WO2023026315A1 - Development of quality control technology for pharmaceutical formulation having rna encapsulated in lipid membrane - Google Patents

Development of quality control technology for pharmaceutical formulation having rna encapsulated in lipid membrane Download PDF

Info

Publication number
WO2023026315A1
WO2023026315A1 PCT/JP2021/030716 JP2021030716W WO2023026315A1 WO 2023026315 A1 WO2023026315 A1 WO 2023026315A1 JP 2021030716 W JP2021030716 W JP 2021030716W WO 2023026315 A1 WO2023026315 A1 WO 2023026315A1
Authority
WO
WIPO (PCT)
Prior art keywords
rna
lipid membrane
compound
lipid
binds
Prior art date
Application number
PCT/JP2021/030716
Other languages
French (fr)
Japanese (ja)
Inventor
雄介 佐藤
精一 西澤
良一 永富
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2023543483A priority Critical patent/JPWO2023026315A1/ja
Priority to PCT/JP2021/030716 priority patent/WO2023026315A1/en
Publication of WO2023026315A1 publication Critical patent/WO2023026315A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to a quality inspection method for formulations in which RNA is encapsulated in a lipid membrane.
  • RNA small interfering ribonucleic acid
  • mRNA small interfering ribonucleic acid
  • RNAi drugs use short (approximately 20 to 25 nucleotides) double-stranded RNA (siRNA) that is complementary to target mRNA in cells to suppress the production of disease-causing proteins.
  • siRNA double-stranded RNA
  • Onpattro trademark
  • siRNA is encapsulated in lipid nanoparticles (LNPs), a type of lipid membrane, to enhance its stability in the body.
  • LNPs lipid nanoparticles
  • OnpattroTM should be used immediately after preparation of the diluted solution and, if stored, should be used within 16 hours, including the time of administration. Thus, RNAi medicines are prone to quality deterioration.
  • RNA vaccines which are another nucleic acid medicine, are also called mRNA (messenger RNA) vaccines. They administer mRNA, which is a chemically synthesized part of the RNA sequence of a virus, to humans. protein is produced and induces both cellular and humoral immunity against this antigenic protein.
  • mRNA messenger RNA
  • RNA vaccines make it easier for human cells to produce virus-specific antigens than conventional antigenic proteins or attenuated viruses. can respond by designing and manufacturing RNA vaccines. For this reason, development in the field of vaccine medicine, including the prevention of infectious diseases caused by viruses, is progressing rapidly.
  • Pfizer's BNT162b2 and Moderna's mRNA-1273 are known as mRNA vaccines against the new coronavirus Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), which has been prevalent in China since the end of 2019. ing.
  • SARS-CoV-2 coronavirus Severe Acute Respiratory Syndrome coronavirus 2
  • RNA vaccines are also extremely susceptible to degradation.
  • the main structure of RNA vaccines currently being developed is the mRNA-LNP structure, which has an mRNA part corresponding to a part of the viral RNA sequence and a lipid nanoparticle (LNP) part that wraps the mRNA.
  • LNP lipid nanoparticle
  • LNP enhances mRNA stability.
  • current RNA vaccines still require low-temperature distribution and storage. For example, BNT162b2 from Pfizer, USA must be transported and stored at -75°C ⁇ 15°C, and the storage period after thawing is 5 days in a refrigerator (4-8°C). Moderna's mRNA-127 should be transported and stored at -20°C ⁇ 5°C, and the storage period after thawing is 30 days in the refrigerator (4-8°C).
  • Non-Patent Document 1 Long-term storage of RNA vaccines at room temperature, freeze-drying and reconstitution of RNA vaccines, etc. have been reported as factors that affect the stability and efficacy of vaccines.
  • RNAi drugs and RNA vaccines change during storage.
  • conventional methods for evaluating the physical properties of RNA vaccines include methods using photodynamic scattering, electron microscopy, and chromatograms, but these methods have major problems such as cost, speed, and throughput.
  • the problem to be solved by the present invention is to provide a method for rapidly and highly sensitively testing the quality of formulations in which RNA is encapsulated in lipid membranes.
  • the present inventors found that a specific compound that binds to the RNA portion of a formulation in which RNA is encapsulated in a lipid membrane and a lipid membrane in a formulation in which RNA is encapsulated in a lipid membrane. Rapidly and highly sensitively inspect the quality of formulations in which RNA is encapsulated in lipid membranes by examining changes in at least one of RNA and lipid membranes in the formulation using a fluorescent dye that binds to the part of The present inventors have found that it is possible to achieve the present invention.
  • the present invention includes the embodiments described below.
  • Section 1 A method for inspecting the quality of a formulation in which RNA is encapsulated in a lipid membrane, A step of contacting a compound that binds to the RNA of a formulation comprising RNA and a lipid membrane enveloping the RNA with the formulation; A method comprising: contacting a fluorescent dye that binds to the lipid membrane of the formulation with the formulation; and detecting at least one of a compound bound to the RNA and the fluorescent dye bound to the lipid membrane.
  • Item 1 The method of Item 1, further comprising the step of:
  • Item 3 The method according to Item 1 or 2, wherein the compound that binds to RNA is a fluorescent molecule that is impermeable to lipid membranes and capable of binding to RNA.
  • Item 3. The method according to Item 1 or 2, wherein the compound that binds to RNA is a fluorescent molecule that is permeable to lipid membranes and capable of binding to RNA.
  • Item 6. The method according to any one of Items 1 to 5, wherein the fluorescent dye that binds to lipid membranes is a peptidic fluorescent dye that binds to lipid packing defects.
  • Item 7 The step of contacting the compound that binds to the RNA with the preparation, and the step of contacting the fluorescent dye that binds to the lipid membrane with the preparation include the compound that binds to the RNA and the fluorescence that binds to the lipid membrane.
  • Item 7. The method according to any one of Items 1 to 6, which is carried out by adding a dye and a sample containing the formulation.
  • Item 8 A kit for testing the quality of a formulation in which RNA is encapsulated in a lipid membrane, a compound that binds to the RNA in a formulation comprising RNA and a lipid membrane enveloping the RNA; a fluorescent dye that binds to the lipid membrane of the formulation.
  • the quality of formulations in which RNA is encapsulated in lipid membranes can be tested quickly and with high sensitivity.
  • FIG. 1 Schematic diagram for explaining the principle of an RNA vaccine quality inspection method using two types of probes.
  • A Schematic representation of RNA vaccine
  • B Detection of lipid membranes by lipid membrane-binding probes
  • C Detection of mRNA by RNA-binding probes.
  • A Vaccine detection by lipid membrane-binding probe
  • B Vaccine detection by RNA-binding probe. Concentration dependence of fluorescence response to model vaccines.
  • A A concentration-dependent increase in the fluorescence response of the model vaccine sample mixed with ApoC-NR
  • B a graph showing the fluorescence intensity ratio F/F 0 of each sample in FIG. 4
  • C Increase in fluorescence response of model vaccine sample mixed with TO-PRO-1 depending on concentration of model vaccine
  • D Graph showing fluorescence intensity ratio F/ F0 of each sample in FIG. 4(C). Fluorescence response to a model vaccine spiked with RNA.
  • halo refers to fluoro, chloro, bromo and iodo groups.
  • alkyl refers to a branched, unbranched or cyclic saturated hydrocarbon.
  • alkyl groups have, for example, 1-20 carbon atoms, often 1-12 carbon atoms or 1-6 carbon atoms.
  • alkyl groups include, but are not limited to, methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-methyl-1-propyl, 2-butyl, 2-methyl-2-propyl (t -butyl), 1-pentyl, 2-pentyl, 3-pentyl, 2-methyl-2-butyl, 3-methyl-2-butyl, 3-methyl-1-butyl, 2-methyl-1-butyl, 1- hexyl, 2-hexyl, 3-hexyl, 2-methyl-2-pentyl, 3-methyl-2-pentyl, 4-methyl-2-pentyl, 3-methyl-3-pentyl, 2-methyl-3-pentyl, 2,3-dimethyl-2-butyl,
  • alkenyl refers to a branched or unbranched unsaturated hydrocarbon having a carbon-carbon sp2 double bond.
  • alkenyl groups can have, for example, 2-10 carbon atoms, or 2-6 carbon atoms. In other embodiments, alkenyl groups have 2-4 carbon atoms. Examples of alkenyl include, but are not limited to, ethylene or vinyl, allyl, cyclopentenyl, 5-hexenyl, and the like.
  • An alkenyl can be unsubstituted or substituted. Substituted alkenyl groups may contain one or more non-carbon and non-hydrogen atoms such as oxygen, nitrogen, sulfur, halogens and phosphorous.
  • alkynyl refers to a branched or unbranched unsaturated hydrocarbon chain having a carbon-carbon sp triple bond.
  • alkynyl groups can have, for example, 2-10 carbon atoms, or 2-6 carbon atoms. In other embodiments, alkynyl groups can have from 2 to 4 carbon atoms. Examples of alkynyl groups include, but are not limited to, ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 1-octynyl etc.
  • An alkynyl can be unsubstituted or substituted. Substituted alkynyl groups may contain one or more non-carbon and non-hydrogen atoms such as oxygen, nitrogen, sulfur, halogens and phosphorous.
  • alkoxy refers to alkyl-O- (alkyl is defined herein).
  • alkoxy groups have 1-12 carbon atoms or 1-6 carbon atoms.
  • alkoxy groups include, but are not limited to, methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, tert-butoxy, sec-butoxy, n-pentoxy, n-hexyloxy, 1,2- Including dimethylbutoxy and the like.
  • An alkoxy can be unsubstituted or substituted.
  • a substituted alkoxy group may contain an oxygen attached to the substituted alkyl group.
  • aryl refers to an aromatic hydrocarbon group derived by removing one hydrogen atom from one carbon atom of the parent aromatic ring.
  • Aryl groups can have 6 to 18 carbon atoms, 6 to 14 carbon atoms, or 6 to 10 carbon atoms.
  • Aryl groups can have a monocyclic ring (eg, phenyl) or multiple condensed rings (fused rings) in which at least one ring is aromatic (eg, naphthyl, dihydrophenanthrenyl, fluorenyl or anthryl).
  • Typical aryl groups include, but are not limited to, radicals derived from benzene, naphthalene, anthracene, biphenyl, and the like.
  • aryl can be unsubstituted or substituted.
  • aryl groups can be substituted with one or more substituents (as described above) to give various substituted aryls, such as pentafluorophenyl or p-trifluoromethylphenyl.
  • amino refers to -NH2 .
  • Amino groups can be optionally substituted as defined for the term “substituted.”
  • an amino group can be -NR2 , where R is a group enumerated in the definition of "substituted".
  • the amino group can be either a primary amine ( NH2 ), a secondary amine (NHR), or a tertiary amine.
  • an RNA vaccine (1) (hereinafter simply referred to as "RNA vaccine ) comprises an mRNA (2) portion corresponding to a portion of the viral RNA sequence and a lipid membrane (3) portion encapsulating the mRNA (2).
  • mRNA (2) may be part of any viral RNA sequence.
  • Viruses include coronavirus (including SARS-CoV-2), rhinovirus, norovirus, enterovirus, rotavirus, influenza virus, measles virus, rubella virus, hepatitis A virus, hepatitis C virus, HIV virus, and Japanese encephalitis. viruses, yellow fever virus, dengue virus, Zika virus, Lassa virus, Ebola virus, etc., but are not limited thereto.
  • RNA vaccine (1) When an RNA vaccine (1) is administered, mRNA is translated into a protein within the cells of a subject such as a human, and the produced protein functions as an antigen to induce an immune response or replace defective proteins. can function as proteins.
  • RNA vaccines of the mRNA-LNP structure which have a portion of the mRNA corresponding to a portion of the viral RNA sequence and a portion of the lipid nanoparticles (LNPs) encasing the mRNA, are well known.
  • the mRNA (2) portion of the RNA vaccine comprises, in order from the 5' end to the 3' end, the 5' cap structure, the untranslated region, the coding sequence of the mRNA, the untranslated region, and the 3' poly It consists of an mRNA construct with an A tail.
  • part of the lipid membrane (3) consists of LNP with phospholipids, cholesterol, polyethylene glycol and cationic lipids.
  • Figures 1 (A) and (b) are schematic diagrams of the RNA vaccine (1) in Figure 1 (A) (a).
  • RNA vaccine (1) immediately after production, mRNA (2) is encapsulated inside lipid membrane (3).
  • immediate after production refers to within one day after production.
  • Preparation in which RNA is encapsulated in a lipid membrane immediately after production refers to a preparation that has not been frozen within one day of production.
  • the method for inspecting the quality of the RNA vaccine of the present invention uses two types of probes.
  • One is a lipid membrane-binding probe (4) that binds to the lipid membrane (3) (Fig. 1 (B)), and the other is an RNA-binding probe (5) that binds to mRNA (2). (Fig. 1(C)).
  • the lipid membrane-binding probe (4) can bind to liposomes, which are freshly prepared lipid membranes (3) of small size, ie, high curvature (FIG. 1(B)).
  • B) (a)) the longer the storage period of the RNA vaccine (1) or the repeated thawing and freezing, the larger the size of the lipid membrane (3), that is, the lower the curvature.
  • the number of lipid membrane-binding probes (4) that can bind to (3) decreases (Fig. 1 (B) (b)). That is, by examining the signal intensity associated with the binding of the lipid membrane-binding probe (4) to the lipid membrane (3), changes in the structure of the lipid membrane (3) can be detected.
  • the size of the lipid membrane (3) may become smaller. Even in such a case, structural changes in the lipid membrane (3) can be detected by examining the signal intensity of the lipid membrane-binding probe (4) that binds to the lipid membrane (3).
  • RNA vaccine (1) when the RNA vaccine (1) is just manufactured, the mRNA (2) is wrapped inside the lipid membrane (3), so in the solution outside the RNA vaccine (1) There is no mRNA (2) in , and the RNA-binding probe (5) cannot detect mRNA (Fig. 1 (C) (a), but the storage period of the RNA vaccine (1) is prolonged, As part of the lipid membrane (3) is damaged by repeated thawing and freezing, and mRNA (2) leaks out, it binds to the RNA-binding probe (5) outside the RNA vaccine (1). The number of mRNA (2) increases (Fig.
  • the RNA vaccine (1) immediately after production has a small lipid membrane (3) in size (large curvature), and the mRNA (2) is completely encapsulated in the lipid membrane (3). ing. At this time, the signal intensity associated with the binding of the lipid membrane-binding probe (4) is large, and no signal intensity associated with the binding of the RNA-binding probe (5) is observed outside the RNA vaccine (1).
  • mRNA (2) has not yet leaked out of the lipid membrane (3), but when the size of the lipid membrane (3) increases due to quality deterioration, the lipid membrane (3)
  • the curvature changes from the curvature of the lipid membrane (3) in Fig. 2(a) (pattern (A)). Therefore, the number of lipid membrane-binding probes (4) that can bind to the lipid membrane (3) is reduced, and the signal intensity associated with the binding of the lipid membrane-binding probes (4) is lower than in the case of FIG. 2(b). decrease with time.
  • the signal intensity accompanying the binding of the RNA-binding probe (5) is not observed because the mRNA (2) has not yet leaked out from the lipid membrane (3).
  • the size of the lipid membrane (3) is maintained, but holes and breaks occur in the lipid membrane (3), and mRNA (2) leaks out of the lipid membrane (3).
  • pattern (B) the curvature of the lipid membrane (3) may be almost unchanged, but usually the lipid membrane-binding probe (4) can bind to the lipid membrane (3) due to the appearance of holes or breaks decreases, and the signal intensity associated with the binding of the lipid membrane-binding probe (4) decreases compared to the case of FIG. 2(b). Since the mRNA (2) leaks out of the RNA vaccine (1), signal intensity associated with the binding of the RNA-binding probe (5) is observed.
  • a compound that is impermeable to lipid membranes and capable of binding to RNA is preferably used for detecting RNA that has leaked out of RNA vaccine (1).
  • Permeable lipid membranes refer to both live and dead cell lipid membranes.
  • Permeable lipid membranes include lipid nanoparticles used in RNA vaccines and the like, membranes composed of lipid bilayers of liposomes, and the like.
  • lipid membrane (3) As shown in FIG. 2(d), when the size of lipid membrane (3) increases and mRNA (2) leaks from lipid membrane (3) (pattern (C)), lipid membrane (3) The curvature of is changed from the curvature of the lipid membrane (3) in Fig. 2(a). Therefore, the number of lipid membrane-binding probes (4) that can bind to the lipid membrane (3) is reduced, and the signal intensity associated with the binding of the lipid membrane-binding probes (4) is lower than in the case of FIG. 2(b). decrease with time. In addition, since mRNA (2) leaks out of RNA vaccine (1), signal intensity associated with binding of RNA-binding probe (5) is observed.
  • a method for inspecting the quality of a formulation in which RNA is encapsulated in a lipid membrane wherein a compound that binds to RNA in a formulation comprising RNA and a lipid membrane enclosing the RNA is Contacting with the formulation, contacting a fluorescent dye that binds to the lipid membrane of the formulation with the formulation, and detecting at least one of a compound bound to RNA and a fluorescent dye bound to the lipid membrane
  • a method of comprising is provided.
  • RNA includes mRNA, siRNA, tRNA, rRNA, dsRNA (double-stranded RNA), miRNA (single-stranded RNA consisting of 19-23 nucleotides), and the like.
  • dsRNAs include siRNAs (small double-stranded RNAs consisting of 21-23 base pairs).
  • the formulation in which RNA is encapsulated in a lipid membrane is an RNA vaccine in which mRNA is encapsulated in a lipid membrane.
  • the lipid membrane-encapsulated formulation is an RNAi drug in which siRNA is encapsulated in liposomes.
  • the compound that binds to RNA is a compound that is impermeable to lipid membranes, in that RNA leaked into the solution can be detected accurately.
  • lipid membrane-impermeable, RNA-binding compound is TO-PRO-1 (trademark) (3-METHYL-2-([1-[ 3-(TRIMETHYLAMMONIO)PROPYL]-4(1H)-QUINOLINYLIDENE]METHYL)-1,3-BENZOTHIAZOL-3-IUM DIODIDE, ThermoFisher) and the like.
  • the compound that binds RNA is a compound that is permeable to lipid membranes in order to ensure that the quality of the formulation is preserved, i.e. that the RNA is encapsulated in the lipid membrane. be.
  • FIG. Fig. 3 shows the detection of the encapsulated mRNA.
  • RNA vaccines (1) can be tested for quality even with RNA-binding probes (5) that are permeable to lipid membranes.
  • the manufactured RNA vaccine (1) transfers the mRNA (2) inside the lipid membrane (3). You can also check if it is included.
  • the permeable RNA-binding probe (5) can be used to judge the quality. Specifically, the fluorescence intensity is obtained in advance when the permeable RNA-binding probe (5) is brought into contact with an RNA vaccine that does not have quality problems, and the RNA vaccine (1) to be tested is subjected to RNA detection. A binding probe (5) is brought into contact.
  • the number of mRNA (2) that binds to the permeable RNA-binding probe (5) is It increases and becomes a value higher than the previously acquired fluorescence intensity.
  • the mRNA (2) is not encapsulated inside the lipid membrane (3) and is not present outside the lipid membrane (3) for some reason during the manufacturing process of the vaccine.
  • the quality cannot be determined with the above-mentioned lipid membrane-impermeable RNA-binding probe (5), but by using the lipid membrane-permeable RNA-binding probe (5), in the normal case, It becomes a value lower than the fluorescence intensity acquired in advance, and thereby it can be determined that the mRNA (2) is not included inside the lipid membrane (3).
  • the permeable RNA-binding probe (5) it is possible not only to determine the quality of the vaccine over time, but also to easily determine the quality of the vaccine at the time of vaccine production.
  • the permeable RNA-binding probe (5) and the non-permeable RNA-binding probe (5) are preferably used separately, but may be used together in the mode of use.
  • a specific example of a compound that is permeable to lipid membranes and capable of binding to RNA is the compound of formula (1).
  • the compound of formula (1) itself shows almost no fluorescence, but upon binding to a nucleic acid, the fluorescence intensity in the vicinity of a specific wavelength increases remarkably. It is preferable in that it can be observed as a bright spot with high intensity in a limited system.
  • R1 , R2 , R3 , R4 , R5 , R6 , R7 , R8 , R9 , R10 and R11 are independently hydrogen, hydroxy, thiol, halo, alkyl, alkenyl group, alkynyl group, alkoxy group, aryl group and amino group.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 and R 11 are independently hydrogen, hydroxy group, thiol group, halo, alkyl group, alkenyl group, alkynyl group, alkoxy group, aryl group and amino group.
  • substituted refers to one or more (e.g., 1, 2, 3, 4, 5 or 6) of the groups indicated in the expression using “substituted”; 1, 2 or 3 in the form of 1, 2 or 3; It indicates that it can be substituted with a suitable group.
  • Suitable substituents for substituted groups include alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, hydroxy, hydroxyalkyl, aryl, heteroaryl, heterocycle, cycloalkyl, alkanoyl, alkoxycarbonyl, amino, alkylamino, dialkylamino, trifluoromethylthio, difluoromethyl, acetylamino, nitro, trifluoromethyl, trifluoromethoxy, carboxy, carboxyalkyl, keto, thioxo, alkylthio, alkylsulfinyl, alkylsulfonyl, arylsulfinyl, arylsulfonyl, heteroarylsulfinyl, Mention may be made of heteroarylsulfonyl, heterocyclesulfinyl, heterocyclesulfonyl, phosphate, sulfate, hydroxylamine,
  • R1 , R2 , R3 , R4 , R6 , R7 , R8 , R9 , R10 and R11 are independently hydrogen, hydroxy, thiol, halo, Alkyl groups, alkenyl groups, alkynyl groups, alkoxy groups, aryl groups, amino groups, and R5 is an alkyl group.
  • R1 , R2 , R3 , R4 , R5 , R6 , R7 , R8 , R9 , R10 and R11 are independently hydrogen, hydroxy, halo, It is an alkyl group, an aryl group, or an amino group.
  • R1 , R2 , R3 , R4 , R6 , R7 , R8 , R9 , R10 and R11 are independently hydrogen, hydroxy, thiol, halo, Alkyl groups, alkenyl groups, alkynyl groups, alkoxy groups, aryl groups, and amino groups, all of which are unsubstituted, and R5 is also an unsubstituted alkyl group.
  • R 1 , R 2 , R 3 , R 6 , R 7 , R 8 , R 9 , R 10 and R 11 are hydrogen and R 4 is C 1-6 alkyl. and R 5 is methyl.
  • the compound of formula (1) above is a compound of formula (1-I). Since the compound of formula (1-I) is a combination of Benzo[c,d]Indole and OxazoloPyridine, it may be referred to as BIOP hereinafter.
  • the compound (BIOP) of formula (1-I) is Benzo[c,d]indole-2(1H)-one(1) Taking as an example the case where it is used as a starting material, it can be produced by the following scheme.
  • 4-methyl-2-methyl-oxazolo[4,5]pyridinium iodide (compound 5, 193 mg, 0.70 mmol) obtained by reacting 2-methyl-oxazolo[4,5-b]pyridine with iodomethane and 0.5 mL of tetraethylamine is added to an acetonitrile solution containing compound 4 (162 mg, 0.47 mmol). The solution is stirred and heated to reflux (60° C.) for 1 hour, and then cooled to room temperature. Then diethyl ether is added and the precipitate obtained is filtered off. After that, water is added, filtered again, and dried to obtain compound 6 (BIOP).
  • the compounds of formula (1) above are covalently attached to other molecules such as antibodies, proteins, peptides, polypeptides, amino acids, enzymes, nucleic acids, lipids, polysaccharides, drugs, beads, solid supports (e.g. glass or plastic), etc. may
  • the compound of formula (1) above preferably emits little or no fluorescence in the absence of a nucleic acid. Fluorescence can be measured by illuminating the compound with the appropriate wavelength and monitoring the emitted fluorescence.
  • the compound preferably fluoresces more strongly in the presence of RNA than in the presence of DNA. Fluorescence in the presence of RNA relative to fluorescence in the presence of DNA is measured with the compound concentration constant and the RNA and DNA concentrations constant. Higher RNA/DNA fluorescence ratios are better for RNA detection in the presence of DNA.
  • the RNA/DNA fluorescence ratio is preferably 1 or greater, more preferably greater than 1, 1.2 or greater, 1.5 or greater, and 2 or greater.
  • Compounds of formula (1) above meet the criteria for being suitable for RNA detection.
  • the compounds of formula (1) above can also be characterized by their maximum excitation and emission wavelengths.
  • maximum excitation can be from about 450 nm to about 650 nm. Maximum excitation between these values is about 450 nm, about 475 nm, about 500 nm, about 525 nm, about 550 nm, about 575 nm, about 600 nm, about 625 nm, about 650 nm, and even between any two of these values. good.
  • maximum emission may be from about 500 nm to about 675 nm.
  • Maximum emission between these values may be about 500 nm, about 525 nm, about 550 nm, about 575 nm, about 600 nm, about 625 nm, about 650 nm, about 675 nm, and between any two of these values.
  • the compound of formula (1) above can be used as a fluorescent dye because it emits fluorescence upon binding to a nucleic acid.
  • the compound of formula (1) above can detect RNA with high sensitivity.
  • a fluorescent dye containing the compound of the formula (1) or a fluorescent dye consisting of the compound of the formula (1) has a clear response performance, so it can be suitably used for detecting the RNA portion of an RNA vaccine.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are independently hydrogen, hydroxy group , thiol, halo, alkyl, alkenyl, alkynyl, alkoxy, aryl and amino groups.
  • the radical moieties of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 of formula (2) are When capable of being substituted, the term “substituted” means one or more (e.g., 1, 2, 3, 4, 5 or 6; 1, 2 or 3 in some embodiments; can be substituted with known suitable groups.
  • Suitable substituents for substituted groups include alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, hydroxy, hydroxyalkyl, aryl, heteroaryl, heterocycle, cycloalkyl, alkanoyl, alkoxycarbonyl, amino, alkylamino, dialkylamino, trifluoromethylthio, difluoromethyl, acetylamino, nitro, trifluoromethyl, trifluoromethoxy, carboxy, carboxyalkyl, keto, thioxo, alkylthio, alkylsulfinyl, alkylsulfonyl, arylsulfinyl, arylsulfonyl, heteroarylsulfinyl, Mention may be made of heteroarylsulfonyl, heterocyclesulfinyl, heterocyclesulfonyl, phosphate, sulfate, hydroxylamine,
  • R1 , R2 , R3 , R4 , R5 , R6, R7 , R8 , R9 , R10 , R11 , and R12 are independently hydrogen, hydroxy groups, thiol groups, halo, alkyl groups, alkenyl groups, alkynyl groups, alkoxy groups, aryl groups, amino groups, and R6 is an alkyl group.
  • R1 , R2 , R3 , R4 , R5 , R6, R7 , R8 , R9 , R10 , R11 , and R12 are independently hydrogen, hydroxy group, halo, alkyl group, aryl group, or amino group.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 7 , R 8 , R 9 , R 10 , R 11 , and R 12 are independently hydrogen, hydroxy groups, thiol groups, halo, alkyl groups, alkenyl groups, alkynyl groups, alkoxy groups, aryl groups, amino groups, all of which are unsubstituted, and R6 is also unsubstituted.
  • the compound of formula (2) above is the compound of formula (2-I) (monomethine cyanine dye (BIQ)).
  • the compound of formula (2-I) above can be produced by the method disclosed in Anal. Chem. 2019, 91, 14254-14260.
  • Compounds of formula (2) above are covalently attached to other molecules such as antibodies, proteins, peptides, polypeptides, amino acids, enzymes, nucleic acids, lipids, polysaccharides, drugs, beads, solid supports (e.g. glass or plastic), etc. may
  • the compound of formula (2) above can be used as a fluorescent dye because it emits fluorescence upon binding to a nucleic acid.
  • the compound of formula (2) above can detect RNA with high sensitivity. Since the fluorescent dye containing the compound of formula (2) or the fluorescent dye consisting of the compound of formula (2) has a clear response performance, it can be suitably used for detecting the RNA portion of an RNA vaccine.
  • fluorescent dyes that bind to the lipid membrane of RNA vaccines include peptide fluorescent dyes that can selectively bind to lipid bilayer structures, cell membrane staining dyes, and the like.
  • Peptidic fluorescent dyes that can bind highly selectively to lipid membranes include exosome-targeting binding peptides that the inventors previously developed (98th Annual Meeting of the Chemical Society of Japan (2018 (4G3-02)), The 68th Annual Meeting of the Japan Society for Analytical Chemistry (2019 (D1101, D1102, L2006)), RSC Advances, 10, 38323-38327 (2020). [DOI:10.1039/d0ra07763a]). This is based on the fact that exosomes have a highly curved lipid bilayer membrane with a diameter of about 100 nm, and hydrophobic regions called lipid packing defects appear locally on the surface of the lipid bilayer membrane.
  • the binding peptide uses an amphipathic ⁇ -helical peptide as a base as a binding motif for lipid packing defects, to which an environment-responsive fluorescent dye is linked.
  • an environment-responsive fluorescent dye is linked.
  • ⁇ -helical peptide-based fluorescent dyes can selectively bind to vaccine lipid membranes.
  • an ⁇ -helix peptide-based fluorescent dye can selectively bind to the liposome lipid membrane of an RNAi drug encapsulated in the liposome lipid membrane.
  • the peptide portion is designed to recognize the lipid packing structure of the lipid membrane of pharmaceuticals such as vaccines, and environment-responsive fluorescence
  • the dye is attached to a position that does not interfere with the binding of the peptide to the lipid membrane, such as the N-terminus or C-terminus of the peptide.
  • ⁇ -helical peptides include ArfGAPl (R. norvegicus), nucleoporin Nupl33 (H. sapiens), ⁇ -synuclein (H. sapiens).
  • DivIVA B. subtillis
  • dAmph D. melanogaster
  • endophilin Al R. norvegicus
  • Sarlp S. cervisiae
  • antimicrobial magainin 2 X. laevis
  • string-like N-terminus of GMAP-210 H. sapiens
  • sterol transporter Keslp S.
  • -Helix peptides or peptides based on these ⁇ -helix peptides for example, part of the ⁇ -helix peptide, 1 to several, more specifically, about 1 to 5 amino acids of the ⁇ -helix peptide are mutated amino acids, but are not limited to these.
  • Various peptide sequences can be appropriately selected by those skilled in the art as the peptide of the peptidic fluorescent dye that can selectively bind to the lipid membrane structure of the RNA vaccine.
  • any dye whose fluorescence intensity is weak in a hydrophilic environment but increases in a hydrophobic environment can be used as the environment-responsive fluorescent dye, and such dyes are known in the art.
  • environment-responsive fluorescent dyes include dansyl dyes and derivatives thereof, dapoxyl dyes and derivatives thereof, benzophenoxazine dyes and derivatives thereof, and the like.
  • environmentally responsive fluorescent dyes include 1-anilinonaphthalene-8-sulfonic acid (ANS), N-methyl-2-alilinonaphthalene-6-sulfonic acid (MANS), 2-p-toluidinyl Allylnaphthalenesulfonic acids such as naphthalene-6-sulfonic acid (TNS); dimethylaminonaphthalenesulfonic acid; benzofurazan derivatives such as nitrobenzofurazan (NBD); )phenyl]-2- oxazolyl); Dapoxyl derivatives such as Dapoxyl sulfonyl chloride, Dapoxyl succinimidyl ester, Dapoxyl 3-sulfonamidopropionic acid, Dapoxyl (2-bromoacetamidoethyl) sulfonamide, Dapoxyl (2-aminoethyl) sulfonamide; dansyl chloride, dansyl sulfonamide,
  • Preferred embodiments of peptidic probes that can selectively bind to the lipid membrane structure of RNA vaccines include amphipathic ⁇ -helix peptide probes such as the compound of formula (9) below.
  • the peptidic probe of formula (9) above can be produced as follows.
  • the fluorescent dyes used in the peptide probes described above are not limited to environmentally responsive dyes, and non-environmentally responsive dyes such as fluorescein dyes and their derivatives, and rhodamine dyes and their derivatives can also be used.
  • fluorescent probes using environment-responsive dyes are characterized by low fluorescence intensity in hydrophilic fields and high intensity in hydrophobic fields, so fluorescence can be detected without the need for washing or other operations.
  • fluorescent probes using non-environmentally responsive dyes it is impossible to distinguish between non-binding and binding to the lipid membrane of preparations such as vaccines, so operations such as washing are required.
  • Environmentally responsive dyes such as the compound of formula (9) are preferred, but the use of non-environmentally responsive dyes may be considered depending on the purpose and application.
  • the cell membrane staining dye a known dye capable of staining the cell membrane can be used, and a fat-soluble dye that stains the lipid bilayer membrane is particularly preferable.
  • Such fat-soluble dyes include fat-soluble carbocyanine dyes such as PIC series from Takara Bio Inc. and SP-DiOC1 8 (3) in the Molecular Probes (registered trademark) series from Thermo Fisher Scientific. Polaric (registered trademark) manufactured by Kagaku Co., Ltd., and the like can be mentioned.
  • Fat-soluble carbocyanine dyes are typically carbocyanine dyes with long hydrocarbon chains.
  • cell membrane staining dyes such as Sudan III, Sudan II (Oil Red O), Sudan Black B (SBB), Nile Blue, Fat Red, and Lipid Crimson, which are conventionally used for lipid staining, may be used. Soluble dyes can be used as well.
  • the step of contacting the RNA vaccine with a compound that binds to RNA may be performed before, at the same time, or after the step of contacting the RNA vaccine with a fluorescent dye that binds to the lipid membrane of the RNA vaccine, but is performed at the same time. This is advantageous in that the inspection method time can be shortened.
  • a sample containing the RNA vaccine is prepared, and the compound that binds to mRNA; It is preferably carried out by adding a fluorescent dye that binds to lipid membranes to one sample containing the RNA vaccine.
  • a sample containing an RNA vaccine may be a stock solution or a diluted solution of a commercially available or manufactured RNA vaccine, and may contain any additive, including substances that inhibit degradation of RNA.
  • Each of the step of contacting a compound that binds to RNA with an RNA vaccine and the step of contacting a fluorescent dye that binds to a lipid membrane with an RNA vaccine may be performed at any suitable temperature and time.
  • the temperature is ambient or room temperature. Examples of such temperatures include about 20°C, about 25°C, about 30°C, about 35°C, about 37°C, about 40°C, about 42°C, and ranges between any two of these. Temperatures above about 42°C and below about 20°C are also applicable depending on the sample tested.
  • the time is not particularly limited, and may be any time suitable for detecting changes in fluorescence.
  • Examples of length of time are about 10 minutes, about 20 minutes, about 30 minutes, about 40 minutes, about 50 minutes, about 60 minutes, about 90 minutes, about 120 minutes, about 180 minutes, about 240 minutes, about 300 minutes. minutes, about 360 minutes, about 420 minutes, about 480 minutes, about 540 minutes, about 600 minutes, and ranges between any two of these. Further extension of the time is also possible depending on the sample to be tested.
  • concentrations of the compound of formula (1) and the compound of formula (2) are not particularly limited, and may be any concentration at which fluorescence excitation and emission signals can be appropriately detected in the presence of RNA.
  • An example concentration range includes about 10 nM to 1 mM.
  • concentrations include about 10 nM, about 100 nM, about 1 ⁇ M, about 10 ⁇ M, about 100 ⁇ M, about 1 mM and ranges between any two of these.
  • unbound fluorescent probe may be removed by ultrafiltration or the like. Removal of unbound fluorescent probe allows detection with a higher S/N ratio.
  • Suitable fluorescent irradiation devices include portable ultraviolet lamps, mercury arc lamps, xenon lamps, lasers (such as argon and YAG lasers), and laser diodes. These illumination sources are typically optically integrated into laser scanners, fluorescence microplate readers or standard or micro-fluorescence spectrophotometers.
  • the step of detecting at least one of the compound bound to RNA and the fluorescent dye bound to the lipid membrane may be performed by visual inspection or by using various measuring instruments.
  • instrumentation include CCD cameras, video cameras, photographic film, laser scanner devices, fluorescence intensity meters, photodiodes, quantum counters, epifluorescence microscopes, scanning microscopes, flow cytometers, fluorescence microplate readers, or photomultiplier tubes. and other amplifiers.
  • the detection step may be performed at a single time point, at multiple time points, or continuously.
  • the step of detecting after the step of detecting, the change in luminescence intensity derived from the compound bound to RNA, the change in luminescence intensity derived from the fluorescent dye bound to the lipid membrane, or both A step of evaluating the quality of the formulation in which the RNA is encapsulated in a lipid membrane may be further included.
  • the step of assessing increases the luminescence intensity or fluorescence signal from the compound bound to the RNA, or decreases the luminescence intensity or fluorescence signal from the fluorochrome bound to the lipid membrane, Or, in the case of both, it includes evaluating that the quality of the preparation in which the RNA is encapsulated in the lipid membrane is degraded.
  • the luminescence intensity or fluorescence signal derived from the compound bound to RNA and the luminescence intensity or fluorescence signal derived from the fluorochrome bound to the lipid membrane for a predetermined amount of a preparation with no quality problems Each is defined as a reference value, and for a formulation encapsulated in a certain lipid membrane (referred to as a test formulation), the luminescence intensity or fluorescence signal derived from the compound bound to the RNA in the formulation and the binding to the RNA in the formulation The luminescence intensity or fluorescence signal derived from the compound is measured, and the quality of the test preparation is maintained if the measured values are within the predetermined thresholds relative to the reference values, and the test preparation is rejected if the measured values are outside the thresholds. including assessing that the quality of Preparations with no quality problems include preparations immediately after manufacturing.
  • the compound that binds RNA is impermeable to lipid membranes, and the step of assessing increases the luminescence intensity or fluorescence signal from the compound that binds RNA or binds to the lipid membrane.
  • the luminescence intensity or fluorescence signal derived from the fluorescent dye is decreased, or both, it is evaluated that the quality of the preparation in which the RNA is encapsulated in the lipid membrane is degraded.
  • the compound that binds RNA is permeable to the lipid membrane, and the step of assessing increases the luminescence intensity or fluorescence signal from the compound bound to the RNA that has leaked out of the lipid membrane,
  • a reduction in luminescence intensity and/or fluorescence signal from membrane-bound fluorochromes includes assessing a formulation in which RNA is encapsulated in a lipid membrane as degraded.
  • the compound that binds to RNA is permeable to the lipid membrane, and the step of evaluating is not partially or entirely encapsulated within the lipid membrane, and the RNA that has leaked out of the lipid membrane.
  • the luminescence intensity or fluorescence signal derived from the bound compound increases and the luminescence intensity or fluorescence signal derived from the fluorescent dye bound to the lipid membrane is normal, part or all of the RNA is bound to the lipid membrane. This includes quality evaluation as a formulation that is not encapsulated and leaks out of the lipid membrane.
  • the normal value refers to a value within the range of luminescence intensity or fluorescence signal obtained from a preparation with no quality problem, for example, derived from a fluorescent dye bound to a lipid membrane in a preparation in which RNA is encapsulated in a lipid membrane immediately after production. luminescence intensity or fluorescence signal value or lesser value.
  • the compound that binds RNA is permeable to the lipid membrane, and the assessing is derived from the compound that binds RNA as the RNA is not completely encapsulated within the lipid membrane.
  • the RNA is not inherently encapsulated in the lipid membrane (therefore, the RNA is not leaking out of the lipid membrane), including evaluating the quality as a formulation.
  • a normal value includes, for example, a value of luminescence intensity or a fluorescence signal derived from a fluorescent dye bound to a lipid membrane in a formulation in which RNA is encapsulated in a lipid membrane immediately after production, or a value smaller than that.
  • the step of assessing does not significantly change the luminescence intensity or fluorescence signal from the compound bound to the RNA and does not significantly change the luminescence intensity or fluorescence signal from the fluorochrome bound to the lipid membrane.
  • This includes evaluating whether the quality of the formulation in which the RNA is encapsulated in the lipid membrane is maintained when there is no change in the For example, both the luminescence intensity or fluorescence signal derived from the compound bound to RNA and the luminescence intensity or fluorescence signal derived from the fluorochrome bound to the lipid membrane are (fluorescence signal after change - fluorescence signal before change).
  • the quality of the preparation in which RNA is encapsulated in the lipid membrane is evaluated as being maintained.
  • each of the luminescence intensity or fluorescence signal derived from the compound bound to RNA and the luminescence intensity or fluorescence signal derived from the fluorochrome bound to the lipid membrane is compared with the fluorescence signal after the change and the fluorescence before the change.
  • p is 0.05 or more
  • the step of evaluating increases relative to a first reference value the luminescence intensity or fluorescence signal derived from the compound bound to the RNA, or the luminescence intensity derived from the fluorochrome bound to the lipid membrane Alternatively, when the fluorescence signal is decreased with respect to a second reference value, or both, the quality of the preparation in which the RNA is encapsulated in the lipid membrane is evaluated as degraded.
  • the first reference value is (i) the method of the first embodiment is performed on a formulation in which RNA is encapsulated in a lipid membrane immediately after production (particularly under the same conditions as the test formulation).
  • Emission intensity or fluorescence signal value from the compound (ii) stored frozen according to the manufacturer's instructions (manual), thawed and then properly refrigerated as indicated in the manufacturer's instructions (manual).
  • the second reference value is (i) when the method of the first aspect is performed on a formulation in which RNA immediately after production is encapsulated in a lipid membrane (particularly under the same conditions as the test formulation), the binding to the lipid membrane (ii) refrigerated and thawed according to the manufacturer's instructions (manual), then the appropriate values indicated in the manufacturer's instructions (manual)
  • it may be a fluorescence signal value, or (iii) a predetermined value at which it can be considered that the quality of a formulation in which RNA is encapsulated in a lipid membrane is maintained.
  • the compound that binds RNA is impermeable to the lipid membrane, and the step of evaluating is based on the luminescence intensity or fluorescence signal from the compound bound to the RNA that has leaked out of the lipid membrane.
  • RNA is encapsulated in the lipid membrane if the luminescence intensity or fluorescence signal from the fluorochrome bound to the lipid membrane decreases relative to the second reference value, or both including assessing the quality of the manufactured product as degraded.
  • the first reference value and the second reference value are as described.
  • the compound that binds RNA is permeable to the lipid membrane
  • the step of evaluating is derived from the compound bound to the RNA that has leaked out of the lipid membrane without the RNA being encapsulated in the lipid membrane.
  • the luminescence intensity or fluorescence signal increases relative to the first reference value, and the luminescence intensity or fluorescence signal derived from the fluorochrome bound to the lipid membrane does not change relative to the second reference value. This includes evaluating the quality of preparations in which the RNA is not encapsulated in the lipid membrane and is leaking out of the lipid membrane.
  • the compound that binds RNA is permeable to the lipid membrane, and the step of assessing is the luminescence intensity from the compound that binds RNA, as the RNA is not encapsulated within the lipid membrane.
  • the fluorescence signal decreases with respect to the first reference value, and when the emission intensity or fluorescence signal derived from the fluorescent dye bound to the lipid membrane does not change with respect to the second reference value, the RNA is This includes evaluating the quality of preparations that are not inherently encapsulated in lipid membranes (thus, RNA has not leaked out of lipid membranes).
  • the step of evaluating is that the luminescence intensity or fluorescence signal derived from the compound bound to the RNA does not change significantly relative to the first reference value and the fluorescent dye derived from the lipid membrane bound Evaluating that the quality of the preparation in which the RNA is encapsulated in the lipid membrane is maintained when the emitted light intensity or fluorescence signal does not significantly change with respect to the second reference value.
  • the first reference value and the second reference value are as described.
  • both the luminescence intensity or fluorescence signal (i) derived from the compound bound to the RNA and the luminescence intensity or fluorescence signal (ii) derived from the fluorochrome bound to the lipid membrane are equal to the first reference value and
  • (luminescence intensity or fluorescence signal (i) - first reference value) / first reference value * 100 is ⁇ 10% or less
  • (luminescence intensity or fluorescence signal (ii) - second reference value)/second reference value*100 is ⁇ 10% or less
  • both the luminescence intensity or fluorescence signal (i) and the luminescence intensity or fluorescence signal (ii) are compared with each of the first reference value and the second reference value, and statistically determined by statistical analysis. When there is no significant difference (p is 0.05 or more), it is evaluated that the quality of the preparation in which RNA is encapsulated in the lipid membrane is maintained.
  • the evaluating step includes evaluating in chronological order. Specifically, the step of evaluating comprises a luminescence intensity or fluorescence signal derived from a compound bound to RNA at a first time point and a compound bound to RNA at a second time point later than the first time point.
  • the RNA is present in the lipid membrane Evaluate that the quality of the formulation encapsulated in is degraded, or the luminescence intensity or fluorescence signal derived from the fluorochrome bound to the lipid membrane at the first time point and the second time point later than the first time point.
  • the luminescence intensity or fluorescence signal derived from the fluorochrome bound to the lipid membrane at the time point is compared with the luminescence intensity or fluorescence signal derived from the fluorochrome bound to the lipid membrane at the second time point.
  • the quality of the formulation in which the RNA is encapsulated in the lipid membrane is reduced, or if both are the case, the RNA is encapsulated in the lipid membrane. This includes assessing the quality of the drug product as degraded.
  • the compound that binds RNA is impermeable to the lipid membrane, and the step of assessing is the luminescence intensity or fluorescence signal from the compound that binds RNA at a first time point;
  • the luminescence intensity or fluorescence signal from the compound bound to the RNA at a second time point later than the first time point is compared, and the luminescence intensity or fluorescence signal at the second time point is equal to the luminescence intensity at the first time point.
  • a formulation in which RNA is encapsulated in a lipid membrane is assessed as degraded if there is an increase in intensity or fluorescence signal, or from the fluorescent dye bound to the lipid membrane at the first time point.
  • the compound that binds RNA is permeable to the lipid membrane
  • the step of assessing is the luminescence intensity or fluorescence signal from the compound that binds RNA at a first time point;
  • the luminescence intensity or fluorescence signal is compared with the luminescence intensity or fluorescence signal derived from the fluorochrome bound to the lipid membrane at a second time point later than the first time point, and the luminescence intensity or fluorescence signal derived from the fluorochrome bound to the lipid membrane at the second time point.
  • the luminescence intensity or fluorescence signal derived from the fluorescent dye is reduced with respect to the luminescence intensity or fluorescence signal at the first time point, it is evaluated that the quality of the formulation in which RNA is encapsulated in the lipid membrane is degraded. or both, the quality of formulations in which RNA is encapsulated in lipid membranes is evaluated as being degraded.
  • the compound that binds RNA is permeable to lipid membranes
  • the step of assessing is the luminescence intensity or fluorescence signal from the compound that binds RNA in normal formulations and the Compare the luminescence intensity or fluorescence signal derived from the compound bound to the RNA of the preparation, and compare the luminescence intensity or fluorescence signal derived from the fluorochrome bound to the lipid membrane in the normal preparation with that of the preparation to be tested.
  • the luminescence intensity or fluorescence signal of the preparation under test is increased relative to the luminescence intensity or fluorescence signal of the normal preparation, and the lipid If the emission intensity or fluorescence signal from the membrane-bound fluorochrome does not change with respect to the emission intensity or fluorescence signal in the normal formulation, the formulation is of failed or degraded quality. (For example, some or all of the RNA is not encapsulated in the lipid membrane and is leaking out of the lipid membrane).
  • the luminescence intensity or fluorescence signal of the preparation to be tested increases with respect to the luminescence intensity or fluorescence signal of a normal preparation, and the luminescence intensity or fluorescence signal originates from the fluorescent dye bound to the lipid membrane of the preparation to be tested.
  • the luminescence intensity or fluorescence signal originates from the fluorescent dye bound to the lipid membrane of the preparation to be tested.
  • the membrane-encapsulated formulation is evaluated as poor or degraded.
  • the formulation luminescence intensity or fluorescence signal under test is increased with respect to the luminescence intensity or fluorescence signal in the normal formulation, and the luminescence intensity or fluorescence signal (ii) increases relative to the corresponding luminescence in the normal formulation If there is no statistically significant difference (p is 0.05 or more) for the intensity or fluorescence signal, the quality of the formulation in which RNA is encapsulated in a lipid membrane is considered to be poor or degraded. evaluate.
  • the compound that binds RNA is permeable to lipid membranes
  • the step of assessing is the luminescence intensity or fluorescence signal from the compound that binds RNA in normal formulations and the Compare the luminescence intensity or fluorescence signal derived from the compound bound to the RNA of the preparation, and compare the luminescence intensity or fluorescence signal derived from the fluorochrome bound to the lipid membrane in the normal preparation with that of the preparation to be tested.
  • the luminescence intensity or fluorescence signal of the preparation under test is reduced relative to the luminescence intensity or fluorescence signal of the normal preparation, and the lipid If the emission intensity or fluorescence signal from the membrane-bound fluorochrome does not change with respect to the emission intensity or fluorescence signal in the normal formulation, the formulation is of failed or degraded quality.
  • RNA is not naturally encapsulated in lipid membranes.
  • the luminescence intensity or fluorescence signal of the preparation to be tested is reduced with respect to the luminescence intensity or fluorescence signal of the normal preparation, and the luminescence intensity or fluorescence signal is derived from the fluorescent dye bound to the lipid membrane of the preparation to be tested.
  • the luminescence intensity or fluorescence signal in the normal preparation luminescence intensity or fluorescence signal derived from the fluorochrome bound to the lipid membrane under test
  • - the lipid membrane of the normal preparation luminescence intensity or fluorescence signal derived from the bound fluorescent dye /(luminescence intensity or fluorescence signal derived from the fluorochrome bound to the lipid membrane of the normal preparation) * 100 is ⁇ 10% or less.
  • the membrane-encapsulated formulation is evaluated as poor or degraded.
  • the formulation luminescence intensity or fluorescence signal under test is increased with respect to the luminescence intensity or fluorescence signal in the normal formulation, and the luminescence intensity or fluorescence signal (ii) increases relative to the corresponding luminescence in the normal formulation If there is no statistically significant difference (p is 0.05 or more) for the intensity or fluorescence signal, the quality of the formulation in which RNA is encapsulated in a lipid membrane is considered to be poor or degraded. evaluate.
  • the step of evaluating comprises luminescence intensity or fluorescence signal from the compound bound to the RNA at a first time point and binding to the RNA at a second time point later than the first time point. If the luminescence intensity or fluorescence signal at the second time point is not significantly changed with respect to the luminescence intensity or fluorescence signal at the first time point, And the luminescence intensity or fluorescence signal derived from the fluorochrome bound to the lipid membrane at the first time point, and the luminescence intensity or fluorescence signal derived from the fluorochrome bound to the lipid membrane at a second time point later than the first time point or If the luminescence intensity or fluorescence signal derived from the fluorochrome bound to the lipid membrane at the second time point is not significantly changed relative to the luminescence intensity or fluorescence signal at the first time point 2) includes evaluating whether the quality of formulations in which RNA is encapsulated in lipid membranes is maintained.
  • kits for inspecting the quality of a formulation in which RNA is encapsulated in a lipid membrane wherein the kit binds to the RNA of a formulation comprising RNA and a lipid membrane enveloping the RNA.
  • a kit is provided that includes a compound and a fluorescent dye that binds to the lipid membrane of the formulation.
  • the compound that binds to RNA and the fluorescent dye that binds to lipid membranes are as described for the compound and fluorescent dye of the first embodiment, respectively.
  • the kit may include a container containing a compound that binds to RNA.
  • a container containing a fluorescent dye that binds to the lipid membrane may be further provided.
  • the kit may further comprise a pipette, dropper, or other sample manipulation substrate.
  • the kit may further include instructions for detecting a compound that binds to RNA, a fluorescent dye that binds to lipid membranes, or both.
  • the kit may further comprise positive and/or negative control samples.
  • the positive control sample may be a formulation in which RNA is encapsulated in a lipid membrane or a construct having a structure similar to that of a formulation in which RNA is encapsulated in a lipid membrane.
  • a negative control sample may be a sample that does not contain a preparation in which RNA is encapsulated in a lipid membrane.
  • the kit may further comprise water, buffers, buffer salts, surfactants, surfactants, salts, polysaccharides or other materials commonly used in bioassays.
  • the kit may further comprise solvents such as aqueous, non-aqueous, or aqueous/non-aqueous solvent systems.
  • the step of evaluating the quality of the RNA-encapsulated lipid membrane-encapsulated formulation described in the method for inspecting the quality of the RNA-encapsulated lipid membrane-encapsulated formulation of the first aspect of the present invention is described. may also be listed.
  • the mRNA in the formulation comprising mRNA and a lipid membrane enclosing the mRNA is encapsulated in the lipid membrane.
  • the quality of preparations in which RNA is encapsulated in lipid membranes can be evaluated based on changes in luminescence intensity, changes in luminescence intensity derived from fluorescent dyes bound to lipid membranes, or both.
  • the formulation in which RNA is encapsulated in a lipid membrane is an RNA vaccine in which mRNA is encapsulated in a lipid membrane.
  • the mRNA may contain part of the sequence of the viral RNA.
  • the lipid membrane-encapsulated formulation is an RNAi drug in which siRNA is encapsulated in liposomes.
  • siRNAs are short (about 20-25 bases) double-stranded RNAs that are complementary to any target mRNA in the cell.
  • the method of the first aspect and the kit of the second aspect enable rapid and highly sensitive quality evaluation of preparations in which RNA is encapsulated in lipid membranes, so that RNA is encapsulated in lipid membranes at medical and research sites. can be used for quality inspection.
  • the fluorescence intensity at 622 nm of the sample in which the model vaccine was mixed with ApoC-NR shows that the fluorescence intensity at 622 nm of the sample containing only ApoC-NR without the model vaccine (Graph of Probe ) increased 426-fold.
  • Example 2 Concentration-dependent fluorescence detection of model vaccine (Method)
  • the model vaccine described in Example 1 was used.
  • a model vaccine was mixed with ApoC-NR or TO-PRO-1, and fluorescence spectra in PBS buffer were measured.
  • the concentrations of model vaccines were 1.8 ⁇ 10 10 , 3.6 ⁇ 10 10 , 7.1 ⁇ 10 10 , 1.4 ⁇ 10 11 , and 3.6 ⁇ 10 11 cells/mL, and the concentrations of various probes were 2.0 ⁇ M.
  • TO-PRO-1 measurement was performed after mixing the sample and probe and incubating at room temperature for 30 minutes. All measurements were performed at room temperature (25°C).
  • Example 3 Effect of RNA Addition on Vaccine Fluorescence Ratio (Method)
  • the model vaccine described in Example 1 was used.
  • a model vaccine was mixed with ApoC-NR or TO-PRO-1, and fluorescence spectra in PBS buffer were measured.
  • a model vaccine mixed with a final concentration of 4.0 ⁇ M RNA was also used to examine changes in the fluorescence response of various probes due to the addition of RNA.
  • the concentration of the model vaccine was 3.6 ⁇ 10 11 cells/mL, and the concentration of each probe was 2.0 ⁇ M.
  • TO-PRO-1 measurement was performed after mixing the sample and probe and incubating at room temperature for 30 minutes. All measurements were performed at room temperature (25°C).
  • F model/vaccine The ratio of the fluorescence response (F) for the sample containing the model vaccine and RNA to the fluorescence response for the sample containing the model vaccine but no RNA (F model/vaccine ) was calculated.
  • F model/vaccine was calculated when ApoC-NR and TO-PRO-1 were used as probes (ApoC-NR: excitation wavelength 552 nm, analysis wavelength 622 nm, TO-PRO-1: excitation wavelength 508.5 nm, analysis wavelength 538 nm).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Provided is a method for inspecting, with high sensitivity, the quality of a pharmaceutical formulation having RNA encapsulated in a lipid membrane. This method for inspecting the quality of a pharmaceutical formulation having RNA encapsulated in a lipid membrane includes: a step for bringing a compound into contact with a pharmaceutical formulation comprising RNA and a lipid membrane that encloses the RNA, the compound binding to the RNA of the pharmaceutical formulation; a step for bringing a fluorescent dye that binds to the lipid membrane of the pharmaceutical formulation into contact with the pharmaceutical formulation; and a step for detecting the compound bonded to the RNA and/or the fluorescent dye bonded to the lipid membrane.

Description

RNAが脂質膜に内包された製剤の品質管理技術の開発Development of quality control technology for formulations in which RNA is encapsulated in lipid membranes
 本発明は、RNAが脂質膜に内包された製剤の品質検査方法に関する。 The present invention relates to a quality inspection method for formulations in which RNA is encapsulated in a lipid membrane.
 siRNA(小分子干渉リボ核酸)やmRNA等のRNAを用いた核酸医薬の開発が近年注目されている。 In recent years, the development of nucleic acid drugs using RNA such as siRNA (small interfering ribonucleic acid) and mRNA has attracted attention.
 例えば、RNAi医薬は、細胞内の標的とするmRNAに相補的な短い(20~25塩基程度)二本鎖RNA(siRNAと称する)を用いて病気の原因となるタンパク質の生産を抑制するというRNA干渉の原理を利用した医薬があり、米国アルライラム社のOnpattro (商標)がトランスサイレチン型家族性アミロイドポリニューロパチーの治療薬として、2018年にFDA、2019年に厚生労働省により承認されている。siRNAは非常に不安定なため、体内に投与されると分解酵素により速やかに分解される。この治療薬では、siRNAを脂質膜の1種である脂質ナノ粒子(lipid nanoparticle, LNP)で封入することにより、体内での安定性を高めている。Onpattro (商標)は、希釈溶液の調製後速やかに使用しなければならず、保存する場合も投与時間を含めて16時間以内に使用しなければならない。このように、RNAi医薬は品質の低下が起こりやすい。 For example, RNAi drugs use short (approximately 20 to 25 nucleotides) double-stranded RNA (siRNA) that is complementary to target mRNA in cells to suppress the production of disease-causing proteins. There is a drug that utilizes the principle of interference, and Onpattro (trademark) by Alrylam Inc. in the United States was approved by the FDA in 2018 and by the Ministry of Health, Labor and Welfare in 2019 as a therapeutic agent for transthyretin-type familial amyloid polyneuropathy. Since siRNA is extremely unstable, it is rapidly degraded by degradative enzymes when administered into the body. In this therapeutic agent, siRNA is encapsulated in lipid nanoparticles (LNPs), a type of lipid membrane, to enhance its stability in the body. Onpattro™ should be used immediately after preparation of the diluted solution and, if stored, should be used within 16 hours, including the time of administration. Thus, RNAi medicines are prone to quality deterioration.
 別の核酸医薬であるRNAワクチンは、mRNA(メッセンジャーRNA)ワクチンとも呼ばれ、ウイルスのRNA配列の一部を化学合成したmRNAをヒトに投与し、ヒト細胞に取り込まれたmRNAが翻訳されてウイルスのタンパク質が産生され、この抗原タンパク質に対する細胞性免疫と体液性免疫の両方を誘発させる。 RNA vaccines, which are another nucleic acid medicine, are also called mRNA (messenger RNA) vaccines. They administer mRNA, which is a chemically synthesized part of the RNA sequence of a virus, to humans. protein is produced and induces both cellular and humoral immunity against this antigenic protein.
 RNAワクチンは、従来の抗原タンパク質や弱毒化ウイルスよりも、ヒト細胞にウイルスに特異的な抗原を産生させることが容易であり、変異ウイルスが発現した場合も、mRNAの配列を変更するだけで迅速にRNAワクチンを設計及び製造して対応できる。このため、ウイルスが引き起こす感染症の予防を含むワクチン医療の分野での開発が急速に進んでいる。例えば、2019年の終わりから中国で流行している新型コロナウイルスSevere Acute Respiratory Syndrome coronavirus 2(SARS-CoV-2)に対するmRNAワクチンとして、米国ファイザー社のBNT162b2や米国モデルナ社のmRNA-1273が知られている。 RNA vaccines make it easier for human cells to produce virus-specific antigens than conventional antigenic proteins or attenuated viruses. can respond by designing and manufacturing RNA vaccines. For this reason, development in the field of vaccine medicine, including the prevention of infectious diseases caused by viruses, is progressing rapidly. For example, Pfizer's BNT162b2 and Moderna's mRNA-1273 are known as mRNA vaccines against the new coronavirus Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), which has been prevalent in China since the end of 2019. ing.
 RNAワクチンも、mRNA分子が極めて分解しやすい。現在開発されているRNAワクチンの主な構造は、ウイルスのRNA配列の一部に対応するmRNAの部分と、mRNAを包む脂質ナノ粒子(lipid nanoparticle, LNP)の部分とを有するmRNA-LNP構造であり、LNPによりmRNAの安定性が高められている。しかしながら現在のRNAワクチンは、依然として低温での流通と保存が不可欠である。例えば米国ファイザー社のBNT162b2は-75℃±15℃で輸送及び保管されなければならず、解凍後の保管期間は冷蔵庫内(4-8℃)で5日間である。米国モデルナ社のmRNA-127は-20℃±5℃で輸送及び保管されなければならず、解凍後の保管期間は冷蔵庫内 (4-8℃)で30日間である。 The mRNA molecules of RNA vaccines are also extremely susceptible to degradation. The main structure of RNA vaccines currently being developed is the mRNA-LNP structure, which has an mRNA part corresponding to a part of the viral RNA sequence and a lipid nanoparticle (LNP) part that wraps the mRNA. Yes, LNP enhances mRNA stability. However, current RNA vaccines still require low-temperature distribution and storage. For example, BNT162b2 from Pfizer, USA must be transported and stored at -75°C ± 15°C, and the storage period after thawing is 5 days in a refrigerator (4-8°C). Moderna's mRNA-127 should be transported and stored at -20°C ± 5°C, and the storage period after thawing is 30 days in the refrigerator (4-8°C).
 ワクチンの安定性や有効性等に影響を及ぼす要因として、RNAワクチンの室温での長期間の保管や、RNAワクチンの凍結乾燥と再構成等が報告されている(非特許文献1)。 Long-term storage of RNA vaccines at room temperature, freeze-drying and reconstitution of RNA vaccines, etc. have been reported as factors that affect the stability and efficacy of vaccines (Non-Patent Document 1).
 しかしながら、RNAi医薬やRNAワクチン等のRNAが脂質膜に内包された製剤の保存中の安定性がどのように変化するかはほとんど注目されておらずかかる製剤の品質を客観的に評価する方法はほとんど報告されていない。例えば従来のRNAワクチンの物理的性質を評価する方法として、光動的散乱法や電子顕微鏡、クロマトグラムを用いた方法があるが、これらはコスト、迅速性、スループット性等に大きな課題がある。 However, little attention has been paid to how the stability of formulations in which RNA is encapsulated in lipid membranes, such as RNAi drugs and RNA vaccines, changes during storage. almost unreported. For example, conventional methods for evaluating the physical properties of RNA vaccines include methods using photodynamic scattering, electron microscopy, and chromatograms, but these methods have major problems such as cost, speed, and throughput.
 本発明が解決すべき課題は、RNAが脂質膜に内包された製剤の品質を迅速かつ高感度に検査する方法を提供することにある。 The problem to be solved by the present invention is to provide a method for rapidly and highly sensitively testing the quality of formulations in which RNA is encapsulated in lipid membranes.
 本発明者らは、上記の課題解決のため鋭意検討した結果、RNAが脂質膜に内包された製剤のRNAの部分に結合する特定の化合物と、RNAが脂質膜に内包された製剤の脂質膜の部分に結合する蛍光色素とを用いて、製剤中のRNA及び脂質膜のうちの少なくとも一方の変化を調べることにより、RNAが脂質膜に内包された製剤の品質を迅速かつ高感度に検査することができることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors found that a specific compound that binds to the RNA portion of a formulation in which RNA is encapsulated in a lipid membrane and a lipid membrane in a formulation in which RNA is encapsulated in a lipid membrane. Rapidly and highly sensitively inspect the quality of formulations in which RNA is encapsulated in lipid membranes by examining changes in at least one of RNA and lipid membranes in the formulation using a fluorescent dye that binds to the part of The present inventors have found that it is possible to achieve the present invention.
 本発明は、以下に記載の実施形態を包含する。 The present invention includes the embodiments described below.
 項1.RNAが脂質膜に内包された製剤の品質を検査する方法であって、
 RNAと該RNAを包む脂質膜とを備えた製剤の前記RNAに結合する化合物を、前記製剤と接触させる工程、
 前記製剤の前記脂質膜に結合する蛍光色素を、前記製剤と接触させる工程、及び
 前記RNAと結合した化合物及び前記脂質膜に結合した前記蛍光色素のうちの少なくとも一方を検出する工程
を含む方法。
Section 1. A method for inspecting the quality of a formulation in which RNA is encapsulated in a lipid membrane,
A step of contacting a compound that binds to the RNA of a formulation comprising RNA and a lipid membrane enveloping the RNA with the formulation;
A method comprising: contacting a fluorescent dye that binds to the lipid membrane of the formulation with the formulation; and detecting at least one of a compound bound to the RNA and the fluorescent dye bound to the lipid membrane.
 項2.前記検出する工程の後で、RNAと結合した化合物に由来する発光強度の変化、脂質膜に結合した前記蛍光色素に由来する発光強度の変化、又はその両方に基づいて、前記製剤の品質を評価する工程をさらに含む項1に記載の方法。 Section 2. After the detecting step, the quality of the formulation is evaluated based on the change in luminescence intensity derived from the compound bound to RNA, the change in luminescence intensity derived from the fluorochrome bound to the lipid membrane, or both. Item 1. The method of Item 1, further comprising the step of:
 項3.前記RNAに結合する化合物が、脂質膜に非透過性でRNAに結合できる蛍光分子である項1又は2に記載の方法。 Section 3. Item 3. The method according to Item 1 or 2, wherein the compound that binds to RNA is a fluorescent molecule that is impermeable to lipid membranes and capable of binding to RNA.
 項4.前記RNAに結合する化合物が、脂質膜に透過性でRNAに結合できる蛍光分子である項1又は2に記載の方法。 Section 4. Item 3. The method according to Item 1 or 2, wherein the compound that binds to RNA is a fluorescent molecule that is permeable to lipid membranes and capable of binding to RNA.
 項5.前記評価する工程は、前記RNAに結合する化合物に由来する蛍光シグナルが増大するか、前記蛍光色素に由来する蛍光シグナルが減少するか、又はその両方である場合に、前記製剤の品質が低下していると評価することを含む項1~3のいずれか一項に記載の方法。 Item 5. In the step of evaluating, if the fluorescence signal derived from the compound that binds to the RNA increases, or the fluorescence signal derived from the fluorochrome decreases, or both, the quality of the preparation deteriorates. 4. The method of any one of clauses 1-3, comprising assessing that the
 項6.前記脂質膜に結合する蛍光色素が、脂質パッキング欠損に対して結合するペプチド性蛍光色素である項1~5のいずれか一項に記載の方法。 Item 6. Item 6. The method according to any one of Items 1 to 5, wherein the fluorescent dye that binds to lipid membranes is a peptidic fluorescent dye that binds to lipid packing defects.
 項7.前記RNAに結合する化合物を、前記製剤と接触させる工程と、前記脂質膜に結合する蛍光色素を、前記製剤と接触させる工程とが、前記RNAに結合する化合物と、前記脂質膜に結合する蛍光色素とを、前記製剤を含む一つのサンプルに添加することにより行われる項1~6のいずれか一項に記載の方法。 Item 7. The step of contacting the compound that binds to the RNA with the preparation, and the step of contacting the fluorescent dye that binds to the lipid membrane with the preparation include the compound that binds to the RNA and the fluorescence that binds to the lipid membrane. Item 7. The method according to any one of Items 1 to 6, which is carried out by adding a dye and a sample containing the formulation.
 項8.RNAが脂質膜に内包された製剤の品質を検査するためのキットであって、
 RNAと該RNAを包む脂質膜とを備えた製剤の前記RNAに結合する化合物と、
 前記製剤の前記脂質膜に結合する蛍光色素と、を備えたキット。
Item 8. A kit for testing the quality of a formulation in which RNA is encapsulated in a lipid membrane,
a compound that binds to the RNA in a formulation comprising RNA and a lipid membrane enveloping the RNA;
a fluorescent dye that binds to the lipid membrane of the formulation.
 本発明によれば、RNAが脂質膜に内包された製剤の品質を迅速かつ高感度に検査することができる。 According to the present invention, the quality of formulations in which RNA is encapsulated in lipid membranes can be tested quickly and with high sensitivity.
2種類のプローブによるRNAワクチンの品質の検査方法の原理を説明する模式図。(A)RNAワクチンの略図、(B)脂質膜結合性プローブによる脂質膜の検出、(C)RNA結合性プローブによるmRNAの検出。Schematic diagram for explaining the principle of an RNA vaccine quality inspection method using two types of probes. (A) Schematic representation of RNA vaccine, (B) Detection of lipid membranes by lipid membrane-binding probes, (C) Detection of mRNA by RNA-binding probes. 品質が低下したRNAワクチンのパターンとその検出方法の例を説明する模式図。Schematic diagram illustrating an example of a pattern of degraded RNA vaccines and a detection method thereof. 品質が低下したRNAワクチンのパターンとその検出方法の別の例を説明する模式図。Schematic diagram illustrating another example of the pattern of degraded RNA vaccine and its detection method. モデルワクチンに対する蛍光応答。(A)脂質膜結合性プローブによるワクチン検出、(B)RNA結合性プローブによるワクチン検出。Fluorescence response to model vaccines. (A) Vaccine detection by lipid membrane-binding probe, (B) Vaccine detection by RNA-binding probe. モデルワクチンに対する蛍光応答の濃度依存性。(A)ApoC-NRを混合したモデルワクチン試料の、モデルワクチンの濃度依存的な蛍光応答の増大、(B)図4(A)の各試料の蛍光強度比F/ F0を示すグラフ、(C)TO-PRO-1を混合したモデルワクチン試料の、モデルワクチンの濃度依存的な蛍光応答の増大、(D)図4(C)の各試料の蛍光強度比F/ F0を示すグラフ。Concentration dependence of fluorescence response to model vaccines. (A) A concentration-dependent increase in the fluorescence response of the model vaccine sample mixed with ApoC-NR, (B) a graph showing the fluorescence intensity ratio F/F 0 of each sample in FIG. 4 (A), ( C) Increase in fluorescence response of model vaccine sample mixed with TO-PRO-1 depending on concentration of model vaccine, (D) Graph showing fluorescence intensity ratio F/ F0 of each sample in FIG. 4(C). モデルワクチンにRNAを混ぜたサンプルに対する蛍光応答。Fluorescence response to a model vaccine spiked with RNA.
 本明細書において、用語「ハロ」は、フルオロ基、クロロ基、ブロモ基およびヨード基のことを言う。 As used herein, the term "halo" refers to fluoro, chloro, bromo and iodo groups.
 用語「アルキル」は、分枝鎖、非分枝鎖または環式の飽和炭化水素を言う。いくつかの実施形態において、アルキル基は、例えば1~20個の炭素原子を有し、多くの場合1~12個の炭素原子または1~6個の炭素原子を有する。アルキル基の例は、限定するものではないが、メチル、エチル、1-プロピル、2-プロピル、1-ブチル、2-メチル-1-プロピル、2-ブチル、2-メチル-2-プロピル(t-ブチル)、1-ペンチル、2-ペンチル、3-ペンチル、2-メチル-2-ブチル、3-メチル-2-ブチル、3-メチル-1-ブチル、2-メチル-1-ブチル、1-ヘキシル、2-ヘキシル、3-ヘキシル、2-メチル-2-ペンチル、3-メチル-2-ペンチル、4-メチル-2-ペンチル、3-メチル-3-ペンチル、2-メチル-3-ペンチル、2,3-ジメチル-2-ブチル、3,3-ジメチル-2-ブチル、ヘプチル、オクチル、デシル、ドデシル等が挙げられる。アルキルは置換されていなくてもよく、置換されていてもよい。置換アルキル基は、酸素、窒素、硫黄、ハロゲン及びリン等の非炭素及び非水素原子を1以上含んでもよい。 The term "alkyl" refers to a branched, unbranched or cyclic saturated hydrocarbon. In some embodiments, alkyl groups have, for example, 1-20 carbon atoms, often 1-12 carbon atoms or 1-6 carbon atoms. Examples of alkyl groups include, but are not limited to, methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-methyl-1-propyl, 2-butyl, 2-methyl-2-propyl (t -butyl), 1-pentyl, 2-pentyl, 3-pentyl, 2-methyl-2-butyl, 3-methyl-2-butyl, 3-methyl-1-butyl, 2-methyl-1-butyl, 1- hexyl, 2-hexyl, 3-hexyl, 2-methyl-2-pentyl, 3-methyl-2-pentyl, 4-methyl-2-pentyl, 3-methyl-3-pentyl, 2-methyl-3-pentyl, 2,3-dimethyl-2-butyl, 3,3-dimethyl-2-butyl, heptyl, octyl, decyl, dodecyl and the like. Alkyl can be unsubstituted or substituted. Substituted alkyl groups may contain one or more non-carbon and non-hydrogen atoms such as oxygen, nitrogen, sulfur, halogens and phosphorus.
 用語「アルケニル」とは、炭素-炭素sp2二重結合を有する分枝鎖または非分枝鎖の不飽和炭化水素を言う。いくつかの実施形態において、アルケニル基は、例えば2~ 10炭素原子を有することもでき、2~ 6炭素原子を有することもできる。他の実施形態において、アルケニル基は2~ 4炭素原子を有する。アルケニルの例は、限定するものではないが、エチレンまたはビニル、アリル、シクロペンテニル、5-ヘキセニル等を含む。アルケニルは、置換されていなくてもよく、置換されていてもよい。置換アルケニル基は酸素、窒素、硫黄、ハロゲン及びリン等の非炭素及び非水素原子を1以上含んでもよい。 The term "alkenyl" refers to a branched or unbranched unsaturated hydrocarbon having a carbon-carbon sp2 double bond. In some embodiments, alkenyl groups can have, for example, 2-10 carbon atoms, or 2-6 carbon atoms. In other embodiments, alkenyl groups have 2-4 carbon atoms. Examples of alkenyl include, but are not limited to, ethylene or vinyl, allyl, cyclopentenyl, 5-hexenyl, and the like. An alkenyl can be unsubstituted or substituted. Substituted alkenyl groups may contain one or more non-carbon and non-hydrogen atoms such as oxygen, nitrogen, sulfur, halogens and phosphorous.
 用語「アルキニル」は、炭素-炭素sp三重結合を有する分枝鎖または非分枝鎖の不飽和炭化水素鎖のことを言う。いくつかの実施形態において、アルキニル基は、例えば2~ 10炭素原子を有することもでき、2~ 6炭素原子を有することもできる。他の実施形態において、アルキニル基は2~ 4炭素原子を有することができる。アルキニル基の例は、限定するものではないが、エチニル、1-プロピニル、2-プロピニル、1-ブチニル、2-ブチニル、3-ブチニル、1-ヘキシニル、2-ヘキシニル、3-ヘキシニル、1-オクチニル等を含む。アルキニルは、置換されていなくてもよく、置換されていてもよい。置換アルキニル基は酸素、窒素、硫黄、ハロゲン及びリン等の非炭素及び非水素原子を1以上含んでもよい。 The term "alkynyl" refers to a branched or unbranched unsaturated hydrocarbon chain having a carbon-carbon sp triple bond. In some embodiments, alkynyl groups can have, for example, 2-10 carbon atoms, or 2-6 carbon atoms. In other embodiments, alkynyl groups can have from 2 to 4 carbon atoms. Examples of alkynyl groups include, but are not limited to, ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 1-octynyl etc. An alkynyl can be unsubstituted or substituted. Substituted alkynyl groups may contain one or more non-carbon and non-hydrogen atoms such as oxygen, nitrogen, sulfur, halogens and phosphorous.
 用語「アルコキシ」は、アルキル-O-(アルキルは本明細書で定義される)のことを言う。いくつかの実施形態において、アルコキシ基は、1~12個の炭素原子または1~6個の炭素原子を有する。アルコキシ基の例は、限定するものではないが、メトキシ、エトキシ、n-プロポキシ、iso-プロポキシ、n-ブトキシ、tert-ブトキシ、sec-ブトキシ、n-ペントキシ、n-ヘキシルオキシ、1,2-ジメチルブトキシ等を含む。アルコキシは、置換されていなくてもよく、置換されていてもよい。置換アルコキシ基は置換アルキル基と結合した酸素を含んでよい。 The term "alkoxy" refers to alkyl-O- (alkyl is defined herein). In some embodiments, alkoxy groups have 1-12 carbon atoms or 1-6 carbon atoms. Examples of alkoxy groups include, but are not limited to, methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, tert-butoxy, sec-butoxy, n-pentoxy, n-hexyloxy, 1,2- Including dimethylbutoxy and the like. An alkoxy can be unsubstituted or substituted. A substituted alkoxy group may contain an oxygen attached to the substituted alkyl group.
 用語「アリール」は、親芳香環の炭素原子1つから水素原子1つを除去することによって誘導される芳香族炭化水素基のことを言う。アリール基は、6~ 18炭素原子、6~ 14炭素原子または6~ 10炭素原子を有することができる。アリール基は、少なくとも1つの環が芳香族(例えば、ナフチル、ジヒドロフェナントレニル、フルオレニルまたはアントリル)である単環式環(例えば、フェニル)または多縮合環(縮合環)を有することができる。典型的なアリール基は、限定するものではないが、ベンゼン、ナフタレン、アントラセン、ビフェニル等に由来するラジカルを含む。アリールは、置換されていなくてもよく、置換されていてもよい。例えば、アリール基は、1以上の置換基(前述のように)で置換されて、種々の置換アリール、例えば、ペンタフルオロフェニルまたはp-トリフルオロメチルフェニル等を生じることができる。 The term "aryl" refers to an aromatic hydrocarbon group derived by removing one hydrogen atom from one carbon atom of the parent aromatic ring. Aryl groups can have 6 to 18 carbon atoms, 6 to 14 carbon atoms, or 6 to 10 carbon atoms. Aryl groups can have a monocyclic ring (eg, phenyl) or multiple condensed rings (fused rings) in which at least one ring is aromatic (eg, naphthyl, dihydrophenanthrenyl, fluorenyl or anthryl). . Typical aryl groups include, but are not limited to, radicals derived from benzene, naphthalene, anthracene, biphenyl, and the like. An aryl can be unsubstituted or substituted. For example, aryl groups can be substituted with one or more substituents (as described above) to give various substituted aryls, such as pentafluorophenyl or p-trifluoromethylphenyl.
 用語「アミノ」は、-NH2のことを言う。アミノ基は、用語「置換される」について定義されたように、任意に置換され得る。例えば、アミノ基は、-NR2(Rは「置換される」の定義において列挙された基である)であることができる。例えば、基-NR2は、"アルキルアミノ"(少なくとも1つのRはアルキルであり、もう1つのRはアルキルまたは水素である)および/または"アシルアミノ"(-N(R)C(=O)R)(各Rは独立して水素、アルキル、アルカリールまたはアリールである)を含むことができる。アミノ基は1級アミン(NH2)、2級アミン(NHR)、又は3級アミンのいずれでもよい。 The term "amino" refers to -NH2 . Amino groups can be optionally substituted as defined for the term "substituted." For example, an amino group can be -NR2 , where R is a group enumerated in the definition of "substituted". For example, the group -NR2 can be defined as "alkylamino" (at least one R is alkyl and the other R is alkyl or hydrogen) and/or "acylamino" (-N(R)C(=O) R) (each R is independently hydrogen, alkyl, alkaryl or aryl). The amino group can be either a primary amine ( NH2 ), a secondary amine (NHR), or a tertiary amine.
 まず、図1(A)-(C)を参照しながら、本発明のRNAが脂質膜に内包された製剤の品質を検査する方法の原理について説明する。図1(A)(a)に示すように、RNAが脂質膜に内包された製剤(以下、単に「製剤」と称する場合がある)としてのRNAワクチン(1)(以下、単に、「RNAワクチン」と称する場合がある)は、ウイルスのRNA配列の一部に対応するmRNA(2)の部分と、mRNA(2)を内包する脂質膜(3)の部分とを備えている。mRNA(2)は任意のウイルスのRNAの配列の一部であってよい。 First, with reference to FIGS. 1(A) to 1(C), the principle of the method for inspecting the quality of the formulation in which the RNA of the present invention is encapsulated in a lipid membrane will be described. As shown in FIG. 1(A)(a), an RNA vaccine (1) (hereinafter simply referred to as "RNA vaccine ) comprises an mRNA (2) portion corresponding to a portion of the viral RNA sequence and a lipid membrane (3) portion encapsulating the mRNA (2). mRNA (2) may be part of any viral RNA sequence.
 ウイルスとしては、コロナウイルス(SARS-CoV-2を含む)、ライノウイルス、ノロウイルス、エンテロウイルス、ロタウイルス、インフルエンザウイルス、麻疹ウイルス、風疹ウイルス、A型肝炎ウイルス、C型肝炎ウイルス、HIVウイルス、日本脳炎ウイルス、黄熱ウイルス、デングウイルス、ジカウイルス、ラッサウイルス、エボラウイルス等が挙げられるがこれに限定されない。 Viruses include coronavirus (including SARS-CoV-2), rhinovirus, norovirus, enterovirus, rotavirus, influenza virus, measles virus, rubella virus, hepatitis A virus, hepatitis C virus, HIV virus, and Japanese encephalitis. viruses, yellow fever virus, dengue virus, Zika virus, Lassa virus, Ebola virus, etc., but are not limited thereto.
 RNAワクチン(1)を投与されると、ヒト等の対象の細胞内でmRNAが翻訳されてタンパク質が産生され、産生されたタンパク質は抗原として機能して免疫応答を誘発したり、欠陥タンパク質の代替タンパク質として機能したりし得る。ウイルスのRNA配列の一部に対応するmRNAの部分と、mRNAを包む脂質ナノ粒子(LNP)の部分とを有するmRNA-LNP構造のRNAワクチンは周知である。いくつかの実施形態において、RNAワクチンのmRNA(2)の部分は、5' 末端から3'末端へ順に、5'キャップ構造、非翻訳領域、mRNAのコード配列、非翻訳領域、及び3'ポリAテイルを備えたmRNA構築物からなる。いくつかの実施形態において、脂質膜(3)の部分は、リン脂質、コレステロール、ポリエチレングリコール及びカチオン性脂質を有するLNPからなる。 When an RNA vaccine (1) is administered, mRNA is translated into a protein within the cells of a subject such as a human, and the produced protein functions as an antigen to induce an immune response or replace defective proteins. can function as proteins. RNA vaccines of the mRNA-LNP structure, which have a portion of the mRNA corresponding to a portion of the viral RNA sequence and a portion of the lipid nanoparticles (LNPs) encasing the mRNA, are well known. In some embodiments, the mRNA (2) portion of the RNA vaccine comprises, in order from the 5' end to the 3' end, the 5' cap structure, the untranslated region, the coding sequence of the mRNA, the untranslated region, and the 3' poly It consists of an mRNA construct with an A tail. In some embodiments, part of the lipid membrane (3) consists of LNP with phospholipids, cholesterol, polyethylene glycol and cationic lipids.
 図1(A)(b)は図1(A)(a)のRNAワクチン(1)を略図にしたものである。製造直後のRNAワクチン(1)では、mRNA(2)が脂質膜(3)の内部に内包されている。以下、本明細書において、「製造直後」とは、製造から1日以内を指す。「製造直後のRNAが脂質膜に内包された製剤」とは、製造から1日以内であって、凍結処理が施されていない製剤を指す。 Figures 1 (A) and (b) are schematic diagrams of the RNA vaccine (1) in Figure 1 (A) (a). In RNA vaccine (1) immediately after production, mRNA (2) is encapsulated inside lipid membrane (3). Hereinafter, in this specification, "immediately after production" refers to within one day after production. “Preparation in which RNA is encapsulated in a lipid membrane immediately after production” refers to a preparation that has not been frozen within one day of production.
 本発明のRNAワクチンの品質を検査する方法では、2種類のプローブを使用する。一つは、脂質膜(3)に結合する脂質膜結合性プローブ(4)であり(図1(B))、もう一つは、mRNA(2)に結合するRNA結合性プローブ(5)である(図1(C))。 The method for inspecting the quality of the RNA vaccine of the present invention uses two types of probes. One is a lipid membrane-binding probe (4) that binds to the lipid membrane (3) (Fig. 1 (B)), and the other is an RNA-binding probe (5) that binds to mRNA (2). (Fig. 1(C)).
 RNAワクチンの品質低下について、発明者らは、以下の図1(B)、図1(C)に示す様態があると考え、それぞれの検出を検討した。 Regarding the quality deterioration of RNA vaccines, the inventors considered that there are aspects shown in Figure 1 (B) and Figure 1 (C) below, and investigated detection of each.
 図1(B)の例において、脂質膜結合性プローブ(4)は、製造間もない小さいサイズの、つまり高い曲率の脂質膜(3)であるリポソームに結合することができるが(図1(B)(a))、RNAワクチン(1)の保存期間が長期化したり、解凍及び凍結を繰り返したりして、脂質膜(3)のサイズが大きくなる、すなわち、より低い曲率になると、脂質膜(3)に結合できる脂質膜結合性プローブ(4)の数が減少する(図1(B)(b))。つまり、脂質膜(3)への脂質膜結合性プローブ(4)の結合に伴うシグナル強度を調べることにより、脂質膜(3)の構造の変化を検出することができる。 In the example of FIG. 1(B), the lipid membrane-binding probe (4) can bind to liposomes, which are freshly prepared lipid membranes (3) of small size, ie, high curvature (FIG. 1(B)). B) (a)), the longer the storage period of the RNA vaccine (1) or the repeated thawing and freezing, the larger the size of the lipid membrane (3), that is, the lower the curvature. The number of lipid membrane-binding probes (4) that can bind to (3) decreases (Fig. 1 (B) (b)). That is, by examining the signal intensity associated with the binding of the lipid membrane-binding probe (4) to the lipid membrane (3), changes in the structure of the lipid membrane (3) can be detected.
 なお、場合によっては、脂質膜(3)のサイズが小さくなる場合も考えられるが、その場合、脂質膜(3)に結合できる脂質膜結合性プローブの数が多くなり、シグナル強度が大きく現れると考えられ、その場合であっても、脂質膜(3)に結合する脂質膜結合性プローブ(4)のシグナル強度を調べることにより、脂質膜(3)の構造の変化を検出することができる。 In some cases, it is conceivable that the size of the lipid membrane (3) may become smaller. Even in such a case, structural changes in the lipid membrane (3) can be detected by examining the signal intensity of the lipid membrane-binding probe (4) that binds to the lipid membrane (3).
 図1(C)の例において、RNAワクチン(1)が製造間もないときはmRNA(2)が脂質膜(3)の内部に包まれているため、RNAワクチン(1)の外の溶液中にはmRNA(2)が存在せず、RNA結合性プローブ(5)によりmRNAを検出することができないが(図1(C)(a)、RNAワクチン(1)の保存期間が長期化したり、解凍及び凍結を繰り返したりして、脂質膜(3)の一部が破損し、mRNA(2)が漏出してくるにつれて、RNAワクチン(1)の外部でRNA結合性プローブ(5)と結合するmRNA(2)の数が増大する(図1(C)(b))。つまり、mRNA(2)へのRNA結合性プローブ(5)の結合に伴うシグナル強度を調べることにより、漏出するmRNA(2)を検出することができる。このように、脂質膜結合性プローブ(4)とRNA結合性プローブ(5)を用いて、RNAワクチン(1)の品質を検査することができる。 In the example of FIG. 1(C), when the RNA vaccine (1) is just manufactured, the mRNA (2) is wrapped inside the lipid membrane (3), so in the solution outside the RNA vaccine (1) There is no mRNA (2) in , and the RNA-binding probe (5) cannot detect mRNA (Fig. 1 (C) (a), but the storage period of the RNA vaccine (1) is prolonged, As part of the lipid membrane (3) is damaged by repeated thawing and freezing, and mRNA (2) leaks out, it binds to the RNA-binding probe (5) outside the RNA vaccine (1). The number of mRNA (2) increases (Fig. 1 (C) (b)).In other words, by examining the signal intensity associated with the binding of RNA-binding probe (5) to mRNA (2), leaked mRNA ( 2) can be detected Thus, the quality of the RNA vaccine (1) can be tested using the lipid membrane-binding probe (4) and the RNA-binding probe (5).
 次に、品質が低下したRNAワクチンのいくつかのパターンの例とその検出方法について説明する。図2(a)に示すように、製造直後のRNAワクチン(1)は、脂質膜(3)のサイズが小さく(曲率が大きく)、mRNA(2)が脂質膜(3)に完全に内包されている。このとき、脂質膜結合性プローブ(4)の結合に伴うシグナル強度は大きく、RNAワクチン(1)の外部においてRNA結合性プローブ(5)の結合に伴うシグナル強度は観察されない。 Next, we will explain some examples of patterns of degraded RNA vaccines and their detection methods. As shown in FIG. 2(a), the RNA vaccine (1) immediately after production has a small lipid membrane (3) in size (large curvature), and the mRNA (2) is completely encapsulated in the lipid membrane (3). ing. At this time, the signal intensity associated with the binding of the lipid membrane-binding probe (4) is large, and no signal intensity associated with the binding of the RNA-binding probe (5) is observed outside the RNA vaccine (1).
 図2(b)に示すように、mRNA(2)が脂質膜(3)から漏出するには至っていないが、品質劣化により脂質膜(3)のサイズが増加した場合、脂質膜(3)の曲率は図2(a)の脂質膜(3)の曲率から変化している(パターン(A))。このため、脂質膜(3)に結合できる脂質膜結合性プローブ(4)の数は減少し、脂質膜結合性プローブ(4)の結合に伴うシグナル強度が図2(b)の場合と比較して低下する。他方、RNA結合性プローブ(5)の結合に伴うシグナル強度はmRNA(2)が脂質膜(3)から漏出するには至っていないので観察されない。 As shown in Fig. 2(b), mRNA (2) has not yet leaked out of the lipid membrane (3), but when the size of the lipid membrane (3) increases due to quality deterioration, the lipid membrane (3) The curvature changes from the curvature of the lipid membrane (3) in Fig. 2(a) (pattern (A)). Therefore, the number of lipid membrane-binding probes (4) that can bind to the lipid membrane (3) is reduced, and the signal intensity associated with the binding of the lipid membrane-binding probes (4) is lower than in the case of FIG. 2(b). decrease with time. On the other hand, the signal intensity accompanying the binding of the RNA-binding probe (5) is not observed because the mRNA (2) has not yet leaked out from the lipid membrane (3).
 なお、脂質膜(3)のサイズが小さくなる場合は、脂質膜(3)に結合できる脂質膜結合性プローブ(4)の数が増加し、脂質膜結合性プローブ(4)のシグナル強度が図2(b)の場合と比較して増大すると考えられる。 When the size of the lipid membrane (3) is reduced, the number of lipid membrane-binding probes (4) that can bind to the lipid membrane (3) increases, and the signal intensity of the lipid membrane-binding probes (4) increases. 2(b).
 図2(c)に示すように、脂質膜(3)のサイズは維持されているが、脂質膜(3)に孔や切れ目が生じ、mRNA(2)が脂質膜(3)から漏出している場合(パターン(B))、脂質膜(3)の曲率はほとんど変化しない場合もあり得るが、通常、孔や切れ目の出現により脂質膜(3)に結合できる脂質膜結合性プローブ(4)の数は減少し、脂質膜結合性プローブ(4)の結合に伴うシグナル強度が図2(b)の場合と比較して低下する。mRNA(2)はRNAワクチン(1)の外に漏出するため、RNA結合性プローブ(5)の結合に伴うシグナル強度が観察される。RNAワクチン(1)の外に漏出したRNAの検出には、脂質膜に非透過性の、RNAに結合できる化合物が好ましく使用される。 As shown in Fig. 2(c), the size of the lipid membrane (3) is maintained, but holes and breaks occur in the lipid membrane (3), and mRNA (2) leaks out of the lipid membrane (3). When there is (pattern (B)), the curvature of the lipid membrane (3) may be almost unchanged, but usually the lipid membrane-binding probe (4) can bind to the lipid membrane (3) due to the appearance of holes or breaks decreases, and the signal intensity associated with the binding of the lipid membrane-binding probe (4) decreases compared to the case of FIG. 2(b). Since the mRNA (2) leaks out of the RNA vaccine (1), signal intensity associated with the binding of the RNA-binding probe (5) is observed. A compound that is impermeable to lipid membranes and capable of binding to RNA is preferably used for detecting RNA that has leaked out of RNA vaccine (1).
 本明細書において、「透過性」とは、脂質膜内に、RNA結合性プローブが透過又は浸透するものを指す。透過する脂質膜は、生きた細胞の脂質膜、死んだ細胞の脂質膜どちらも指す。また、透過する脂質膜は、RNAワクチン等に用いられる脂質ナノ粒子や、リポソームの脂質二重層からなる膜等を含む。 As used herein, the term "permeability" refers to permeation or permeation of RNA-binding probes into lipid membranes. Permeable lipid membranes refer to both live and dead cell lipid membranes. Permeable lipid membranes include lipid nanoparticles used in RNA vaccines and the like, membranes composed of lipid bilayers of liposomes, and the like.
 図2(d)に示すように、脂質膜(3)のサイズが増加し、かつmRNA(2)が脂質膜(3)から漏出している場合(パターン(C))、脂質膜(3)の曲率は図2(a)の脂質膜(3)の曲率から変化している。このため、脂質膜(3)に結合できる脂質膜結合性プローブ(4)の数は減少し、脂質膜結合性プローブ(4)の結合に伴うシグナル強度が図2(b)の場合と比較して低下する。また、mRNA(2)はRNAワクチン(1)の外に漏出するため、RNA結合性プローブ(5)の結合に伴うシグナル強度が観察される。 As shown in FIG. 2(d), when the size of lipid membrane (3) increases and mRNA (2) leaks from lipid membrane (3) (pattern (C)), lipid membrane (3) The curvature of is changed from the curvature of the lipid membrane (3) in Fig. 2(a). Therefore, the number of lipid membrane-binding probes (4) that can bind to the lipid membrane (3) is reduced, and the signal intensity associated with the binding of the lipid membrane-binding probes (4) is lower than in the case of FIG. 2(b). decrease with time. In addition, since mRNA (2) leaks out of RNA vaccine (1), signal intensity associated with binding of RNA-binding probe (5) is observed.
 図2(b)-(d)をまとめると、脂質膜結合性プローブ(4)の結合に伴うシグナル強度とRNA結合性プローブ(5)の結合に伴うシグナル強度の少なくとも一方の変化を検出することにより、RNAワクチン(1)の品質をどのような構造変化が起きているかも含め、迅速かつ高感度に検査することができる。 2(b)-(d) are summarized, detecting changes in at least one of the signal intensity associated with the binding of the lipid membrane-binding probe (4) and the signal intensity associated with the binding of the RNA-binding probe (5). This makes it possible to rapidly and highly sensitively inspect the quality of RNA vaccine (1), including what kind of structural changes have occurred.
 発明の理解を容易にするために、図1及び2を参照しながらRNAワクチンの品質の検査方法を以上説明したが、siRNAがリポソーム脂質膜に内包されたRNAi医薬の品質も、同じ原理を用いて検査することができる。 In order to facilitate understanding of the invention, the method for inspecting the quality of RNA vaccines has been described above with reference to FIGS. can be inspected.
 本発明の第1態様によれば、RNAが脂質膜に内包された製剤の品質を検査する方法であって、RNAと該RNAを包む脂質膜とを備えた製剤のRNAに結合する化合物を、前記製剤と接触させる工程、前記製剤の脂質膜に結合する蛍光色素を、前記製剤と接触させる工程、及びRNAと結合した化合物及び脂質膜に結合した蛍光色素のうちの少なくとも一方を検出する工程を含む方法が提供される。 According to the first aspect of the present invention, there is provided a method for inspecting the quality of a formulation in which RNA is encapsulated in a lipid membrane, wherein a compound that binds to RNA in a formulation comprising RNA and a lipid membrane enclosing the RNA is Contacting with the formulation, contacting a fluorescent dye that binds to the lipid membrane of the formulation with the formulation, and detecting at least one of a compound bound to RNA and a fluorescent dye bound to the lipid membrane A method of comprising is provided.
 RNAは、mRNA、siRNA、tRNA、 rRNA、dsRNA(二本鎖RNA)、miRNA(19-23塩基のヌクレオチドからなる一本鎖RNA)等が挙げられる。dsRNAはsiRNA(21~23塩基対からなる低分子二本鎖RNA)を含む。 RNA includes mRNA, siRNA, tRNA, rRNA, dsRNA (double-stranded RNA), miRNA (single-stranded RNA consisting of 19-23 nucleotides), and the like. dsRNAs include siRNAs (small double-stranded RNAs consisting of 21-23 base pairs).
 好ましい実施形態において、RNAが脂質膜に内包された製剤は、mRNAが脂質膜に内包されたRNAワクチンである。別の好ましい実施形態において、脂質膜に内包された製剤は、siRNAがリポソームに内包されたRNAi医薬である。 In a preferred embodiment, the formulation in which RNA is encapsulated in a lipid membrane is an RNA vaccine in which mRNA is encapsulated in a lipid membrane. In another preferred embodiment, the lipid membrane-encapsulated formulation is an RNAi drug in which siRNA is encapsulated in liposomes.
 いくつかの実施形態において、RNAに結合する化合物は、脂質膜に非透過性の化合物であれば、溶液中に漏出したRNAを正確に検出できる点で好ましい。 In some embodiments, it is preferable that the compound that binds to RNA is a compound that is impermeable to lipid membranes, in that RNA leaked into the solution can be detected accurately.
 脂質膜に非透過性の、RNAに結合する化合物の具体例としては膜非透過性蛍光プローブとして市販されている、TO-PRO-1(商標)(3-METHYL-2-([1-[3-(TRIMETHYLAMMONIO)PROPYL]-4(1H)-QUINOLINYLIDENE]METHYL)-1,3-BENZOTHIAZOL-3-IUM DIIODIDE、ThermoFisher)等が挙げられる。 A specific example of a lipid membrane-impermeable, RNA-binding compound is TO-PRO-1 (trademark) (3-METHYL-2-([1-[ 3-(TRIMETHYLAMMONIO)PROPYL]-4(1H)-QUINOLINYLIDENE]METHYL)-1,3-BENZOTHIAZOL-3-IUM DIODIDE, ThermoFisher) and the like.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 別のいくつかの実施形態において、RNAに結合する化合物は、製剤の品質が保たれている、つまりRNAが脂質膜に内包されていることを確認する目的で、脂質膜に透過性の化合物である。 In some other embodiments, the compound that binds RNA is a compound that is permeable to lipid membranes in order to ensure that the quality of the formulation is preserved, i.e. that the RNA is encapsulated in the lipid membrane. be.
 脂質膜に非透過性のRNA結合性プローブ(5)による漏出mRNAの検出については図1(C)の例を参照して説明したが、脂質膜に透過性のRNA結合性プローブ(5)による内包mRNAの検出を図3に示す。 The detection of leaked mRNA by the lipid membrane-impermeable RNA-binding probe (5) was described with reference to the example of FIG. Fig. 3 shows the detection of the encapsulated mRNA.
 図3の例によれば、RNAワクチン(1)が製造間もないときはmRNA(2)が脂質膜(3)の内部に包まれている。RNA結合性プローブ(5)の一定量は脂質膜(3)を内部へ透過するため、RNA結合性プローブ(5)により内在mRNAを所定の蛍光強度で検出することができる(図3(a))。RNAワクチン(1)の品質低下により脂質膜(3)の一部が破損し、mRNA(2)が漏出してくるにつれて、脂質膜外に存在するRNA結合性プローブ(5)と結合するmRNA(2)の数が増大し、非常に高い蛍光強度として観察できる(図3(b))。このように、脂質膜に透過性のRNA結合性プローブ(5)を用いても、RNAワクチン(1)の品質を検査することができる。 According to the example in Figure 3, when the RNA vaccine (1) has just been produced, the mRNA (2) is wrapped inside the lipid membrane (3). Since a certain amount of the RNA-binding probe (5) permeates the lipid membrane (3) into the interior, the endogenous mRNA can be detected with a predetermined fluorescence intensity by the RNA-binding probe (5) (Fig. 3(a)). ). Part of the lipid membrane (3) is damaged due to deterioration in the quality of the RNA vaccine (1), and as the mRNA (2) leaks out, the mRNA that binds to the RNA-binding probe (5) existing outside the lipid membrane 2) increases in number and can be observed as a very high fluorescence intensity (Fig. 3(b)). Thus, RNA vaccines (1) can be tested for quality even with RNA-binding probes (5) that are permeable to lipid membranes.
 別のいくつかの実施形態において、脂質膜に透過性のRNA結合性プローブ(5)の別の使用方法として、製造されたRNAワクチン(1)がmRNA(2)を脂質膜(3)内部に内包しているかを調べることもできる。RNAワクチン(1)製造時、脂質膜(3)内部にmRNA(2)を内包できていないものは、ワクチンとしての品質に当然問題がでてくるが、透過性のRNA結合性プローブ(5)を用いることで品質の判定を行うことができる。具体的には、品質に問題のないRNAワクチンに、透過性のRNA結合性プローブ(5)を接触させたときの、蛍光強度を予め取得しておき、検査対象のRNAワクチン(1)にRNA結合性プローブ(5)を接触させる。脂質膜(3)内部にmRNA(2)を内包できておらず、mRNA(2)が漏出しているものは、透過性のRNA結合性プローブ(5)と結合するmRNA(2)の数が増加し、予め取得した蛍光強度よりも高い値になる。また、ワクチンの製造過程で、なんらかの原因により、脂質膜(3)内部にmRNA(2)が全く内包されておらず、脂質膜(3)の外にも存在していない場合も想定される。その場合、前述の脂質膜に非透過性のRNA結合性プローブ(5)では、品質の判定はできないが、脂質膜に透過性のRNA結合性プローブ(5)を用いることで、正常の場合、予め取得した蛍光強度よりも低い値になり、それにより、脂質膜(3)内部にmRNA(2)が内包されていない判定を行うことができる。 In some other embodiments, as another method of using the lipid membrane-permeable RNA-binding probe (5), the manufactured RNA vaccine (1) transfers the mRNA (2) inside the lipid membrane (3). You can also check if it is included. When the RNA vaccine (1) is produced, if the mRNA (2) cannot be encapsulated inside the lipid membrane (3), the quality of the vaccine will naturally be questioned, but the permeable RNA-binding probe (5) can be used to judge the quality. Specifically, the fluorescence intensity is obtained in advance when the permeable RNA-binding probe (5) is brought into contact with an RNA vaccine that does not have quality problems, and the RNA vaccine (1) to be tested is subjected to RNA detection. A binding probe (5) is brought into contact. If the mRNA (2) is not encapsulated inside the lipid membrane (3) and the mRNA (2) is leaked, the number of mRNA (2) that binds to the permeable RNA-binding probe (5) is It increases and becomes a value higher than the previously acquired fluorescence intensity. In addition, it is also assumed that the mRNA (2) is not encapsulated inside the lipid membrane (3) and is not present outside the lipid membrane (3) for some reason during the manufacturing process of the vaccine. In that case, the quality cannot be determined with the above-mentioned lipid membrane-impermeable RNA-binding probe (5), but by using the lipid membrane-permeable RNA-binding probe (5), in the normal case, It becomes a value lower than the fluorescence intensity acquired in advance, and thereby it can be determined that the mRNA (2) is not included inside the lipid membrane (3).
 以上、説明したように、透過性のRNA結合性プローブ(5)を用いることで、ワクチンの継時的な品質の判定だけでなく、ワクチン製造時のワクチンの品質を簡単に判定できる。 As described above, by using the permeable RNA-binding probe (5), it is possible not only to determine the quality of the vaccine over time, but also to easily determine the quality of the vaccine at the time of vaccine production.
 透過性のRNA結合性プローブ(5)と非透過性のRNA結合性プローブ(5)とは、別々に用いるのが好ましいが、使用形態においては、一緒に用いてもよい。 The permeable RNA-binding probe (5) and the non-permeable RNA-binding probe (5) are preferably used separately, but may be used together in the mode of use.
 脂質膜に透過性の、RNAに結合できる化合物の具体例としては、式(1)の化合物が挙げられる。式(1)の化合物は、それ自体はほとんど蛍光を示さないが、核酸との結合に伴い特定波長付近の蛍光強度が著しく増加する点、このため蛍光強度が強く、ワクチンのような空間的に限られた系では強い強度を有する輝点として観察される点で好ましい。 A specific example of a compound that is permeable to lipid membranes and capable of binding to RNA is the compound of formula (1). The compound of formula (1) itself shows almost no fluorescence, but upon binding to a nucleic acid, the fluorescence intensity in the vicinity of a specific wavelength increases remarkably. It is preferable in that it can be observed as a bright spot with high intensity in a limited system.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
式(1)中、環Aは、 In formula (1), ring A is
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
であり、
R1、R2、R3、R4、R5、R6、R7、R8、R9、R10及びR11は独立に、水素、ヒドロキシ基、チオール基、ハロ、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリール基、アミノ基である。
and
R1 , R2 , R3 , R4 , R5 , R6 , R7 , R8 , R9 , R10 and R11 are independently hydrogen, hydroxy, thiol, halo, alkyl, alkenyl group, alkynyl group, alkoxy group, aryl group and amino group.
 式(1)中、R1、R2、R3、R4、R5、R6、R7、R8、R9、R10及びR11は独立に、水素、ヒドロキシ基、チオール基、ハロ、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリール基、アミノ基である。 In formula (1), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 and R 11 are independently hydrogen, hydroxy group, thiol group, halo, alkyl group, alkenyl group, alkynyl group, alkoxy group, aryl group and amino group.
 本明細書において、式(1)のR1、R2、R3、R4、R5、R6、R7、R8、R9、R10及びR11の基の部分が置換されることができる場合、用語「置換される」とは、「置換される」を用いる表現で示される基の1以上の(例えば、1、2、3、4、5または6の;いくつかの実施形態において1、2または3つの;他の実施形態において1または2の)水素が、その置換が安定な化合物をもたらすという条件で、列挙された表示基から選択された基または当業者に公知の適切な基で置換できることを示す。置換される基の適切な置換基としては、アルキル、アルケニル、アルキニル、アルコキシ、ハロ、ハロアルキル、ヒドロキシ、ヒドロキシアルキル、アリール、ヘテロアリール、複素環、シクロアルキル、アルカノイル、アルコキシカルボニル、アミノ、アルキルアミノ、ジアルキルアミノ、トリフルオロメチルチオ、ジフルオロメチル、アセチルアミノ、ニトロ、トリフルオロメチル、トリフルオロメトキシ、カルボキシ、カルボキシアルキル、ケト、チオキソ、アルキルチオ、アルキルスルフィニル、アルキルスルホニル、アリールスルフィニル、アリールスルホニル、ヘテロアリールスルフィニル、ヘテロアリールスルホニル、複素環スルフィニル、ヘテロサイクルスルホニル、ホスファート、スルファート、ヒドロキシルアミン、ヒドロキシル(アルキル)アミンおよびシアノを挙げることができる。 Herein, moieties of the groups R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 and R 11 of formula (1) are substituted Where possible, the term “substituted” refers to one or more (e.g., 1, 2, 3, 4, 5 or 6) of the groups indicated in the expression using “substituted”; 1, 2 or 3 in the form of 1, 2 or 3; It indicates that it can be substituted with a suitable group. Suitable substituents for substituted groups include alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, hydroxy, hydroxyalkyl, aryl, heteroaryl, heterocycle, cycloalkyl, alkanoyl, alkoxycarbonyl, amino, alkylamino, dialkylamino, trifluoromethylthio, difluoromethyl, acetylamino, nitro, trifluoromethyl, trifluoromethoxy, carboxy, carboxyalkyl, keto, thioxo, alkylthio, alkylsulfinyl, alkylsulfonyl, arylsulfinyl, arylsulfonyl, heteroarylsulfinyl, Mention may be made of heteroarylsulfonyl, heterocyclesulfinyl, heterocyclesulfonyl, phosphate, sulfate, hydroxylamine, hydroxyl(alkyl)amine and cyano.
  いくつかの実施形態において、R1、R2、R3、R4、R6、R7、R8、R9、R10及びR11は独立に、水素、ヒドロキシ基、チオール基、ハロ、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリール基、アミノ基であり、R5はアルキル基である。 In some embodiments, R1 , R2 , R3 , R4 , R6 , R7 , R8 , R9 , R10 and R11 are independently hydrogen, hydroxy, thiol, halo, Alkyl groups, alkenyl groups, alkynyl groups, alkoxy groups, aryl groups, amino groups, and R5 is an alkyl group.
 いくつかの実施形態において、R1、R2、R3、R4、R5、R6、R7、R8、R9、R10及びR11は独立に、水素、ヒドロキシ基、ハロ、アルキル基、アリール基、又はアミノ基である。 In some embodiments, R1 , R2 , R3 , R4 , R5 , R6 , R7 , R8 , R9 , R10 and R11 are independently hydrogen, hydroxy, halo, It is an alkyl group, an aryl group, or an amino group.
 いくつかの実施形態において、R1、R2、R3、R4、R6、R7、R8、R9、R10及びR11は独立に、水素、ヒドロキシ基、チオール基、ハロ、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリール基、アミノ基であって、いずれも非置換であり、R5も非置換のアルキル基である。 In some embodiments, R1 , R2 , R3 , R4 , R6 , R7 , R8 , R9 , R10 and R11 are independently hydrogen, hydroxy, thiol, halo, Alkyl groups, alkenyl groups, alkynyl groups, alkoxy groups, aryl groups, and amino groups, all of which are unsubstituted, and R5 is also an unsubstituted alkyl group.
 いくつかの好ましい実施形態において、R1、R2、R3、R6、R7、R8、R9、R10及びR11は水素であり、R4は炭素数1~6個のアルキルであり、R5はメチルである。 In some preferred embodiments, R 1 , R 2 , R 3 , R 6 , R 7 , R 8 , R 9 , R 10 and R 11 are hydrogen and R 4 is C 1-6 alkyl. and R 5 is methyl.
 いくつかの好ましい実施形態において、上記式(1)の化合物は、式(1-I)の化合物である。式(1-I)の化合物は、Benzo[c,d]IndoleとOxazoloPyridineを組み合わせたものであることから以下では、BIOPと呼ぶこともある。 In some preferred embodiments, the compound of formula (1) above is a compound of formula (1-I). Since the compound of formula (1-I) is a combination of Benzo[c,d]Indole and OxazoloPyridine, it may be referred to as BIOP hereinafter.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(1-I)の化合物(BIOP)は、Benzo[c,d]indole-2(1H)-one (1)(ベンゾ[c,d]インドール-2(1H)-オン(1))を出発物質として用いた場合を例にとると、下記スキームにより製造することができる。 The compound (BIOP) of formula (1-I) is Benzo[c,d]indole-2(1H)-one(1) Taking as an example the case where it is used as a starting material, it can be produced by the following scheme.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 まず、Benzo[c,d]indole-2(1H)-one (化合物1)を用いて、J. Med. Chem., 2016, 59, 1565-1579.に従い、1-methylbenzo[c,d]indol-2(1H)-one (化合物2)が得られる。得られた化合物2の (0.55 g, 3.0 mmol)とLawesson試薬(2.43 g, 6.0 mmol)を含む1,4-dioxane溶液を100℃で一晩攪拌する。この溶液を室温で濾過し、得られた固体を1,4-dioxaneで洗浄し、1-methylbenzo[c,d]indol-2(1H)-thione粗生成物3 が得られる。次に、粗生成物3 (1.71 g)にヨードメタンを加えて、一晩加熱還流する。この溶液を減圧濃縮した後に、ジエチルエーテルを加えて、30分間超音波処理した。得られた固体を濾取し、1-methyl-2(methylthio)benzo[c,d]indole-1-ium (化合物4)が得られる。次に、2-methyl-oxazolo[4,5-b]pyridineとヨードメタンとの反応により得られる4-methyl-2-methyl-oxazolo[4,5]pyridinium iodide (化合物5, 193 mg, 0.70 mmol)及び化合物4 (162 mg, 0.47 mmol)を含むアセトニトリル溶液にテトラエチルアミン0.5mLを添加する。この溶液を攪拌しながら加熱還流(60℃)で1時間反応させた後、室温まで冷却する。その後、ジエチルエーテルを添加させると得られた沈殿物を濾取する。その後、水を加えて再度濾取し、乾燥させることで化合物6 (BIOP)が得られる。 First, using Benzo[c,d]indole-2(1H)-one (compound 1), 1-methylbenzo[c,d]indol was synthesized according to J. Med. Chem., 2016, 59, 1565-1579. -2(1H)-one (compound 2) is obtained. A 1,4-dioxane solution containing the obtained compound 2 (0.55 g, 3.0 mmol) and Lawesson's reagent (2.43 g, 6.0 mmol) is stirred at 100°C overnight. The solution is filtered at room temperature and the solid obtained is washed with 1,4-dioxane to give 1-methylbenzo[c,d]indol-2(1H)-thione crude product 3. Crude 3 (1.71 g) is then added with iodomethane and heated to reflux overnight. After concentrating the solution under reduced pressure, diethyl ether was added and sonicated for 30 minutes. The resulting solid is collected by filtration to give 1-methyl-2(methylthio)benzo[c,d]indole-1-ium (compound 4). Next, 4-methyl-2-methyl-oxazolo[4,5]pyridinium iodide (compound 5, 193 mg, 0.70 mmol) obtained by reacting 2-methyl-oxazolo[4,5-b]pyridine with iodomethane and 0.5 mL of tetraethylamine is added to an acetonitrile solution containing compound 4 (162 mg, 0.47 mmol). The solution is stirred and heated to reflux (60° C.) for 1 hour, and then cooled to room temperature. Then diethyl ether is added and the precipitate obtained is filtered off. After that, water is added, filtered again, and dried to obtain compound 6 (BIOP).
 上記式(1)の化合物は、抗体、タンパク、ペプチド、ポリペプチド、アミノ酸、酵素、核酸、脂質、多糖類、薬物、ビーズ、固体支持体( 例えばガラス又はプラスチック) 等の他分子に共有結合させてもよい。 The compounds of formula (1) above are covalently attached to other molecules such as antibodies, proteins, peptides, polypeptides, amino acids, enzymes, nucleic acids, lipids, polysaccharides, drugs, beads, solid supports (e.g. glass or plastic), etc. may
 上記式(1)の化合物は、好適には、核酸が存在しない場合は蛍光をほとんど発しないか全く発しない。蛍光は、前記化合物を適切な波長により照射し、放射される蛍光をモニターすることで計測できる。前記化合物は、好適には、DNAの存在下よりもRNAの存在下においてより強い蛍光を発する。DNA存在下での蛍光に対するRNA存在下での蛍光は、化合物濃度を一定とし、RNA及びDNA濃度を一定として計測する。RNA/DNA蛍光比が高いほど、DNA存在下におけるRNA検出にとり好適である。RNA/DNA蛍光比は、好適には1以上であり、より好適には1よりも大きく、1.2以上、1.5以上、及び2以上である。上記式(1)の化合物は、RNA検出に好適な基準を満たしている。 The compound of formula (1) above preferably emits little or no fluorescence in the absence of a nucleic acid. Fluorescence can be measured by illuminating the compound with the appropriate wavelength and monitoring the emitted fluorescence. The compound preferably fluoresces more strongly in the presence of RNA than in the presence of DNA. Fluorescence in the presence of RNA relative to fluorescence in the presence of DNA is measured with the compound concentration constant and the RNA and DNA concentrations constant. Higher RNA/DNA fluorescence ratios are better for RNA detection in the presence of DNA. The RNA/DNA fluorescence ratio is preferably 1 or greater, more preferably greater than 1, 1.2 or greater, 1.5 or greater, and 2 or greater. Compounds of formula (1) above meet the criteria for being suitable for RNA detection.
 上記式(1)の化合物はまた、最大励起及び発光波長により特徴付けられうる。例えば、最大励起は約450nm~ 約650nmであってもよい。これらの値の間の最大励起は、約450nm、約475nm、約500nm、約525nm、約550nm、約575nm、約600nm、約625nm、約650nm、及びこれらの任意の2値の間であってもよい。例えば、最大放出は約500nm~ 約675nmであってもよい。これらの値の間の最大放出は、約500nm、約525nm、約550nm、約575nm、約600nm、約625nm、約650nm、約675nm、及びこれらの任意の2値の間であってもよい。 The compounds of formula (1) above can also be characterized by their maximum excitation and emission wavelengths. For example, maximum excitation can be from about 450 nm to about 650 nm. Maximum excitation between these values is about 450 nm, about 475 nm, about 500 nm, about 525 nm, about 550 nm, about 575 nm, about 600 nm, about 625 nm, about 650 nm, and even between any two of these values. good. For example, maximum emission may be from about 500 nm to about 675 nm. Maximum emission between these values may be about 500 nm, about 525 nm, about 550 nm, about 575 nm, about 600 nm, about 625 nm, about 650 nm, about 675 nm, and between any two of these values.
 上記式(1)の化合物は、核酸との結合により蛍光を発するため、蛍光色素として使用することができる。また、上記式(1)の化合物は、RNAを高感度に検出することができる。上記式(1)の化合物を含有する蛍光色素又は上記式(1)の化合物からなる蛍光色素は、明確な応答性能を有するため、RNAワクチンのRNA部分の検出に好適に使用することができる。 The compound of formula (1) above can be used as a fluorescent dye because it emits fluorescence upon binding to a nucleic acid. In addition, the compound of formula (1) above can detect RNA with high sensitivity. A fluorescent dye containing the compound of the formula (1) or a fluorescent dye consisting of the compound of the formula (1) has a clear response performance, so it can be suitably used for detecting the RNA portion of an RNA vaccine.
 また、別の、脂質膜に透過性の、RNAに結合できる化合物の具体的な例として、以下に示される式(2)の化合物が挙げられる: Another specific example of a compound that is permeable to lipid membranes and capable of binding to RNA is the compound of formula (2) shown below:
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(2)中、R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、及びR12は独立に、水素、ヒドロキシ基、チオール基、ハロ、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリール基、アミノ基である。 In formula (2), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are independently hydrogen, hydroxy group , thiol, halo, alkyl, alkenyl, alkynyl, alkoxy, aryl and amino groups.
 本明細書において、式(2)のR1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11及びR12の基の部分が置換されることができる場合、用語「置換される」とは、「置換される」を用いる表現で示される基の1以上の(例えば、1、2、3、4、5または6の;いくつかの実施形態において1、2または3つの;他の実施形態において1または2の)水素が、その置換が安定な化合物をもたらすという条件で、列挙された表示基から選択された基または当業者に公知の適切な基で置換できることを示す。置換される基の適切な置換基としては、アルキル、アルケニル、アルキニル、アルコキシ、ハロ、ハロアルキル、ヒドロキシ、ヒドロキシアルキル、アリール、ヘテロアリール、複素環、シクロアルキル、アルカノイル、アルコキシカルボニル、アミノ、アルキルアミノ、ジアルキルアミノ、トリフルオロメチルチオ、ジフルオロメチル、アセチルアミノ、ニトロ、トリフルオロメチル、トリフルオロメトキシ、カルボキシ、カルボキシアルキル、ケト、チオキソ、アルキルチオ、アルキルスルフィニル、アルキルスルホニル、アリールスルフィニル、アリールスルホニル、ヘテロアリールスルフィニル、ヘテロアリールスルホニル、複素環スルフィニル、ヘテロサイクルスルホニル、ホスファート、スルファート、ヒドロキシルアミン、ヒドロキシル(アルキル)アミンおよびシアノを挙げることができる。 As used herein, the radical moieties of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 of formula (2) are When capable of being substituted, the term “substituted” means one or more (e.g., 1, 2, 3, 4, 5 or 6; 1, 2 or 3 in some embodiments; can be substituted with known suitable groups. Suitable substituents for substituted groups include alkyl, alkenyl, alkynyl, alkoxy, halo, haloalkyl, hydroxy, hydroxyalkyl, aryl, heteroaryl, heterocycle, cycloalkyl, alkanoyl, alkoxycarbonyl, amino, alkylamino, dialkylamino, trifluoromethylthio, difluoromethyl, acetylamino, nitro, trifluoromethyl, trifluoromethoxy, carboxy, carboxyalkyl, keto, thioxo, alkylthio, alkylsulfinyl, alkylsulfonyl, arylsulfinyl, arylsulfonyl, heteroarylsulfinyl, Mention may be made of heteroarylsulfonyl, heterocyclesulfinyl, heterocyclesulfonyl, phosphate, sulfate, hydroxylamine, hydroxyl(alkyl)amine and cyano.
  いくつかの実施形態において、R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、及びR12は独立に、水素、ヒドロキシ基、チオール基、ハロ、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリール基、アミノ基であり、R6はアルキル基である。 In some embodiments, R1 , R2 , R3 , R4 , R5 , R6, R7 , R8 , R9 , R10 , R11 , and R12 are independently hydrogen, hydroxy groups, thiol groups, halo, alkyl groups, alkenyl groups, alkynyl groups, alkoxy groups, aryl groups, amino groups, and R6 is an alkyl group.
 いくつかの実施形態において、R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、及びR12は独立に、水素、ヒドロキシ基、ハロ、アルキル基、アリール基、又はアミノ基である。 In some embodiments, R1 , R2 , R3 , R4 , R5 , R6, R7 , R8 , R9 , R10 , R11 , and R12 are independently hydrogen, hydroxy group, halo, alkyl group, aryl group, or amino group.
 いくつかの実施形態において、R1、R2、R3、R4、R5、R7、R8、R9、R10、R11、及びR12は独立に、水素、ヒドロキシ基、チオール基、ハロ、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリール基、アミノ基であって、いずれも非置換であり、R6も非置換である。 In some embodiments, R 1 , R 2 , R 3 , R 4 , R 5 , R 7 , R 8 , R 9 , R 10 , R 11 , and R 12 are independently hydrogen, hydroxy groups, thiol groups, halo, alkyl groups, alkenyl groups, alkynyl groups, alkoxy groups, aryl groups, amino groups, all of which are unsubstituted, and R6 is also unsubstituted.
 いくつかの好ましい実施形態において、上記式(2)の化合物は、式(2-I)の化合物(モノメチンシアニン色素(BIQ))である。 In some preferred embodiments, the compound of formula (2) above is the compound of formula (2-I) (monomethine cyanine dye (BIQ)).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記式(2-I)の化合物は、Anal. Chem. 2019, 91, 14254-14260に開示された方法により製造することができる。 The compound of formula (2-I) above can be produced by the method disclosed in Anal. Chem. 2019, 91, 14254-14260.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
化合物4の粗生成物を得るまでは、式(1)の化合物の製造と同様である。その後、4-methylquinolineとヨードメタンとの反応により得られる1,4-dimethylquinolin-1-ium (化合物7, 258 mg, 0.91 mmol)及び化合物4の粗生成物(194 mg, 0.57 mmol)を含むアセトニトリル溶液にテトラエチルアミン0.5mLを添加する。この溶液を攪拌しながら加熱還流で1時間反応させた後、室温まで冷却させる。その後、溶液に、ジエチルエーテルを添加し、濾取により沈殿物を得ることができる。得られた沈殿物を水で洗浄した後、メタノールに溶かす。その後、ジエチルエーテルを加え、得られた沈殿物を乾燥させることで化合物8(BIQ)が得られる。 The preparation of the compound of formula (1) is analogous until the crude product of compound 4 is obtained. Then, an acetonitrile solution containing 1,4-dimethylquinolin-1-ium (compound 7, 258 mg, 0.91 mmol) obtained by reaction of 4-methylquinoline with iodomethane and the crude product of compound 4 (194 mg, 0.57 mmol) Add 0.5 mL of tetraethylamine to the The solution is heated under reflux with stirring for 1 hour, and then cooled to room temperature. After that, diethyl ether can be added to the solution and a precipitate can be obtained by filtration. The obtained precipitate is washed with water and then dissolved in methanol. Diethyl ether is then added and the resulting precipitate is dried to give compound 8 (BIQ).
 上記式(2)の化合物は、抗体、タンパク、ペプチド、ポリペプチド、アミノ酸、酵素、核酸、脂質、多糖類、薬物、ビーズ、固体支持体( 例えばガラス又はプラスチック) 等の他分子に共有結合させてもよい。 Compounds of formula (2) above are covalently attached to other molecules such as antibodies, proteins, peptides, polypeptides, amino acids, enzymes, nucleic acids, lipids, polysaccharides, drugs, beads, solid supports (e.g. glass or plastic), etc. may
 上記式(2)の化合物は、核酸との結合により蛍光を発するため、蛍光色素として使用することができる。また、上記式(2)の化合物は、RNAを高感度に検出することができる。上記式(2)の化合物を含有する蛍光色素又は上記式(2)の化合物からなる蛍光色素は、明確な応答性能を有するため、RNAワクチンのRNA部分の検出に好適に使用することができる。 The compound of formula (2) above can be used as a fluorescent dye because it emits fluorescence upon binding to a nucleic acid. In addition, the compound of formula (2) above can detect RNA with high sensitivity. Since the fluorescent dye containing the compound of formula (2) or the fluorescent dye consisting of the compound of formula (2) has a clear response performance, it can be suitably used for detecting the RNA portion of an RNA vaccine.
 一方、いくつかの実施形態において、RNAワクチンの脂質膜に結合する蛍光色素としては、脂質二重膜構造に対して選択的に結合しうるペプチド性蛍光色素、細胞膜染色色素等が挙げられる。 On the other hand, in some embodiments, fluorescent dyes that bind to the lipid membrane of RNA vaccines include peptide fluorescent dyes that can selectively bind to lipid bilayer structures, cell membrane staining dyes, and the like.
 脂質膜に対して高選択的に結合しうるペプチド性蛍光色素としては、発明者らが以前に開発したエクソソームを標的とする結合性ペプチド等が挙げられる(日本化学会第98春季年会(2018年(4G3-02)), 日本分析化学会第68年会(2019年(D1101,D1102,L2006)), RSC Advances, 10, 38323-38327 (2020). [DOI:10.1039/d0ra07763a])。これは、エクソソームが直径100 nm程度の高曲率性脂質二重膜を持っており、その脂質二重膜表面には脂質パッキング欠損と呼ばれる疎水性領域が局所的に現れることに着目したものであり、該結合性ペプチドは、脂質パッキング欠損に対する結合モチーフとして両親媒性のα-ヘリックスペプチドを基盤として用い、これに環境応答性蛍光色素を連結したものである。例えばmRNAワクチンはエクソソームと同程度の直径を持つため、このようなα-ヘリックスペプチドをベースとした蛍光色素がワクチンの脂質膜に対して選択的に結合しうると期待できる。リポソーム脂質膜に内包されたRNAi医薬でも、α-ヘリックスペプチドをベースとした蛍光色素がリポソーム脂質膜に対して選択的に結合しうると期待できる。 Peptidic fluorescent dyes that can bind highly selectively to lipid membranes include exosome-targeting binding peptides that the inventors previously developed (98th Annual Meeting of the Chemical Society of Japan (2018 (4G3-02)), The 68th Annual Meeting of the Japan Society for Analytical Chemistry (2019 (D1101, D1102, L2006)), RSC Advances, 10, 38323-38327 (2020). [DOI:10.1039/d0ra07763a]). This is based on the fact that exosomes have a highly curved lipid bilayer membrane with a diameter of about 100 nm, and hydrophobic regions called lipid packing defects appear locally on the surface of the lipid bilayer membrane. , the binding peptide uses an amphipathic α-helical peptide as a base as a binding motif for lipid packing defects, to which an environment-responsive fluorescent dye is linked. For example, since mRNA vaccines have a diameter similar to that of exosomes, it is expected that such α-helical peptide-based fluorescent dyes can selectively bind to vaccine lipid membranes. It is expected that an α-helix peptide-based fluorescent dye can selectively bind to the liposome lipid membrane of an RNAi drug encapsulated in the liposome lipid membrane.
 脂質二重膜構造に対して選択的に結合しうるペプチド性蛍光色素の設計において、ペプチドの部分は、ワクチン等の製剤の脂質膜の脂質パッキング構造を認識するように設計され、環境応答性蛍光色素はペプチドのN末端、C末端等、脂質膜とペプチドの結合に干渉しない位置に取り付けられる。 In the design of peptidic fluorescent dyes that can selectively bind to the lipid bilayer membrane structure, the peptide portion is designed to recognize the lipid packing structure of the lipid membrane of pharmaceuticals such as vaccines, and environment-responsive fluorescence The dye is attached to a position that does not interfere with the binding of the peptide to the lipid membrane, such as the N-terminus or C-terminus of the peptide.
 脂質パッキング欠損に対して結合する両親媒性のα-ヘリックスペプチドの設計はFEBS Lett., 2010, 584, 1840-1847に記載されている。そのようなα-ヘリックスペプチドとしては、ArfGAPl (R. norvegicus)、ヌクレオポリンNupl33 (H. sapiens)、αシヌクレイン(H. sapiens). DivIVA (B. subtillis) 、dAmph (D. melanogaster) 、エンドフィリンAl (R. norvegicus)、Sarlp (S. cervisiae)、抗微生物マゲイニン2 (X. laevis)、GMAP-210 (H. sapiens)のstring様N末端、ステロールトランスポーターKeslp (S. cerevisiae) 、SpoVM (B. subtilis)、Epsin (H. sapiens) 、Binl/amphiphysin II (H. sapiens) 、BRAP/Bin2由来のH0-NBAR、ミリストイル化 Arf 1 (B. taurus)、メリチン(A. mellifera) 等のα-ヘリックスペプチド若しくはこれらのα-ヘリックスペプチドをベースとしたペプチド(例えばα-ヘリックスペプチドの一部や、α-ヘリックスペプチドの1~数個、より具体的には1~5個程度のアミノ酸を変異させたアミノ酸)が挙げられるが、これらに限定されない。RNAワクチンの脂質膜構造に対して選択的に結合しうるペプチド性蛍光色素のペプチドとして、当業者には種々のペプチドの配列を適宜選択することができる。  The design of amphipathic α-helical peptides that bind to lipid packing defects is described in FEBS Lett., 2010, 584, 1840-1847. Such α-helical peptides include ArfGAPl (R. norvegicus), nucleoporin Nupl33 (H. sapiens), α-synuclein (H. sapiens). DivIVA (B. subtillis), dAmph (D. melanogaster), endophilin Al (R. norvegicus), Sarlp (S. cervisiae), antimicrobial magainin 2 (X. laevis), string-like N-terminus of GMAP-210 (H. sapiens), sterol transporter Keslp (S. cerevisiae), SpoVM ( B. subtilis), Epsin (H. sapiens), Binl/amphiphysin II (H. sapiens), BRAP/Bin2-derived H0-NBAR, myristoylated Arf 1 (B. taurus), melittin (A. mellifera), etc. -Helix peptides or peptides based on these α-helix peptides (for example, part of the α-helix peptide, 1 to several, more specifically, about 1 to 5 amino acids of the α-helix peptide are mutated amino acids), but are not limited to these. Various peptide sequences can be appropriately selected by those skilled in the art as the peptide of the peptidic fluorescent dye that can selectively bind to the lipid membrane structure of the RNA vaccine.
 環境応答性蛍光色素としては、親水場環境では蛍光強度が弱いが疎水場環境になると強度が増大する任意の色素を使用することができ、そのような色素は当該技術分野において公知である。環境応答性蛍光色素の例としては、ダンシル色素及びその誘導体、Dapoxyl色素及びその誘導体、ベンゾフェノキサジン色素及びその誘導体等を挙げることができる。環境応答性蛍光色素の具体例としては、1-アニリノナフタレン-8-スルホン酸(ANS)、N-メチル-2-アリニノナフタレン-6-スルホン酸(MANS)、2-p-トルイジニルナフタレン-6-スルホン酸(TNS)等のアリルナフタレンスルホン酸類;ジメチルアミノナフタレンスルホン酸;ニトロベンゾフラザン(NBD)等のベンゾフラザン誘導体;Dapoxyl色素(Benzenesulfonic acid, 4-[5-[4-(dimethylamino)phenyl]-2- oxazolyl);Dapoxyl sulfonyl chloride 、Dapoxyl succinimidyl ester、Dapoxyl 3-sulfonamidopropionic acid、Dapoxyl (2-bromoacetamidoethyl) sulfonamide、Dapoxyl (2-aminoethyl) sulfonamide等のDapoxyl誘導体;ダンシルクロリド、ダンシルスルホンアミド、ダンシルアミノエチル-3-リン酸、1-ダンシルスルホンアミド-3-N,N-ジメチルアミノプロパン、ダンシルコリン、ダンシルガラクトシド、ダンシルリジン、ダンシルホスファチジルエタノールアミン等のダンシル色素;ナイルレッド、ナイルブルー等のベンゾフェノキサジン誘導体等を例示することができる。 Any dye whose fluorescence intensity is weak in a hydrophilic environment but increases in a hydrophobic environment can be used as the environment-responsive fluorescent dye, and such dyes are known in the art. Examples of environment-responsive fluorescent dyes include dansyl dyes and derivatives thereof, dapoxyl dyes and derivatives thereof, benzophenoxazine dyes and derivatives thereof, and the like. Specific examples of environmentally responsive fluorescent dyes include 1-anilinonaphthalene-8-sulfonic acid (ANS), N-methyl-2-alilinonaphthalene-6-sulfonic acid (MANS), 2-p-toluidinyl Allylnaphthalenesulfonic acids such as naphthalene-6-sulfonic acid (TNS); dimethylaminonaphthalenesulfonic acid; benzofurazan derivatives such as nitrobenzofurazan (NBD); )phenyl]-2- oxazolyl); Dapoxyl derivatives such as Dapoxyl sulfonyl chloride, Dapoxyl succinimidyl ester, Dapoxyl 3-sulfonamidopropionic acid, Dapoxyl (2-bromoacetamidoethyl) sulfonamide, Dapoxyl (2-aminoethyl) sulfonamide; dansyl chloride, dansyl sulfonamide, Dansyl pigments such as dansylaminoethyl-3-phosphate, 1-dansylsulfonamide-3-N,N-dimethylaminopropane, dansylcholine, dansylgalactoside, dansyllysine and dansylphosphatidylethanolamine; Benzophenoxazine derivatives and the like can be exemplified.
 この原理に沿って、RNAワクチンの脂質膜に対して高選択的に結合し、蛍光応答を示すペプチド性蛍光色素を作製することができる。 In line with this principle, it is possible to produce a peptidic fluorescent dye that binds highly selectively to the lipid membrane of RNA vaccines and exhibits fluorescence response.
 RNAワクチンの脂質膜構造に対して選択的に結合しうるペプチド性プローブの好ましい実施形態としては、下記の式(9)の化合物等の両親媒性α-ヘリックスペプチドプローブが挙げられる。 Preferred embodiments of peptidic probes that can selectively bind to the lipid membrane structure of RNA vaccines include amphipathic α-helix peptide probes such as the compound of formula (9) below.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記式(9)のペプチド性のプローブは、以下のようにして製造できる。 The peptidic probe of formula (9) above can be produced as follows.
 まず、Fmoc基で保護されたアミノ酸を用いてペプチド鎖を伸長した後に、蛍光色素Nile Red誘導体を連結することで製造する。具体的にはRink-Amide-ChemMatrix resin(Biotage社)にFmoc基保護アミノ酸を[1-(1-cyano-ethoxy-2-oxoethylideneamino-oxy)-dimethylamino-morpholino methylene]methanaminium hexafluorophosphate (COMU)とdiisopropylethylamine(DIEA)とを用いて連結する。続いて、J.Chem.Soc.,Perkin Trans., 1997, 1, 1051-1058. に従い合成したNile Red誘導体(6-((9-(diethylamino)-5-oxo-5H-benzo[a]phenoxazin-2-yl)oxy)hexanoic acid)を連結する。その後、レジンからの切り出しおよび脱保護を処理した後、得られた粗生成物を逆相HPLCで精製することで、ペプチド性の蛍光プローブが得られる。 First, after extending the peptide chain using an amino acid protected with an Fmoc group, it is produced by linking a fluorescent dye Nile Red derivative. Specifically, Fmoc-protected amino acids were added to Rink-Amide-ChemMatrix resin (Biotage) [1-(1-cyano-ethoxy-2-oxoethylideneamino-oxy)-dimethylamino-morpholinomethylene]methanaminiumhexafluorophosphate (COMU) and diisopropylethylamine( DIEA). Subsequently, J. Chem. Soc., Perkin Trans., 1997, 1, 1051-1058. -2-yl)oxy)hexanoic acid). Then, after cleaving from the resin and deprotection, the obtained crude product is purified by reverse-phase HPLC to obtain a peptidic fluorescent probe.
 上記においてペプチド性プローブに用いる蛍光色素としては環境応答性色素に限らず、フルオロセイン色素やその誘導体、またローダミン色素やその誘導体のような非環境応答性色素も利用可能である。ただし、環境応答性色素を用いた蛍光プローブには、親水場で蛍光強度が小さく、疎水場で強度が大きい特徴があるため、洗浄等の操作不要で蛍光を検出可能となる。一方、非環境応答性色素を用いた蛍光プローブでは、ワクチン等の製剤の脂質膜に非結合時と結合時の識別が不可能なため、洗浄等の操作が必要となる。好適には、式(9)の化合物等の環境応答性色素が好ましいが、目的や、用途によっては、非環境応答性色素の使用を検討してもよい。 The fluorescent dyes used in the peptide probes described above are not limited to environmentally responsive dyes, and non-environmentally responsive dyes such as fluorescein dyes and their derivatives, and rhodamine dyes and their derivatives can also be used. However, fluorescent probes using environment-responsive dyes are characterized by low fluorescence intensity in hydrophilic fields and high intensity in hydrophobic fields, so fluorescence can be detected without the need for washing or other operations. On the other hand, with fluorescent probes using non-environmentally responsive dyes, it is impossible to distinguish between non-binding and binding to the lipid membrane of preparations such as vaccines, so operations such as washing are required. Environmentally responsive dyes such as the compound of formula (9) are preferred, but the use of non-environmentally responsive dyes may be considered depending on the purpose and application.
 細胞膜染色色素としては、細胞膜を染色可能な公知の色素を使用することができ、特には脂質二重膜を染色する脂溶性色素が好ましい。このような脂溶性色素としては、タカラバイオ株式会社のPICシリーズや、サーモフィッシャーサイエンティフィック社製のMolecular  Probes(登録商標) シリーズにおけるSP-DiOC1 8 (3)といった脂溶性カルボシアニン色素、五陵化学社製のPolaric(登録商標)等が挙げられる。脂溶性カルボシアニン色素は通常、長鎖炭化水素鎖を有するカルボシアニン色素である。また、これらに加えて、細胞膜染色色素としては、脂質染色に従来用いられているズダンIII 、ズダンII(オイルレッドO) 、ズダンブラックB(SBB) 、ナイルブルー、ファットレッド、リピッドクリムゾン等の脂溶性色素も同様に用いることができる。 As the cell membrane staining dye, a known dye capable of staining the cell membrane can be used, and a fat-soluble dye that stains the lipid bilayer membrane is particularly preferable. Such fat-soluble dyes include fat-soluble carbocyanine dyes such as PIC series from Takara Bio Inc. and SP-DiOC1 8 (3) in the Molecular Probes (registered trademark) series from Thermo Fisher Scientific. Polaric (registered trademark) manufactured by Kagaku Co., Ltd., and the like can be mentioned. Fat-soluble carbocyanine dyes are typically carbocyanine dyes with long hydrocarbon chains. In addition to these, cell membrane staining dyes such as Sudan III, Sudan II (Oil Red O), Sudan Black B (SBB), Nile Blue, Fat Red, and Lipid Crimson, which are conventionally used for lipid staining, may be used. Soluble dyes can be used as well.
 RNAに結合する化合物をRNAワクチンと接触させる工程は、RNAワクチンの脂質膜に結合する蛍光色素をRNAワクチンと接触させる工程の前、同時、後のいずれに行われてもよいが、同時に行われると、検査方法の時間を短縮できる点で有利である。 The step of contacting the RNA vaccine with a compound that binds to RNA may be performed before, at the same time, or after the step of contacting the RNA vaccine with a fluorescent dye that binds to the lipid membrane of the RNA vaccine, but is performed at the same time. This is advantageous in that the inspection method time can be shortened.
 RNAに結合する化合物をRNAワクチンと接触させる工程と、脂質膜に結合する蛍光色素をRNAワクチンと接触させる工程とを同時に行う場合、RNAワクチンを含むサンプルを準備し、mRNAに結合する化合物と、脂質膜に結合する蛍光色素とを、該RNAワクチンを含む一つのサンプルに添加することにより行われることが好ましい。RNAワクチンを含むサンプルは、市販または製造されたRNAワクチンの原液又は希釈液であってよく、RNAの分解を抑制する物質をはじめとする任意の添加剤を含んでもよい。 When the step of contacting a compound that binds to RNA with an RNA vaccine and the step of contacting a fluorescent dye that binds to a lipid membrane with an RNA vaccine are performed simultaneously, a sample containing the RNA vaccine is prepared, and the compound that binds to mRNA; It is preferably carried out by adding a fluorescent dye that binds to lipid membranes to one sample containing the RNA vaccine. A sample containing an RNA vaccine may be a stock solution or a diluted solution of a commercially available or manufactured RNA vaccine, and may contain any additive, including substances that inhibit degradation of RNA.
 RNAに結合する化合物をRNAワクチンと接触させる工程と、脂質膜に結合する蛍光色素をRNAワクチンと接触させる工程の各々は、適切な任意の温度、時間で実施してもよい。典型的には、前記温度は常温又は室温である。当該温度の例としては約20℃ 、約25℃ 、約30℃ 、約35℃ 、約37℃ 、約40℃ 、約42℃ 、及びこれらの任意の2値の間の範囲が挙げられる。約42℃ 以上の温度及び約20℃ 以下の温度もまた、被検試料によっては適用可能である。当該時間は、特に限定されず、蛍光変化の検出に適切な任意の時間であってもよい。時間の長さの例としては約10分、約20分、約30分、約40分、約50分、約60分、約90分、約120分、約180分、約240分、約300分、約360分、約420分、約480分、約540分、約600分、及びこれらの任意の2値の間の範囲が挙げられる。さらに時間を延長することも、被検試料によっては可能である。 Each of the step of contacting a compound that binds to RNA with an RNA vaccine and the step of contacting a fluorescent dye that binds to a lipid membrane with an RNA vaccine may be performed at any suitable temperature and time. Typically, the temperature is ambient or room temperature. Examples of such temperatures include about 20°C, about 25°C, about 30°C, about 35°C, about 37°C, about 40°C, about 42°C, and ranges between any two of these. Temperatures above about 42°C and below about 20°C are also applicable depending on the sample tested. The time is not particularly limited, and may be any time suitable for detecting changes in fluorescence. Examples of length of time are about 10 minutes, about 20 minutes, about 30 minutes, about 40 minutes, about 50 minutes, about 60 minutes, about 90 minutes, about 120 minutes, about 180 minutes, about 240 minutes, about 300 minutes. minutes, about 360 minutes, about 420 minutes, about 480 minutes, about 540 minutes, about 600 minutes, and ranges between any two of these. Further extension of the time is also possible depending on the sample to be tested.
 式(1)の化合物及び式(2)の化合物の濃度は、特に限定されず、RNAの存在下において蛍光の励起及び発光のシグナルが適切に検出できる任意の濃度であってよい。濃度範囲の例としては、約10nM~ 1mMが挙げられる。濃度の例としては、約10nM、約100nM、約1μM、約10μM、約100μM、約1mM及びこれらの任意の2値の間の範囲が挙げられる。 The concentrations of the compound of formula (1) and the compound of formula (2) are not particularly limited, and may be any concentration at which fluorescence excitation and emission signals can be appropriately detected in the presence of RNA. An example concentration range includes about 10 nM to 1 mM. Examples of concentrations include about 10 nM, about 100 nM, about 1 μM, about 10 μM, about 100 μM, about 1 mM and ranges between any two of these.
 2つの接触工程の後、RNAと結合した化合物及び脂質膜に結合した蛍光色素のうちの少なくとも一方を検出する。なお、検出前に、未結合の蛍光プローブを限外濾過等により取り除いてもよい。未結合の蛍光プローブを取り除くことで、より高いS/N比での検出が可能となる。 After the two contact steps, at least one of the compound bound to the RNA and the fluorescent dye bound to the lipid membrane is detected. Before detection, unbound fluorescent probe may be removed by ultrafiltration or the like. Removal of unbound fluorescent probe allows detection with a higher S/N ratio.
 蛍光の好適な照射装置としては、可搬紫外線ランプ、水銀アークランプ、キセノンランプ、レーザ( アルゴン及びYAGレーザ等) 、及びレーザダイオードが挙げられる。これらの照射源は、典型的には、レーザスキャナ、蛍光マイクロプレートリーダ又は標準的分光光度計又はマイクロ蛍光分光光度計の中に光学的に統合されている。 Suitable fluorescent irradiation devices include portable ultraviolet lamps, mercury arc lamps, xenon lamps, lasers (such as argon and YAG lasers), and laser diodes. These illumination sources are typically optically integrated into laser scanners, fluorescence microplate readers or standard or micro-fluorescence spectrophotometers.
 RNAと結合した化合物及び脂質膜に結合した蛍光色素のうちの少なくとも一方を検出する工程は、目視検査又は種々の計測器の利用により実施してもよい。計測器の例としてはCCDカメラ、ビデオカメラ、写真フィルム、レーザスキャナ装置、蛍光強度計、フォトダイオード、量子カウンタ、落射蛍光顕微鏡、走査顕微鏡、フローサイトメータ、蛍光マイクロプレートリーダ、又は光電子増倍管等の増幅装置が挙げられる。 The step of detecting at least one of the compound bound to RNA and the fluorescent dye bound to the lipid membrane may be performed by visual inspection or by using various measuring instruments. Examples of instrumentation include CCD cameras, video cameras, photographic film, laser scanner devices, fluorescence intensity meters, photodiodes, quantum counters, epifluorescence microscopes, scanning microscopes, flow cytometers, fluorescence microplate readers, or photomultiplier tubes. and other amplifiers.
 上記検出工程は、単一の時点において実施してもよく、複数の時点で実施してもよく、連続的に実施してもよい。 The detection step may be performed at a single time point, at multiple time points, or continuously.
 本発明の第1態様の方法は、上記検出する工程の後で、RNAと結合した化合物に由来する発光強度の変化、脂質膜に結合した蛍光色素に由来する発光強度の変化、又はその両方に基づいて、前記RNAが脂質膜に内包された製剤の品質を評価する工程をさらに含んでもよい。 In the method of the first aspect of the present invention, after the step of detecting, the change in luminescence intensity derived from the compound bound to RNA, the change in luminescence intensity derived from the fluorescent dye bound to the lipid membrane, or both A step of evaluating the quality of the formulation in which the RNA is encapsulated in a lipid membrane may be further included.
 いくつかの実施形態では、評価する工程は、RNAと結合した化合物に由来する発光強度又は蛍光シグナルが増大するか、脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナルが減少するか、又はその両方である場合に、RNAが脂質膜に内包された製剤の品質が低下していると評価することを含む。 In some embodiments, the step of assessing increases the luminescence intensity or fluorescence signal from the compound bound to the RNA, or decreases the luminescence intensity or fluorescence signal from the fluorochrome bound to the lipid membrane, Or, in the case of both, it includes evaluating that the quality of the preparation in which the RNA is encapsulated in the lipid membrane is degraded.
 いくつかの実施形態では、品質に問題のない製剤の所定量に対する、RNAと結合した化合物に由来する発光強度又は蛍光シグナルと、脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナルとのそれぞれを基準値として定めておき、ある脂質膜に内包された製剤(被験製剤と呼ぶ)に対する、製剤中のRNAと結合した化合物に由来する発光強度又は蛍光シグナルと、製剤中のRNAと結合した化合物に由来する発光強度又は蛍光シグナルとを測定し、それらの測定値が各々当該基準値に対する所定の閾値内にある場合には被験製剤の品質が維持され、閾値外にある場合には被験製剤の品質が低下していると評価することを含む。なお、品質に問題のない製剤は、製造直後の製剤を含む。 In some embodiments, the luminescence intensity or fluorescence signal derived from the compound bound to RNA and the luminescence intensity or fluorescence signal derived from the fluorochrome bound to the lipid membrane for a predetermined amount of a preparation with no quality problems Each is defined as a reference value, and for a formulation encapsulated in a certain lipid membrane (referred to as a test formulation), the luminescence intensity or fluorescence signal derived from the compound bound to the RNA in the formulation and the binding to the RNA in the formulation The luminescence intensity or fluorescence signal derived from the compound is measured, and the quality of the test preparation is maintained if the measured values are within the predetermined thresholds relative to the reference values, and the test preparation is rejected if the measured values are outside the thresholds. including assessing that the quality of Preparations with no quality problems include preparations immediately after manufacturing.
 いくつかの実施形態では、RNAと結合する化合物は脂質膜に非透過性であり、評価する工程は、RNAと結合した化合物に由来する発光強度又は蛍光シグナルが増大するか、脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナルが減少するか、又はその両方である場合に、RNAが脂質膜に内包された製剤の品質が低下していると評価することを含む。 In some embodiments, the compound that binds RNA is impermeable to lipid membranes, and the step of assessing increases the luminescence intensity or fluorescence signal from the compound that binds RNA or binds to the lipid membrane. When the luminescence intensity or fluorescence signal derived from the fluorescent dye is decreased, or both, it is evaluated that the quality of the preparation in which the RNA is encapsulated in the lipid membrane is degraded.
 いくつかの実施形態では、RNAと結合する化合物は脂質膜に透過性であり、評価する工程は、脂質膜から漏出したRNAと結合した化合物に由来する発光強度又は蛍光シグナルが増大するか、脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナルが減少するか、又はその両方である場合に、RNAが脂質膜に内包された製剤の品質が低下していると評価することを含む。 In some embodiments, the compound that binds RNA is permeable to the lipid membrane, and the step of assessing increases the luminescence intensity or fluorescence signal from the compound bound to the RNA that has leaked out of the lipid membrane, A reduction in luminescence intensity and/or fluorescence signal from membrane-bound fluorochromes includes assessing a formulation in which RNA is encapsulated in a lipid membrane as degraded.
 いくつかの実施形態では、RNAと結合する化合物は脂質膜に透過性であり、評価する工程は、脂質膜内に一部又は全部のRNAが内包されておらず、脂質膜から漏出したRNAと結合した化合物に由来する発光強度又は蛍光シグナルが増大し、且つ、脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナルが正常値である場合に、一部又は全部のRNAが脂質膜に内包されず、脂質膜外に漏出している製剤として品質を評価することを含む。該正常値は、品質に問題のない製剤から得られる発光強度又は蛍光シグナルの範囲内の値を指し、例えば製造直後のRNAが脂質膜に内包された製剤における脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナルの値又はそれよりも小さい値を含む。 In some embodiments, the compound that binds to RNA is permeable to the lipid membrane, and the step of evaluating is not partially or entirely encapsulated within the lipid membrane, and the RNA that has leaked out of the lipid membrane. When the luminescence intensity or fluorescence signal derived from the bound compound increases and the luminescence intensity or fluorescence signal derived from the fluorescent dye bound to the lipid membrane is normal, part or all of the RNA is bound to the lipid membrane. This includes quality evaluation as a formulation that is not encapsulated and leaks out of the lipid membrane. The normal value refers to a value within the range of luminescence intensity or fluorescence signal obtained from a preparation with no quality problem, for example, derived from a fluorescent dye bound to a lipid membrane in a preparation in which RNA is encapsulated in a lipid membrane immediately after production. luminescence intensity or fluorescence signal value or lesser value.
 いくつかの実施形態では、RNAと結合する化合物は脂質膜に透過性であり、評価する工程は、脂質膜内にRNAが完全に内包されていないことに伴い、RNAと結合した化合物に由来する発光強度又は蛍光シグナルが減少し、且つ、脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナルが正常値である場合に、RNAが本来的に脂質膜に内包されていない(したがって、RNAが脂質膜外に漏出していない)製剤として品質を評価することを含む。正常値は、例えば製造直後のRNAが脂質膜に内包された製剤における脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナルの値又はそれよりも小さい値を含む。 In some embodiments, the compound that binds RNA is permeable to the lipid membrane, and the assessing is derived from the compound that binds RNA as the RNA is not completely encapsulated within the lipid membrane. When the luminescence intensity or fluorescence signal decreases and the luminescence intensity or fluorescence signal derived from the fluorescent dye bound to the lipid membrane is normal, the RNA is not inherently encapsulated in the lipid membrane (therefore, the RNA is not leaking out of the lipid membrane), including evaluating the quality as a formulation. A normal value includes, for example, a value of luminescence intensity or a fluorescence signal derived from a fluorescent dye bound to a lipid membrane in a formulation in which RNA is encapsulated in a lipid membrane immediately after production, or a value smaller than that.
 いくつかの実施形態では、評価する工程は、RNAと結合した化合物に由来する発光強度又は蛍光シグナルが有意に変化せず、かつ脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナルが有意に変化していない場合に、RNAが脂質膜に内包された製剤の品質が維持されていると評価することを含む。例えば、RNAと結合した化合物に由来する発光強度又は蛍光シグナルと、脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナルとの両方が、(変化後の蛍光シグナル-変化前の蛍光シグナル)/変化前の蛍光シグナル*100が±10%以下である場合に、RNAが脂質膜に内包された製剤の品質が維持されていると評価する。代わりに、例えば、RNAと結合した化合物に由来する発光強度又は蛍光シグナルと、脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナルとのそれぞれを、変化後の蛍光シグナルと変化前の蛍光シグナルとで比較し、いずれも統計解析により統計学的有意差が無かった(pが0.05以上)場合に、RNAが脂質膜に内包された製剤の品質が維持されていると評価する。 In some embodiments, the step of assessing does not significantly change the luminescence intensity or fluorescence signal from the compound bound to the RNA and does not significantly change the luminescence intensity or fluorescence signal from the fluorochrome bound to the lipid membrane. This includes evaluating whether the quality of the formulation in which the RNA is encapsulated in the lipid membrane is maintained when there is no change in the For example, both the luminescence intensity or fluorescence signal derived from the compound bound to RNA and the luminescence intensity or fluorescence signal derived from the fluorochrome bound to the lipid membrane are (fluorescence signal after change - fluorescence signal before change). /When the fluorescence signal*100 before change is ±10% or less, the quality of the preparation in which RNA is encapsulated in the lipid membrane is evaluated as being maintained. Alternatively, for example, each of the luminescence intensity or fluorescence signal derived from the compound bound to RNA and the luminescence intensity or fluorescence signal derived from the fluorochrome bound to the lipid membrane is compared with the fluorescence signal after the change and the fluorescence before the change. When there is no statistically significant difference (p is 0.05 or more) by statistical analysis, it is evaluated that the quality of the formulation in which RNA is encapsulated in the lipid membrane is maintained.
 いくつかの実施形態では、評価する工程は、RNAと結合した化合物に由来する発光強度又は蛍光シグナルが第1の基準値に対して増大するか、脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナルが第2の基準値に対して減少するか、又はその両方である場合に、RNAが脂質膜に内包された製剤の品質が低下していると評価することを含む。第1の基準値は、(i)製造直後のRNAが脂質膜に内包された製剤に対して第1態様の方法を実施(特には被験製剤と同じ条件で実施)した場合のRNAと結合した化合物に由来する発光強度又は蛍光シグナルの値、(ii)製造業者の指示書(マニュアル)通りに冷凍保存され、解凍された後、製造業者の指示書(マニュアル)に示された適正な冷蔵保存期間内のRNAが脂質膜に内包された製剤に対して第1態様の方法を実施(特には被験製剤と同じ条件で実施)した場合のRNAと結合した化合物に由来する発光強度又は蛍光シグナルの値、又は(iii)RNAが脂質膜に内包された製剤の品質が維持されているとみなすことができる所定値であってよい。第2の基準値は、(i)製造直後のRNAが脂質膜に内包された製剤に対して第1態様の方法を実施(特には被験製剤と同じ条件で実施)した場合の脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナルの値、(ii)製造業者の指示書(マニュアル)通りに冷凍保存され、解凍された後、製造業者の指示書(マニュアル)に示された適正な冷蔵保存期間内のRNAが脂質膜に内包された製剤に対して第1態様の方法を実施(特には被験製剤と同じ条件で実施)した場合の脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナルの値、又は(iii)RNAが脂質膜に内包された製剤の品質が維持されているとみなすことができる所定値であってよい。 In some embodiments, the step of evaluating increases relative to a first reference value the luminescence intensity or fluorescence signal derived from the compound bound to the RNA, or the luminescence intensity derived from the fluorochrome bound to the lipid membrane Alternatively, when the fluorescence signal is decreased with respect to a second reference value, or both, the quality of the preparation in which the RNA is encapsulated in the lipid membrane is evaluated as degraded. The first reference value is (i) the method of the first embodiment is performed on a formulation in which RNA is encapsulated in a lipid membrane immediately after production (particularly under the same conditions as the test formulation). Emission intensity or fluorescence signal value from the compound, (ii) stored frozen according to the manufacturer's instructions (manual), thawed and then properly refrigerated as indicated in the manufacturer's instructions (manual). The emission intensity or fluorescence signal derived from the compound bound to the RNA when the method of the first aspect is performed on the preparation in which the RNA is encapsulated in the lipid membrane within the period (particularly under the same conditions as the test preparation) or (iii) a predetermined value at which it can be considered that the quality of the formulation in which the RNA is encapsulated in the lipid membrane is maintained. The second reference value is (i) when the method of the first aspect is performed on a formulation in which RNA immediately after production is encapsulated in a lipid membrane (particularly under the same conditions as the test formulation), the binding to the lipid membrane (ii) refrigerated and thawed according to the manufacturer's instructions (manual), then the appropriate values indicated in the manufacturer's instructions (manual) The luminescence intensity derived from the fluorescent dye bound to the lipid membrane when the method of the first aspect is performed on the formulation in which RNA is encapsulated in the lipid membrane within the refrigerated storage period (particularly under the same conditions as the test formulation) Alternatively, it may be a fluorescence signal value, or (iii) a predetermined value at which it can be considered that the quality of a formulation in which RNA is encapsulated in a lipid membrane is maintained.
 いくつかの実施形態では、RNAと結合する化合物は脂質膜に非透過性であり、評価する工程は、脂質膜から漏出したRNAと結合した化合物に由来する発光強度又は蛍光シグナルが第1の基準値に対して増大するか、脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナルが第2の基準値に対して減少するか、又はその両方である場合に、RNAが脂質膜に内包された製剤の品質が低下していると評価することを含む。第1の基準値及び第2の基準値については記載した通りである。 In some embodiments, the compound that binds RNA is impermeable to the lipid membrane, and the step of evaluating is based on the luminescence intensity or fluorescence signal from the compound bound to the RNA that has leaked out of the lipid membrane. RNA is encapsulated in the lipid membrane if the luminescence intensity or fluorescence signal from the fluorochrome bound to the lipid membrane decreases relative to the second reference value, or both including assessing the quality of the manufactured product as degraded. The first reference value and the second reference value are as described.
 いくつかの実施形態では、RNAと結合する化合物は脂質膜に透過性であり、評価する工程は、脂質膜内にRNAが内包されておらず、脂質膜から漏出したRNAと結合した化合物に由来する発光強度又は蛍光シグナルが第1の基準値に対して増大し、且つ脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナルが第2の基準値に対して変化していない場合に、RNAが脂質膜に内包されず、脂質膜外に漏出している製剤として品質を評価することを含む。 In some embodiments, the compound that binds RNA is permeable to the lipid membrane, and the step of evaluating is derived from the compound bound to the RNA that has leaked out of the lipid membrane without the RNA being encapsulated in the lipid membrane. When the luminescence intensity or fluorescence signal increases relative to the first reference value, and the luminescence intensity or fluorescence signal derived from the fluorochrome bound to the lipid membrane does not change relative to the second reference value, This includes evaluating the quality of preparations in which the RNA is not encapsulated in the lipid membrane and is leaking out of the lipid membrane.
 いくつかの実施形態では、RNAと結合する化合物は脂質膜に透過性であり、評価する工程は、脂質膜内にRNAが内包されていないことに伴い、RNAと結合した化合物に由来する発光強度又は蛍光シグナルが第1の基準値に対して減少し、且つ、脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナルが第2の基準値に対して変化していない場合に、RNAが本来的に脂質膜に内包されていない(したがって、RNAが脂質膜外に漏出していない)製剤として品質を評価することを含む。 In some embodiments, the compound that binds RNA is permeable to the lipid membrane, and the step of assessing is the luminescence intensity from the compound that binds RNA, as the RNA is not encapsulated within the lipid membrane. Or the fluorescence signal decreases with respect to the first reference value, and when the emission intensity or fluorescence signal derived from the fluorescent dye bound to the lipid membrane does not change with respect to the second reference value, the RNA is This includes evaluating the quality of preparations that are not inherently encapsulated in lipid membranes (thus, RNA has not leaked out of lipid membranes).
 いくつかの実施形態では、評価する工程は、RNAと結合した化合物に由来する発光強度又は蛍光シグナルが第1の基準値に対して有意に変化せず、かつ脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナルが第2の基準値に対して有意に変化していない場合に、RNAが脂質膜に内包された製剤の品質が維持されていると評価することを含む。第1の基準値及び第2の基準値については記載した通りである。例えば、RNAと結合した化合物に由来する発光強度又は蛍光シグナル(i))と、脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナル(ii)との両方が、第の1基準値及び第2の基準値のそれぞれに対して、(発光強度又は蛍光シグナル(i) -第1の基準値)/第1の基準値*100が±10%以下であり、かつ(発光強度又は蛍光シグナル(ii) -第2の基準値)/第2の基準値*100が±10%以下である場合に、RNAが脂質膜に内包された製剤の品質が維持されていると評価する。代わりに、例えば、発光強度又は蛍光シグナル(i)と発光強度又は蛍光シグナル(ii)との両方が、第1の基準値及び第2の基準値の各々と比較し、統計解析により統計学的有意差が無かった(pが0.05以上)場合に、RNAが脂質膜に内包された製剤の品質が維持されていると評価する。 In some embodiments, the step of evaluating is that the luminescence intensity or fluorescence signal derived from the compound bound to the RNA does not change significantly relative to the first reference value and the fluorescent dye derived from the lipid membrane bound Evaluating that the quality of the preparation in which the RNA is encapsulated in the lipid membrane is maintained when the emitted light intensity or fluorescence signal does not significantly change with respect to the second reference value. The first reference value and the second reference value are as described. For example, both the luminescence intensity or fluorescence signal (i) derived from the compound bound to the RNA and the luminescence intensity or fluorescence signal (ii) derived from the fluorochrome bound to the lipid membrane are equal to the first reference value and For each of the second reference values, (luminescence intensity or fluorescence signal (i) - first reference value) / first reference value * 100 is ± 10% or less, and (luminescence intensity or fluorescence signal (ii) - second reference value)/second reference value*100 is ±10% or less, it is evaluated that the quality of the formulation in which RNA is encapsulated in the lipid membrane is maintained. Alternatively, for example, both the luminescence intensity or fluorescence signal (i) and the luminescence intensity or fluorescence signal (ii) are compared with each of the first reference value and the second reference value, and statistically determined by statistical analysis. When there is no significant difference (p is 0.05 or more), it is evaluated that the quality of the preparation in which RNA is encapsulated in the lipid membrane is maintained.
 いくつかの実施形態では、評価する工程は、時系列的に評価する工程を含む。具体的には、評価する工程は、第1の時点での、RNAと結合した化合物に由来する発光強度又は蛍光シグナルと、第1の時点よりも遅い第2の時点でのRNAと結合した化合物に由来する発光強度又は蛍光シグナルとを比較し、第2の時点での発光強度又は蛍光シグナルが、第1の時点での発光強度又は蛍光シグナルに対して増大している場合にRNAが脂質膜に内包された製剤の品質が低下していると評価するか、第1の時点での、脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナルと、第1の時点よりも遅い第2の時点の脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナルとを比較し、第2の時点での脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナルが第1の時点での発光強度又は蛍光シグナルに対して減少している場合にRNAが脂質膜に内包された製剤の品質が低下していると評価するか、又はその両方である場合にRNAが脂質膜に内包された製剤の品質が低下していると評価することを含む。 In some embodiments, the evaluating step includes evaluating in chronological order. Specifically, the step of evaluating comprises a luminescence intensity or fluorescence signal derived from a compound bound to RNA at a first time point and a compound bound to RNA at a second time point later than the first time point. When the luminescence intensity or fluorescence signal at the second time point is increased relative to the luminescence intensity or fluorescence signal at the first time point, the RNA is present in the lipid membrane Evaluate that the quality of the formulation encapsulated in is degraded, or the luminescence intensity or fluorescence signal derived from the fluorochrome bound to the lipid membrane at the first time point and the second time point later than the first time point The luminescence intensity or fluorescence signal derived from the fluorochrome bound to the lipid membrane at the time point is compared with the luminescence intensity or fluorescence signal derived from the fluorochrome bound to the lipid membrane at the second time point. If the luminescence intensity or fluorescence signal is reduced, the quality of the formulation in which the RNA is encapsulated in the lipid membrane is reduced, or if both are the case, the RNA is encapsulated in the lipid membrane. This includes assessing the quality of the drug product as degraded.
 いくつかの実施形態では、RNAと結合する化合物は脂質膜に非透過性であり、評価する工程は、第1の時点での、RNAと結合した化合物に由来する発光強度又は蛍光シグナルと、第1の時点よりも遅い第2の時点でのRNAと結合した化合物に由来する発光強度又は蛍光シグナルとを比較し、第2の時点での発光強度又は蛍光シグナルが、第1の時点での発光強度又は蛍光シグナルに対して増大している場合にRNAが脂質膜に内包された製剤の品質が低下していると評価するか、第1の時点での、脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナルと、第1の時点よりも遅い第2の時点の脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナルとを比較し、第2の時点での脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナルが第1の時点での発光強度又は蛍光シグナルに対して減少している場合にRNAが脂質膜に内包された製剤の品質が低下していると評価するか、又はその両方である場合にRNAが脂質膜に内包された製剤の品質が低下していると評価することを含む。 In some embodiments, the compound that binds RNA is impermeable to the lipid membrane, and the step of assessing is the luminescence intensity or fluorescence signal from the compound that binds RNA at a first time point; The luminescence intensity or fluorescence signal from the compound bound to the RNA at a second time point later than the first time point is compared, and the luminescence intensity or fluorescence signal at the second time point is equal to the luminescence intensity at the first time point. A formulation in which RNA is encapsulated in a lipid membrane is assessed as degraded if there is an increase in intensity or fluorescence signal, or from the fluorescent dye bound to the lipid membrane at the first time point. and the emission intensity or fluorescence signal derived from the fluorescent dye bound to the lipid membrane at a second time point later than the first time point, and binding to the lipid membrane at the second time point. If the luminescence intensity or fluorescence signal derived from the fluorochrome obtained is decreased relative to the luminescence intensity or fluorescence signal at the first time point, it is evaluated that the quality of the formulation in which RNA is encapsulated in the lipid membrane is degraded. or both, the quality of preparations in which RNA is encapsulated in lipid membranes is evaluated as being degraded.
 いくつかの実施形態では、RNAと結合する化合物は脂質膜に透過性であり、評価する工程は、第1の時点での、RNAと結合した化合物に由来する発光強度又は蛍光シグナルと、第1の時点よりも遅い第2の時点でのRNAと結合した化合物に由来する発光強度又は蛍光シグナルとを比較し、第2の時点での発光強度又は蛍光シグナルが、第1の時点での発光強度又は蛍光シグナルに対して増大している場合にRNAが脂質膜に内包された製剤の品質が低下していると評価するか、第1の時点での、脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナルと、第1の時点よりも遅い第2の時点の脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナルとを比較し、第2の時点での脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナルが第1の時点での発光強度又は蛍光シグナルに対して減少している場合にRNAが脂質膜に内包された製剤の品質が低下していると評価するか、又はその両方である場合にRNAが脂質膜に内包された製剤の品質が低下していると評価することを含む。 In some embodiments, the compound that binds RNA is permeable to the lipid membrane, and the step of assessing is the luminescence intensity or fluorescence signal from the compound that binds RNA at a first time point; The emission intensity or fluorescence signal from the compound bound to the RNA at a second time point later than the time point of Or assess the quality of the formulation in which the RNA is encapsulated in the lipid membrane is degraded if it is increased relative to the fluorescence signal, or is derived from the fluorescent dye bound to the lipid membrane at the first time point The luminescence intensity or fluorescence signal is compared with the luminescence intensity or fluorescence signal derived from the fluorochrome bound to the lipid membrane at a second time point later than the first time point, and the luminescence intensity or fluorescence signal derived from the fluorochrome bound to the lipid membrane at the second time point. When the luminescence intensity or fluorescence signal derived from the fluorescent dye is reduced with respect to the luminescence intensity or fluorescence signal at the first time point, it is evaluated that the quality of the formulation in which RNA is encapsulated in the lipid membrane is degraded. or both, the quality of formulations in which RNA is encapsulated in lipid membranes is evaluated as being degraded.
 いくつかの実施形態では、RNAと結合する化合物は脂質膜に透過性であり、評価する工程は、正常な製剤での、RNAと結合した化合物に由来する発光強度又は蛍光シグナルと、検査対象の製剤のRNAと結合した化合物に由来する発光強度又は蛍光シグナルとを比較し、且つ、正常な製剤での、脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナルと、検査対象の製剤の脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナルとを比較し、検査対象の製剤発光強度又は蛍光シグナルが、正常な製剤での発光強度又は蛍光シグナルに対して増大し、且つ、脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナルが正常な製剤での発光強度又は蛍光シグナルに対して変化していない場合、製剤の品質が不良(fail)であるか又は低下している(例えば、脂質膜内に一部又は全部のRNAが内包されておらず、脂質膜から漏出している)と評価することを含む。例えば、検査対象の製剤発光強度又は蛍光シグナルが、正常な製剤での発光強度又は蛍光シグナルに対して増大し、且つ検査対象の製剤に脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナル(ii)が、正常な製剤における対応する発光強度又は蛍光シグナルに対して、(検査対象の脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナル(ii)-正常な製剤の脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナル)/(正常な製剤の脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナル)*100が±10%以下である場合に、RNAが脂質膜に内包された製剤の品質が不良であるか又は低下していると評価する。代わりに、例えば、検査対象の製剤発光強度又は蛍光シグナルが、正常な製剤での発光強度又は蛍光シグナルに対して増大し、且つ発光強度又は蛍光シグナル(ii)が、正常な製剤における対応する発光強度又は蛍光シグナルに対して、統計解析により統計学的有意差が無かった(pが0.05以上)場合に、RNAが脂質膜に内包された製剤の品質が不良であるか又は低下していると評価する。 In some embodiments, the compound that binds RNA is permeable to lipid membranes, and the step of assessing is the luminescence intensity or fluorescence signal from the compound that binds RNA in normal formulations and the Compare the luminescence intensity or fluorescence signal derived from the compound bound to the RNA of the preparation, and compare the luminescence intensity or fluorescence signal derived from the fluorochrome bound to the lipid membrane in the normal preparation with that of the preparation to be tested. Compared to the luminescence intensity or fluorescence signal derived from the fluorochrome bound to the lipid membrane, the luminescence intensity or fluorescence signal of the preparation under test is increased relative to the luminescence intensity or fluorescence signal of the normal preparation, and the lipid If the emission intensity or fluorescence signal from the membrane-bound fluorochrome does not change with respect to the emission intensity or fluorescence signal in the normal formulation, the formulation is of failed or degraded quality. (For example, some or all of the RNA is not encapsulated in the lipid membrane and is leaking out of the lipid membrane). For example, the luminescence intensity or fluorescence signal of the preparation to be tested increases with respect to the luminescence intensity or fluorescence signal of a normal preparation, and the luminescence intensity or fluorescence signal originates from the fluorescent dye bound to the lipid membrane of the preparation to be tested. (ii) relative to the corresponding luminescence intensity or fluorescence signal in the normal preparation (luminescence intensity or fluorescence signal derived from the fluorochrome bound to the lipid membrane under test (ii) - the lipid membrane of the normal preparation luminescence intensity or fluorescence signal derived from the bound fluorescent dye)/(luminescence intensity or fluorescence signal derived from the fluorochrome bound to the lipid membrane of the normal preparation) * 100 is ±10% or less. The membrane-encapsulated formulation is evaluated as poor or degraded. Alternatively, for example, the formulation luminescence intensity or fluorescence signal under test is increased with respect to the luminescence intensity or fluorescence signal in the normal formulation, and the luminescence intensity or fluorescence signal (ii) increases relative to the corresponding luminescence in the normal formulation If there is no statistically significant difference (p is 0.05 or more) for the intensity or fluorescence signal, the quality of the formulation in which RNA is encapsulated in a lipid membrane is considered to be poor or degraded. evaluate.
 いくつかの実施形態では、RNAと結合する化合物は脂質膜に透過性であり、評価する工程は、正常な製剤での、RNAと結合した化合物に由来する発光強度又は蛍光シグナルと、検査対象の製剤のRNAと結合した化合物に由来する発光強度又は蛍光シグナルとを比較し、且つ、正常な製剤での、脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナルと、検査対象の製剤の脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナルとを比較し、検査対象の製剤発光強度又は蛍光シグナルが、正常な製剤での発光強度又は蛍光シグナルに対して減少し、且つ、脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナルが正常な製剤での発光強度又は蛍光シグナルに対して変化していない場合、製剤の品質が不良(fail)であるか又は低下している(例えば、脂質膜内に本来的にRNAが内包されていない)と評価することを含む。例えば、検査対象の製剤発光強度又は蛍光シグナルが、正常な製剤での発光強度又は蛍光シグナルに対して減少し、且つ検査対象の製剤に脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナル(ii)が、正常な製剤における対応する発光強度又は蛍光シグナルに対して、(検査対象の脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナル(ii)-正常な製剤の脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナル)/(正常な製剤の脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナル)*100が±10%以下である場合に、RNAが脂質膜に内包された製剤の品質が不良であるか又は低下していると評価する。代わりに、例えば、検査対象の製剤発光強度又は蛍光シグナルが、正常な製剤での発光強度又は蛍光シグナルに対して増大し、且つ発光強度又は蛍光シグナル(ii)が、正常な製剤における対応する発光強度又は蛍光シグナルに対して、統計解析により統計学的有意差が無かった(pが0.05以上)場合に、RNAが脂質膜に内包された製剤の品質が不良であるか又は低下していると評価する。 In some embodiments, the compound that binds RNA is permeable to lipid membranes, and the step of assessing is the luminescence intensity or fluorescence signal from the compound that binds RNA in normal formulations and the Compare the luminescence intensity or fluorescence signal derived from the compound bound to the RNA of the preparation, and compare the luminescence intensity or fluorescence signal derived from the fluorochrome bound to the lipid membrane in the normal preparation with that of the preparation to be tested. Compared to the luminescence intensity or fluorescence signal derived from the fluorochrome bound to the lipid membrane, the luminescence intensity or fluorescence signal of the preparation under test is reduced relative to the luminescence intensity or fluorescence signal of the normal preparation, and the lipid If the emission intensity or fluorescence signal from the membrane-bound fluorochrome does not change with respect to the emission intensity or fluorescence signal in the normal formulation, the formulation is of failed or degraded quality. (For example, RNA is not naturally encapsulated in lipid membranes). For example, the luminescence intensity or fluorescence signal of the preparation to be tested is reduced with respect to the luminescence intensity or fluorescence signal of the normal preparation, and the luminescence intensity or fluorescence signal is derived from the fluorescent dye bound to the lipid membrane of the preparation to be tested. (ii) relative to the corresponding luminescence intensity or fluorescence signal in the normal preparation (luminescence intensity or fluorescence signal derived from the fluorochrome bound to the lipid membrane under test (ii) - the lipid membrane of the normal preparation luminescence intensity or fluorescence signal derived from the bound fluorescent dye)/(luminescence intensity or fluorescence signal derived from the fluorochrome bound to the lipid membrane of the normal preparation) * 100 is ±10% or less. The membrane-encapsulated formulation is evaluated as poor or degraded. Alternatively, for example, the formulation luminescence intensity or fluorescence signal under test is increased with respect to the luminescence intensity or fluorescence signal in the normal formulation, and the luminescence intensity or fluorescence signal (ii) increases relative to the corresponding luminescence in the normal formulation If there is no statistically significant difference (p is 0.05 or more) for the intensity or fluorescence signal, the quality of the formulation in which RNA is encapsulated in a lipid membrane is considered to be poor or degraded. evaluate.
 いくつかの実施形態では、評価する工程は、第1の時点での、RNAと結合した化合物に由来する発光強度又は蛍光シグナルと、第1の時点よりも遅い第2の時点でのRNAと結合した化合物に由来する発光強度又は蛍光シグナルとを比較し、第2の時点での発光強度又は蛍光シグナルが、第1の時点での発光強度又は蛍光シグナルに対して有意に変化していない場合、かつ第1の時点での、脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナルと、第1の時点よりも遅い第2の時点の脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナルとを比較し、第2の時点での脂質膜に結合した蛍光色素に由来する発光強度又は蛍光シグナルが第1の時点での発光強度又は蛍光シグナルに対して有意に変化していない場合に、RNAが脂質膜に内包された製剤の品質が維持されていると評価することを含む。 In some embodiments, the step of evaluating comprises luminescence intensity or fluorescence signal from the compound bound to the RNA at a first time point and binding to the RNA at a second time point later than the first time point. If the luminescence intensity or fluorescence signal at the second time point is not significantly changed with respect to the luminescence intensity or fluorescence signal at the first time point, And the luminescence intensity or fluorescence signal derived from the fluorochrome bound to the lipid membrane at the first time point, and the luminescence intensity or fluorescence signal derived from the fluorochrome bound to the lipid membrane at a second time point later than the first time point or If the luminescence intensity or fluorescence signal derived from the fluorochrome bound to the lipid membrane at the second time point is not significantly changed relative to the luminescence intensity or fluorescence signal at the first time point 2) includes evaluating whether the quality of formulations in which RNA is encapsulated in lipid membranes is maintained.
 本発明の第2態様によれば、RNAが脂質膜に内包された製剤の品質を検査するためのキットであって、RNAと該RNAを包む脂質膜とを備えた製剤の該RNAに結合する化合物と、該製剤の脂質膜に結合する蛍光色素とを備えたキットが提供される。
RNAに結合する化合物及び脂質膜に結合する蛍光色素については第1態様の化合物及び蛍光色素に関してそれぞれ説明した通りである。
According to the second aspect of the present invention, there is provided a kit for inspecting the quality of a formulation in which RNA is encapsulated in a lipid membrane, wherein the kit binds to the RNA of a formulation comprising RNA and a lipid membrane enveloping the RNA. A kit is provided that includes a compound and a fluorescent dye that binds to the lipid membrane of the formulation.
The compound that binds to RNA and the fluorescent dye that binds to lipid membranes are as described for the compound and fluorescent dye of the first embodiment, respectively.
 いくつかの実施形態では、キットは、RNAに結合する化合物を収容する容器を備えてもよい。代わりに又は追加的に、脂質膜に結合する蛍光色素を収容する容器をさらに備えてもよい。 In some embodiments, the kit may include a container containing a compound that binds to RNA. Alternatively or additionally, a container containing a fluorescent dye that binds to the lipid membrane may be further provided.
 いくつかの実施形態では、キットは、ピペット、スポイト又は他の試料操作基材をさらに備えてもよい。 In some embodiments, the kit may further comprise a pipette, dropper, or other sample manipulation substrate.
 いくつかの実施形態では、キットは、RNAと結合する化合物、脂質膜に結合する蛍光色素、又はその両方を検出するための説明書をさらに備えてもよい。 In some embodiments, the kit may further include instructions for detecting a compound that binds to RNA, a fluorescent dye that binds to lipid membranes, or both.
 いくつかの実施形態では、キットは、陽性対照及び/又は陰性対照のサンプルをさらに備えてもよい。陽性対照のサンプルはRNAが脂質膜に内包された製剤又はRNAが脂質膜に内包された製剤と類似の構成を有する構築物であってよい。陰性対照のサンプルはRNAが脂質膜に内包された製剤を含まないサンプルでよい。 In some embodiments, the kit may further comprise positive and/or negative control samples. The positive control sample may be a formulation in which RNA is encapsulated in a lipid membrane or a construct having a structure similar to that of a formulation in which RNA is encapsulated in a lipid membrane. A negative control sample may be a sample that does not contain a preparation in which RNA is encapsulated in a lipid membrane.
 いくつかの実施形態では、キットは、さらに水、緩衝液、緩衝液塩、界面活性剤、表面活性剤、塩、多糖類又は一般的にバイオアッセイに用いられる他の材料をさらに備えてもよい。
いくつかの実施形態では、キットは、水溶性、非水溶性、又は水溶性/非水溶性溶媒系等の溶媒をさらに備えてもよい。
In some embodiments, the kit may further comprise water, buffers, buffer salts, surfactants, surfactants, salts, polysaccharides or other materials commonly used in bioassays. .
In some embodiments, the kit may further comprise solvents such as aqueous, non-aqueous, or aqueous/non-aqueous solvent systems.
 キットの上記説明書には、本発明の第1態様のRNAが脂質膜に内包された製剤の品質を検査する方法に関して説明した、RNAが脂質膜に内包された製剤の品質を評価する工程についても記載されていてよい。 In the instruction manual of the kit, the step of evaluating the quality of the RNA-encapsulated lipid membrane-encapsulated formulation described in the method for inspecting the quality of the RNA-encapsulated lipid membrane-encapsulated formulation of the first aspect of the present invention is described. may also be listed.
 また、計測器を用いた際の、RNAが脂質膜に内包された製剤の品質が維持されている場合の発光強度又は蛍光シグナルの情報が記載されていてもよい。 In addition, information on the luminescence intensity or fluorescence signal when the quality of the preparation in which the RNA is encapsulated in the lipid membrane is maintained when using a measuring instrument may be described.
 第2態様のRNAが脂質膜に内包された製剤の品質を検査するためのキットを用いて、mRNAと該mRNAを包む脂質膜とを備えたRNAが脂質膜に内包された製剤の前記mRNAに結合する化合物を、RNAが脂質膜に内包された製剤と接触させる工程、RNAが脂質膜に内包された製剤の前記脂質膜に結合する蛍光色素を、RNAが脂質膜に内包された製剤と接触させる工程、及びRNAと結合した化合物及び脂質膜に結合した蛍光色素のうちの少なくとも一方を検出する工程を行った後、キットの使用者は、説明書に基づき、RNAと結合した化合物に由来する発光強度の変化、脂質膜に結合した蛍光色素に由来する発光強度の変化、又はその両方に基づいて、RNAが脂質膜に内包された製剤の品質を評価することができる。 Using the kit for inspecting the quality of the formulation in which the RNA is encapsulated in a lipid membrane according to the second embodiment, the mRNA in the formulation comprising mRNA and a lipid membrane enclosing the mRNA is encapsulated in the lipid membrane. Contacting the binding compound with a formulation in which RNA is encapsulated in a lipid membrane, and contacting a fluorescent dye that binds to the lipid membrane of the formulation in which RNA is encapsulated in a lipid membrane with the formulation in which RNA is encapsulated in a lipid membrane. and the step of detecting at least one of the compound bound to the RNA and the fluorescent dye bound to the lipid membrane. The quality of preparations in which RNA is encapsulated in lipid membranes can be evaluated based on changes in luminescence intensity, changes in luminescence intensity derived from fluorescent dyes bound to lipid membranes, or both.
 第2態様の好ましい実施形態において、RNAが脂質膜に内包された製剤は、mRNAが脂質膜に内包されたRNAワクチンである。mRNAはウイルスのRNAの配列の一部を含み得る。別の好ましい実施形態において、脂質膜に内包された製剤は、siRNAがリポソームに内包されたRNAi医薬である。siRNAは細胞内の任意の標的mRNAに相補的な短い(20~25塩基程度)二本鎖RNAである。 In a preferred embodiment of the second aspect, the formulation in which RNA is encapsulated in a lipid membrane is an RNA vaccine in which mRNA is encapsulated in a lipid membrane. The mRNA may contain part of the sequence of the viral RNA. In another preferred embodiment, the lipid membrane-encapsulated formulation is an RNAi drug in which siRNA is encapsulated in liposomes. siRNAs are short (about 20-25 bases) double-stranded RNAs that are complementary to any target mRNA in the cell.
 第1態様の方法及び第2態様のキットは、RNAが脂質膜に内包された製剤の迅速かつ高感度な品質評価を可能にするため、医療・研究現場におけるRNAが脂質膜に内包された製剤の品質検査に使用することができる。 The method of the first aspect and the kit of the second aspect enable rapid and highly sensitive quality evaluation of preparations in which RNA is encapsulated in lipid membranes, so that RNA is encapsulated in lipid membranes at medical and research sites. can be used for quality inspection.
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されない。 The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these.
実施例1 脂質膜結合性プローブとRNA結合性プローブを用いたモデルワクチンの品質検査
(方法)
 ・モデルワクチンの作製方法
 Lipocapsulator(FD-U PL(脂質組成 DSPC:Cholesterol = 70 :30 (mol比)), Xygieia bioscience社)に20μM RNA(5'-CCC GUC ACA CCA UGG CCC UUC GGGG CUG GGG UGA AGU CGGG-3'(配列番号1), 41塩基長:大腸菌のリボソームRNAの一部を参考に設計したオリゴ核酸)を添加し、転倒混和した後に室温で15分インキュベートした。この溶液を攪拌しながら、オリゴ核酸内包専用液(Xygieia bioscience社)を加えた。その後、VIVASPIN6(ザルトリウス・ジャパン社)により精製することでモデルワクチン(平均径154 nm,Nanosight (Malvern Panalytical NTA5330)による測定)が得られた。
Example 1 Quality inspection of model vaccine using lipid membrane-binding probe and RNA-binding probe (method)
・Production method of model vaccine Lipocasulator (FD-UPL (lipid composition DSPC:Cholesterol = 70:30 (molar ratio)), Xygieia bioscience) with 20μM RNA (5'-CCC GUC ACA CCA UGG CCC UUC GGGG CUG GGG UGA) AGU CGGG-3′ (SEQ ID NO: 1), 41-base length: an oligonucleic acid designed with reference to a part of E. coli ribosomal RNA) was added, mixed by inversion, and then incubated at room temperature for 15 minutes. While stirring this solution, a special solution for encapsulating oligonucleotides (Xygieia Bioscience) was added. After that, a model vaccine (mean diameter 154 nm, measured by Nanosight (Malvern Panalytical NTA5330)) was obtained by purifying with VIVASPIN6 (Sartorius Japan).
 ・Triton有・無での試料の調製方法
 試料として上記モデルワクチンを用いた。モデルワクチンと高曲率性膜結合性プローブApoC-NR(励起波長 552 nm)またはRNA結合性プローブTO-PRO-1(励起波長 508.5 nm)を混ぜ、PBS緩衝液中での蛍光スペクトルを測定した。また、変性したモデルワクチンに対する蛍光応答を検討するために、モデルワクチンに終濃度0.1%Triton-X 100(ナカライテスク社)とを混ぜた試料も用いた。モデルワクチンの濃度は3.6 × 1011個/mLとし、各種プローブの濃度([ApoC-NR], [TO-PRO-1])は2.0 μMとした。なお、TO-PRO-1を用いた実験は試料とプローブを混ぜた後30分間室温でインキュベートした後に測定した。測定はすべて室温(25℃)で行った。
- Sample preparation method with and without Triton The above model vaccine was used as a sample. A model vaccine was mixed with a highly curved membrane-binding probe ApoC-NR (excitation wavelength 552 nm) or an RNA-binding probe TO-PRO-1 (excitation wavelength 508.5 nm), and fluorescence spectra in PBS buffer were measured. In addition, in order to examine the fluorescence response to the denatured model vaccine, a sample obtained by mixing the model vaccine with a final concentration of 0.1% Triton-X 100 (Nacalai Tesque) was also used. The concentration of the model vaccine was 3.6 × 10 11 cells/mL, and the concentration of each probe ([ApoC-NR], [TO-PRO-1]) was 2.0 µM. In addition, the experiment using TO-PRO-1 was measured after incubating at room temperature for 30 minutes after mixing the sample and the probe. All measurements were performed at room temperature (25°C).
(結果)
 図4(A)に示すように、モデルワクチンをApoC-NRと混ぜた試料(Model vaccineのグラフ)では、622 nmにおける蛍光強度がモデルワクチンを含まずApoC-NRのみを含む試料(Probeのグラフ)に対して426倍増大した。また、Triton-X(界面活性剤)添加によりモデルワクチンを含む試料の蛍光応答が著しく低下し(Model vaccine (+ Triton)のグラフ)、ApoC-NRのみを含む試料(Probe)に比べると622 nmで28倍の増大であった。この蛍光応答の低下は、リポソーム構造が変性したことに起因している。
(result)
As shown in Fig. 4(A), the fluorescence intensity at 622 nm of the sample in which the model vaccine was mixed with ApoC-NR (Graph of Model vaccine) shows that the fluorescence intensity at 622 nm of the sample containing only ApoC-NR without the model vaccine (Graph of Probe ) increased 426-fold. Also, the addition of Triton-X (surfactant) significantly reduced the fluorescence response of the sample containing the model vaccine (Graph of Model vaccine (+ Triton)), 622 nm compared to the sample containing only ApoC-NR (Probe). was a 28-fold increase in This decrease in fluorescence response is due to denaturation of the liposome structure.
 図4(B)に示すように、モデルワクチンをTO-PRO-1と混ぜた試料(Model vaccineのグラフ)では、538nmにおける蛍光強度がモデルワクチンを含まずTO-PRO-1のみを含む試料(Probeのグラフ)に対して172倍増大した。またTriton-X(界面活性剤)添加によりモデルワクチンを含む試料の蛍光応答が著しく増大し(Model vaccine (+ Triton)のグラフ)、TO-PRO-1のみを含む試料(Probe)に比べると538nmで379倍増大であった。この蛍光応答の増大は、リポソーム構造が変性し、内包されていたRNAが漏出したことに起因している。 As shown in Figure 4 (B), in the sample in which the model vaccine was mixed with TO-PRO-1 (Graph of Model vaccine), the fluorescence intensity at 538 nm was the sample containing only TO-PRO-1 without the model vaccine ( Probe graph) increased 172 times. In addition, the addition of Triton-X (surfactant) significantly increased the fluorescence response of the sample containing the model vaccine (Graph of Model vaccine (+ Triton)), which was 538 nm compared to the sample containing only TO-PRO-1 (Probe). 379-fold increase in This increase in fluorescence response was attributed to denaturation of the liposome structure and leakage of the encapsulated RNA.
実施例2 モデルワクチンの濃度依存的な蛍光検出
(方法)
 実施例1に記したモデルワクチンを用いた。モデルワクチンとApoC-NRまたはTO-PRO-1とを混ぜ、PBS緩衝液中での蛍光スペクトルを測定した。モデルワクチンの濃度は1.8 × 1010, 3.6 × 1010, 7.1 × 1010, 1.4 × 1011,3.6 × 1011個/mLとし、各種プローブの濃度は2.0 μMとした。なお、TO-PRO-1を用いた実験は試料とプローブを混ぜた後30分間室温でインキュベートした後に、測定した。測定はすべて室温(25℃)で行った。
Example 2 Concentration-dependent fluorescence detection of model vaccine (Method)
The model vaccine described in Example 1 was used. A model vaccine was mixed with ApoC-NR or TO-PRO-1, and fluorescence spectra in PBS buffer were measured. The concentrations of model vaccines were 1.8×10 10 , 3.6×10 10 , 7.1×10 10 , 1.4×10 11 , and 3.6×10 11 cells/mL, and the concentrations of various probes were 2.0 μM. In the experiment using TO-PRO-1, measurement was performed after mixing the sample and probe and incubating at room temperature for 30 minutes. All measurements were performed at room temperature (25°C).
(結果)
 図5(A)及び(B)に示すように、モデルワクチンにApoC-NRを混合した試料では、モデルワクチンの濃度依存的に蛍光応答が増大した(解析波長 622 nm、F0:モデルワクチンを含まずApoC-NRのみを含む試料の622nmにおける蛍光強度)。
 直線領域(1.8-7.1 × 1010個/mL)を用いて算出されるモデルワクチンの検出限界は3.4×107個/mLであった。
 図5(C)及び(D)に示すように、モデルワクチンにTO-PRO-1を混合した試料では、モデルワクチンの濃度依存的に蛍光応答が増大した(解析波長 538 nm、F0:モデルワクチンを含まずTO-PRO-1のみを含む試料の538nmにおける蛍光強度)。
 直線領域(1.8-14 × 1010個/mL)を用いて算出されるモデルワクチンの検出限界は1.6 ×109個/mLであった。
(result)
As shown in FIGS. 5 (A) and (B), in the sample in which ApoC-NR was mixed with the model vaccine, the fluorescence response increased in a concentration-dependent manner (analysis wavelength 622 nm, F 0 : model vaccine Fluorescence intensity at 622 nm of a sample containing only ApoC-NR without ApoC-NR).
The limit of detection for the model vaccine calculated using the linear range (1.8-7.1 x 1010 cells/mL) was 3.4 x 107 cells/mL.
As shown in FIGS. 5(C) and 5(D), in the sample in which TO-PRO-1 was mixed with the model vaccine, the fluorescence response increased depending on the concentration of the model vaccine (analysis wavelength 538 nm, F 0 : model Fluorescence intensity at 538 nm of samples containing only TO-PRO-1 without vaccine).
The limit of detection for the model vaccine calculated using the linear range (1.8-14 x 1010 cells/mL) was 1.6 x 109 cells/mL.
実施例3 RNA添加がワクチンの蛍光比に及ぼす影響
(方法)
 実施例1に記したモデルワクチンを用いた。モデルワクチンとApoC-NRまたはTO-PRO-1とを混ぜ、PBS緩衝液中での蛍光スペクトルを測定した。また、RNA添加に伴う各種プローブの蛍光応答変化を検討するためにモデルワクチンに終濃度4.0μM RNAを混ぜた試料も用いた。モデルワクチンの濃度は3.6 × 1011個/mLとし、各種プローブの濃度は2.0 μMとした。なお、TO-PRO-1を用いた実験は試料とプローブを混ぜた後30分間室温でインキュベートした後に、測定した。測定はすべて室温(25℃)で行った。モデルワクチンとRNAとを含む試料に対する蛍光応答(F)の、モデルワクチンを含むがRNAを含まない試料に対する蛍光応答(Fmodel/vaccine)の比を算出した。プローブをApoC-NRとした場合及びTO-PRO-1とした場合の、Fmodel/vaccineを算出した(ApoC-NR: 励起波長552nm, 解析波長622nm,TO-PRO-1:励起波長508.5nm, 解析波長538nm)。
Example 3 Effect of RNA Addition on Vaccine Fluorescence Ratio (Method)
The model vaccine described in Example 1 was used. A model vaccine was mixed with ApoC-NR or TO-PRO-1, and fluorescence spectra in PBS buffer were measured. In addition, a model vaccine mixed with a final concentration of 4.0 μM RNA was also used to examine changes in the fluorescence response of various probes due to the addition of RNA. The concentration of the model vaccine was 3.6×10 11 cells/mL, and the concentration of each probe was 2.0 μM. In the experiment using TO-PRO-1, measurement was performed after mixing the sample and probe and incubating at room temperature for 30 minutes. All measurements were performed at room temperature (25°C). The ratio of the fluorescence response (F) for the sample containing the model vaccine and RNA to the fluorescence response for the sample containing the model vaccine but no RNA (F model/vaccine ) was calculated. F model/vaccine was calculated when ApoC-NR and TO-PRO-1 were used as probes (ApoC-NR: excitation wavelength 552 nm, analysis wavelength 622 nm, TO-PRO-1: excitation wavelength 508.5 nm, analysis wavelength 538 nm).
(結果)
 図6に示すように、ApoC-NRを混合した試料ではRNA添加に伴う蛍光応答変化であるF/Fmodel/vaccineは1.1倍程度と低かった。TO-PRO-1を混合した試料ではRNA添加に伴い蛍光応答変化であるF/Fmodel/vaccineが7.9倍も増加した。これはRNA漏出にはTO-PRO-1のみが応答することを示唆している。
(result)
As shown in FIG. 6, in the sample mixed with ApoC-NR, F/F model/vaccine, which is the fluorescence response change associated with the addition of RNA, was as low as about 1.1 times. In the sample mixed with TO-PRO-1, F/F model/vaccine , which is the change in fluorescence response, increased 7.9 times with the addition of RNA. This suggests that only TO-PRO-1 responds to RNA leakage.

Claims (8)

  1.  RNAが脂質膜に内包された製剤の品質を検査する方法であって、
     RNAと該RNAを包む脂質膜とを備えた製剤の前記RNAに結合する化合物を、前記製剤と接触させる工程、
     前記製剤の前記脂質膜に結合する蛍光色素を、前記製剤と接触させる工程、及び
     前記RNAと結合した化合物及び前記脂質膜に結合した前記蛍光色素のうちの少なくとも一方を検出する工程
    を含む方法。
    A method for inspecting the quality of a formulation in which RNA is encapsulated in a lipid membrane,
    A step of contacting a compound that binds to the RNA of a formulation comprising RNA and a lipid membrane enveloping the RNA with the formulation;
    A method comprising: contacting a fluorescent dye that binds to the lipid membrane of the formulation with the formulation; and detecting at least one of a compound bound to the RNA and the fluorescent dye bound to the lipid membrane.
  2.  前記検出する工程の後で、RNAと結合した化合物に由来する発光強度の変化、脂質膜に結合した前記蛍光色素に由来する発光強度の変化、又はその両方に基づいて、前記製剤の品質を評価する工程をさらに含む請求項1に記載の方法。 After the detecting step, the quality of the formulation is evaluated based on the change in luminescence intensity derived from the compound bound to RNA, the change in luminescence intensity derived from the fluorochrome bound to the lipid membrane, or both. 2. The method of claim 1, further comprising the step of:
  3.  前記RNAに結合する化合物が、脂質膜に非透過性でRNAに結合できる蛍光分子である請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the compound that binds to RNA is a fluorescent molecule that is impermeable to lipid membranes and capable of binding to RNA.
  4.  前記RNAに結合する化合物が、脂質膜に透過性でRNAに結合できる蛍光分子である請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the compound that binds to RNA is a fluorescent molecule that is permeable to lipid membranes and capable of binding to RNA.
  5.  前記評価する工程は、前記RNAに結合する化合物に由来する蛍光シグナルが増大するか、前記蛍光色素に由来する蛍光シグナルが減少するか、又はその両方である場合に、前記製剤の品質が低下していると評価することを含む請求項1~3のいずれか一項に記載の方法。 In the step of evaluating, if the fluorescence signal derived from the compound that binds to the RNA increases, or the fluorescence signal derived from the fluorochrome decreases, or both, the quality of the preparation deteriorates. A method according to any one of claims 1 to 3, comprising evaluating that the
  6.  前記脂質膜に結合する蛍光色素が、脂質パッキング欠損に対して結合するペプチド性蛍光色素である請求項1~5のいずれか一項に記載の方法。 The method according to any one of claims 1 to 5, wherein the fluorescent dye that binds to lipid membranes is a peptidic fluorescent dye that binds to lipid packing defects.
  7.  前記RNAに結合する化合物を、前記製剤と接触させる工程と、前記脂質膜に結合する蛍光色素を、前記製剤と接触させる工程とが、前記RNAに結合する化合物と、前記脂質膜に結合する蛍光色素とを、前記製剤を含む一つのサンプルに添加することにより行われる請求項1~6のいずれか一項に記載の方法。 The step of contacting the compound that binds to the RNA with the preparation, and the step of contacting the fluorescent dye that binds to the lipid membrane with the preparation include the compound that binds to the RNA and the fluorescence that binds to the lipid membrane. A method according to any one of claims 1 to 6, carried out by adding a dye to a sample containing said formulation.
  8.  RNAが脂質膜に内包された製剤の品質を検査するためのキットであって、
     RNAと該RNAを包む脂質膜とを備えた製剤の前記RNAに結合する化合物と、
     前記製剤の前記脂質膜に結合する蛍光色素と、を備えたキット。
    A kit for testing the quality of a formulation in which RNA is encapsulated in a lipid membrane,
    a compound that binds to the RNA in a formulation comprising RNA and a lipid membrane enveloping the RNA;
    a fluorescent dye that binds to the lipid membrane of the formulation.
PCT/JP2021/030716 2021-08-23 2021-08-23 Development of quality control technology for pharmaceutical formulation having rna encapsulated in lipid membrane WO2023026315A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023543483A JPWO2023026315A1 (en) 2021-08-23 2021-08-23
PCT/JP2021/030716 WO2023026315A1 (en) 2021-08-23 2021-08-23 Development of quality control technology for pharmaceutical formulation having rna encapsulated in lipid membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/030716 WO2023026315A1 (en) 2021-08-23 2021-08-23 Development of quality control technology for pharmaceutical formulation having rna encapsulated in lipid membrane

Publications (1)

Publication Number Publication Date
WO2023026315A1 true WO2023026315A1 (en) 2023-03-02

Family

ID=85321661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030716 WO2023026315A1 (en) 2021-08-23 2021-08-23 Development of quality control technology for pharmaceutical formulation having rna encapsulated in lipid membrane

Country Status (2)

Country Link
JP (1) JPWO2023026315A1 (en)
WO (1) WO2023026315A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149246A (en) * 2001-08-27 2003-05-21 Kyowa Hakko Kogyo Co Ltd Method for detecting substance
JP2020176135A (en) * 2010-05-12 2020-10-29 アービュタス バイオファーマ コーポレイション Cationic lipids and methods of use thereof
WO2021008708A1 (en) * 2019-07-18 2021-01-21 Biontech Rna Pharmaceuticals Gmbh Method for determining at least one parameter of a sample composition comprising nucleic acid, such as rna, and optionally particles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149246A (en) * 2001-08-27 2003-05-21 Kyowa Hakko Kogyo Co Ltd Method for detecting substance
JP2020176135A (en) * 2010-05-12 2020-10-29 アービュタス バイオファーマ コーポレイション Cationic lipids and methods of use thereof
WO2021008708A1 (en) * 2019-07-18 2021-01-21 Biontech Rna Pharmaceuticals Gmbh Method for determining at least one parameter of a sample composition comprising nucleic acid, such as rna, and optionally particles

Also Published As

Publication number Publication date
JPWO2023026315A1 (en) 2023-03-02

Similar Documents

Publication Publication Date Title
You et al. Peptide-induced aggregation of glutathione-capped gold nanoclusters: A new strategy for designing aggregation-induced enhanced emission probes
CN110095608B (en) Tumor exosome nano fluorescence sensor based on magnetic separation and DNA self-assembly
Huang et al. A ratiometric nanosensor based on fluorescent carbon dots for label-free and highly selective recognition of DNA
Kurt et al. Dual-excitation upconverting nanoparticle and quantum dot aptasensor for multiplexed food pathogen detection
Wu et al. Multiplexed detection of influenza A virus subtype H5 and H9 via quantum dot-based immunoassay
Barman et al. VAP-A and its binding partner CERT drive biogenesis of RNA-containing extracellular vesicles at ER membrane contact sites
Neugebauer et al. Ruthenium polypyridyl peptide conjugates: membrane permeable probes for cellular imaging
JP6324841B2 (en) Water-soluble fluorescent particles containing entangled fluorescent polymers and amphiphilic molecules
Olmeda et al. Pulmonary surfactant layers accelerate O2 diffusion through the air-water interface
Wang et al. Lipid mixing and content release in single-vesicle, SNARE-driven fusion assay with 1–5 ms resolution
Khalid et al. Doxorubicin loaded nanodiamond-silk spheres for fluorescence tracking and controlled drug release
Lin et al. Fluorescence resonance energy transfer aptasensor for platelet-derived growth factor detection based on upconversion nanoparticles in 30% blood serum
Schwamborn et al. Monitoring ATPase induced pH changes in single proteoliposomes with the lipid-coupled fluorophore Oregon Green 488
Li et al. One-step sensitive thrombin detection based on a nanofibrous sensing platform
Li et al. Bacteria-targeting BSA-stabilized SiC nanoparticles as a fluorescent nanoprobe for forensic identification of saliva
WO2023026315A1 (en) Development of quality control technology for pharmaceutical formulation having rna encapsulated in lipid membrane
Magni et al. Azobenzene photoisomerization probes cell membrane viscosity
Kahveci et al. Selective recognition and imaging of bacterial model membranes over mammalian ones by using cationic conjugated polyelectrolytes
JP2008298743A (en) Molecular interaction detecting method by fluorometric analysis
US9494524B2 (en) Assay for analytes based on aggregation
Cheng et al. Redox‐Responsive Nanoparticles with Aggregation‐Induced Emission (AIE) Characteristic for Fluorescence Imaging
CN114225044B (en) Reagent for modifying extracellular vesicles and preparation method thereof
CN108760695B (en) Method for quantitatively detecting thrombin by using phosphorescence probe based on PRET
Park et al. Membrane Rigidity‐Tunable Fusogenic Nanosensor for High Throughput Detection of Fusion‐Competent Influenza A Virus
Zhang et al. A sustainable luminescence-enhanced tri-assembly of polyoxometalate-peptide-polyamine developed for ultrasensitive spermine determination and discrimination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954932

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023543483

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE