WO2023026338A1 - Flight vehicle - Google Patents

Flight vehicle Download PDF

Info

Publication number
WO2023026338A1
WO2023026338A1 PCT/JP2021/030862 JP2021030862W WO2023026338A1 WO 2023026338 A1 WO2023026338 A1 WO 2023026338A1 JP 2021030862 W JP2021030862 W JP 2021030862W WO 2023026338 A1 WO2023026338 A1 WO 2023026338A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
center
mounting portion
mounted object
gravity
Prior art date
Application number
PCT/JP2021/030862
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木陽一
Original Assignee
株式会社エアロネクスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エアロネクスト filed Critical 株式会社エアロネクスト
Priority to PCT/JP2021/030862 priority Critical patent/WO2023026338A1/en
Priority to JP2023543696A priority patent/JP7376204B2/en
Priority to PCT/JP2022/021395 priority patent/WO2023026616A1/en
Priority to CN202222188868.1U priority patent/CN218258701U/en
Priority to CN202210997824.5A priority patent/CN115716547A/en
Publication of WO2023026338A1 publication Critical patent/WO2023026338A1/en
Priority to JP2023179957A priority patent/JP2023176036A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/24Aircraft characterised by the type or position of power plant using steam, electricity, or spring force
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to an aircraft.
  • flying objects such as drones and unmanned aerial vehicles (UAVs)
  • UAVs unmanned aerial vehicles
  • multicopters do not require takeoff and landing runways like general fixed-wing aircraft, so they are relatively narrow. It can be operated on land and is suitable for providing transportation services such as home delivery.
  • Patent Literature 1 discloses a flying object capable of long-distance transportation by flying along electric wires and using electric power flowing through the electric wires. (See Patent Document 1, for example).
  • Patent Document 1 discloses a flying object that can improve the cruising distance by using the electric power that flows through the power line.
  • one object of the flying object according to the present invention is to provide a flying object capable of improving fuel efficiency in the forward attitude mainly used by flying objects used for transportation.
  • an aircraft including a mounting portion for holding a load, wherein in a landing state or a hovering state, the center position of the mounting portion is forward of the center position in the longitudinal direction of the aircraft body, and , the flying object can be provided below the lift generation center point.
  • FIG. 1 is a schematic side view of an aircraft according to the present invention
  • FIG. FIG. 2 is a view of the aircraft of FIG. 1 in a cruising attitude
  • FIG. 2 is a schematic diagram of the flying object of FIG. 1 viewed from above
  • FIG. 4 is a side view showing an example of a method of loading a payload onto an aircraft
  • FIG. 5 is a side view of the aircraft of FIG. 4 during payload retraction
  • FIG. 2 is a functional block diagram of the aircraft of FIG. 1
  • FIG. 3 is a side view of a payload mounted on the aircraft
  • It is a front view of the load mounted on an aircraft.
  • FIG. 4 is a side view showing an example of a method of loading a payload onto an aircraft;
  • FIG. 10 is a view of the aircraft of FIG. 9 in a cruising attitude
  • FIG. 4 is a side view showing an example of connection of a payload to an aircraft
  • FIG. 12 is a front view of the connection example of FIG. 11
  • FIG. 2 is a schematic diagram of an existing aircraft viewed from the side
  • FIG. 14 is a view of the aircraft of FIG. 13 in a cruising attitude
  • FIG. 4 is a side view showing an example of a method of loading a payload onto an aircraft
  • FIG. 4 is a side view showing an example of a method of loading a payload onto an aircraft
  • FIG. 4 is a side view showing an example of a method of loading a payload onto an aircraft
  • FIG. 4 is a side view showing an example of a method of loading a payload onto an aircraft;
  • An aircraft according to an embodiment of the present invention has the following configuration.
  • the aircraft according to item 1 characterized by: [Item 4] In a landing state or a hovering state, the center-of-gravity position of the mounting portion is provided below the center-of-gravity position of the aircraft.
  • the flying object according to any one of items 1 to 4 characterized by: [Item 6] In a landing state or a hovering state, the center-of-gravity position of the mounting portion is provided below the center-of-gravity position of the aircraft.
  • the flying object according to any one of items 1 to 4, characterized by: [Item 7]
  • the mounting portion or the mounted object is attached to the airframe so that the mounting portion or the mounted object tilts backward in the longitudinal direction in a landing state or a hovering state.
  • the mounting portion or the mounted object is attached to the fuselage so that the mounting portion or the mounted object is substantially horizontal during cruising.
  • the flying object according to item 7 characterized by: [Item 9]
  • the mounting part is configured to store the mounted object from the front and above the aircraft,
  • the mounting part is configured to store the mounted object from above the aircraft,
  • the airframe has an opening through which the mounted object can pass,
  • the mounted object has a configuration in which an article is installed on a tray member,
  • An aircraft according to any one of items 1 to 10 characterized by: [Item 12]
  • the mounted object has a covering member capable of restricting movement of the article with respect to the tray member. 12.
  • the aircraft according to item 11 characterized by: [Item 13]
  • the mounting portion holds the tray member on the upper side and the article on the lower side. 13.
  • the mounting portion includes a suspension member, and suspends and holds the tray member. 14.
  • the flying object 100 is capable of taking off, landing, and flying with the payload 10 mounted thereon.
  • the flying object 100 takes off from the takeoff point and flies to the destination. For example, when a flying object performs delivery, the flying object that has reached the destination lands at a port or the like or hovers above the port or the like and separates the cargo, thereby completing the delivery. The flying object that has detached the cargo moves to another destination, for example.
  • an aircraft 100 has a plurality of rotary wing sections including at least propellers 110 and motors 111, motor mounts supporting the rotary wing sections, and the like. It preferably has a flight section including elements such as the frame 120 and carries energy (eg, secondary battery, fuel cell, fossil fuel, etc.) to operate them.
  • energy eg, secondary battery, fuel cell, fossil fuel, etc.
  • the illustrated flying object 100 is drawn in a simplified manner in order to facilitate the description of the structure of the present invention, and for example, detailed configurations such as a control unit are not illustrated.
  • the flying object 100 advances in the direction of arrow D (-Y direction) in the drawing (details will be described later).
  • Forward/backward direction +Y direction and -Y direction
  • Vertical direction or vertical direction
  • Left/right direction or horizontal direction
  • the propeller 110 rotates by receiving the output from the motor 111 . Rotation of the propeller 110 generates a propulsive force for taking off, moving, and landing the aircraft 100 from the starting point.
  • the propeller 110 can rotate rightward, stop, and rotate leftward.
  • the propeller 110 of the flying object of the present invention has one or more blades. Any number of blades (rotors) may be used (eg, 1, 2, 3, 4, or more blades). Also, the vane shape can be any shape, such as flat, curved, twisted, tapered, or combinations thereof. It should be noted that the shape of the wing can be changed (for example, stretched, folded, bent, etc.). The vanes may be symmetrical (having identical upper and lower surfaces) or asymmetrical (having differently shaped upper and lower surfaces). The airfoil, wing, or airfoil can be formed into a geometry suitable for generating dynamic aerodynamic forces (eg, lift, thrust) as the airfoil is moved through the air. The geometry of the blades can be selected to optimize the dynamic air properties of the blades, such as increasing lift and thrust and reducing drag.
  • the geometry of the blades can be selected to optimize the dynamic air properties of the blades, such as increasing lift and thrust and reducing drag.
  • the propeller provided in the flying object of the present invention may be fixed pitch, variable pitch, or a mixture of fixed pitch and variable pitch, but is not limited to this.
  • the motor 111 causes rotation of the propeller 110, and for example the drive unit can include an electric motor or an engine.
  • the vanes are drivable by a motor and rotate about the axis of rotation of the motor (eg, the longitudinal axis of the motor).
  • All the blades can rotate in the same direction, and they can also rotate independently. Some of the vanes rotate in one direction and others rotate in the other direction.
  • the blades can all rotate at the same number of revolutions, or can each rotate at different numbers of revolutions. The number of rotations can be determined automatically or manually based on the dimensions (eg, size, weight) and control conditions (speed, direction of movement, etc.) of the moving body.
  • the flight object 100 determines the number of rotations of each motor and the flight angle according to the wind speed and direction by means of a flight controller, radio, etc. As a result, the flying object can move such as ascending/descending, accelerating/decelerating, and changing direction.
  • the flying object 100 can perform autonomous flight according to the route and rules set in advance or during flight, and flight by control using propo.
  • a flight controller is a so-called processing unit.
  • a processing unit may have one or more processors, such as a programmable processor (eg, central processing unit (CPU)).
  • the processing unit has a memory (not shown) and can access the memory.
  • the memory stores logic, code, and/or program instructions executable by the processing unit to perform one or more steps.
  • the memory may include, for example, removable media or external storage devices such as SD cards and random access memory (RAM). Data acquired from cameras and sensors may be communicated directly to and stored in memory. For example, still image/moving image data captured by a camera or the like is recorded in a built-in memory or an external memory.
  • the processing unit includes a control module configured to control the state of the rotorcraft.
  • the control module may adjust the spatial orientation, velocity, and/or acceleration of a rotorcraft having six degrees of freedom (translational motions x, y, and z, and rotational motions ⁇ x , ⁇ y , and ⁇ z ). control the propulsion mechanism (motor, etc.) of the rotorcraft.
  • the control module can control one or more of the states of the mount, sensors.
  • the processing unit can communicate with a transceiver configured to send and/or receive data from one or more external devices (eg, terminals, displays, or other remote controls).
  • the transceiver may use any suitable means of communication such as wired or wireless communication.
  • the transceiver utilizes one or more of local area networks (LAN), wide area networks (WAN), infrared, wireless, WiFi, point-to-point (P2P) networks, telecommunications networks, cloud communications, etc. be able to.
  • the transceiver is capable of transmitting and/or receiving one or more of data acquired by sensors, processing results generated by the processing unit, predetermined control data, user commands from a terminal or remote controller, and the like. .
  • Sensors according to the present embodiment may include inertial sensors (acceleration sensors, gyro sensors), GPS sensors, proximity sensors (eg lidar), or vision/image sensors (eg cameras).
  • inertial sensors acceleration sensors, gyro sensors, GPS sensors, proximity sensors (eg lidar), or vision/image sensors (eg cameras).
  • the plane of rotation of the propeller 110 of the flying object 100 tilts forward toward the direction of travel during travel.
  • the forward-leaning plane of rotation of propeller 110 produces upward lift and forward thrust, which propels vehicle 100 .
  • the flying object 100 includes a motor, a propeller, a frame, and the like, and may include a main body that can contain a processing unit, a battery, and the like mounted on the flight section in the flight section that generates lift and thrust.
  • the main body optimizes the shape of the aircraft 100 during cruising, which is expected to be maintained for a long time while the aircraft 100 is moving, and improves the flight speed, thereby effectively shortening the flight time. It is possible to
  • the main body has an outer skin that is strong enough to withstand flight, takeoff and landing.
  • plastics, FRP, and the like are suitable as materials for the outer skin because of their rigidity and waterproofness. These materials may be the same materials as the frame 120 (including the arms) included in the flight section, or may be different materials.
  • the motor mount, frame 120, and main body included in the flight section may be configured by connecting the respective parts, or may be integrally molded using a monocoque structure or integral molding. Good (for example, the motor mount and the frame 120 are integrally molded, the motor mount, the frame 120 and the main body are all integrally molded, etc.). By integrating the parts, it is possible to smooth the joints of each part, so it can be expected to reduce drag and improve fuel efficiency of flying objects such as blended wing bodies and lifting bodies.
  • the shape of the flying object 100 may have directivity. For example, there is a shape that improves flight efficiency when the nose of the aircraft faces the wind, such as a streamlined main body that has less drag when the aircraft 100 is cruising in no wind.
  • the mounting part 11 is a part that connects to the flight part.
  • the mounting portion 11 may be configured to hold the mounted object 10 , and more preferably may be configured to enclose the mounted object 10 .
  • the mounted object 10 is described as an example of a transport box that serves as a package and its packing material, but the present technology is not limited to such an example.
  • the payload 10 can be, for example, a package such as daily necessities, books, and food delivered from a store, a camera, devices such as sensors and actuators for inspecting structures, and other flight parts. May contain objects. Also, the number of objects constituting the mounting portion 11 may be singular or plural.
  • These mounting portions 11 are provided fixedly to the flight portion, and are inclined according to the inclination of the aircraft.
  • the center B1 of the mounting portion 11 is lateral (+X direction and ⁇ X direction) with respect to the traveling direction (front-rear direction) D in the landing state or hovering state. ), it is desirable to be located forward of the central position C1 in the longitudinal direction of the aircraft 100 and below any of the following (1) to (3).
  • lift generation area L1 lift generation central point L2
  • vertical center position C2 of the flying object 100 center of gravity G1 of the flying object 100
  • the center of gravity G2 of the mounting portion 11 is located forward of the center position C1 of the aircraft 100 when viewed from the sides (+X direction and ⁇ X direction) with respect to the traveling direction (front-rear direction) D in the landing state or hovering state. , and the same or similar effects can be obtained by providing below any one of (1) to (3) described above.
  • the center of gravity G1 of the flying object 100 means the comprehensive center of gravity of the flight portion and the main body portion.
  • the center of gravity G3 means the overall center of gravity of the flight section, the main body section, the mounting section, and the mounted object.
  • the lift generation area L1 is an area included in the width of the blades of each propeller 110 (the length along the height direction Z in FIG. 1) in the rotorcraft 1 according to the present embodiment.
  • a lift generation center point (lift center) L2 can exist based on the position of each propeller 110 in plan view.
  • the center of lift L2 exists at the geometric center position of each propeller 110 when the propellers 110 have substantially the same output.
  • the lift generation area L1 can be defined as follows. First, the positions of the upper and lower ends of the blades of the propeller 110 in the width direction (height direction H in the rotorcraft 1) on each rotating shaft of the motor 111 are obtained. The space sandwiched between the least-squares plane obtained by the point group corresponding to each upper end position on each rotation axis and the least-squares plane obtained by each point group corresponding to each lower end position on each rotation axis is the lift force. It can be defined as generation area L1. The position of the center of lift L2 in this case is the same as in the case described above.
  • center position C1 of the flying portion 140 means the center position between the front end and the rear end of the flying portion 140 in the longitudinal direction D
  • center position C2 of the flying portion 140 means the vertical direction of the flying portion 140.
  • the mounted object 10 is generally placed on the bottom surface of the mounting portion 11. As shown in FIG. Moreover, even when the mounted object 10 is a box or the like containing a plurality of articles, it is common for the articles to be placed on the bottom side inside the mounted object. Therefore, the center of gravity G2 of the mounting portion 11 is likely to be below the center of the mounting portion. That is, by providing the center point B1 of the mounting portion below any one of (1) to (3) described above, in many cases, the center of gravity G2 of the mounting portion 11 can also be any of (1) to (3). or lower. As a result, in the landing state or hovering state, the center of gravity G3 is forward (+Y) and downward (-Z) compared to the center of gravity G1 of the aircraft.
  • the rotorcraft in which the position of the center of gravity G3 is not considered, the rotorcraft must be tilted for cruising. You need to lift the rear and lower the front. In this case, the lift of the rear propeller should be greater than the lift of the front propeller. As a result, the number of rotations of the rear motor during forward movement increases, and the number of rotations of the front rotor decreases. In this way, variations in the number of revolutions of the motor can occur. Furthermore, since the mounted object is connected to the lower central part of the flying object, the center of gravity G3 is located at the rear of the flying object, and the difference in the number of rotations of the motors increases.
  • FIG. 2 is a diagram showing an example of a flight mode during cruising of the aircraft 100 according to this embodiment.
  • the flying object 100 shown in FIG. 2 is in a state in which it is tilted with respect to the traveling direction D and is flying in the traveling direction D.
  • the center of gravity G3 of the aircraft 100 is closer to the center of lift L2 than the conventional rotorcraft shown in FIG.
  • the flying object 100 when the flying object 100 is tilted in the traveling direction D during cruising, the difference in rotation speed between the front motor 111a and the rear motor 111b can be reduced. As a result, variation in battery consumption (that is, energy consumption) due to the difference in the number of revolutions of the motor during cruising can be suppressed. Thereby, for example, the cruise time can be further extended. Also, the load on the motor can be homogenized, and the motor can be operated more efficiently. Therefore, it is possible to improve operational efficiency in cruising the rotorcraft.
  • the drag force when the flying object 100 moves may increase.
  • the mounting part is tilted backwards during landing and hovering compared to the cruising posture (for example, tilting forward during the cruising posture and becoming horizontal during landing and hovering).
  • the front projected area of the mounting portion when the aircraft is tilted forward increases as compared to landing and hovering, as shown in FIG.
  • H4 is larger.
  • the mounting portion 11 or the payload 10 by mounting the mounting portion 11 or the payload 10 at a predetermined angle, an increase in frontal projected area of the aircraft during the cruising attitude is suppressed, and a decrease in flight efficiency is prevented.
  • the predetermined angle is desirably an angle at which the frontal projected area or drag during cruising of the aircraft is smaller than during landing or hovering.
  • the mounting portion tilts backward in the longitudinal direction (up forward in the traveling direction) during landing and hovering, and during cruising, compared to landing and hovering.
  • the mounting part is installed at an angle that approaches the horizontal (substantially horizontal angle)
  • the frontal projected area of the mounting part when the aircraft is tilted forward will be smaller than during landing or hovering (for example, during landing or during hovering). Comparing the total height H1 of the mounting portion during hovering with the total height H2 of the mounting portion during the cruising attitude, H2 is smaller).
  • the mounted object itself may be tilted at a predetermined angle and attached to the flying portion or the main body and fixed, or as illustrated in FIGS.
  • the mounting object 10 may be mounted on the mounting portion 11 provided at a predetermined angle in advance.
  • the load 10 may be packed in stackable members such as trays and plates (hereinafter collectively referred to as tray members).
  • tray members trays and plates
  • the number of parcels delivered to homes and companies is increasing. It may increase the burden on the user and the burden on the environment, such as securing a storage place and disposing of the packing materials that arrive with the goods.
  • Many packages are stored in packing materials such as cardboard, and there is a concern that they may be bulky when stored in the shape they arrive at.
  • By using a tray member for packing the load it is possible to reduce the space required to store the packing materials and also reduce the resources used for the materials themselves.
  • an article is placed on a tray member 20, and a covering member (hereinafter collectively referred to as a film 21) such as a resin film or a net capable of restricting movement of the article is used to remove the article from the tray member 20.
  • a covering member hereinafter collectively referred to as a film 21
  • a covering member such as a resin film or a net capable of restricting movement of the article.
  • the tray member 20 When the tray member 20 is used as the packing material, as shown in FIGS. 9 and 10, by connecting the tray member 20 to the upper side and the articles to the lower side to the aircraft 100, the size and height of the mounted article can be adjusted. To reduce the frontal projected area during cruising of the aircraft compared to the case of using a box-shaped mounting part, and to obtain a higher effect in reducing drag and improving fuel efficiency. becomes possible.
  • a mounted object may be suspended by providing projections that can be fitted to rails on two opposite sides.
  • a protruding non-slipper 12 or the like may be provided so that the mounted object 10 does not unintentionally slip off the rail due to the inclination of the aircraft.
  • the method of connecting the tray member 20 to the aircraft may be any method as long as it does not unintentionally separate the tray member and the mounted object. Examples include fixing by a mechanism, magnetic attachment or adsorption, and suspension by a string-like member, but are not limited to these.

Abstract

[Problem] To provide a flight vehicle for which fuel consumption can be improved and which is capable of transporting an article. [Solution] This flight vehicle comprises a load part for holding a load, wherein, in a landed state or a hovering state, the center position of the load part is arranged more to the front side than the middle position of the front-rear direction of a vehicle body, and more to the lower side than the generation center point of lift. Further, the center position of the load part is arranged more to the lower side than the middle position of the up-down direction of the vehicle body. Further, the center position of the load part is arranged more to the lower side than the position of the center of gravity of the flight vehicle. Further, the position of the center of gravity of the load part is arranged more to the lower side than the position of the center of gravity of the flight vehicle.

Description

飛行体flying object
 本発明は、飛行体に関する。 The present invention relates to an aircraft.
 近年、ドローン(Drone)や無人航空機(UAV:Unmanned Aerial Vehicle)などの飛行体(以下、「飛行体」と総称する)を用いた宅配サービスの実用化が進められている。一般的にマルチコプターと呼ばれる、複数のプロペラを備えた飛行体(以下、マルチコプターと総称する)は、一般的な固定翼機のように離着陸用の滑走路を必要としないため、比較的狭い土地での運用が可能となり、宅配などの運送サービスの提供に好適である。 In recent years, the practical use of home delivery services using flying objects (hereinafter collectively referred to as "flying objects") such as drones and unmanned aerial vehicles (UAVs) has been promoted. Aircraft with multiple propellers, generally called multicopters (hereinafter collectively referred to as multicopters), do not require takeoff and landing runways like general fixed-wing aircraft, so they are relatively narrow. It can be operated on land and is suitable for providing transportation services such as home delivery.
 しかし、マルチコプターは、液体燃料を利用するエンジン機と比較して、航続距離が短くなる場合がある。撮影等の限られた時間や範囲で飛行が行われるケースと異なり、輸送用途においては、長時間、長距離の飛行が必要とされている。このような状況を鑑みて、特許文献1においては、飛行体が電線に沿って飛行し、電線路を流れる電力を利用しながら飛行することで長距離輸送を可能とする飛行体が開示されている(例えば、特許文献1参照)。 However, multi-copters may have a shorter cruising range than liquid-fueled engine aircraft. Unlike the case of flying for a limited time and range, such as for photography, transportation applications require long-time, long-distance flights. In view of this situation, Patent Literature 1 discloses a flying object capable of long-distance transportation by flying along electric wires and using electric power flowing through the electric wires. (See Patent Document 1, for example).
特開2021-020529号公報Japanese Patent Application Laid-Open No. 2021-020529
 特許文献1では、飛行体が電線路に流れる電力を利用し、航続距離を向上させることが可能な飛行体が開示されている。 Patent Document 1 discloses a flying object that can improve the cruising distance by using the electric power that flows through the power line.
 しかし、輸送業務においては、海上や山間部等、外部から電力の供給を受けることが困難なルートを飛行する場合がある。このような場合でも、航続距離の向上を実現するためには、飛行体の燃費を向上させることが必要となる。 However, in the transportation business, there are cases where it is difficult to receive power supply from the outside, such as the sea and mountainous areas. Even in such a case, it is necessary to improve the fuel efficiency of the aircraft in order to improve the cruising range.
 更に、近年では、一度の飛行で運ぶ物品の大きさや重さをより大きくすることが望まれるケースがある。物品の大きさや重量が大きくなると、飛行体の移動時の抗力やモータ付加が増加し、燃費の悪化につながる要素となる場合がある。 Furthermore, in recent years, there have been cases in which it is desired to increase the size and weight of items carried in a single flight. As the size and weight of the article increase, the drag force and the motor load increase during movement of the flying object, which may lead to deterioration of fuel consumption.
 かかる状況に鑑み、本発明による飛行体は、輸送に用いる飛行体が主に用いる前進の姿勢において、燃費向上が可能な飛行体を提供することを一つの目的とする。 In view of this situation, one object of the flying object according to the present invention is to provide a flying object capable of improving fuel efficiency in the forward attitude mainly used by flying objects used for transportation.
 本発明によれば、搭載物を保持する搭載部を備える飛行体であって、着陸状態またはホバリング状態において、前記搭載部の中心位置は、機体の前後方向の中央位置より前方側であり、且つ、揚力の発生中心点より下側に設けられる、飛行体を提供することができる。 According to the present invention, there is provided an aircraft including a mounting portion for holding a load, wherein in a landing state or a hovering state, the center position of the mounting portion is forward of the center position in the longitudinal direction of the aircraft body, and , the flying object can be provided below the lift generation center point.
 その他本願が開示する課題やその解決方法については、発明の実施形態の欄及び図面により明らかにされる。 Other problems disclosed by the present application and their solutions will be clarified in the section of the embodiment of the invention and the drawings.
 本発明によれば、燃費を向上させ得る、物品の輸送が可能な飛行体を提供し得る。 According to the present invention, it is possible to provide an aircraft capable of transporting goods, which can improve fuel efficiency.
本発明による飛行体を側面から見た模式図である。1 is a schematic side view of an aircraft according to the present invention; FIG. 図1の飛行体の巡航姿勢時の図である。FIG. 2 is a view of the aircraft of FIG. 1 in a cruising attitude; 図1の飛行体を上面から見た模式図である。FIG. 2 is a schematic diagram of the flying object of FIG. 1 viewed from above; 飛行体へ搭載物を搭載する方法の例を示す側面図である。FIG. 4 is a side view showing an example of a method of loading a payload onto an aircraft; 図4の飛行体の搭載物格納中の側面図である。FIG. 5 is a side view of the aircraft of FIG. 4 during payload retraction; 図1の飛行体の機能ブロック図である。FIG. 2 is a functional block diagram of the aircraft of FIG. 1; 飛行体に搭載される搭載物の側面図である。FIG. 3 is a side view of a payload mounted on the aircraft; 飛行体に搭載される搭載物の正面図である。It is a front view of the load mounted on an aircraft. 飛行体へ搭載物を搭載する方法の例を示す側面図である。FIG. 4 is a side view showing an example of a method of loading a payload onto an aircraft; 図9の飛行体の巡航姿勢時の図である。FIG. 10 is a view of the aircraft of FIG. 9 in a cruising attitude; 搭載物の飛行体への接続例を示す側面図である。FIG. 4 is a side view showing an example of connection of a payload to an aircraft; 図11の接続例の正面図である。FIG. 12 is a front view of the connection example of FIG. 11; 既存の飛行体を側面から見た模式図である。FIG. 2 is a schematic diagram of an existing aircraft viewed from the side; 図13の飛行体の巡航姿勢時の図である。FIG. 14 is a view of the aircraft of FIG. 13 in a cruising attitude; 飛行体へ搭載物を搭載する方法の例を示す側面図である。FIG. 4 is a side view showing an example of a method of loading a payload onto an aircraft; 飛行体へ搭載物を搭載する方法の例を示す側面図である。FIG. 4 is a side view showing an example of a method of loading a payload onto an aircraft; 飛行体へ搭載物を搭載する方法の例を示す側面図である。FIG. 4 is a side view showing an example of a method of loading a payload onto an aircraft;
 本発明の実施形態の内容を列記して説明する。本発明の実施の形態による飛行体は、以下のような構成を備える。
[項目1]
搭載物を保持する搭載部を備える飛行体であって、
 着陸状態またはホバリング状態において、前記搭載部の中心位置は、機体の前後方向の中央位置より前方側であり、且つ、揚力の発生中心点より下側に設けられる、
 ことを特徴とする飛行体。
[項目2]
 着陸状態またはホバリング状態において、前記搭載部の中心位置は、前記機体の上下方向の中央位置よりも下側に設けられる、
 ことを特徴とする項目1に記載の飛行体。
[項目3]
 着陸状態またはホバリング状態において、前記搭載部の中心位置は、前記飛行体の重心位置よりも下側に設けられる、
 ことを特徴とする項目1に記載の飛行体。
[項目4]
 着陸状態またはホバリング状態において、前記搭載部の重心位置は、前記飛行体の重心位置よりも下側に設けられる、
 ことを特徴とする項目1ないし項目3のいずれかに記載の飛行体。
[項目5]
 着陸状態またはホバリング状態において、前記搭載部の重心位置は、前記機体の上下方向の中央位置よりも下側に設けられる、
 ことを特徴とする項目1ないし項目4のいずれかに記載の飛行体。
[項目6]
 着陸状態またはホバリング状態において、前記搭載部の重心位置は、前記飛行体の重心位置よりも下側に設けられる、
 ことを特徴とする項目1ないし項目4のいずれかに記載の飛行体。
[項目7]
 前記搭載部または前記搭載物は、着陸状態またはホバリング状態に前記搭載部または前記搭載物が前後方向において後傾するように前記機体に取り付けられている、
 ことを特徴とする項目1ないし項目6のいずれかに記載の飛行体。
[項目8]
 前記搭載部または前記搭載物は、巡行時に前記搭載部または前記搭載物が略水平となるように前記機体に取り付けられている、
 ことを特徴とする項目7に記載の飛行体。
[項目9]
 前記搭載部は、機体の前方かつ上方から前記搭載物を格納する構成である、
 ことを特徴とする項目7または項目8のいずれかに記載の飛行体。
[項目10]
 前記搭載部は、機体の上方から前記搭載物を格納する構成であり、
 前記機体は、前記搭載物が通過可能な開口部を有する、
 ことを特徴とする項目7または項目8のいずれかに記載の飛行体。
[項目11]
 前記搭載物は、物品をトレイ部材に設置した構成である、
 ことを特徴とする項目1ないし項目10のいずれかに記載の飛行体。
[項目12]
 前記搭載物は、前記トレイ部材に対して前記物品の動きを制限可能な被覆部材を有する、
 ことを特徴とする項目11に記載の飛行体。
[項目13]
 前記搭載部は、前記トレイ部材を上側とし前記物品が下側となるように保持する、
 ことを特徴とする項目11または12のいずれかに記載の飛行体。
[項目14]
 前記搭載部は、吊下用部材を備え、前記トレイ部材を吊り下げて保持する、
 ことを特徴とする項目13に記載の飛行体。
The contents of the embodiments of the present invention are listed and explained. An aircraft according to an embodiment of the present invention has the following configuration.
[Item 1]
An aircraft comprising a mounting portion for holding a mounted object,
In a landing state or a hovering state, the center position of the mounting portion is located forward of the center position in the longitudinal direction of the fuselage and below the center point of lift force generation.
An aircraft characterized by:
[Item 2]
In a landing state or a hovering state, the center position of the mounting portion is provided below the center position in the vertical direction of the aircraft body.
The aircraft according to item 1, characterized by:
[Item 3]
In a landing state or a hovering state, the center position of the mounting portion is provided below the center of gravity of the aircraft.
The aircraft according to item 1, characterized by:
[Item 4]
In a landing state or a hovering state, the center-of-gravity position of the mounting portion is provided below the center-of-gravity position of the aircraft.
The flying object according to any one of items 1 to 3, characterized by:
[Item 5]
In a landing state or a hovering state, the position of the center of gravity of the mounting portion is provided below the center position in the vertical direction of the aircraft body.
The flying object according to any one of items 1 to 4, characterized by:
[Item 6]
In a landing state or a hovering state, the center-of-gravity position of the mounting portion is provided below the center-of-gravity position of the aircraft.
The flying object according to any one of items 1 to 4, characterized by:
[Item 7]
The mounting portion or the mounted object is attached to the airframe so that the mounting portion or the mounted object tilts backward in the longitudinal direction in a landing state or a hovering state.
An aircraft according to any one of items 1 to 6, characterized by:
[Item 8]
The mounting portion or the mounted object is attached to the fuselage so that the mounting portion or the mounted object is substantially horizontal during cruising.
The flying object according to item 7, characterized by:
[Item 9]
The mounting part is configured to store the mounted object from the front and above the aircraft,
An aircraft according to any one of items 7 and 8, characterized by:
[Item 10]
The mounting part is configured to store the mounted object from above the aircraft,
The airframe has an opening through which the mounted object can pass,
An aircraft according to any one of items 7 and 8, characterized by:
[Item 11]
The mounted object has a configuration in which an article is installed on a tray member,
An aircraft according to any one of items 1 to 10, characterized by:
[Item 12]
The mounted object has a covering member capable of restricting movement of the article with respect to the tray member.
12. The aircraft according to item 11, characterized by:
[Item 13]
The mounting portion holds the tray member on the upper side and the article on the lower side.
13. The aircraft according to any one of items 11 and 12, characterized by:
[Item 14]
The mounting portion includes a suspension member, and suspends and holds the tray member.
14. The aircraft according to item 13, characterized by:
<本発明による実施形態の詳細>
以下、本発明の実施の形態による飛行体について、図面を参照しながら説明する。
<Details of embodiment according to the present invention>
Hereinafter, flying objects according to embodiments of the present invention will be described with reference to the drawings.
 <第1の実施の形態の詳細> <Details of the first embodiment>
 図1及び図2に例示されるように、飛行体100は、搭載物10を搭載した状態で離着陸や飛行が可能な飛行体である。 As illustrated in FIGS. 1 and 2, the flying object 100 is capable of taking off, landing, and flying with the payload 10 mounted thereon.
 飛行体100は、離陸地点から離陸を行い、目的地まで飛行する。例えば、飛行体が配送を行う場合には、目的地に到達した飛行体が、ポート等に着陸またはポート等の上空でホバリング行い、荷物を切り離すことで配送を完了する。荷物を切り離した飛行体は、例えば他の目的地に向かうために移動を行う。 The flying object 100 takes off from the takeoff point and flies to the destination. For example, when a flying object performs delivery, the flying object that has reached the destination lands at a port or the like or hovers above the port or the like and separates the cargo, thereby completing the delivery. The flying object that has detached the cargo moves to another destination, for example.
 図1及び図2に示されるように、本発明の実施の形態による飛行体100は飛行を行うために少なくともプロペラ110及びモータ111からなる複数の回転翼部や当該回転翼部を支えるモータマウントやフレーム120等の要素を含む飛行部を備えており、それらを動作させるためのエネルギー(例えば、二次電池や燃料電池、化石燃料等)を搭載していることが望ましい。 As shown in FIGS. 1 and 2, an aircraft 100 according to an embodiment of the present invention has a plurality of rotary wing sections including at least propellers 110 and motors 111, motor mounts supporting the rotary wing sections, and the like. It preferably has a flight section including elements such as the frame 120 and carries energy (eg, secondary battery, fuel cell, fossil fuel, etc.) to operate them.
 なお、図示されている飛行体100は、本発明の構造の説明を容易にするため簡略化されて描かれており、例えば、制御部等の詳しい構成は図示していない。 It should be noted that the illustrated flying object 100 is drawn in a simplified manner in order to facilitate the description of the structure of the present invention, and for example, detailed configurations such as a control unit are not illustrated.
 飛行体100は図の矢印Dの方向(-Y方向)を前進方向としている(詳しくは後述する)。 The flying object 100 advances in the direction of arrow D (-Y direction) in the drawing (details will be described later).
 なお、以下の説明において、以下の定義に従って用語を使い分けることがある。前後方向:+Y方向及び-Y方向、上下方向(または鉛直方向):+Z方向及び-Z方向、左右方向(または水平方向):+X方向及び-X方向、進行方向(前方):-Y方向、後退方向(後方):+Y方向、上昇方向(上方):+Z方向、下降方向(下方):-Z方向 In addition, in the following explanation, terms may be used according to the following definitions. Forward/backward direction: +Y direction and -Y direction, Vertical direction (or vertical direction): +Z direction and -Z direction, Left/right direction (or horizontal direction): +X direction and -X direction, Forward direction (forward): -Y direction, Backward direction (backward): +Y direction, Upward direction (upward): +Z direction, Downward direction (downward): -Z direction
 プロペラ110は、モータ111からの出力を受けて回転する。プロペラ110が回転することによって、飛行体100を出発地から離陸させ、移動させ、目的地に着陸させるための推進力が発生する。なお、プロペラ110は、右方向への回転、停止及び左方向への回転が可能である。 The propeller 110 rotates by receiving the output from the motor 111 . Rotation of the propeller 110 generates a propulsive force for taking off, moving, and landing the aircraft 100 from the starting point. The propeller 110 can rotate rightward, stop, and rotate leftward.
 本発明の飛行体が備えるプロペラ110は、1以上の羽根を有している。任意の羽根(回転子)の数(例えば、1、2、3、4、またはそれ以上の羽根)でよい。また、羽根の形状は、平らな形状、曲がった形状、よじれた形状、テーパ形状、またはそれらの組み合わせ等の任意の形状が可能である。なお、羽根の形状は変化可能である(例えば、伸縮、折りたたみ、折り曲げ等)。羽根は対称的(同一の上部及び下部表面を有する)または非対称的(異なる形状の上部及び下部表面を有する)であってもよい。羽根はエアホイル、ウイング、または羽根が空中を移動される時に動的空気力(例えば、揚力、推力)を生成するために好適な幾何学形状に形成可能である。羽根の幾何学形状は、揚力及び推力を増加させ、抗力を削減する等の、羽根の動的空気特性を最適化するために適宜選択可能である。 The propeller 110 of the flying object of the present invention has one or more blades. Any number of blades (rotors) may be used (eg, 1, 2, 3, 4, or more blades). Also, the vane shape can be any shape, such as flat, curved, twisted, tapered, or combinations thereof. It should be noted that the shape of the wing can be changed (for example, stretched, folded, bent, etc.). The vanes may be symmetrical (having identical upper and lower surfaces) or asymmetrical (having differently shaped upper and lower surfaces). The airfoil, wing, or airfoil can be formed into a geometry suitable for generating dynamic aerodynamic forces (eg, lift, thrust) as the airfoil is moved through the air. The geometry of the blades can be selected to optimize the dynamic air properties of the blades, such as increasing lift and thrust and reducing drag.
 また、本発明の飛行体が備えるプロペラは、固定ピッチ、可変ピッチ、また固定ピッチと可変ピッチの混合などが考えられるが、これに限らない。 In addition, the propeller provided in the flying object of the present invention may be fixed pitch, variable pitch, or a mixture of fixed pitch and variable pitch, but is not limited to this.
 モータ111は、プロペラ110の回転を生じさせるものであり、例えば、駆動ユニットは、電気モータ又はエンジン等を含むことが可能である。羽根は、モータによって駆動可能であり、モータの回転軸(例えば、モータの長軸)の周りに回転する。 The motor 111 causes rotation of the propeller 110, and for example the drive unit can include an electric motor or an engine. The vanes are drivable by a motor and rotate about the axis of rotation of the motor (eg, the longitudinal axis of the motor).
 羽根は、すべて同一方向に回転可能であるし、独立して回転することも可能である。羽根のいくつかは一方の方向に回転し、他の羽根は他方方向に回転する。羽根は、同一回転数ですべて回転することも可能であり、夫々異なる回転数で回転することも可能である。回転数は移動体の寸法(例えば、大きさ、重さ)や制御状態(速さ、移動方向等)に基づいて自動又は手動により定めることができる。 All the blades can rotate in the same direction, and they can also rotate independently. Some of the vanes rotate in one direction and others rotate in the other direction. The blades can all rotate at the same number of revolutions, or can each rotate at different numbers of revolutions. The number of rotations can be determined automatically or manually based on the dimensions (eg, size, weight) and control conditions (speed, direction of movement, etc.) of the moving body.
 飛行体100は、フライトコントローラやプロポ等により、風速と風向に応じて、各モータの回転数や、飛行角度を決定する。これにより、飛行体は上昇・下降したり、加速・減速したり、方向転換したりといった移動を行うことができる。 The flight object 100 determines the number of rotations of each motor and the flight angle according to the wind speed and direction by means of a flight controller, radio, etc. As a result, the flying object can move such as ascending/descending, accelerating/decelerating, and changing direction.
 飛行体100は、事前または飛行中に設定されるルートやルールに準じた自律的な飛行や、プロポを用いた操縦による飛行を行うことができる。 The flying object 100 can perform autonomous flight according to the route and rules set in advance or during flight, and flight by control using propo.
 上述した飛行体100は、図6に示される機能ブロックを有している。なお、図6の機能ブロックは最低限の参考構成の一例である。フライトコントローラは、所謂処理ユニットである。処理ユニットは、プログラマブルプロセッサ(例えば、中央処理ユニット(CPU))などの1つ以上のプロセッサを有することができる。処理ユニットは、図示しないメモリを有しており、当該メモリにアクセス可能である。メモリは、1つ以上のステップを行うために処理ユニットが実行可能であるロジック、コード、および/またはプログラム命令を記憶している。メモリは、例えば、SDカードやランダムアクセスメモリ(RAM)などの分離可能な媒体または外部の記憶装置を含んでいてもよい。カメラやセンサ類から取得したデータは、メモリに直接に伝達されかつ記憶されてもよい。例えば、カメラ等で撮影した静止画・動画データが内蔵メモリ又は外部メモリに記録される。 The flying object 100 described above has functional blocks shown in FIG. Note that the functional blocks in FIG. 6 are an example of a minimum reference configuration. A flight controller is a so-called processing unit. A processing unit may have one or more processors, such as a programmable processor (eg, central processing unit (CPU)). The processing unit has a memory (not shown) and can access the memory. The memory stores logic, code, and/or program instructions executable by the processing unit to perform one or more steps. The memory may include, for example, removable media or external storage devices such as SD cards and random access memory (RAM). Data acquired from cameras and sensors may be communicated directly to and stored in memory. For example, still image/moving image data captured by a camera or the like is recorded in a built-in memory or an external memory.
 処理ユニットは、回転翼機の状態を制御するように構成された制御モジュールを含んでいる。例えば、制御モジュールは、6自由度(並進運動x、y及びz、並びに回転運動θ、θ及びθ)を有する回転翼機の空間的配置、速度、および/または加速度を調整するために回転翼機の推進機構(モータ等)を制御する。制御モジュールは、搭載部、センサ類の状態のうちの1つ以上を制御することができる。 The processing unit includes a control module configured to control the state of the rotorcraft. For example, the control module may adjust the spatial orientation, velocity, and/or acceleration of a rotorcraft having six degrees of freedom (translational motions x, y, and z, and rotational motions θx , θy , and θz ). control the propulsion mechanism (motor, etc.) of the rotorcraft. The control module can control one or more of the states of the mount, sensors.
 処理ユニットは、1つ以上の外部のデバイス(例えば、端末、表示装置、または他の遠隔の制御器)からのデータを送信および/または受け取るように構成された送受信部と通信可能である。送受信機は、有線通信または無線通信などの任意の適当な通信手段を使用することができる。例えば、送受信部は、ローカルエリアネットワーク(LAN)、ワイドエリアネットワーク(WAN)、赤外線、無線、WiFi、ポイントツーポイント(P2P)ネットワーク、電気通信ネットワーク、クラウド通信などのうちの1つ以上を利用することができる。送受信部は、センサ類で取得したデータ、処理ユニットが生成した処理結果、所定の制御データ、端末または遠隔の制御器からのユーザコマンドなどのうちの1つ以上を送信および/または受け取ることができる。 The processing unit can communicate with a transceiver configured to send and/or receive data from one or more external devices (eg, terminals, displays, or other remote controls). The transceiver may use any suitable means of communication such as wired or wireless communication. For example, the transceiver utilizes one or more of local area networks (LAN), wide area networks (WAN), infrared, wireless, WiFi, point-to-point (P2P) networks, telecommunications networks, cloud communications, etc. be able to. The transceiver is capable of transmitting and/or receiving one or more of data acquired by sensors, processing results generated by the processing unit, predetermined control data, user commands from a terminal or remote controller, and the like. .
 本実施の形態によるセンサ類は、慣性センサ(加速度センサ、ジャイロセンサ)、GPSセンサ、近接センサ(例えば、ライダー)、またはビジョン/イメージセンサ(例えば、カメラ)を含み得る。 Sensors according to the present embodiment may include inertial sensors (acceleration sensors, gyro sensors), GPS sensors, proximity sensors (eg lidar), or vision/image sensors (eg cameras).
 本発明の実施の形態における飛行体100が備えるプロペラ110の回転面は、進行時に進行方向に向かい前傾した角度となる。前傾したプロペラ110の回転面により、上方への揚力と、進行方向への推力とが生み出され、これにより飛行体100が進行する。 The plane of rotation of the propeller 110 of the flying object 100 according to the embodiment of the present invention tilts forward toward the direction of travel during travel. The forward-leaning plane of rotation of propeller 110 produces upward lift and forward thrust, which propels vehicle 100 .
 飛行体100は、モータ、プロペラ、フレーム等を備え、揚力及び推力を発生させる飛行部において、飛行部に搭載する処理ユニットやバッテリ等を内包可能な本体部を備えていてもよい。本体部は、飛行体100の移動中、長時間維持されることが期待される巡航時の飛行体100の姿勢における形状を最適化し、飛行速度を向上させることで、効率的に飛行時間を短縮することが可能である。 The flying object 100 includes a motor, a propeller, a frame, and the like, and may include a main body that can contain a processing unit, a battery, and the like mounted on the flight section in the flight section that generates lift and thrust. The main body optimizes the shape of the aircraft 100 during cruising, which is expected to be maintained for a long time while the aircraft 100 is moving, and improves the flight speed, thereby effectively shortening the flight time. It is possible to
 本体部は、飛行や離着陸に耐え得る強度を持つ外皮を備えていることが望ましい。例えば、プラスチック、FRP等は、剛性や防水性があるため、外皮の素材として好適である。これらの素材は、飛行部に含まれるフレーム120(アーム含む)と同じ素材であってもよいし、異なる素材であってもよい。 It is desirable that the main body has an outer skin that is strong enough to withstand flight, takeoff and landing. For example, plastics, FRP, and the like are suitable as materials for the outer skin because of their rigidity and waterproofness. These materials may be the same materials as the frame 120 (including the arms) included in the flight section, or may be different materials.
 また、飛行部が備えるモータマウント、フレーム120、及び本体部は、夫々の部品を接続して構成してもよいし、モノコック構造や一体成形を利用して、一体となるように成形してもよい(例えば、モータマウントとフレーム120を一体に成形する、モータマウントとフレーム120と本体部すべてを一体に成形する、等)。部品を一体とすることで、各部品のつなぎ目を滑らかにすることが可能となるため、ブレンデッドウィングボディやリフティングボディといった飛行体が持つ、抗力の軽減や燃費の向上効果が期待できる。 Also, the motor mount, frame 120, and main body included in the flight section may be configured by connecting the respective parts, or may be integrally molded using a monocoque structure or integral molding. Good (for example, the motor mount and the frame 120 are integrally molded, the motor mount, the frame 120 and the main body are all integrally molded, etc.). By integrating the parts, it is possible to smooth the joints of each part, so it can be expected to reduce drag and improve fuel efficiency of flying objects such as blended wing bodies and lifting bodies.
 飛行体100の形状は、指向性を持っていてもよい。例えば、飛行体100が無風下における巡航時の姿勢において抗力の少ない流線形の本体部等、飛行体の機首が風に正対した際に飛行効率を向上させる形状が挙げられる。 The shape of the flying object 100 may have directivity. For example, there is a shape that improves flight efficiency when the nose of the aircraft faces the wind, such as a streamlined main body that has less drag when the aircraft 100 is cruising in no wind.
 搭載部11は、飛行部に接続するパーツである。搭載部11は、例えば、搭載物10を保持するように構成され、より好ましくは搭載物10を内包するような構成であり得る。なお、本実施形態において搭載物10は、荷物やその梱包資材となる輸送箱の一例として説明されるが、本技術はかかる例に限定されない。搭載物10は、例えば、販売店から配送される日用品や書籍、食品等の荷物の他、カメラ、構造物の点検等を行うためのセンサおよびアクチュエータ等の装置、その他飛行部に搭載可能である物体を含んでよい。また、搭載部11を構成する物体は単数または複数であってもよい。これらの搭載部11は、飛行部に固定されて設けられ、飛行体の傾きに準じて傾斜する。 The mounting part 11 is a part that connects to the flight part. The mounting portion 11 may be configured to hold the mounted object 10 , and more preferably may be configured to enclose the mounted object 10 . Note that in the present embodiment, the mounted object 10 is described as an example of a transport box that serves as a package and its packing material, but the present technology is not limited to such an example. The payload 10 can be, for example, a package such as daily necessities, books, and food delivered from a store, a camera, devices such as sensors and actuators for inspecting structures, and other flight parts. May contain objects. Also, the number of objects constituting the mounting portion 11 may be singular or plural. These mounting portions 11 are provided fixedly to the flight portion, and are inclined according to the inclination of the aircraft.
 次に図1及び図3を参照すると、本実施形態に係る搭載部11の中心B1は、着陸状態またはホバリング状態において、進行方向(前後方向)Dに対して側方(+X方向及び-X方向)からみて、飛行体100の前後方向の中央位置C1より前方側であり、且つ、次の(1)~(3)のいずれかより下側に設けられることが望ましい。(1)揚力発生領域L1(揚力発生中心点L2)(2)飛行体100の上下方向の中央位置C2(3)飛行体100の重心G1 Next, referring to FIGS. 1 and 3, the center B1 of the mounting portion 11 according to the present embodiment is lateral (+X direction and −X direction) with respect to the traveling direction (front-rear direction) D in the landing state or hovering state. ), it is desirable to be located forward of the central position C1 in the longitudinal direction of the aircraft 100 and below any of the following (1) to (3). (1) lift generation area L1 (lift generation central point L2) (2) vertical center position C2 of the flying object 100 (3) center of gravity G1 of the flying object 100
 また、搭載部11の重心G2が、着陸状態またはホバリング状態において、進行方向(前後方向)Dに対して側方(+X方向及び-X方向)からみて、飛行体100の中央位置C1より前方側であり、且つ、先述の(1)~(3)のいずれかより下側に設けられることでも、同様または近似の効果を得ることが出来る。 Further, the center of gravity G2 of the mounting portion 11 is located forward of the center position C1 of the aircraft 100 when viewed from the sides (+X direction and −X direction) with respect to the traveling direction (front-rear direction) D in the landing state or hovering state. , and the same or similar effects can be obtained by providing below any one of (1) to (3) described above.
 ここで、本実施形態に係る飛行体100の重心G1とは、飛行部及び本体部の総合的な重心を意味する。また、重心G3とは、飛行部、本体部、搭載部、搭載物の総合的な重心を意味する。また、揚力発生領域L1は、本実施形態に係る回転翼機1においては、各プロペラ110の羽根の幅(図1における高さ方向Zに沿った長さ)に含まれる領域である。この揚力発生領域L1において、プロペラ110の各々の平面視における位置に基づいて揚力発生中心点(揚力中心)L2が存在し得る。揚力中心L2は、プロペラ110の各々の出力が略同一である場合に、プロペラ110の各々の平面視における幾何的な中心位置に存在する。 Here, the center of gravity G1 of the flying object 100 according to this embodiment means the comprehensive center of gravity of the flight portion and the main body portion. Further, the center of gravity G3 means the overall center of gravity of the flight section, the main body section, the mounting section, and the mounted object. In addition, the lift generation area L1 is an area included in the width of the blades of each propeller 110 (the length along the height direction Z in FIG. 1) in the rotorcraft 1 according to the present embodiment. In this lift generation region L1, a lift generation center point (lift center) L2 can exist based on the position of each propeller 110 in plan view. The center of lift L2 exists at the geometric center position of each propeller 110 when the propellers 110 have substantially the same output.
 なお、例えば、プロペラ110の各々がプッシュ型およびプル型の混合形式により設けられていたり、段違いに設けられたりしている場合は、揚力発生領域L1は、以下のように定義できる。まず、モータ111の各々の回転軸における、プロペラ110の羽根の幅方向(回転翼機1における高さ方向H)の上端および下端の位置を得る。各回転軸における上端の位置のそれぞれに対応する点群により得られる最小二乗平面と、各回転軸における下端の位置のそれぞれに対応する点群により得られる最小二乗平面とに挟まれる空間が、揚力発生領域L1として定義できる。この場合における揚力中心L2の位置は、上述したケースと同様である。 For example, if each of the propellers 110 is provided in a mixed form of a push type and a pull type, or provided in a staggered manner, the lift generation area L1 can be defined as follows. First, the positions of the upper and lower ends of the blades of the propeller 110 in the width direction (height direction H in the rotorcraft 1) on each rotating shaft of the motor 111 are obtained. The space sandwiched between the least-squares plane obtained by the point group corresponding to each upper end position on each rotation axis and the least-squares plane obtained by each point group corresponding to each lower end position on each rotation axis is the lift force. It can be defined as generation area L1. The position of the center of lift L2 in this case is the same as in the case described above.
 また、飛行部140の中央位置C1とは、飛行部140の前後方向Dにおける前端と後端との間における中央にあたる位置を意味し、飛行部140の中央位置C2は、飛行部140の上下方向における上端と下端との間における中央にあたる位置を意味する。 Further, the center position C1 of the flying portion 140 means the center position between the front end and the rear end of the flying portion 140 in the longitudinal direction D, and the center position C2 of the flying portion 140 means the vertical direction of the flying portion 140. means the middle position between the upper and lower ends of
 図7に例示されるように、搭載物10は搭載部11の底面に置くことが一般的である。また、搭載物10が複数の物品を内包している箱等である場合においても、搭載物の内部で物品が底面側に置かれるケースが一般的である。このことから、搭載部11の重心G2は、搭載部の中心より下方となる可能性が高い。すなわち、搭載部の中心点B1を先述した(1)~(3)のいずれかより下側に設けることで、多くのケースにおいて、搭載部11の重心G2も(1)~(3)のいずれかより下側となり得る。これにより、着陸状態またはホバリング状態において、重心G3は、飛行体の重心G1と比較して、前方(+Y)且つ下方(-Z)となる。 As illustrated in FIG. 7, the mounted object 10 is generally placed on the bottom surface of the mounting portion 11. As shown in FIG. Moreover, even when the mounted object 10 is a box or the like containing a plurality of articles, it is common for the articles to be placed on the bottom side inside the mounted object. Therefore, the center of gravity G2 of the mounting portion 11 is likely to be below the center of the mounting portion. That is, by providing the center point B1 of the mounting portion below any one of (1) to (3) described above, in many cases, the center of gravity G2 of the mounting portion 11 can also be any of (1) to (3). or lower. As a result, in the landing state or hovering state, the center of gravity G3 is forward (+Y) and downward (-Z) compared to the center of gravity G1 of the aircraft.
 かかる重心G3の位置を考慮しない図12及び図13に示されるような従来の回転翼機においては、回転翼機の巡航のために回転翼機を傾斜させる必要があることから、回転翼機の後方を持ち上げ、前方を下げる必要がある。この場合は、後方のプロペラの揚力は前方のプロペラの揚力より大きくする必要がある。そうすると、前進中の後方のモータの回転数は大きくなり、前方のロータの回転数は小さくなる。このように、モータの回転数のばらつきが生じ得る。さらに、飛行体中央下部に搭載物を接続することから、重心G3は飛行体後方となり、モータの回転数の差は大きくなる。 12 and 13, in which the position of the center of gravity G3 is not considered, the rotorcraft must be tilted for cruising. You need to lift the rear and lower the front. In this case, the lift of the rear propeller should be greater than the lift of the front propeller. As a result, the number of rotations of the rear motor during forward movement increases, and the number of rotations of the front rotor decreases. In this way, variations in the number of revolutions of the motor can occur. Furthermore, since the mounted object is connected to the lower central part of the flying object, the center of gravity G3 is located at the rear of the flying object, and the difference in the number of rotations of the motors increases.
 図2は、本実施形態に係る飛行体100の巡航時における飛行態様の一例を示す図である。図2に示す飛行体100は、進行方向Dに対して傾斜して、進行方向Dに飛行している状態である。このとき、飛行体100の重心G3は、図13に示される従来の回転翼機に比較して、揚力中心L2に近付く(例えば、従来機より下側、かつ進行方向側となる)。 FIG. 2 is a diagram showing an example of a flight mode during cruising of the aircraft 100 according to this embodiment. The flying object 100 shown in FIG. 2 is in a state in which it is tilted with respect to the traveling direction D and is flying in the traveling direction D. As shown in FIG. At this time, the center of gravity G3 of the aircraft 100 is closer to the center of lift L2 than the conventional rotorcraft shown in FIG.
 かかる姿勢で巡航する場合、高さ方向Zへの揚力を発生させる中心である揚力中心L2と重心G3との位置関係から、飛行体100に対して発生し得るモータ111への負荷のばらつきが低減される。そのため、前方のプロペラ110aにより発生させる揚力F1と、後方のプロペラ110bにより発生させる揚力F2とが、回転翼機1が進行方向Fに対して傾斜した状態において、従来の回転翼機が同様に傾斜した状態に比較して、差が少ない状態を得ることができる。そうすると、モータ111aとモータ111bの回転数の差も小さくなる。 When cruising in such an attitude, variations in the load on the motor 111 that can occur in the flying object 100 are reduced due to the positional relationship between the lift center L2, which is the center of the lift in the height direction Z, and the center of gravity G3. be done. Therefore, the lift force F1 generated by the front propeller 110a and the lift force F2 generated by the rear propeller 110b are similar to each other when the rotorcraft 1 is tilted with respect to the traveling direction F. It is possible to obtain a state in which the difference is small compared to the state in which As a result, the difference in the number of rotations between the motors 111a and 111b is also reduced.
 本実施形態に係る飛行体100においては、巡航時において進行方向Dに飛行体100を傾斜させた場合に、前方のモータ111aと後方のモータ111bの回転数の差を小さくすることができる。これにより、巡航時におけるモータの回転数の差によるバッテリの消費量(つまりエネルギー消費量)のばらつきを抑えることができる。これにより、例えば、巡航時間をさらに伸ばすことができる。また、モータへの負荷も均質化することができ、モータの運用をより効率よく行うことができる。したがって、回転翼機の巡航における運用の効率性を向上させることが可能となる。 In the flying object 100 according to the present embodiment, when the flying object 100 is tilted in the traveling direction D during cruising, the difference in rotation speed between the front motor 111a and the rear motor 111b can be reduced. As a result, variation in battery consumption (that is, energy consumption) due to the difference in the number of revolutions of the motor during cruising can be suppressed. Thereby, for example, the cruise time can be further extended. Also, the load on the motor can be homogenized, and the motor can be operated more efficiently. Therefore, it is possible to improve operational efficiency in cruising the rotorcraft.
 このように、飛行部と搭載部11との位置を上述したような位置とすることで、飛行体100の巡航において、モータ111の各々の回転数を平均化することができる。これにより、モータ111による出力やそれに伴う影響のばらつきを抑えることができる。よって、飛行体100の長距離の飛行等における運用をより効率化することが可能となる。 In this way, by setting the positions of the flight section and the mounting section 11 as described above, the number of revolutions of each motor 111 can be averaged during the cruise of the aircraft 100 . As a result, variations in the output of the motor 111 and the accompanying effects can be suppressed. Therefore, it becomes possible to make the operation of the flying object 100 more efficient in a long-distance flight or the like.
 飛行体により輸送される搭載物の大きさは、近年、より大きくすることが求められることがある。例えば、個人宅への配送ではなく、離島や集落等へ複数の物品を配送する際には、まとめて搭載することで輸送効率が上昇する場合がある。 In recent years, there has been a demand to increase the size of the payload transported by the aircraft. For example, when a plurality of items are to be delivered to a remote island, village, or the like instead of being delivered to an individual's house, the transport efficiency may be improved by loading them together.
 しかし、搭載物の量が増えるに従って、搭載物又は搭載部の体積が大きくなると、飛行体100が移動する際の抗力が増加する場合がある。 However, if the volume of the load or the mounting portion increases as the amount of the load increases, the drag force when the flying object 100 moves may increase.
 例えば、図13に示されるように、搭載部を、着陸時やホバリング時に、巡航姿勢時と比較して後傾する(例えば、巡航姿勢時に前傾し、着陸・ホバリング時に水平となる)角度で取り付ける場合、飛行体前傾時の搭載部の前面投影面積(搭載部を機体前方から見た時の面積)は、図14に示されるように、着陸時やホバリング時と比較して増加する(例えば、着陸時やホバリング時の搭載部全高H3と、巡航姿勢時の搭載部全高H4とを比較すると、H4が大きい)。 For example, as shown in FIG. 13, the mounting part is tilted backwards during landing and hovering compared to the cruising posture (for example, tilting forward during the cruising posture and becoming horizontal during landing and hovering). When attached, the front projected area of the mounting portion when the aircraft is tilted forward (the area of the mounting portion when viewed from the front of the fuselage) increases as compared to landing and hovering, as shown in FIG. For example, when comparing the total height H3 of the mounting portion during landing or hovering with the total height H4 of the mounting portion during the cruising attitude, H4 is larger).
 本実施形態の飛行体においては、搭載部11または搭載物10を所定の角度で搭載することにより、巡航姿勢時の飛行体の前面投影面積増加を抑え、飛行効率の低下を防ぐ。所定の角度とは、飛行体巡航時の前面投影面積または抗力が、着陸時やホバリング時と比較して、小さくなる角度であることが望ましい。 In the aircraft of this embodiment, by mounting the mounting portion 11 or the payload 10 at a predetermined angle, an increase in frontal projected area of the aircraft during the cruising attitude is suppressed, and a decrease in flight efficiency is prevented. The predetermined angle is desirably an angle at which the frontal projected area or drag during cruising of the aircraft is smaller than during landing or hovering.
 図1及び図2に例示されるように、搭載部を、着陸時やホバリング時に搭載部が前後方向において後傾(進行方向に向かって前上がり)し、巡航時には、着陸時やホバリング時に比較して搭載部が水平に近づく角度(略水平となる角度)で取り付ける場合、飛行体前傾時の搭載部の前面投影面積は、着陸時やホバリング時と比較して減少する(例えば、着陸時やホバリング時の搭載部全高H1と、巡航姿勢時の搭載部全高H2とを比較すると、H2が小さい)。 As illustrated in FIGS. 1 and 2, the mounting portion tilts backward in the longitudinal direction (up forward in the traveling direction) during landing and hovering, and during cruising, compared to landing and hovering. When the mounting part is installed at an angle that approaches the horizontal (substantially horizontal angle), the frontal projected area of the mounting part when the aircraft is tilted forward will be smaller than during landing or hovering (for example, during landing or during hovering). Comparing the total height H1 of the mounting portion during hovering with the total height H2 of the mounting portion during the cruising attitude, H2 is smaller).
 図17に例示されるように、搭載物自体を所定の角度に傾けた状態で飛行部または本体部に取り付けて固定することとしても良いし、図4及び図5、図15及び図16に例示されるように、予め所定の角度で設けられた搭載部11に搭載物10を載置するものとしても良い。 As illustrated in FIG. 17, the mounted object itself may be tilted at a predetermined angle and attached to the flying portion or the main body and fixed, or as illustrated in FIGS. As described above, the mounting object 10 may be mounted on the mounting portion 11 provided at a predetermined angle in advance.
 人の手によって搭載物を載置する場合に、搭載物が重いと、飛行体下方から押し上げる動きが困難となることがある。特にこのような場合には、図4のような飛行体前方かつ上方や、図16のような飛行体上方からアクセス可能な構成とすることで、搭載物の搭載部への載置を簡便にすることが出来る。図16のような載置方法を用いる場合には、搭載物が通過可能な開口部を、飛行部や本体部に設けることで、障害なく搭載物の載置が可能となる。 When placing a load by hand, if the load is heavy, it may be difficult to push it up from below the aircraft. In particular, in such a case, it is possible to easily place the load on the mounting portion by adopting a configuration in which access is possible from the front and top of the aircraft as shown in FIG. 4 or from the top of the aircraft as shown in FIG. can do When the mounting method shown in FIG. 16 is used, the object can be placed without obstruction by providing an opening through which the object can pass in the flight portion or the main body.
 <第2の実施の形態の詳細> <Details of the second embodiment>
 本発明による第2の実施の形態の詳細において、第1の実施の形態と重複する構成要素は同様の動作を行うので、再度の説明は省略する。 In the details of the second embodiment according to the present invention, since the components that overlap with those of the first embodiment perform the same operations, repetitive descriptions will be omitted.
 搭載物10は、トレイやプレート等のスタッキング可能な形状の部材(以下、トレイ部材と総称する)に梱包されていてもよい。近年ECサイト等の普及により、家庭や企業に届く荷物の数が増えている。物品と共に届く梱包資材の保管場所の確保や処分など、ユーザーへの負担並びに環境への負荷を増加させる場合がある。荷物の多くは段ボール等の梱包資材に格納されており、届いた形状のまま保管する場合にかさばる懸念がある。搭載物の梱包にトレイ部材を用いることで、梱包資材の保管に必要なスペースを削減するほか、資材自体に用いる資源の削減も期待できる。 The load 10 may be packed in stackable members such as trays and plates (hereinafter collectively referred to as tray members). In recent years, due to the spread of e-commerce sites and the like, the number of parcels delivered to homes and companies is increasing. It may increase the burden on the user and the burden on the environment, such as securing a storage place and disposing of the packing materials that arrive with the goods. Many packages are stored in packing materials such as cardboard, and there is a concern that they may be bulky when stored in the shape they arrive at. By using a tray member for packing the load, it is possible to reduce the space required to store the packing materials and also reduce the resources used for the materials themselves.
 例えば、図8に示されるように、物品をトレイ部材20に載せ、樹脂フィルムやネット等の物品の動きを制限可能な被覆部材(以下、フィルム21と総称する)により、物品をトレイ部材20から意図せず落下しないように固定する方法がある。ユーザーは箱状の梱包資材を受け取ることがなく、トレイ部材20は複数枚を重ねて置くことが可能なため、保管場所が削減される。また、緩衝が必要な場合に、搭載部11に緩衝材を備えたり、飛行体の着陸脚130に衝撃吸収装置131を設けたりすることで、ユーザーの手元に残される資材を更に削減することが期待できる。 For example, as shown in FIG. 8, an article is placed on a tray member 20, and a covering member (hereinafter collectively referred to as a film 21) such as a resin film or a net capable of restricting movement of the article is used to remove the article from the tray member 20. There is a way to fix it so that it doesn't fall unintentionally. Since the user does not receive a box-shaped packing material and a plurality of tray members 20 can be placed on top of each other, storage space is reduced. In addition, when cushioning is required, by providing a cushioning material in the mounting part 11 or by providing a shock absorbing device 131 in the landing leg 130 of the aircraft, it is possible to further reduce the materials left at the user's hand. I can expect it.
 また、梱包資材にトレイ部材20を用いる場合、図9及び図10のように、トレイ部材20を上側に、物品を下側に向けて飛行体100に接続させることで、搭載物の大きさや高さを最小限とし、これにより、箱状の搭載部を用いる場合に比較して、飛行体巡航時の前面投影面積を縮小させ、抗力の低減及び燃費の向上に対してより高い効果を得ることが可能となる。 When the tray member 20 is used as the packing material, as shown in FIGS. 9 and 10, by connecting the tray member 20 to the upper side and the articles to the lower side to the aircraft 100, the size and height of the mounted article can be adjusted. To reduce the frontal projected area during cruising of the aircraft compared to the case of using a box-shaped mounting part, and to obtain a higher effect in reducing drag and improving fuel efficiency. becomes possible.
 トレイ部材20を上側に向けて飛行体100に接続する方法の例として、図11及び図12のように搭載部11にレール状の吊下用部材を設け、トレイ部材20の一部(例えば、向かい合う二辺上)にレールへ嵌合可能な突起を設けることで、搭載物を吊ることとしてもよい。このとき、搭載物10が、飛行体の傾きによって意図せずレールから滑り落ちないよう、図12のように突起状の滑り止め12等を設けることとしてもよい。 As an example of a method of connecting the tray member 20 to the aircraft 100 with the tray member 20 facing upward, as shown in FIGS. A mounted object may be suspended by providing projections that can be fitted to rails on two opposite sides. At this time, as shown in FIG. 12, a protruding non-slipper 12 or the like may be provided so that the mounted object 10 does not unintentionally slip off the rail due to the inclination of the aircraft.
 トレイ部材20を飛行体に接続する方法は、トレイ部材や搭載物を意図せず切り離すことのない方法であればよく、上記レール状部材を用いる方法以外に、紐やベルト、面ファスナー、ラッチロック機構による固定、磁着や吸着、紐状部材による吊下げ等が例として挙げられるが、この限りではない。 The method of connecting the tray member 20 to the aircraft may be any method as long as it does not unintentionally separate the tray member and the mounted object. Examples include fixing by a mechanism, magnetic attachment or adsorption, and suspension by a string-like member, but are not limited to these.
 近年、様々な形態の飛行体が、宅配以外の産業(例えば、点検や調査、撮影、監視、農業、防災など)においても利用を検討、実施されている。飛行体の搭載物を救助用品や情報収集機器、電波の中継器等とすることにより、緊急に必要な物品をより早く、遠くに配送したり、事故や災害等の緊急性の高い事象について、迅速に情報収集を行ったり出来るようになることが期待される。 In recent years, various forms of flying objects have been considered and implemented for use in industries other than home delivery (for example, inspections, surveys, photography, surveillance, agriculture, disaster prevention, etc.). By using aircraft as rescue supplies, information gathering equipment, radio repeaters, etc., we can deliver urgently needed items faster and farther, and for highly urgent events such as accidents and disasters, It is expected that information can be collected quickly.
 上述した実施の形態は、本発明の理解を容易にするための例示に過ぎず、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良することができると共に、本発明にはその均等物が含まれることは言うまでもない。

 
The above-described embodiments are merely examples for facilitating understanding of the present invention, and are not intended to limit and interpret the present invention. It goes without saying that the present invention can be modified and improved without departing from its spirit, and that equivalents thereof are included in the present invention.

10   搭載物、荷物
11   搭載部
12   滑り止め
20   トレイ部材
21   フィルム
100  飛行体
110a-110d  プロペラ
111a-111d  モータ
120  フレーム
130  着陸脚
131   衝撃吸収装置

 
10 Mounted object, luggage 11 Mounting part 12 Anti-slip 20 Tray member 21 Film 100 Aircraft 110a-110d Propeller 111a-111d Motor 120 Frame 130 Landing leg 131 Shock absorber

Claims (14)

  1.  搭載物を保持する搭載部を備える飛行体であって、
     着陸状態またはホバリング状態において、前記搭載部の中心位置は、機体の前後方向の中央位置より前方側であり、且つ、揚力の発生中心点より下側に設けられる、
     ことを特徴とする飛行体。 
    An aircraft comprising a mounting portion for holding a mounted object,
    In a landing state or a hovering state, the center position of the mounting portion is located forward of the center position in the longitudinal direction of the fuselage and below the center point of lift force generation.
    An aircraft characterized by:
  2.  着陸状態またはホバリング状態において、前記搭載部の中心位置は、前記機体の上下方向の中央位置よりも下側に設けられる、
     ことを特徴とする請求項1に記載の飛行体。
    In a landing state or a hovering state, the center position of the mounting portion is provided below the center position in the vertical direction of the aircraft body.
    The aircraft according to claim 1, characterized in that:
  3.  着陸状態またはホバリング状態において、前記搭載部の中心位置は、前記飛行体の重心位置よりも下側に設けられる、
     ことを特徴とする請求項1に記載の飛行体。
    In a landing state or a hovering state, the center position of the mounting portion is provided below the center of gravity of the aircraft.
    The aircraft according to claim 1, characterized in that:
  4.  着陸状態またはホバリング状態において、前記搭載部の重心位置は、前記飛行体の重心位置よりも下側に設けられる、
     ことを特徴とする請求項1ないし請求項3のいずれかに記載の飛行体。
    In a landing state or a hovering state, the center-of-gravity position of the mounting portion is provided below the center-of-gravity position of the aircraft.
    4. The aircraft according to any one of claims 1 to 3, characterized in that:
  5.  着陸状態またはホバリング状態において、前記搭載部の重心位置は、前記機体の上下方向の中央位置よりも下側に設けられる、
     ことを特徴とする請求項1ないし請求項4のいずれかに記載の飛行体。
    In a landing state or a hovering state, the position of the center of gravity of the mounting portion is provided below the center position in the vertical direction of the aircraft body.
    5. The aircraft according to any one of claims 1 to 4, characterized in that:
  6.  着陸状態またはホバリング状態において、前記搭載部の重心位置は、前記飛行体の重心位置よりも下側に設けられる、
     ことを特徴とする請求項1ないし請求項4のいずれかに記載の飛行体。
    In a landing state or a hovering state, the center-of-gravity position of the mounting portion is provided below the center-of-gravity position of the aircraft.
    5. The aircraft according to any one of claims 1 to 4, characterized in that:
  7.  前記搭載部または前記搭載物は、着陸状態またはホバリング状態に前記搭載部または前記搭載物が前後方向において後傾するように前記機体に取り付けられている、
     ことを特徴とする請求項1ないし請求項6のいずれかに記載の飛行体。
    The mounting portion or the mounted object is attached to the airframe so that the mounting portion or the mounted object tilts backward in the longitudinal direction in a landing state or a hovering state.
    The aircraft according to any one of claims 1 to 6, characterized in that:
  8.  前記搭載部または前記搭載物は、巡行時に前記搭載部または前記搭載物が略水平となるように前記機体に取り付けられている、
     ことを特徴とする請求項7に記載の飛行体。
    The mounting portion or the mounted object is attached to the fuselage so that the mounting portion or the mounted object is substantially horizontal during cruising.
    The aircraft according to claim 7, characterized in that:
  9.  前記搭載部は、機体の前方かつ上方から前記搭載物を格納する構成である、
     ことを特徴とする請求項7または8のいずれかに記載の飛行体。
    The mounting part is configured to store the mounted object from the front and above the aircraft,
    9. The aircraft according to claim 7 or 8, characterized in that:
  10.  前記搭載部は、機体の上方から前記搭載物を格納する構成であり、
     前記機体は、前記搭載物が通過可能な開口部を有する、
     ことを特徴とする請求項7または8のいずれかに記載の飛行体。
    The mounting part is configured to store the mounted object from above the aircraft,
    The airframe has an opening through which the mounted object can pass,
    9. The aircraft according to claim 7 or 8, characterized in that:
  11.  前記搭載物は、物品をトレイ部材に設置した構成である、
     ことを特徴とする請求項1ないし10のいずれかに記載の飛行体。
    The mounted object has a configuration in which an article is installed on a tray member,
    The aircraft according to any one of claims 1 to 10, characterized in that:
  12.  前記搭載物は、前記トレイ部材に対して前記物品の動きを制限可能な被覆部材を有する、
     ことを特徴とする請求項11に記載の飛行体。
    The mounted object has a covering member capable of restricting movement of the article with respect to the tray member.
    The aircraft according to claim 11, characterized in that:
  13.  前記搭載部は、前記トレイ部材を上側とし前記物品が下側となるように保持する、
     ことを特徴とする請求項11または12のいずれかに記載の飛行体。
    The mounting portion holds the tray member on the upper side and the article on the lower side.
    13. The aircraft according to claim 11 or 12, characterized in that:
  14.  前記搭載部は、吊下用部材を備え、前記トレイ部材を吊り下げて保持する、
     ことを特徴とする請求項13に記載の飛行体。
     

     
    The mounting portion includes a suspension member, and suspends and holds the tray member.
    14. The aircraft according to claim 13, characterized by:


PCT/JP2021/030862 2021-08-23 2021-08-23 Flight vehicle WO2023026338A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2021/030862 WO2023026338A1 (en) 2021-08-23 2021-08-23 Flight vehicle
JP2023543696A JP7376204B2 (en) 2021-08-23 2022-05-25 flying object
PCT/JP2022/021395 WO2023026616A1 (en) 2021-08-23 2022-05-25 Flying object
CN202222188868.1U CN218258701U (en) 2021-08-23 2022-08-19 Flying body
CN202210997824.5A CN115716547A (en) 2021-08-23 2022-08-19 Flying object
JP2023179957A JP2023176036A (en) 2021-08-23 2023-10-19 flying object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/030862 WO2023026338A1 (en) 2021-08-23 2021-08-23 Flight vehicle

Publications (1)

Publication Number Publication Date
WO2023026338A1 true WO2023026338A1 (en) 2023-03-02

Family

ID=85321620

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/030862 WO2023026338A1 (en) 2021-08-23 2021-08-23 Flight vehicle
PCT/JP2022/021395 WO2023026616A1 (en) 2021-08-23 2022-05-25 Flying object

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021395 WO2023026616A1 (en) 2021-08-23 2022-05-25 Flying object

Country Status (1)

Country Link
WO (2) WO2023026338A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206155784U (en) * 2016-10-27 2017-05-10 深圳市大疆创新科技有限公司 Unmanned aerial vehicle
US20190039721A1 (en) * 2017-03-27 2019-02-07 Anshuo Liu Lopsided payload carriage gimbal for air and water-borne vehicles
JP2019073160A (en) * 2017-10-16 2019-05-16 株式会社安田測量 Underwater probe device and terrain probe system
JP6618000B1 (en) * 2018-06-04 2019-12-11 株式会社エアロネクスト Electronic component and flying object with the electronic component attached
WO2020045397A1 (en) * 2018-08-28 2020-03-05 株式会社ナイルワークス Drone, method for controlling drone, and program for controlling drone

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001039397A (en) * 1999-08-02 2001-02-13 Komatsu Ltd Flying body having horizontal rotary wing
US9567088B2 (en) * 2013-10-15 2017-02-14 Swift Engineering, Inc. Vertical take-off and landing aircraft
CN105984583A (en) * 2015-02-13 2016-10-05 鸿富锦精密工业(深圳)有限公司 Aircraft
JP5997342B1 (en) * 2015-09-29 2016-09-28 京商株式会社 Multicopter toy
JP6086519B1 (en) * 2016-10-03 2017-03-01 株式会社0 Delivery rotorcraft
CN110869277B (en) * 2017-10-10 2024-01-23 盐城辉空科技有限公司 Rotorcraft
JP2021020529A (en) 2019-07-26 2021-02-18 ダイハツ工業株式会社 Drone

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206155784U (en) * 2016-10-27 2017-05-10 深圳市大疆创新科技有限公司 Unmanned aerial vehicle
US20190039721A1 (en) * 2017-03-27 2019-02-07 Anshuo Liu Lopsided payload carriage gimbal for air and water-borne vehicles
JP2019073160A (en) * 2017-10-16 2019-05-16 株式会社安田測量 Underwater probe device and terrain probe system
JP6618000B1 (en) * 2018-06-04 2019-12-11 株式会社エアロネクスト Electronic component and flying object with the electronic component attached
WO2020045397A1 (en) * 2018-08-28 2020-03-05 株式会社ナイルワークス Drone, method for controlling drone, and program for controlling drone

Also Published As

Publication number Publication date
WO2023026616A1 (en) 2023-03-02

Similar Documents

Publication Publication Date Title
US11492106B2 (en) Vertical take-off and landing vehicle
US20190389573A1 (en) Vertical take-off and landing unmanned aerial vehicle
US20160318609A1 (en) System and method for flying trucks
JP2018203226A (en) Flight vehicle
JPWO2018225112A1 (en) Flying body
JP7137257B2 (en) flying object
CN216509035U (en) Flying object
BR112021024619B1 (en) SUSPENDED AIR VEHICLE SYSTEM AND SYSTEM TO CONTROL THE SAME
CN217320757U (en) Aircraft with a flight control device
JP2020040658A (en) Flight vehicle
WO2023026338A1 (en) Flight vehicle
JP7376204B2 (en) flying object
WO2023101759A1 (en) Air scoop solar shield for uav
CN216140179U (en) Rotorcraft
JP7438523B2 (en) Aircraft and flight methods for aircraft
WO2023238289A1 (en) Aircraft and aircraft control method
WO2021053829A1 (en) Flying body
CN218258694U (en) Flying body
WO2024075276A1 (en) Flight vehicle and method for controlling flight vehicle
US20230192290A1 (en) Uav with augmented lift rotors
JP6671705B2 (en) Flying object
JP6664821B2 (en) Flying object
WO2023089735A1 (en) Flying object provided with safety device
JP7244955B2 (en) Aircraft and flight method of the aircraft
JP7153351B2 (en) Airplane flight method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954955

Country of ref document: EP

Kind code of ref document: A1