表す時系列推移データを作成又は更新してデータ蓄積部13に記憶する(ステップS4-6)。
 そして、第3タイマーをリセットし(ステップS4-7)、動作終了要求があるか確認する(ステップS4-8)。
In step S4-4, if the second period T2 has passed (Yes in step S4-4), the average value (arithmetic mean value) of the total points of each potential failure group in the second period T2 is calculated. (Step S4-5), create or update time-series transition data representing the time-series transition of the average value of total points calculated in each failure protection group, and store it in the data storage unit 13 (step S4-6).
Then, the third timer is reset (step S4-7), and it is checked whether there is an operation end request (step S4-8).
 ステップS4-8において、動作終了要求がある場合には(ステップS4-8でYes)、故障予備群監視動作を終了し、動作終了要求がない場合には(ステップS4-8でNo)、ステップS4-1に移行する。 In step S4-8, if there is an operation termination request (Yes in step S4-8), the failure recovery group monitoring operation is terminated, and if there is no operation termination request (step S4-8: No), step Move to S4-1.
 ステップS4-4において、タイマーをオンにしてから第2期間T2を経過していない場合には、ステップS4-2に移行する。 In step S4-4, if the second period T2 has not elapsed since the timer was turned on, the process proceeds to step S4-2.
 第2実施形態の監視システムによれば、第2期間T2ごとにサーバー側表示部16に故障予備群の合計点数の平均値の推移を表示できるので、故障が生じた場合に、どの時点で故障が生じたかを特定しやすい。 According to the monitoring system of the second embodiment, the transition of the average value of the total points of the failure protection group can be displayed on the server-side display unit 16 every second period T2. It is easy to identify what has happened.
 上記した実施形態では、各発電設備3において合計点数を閾値と比較し、閾値以上の発電設備3を故障兆候群として抽出したが、本発明はこれに限定されるものではない。全発電設備3を合計点数で標準正規分布を取ったときに、上位X1%以内に入るものを一律に故障兆候群として抽出してもよい。
 X1は、発電設備3の総数によって適宜設定されるが、例えば1以上30以下の範囲で設定されることが好ましい。
 また、全発電設備3を合計点数で標準正規分布を取ったときに、上位X2台以内に入るものを一律に故障兆候群として抽出してもよい。
 X2は、発電設備3の総数によって適宜設定されるが、例えば、発電設備3の総数の1%から30%の範囲の数で設定されることが好ましい。
In the above-described embodiment, the total score of each power generation equipment 3 is compared with a threshold value, and the power generation equipment 3 having a score equal to or higher than the threshold value is extracted as a failure indication group, but the present invention is not limited to this. When the standard normal distribution is taken with the total points of all the power generation facilities 3, those falling within the top X1% may be uniformly extracted as the failure symptom group.
X1 is appropriately set according to the total number of power generation facilities 3, but is preferably set within a range of 1 or more and 30 or less, for example.
In addition, when the standard normal distribution is taken with the total points of all the power generation facilities 3, the ones that fall within the top X2 units may be uniformly extracted as the failure sign group.
X2 is appropriately set according to the total number of power generation facilities 3, but is preferably set to a number in the range of 1% to 30% of the total number of power generation facilities 3, for example.
 上記した実施形態では、閾値を一義的に固定された定数としたが、本発明はこれに限定されるものではなく、閾値は変数であってもよい。
 例えば、閾値は、全ての発電設備3の合計点数のうち、上位1%から上位30%の範囲の値としてもよい。
In the above-described embodiment, the threshold is a uniquely fixed constant, but the present invention is not limited to this, and the threshold may be a variable.
For example, the threshold value may be a value in the range of the top 1% to the top 30% of the total points of all the power generation facilities 3 .
 上記した実施形態では、管理サーバー2のサーバー側表示部16に合計点数の移動平均値又は平均値の時系列推移を表示させたが、本発明はこれに限定されるものではない。他の発電側表示部56やクライアント側表示部80で合計点数の移動平均値又は平均値の時系列推移を表示させてもよい。 In the above-described embodiment, the server-side display unit 16 of the management server 2 displays the moving average value of the total points or the time-series transition of the average value, but the present invention is not limited to this. The moving average value of the total points or the time-series transition of the average value may be displayed on the other display unit 56 on the power generation side or the display unit 80 on the client side.
 上記した実施形態では、故障兆候群に属する発電設備3間で共通する特定情報が複数種類あり、特定情報ごとに故障予備群を抽出していたが、本発明はこれに限定されるものではない。故障兆候群に属する発電設備3間で共通する特定情報が複数種類ある場合であっても、任意の特定情報を選択して、選択した特定情報ごとに故障予備群を抽出してもよい。 In the above-described embodiment, there are multiple types of specific information common to the power generation equipment 3 belonging to the failure symptom group, and the failure protection group is extracted for each specific information, but the present invention is not limited to this. . Even if there are multiple types of specific information common among the power generation facilities 3 belonging to the failure indication group, arbitrary specific information may be selected and a failure recovery group may be extracted for each of the selected specific information.
 上記した実施形態では、管理サーバー2側のエラー情報作成部14によってエラーコードと点数を紐づけたが、本発明はこれに限定されるものではない。発電設備3側にエラー情報作成部14を設けてエラーコードと点数を紐づけてもよい。
 すなわち、発電設備3側にエラー情報作成部14を設け、エラー情報作成部14でエラーを判定し、エラーコードをエラーの内容に対して紐づけたエラー情報を作成してもよい。この場合、管理サーバー2は、エラー情報を発電設備3側から取得するエラー情報取得部を設けることが好ましい。こうすることで、管理サーバー2側でエラー情報を一元管理することができる。
In the embodiment described above, the error code and the score are linked by the error information creation unit 14 on the management server 2 side, but the present invention is not limited to this. An error information creation unit 14 may be provided on the power generation equipment 3 side to associate the error code with the score.
That is, the error information creation unit 14 may be provided on the power generation equipment 3 side, the error information creation unit 14 may determine an error, and error information may be created by linking an error code to the content of the error. In this case, the management server 2 is preferably provided with an error information acquisition unit that acquires error information from the power generation equipment 3 side. By doing so, error information can be centrally managed on the management server 2 side.
 上記した実施形態では、管理サーバー2と発電設備3は、別々に設けられていたが、本発明はこれに限定されるものではない。管理サーバー2と発電設備3は、一体であってもよい。 Although the management server 2 and the power generation equipment 3 are provided separately in the above embodiment, the present invention is not limited to this. The management server 2 and the power generation equipment 3 may be integrated.
 上記した第2実施形態では、合計点数の平均値として算術平均値を用いていたが、本発明はこれに限定されるものではない。合計点数の平均値として他の算出方法による平均値を用いてもよい。例えば、合計点数の平均値として加重平均値を用いてもよいし、幾何平均値を用いてもよい。 In the second embodiment described above, the arithmetic mean value is used as the average value of the total points, but the present invention is not limited to this. An average value obtained by another calculation method may be used as the average value of the total points. For example, a weighted average value or a geometric average value may be used as the average value of the total points.
 上記した実施形態では、兆候予測部10及び予備群抽出部11を管理サーバー2に設けていたが、本発明はこれに限定されるものではない。兆候予測部10及び/又は予備群抽出部11を発電設備3に設けてもよい。 In the above-described embodiment, the symptom prediction unit 10 and the preliminary group extraction unit 11 are provided in the management server 2, but the present invention is not limited to this. The symptom prediction unit 10 and/or the backup group extraction unit 11 may be provided in the power generation equipment 3 .
 上記した実施形態では、各通信部17,57,81は、ルータを経由してネットワーク6に接続されていたが、本発明はこれに限定されるものではない。各通信部17,57,81は、無線基地局を経由してネットワーク6に接続されていてもよい。 In the above-described embodiment, each communication section 17, 57, 81 was connected to the network 6 via a router, but the present invention is not limited to this. Each communication section 17, 57, 81 may be connected to the network 6 via a radio base station.
 上記した実施形態では、発電設備3は蓄電装置52を備えていたが、本発明はこれに限定されるものではない。発電設備3は蓄電装置52を備えていなくてもよい。 In the above-described embodiment, the power generation equipment 3 includes the power storage device 52, but the present invention is not limited to this. The power generation equipment 3 may not include the power storage device 52 .
 上記した実施形態では、エラー情報作成部14がデータ計測部53で計測又は収集した各装置から発せられる装置情報を用いて装置異常を判定していたが、本発明はこれに限定されるものではない。各装置の運転状況を監視する管理会社がデータ計測部53で計測又は収集した各装置から発せられる装置情報を用いて装置異常を判定してもよい。
 この場合、エラー情報作成部14は、管理会社の判定結果が装置異常である場合に、エラーコードと、発電設備3の各装置から発せられる装置情報が紐づけられたエラー情報(装置エラー情報A)を作成する。
In the above-described embodiment, the error information generating unit 14 uses the device information emitted from each device measured or collected by the data measuring unit 53 to determine device abnormality, but the present invention is not limited to this. do not have. A management company that monitors the operating status of each device may determine whether the device is abnormal using the device information that is measured or collected by the data measuring unit 53 and emitted from each device.
In this case, the error information creation unit 14 creates error information (device error information A ).
 上記した実施形態は、本発明の技術的範囲に含まれる限り、各実施形態間で各構成部材を自由に置換や付加できる。 As long as the above-described embodiments are within the technical scope of the present invention, each constituent member can be freely replaced or added between the embodiments.
  1 監視システム
  2 管理サーバー
  3 発電設備
  6 ネットワーク
 10 兆候予測部(予測部)
 11 予備群抽出部(抽出部)
 12 点数割当部
 13 データ蓄積部
 14 エラー情報作成部
 16 サーバー側表示部(表示部)
 56 発電側表示部(表示部)
 60 発電モジュール
 80 クライアント側表示部(表示部)
1 monitoring system 2 management server 3 power generation facility 6 network 10 symptom prediction unit (prediction unit)
11 Preliminary group extraction unit (extraction unit)
12 Score allocation unit 13 Data storage unit 14 Error information creation unit 16 Server side display unit (display unit)
56 power generation side display unit (display unit)
60 power generation module 80 client side display unit (display unit)

Claims (10)

  1.  複数の発電設備と、
     各発電設備のエラー情報を作成するエラー情報作成部と、
     各発電設備の設置情報とエラー情報を蓄積するデータ蓄積部と、
     各発電設備のエラー情報に基づいて前記複数の発電設備の中から故障の兆候を示す故障兆候群を予測する予測部と、
     前記故障兆候群と予測された発電設備の設置情報において共通する特定情報を特定し、前記複数の発電設備の中から、設置情報に前記特定情報を含む発電設備を故障予備群として抽出する抽出部を備える、監視システム。
    a plurality of power generation facilities;
    an error information creation unit that creates error information for each power generation facility;
    a data accumulation unit for accumulating installation information and error information of each power generation facility;
    a prediction unit that predicts a failure sign group indicating signs of failure from among the plurality of power generation facilities based on error information of each power generation facility;
    An extraction unit that identifies specific information common to the installation information of the power generation equipment predicted as the failure sign group, and extracts the power generation equipment that includes the specific information in the installation information from the plurality of power generation equipment as a backup failure group. A surveillance system comprising:
  2.  前記エラー情報ごとに点数を割り当てる点数割当部を有し、
     前記予測部は、各発電設備において各エラー情報の点数を積算し、合計点数が所定の閾値以上となる発電設備を前記故障兆候群と予測する、請求項1に記載の監視システム。
    Having a score allocation unit that allocates a score for each error information,
    2. The monitoring system according to claim 1, wherein said prediction unit integrates the points of each error information in each power generation facility, and predicts power generation facilities having a total score equal to or greater than a predetermined threshold as said failure indication group.
  3.  前記エラー情報は、エラーコードを含み、
     前記点数割当部は、エラーコードに対して点数を割り当てるものであり、
     前記予測部は、各発電設備において各エラーコードに対応する点数を積算し、第1期間における前記エラー情報の合計点数が所定の閾値以上となる発電設備を前記複数の発電設備の中から前記故障兆候群と予測する、請求項2に記載の監視システム。
    The error information includes an error code,
    The score assigning unit assigns a score to the error code,
    The prediction unit accumulates the points corresponding to each error code in each power generation facility, and selects the power generation facility whose total score of the error information in the first period is equal to or greater than a predetermined threshold from among the plurality of power generation facilities. 3. The monitoring system of claim 2, which predicts symptom clusters.
  4.  前記点数は、前記発電設備の安全性を基準に重み付けがなされて設定されている、請求項2又は3に記載の監視システム。 The monitoring system according to claim 2 or 3, wherein the points are weighted and set based on the safety of the power generation equipment.
  5.  前記発電設備は、ネットワークを介して管理サーバーに接続されており、
     前記エラー情報の中には、エラーコードと、前記発電設備と前記管理サーバー間の通信状態に関する通信情報とが紐づけられた通信エラー情報がある、請求項2~4のいずれか1項に記載の監視システム。
    The power generation equipment is connected to a management server via a network,
    5. The error information according to any one of claims 2 to 4, wherein the error information includes communication error information in which an error code and communication information regarding a communication state between the power generation equipment and the management server are linked. monitoring system.
  6.  前記発電設備は、一又は複数の発電モジュールを有し、
     前記エラー情報の中には、エラーコードと、前記発電モジュールの発電量に関する発電情報とが紐づけられた発電量エラー情報がある、請求項2~5のいずれか1項に記載の監視システム。
    The power generation equipment has one or more power generation modules,
    The monitoring system according to any one of claims 2 to 5, wherein the error information includes power generation amount error information in which an error code and power generation information related to the power generation amount of the power generation module are linked.
  7.  前記設置情報は、各発電設備の製造に関する製造情報、各発電設備の提供に関する提供情報、前記発電設備の施工に関する施工情報、前記発電設備の利用者に関する利用者情報、及び前記発電設備の設置環境に関する環境情報からなる群から選ばれる少なくとも1つの情報を含む、請求項1~6のいずれか1項に記載の監視システム。 The installation information includes manufacturing information on manufacturing of each power generation facility, provision information on provision of each power generation facility, construction information on construction of the power generation facility, user information on users of the power generation facility, and installation environment of the power generation facility. 7. The monitoring system according to any one of claims 1 to 6, comprising at least one piece of information selected from the group consisting of environmental information relating to.
  8.  前記エラー情報ごとに点数を割り当てる点数割当部を有し、
     前記故障予備群に属する各発電設備において、各エラー情報の点数を積算して所定時間ごとに合計点数を算出し、前記エラー情報の合計点数の移動平均値を算出するものであり、
     前記故障予備群に属する発電設備の前記移動平均値の時系列の推移を表示する表示部を備える、請求項1~7のいずれか1項に記載の監視システム。
    Having a score allocation unit that allocates a score for each error information,
    In each power generation facility belonging to the failure recovery group, the points of each error information are integrated to calculate the total points at predetermined time intervals, and the moving average value of the total points of the error information is calculated,
    8. The monitoring system according to any one of claims 1 to 7, further comprising a display unit that displays a time-series transition of said moving average value of the power generation equipment belonging to said failure recovery group.
  9.  前記エラー情報ごとに点数を割り当てる点数割当部を有し、
     前記故障予備群に属する各発電設備において、各エラー情報の点数を積算して所定時間ごとに合計点数を算出し、第2期間ごとに前記合計点数の平均値を算出するものであり、
     前記故障予備群に属する発電設備の前記合計点数の平均値の時系列の推移を表示する表示部を備える、請求項1~7のいずれか1項に記載の監視システム。
    Having a score allocation unit that allocates a score for each error information,
    In each power generation facility belonging to the failure recovery group, the points of each error information are integrated to calculate a total point every predetermined time, and an average value of the total points is calculated every second period,
    8. The monitoring system according to any one of claims 1 to 7, further comprising a display unit for displaying a time-series transition of the average total points of the power generation equipment belonging to the failure protection group.
  10.  前記抽出部は、前記故障兆候群と予測された発電設備の設置情報から共通する複数の特定情報を特定し、
     前記複数の発電設備の中から、各特定情報において故障予備群として発電設備を抽出する、請求項1~9のいずれか1項に記載の監視システム。
    The extraction unit identifies a plurality of common specific information from the failure symptom group and the installation information of the predicted power generation equipment,
    10. The monitoring system according to any one of claims 1 to 9, wherein a power generation facility is extracted as a failure reserve group for each specific information from among the plurality of power generation facilities.
PCT/JP2022/025284 2021-08-26 2022-06-24 Monitoring system WO2023026668A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023543722A JPWO2023026668A1 (en) 2021-08-26 2022-06-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-138009 2021-08-26
JP2021138009 2021-08-26

Publications (1)

Publication Number Publication Date
WO2023026668A1 true WO2023026668A1 (en) 2023-03-02

Family

ID=85322732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025284 WO2023026668A1 (en) 2021-08-26 2022-06-24 Monitoring system

Country Status (2)

Country Link
JP (1) JPWO2023026668A1 (en)
WO (1) WO2023026668A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002032440A (en) * 2000-07-18 2002-01-31 Toshiba Corp Stop planning support device and storage medium
JP2005149137A (en) * 2003-11-14 2005-06-09 Tokyo Gas Co Ltd Remote supervisory system, method and program
JP2010154617A (en) * 2008-12-24 2010-07-08 Mitsubishi Heavy Ind Ltd Underpower replenishing system of operating non-utility power generation facility
JP2011192201A (en) * 2010-03-16 2011-09-29 Toshiba Corp Remote maintenance system and remote maintenance method
CN105806614A (en) * 2016-03-07 2016-07-27 大唐淮南洛河发电厂 Embedded dual server based failure diagnosis method and system for rotation machines in heat-engine plant
JP2019057164A (en) * 2017-09-21 2019-04-11 三菱日立パワーシステムズ株式会社 Plant abnormality monitoring system
JP2019057309A (en) * 2015-10-28 2019-04-11 京セラ株式会社 Installation management system and installation management method
JP2019113883A (en) * 2016-03-25 2019-07-11 株式会社日立製作所 Utilization assisting apparatus and wind power generation system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002032440A (en) * 2000-07-18 2002-01-31 Toshiba Corp Stop planning support device and storage medium
JP2005149137A (en) * 2003-11-14 2005-06-09 Tokyo Gas Co Ltd Remote supervisory system, method and program
JP2010154617A (en) * 2008-12-24 2010-07-08 Mitsubishi Heavy Ind Ltd Underpower replenishing system of operating non-utility power generation facility
JP2011192201A (en) * 2010-03-16 2011-09-29 Toshiba Corp Remote maintenance system and remote maintenance method
JP2019057309A (en) * 2015-10-28 2019-04-11 京セラ株式会社 Installation management system and installation management method
CN105806614A (en) * 2016-03-07 2016-07-27 大唐淮南洛河发电厂 Embedded dual server based failure diagnosis method and system for rotation machines in heat-engine plant
JP2019113883A (en) * 2016-03-25 2019-07-11 株式会社日立製作所 Utilization assisting apparatus and wind power generation system
JP2019057164A (en) * 2017-09-21 2019-04-11 三菱日立パワーシステムズ株式会社 Plant abnormality monitoring system

Also Published As

Publication number Publication date
JPWO2023026668A1 (en) 2023-03-02

Similar Documents

Publication Publication Date Title
KR101824718B1 (en) Intelligent Automatic Control Panel Equipped with Self Diagnosis and Safety Functions
KR102008472B1 (en) Real Time Remote Management and Alarm Call out System of Electrical Consumers Type based on IoT
KR102205275B1 (en) Integrated management system of disaster safety and method thereof
KR101793708B1 (en) Device for detecting unusual situation based on monitoring solar panel
CN104331042B (en) State evaluation method of hydropower plant computer monitoring system
WO2011115036A1 (en) Solar power plant monitoring system
CN110391783A (en) Photovoltaic power station fault monitoring method and device based on edge calculations
US20230179144A1 (en) Method and apparatus for recognizing operating state of photovoltaic string and storage medium
KR20090002295A (en) A unified management and follow up control system and method in solar photovoltatic power generation facility
CN110472371A (en) A kind of appraisal procedure of the power system component different degree based on restoring force
KR102475374B1 (en) Apparatus and method for active failure predictive diagnosis of solar power generation system in string units using idle time
CN112713649A (en) Power equipment residual life prediction method based on extreme learning machine
KR20220165906A (en) System for remote monitoring and failure predicting of distribution board
KR20230045379A (en) System and method for fault diagnosis of solar photovoltaic system using environmental sensor
CN114049738B (en) Building electrical fire identification method and system based on smoke, temperature and electrical quantity
KR102554498B1 (en) A photovoltaic system equipped with solar junction box state monitoring diagnosis and remote monitoring
KR102266752B1 (en) PV System Junction Box based on self reflection and Neural Network and Junction Box Check Method
WO2023026668A1 (en) Monitoring system
KR102296561B1 (en) Integrated Management And Control System for Swithchboard based on Artificial Intelligence using Zigbee
KR101541484B1 (en) Evaluation method of facilities and building via efficiency analysis based on power consumption and system thereof
KR20200079652A (en) AR based operation management apparatus and method for energy system
CN112801385A (en) High-precision weak current engineering detection method, system and storage medium
CN116187983A (en) Wind turbine generator operation and maintenance management method, device, equipment and storage medium
KR102512805B1 (en) System for remote monitoring and control of water and wastewater treatment facility and method thereof
CN116667783A (en) Distributed photovoltaic power station maintenance system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860962

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023543722

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE