WO2023025111A1 - Ranging method and apparatus - Google Patents

Ranging method and apparatus Download PDF

Info

Publication number
WO2023025111A1
WO2023025111A1 PCT/CN2022/114053 CN2022114053W WO2023025111A1 WO 2023025111 A1 WO2023025111 A1 WO 2023025111A1 CN 2022114053 W CN2022114053 W CN 2022114053W WO 2023025111 A1 WO2023025111 A1 WO 2023025111A1
Authority
WO
WIPO (PCT)
Prior art keywords
zcz
length
sequence
sequences
ranging
Prior art date
Application number
PCT/CN2022/114053
Other languages
French (fr)
Chinese (zh)
Inventor
段瑞洋
李雪茹
王碧钗
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111194381.8A external-priority patent/CN115932725A/en
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023025111A1 publication Critical patent/WO2023025111A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/04Position of source determined by a plurality of spaced direction-finders

Definitions

  • the ZCZ sequence with a length of 32 and a ZCZ interval length of 17 includes at least one sequence in Table 6 in the detailed description of the specification.
  • the cross-correlation peaks of different sequences are all above 0.25, and the cross-correlation peaks of sequence 1 and sequence 5 even reach 0.6875. Therefore, if multiple Ipatov sequences are used for ranging at the same time, false peaks may be generated when searching for autocorrelation peaks, resulting in inaccurate calculation of time of arrival TOA and large ranging errors.
  • the current standard stipulates that only sequence pairs with good periodic cross-correlation (such as sequences 1 and 2, sequences 3 and 4, sequences 5 and 6, and sequences 7 and 8) can be used in the same channel, and other sequences can be used in the same channel. used in different channels. Therefore, the Ipatov sequence in the current standard can only support synchronous ranging of two Responders in the same channel at most, which is far from meeting the one-to-many ranging requirements in many application scenarios (such as smart car key positioning, smart home positioning).
  • serial numbers (such as 1, 2, 3, ... 16) of the ZCZ sequences in the multiple tables involved in this application are only for convenience of description, and do not imply sequence.
  • Table 3 Eight ZCZ sequences with a length of 32 and a ZCZ interval length of 5.
  • Table 4 16 ZCZ sequences with a length of 128 and a ZCZ interval length of 9. These 16 ZCZ sequences do not have perfect autocorrelation properties in the full period (ie [-127, 0] and [0, 127]), but in the ZCZ interval (ie [-4, 4]), 8 ZCZ Sequences have perfect autocorrelation and cross-correlation properties.
  • the first device may send the first message to the second device in a multicast, unicast or broadcast manner.
  • the maximum ranging range supported by the sequence is determined based on the maximum ranging delay difference supported by the sequence.
  • Step 403 The Initiator assigns a corresponding ZCZ sequence to each Responder.
  • the processing module 510 may perform actions other than the sending action and the receiving action among the actions performed by the first device in the above method embodiments.
  • the receiving module 520a and the sending module 520b in FIG. 5 may be implemented by the transceiver 620 .
  • the transceiver 620 is divided into a receiver and a transmitter, the receiver performs the function of the receiving module, and the transmitter performs the function of the sending module.

Abstract

A ranging method and apparatus, which are used for realizing accurate ranging. The method comprises: firstly, a first apparatus receiving a first ranging response signal from a second apparatus, wherein the first ranging response signal is generated on the basis of a first zero correlation zone (ZCZ) sequence, and the first ZCZ sequence is a sequence among a plurality of pre-configured ZCZ sequences; and then, the first apparatus determining the distance between the first apparatus and the second apparatus on the basis of the first ranging response signal. A ranging response signal is generated by means of a ZCZ sequence, such that accurate ranging can be realized.

Description

一种测距方法及装置A distance measuring method and device
相关申请的交叉引用Cross References to Related Applications
本申请要求在2021年8月26日提交中华人民共和国知识产权局、申请号为202110987224.6、发明名称为“一种SPS调度方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2021年10月13日提交中国专利局、申请号为202111194381.8、申请名称为“一种测距方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。This application claims the priority of a Chinese patent application filed with the Intellectual Property Office of the People's Republic of China on August 26, 2021, with the application number 202110987224.6 and the invention title "A SPS Scheduling Method", the entire contents of which are incorporated by reference in this application middle; this application claims the priority of a Chinese patent application filed with the China Patent Office on October 13, 2021, with the application number 202111194381.8, and the application title "A Method and Device for Distance Measurement", the entire contents of which are incorporated herein by reference Applying.
技术领域technical field
本申请实施例涉及测距等领域,尤其涉及一种测距方法及装置。The embodiments of the present application relate to fields such as ranging, and in particular, to a ranging method and device.
背景技术Background technique
随着科技的发展,测距及定位技术的应用也越来越广泛。其中,传统的全球定位系统(global positioning system,GPS)需要接收卫星信号,但室内定位应用却无法接收到卫星信号,因此GPS无法实现室内定位。此外,GPS的定位精度一般在米级范围内,无法满足高精度定位的需求。无线局域网(wireless fidelity,WiFi)、蓝牙(bluetooth,BT)等通信系统可以实现室内测距及定位,但精度较低,通常在1~10米的范围内。With the development of science and technology, the application of ranging and positioning technology is becoming more and more extensive. Among them, the traditional global positioning system (global positioning system, GPS) needs to receive satellite signals, but indoor positioning applications cannot receive satellite signals, so GPS cannot achieve indoor positioning. In addition, the positioning accuracy of GPS is generally within the range of meters, which cannot meet the needs of high-precision positioning. Wireless local area network (wireless fidelity, WiFi), Bluetooth (bluetooth, BT) and other communication systems can achieve indoor ranging and positioning, but the accuracy is low, usually within the range of 1 to 10 meters.
基于此,如何实现准确测距是需要解决的技术问题。Based on this, how to realize accurate ranging is a technical problem that needs to be solved.
发明内容Contents of the invention
本申请实施例提供一种测距方法及装置,用以实现准确测距。Embodiments of the present application provide a ranging method and device, so as to realize accurate ranging.
第一方面,提供了一种测距方法,首先,第一装置接收来自第二装置的第一测距响应信号,所述第一测距响应信号基于第一零相关区(zero correlation zone,ZCZ)序列生成,所述第一ZCZ序列属于预配置的多个ZCZ序列中的序列。然后,所述第一装置基于所述第一测距响应信号,确定所述第一装置和所述第二装置之间的距离。In a first aspect, a ranging method is provided. First, a first device receives a first ranging response signal from a second device, and the first ranging response signal is based on a first zero correlation zone (ZCZ ) sequence generation, the first ZCZ sequence belongs to a sequence in a plurality of pre-configured ZCZ sequences. The first device then determines a distance between the first device and the second device based on the first ranging response signal.
本申请通过ZCZ序列来生成测距响应信号,可以实现准确测距。In the present application, the ranging response signal is generated through the ZCZ sequence, which can realize accurate ranging.
第二方面,提供了一种测距方法,首先,第二装置基于第一ZCZ序列生成第一测距响应信号,所述第一ZCZ序列属于预配置的多个ZCZ序列中的序列。然后,第二装置向第一装置发送第一测距响应信号。In a second aspect, a ranging method is provided. First, a second device generates a first ranging response signal based on a first ZCZ sequence, and the first ZCZ sequence belongs to a sequence in a plurality of preconfigured ZCZ sequences. Then, the second device sends a first ranging response signal to the first device.
以下可能的实现可以适用于第一方面,也可以适用于第二方面。The following possible implementations can be applied to the first aspect as well as the second aspect.
在一种可能的实现中,所述多个ZCZ序列均为二元序列。In a possible implementation, the multiple ZCZ sequences are all binary sequences.
在一种可能的实现中,所述多个ZCZ序列在ZCZ区间内具有完美的周期自相关性质和完美的周期互相关性质。完美的周期自相关性质和完美的周期互相关性质,可以避免序列之间的相互干扰,提高测距的准确性。In a possible implementation, the multiple ZCZ sequences have perfect periodic autocorrelation properties and perfect periodic cross-correlation properties in the ZCZ interval. The perfect periodic autocorrelation and perfect periodic cross-correlation properties can avoid mutual interference between sequences and improve the accuracy of ranging.
在一种可能的实现中,在所述多个ZCZ序列中:长度为32的ZCZ序列的ZCZ区间长度为5或9或17;或者,长度为128的ZCZ序列的ZCZ区间长度为9或17或33;或者,长度为256的ZCZ序列的ZCZ区间长度为17或33或65。不同的ZCZ区间可以满足不同的测距需求,使得测距更加灵活。In a possible implementation, among the multiple ZCZ sequences: the length of the ZCZ interval of the ZCZ sequence with a length of 32 is 5 or 9 or 17; or the length of the ZCZ interval of a ZCZ sequence with a length of 128 is 9 or 17 or 33; or, the ZCZ interval length of a ZCZ sequence with a length of 256 is 17 or 33 or 65. Different ZCZ intervals can meet different ranging requirements, making ranging more flexible.
在一种可能的实现中,所述多个ZCZ序列包括以下一项或多项:8条长度为32、ZCZ区间长度为5的ZCZ序列;4条长度为32、ZCZ区间长度为9的ZCZ序列;2条长度为32、ZCZ区间长度为17的ZCZ序列;16条长度为128、ZCZ区间长度为9的ZCZ序列;8条长度为128、ZCZ区间长度为17的ZCZ序列;4条长度为128、ZCZ区间长度为33的ZCZ序列;16条长度为256、ZCZ区间长度为17的ZCZ序列;8条长度为256、ZCZ区间长度为33的ZCZ序列;4条长度为256、ZCZ区间长度为65的ZCZ序列。针对同一ZCZ区间长度,均有多条ZCZ序列,这样可以实现一对多的测距需求,使得测距更加灵活。In a possible implementation, the multiple ZCZ sequences include one or more of the following: 8 ZCZ sequences with a length of 32 and a ZCZ interval length of 5; 4 ZCZ sequences with a length of 32 and a ZCZ interval length of 9 Sequence; 2 ZCZ sequences with length 32 and ZCZ interval length 17; 16 ZCZ sequences with length 128 and ZCZ interval length 9; 8 ZCZ sequences with length 128 and ZCZ interval length 17; 4 lengths 128 ZCZ sequences with a ZCZ interval length of 33; 16 ZCZ sequences with a length of 256 and a ZCZ interval length of 17; 8 ZCZ sequences with a length of 256 and a ZCZ interval length of 33; 4 ZCZ sequences with a length of 256 and a ZCZ interval A ZCZ sequence of length 65. For the same ZCZ interval length, there are multiple ZCZ sequences, which can realize one-to-many ranging requirements and make ranging more flexible.
在一种可能的实现中,长度为32、ZCZ区间长度为5的ZCZ序列包括以下至少一个:In a possible implementation, the ZCZ sequence with a length of 32 and a ZCZ interval length of 5 includes at least one of the following:
-1-1-1-1 1 1 1 1 1-1 1-1-1 1-1 1 1 1-1-1-1-1 1 1 -1 1 1-1 1-1-1 1;-1-1-1-1 1 1 1 1 1-1 1-1-1 1-1 1 1 1-1-1-1-1 1 1 -1 1 1-1 1-1-1 1;
-1-1-1-1-1-1-1-1 1-1 1-1 1-1 1-1 1 1-1-1 1 1-1-1 -1 1 1-1-1 1 1-1;-1-1-1-1-1-1-1-1 1-1 1-1 1-1 1-1 1 1-1-1 1 1-1-1 -1 1 1-1-1 1 1 -1;
1-1 1-1-1 1-1 1-1-1-1-1 1 1 1 1-1 1 1-1 1-1-1 1 1 1-1-1-1-1 1 1;1-1 1-1-1 1-1 1-1-1-1-1 1 1 1 1-1 1 1-1 1-1-1 1 1 1-1-1-1-1 1 1;
1-1 1-1 1-1 1-1-1-1-1-1-1-1-1-1-1 1 1-1-1 1 1-1 1 1-1-1 1 1 -1-1;1-1 1-1 1-1 1-1-1-1-1-1-1-1-1-1-1 1 1-1-1 1 1-1 1 1-1-1 1 1 -1 -1;
1 1-1-1-1-1 1 1-1 1 1-1 1-1-1 1-1-1-1-1 1 1 1 1 1-1 1-1-1 1-1 1;1 1-1-1-1-1 1 1-1 1 1-1 1-1-1 1-1-1-1-1 1 1 1 1 1-1 1-1-1 1-1 1;
1 1-1-1 1 1-1-1-1 1 1-1-1 1 1-1-1-1-1-1-1-1-1-1 1-1 1-1 1-1 1-1;1 1-1-1 1 1-1-1-1 1 1-1-1 1 1-1-1-1-1-1-1-1-1-1 1-1 1-1 1-1 1 -1;
-1 1 1-1 1-1-1 1 1 1-1-1-1-1 1 1 1-1 1-1-1 1-1 1-1-1-1-1 1 1 1 1;-1 1 1-1 1-1-1 1 1 1-1-1-1-1 1 1 1-1 1-1-1 1-1 1-1-1-1-1 1 1 1;
-1 1 1-1-1 1 1-1 1 1-1-1 1 1-1-1 1-1 1-1 1-1 1-1-1-1-1-1-1 -1-1-1。-1 1 1-1-1 1 1-1 1 1-1-1 1 1-1-1 1-1 1-1 1-1 1-1-1-1-1-1-1 -1-1 -1.
在一种可能的实现中,长度为32、ZCZ区间长度为9的ZCZ序列包括说明书具体实施方式中的表5中的至少一个序列。In a possible implementation, the ZCZ sequence with a length of 32 and a ZCZ interval length of 9 includes at least one sequence in Table 5 in the detailed description of the specification.
在一种可能的实现中,长度为32、ZCZ区间长度为17的ZCZ序列包括说明书具体实施方式中的表6中的至少一个序列。In a possible implementation, the ZCZ sequence with a length of 32 and a ZCZ interval length of 17 includes at least one sequence in Table 6 in the detailed description of the specification.
在一种可能的实现中,长度为128、ZCZ区间长度为9的ZCZ序列包括说明书具体实施方式中的表4中的至少一个序列。In a possible implementation, the ZCZ sequence with a length of 128 and a ZCZ interval length of 9 includes at least one sequence in Table 4 in the detailed description of the specification.
在一种可能的实现中,长度为128、ZCZ区间长度为17的ZCZ序列包括说明书具体实施方式中的表7中的至少一个序列。In a possible implementation, the ZCZ sequence with a length of 128 and a ZCZ interval length of 17 includes at least one sequence in Table 7 in the detailed description of the specification.
在一种可能的实现中,长度为128、ZCZ区间长度为33的ZCZ序列包括说明书具体实施方式中的表8中的至少一个序列。In a possible implementation, the ZCZ sequence with a length of 128 and a ZCZ interval length of 33 includes at least one sequence in Table 8 in the detailed description of the specification.
在一种可能的实现中,长度为256、ZCZ区间长度为17的ZCZ序列包括说明书具体实施方式中的表9中的至少一个序列。In a possible implementation, the ZCZ sequence with a length of 256 and a ZCZ interval length of 17 includes at least one sequence in Table 9 in the detailed description of the specification.
在一种可能的实现中,长度为256、ZCZ区间长度为33的ZCZ序列包括说明书具体实施方式中的表10中的至少一个序列。In a possible implementation, the ZCZ sequence with a length of 256 and a ZCZ interval length of 33 includes at least one sequence in Table 10 in the detailed description of the specification.
在一种可能的实现中,长度为256、ZCZ区间长度为65的ZCZ序列包括说明书具体 实施方式中的表11中的至少一个序列。In a possible implementation, the ZCZ sequence with a length of 256 and a ZCZ interval length of 65 includes at least one sequence in Table 11 in the detailed description of the specification.
在一种可能的实现中,所述第一测距响应信号基于第一ZCZ序列生成包括:将长度为32的第一ZCZ序列中的每个码元后补充15个0,得到第一测距响应信号;将长度为128的第一ZCZ序列中的每个码元后补充3个0,得到第一测距响应信号;将长度为32的第一ZCZ序列中的每个码元后补充3个0,得到第一测距响应信号。In a possible implementation, the generation of the first ranging response signal based on the first ZCZ sequence includes: adding 15 0s to each symbol in the first ZCZ sequence with a length of 32 to obtain the first ranging Response signal; add 3 0s after each symbol in the first ZCZ sequence with a length of 128 to obtain the first ranging response signal; add 3 after each symbol in the first ZCZ sequence with a length of 32 0 to get the first ranging response signal.
在一种可能的实现中,在存在多个所述第二装置的情况下,不同的第二装置发送的第一ZCZ序列不同,多个的第二装置对应的多个所述第一ZCZ序列的参数信息相同,所述参数信息包括以下至少一项:ZCZ区间长度、可支持最大测距时延差、可支持最大测距范围。In a possible implementation, when there are multiple second devices, the first ZCZ sequences sent by different second devices are different, and the multiple first ZCZ sequences corresponding to multiple second devices The parameter information is the same, and the parameter information includes at least one of the following: the length of the ZCZ interval, the maximum supported ranging delay difference, and the supported maximum ranging range.
多条第一ZCZ序列的参数相同,可以提高测距准确性。另外,参数信息还可以包括:序列长度和/或码片长度。The parameters of the multiple first ZCZ sequences are the same, which can improve the ranging accuracy. In addition, the parameter information may also include: sequence length and/or chip length.
在一种可能的实现中,第一装置还可以向第二装置发送第一消息,所述第一消息用于确定所述第二装置是否支持第一ZCZ序,然后,第一装置接收来自所述第二装置的第二消息,所述第二消息用于指示所述第二装置支持第一ZCZ序列、或不支持第一ZCZ序列。In a possible implementation, the first device may also send a first message to the second device, the first message is used to determine whether the second device supports the first ZCZ sequence, and then the first device receives the A second message from the second device, where the second message is used to indicate that the second device supports the first ZCZ sequence or does not support the first ZCZ sequence.
第一装置与第二装置中预配置的多个ZCZ序列可以完全相同,也可以部分相同、部分不同。第一装置与第二装置相互确定,各自支持(即预配置)哪些序列,以便采取双方都支持的序列进行测距。The multiple ZCZ sequences preconfigured in the first device and the second device may be completely the same, or may be partly the same or partly different. The first device and the second device mutually determine which sequences each supports (that is, pre-configures), so as to adopt the sequences supported by both parties for ranging.
第三方面,提供了一种测距装置,所述装置具有实现上述第一方面及第一方面任一可能的实现中的功能,或实现上述第二方面及第二方面任一可能的实现中的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的功能模块。The third aspect provides a distance measuring device, the device has the function of realizing the above first aspect and any possible implementation of the first aspect, or realizing the above second aspect and any possible implementation of the second aspect function. These functions may be implemented by hardware, or may be implemented by executing corresponding software through hardware. The hardware or software includes one or more functional modules corresponding to the above functions.
第四方面,提供了一种测距装置,包括处理器,可选的,还包括存储器;所述处理器和所述存储器耦合;所述存储器,用于存储计算机程序或指令;所述处理器,用于执行所述存储器中的部分或者全部计算机程序或指令,当所述部分或者全部计算机程序或指令被执行时,用于实现上述第一方面及第一方面任一可能的实现的方法中第一装置的功能,或实现上述第二方面及第二方面任一可能的实现中第二装置的功能。In a fourth aspect, a distance measuring device is provided, including a processor, and optionally, a memory; the processor is coupled to the memory; the memory is used to store computer programs or instructions; the processor , for executing part or all of the computer programs or instructions in the memory, when the part or all of the computer programs or instructions are executed, for implementing the above first aspect and any possible implementation method of the first aspect The function of the first device, or the function of the second device in any possible implementation of the above-mentioned second aspect and the second aspect.
在一种可能的实现中,所述装置还可以包括收发器,所述收发器,用于发送所述处理器处理后的信号,或者接收输入给所述处理器的信号。所述收发器可以执行第一方面及第一方面任一可能的实现中第一装置执行的发送动作或接收动作;或者,执行第二方面及第二方面任一可能的实现中第二装置执行的发送动作或接收动作。In a possible implementation, the apparatus may further include a transceiver, where the transceiver is configured to send a signal processed by the processor, or receive a signal input to the processor. The transceiver can perform the sending action or receiving action performed by the first device in any possible implementation of the first aspect and the first aspect; or, perform the second aspect and any possible implementation of the second aspect performed by the second device send action or receive action.
第五方面,本申请提供了一种芯片系统,该芯片系统包括一个或多个处理器(也可以称为处理电路),所述处理器与存储器(也可以称为存储介质)之间电耦合;所述存储器可以位于所述芯片系统中,也可以不位于所述芯片系统中;所述存储器,用于存储计算机程序或指令;所述处理器,用于执行所述存储器中的部分或者全部计算机程序或指令,当所述部分或者全部计算机程序或指令被执行时,用于实现上述第一方面及第一方面任一可能的实现的方法中第一装置的功能,或实现上述第二方面及第二方面任一可能的实现中第二装置的功能。In a fifth aspect, the present application provides a chip system, the chip system includes one or more processors (also referred to as processing circuits), and the electrical coupling between the processors and memories (also referred to as storage media) The memory may or may not be located in the chip system; the memory is used to store computer programs or instructions; the processor is used to execute part or all of the memory A computer program or instruction, when the part or all of the computer program or instruction is executed, is used to realize the function of the first device in the above first aspect and any possible implementation method of the first aspect, or to realize the above second aspect and the function of the second device in any possible implementation of the second aspect.
在一种可能的实现中,所述芯片系统还可以包括输入输出接口(也可以称为测距接口),所述输入输出接口,用于输出所述处理器处理后的信号,或者接收输入给所述处理器的信号。所述输入输出接口可以执行第一方面及第一方面任一可能的实现中第一装置执行的发送动作或接收动作;或者,执行第二方面及第二方面任一可能的实现中第二装置执行的发送动作或接收动作。具体的,输出接口执行发送动作,输入接口执行接收动作。In a possible implementation, the chip system may further include an input-output interface (also called a ranging interface), and the input-output interface is used to output the signal processed by the processor, or receive an input to signal to the processor. The input-output interface can perform the sending action or receiving action performed by the first device in the first aspect and any possible implementation of the first aspect; or, execute the second aspect and the second device in any possible implementation of the second aspect The send action or receive action performed. Specifically, the output interface performs a sending action, and the input interface performs a receiving action.
在一种可能的实现中,该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。In a possible implementation, the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
第六方面,提供了一种计算机可读存储介质,用于存储计算机程序,所述计算机程序包括用于实现第一方面及第一方面任一可能的实现中的功能的指令,或用于实现第二方面及第二方面任一可能的实现中的功能的指令。In a sixth aspect, there is provided a computer-readable storage medium for storing a computer program, the computer program including instructions for realizing the functions in the first aspect and any possible implementation of the first aspect, or for realizing Instructions for the functions of the second aspect and any possible implementation of the second aspect.
或者,一种计算机可读存储介质,用于存储计算机程序,所述计算机程序被计算机执行时,可以使得所述计算机执行上述第一方面及第一方面任一可能的实现的方法中第一装置执行的方法,或执行上述第二方面及第二方面任一可能的实现中第二装置执行的方法。Alternatively, a computer-readable storage medium is used to store a computer program. When the computer program is executed by a computer, the computer can execute the first aspect and the first device in any possible implementation method of the first aspect. Execute the method, or execute the second aspect and the method executed by the second device in any possible implementation of the second aspect.
第七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面及第一方面任一可能的实现中由第一装置执行的方法,或执行上述第二方面及第二方面任一可能的实现中由第二装置执行的方法。In a seventh aspect, a computer program product is provided, and the computer program product includes: computer program code, when the computer program code is run on a computer, the computer is made to execute the above-mentioned first aspect and any possible method of the first aspect. The method executed by the first device in the implementation, or the method executed by the second device in the second aspect and any possible implementation of the second aspect.
第八方面,提供了一种测距系统,所述测距系统包括执行上述第一方面及第一方面任一可能的实现的方法中的第一装置和执行上述第二方面及第二方面任一可能的实现的方法中的第二装置。In an eighth aspect, a ranging system is provided, and the ranging system includes the first device performing the first aspect and any possible implementation method of the first aspect above, and performing any of the second aspect and any possible implementation method of the second aspect above. A second device in a possible method of implementation.
上述第三方面至第八方面的技术效果可以参照第一方面至第二方面中的描述,重复之处不再赘述。For the technical effects of the above third to eighth aspects, reference may be made to the descriptions in the first to second aspects, and repeated descriptions will not be repeated.
附图说明Description of drawings
图1为本申请实施例中提供的一种测距场景示意图;FIG. 1 is a schematic diagram of a ranging scene provided in an embodiment of the present application;
图2为本申请实施例中提供的一种测距方法流程图;FIG. 2 is a flowchart of a ranging method provided in an embodiment of the present application;
图3a、图3b、图3c、图3d、图3e、图3f分别为本申请实施例中提供的一种仿真示意图;Figure 3a, Figure 3b, Figure 3c, Figure 3d, Figure 3e, and Figure 3f are respectively a schematic diagram of a simulation provided in the embodiment of the present application;
图4为本申请实施例中提供的一种测距方法流程图;FIG. 4 is a flowchart of a ranging method provided in an embodiment of the present application;
图5为本申请实施例中提供的一种测距装置结构图;FIG. 5 is a structural diagram of a distance measuring device provided in an embodiment of the present application;
图6为本申请实施例中提供的一种测距装置结构图。FIG. 6 is a structural diagram of a ranging device provided in an embodiment of the present application.
具体实施方式Detailed ways
为便于理解本申请实施例的技术方案,下面将对本申请实施例提供的方法的系统架构进行简要说明。可理解的,本申请实施例描述的系统架构是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。In order to facilitate understanding of the technical solutions of the embodiments of the present application, the system architecture of the method provided by the embodiments of the present application will be briefly described below. It can be understood that the system architecture described in the embodiments of the present application is for more clearly illustrating the technical solutions of the embodiments of the present application, and does not constitute a limitation on the technical solutions provided by the embodiments of the present application.
为便于理解本申请实施例,接下来对本请的应用场景进行介绍,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。In order to facilitate the understanding of the embodiments of the present application, the application scenarios of the present application are introduced next. The network architecture and business scenarios described in the embodiments of the present application are for the purpose of more clearly explaining the technical solutions of the embodiments of the present application, and do not constitute a reference to the implementation of this application. Those skilled in the art know that, with the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
在智能车钥匙定位、智能家居定位等一对多、高精度短程等测距场景中,通常使用超宽带(ultra-wideband,UWB)信号进行测距。超带宽信号通常是指相绝对带宽大于500MHz的信号。超带宽信号直接采用脉冲调制,具有极强的抗多径干扰能力和超高的时间分辨率,在高精度短程测距方面具有独特优势。In one-to-many and high-precision short-range ranging scenarios such as smart car key positioning and smart home positioning, ultra-wideband (UWB) signals are usually used for ranging. Ultra-wideband signals generally refer to signals with a phase-to-absolute bandwidth greater than 500 MHz. The ultra-wideband signal directly adopts pulse modulation, which has strong anti-multipath interference ability and ultra-high time resolution, and has unique advantages in high-precision short-range ranging.
目前,UWB测距的主要技术标准是IEEE 802.15.4及修正版IEEE 802.15.4z。根据这些标准,UWB测距主要通过物理层协议数据单元(physical layer protocol data unit,PPDU)中同步头(synchronization header,SHR)内的前导码(preamble code)实现。IEEE 802.15.4及IEEE 802.15.4z标准规定,测距装置需要支持长度分别为31,91和127的前导码(前导码也可以称为序列),这些前导码中的码元(码元也可以称为元素)的取值为-1,0或1。当前导码的元素为1时,发送正向脉冲,当元素为-1时,发送反向脉冲,当元素为0时,不发送脉冲。在进行测距时,为了对抗多用户干扰和多径干扰,可以在前导码的每个码元后面补充0。这些前导码经过填0扩展之后会形成不同的前导码符号(preamble symbol),并对应不同的脉冲重复频率(pulse repetition frequency,PRF)。以长度为31的前导码为例,在使用该前导码进行测距时,在前导码的每个码元后面补充15个0。整个前导码符号包括31*16=496个码元,每个码元对应一个约2ns的脉宽,因此整个前导码符号的周期约为993.59ns。At present, the main technical standards for UWB ranging are IEEE 802.15.4 and the revised version IEEE 802.15.4z. According to these standards, UWB ranging is mainly realized through the preamble code (preamble code) in the synchronization header (SHR) in the physical layer protocol data unit (physical layer protocol data unit, PPDU). The IEEE 802.15.4 and IEEE 802.15.4z standards stipulate that the distance measuring device needs to support preambles with lengths of 31, 91 and 127 respectively (the preamble can also be called a sequence), and the symbols in these preambles (the symbols can also be called element) takes the value -1, 0 or 1. When the element of the preamble is 1, a forward pulse is sent, when the element is -1, a reverse pulse is sent, and when the element is 0, no pulse is sent. When performing ranging, in order to combat multi-user interference and multi-path interference, you can add 0 after each symbol of the preamble. These preambles will form different preamble symbols (preamble symbols) after being extended with 0, and correspond to different pulse repetition frequencies (pulse repetition frequency, PRF). Taking a preamble with a length of 31 as an example, when the preamble is used for ranging, 15 0s are added after each symbol of the preamble. The whole preamble symbol includes 31*16=496 symbols, and each symbol corresponds to a pulse width of about 2ns, so the period of the whole preamble symbol is about 993.59ns.
如表1所示,介绍了目前标准中规定的不同的前导码长度对应的参数。As shown in Table 1, parameters corresponding to different preamble lengths stipulated in the current standard are introduced.
Figure PCTCN2022114053-appb-000001
Figure PCTCN2022114053-appb-000001
如图1所示,提供了一对多测距示意图,在测距过程中,待测距装置(即响应对象Responder)向测距装置(即发起对象Initiator)发射含有前导码的测距响应信号。Initiator接收到测距响应信号之后解码出其中的前导码,并与本地存储的前导码(本地存储的前导码可以用于计时,前导码中的每个元素对应一个约2ns的脉宽)做周期自相关,通过检测最大自相关峰出现的位置,来估算来自Responder的测距响应信号的到达时间(time of arrival,TOA)Δt,并通过L=c*Δt来计算Responder与Initiator之间的距离,其中c为光速,c=3*10 8As shown in Figure 1, a schematic diagram of one-to-many ranging is provided. During the ranging process, the ranging device (ie, the responding object Responder) transmits a ranging response signal containing a preamble to the ranging device (ie, the initiating object Initiator) . After the Initiator receives the ranging response signal, it decodes the preamble, and makes a cycle with the locally stored preamble (the locally stored preamble can be used for timing, and each element in the preamble corresponds to a pulse width of about 2ns). Autocorrelation, by detecting the position where the largest autocorrelation peak appears, to estimate the arrival time (time of arrival, TOA) Δt of the ranging response signal from the Responder, and calculate the distance between the Responder and the Initiator by L=c*Δt , where c is the speed of light, c=3*10 8 .
为了精确找出最大自相关峰,同时减小不同Responder测距响应信号带来的干扰,该种测距方式要求前导码有较好的周期自相关性质,且不同的前导码之间有较好的周期互相关性质。In order to accurately find the maximum autocorrelation peak and at the same time reduce the interference caused by different responder ranging response signals, this ranging method requires the preamble to have better periodic autocorrelation properties, and there is a better relationship between different preambles. periodic cross-correlation properties.
对于前导码a=[a 1,a 2,…,a N],其周期自相关定义为: For the preamble a=[a 1 ,a 2 ,…,a N ], its periodic autocorrelation is defined as:
Figure PCTCN2022114053-appb-000002
Figure PCTCN2022114053-appb-000002
对于前导码a=[a 1,a 2,…,a N]和b=[b 1,b 2,…,b N],其周期互相关定义为: For preambles a=[a 1 ,a 2 ,…,a N ] and b=[b 1 ,b 2 ,…,b N ], the periodic cross-correlation is defined as:
Figure PCTCN2022114053-appb-000003
Figure PCTCN2022114053-appb-000003
在计算周期自相关值或周期互相关值时,针对每个τ的取值,均计算一次,则自相关和互相关分别有N个取值。τ指元素的偏移量,例如,a=[1,0,-1];When calculating the periodic autocorrelation value or periodic cross-correlation value, each value of τ is calculated once, and there are N values for autocorrelation and cross-correlation respectively. τ refers to the offset of the element, for example, a=[1,0,-1];
若τ=0,则φ aa(τ)=1*1+0*0+(-1)*(-1)=2; If τ=0, then φ aa (τ)=1*1+0*0+(-1)*(-1)=2;
若τ=1,则φ aa(τ)=1*0+0*(-1)+(-1)*1=-1; If τ=1, then φ aa (τ)=1*0+0*(-1)+(-1)*1=-1;
若τ=2,则φ aa(τ)=1*(-1)+0*1+(-1)*0=-1; If τ=2, then φ aa (τ)=1*(-1)+0*1+(-1)*0=-1;
若τ=3(等同于τ=0),则φ aa(τ)=1*1+0*0+(-1)*(-1)。可以看出:在无偏移(即τ=0)时,自相关值最大。 If τ=3 (equivalent to τ=0), then φ aa (τ)=1*1+0*0+(-1)*(-1). It can be seen that when there is no offset (ie τ=0), the autocorrelation value is the largest.
对于UWB测距前导码,期待其有完美的周期自相关性质,完美的周期自相关性质即要求除了τ=0外,其余τ处自相关峰均为0,即:For the UWB ranging preamble, it is expected to have a perfect periodic autocorrelation property. The perfect periodic autocorrelation property requires that except for τ=0, the autocorrelation peaks at other τ are all 0, that is:
Figure PCTCN2022114053-appb-000004
Figure PCTCN2022114053-appb-000004
同时,期待不同的前导码之间具有完美的周期互相关性质,即所有τ处互相关值均为0,即:At the same time, it is expected that different preambles have perfect periodic cross-correlation properties, that is, the cross-correlation values at all τ are 0, that is:
φ ab(τ)=0,τ=0,1,2,…,N-1 φ ab (τ)=0, τ=0,1,2,…,N-1
示例的,在1对2的测距场景中,分配给Responder1的前导码为前导码1,分配给Responder2的前导码为前导码2,将测距装置(即Initiator)本地存储的前导码称为前导码a1和a2,将待测距装置(即Responder)发送给测距装置(即Initiator)的前导码称为b1和b2。前导码1和2不同,前导码a1和b1相同,前导码a2和b2相同。For example, in a 1-to-2 ranging scenario, the preamble assigned to Responder1 is preamble 1, and the preamble assigned to Responder2 is preamble 2. The preamble locally stored by the distance measuring device (that is, the initiator) is called The preambles a1 and a2, the preambles sent from the distance measuring device (ie Responder) to the distance measuring device (ie Initiator) are called b1 and b2. Preambles 1 and 2 are different, preambles a1 and b1 are the same, and preambles a2 and b2 are the same.
对于测距装置来说,不清楚当前接收到的前导码是前导码b1还是前导码b2。测距装置可以将接收到的前导码与基于本地存储的前导码a1生成的当前前导码做相关。在前导码满足完美的自相关性质的前提下,如果一个周期内,没有出现最大相关峰,则说明接收到的前导码不是与前导码a1对应的前导码b1,则接收到的前导码是与前导码a2对应的前导码b2;当接收到的前导码与基于本地存储的前导码a1生成的当前前导码做相关,如果一个周期内,出现最大相关峰,则说明接收到的前导码是与前导码a1对应的前导码b1。For the ranging device, it is unclear whether the currently received preamble is the preamble b1 or the preamble b2. The ranging device may correlate the received preamble with the current preamble generated based on the locally stored preamble a1. On the premise that the preamble satisfies the perfect autocorrelation property, if there is no maximum correlation peak within a cycle, it means that the received preamble is not the preamble b1 corresponding to the preamble a1, and the received preamble is the same as The preamble b2 corresponding to the preamble a2; when the received preamble is correlated with the current preamble generated based on the locally stored preamble a1, if the maximum correlation peak appears within one cycle, it means that the received preamble is related to The preamble b1 corresponding to the preamble a1.
测距装置(即Initiator)采用前导码进行计时。例如,在较大的时间维度上,在第3个周期内接收到测距响应信号。可选的,测距装置(即Initiator)并不对一个周期内的多个元素进行标记,所以并不知道是在第几个元素上接收到的测距响应信号,可以利用自相关性质确定在第几个元素上接收到的测距响应信号。The ranging device (that is, the Initiator) uses the preamble for timing. For example, in a larger time dimension, a ranging response signal is received in the third cycle. Optionally, the ranging device (that is, the Initiator) does not mark multiple elements in one cycle, so it is not known on which element the ranging response signal is received, and the autocorrelation property can be used to determine the Ranging response signals received on several elements.
例如,接收到的前导码为[-1,-1,1,0,1],向右偏移1位(等同于向左偏移4位)为:-1,1,0,1,-1,向右偏移2位(等同于向左偏移3位)为:1,0,1,-1,-1,向右偏移3位(等同于向左偏移2位)为:0,1,-1-1,1,向右偏移4位(等同于向左偏移1位)为:1,-1-1,11,0。For example, the received preamble is [-1,-1,1,0,1], shifting to the right by 1 bit (equivalent to shifting to the left by 4 bits) is: -1,1,0,1,- 1. Shifting 2 bits to the right (equivalent to shifting 3 bits to the left) is: 1,0,1,-1,-1, shifting 3 bits to the right (equivalent to shifting 2 bits to the left) is: 0,1,-1-1,1, shifting to the right by 4 bits (equivalent to shifting to the left by 1 bit) is: 1,-1-1,11,0.
在接收到测距响应信号时,基于本地存储的前导码生成的当前前导码为1,0,1,-1,-1。则在做自相关时,可以看出:接收到的前导码向右偏移2位(等同于向左偏移3位)时,出现最大自相关峰。则可以说明偏移量为3,即第3个元素接收到测距响应信号。一种可 选的情况,当确定在生成第3个元素接收到测距响应信号时,可以测得到达时间Δt为13个2ns,即26ns。再基于光速,即可测得Responder与Initiator之间的距离。可以理解的是,以上示例是前导码测距的基本原理,在实际使用中可以根据实际情况进行测距过程的调整,本申请对此不进行限定。When the ranging response signal is received, the current preamble generated based on the locally stored preamble is 1, 0, 1, -1, -1. Then, when performing autocorrelation, it can be seen that when the received preamble is shifted to the right by 2 bits (equivalent to shifting to the left by 3 bits), the maximum autocorrelation peak appears. Then it can be explained that the offset is 3, that is, the third element receives the ranging response signal. In an optional situation, when it is determined that the ranging response signal is received when the third element is generated, the arrival time Δt can be measured to be 13 2ns, that is, 26ns. Based on the speed of light, the distance between the Responder and the Initiator can be measured. It can be understood that the above example is the basic principle of preamble ranging, and the ranging process can be adjusted according to the actual situation in actual use, which is not limited in this application.
在现有标准IEEE 802.15.4及IEEE 802.15.4z中,使用的前导码为Ipatov序列。现有标准中Ipatov序列的数量比较少,且不同序列之间的周期互相关性质较差,因此,序列测距容量小,无法支持多个Responder同步测距。如表2所示,以长度为31的Ipatov序列为例,列出了归一化后的8条序列两两之间的周期互相关峰值。其中,归一化可以理解为序列的最大互相关值除以序列的最大自相关值,这些长度为31的序列的最大自相关值均为16。In the existing standards IEEE 802.15.4 and IEEE 802.15.4z, the preamble used is the Ipatov sequence. The number of Ipatov sequences in existing standards is relatively small, and the periodic cross-correlation between different sequences is poor. Therefore, the sequence ranging capacity is small, and it cannot support multiple Responders for synchronous ranging. As shown in Table 2, taking the Ipatov sequence with a length of 31 as an example, the periodic cross-correlation peaks between pairs of 8 sequences after normalization are listed. Among them, normalization can be understood as dividing the maximum cross-correlation value of the sequence by the maximum autocorrelation value of the sequence, and the maximum autocorrelation value of these sequences with a length of 31 is 16.
表2:8条长度为31的Ipatov序列的周期互相关峰值(归一化后结果)。Table 2: Periodic cross-correlation peaks of 8 Ipatov sequences with a length of 31 (normalized results).
序号 serial number 11 22 33 44 55 66 77 88
11 11 0.250.25 0.250.25 0.3750.375 0.68750.6875 0.3750.375 0.3750.375 0.250.25
22 0.250.25 11 0.3750.375 0.3750.375 0.3750.375 0.68750.6875 0.250.25 0.3750.375
33 0.250.25 0.3750.375 11 0.250.25 0.3750.375 0.3750.375 0.250.25 0.250.25
44 0.3750.375 0.3750.375 0.250.25 11 0.250.25 0.250.25 0.250.25 0.3750.375
55 0.68750.6875 0.3750.375 0.3750.375 0.250.25 11 0.250.25 0.3750.375 0.3750.375
66 0.3750.375 0.68750.6875 0.3750.375 0.250.25 0.250.25 11 0.3750.375 0.250.25
77 0.3750.375 0.250.25 0.250.25 0.250.25 0.3750.375 0.3750.375 11 0.3750.375
88 0.250.25 0.3750.375 0.250.25 0.3750.375 0.3750.375 0.250.25 0.3750.375 11
可见,不同序列的互相关峰值都在0.25以上,序列1和序列5的互相关峰值更是达到了0.6875。因此如果同时使用多条Ipatov序列测距,可能会在搜索自相关峰时产生假峰,从而导致到达时间TOA计算不准,产生较大的测距误差。为了解决这一问题,当前标准规定只有周期互相关较好的序列对(如序列1和2,序列3和4,序列5和6,序列7和8)可以在同一信道内使用,其他序列在不同信道内使用。因此当前标准中Ipatov序列最多只能支持同信道内两个Responder同步测距,远远无法满足许多应用场景(如智能车钥匙定位、智能家居定位)中一对多的测距需求。It can be seen that the cross-correlation peaks of different sequences are all above 0.25, and the cross-correlation peaks of sequence 1 and sequence 5 even reach 0.6875. Therefore, if multiple Ipatov sequences are used for ranging at the same time, false peaks may be generated when searching for autocorrelation peaks, resulting in inaccurate calculation of time of arrival TOA and large ranging errors. In order to solve this problem, the current standard stipulates that only sequence pairs with good periodic cross-correlation (such as sequences 1 and 2, sequences 3 and 4, sequences 5 and 6, and sequences 7 and 8) can be used in the same channel, and other sequences can be used in the same channel. used in different channels. Therefore, the Ipatov sequence in the current standard can only support synchronous ranging of two Responders in the same channel at most, which is far from meeting the one-to-many ranging requirements in many application scenarios (such as smart car key positioning, smart home positioning).
基于此,本申请提出了新的测距序列。这些序列在整个周期内可能不具有完美自相关性质,但是具有零相关区(zero correlation zone,ZCZ)性质,即在零相关区间(即ZCZ区间)内,这些序列具有完美自相关性质和完美互相关性质。例如,定义ZCZ区间为[-L zcz,L zcz],在该ZCZ区间内,所有序列的循环移位自相关和循环移位互相关均为0。例如,即φ aa(τ)=0,-L zcz≤τ≤L zcz,φ ab(τ)=0,-L zcz≤τ≤L zcz。由于序列具有ZCZ性质,所以在将不同序列分配给不同的Responder进行测距时,只要来自不同的Responder的测距响应信号的到达时延差落在ZCZ区间对应的时间内,均可以实现多个Responder的无干扰精确测距。本申请将这些具有ZCZ性质的序列称作ZCZ序列。另外,可以理解的是,本申请可以应用于一对一的测距场景,也可以应用于一对多的测距场景。 Based on this, the present application proposes a new ranging sequence. These sequences may not have perfect autocorrelation properties throughout the period, but have zero correlation zone (ZCZ) properties, that is, in the zero correlation interval (ie, ZCZ interval), these sequences have perfect autocorrelation properties and perfect cross-correlation properties. relevant nature. For example, the ZCZ interval is defined as [-L zcz , L zcz ], and within this ZCZ interval, the cyclic shift autocorrelation and cyclic shift cross correlation of all sequences are 0. For example, φ aa (τ)=0,-L zcz ≤τ≤L zcz , φ ab (τ)=0,-L zcz ≤τ≤L zcz . Since the sequence has the ZCZ property, when assigning different sequences to different Responders for ranging, as long as the arrival delay difference of the ranging response signals from different Responders falls within the time corresponding to the ZCZ interval, multiple Responder's interference-free precise ranging. The present application refers to these sequences with ZCZ properties as ZCZ sequences. In addition, it can be understood that the present application can be applied to a one-to-one ranging scenario, and can also be applied to a one-to-many ranging scenario.
接下来将结合附图对方案进行详细介绍。附图中以虚线标识的特征或内容可理解为本申请实施例的可选操作或者可选结构。Next, the scheme will be introduced in detail with reference to the accompanying drawings. The features or contents marked with dotted lines in the drawings can be understood as optional operations or optional structures of the embodiments of the present application.
实施例1:Example 1:
如图2所示,提供了一种测距方法,下文介绍的第一装置可以是前文提及的测距装置(即Initiator),下文介绍的第二装置可以是前文提及的待测距装置(即Responder)。在一对一的测距场景中,第二装置的数量为一个;在一对多的测距场景中,第二装置的数量为多个。图2以一对一(即一个第二装置)为例来介绍测距方法,包括以下步骤:As shown in Figure 2, a distance measuring method is provided, the first device described below may be the distance measuring device (ie Initiator) mentioned above, and the second device described below may be the device to be ranged previously mentioned (i.e. Responder). In a one-to-one ranging scenario, there is one second device; in a one-to-many ranging scenario, there are multiple second devices. Figure 2 uses one-to-one (i.e. a second device) as an example to introduce the ranging method, including the following steps:
步骤201:第二装置向第一装置发送第一测距响应信号,相应的,第一装置接收来自第二装置的第一测距响应信号。Step 201: the second device sends a first ranging response signal to the first device, and correspondingly, the first device receives the first ranging response signal from the second device.
步骤202:第一装置基于第一测距响应信号,确定所述第一装置和所述第二装置之间的距离。Step 202: The first device determines the distance between the first device and the second device based on the first ranging response signal.
所述第一测距响应信号基于第一ZCZ序列生成,所述第一ZCZ序列属于预配置的多个ZCZ序列中的序列。此处的预配置可以是第一装置中预配置,也可以是第二装置中预配置。第一装置中预配置有多条ZCZ序列,第二装置中预配置有多条ZCZ序列。为了便于区分,将第二装置向第一装置发送的测距响应信号称为第一测距响应信号,将用于生成第一测距响应信号的ZCZ序列称为第一ZCZ序列。在一对多的测距场景中,不同的第二装置发送的第一测距响应信号不同,也就是不同的第一测距响应信号所基于的第一ZCZ序列不同。The first ranging response signal is generated based on a first ZCZ sequence, and the first ZCZ sequence belongs to a sequence in a plurality of preconfigured ZCZ sequences. The preconfiguration here may be preconfiguration in the first device, or preconfiguration in the second device. Multiple ZCZ sequences are pre-configured in the first device, and multiple ZCZ sequences are pre-configured in the second device. For ease of distinction, the ranging response signal sent by the second device to the first device is called the first ranging response signal, and the ZCZ sequence used to generate the first ranging response signal is called the first ZCZ sequence. In a one-to-many ranging scenario, the first ranging response signals sent by different second apparatuses are different, that is, the first ZCZ sequences on which the different first ranging response signals are based are different.
本身请中的ZCZ序列位于物理层协议数据单元PPDU中同步头(synchronization header,SHR)内,这种场景中,ZCZ序列也可以称为前导码。The ZCZ sequence in the request itself is located in the synchronization header (SHR) in the physical layer protocol data unit PPDU. In this scenario, the ZCZ sequence can also be called a preamble.
在一种可选的示例中,第一测距响应信号为直接采用脉冲调制方式产生的,或者,第一测距响应信号为UWB信号。In an optional example, the first ranging response signal is directly generated by using pulse modulation, or the first ranging response signal is a UWB signal.
在一种可选的示例中,ZCZ序列为二元序列,ZCZ序列中的元素包括1和-1,不包括0。In an optional example, the ZCZ sequence is a binary sequence, and elements in the ZCZ sequence include 1 and -1, and do not include 0.
在一种可选的示例中,ZCZ序列可以理解为具有ZCZ性质的序列。ZCZ序列在ZCZ区间内具有完美的周期自相关性质。本申请预配置的多个ZCZ序列在ZCZ区间内具有完美的周期互相关性质。In an optional example, a ZCZ sequence can be understood as a sequence with ZCZ properties. The ZCZ sequence has perfect periodic autocorrelation properties in the ZCZ interval. The multiple ZCZ sequences pre-configured in this application have perfect periodic cross-correlation properties in the ZCZ interval.
预配置的多个ZCZ序列的长度可以相同,也可以不同。在一种可选的示例中,预配置的多个ZCZ序列的长度包括但不限于:32、128、256中的一项或多项。The lengths of the preconfigured multiple ZCZ sequences may be the same or different. In an optional example, the lengths of the preconfigured multiple ZCZ sequences include but are not limited to: one or more of 32, 128, and 256.
预配置的多个ZCZ序列的ZCZ区间长度可以相同,也可以不同。在一种可选的示例中,预配置的多个ZCZ序列的ZCZ区间长度包括但不限于:5、9、17、33、65中的一项或多项。不同的ZCZ区间可以满足不同的测距需求,使得测距更加灵活。The ZCZ interval lengths of the multiple pre-configured ZCZ sequences may be the same or different. In an optional example, the ZCZ interval lengths of the preconfigured multiple ZCZ sequences include, but are not limited to: one or more of 5, 9, 17, 33, and 65. Different ZCZ intervals can meet different ranging requirements, making ranging more flexible.
不同的序列长度与不同的ZCZ区间长度有对应关系,在一种可选的示例中,预配置的多个ZCZ序列中的:长度为32的ZCZ序列的ZCZ区间长度为5或9或17;或者,长度为128的ZCZ序列的ZCZ区间长度为9或17或33;或者,长度为256的ZCZ序列的ZCZ区间长度为17或33或65。Different sequence lengths correspond to different ZCZ interval lengths. In an optional example, among the pre-configured multiple ZCZ sequences: the ZCZ interval length of the ZCZ sequence with a length of 32 is 5 or 9 or 17; Alternatively, the length of the ZCZ interval of the ZCZ sequence with a length of 128 is 9, 17, or 33; or, the length of the ZCZ interval of a ZCZ sequence with a length of 256 is 17, 33, or 65.
针对同一长度、同一ZCZ区间长度的ZCZ序列可以预配置1条,也可以预配置多条。在一种可选的示例中,预配置的多个ZCZ序列包括以下一项或多项:For ZCZ sequences of the same length and the same ZCZ interval length, one or more ZCZ sequences can be preconfigured. In an optional example, the preconfigured multiple ZCZ sequences include one or more of the following:
8条长度为32、ZCZ区间长度为5的ZCZ序列;8 ZCZ sequences with length 32 and ZCZ interval length 5;
4条长度为32、ZCZ区间长度为9的ZCZ序列;4 ZCZ sequences with length 32 and ZCZ interval length 9;
2条长度为32、ZCZ区间长度为17的ZCZ序列;2 ZCZ sequences with length 32 and ZCZ interval length 17;
16条长度为128、ZCZ区间长度为9的ZCZ序列;16 ZCZ sequences with length 128 and ZCZ interval length 9;
8条长度为128、ZCZ区间长度为17的ZCZ序列;8 ZCZ sequences with length 128 and ZCZ interval length 17;
4条长度为128、ZCZ区间长度为33的ZCZ序列;4 ZCZ sequences with a length of 128 and a ZCZ interval length of 33;
16条长度为256、ZCZ区间长度为17的ZCZ序列;16 ZCZ sequences with length 256 and ZCZ interval length 17;
8条长度为256、ZCZ区间长度为33的ZCZ序列;8 ZCZ sequences with a length of 256 and a ZCZ interval length of 33;
4条长度为256、ZCZ区间长度为65的ZCZ序列。4 ZCZ sequences with a length of 256 and a ZCZ interval length of 65.
针对同一ZCZ区间长度,均有多条ZCZ序列,这样可以实现一对多的测距需求,使得测距更加灵活。For the same ZCZ interval length, there are multiple ZCZ sequences, which can realize one-to-many ranging requirements and make ranging more flexible.
一种可选的示例,ZCZ序列可以通过如下方法生成:An optional example, the ZCZ sequence can be generated by the following method:
采用基矩阵
Figure PCTCN2022114053-appb-000005
并基于矩阵递归方法:
basis matrix
Figure PCTCN2022114053-appb-000005
And based on the matrix recursive method:
Figure PCTCN2022114053-appb-000006
经过N轮递归,可以生成长度为2 2N+1的2 N+1条ZCZ序列,这些ZCZ序列具有长度为2 N+1的ZCZ区间。
Figure PCTCN2022114053-appb-000006
After N rounds of recursion, 2 N+1 ZCZ sequences with a length of 2 2N+1 can be generated, and these ZCZ sequences have ZCZ intervals with a length of 2 N +1.
例如,采用基矩阵
Figure PCTCN2022114053-appb-000007
For example, using the basis matrix
Figure PCTCN2022114053-appb-000007
经过N=2轮矩阵递归,可以生成长度为32的8条ZCZ序列,如表3所示,这些序列的ZCZ区间长度为5。After N=2 rounds of matrix recursion, 8 ZCZ sequences with a length of 32 can be generated. As shown in Table 3, the length of the ZCZ interval of these sequences is 5.
经过N=3轮矩阵递归,可以生成长度为128的16条ZCZ序列,如表4所示,这些序列的ZCZ区间长度为9。After N=3 rounds of matrix recursion, 16 ZCZ sequences with a length of 128 can be generated. As shown in Table 4, the length of the ZCZ interval of these sequences is 9.
需要注意的是,本申请涉及的多个表格中的ZCZ序列的序号(例如1、2、3、……16)只是为了方便描述,没有先后顺序的含义。It should be noted that the serial numbers (such as 1, 2, 3, ... 16) of the ZCZ sequences in the multiple tables involved in this application are only for convenience of description, and do not imply sequence.
表3:长度为32的8条ZCZ序列,ZCZ区间长度为5。Table 3: Eight ZCZ sequences with a length of 32 and a ZCZ interval length of 5.
Figure PCTCN2022114053-appb-000008
Figure PCTCN2022114053-appb-000008
Figure PCTCN2022114053-appb-000009
Figure PCTCN2022114053-appb-000009
表3中所列的8条长度为32、ZCZ区间长度为5的ZCZ序列,在全周期(即[-31,0]和[0,31])内不具有完美自相关性质,但是在ZCZ区间(即[-2,2])内,8条ZCZ序列具有完美的自相关性质和互相关性质。The 8 ZCZ sequences with a length of 32 and a ZCZ interval length of 5 listed in Table 3 do not have perfect autocorrelation properties in the full period (namely [-31, 0] and [0, 31]), but in the ZCZ In the interval (namely [-2, 2]), the 8 ZCZ sequences have perfect autocorrelation and cross-correlation properties.
如图3a所示,介绍了表3中序号为1的ZCZ序列的自相关性质,可以看出在[-2,2]内,具有完美的自相关性质。As shown in Figure 3a, the autocorrelation property of the ZCZ sequence numbered 1 in Table 3 is introduced. It can be seen that within [-2, 2], it has perfect autocorrelation properties.
如图3b所示,介绍了表3中的序号为1和序号为2的ZCZ序列的互相关性质,可以看出在[-2,2]内,具有完美的互相关性质。As shown in Figure 3b, the cross-correlation properties of the ZCZ sequences with serial numbers 1 and 2 in Table 3 are introduced, and it can be seen that within [-2, 2], they have perfect cross-correlation properties.
如图3c所示,介绍了表3中序号为2的ZCZ序列的自相关性质,可以看出在[-2,2]内,具有完美的自相关性质。As shown in Figure 3c, the autocorrelation property of the ZCZ sequence numbered 2 in Table 3 is introduced, and it can be seen that within [-2, 2], it has perfect autocorrelation properties.
如图3d所示,介绍了表3中的序号为1和序号为3的ZCZ序列的互相关性质,可以看出在[-2,2]内,具有完美的互相关性质。As shown in Figure 3d, the cross-correlation properties of the ZCZ sequences with serial numbers 1 and 3 in Table 3 are introduced, and it can be seen that within [-2, 2], they have perfect cross-correlation properties.
如图3e所示,介绍了表3中序号为3的ZCZ序列的自相关性质,可以看出在[-2,2]内,具有完美的自相关性质。As shown in Figure 3e, the autocorrelation property of the ZCZ sequence numbered 3 in Table 3 is introduced, and it can be seen that within [-2, 2], it has perfect autocorrelation properties.
如图3f所示,介绍了表3中的序号为2和序号为3的ZCZ序列的互相关性质,可以看出在[-2,2]内,具有完美的互相关性质。As shown in Figure 3f, the cross-correlation properties of the ZCZ sequences with serial numbers 2 and 3 in Table 3 are introduced, and it can be seen that within [-2, 2], they have perfect cross-correlation properties.
表4:长度为128的16条ZCZ序列,ZCZ区间长度为9。这16条ZCZ序列,在全周期(即[-127,0]和[0,127])内不具有完美自相关性质,但是在ZCZ区间(即[-4,4])内,8条ZCZ序列具有完美的自相关性质和互相关性质。Table 4: 16 ZCZ sequences with a length of 128 and a ZCZ interval length of 9. These 16 ZCZ sequences do not have perfect autocorrelation properties in the full period (ie [-127, 0] and [0, 127]), but in the ZCZ interval (ie [-4, 4]), 8 ZCZ Sequences have perfect autocorrelation and cross-correlation properties.
Figure PCTCN2022114053-appb-000010
Figure PCTCN2022114053-appb-000010
Figure PCTCN2022114053-appb-000011
Figure PCTCN2022114053-appb-000011
Figure PCTCN2022114053-appb-000012
Figure PCTCN2022114053-appb-000012
一种可选的示例,ZCZ序列可以通过如下方法生成:An optional example, the ZCZ sequence can be generated by the following method:
采用基向量[X 0,Y 0],并基于如下的向量递归方法[X m,Y m]=[X m-1Y m-1,(-X m-1)Y m-1],经过M轮向量递归之后,可以构造如下的基矩阵
Figure PCTCN2022114053-appb-000013
再采用矩阵递归方法:
Using the base vector [X 0 ,Y 0 ], and based on the following vector recursive method [X m ,Y m ]=[X m-1 Y m-1 ,(-X m-1 )Y m-1 ], after After M rounds of vector recursion, the following basis matrix can be constructed
Figure PCTCN2022114053-appb-000013
Then use the matrix recursive method:
Figure PCTCN2022114053-appb-000014
Figure PCTCN2022114053-appb-000015
经过N轮矩阵递归,可以生成长度为2 2N+M+1的2 N+1条ZCZ序列,这些ZCZ序列具有长度为2 N+M+1的ZCZ区间。
Figure PCTCN2022114053-appb-000014
Figure PCTCN2022114053-appb-000015
After N rounds of matrix recursion, 2 N+1 ZCZ sequences with a length of 2 2N+M+ 1 can be generated, and these ZCZ sequences have ZCZ intervals with a length of 2 N+M +1.
例如,采用基向量[1,1]:For example, taking the basis vector [1,1]:
经过M=2轮向量递归和N=1轮矩阵递归,可以生成长度为32的4条ZCZ序列,如表5所示,这些序列的ZCZ区间长度为9。After M=2 rounds of vector recursion and N=1 round of matrix recursion, four ZCZ sequences with a length of 32 can be generated. As shown in Table 5, the length of the ZCZ interval of these sequences is 9.
经过M=4轮向量递归和N=0轮矩阵递归,可以生成长度为32的2条ZCZ序列,如表6所示,这些序列的ZCZ区间长度为17。After M=4 rounds of vector recursion and N=0 rounds of matrix recursion, two ZCZ sequences with a length of 32 can be generated. As shown in Table 6, the length of the ZCZ interval of these sequences is 17.
经过M=2轮向量递归和N=2轮矩阵递归,可以生成长度为128的8条ZCZ序列,如表7所示,这些序列的ZCZ区间长度为17。After M=2 rounds of vector recursion and N=2 rounds of matrix recursion, 8 ZCZ sequences with a length of 128 can be generated. As shown in Table 7, the length of the ZCZ interval of these sequences is 17.
经过M=4轮向量递归和N=1轮矩阵递归,可以生成长度为128的4条ZCZ序列,如表8所示,这些序列的ZCZ区间长度为33。After M=4 rounds of vector recursion and N=1 round of matrix recursion, four ZCZ sequences with a length of 128 can be generated. As shown in Table 8, the length of the ZCZ interval of these sequences is 33.
经过M=1轮向量递归和N=3轮矩阵递归,可以生成长度为256的16条序列,如表9所示,这些序列的ZCZ区间长度为17。After M=1 round of vector recursion and N=3 rounds of matrix recursion, 16 sequences with a length of 256 can be generated. As shown in Table 9, the ZCZ interval length of these sequences is 17.
经过M=3轮向量递归和N=2轮矩阵递归,可以生成长度为256的8条序列,如表10所示,这些序列的ZCZ区间长度为33。After M=3 rounds of vector recursion and N=2 rounds of matrix recursion, 8 sequences with a length of 256 can be generated. As shown in Table 10, the length of the ZCZ interval of these sequences is 33.
经过M=5轮向量递归和N=1轮矩阵递归,可以生成长度为256的4条序列,如表11所示,这些序列的ZCZ区间长度为65。After M=5 rounds of vector recursion and N=1 round of matrix recursion, four sequences with a length of 256 can be generated. As shown in Table 11, the length of the ZCZ interval of these sequences is 65.
表5:长度为32的4条ZCZ序列,ZCZ区间长度为9。Table 5: 4 ZCZ sequences with a length of 32 and a ZCZ interval length of 9.
Figure PCTCN2022114053-appb-000016
Figure PCTCN2022114053-appb-000016
表6:长度为32的2条ZCZ序列,ZCZ区间长度为17。Table 6: Two ZCZ sequences with a length of 32 and a ZCZ interval length of 17.
Figure PCTCN2022114053-appb-000017
Figure PCTCN2022114053-appb-000017
表7:长度为128的8条ZCZ序列,ZCZ区间长度为17。Table 7: Eight ZCZ sequences with a length of 128 and a ZCZ interval length of 17.
Figure PCTCN2022114053-appb-000018
Figure PCTCN2022114053-appb-000018
Figure PCTCN2022114053-appb-000019
Figure PCTCN2022114053-appb-000019
表8:长度为128的4条ZCZ序列,ZCZ区间长度为33。Table 8: 4 ZCZ sequences with a length of 128 and a ZCZ interval length of 33.
Figure PCTCN2022114053-appb-000020
Figure PCTCN2022114053-appb-000020
表9:长度为256的16条ZCZ序列,ZCZ区间长度为17。Table 9: 16 ZCZ sequences with a length of 256 and a ZCZ interval length of 17.
Figure PCTCN2022114053-appb-000021
Figure PCTCN2022114053-appb-000021
Figure PCTCN2022114053-appb-000022
Figure PCTCN2022114053-appb-000022
Figure PCTCN2022114053-appb-000023
Figure PCTCN2022114053-appb-000023
Figure PCTCN2022114053-appb-000024
Figure PCTCN2022114053-appb-000024
Figure PCTCN2022114053-appb-000025
Figure PCTCN2022114053-appb-000025
表10:长度为256的8条ZCZ序列,ZCZ区间长度为33。Table 10: 8 ZCZ sequences with a length of 256 and a ZCZ interval length of 33.
Figure PCTCN2022114053-appb-000026
Figure PCTCN2022114053-appb-000026
Figure PCTCN2022114053-appb-000027
Figure PCTCN2022114053-appb-000027
Figure PCTCN2022114053-appb-000028
Figure PCTCN2022114053-appb-000028
表11:长度为256的4条ZCZ序列,ZCZ区间长度为65。Table 11: 4 ZCZ sequences with a length of 256 and a ZCZ interval length of 65.
Figure PCTCN2022114053-appb-000029
Figure PCTCN2022114053-appb-000029
Figure PCTCN2022114053-appb-000030
Figure PCTCN2022114053-appb-000030
例如,第一装置和第二装置中预配置的长度为32、ZCZ区间长度为5的ZCZ序列包括表3中的至少一个序列。For example, the ZCZ sequence with a length of 32 and a ZCZ interval length of 5 preconfigured in the first device and the second device includes at least one sequence in Table 3.
例如,第一装置和第二装置中预配置的长度为32、ZCZ区间长度为9的ZCZ序列包括表5中的至少一个序列。For example, the ZCZ sequence with a length of 32 and a ZCZ interval length of 9 preconfigured in the first device and the second device includes at least one sequence in Table 5.
例如,第一装置和第二装置中预配置的长度为32、ZCZ区间长度为17的ZCZ序列包括表6中的至少一个序列。For example, the ZCZ sequence with a length of 32 and a ZCZ interval length of 17 preconfigured in the first device and the second device includes at least one sequence in Table 6.
例如,第一装置和第二装置中预配置的长度为128、ZCZ区间长度为9的ZCZ序列包括表4中的至少一个序列。For example, the ZCZ sequence with a length of 128 and a ZCZ interval length of 9 preconfigured in the first device and the second device includes at least one sequence in Table 4.
例如,第一装置和第二装置中预配置的长度为128、ZCZ区间长度为17的ZCZ序列包括表7中的至少一个序列。For example, the ZCZ sequence with a length of 128 and a ZCZ interval length of 17 preconfigured in the first device and the second device includes at least one sequence in Table 7.
例如,第一装置和第二装置中预配置的长度为128、ZCZ区间长度为33的ZCZ序列包括表8中的至少一个序列。For example, the ZCZ sequence with a length of 128 and a ZCZ interval length of 33 preconfigured in the first device and the second device includes at least one sequence in Table 8.
例如,第一装置和第二装置中预配置的长度为256、ZCZ区间长度为17的ZCZ序列包括表9中的至少一个序列。For example, the ZCZ sequence with a length of 256 and a ZCZ interval length of 17 preconfigured in the first device and the second device includes at least one sequence in Table 9.
例如,第一装置和第二装置中预配置的长度为256、ZCZ区间长度为33的ZCZ序列包括上述表10中的至少一个序列。For example, the ZCZ sequence with a length of 256 and a ZCZ interval length of 33 preconfigured in the first device and the second device includes at least one sequence in the above Table 10.
例如,第一装置和第二装置中预配置的长度为256、ZCZ区间长度为65的ZCZ序列包括上述表11中的至少一个序列。For example, the ZCZ sequence with a length of 256 and a ZCZ interval length of 65 preconfigured in the first device and the second device includes at least one sequence in the above Table 11.
综上,可以理解的是,第一装置中预配置的多条ZCZ序列可以是表3-表11中的全部序列;可以是表3-表11中的部分序列;也可以是部分来自表3-表11,对于另一部分的来源不进行限制。换而言之,表3-表11中的所有序列被配置于第一装置中,也可以是表3-表11中的部分序列被配置于第一装置中。可选的,第一装置中除了预配置有表3-表11中的所有序列或部分序列外,还可以配置除表3-表11提供的序列外的其它序列。In summary, it can be understood that the multiple ZCZ sequences preconfigured in the first device can be all the sequences in Table 3-Table 11; they can be part of the sequences in Table 3-Table 11; or they can be part of the sequences from Table 3. - Table 11, without limiting the origin of the other part. In other words, all the sequences in Table 3-Table 11 are configured in the first device, or part of the sequences in Table 3-Table 11 are configured in the first device. Optionally, in addition to all or part of the sequences in Table 3-Table 11 being pre-configured in the first device, other sequences other than the sequences provided in Table 3-Table 11 may also be configured.
第二装置与第一装置类似。第二装置中预配置的多条ZCZ序列可以是表3-表11中的全部序列;可以是表3-表11中的部分序列;也可以是部分来自表3-表11,对于另一部分 的来源不进行限制。换而言之,表3-表11中的所有序列被配置于第二装置中,也可以是表3-表11中的部分序列被配置于第二装置中。可选的,第二装置中除了预配置有表3-表11中的所有序列或部分序列外,还可以配置除表3-表11提供的序列外的其它序列。The second device is similar to the first device. The multiple ZCZ sequences preconfigured in the second device can be all sequences in Table 3-Table 11; can be part of the sequences in Table 3-Table 11; can also be partly from Table 3-Table 11, for another part Sources are not limited. In other words, all the sequences in Table 3-Table 11 are configured in the second device, or part of the sequences in Table 3-Table 11 are configured in the second device. Optionally, in addition to all or part of the sequences in Table 3-Table 11 being pre-configured in the second device, other sequences other than the sequences provided in Table 3-Table 11 may also be configured.
第一装置与第二装置中预配置的多个ZCZ序列可以完全相同,也可以部分相同、部分不同。可选的,第一装置与第二装置相互确定,各自支持(预配置即支持)哪些序列,以便采取双方都支持的序列进行测距。The multiple ZCZ sequences preconfigured in the first device and the second device may be completely the same, or may be partly the same or partly different. Optionally, the first device and the second device mutually determine which sequences are supported (preconfigured, that is, supported), so as to use the sequences supported by both parties for ranging.
一种可选的示例,第一装置向第二装置发送第一消息,所述第一消息用于确定第二装置是否支持第一ZCZ序列。相应的,第二装置接收来自第一装置的第一消息。第二装置向第一装置发送第二消息,所述第二消息用于指示第二装置支持第一ZCZ序列或不支持第一ZCZ序列。相应的,第一装置接收来自第二装置的第二消息。在该示例中,第一装置可以先为第二装置选择出某一特定序列,然后询问第二装置是否支持该特定序列。如果支持,则后续可以采用该序列进行测距。如果不支持,第一装置可以重新选择,重新询问。In an optional example, the first device sends a first message to the second device, where the first message is used to determine whether the second device supports the first ZCZ sequence. Correspondingly, the second device receives the first message from the first device. The second device sends a second message to the first device, where the second message is used to indicate that the second device supports the first ZCZ sequence or does not support the first ZCZ sequence. Correspondingly, the first device receives the second message from the second device. In this example, the first device may first select a specific sequence for the second device, and then inquire whether the second device supports the specific sequence. If supported, the sequence can be used for ranging later. If not supported, the first device can re-select, re-ask.
一种可选的示例,第一装置向第二装置发送第一消息,所述第一消息用于确定第二装置支持的ZCZ序列。相应的,第二装置接收来自第一装置的第一消息。第二装置向第一装置发送第二消息,所述第二消息用于指示第二装置支持的ZCZ序列。相应的,第一装置接收来自第二装置的第二消息。在该示例中,第一装置询问第二装置支持哪些ZCZ序列,然后从第二装置支持的ZCZ序列中选择某一序列进行测距。In an optional example, the first device sends a first message to the second device, where the first message is used to determine a ZCZ sequence supported by the second device. Correspondingly, the second device receives the first message from the first device. The second device sends a second message to the first device, where the second message is used to indicate the ZCZ sequence supported by the second device. Correspondingly, the first device receives the second message from the second device. In this example, the first device inquires which ZCZ sequences are supported by the second device, and then selects a certain sequence from the ZCZ sequences supported by the second device for ranging.
第一装置可以采用组播或单播或广播的方式向第二装置发送第一消息。The first device may send the first message to the second device in a multicast, unicast or broadcast manner.
可选的,第一装置中还可以预配置多条ZCZ序列对应的参数信息。第二装置中还可以预配置多条ZCZ序列对应的参数信息。参数信息包括但不限于以下的一项或多项:序列长度、序列数量、序列ZCZ区间长度,序列ZCZ区间范围、序列码片长度、序列可支持最大测距装置数量(或者称为序列可支持最大同步测距Responder数量)、序列可支持最大测距时延差、序列可支持最大测距范围。Optionally, parameter information corresponding to multiple ZCZ sequences may also be preconfigured in the first device. The parameter information corresponding to multiple ZCZ sequences may also be preconfigured in the second device. Parameter information includes but not limited to one or more of the following: sequence length, sequence number, sequence ZCZ interval length, sequence ZCZ interval range, sequence chip length, sequence can support the maximum number of ranging devices (or called sequence can support The maximum number of synchronous ranging Responders), the sequence can support the maximum ranging delay difference, and the sequence can support the maximum ranging range.
测距时延差为:在一对多的测距场景中,第一装置接收到的来自多个第二装置(Responder)的测距响应信号中,接收到的第一个测距响应信号的时间与接收到的最后一个测距响应信号的时间之间的差值。The ranging delay difference is: in a one-to-many ranging scenario, among the ranging response signals received by the first device from multiple second devices (Responders), the first ranging response signal received is The difference between the time and the time of the last ranging response signal received.
测距范围为:在一对多的测距场景中,每个第二装置与第一装置之间有个距离,在多个距离中,最大的距离与最小距离之间的差值。The ranging range is: in a one-to-many ranging scenario, there is a distance between each second device and the first device, and among the multiple distances, the difference between the largest distance and the smallest distance.
序列可支持最大测距范围基于序列可支持最大测距时延差确定。The maximum ranging range supported by the sequence is determined based on the maximum ranging delay difference supported by the sequence.
该参数信息可以通过表格的形式存储,也可以通过其他形式(例如对应关系)存储,不进行限制。当以表格形式存储时,可以是所有参数信息位于一个表格中,也可以是每个参数信息位于一个表格中,也可以是部分参数信息位于一个表格中。当多个参数信息位于多个表格中时,多个表格可以是独立的表格,也可以是多层级具有关联关系的表格。此处的多层级的表格可以理解为根据某一参数信息可以找到另一表格。The parameter information can be stored in the form of a table, or can be stored in other forms (such as a correspondence relationship), without limitation. When stored in table form, all parameter information may be located in one table, each parameter information may be located in one table, and part of parameter information may also be located in one table. When multiple parameter information is located in multiple tables, the multiple tables may be independent tables, or multi-level tables with associated relationships. The multi-level tables here can be understood as another table can be found according to a certain parameter information.
参考表12,为表3-表11提供的ZCZ序列对应的参数信息。表3-表11中的每个表格中的部分或全部序列可以称为一簇序列或一组序列,每个表格中的部分或全部序列(即一簇序列或一组序列)的参数信息相同。Refer to Table 12 for the parameter information corresponding to the ZCZ sequence provided in Table 3-Table 11. Some or all of the sequences in each table in Table 3-Table 11 can be called a cluster of sequences or a set of sequences, and the parameter information of some or all of the sequences in each table (ie, a cluster of sequences or a set of sequences) is the same .
表12:ZCZ序列的参数信息。Table 12: Parameter information for the ZCZ sequence.
Figure PCTCN2022114053-appb-000031
Figure PCTCN2022114053-appb-000031
在表12,不同的序列长度和序列数量对应不同的ZCZ序列,如8条长度为32的序列对应表3,4条长度为32的序列对应表5。序列数量与可支持最大测距装置数相同。In Table 12, different sequence lengths and sequence numbers correspond to different ZCZ sequences, for example, 8 sequences with a length of 32 correspond to Table 3, and 4 sequences with a length of 32 correspond to Table 5. The number of sequences is the same as the maximum number of supported ranging devices.
上文提及的序列ZCZ长度与序列ZCZ区间范围有关。例如,序列ZCZ长度为5时,对应的序列ZCZ区间范围为[-2,2];例如,序列ZCZ长度为9时,对应的序列ZCZ区间范围为[-4,4];例如,序列ZCZ长度为17时,对应的序列ZCZ区间范围为[-8,8];例如,序列ZCZ长度为33时,对应的序列ZCZ区间范围为[-16,16];例如,序列ZCZ长度为65时,对应的序列ZCZ区间范围为[-32,32]。可支持最大测距时延差基于ZCZ区间长度确定,可支持最大测距范围基于可支持最大测距时延差确定。参考IEEE 802.15.4标准,对于长度为32的序列,在每个码元后填充15个0构成总长为16的码片(Chip),因此经扩频后,三簇(簇,也可以称为组)ZCZ序列的ZCZ区间长度分别扩展为80个、144个和272个码元。假设一个码元对应的脉宽为2ns,则ZCZ区间长度对应的最大可容忍测距时延差分别为160ns、288ns和544ns。可选的,如表12最后一列前三行所示,考虑到测距过程中信号Initiator→Responder→Initiator的双程传输过程,这些ZCZ区间对应的最大的Responder测距范围c*Δt/2分别为24m、43.2m和81.6m。The length of the sequence ZCZ mentioned above is related to the range of the sequence ZCZ interval. For example, when the sequence ZCZ length is 5, the corresponding sequence ZCZ interval range is [-2,2]; for example, when the sequence ZCZ length is 9, the corresponding sequence ZCZ interval range is [-4,4]; for example, the sequence ZCZ When the length is 17, the corresponding sequence ZCZ interval range is [-8,8]; for example, when the sequence ZCZ length is 33, the corresponding sequence ZCZ interval range is [-16,16]; for example, when the sequence ZCZ length is 65 , the corresponding sequence ZCZ interval range is [-32,32]. The supported maximum ranging delay difference is determined based on the ZCZ interval length, and the supported maximum ranging range is determined based on the supported maximum ranging delay difference. Referring to the IEEE 802.15.4 standard, for a sequence with a length of 32, 15 0s are filled after each symbol to form a chip (Chip) with a total length of 16. Therefore, after spreading, three clusters (clusters, also known as Group) ZCZ interval lengths of ZCZ sequences are extended to 80, 144 and 272 symbols respectively. Assuming that the pulse width corresponding to one symbol is 2ns, the maximum tolerable ranging delay difference corresponding to the ZCZ interval length is 160ns, 288ns and 544ns respectively. Optionally, as shown in the first three rows of the last column of Table 12, considering the two-way transmission process of the signal Initiator→Responder→Initiator during the ranging process, the maximum Responder ranging range c*Δt/2 corresponding to these ZCZ intervals are respectively 24m, 43.2m and 81.6m.
同理,如表12最后一列后六行所示,对于长度为128和256的序列,可以在每个码元后填充3个0构成总长为4的码片(Chip),三簇(或三组)长度为128的ZCZ序列对应的最大测距范围分别为10.8m、20.4m和39.6m,三簇(或三组)长度为256的ZCZ序列对应的最大测距范围分别为20.4m、39.6m和78m。Similarly, as shown in the last six rows of the last column of Table 12, for sequences with lengths of 128 and 256, 3 0s can be filled after each symbol to form a chip (Chip) with a total length of 4, three clusters (or three The maximum ranging ranges corresponding to ZCZ sequences with a length of 128 are 10.8m, 20.4m and 39.6m respectively, and the maximum ranging ranges corresponding to three clusters (or three groups) of ZCZ sequences with a length of 256 are 20.4m and 39.6m respectively. m and 78m.
在一种可选的示例中,所述第一测距响应信号基于第一ZCZ序列生成包括:In an optional example, generating the first ranging response signal based on the first ZCZ sequence includes:
将长度为32的第一ZCZ序列中的每个码元后补充15个0,得到第一测距响应信号;After each symbol in the first ZCZ sequence with a length of 32, 15 0s are added to obtain the first ranging response signal;
将长度为128的第一ZCZ序列中的每个码元后补充3个0,得到第一测距响应信号;After each symbol in the first ZCZ sequence with a length of 128, three 0s are added to obtain the first ranging response signal;
将长度为32的第一ZCZ序列中的每个码元后补充3个0,得到第一测距响应信号。Each symbol in the first ZCZ sequence with a length of 32 is supplemented with three 0s to obtain a first ranging response signal.
在一种可选的示例中,在一对多的测距场景中,在所述第二装置为多个的情况下,不同的第二装置对应的第一ZCZ序列不同,多个所述第一ZCZ序列的参数信息相同,所述参数信息包括但不限于以下至少一项:ZCZ区间长度、可支持最大测距时延差、可支持最大测距范围。In an optional example, in a one-to-many ranging scenario, when there are multiple second devices, the first ZCZ sequences corresponding to different second devices are different, and the multiple first ZCZ sequences The parameter information of a ZCZ sequence is the same, and the parameter information includes but is not limited to at least one of the following: the length of the ZCZ interval, the maximum supported ranging delay difference, and the supported maximum ranging range.
结合表3-表11,在一对多的测距场景中,所采用的多个ZCZ序列(即本申请所采用的多个第一ZCZ序列)属于同一簇(组或表格)ZCZ序列。Combined with Table 3-Table 11, in the one-to-many ranging scenario, the multiple ZCZ sequences used (ie multiple first ZCZ sequences used in this application) belong to the same cluster (group or table) of ZCZ sequences.
如图4所示,再提供一种测距方法,包括以下步骤:As shown in Figure 4, another ranging method is provided, including the following steps:
步骤401:第一装置(Initiator)与第二装置(Responder)进行同步,第一装置估计第二装置的数量和分布范围(分布范围可以替换为时延差)。Step 401: The first device (Initiator) synchronizes with the second device (Responder), and the first device estimates the number and distribution range of the second device (the distribution range can be replaced by a delay difference).
在测距发起前,基于IEEE 802.15.4标准,Initiator与Responder进行同步。例如,Initiator向Responder广播(广播也可以替换为组播或单播)同步请求信号,Responder接收到同步请求信号之后,会向Initiator发送同步信号,同步信号包括但不限于Responder ID。Before the ranging is initiated, the Initiator and the Responder are synchronized based on the IEEE 802.15.4 standard. For example, the Initiator broadcasts (the broadcast can also be replaced by multicast or unicast) a synchronization request signal to the Responder. After receiving the synchronization request signal, the Responder sends a synchronization signal to the Initiator. The synchronization signal includes but is not limited to the Responder ID.
Initiator根据接收到的同步信号的数量,可以获知Responder的数量M。The Initiator can learn the number M of Responders according to the number of received synchronization signals.
Initiator可以记录同步信号的时延差ΔT,或者并根据接收同步信号的时延差估计Responder分布范围ΔR。同步信号的时延差,可以理解为接收到的第一个同步信号的时间与接收到的最后一个同步信号的时间之间的差值。分布范围可以理解为距离差,该距离差基于时延差和信号传播速率(例如光速)确定。The initiator can record the time delay difference ΔT of the synchronization signal, or estimate the Responder distribution range ΔR according to the time delay difference of the received synchronization signal. The delay difference of the synchronization signal can be understood as the difference between the time of the first synchronization signal received and the time of the last synchronization signal received. The distribution range can be understood as a distance difference, and the distance difference is determined based on a time delay difference and a signal propagation rate (such as the speed of light).
步骤402:Initiator根据Responder数量M和分布范围ΔR(或时延差ΔT),选择合适的一簇(或一组或表3-表11中的某一表格)ZCZ序列。Step 402: The initiator selects a suitable cluster (or a group or a table in Table 3-Table 11) of ZCZ sequences according to the number M of Responders and the distribution range ΔR (or delay difference ΔT).
Initiator在得到Responder数量M和分布范围ΔR(或时延差ΔT)之后,可以根据预配置的序列参数信息(例如表12中的参数信息)选择合适的一簇(或一组)ZCZ序列进行测距。Initiator在选择合适的一簇(或一组)ZCZ序列时,考虑的原则包括:该簇(或组)内的序列数量大于Responder数量M,以及该簇(或组)内的序列可支持的最大测距范围大于Responder分布范围ΔR。可选的,该簇(或组)内的序列可支持的最大测距范围大于Responder分布范围ΔR,也可以替换为,该簇(或组)内的序列可支持的最大测距时延差大于同步信号的时延差ΔT。After the Initiator obtains the number of Responders M and the distribution range ΔR (or delay difference ΔT), it can select an appropriate cluster (or a group) of ZCZ sequences for measurement according to the preconfigured sequence parameter information (such as the parameter information in Table 12). distance. When the Initiator selects a suitable cluster (or group) of ZCZ sequences, the principles considered include: the number of sequences in the cluster (or group) is greater than the number M of Responders, and the maximum number of sequences supported by the cluster (or group) The ranging range is greater than the Responder distribution range ΔR. Optionally, the maximum ranging range that the sequences in the cluster (or group) can support is greater than the Responder distribution range ΔR, or it can be replaced by the maximum ranging delay difference that the sequences in the cluster (or group) can support is greater than The delay difference ΔT of the synchronization signal.
例如,UWB典型应用场景:利用智慧车钥匙对车内终端进行测距,在该应用场景中,Responder典型分布范围小于10m,Responder数量超过10个,此时可以选用长度为128、数量为16的一簇(或一组)ZCZ序列进行测距。For example, a typical UWB application scenario: using a smart car key to measure the distance of the terminal in the car. In this application scenario, the typical distribution range of Responders is less than 10m, and the number of Responders is more than 10. At this time, you can use a length of 128 and a number of 16 A cluster (or a group) of ZCZ sequences is used for ranging.
步骤403:Initiator向每个Responder分配对应的ZCZ序列。Step 403: The Initiator assigns a corresponding ZCZ sequence to each Responder.
选择出一簇ZCZ序列之后,Initiator可以在一簇ZCZ序列中选择出M个ZCZ序列,并为每个Responder分配一个序列。由于ZCZ序列分配方案较为灵活,例如,将ZCZ序列1,...,M分别分配给Responder 0,Responder 1,…,Responder M。After selecting a cluster of ZCZ sequences, the Initiator can select M ZCZ sequences in a cluster of ZCZ sequences, and assign a sequence to each Responder. Since the ZCZ sequence allocation scheme is relatively flexible, for example, assign ZCZ sequences 1,...,M to Responder 0, Responder 1,...,Responder M respectively.
Initiator可以向Responder发送ZCZ序列的索引(或编号、或序号)。例如,Initiator可以用过测距控制信息(ranging control message,RCM)将序列配置信息发送给M个Responder。序列配置信息中包括但不限于ZCZ序列的索引(或编号、或序号)。The Initiator can send the index (or number, or sequence number) of the ZCZ sequence to the Responder. For example, the Initiator may send the sequence configuration information to the M Responders by using a ranging control message (RCM). The sequence configuration information includes but is not limited to the index (or number, or sequence number) of the ZCZ sequence.
可选的,步骤404:Responder利用分配的ZCZ序列,生成测距响应信号。Optionally, step 404: the Responder uses the allocated ZCZ sequence to generate a ranging response signal.
例如,不同Responder在接收到Initiator RCM之后,解码出其中的序列配置信息,利用分配的ZCZ序列作为前导码生成测距响应信号。For example, after receiving the Initiator RCM, different Responders decode the sequence configuration information in it, and use the allocated ZCZ sequence as the preamble to generate a ranging response signal.
例如,根据分配的ZCZ序列经过表12所示填0扩频之后,生成测距响应信号。对ZCZ序列进行添0的过程可以参见前文介绍的,基于第一ZCZ序列生成第一测距响应信号的过程,不再重复赘述。For example, according to the assigned ZCZ sequence, the ranging response signal is generated after the zero-filled spreading shown in Table 12. For the process of adding 0 to the ZCZ sequence, refer to the process of generating the first ranging response signal based on the first ZCZ sequence described above, which will not be repeated here.
步骤405:Initiator与Responder进行一对M的测距过程。Step 405: The Initiator and the Responder perform a pair of M ranging process.
例如,Initiator向M个Responder发送测距发起信号(ranging initiation message,RIM),例如广播发送,也可以是单播或组播发送。For example, the Initiator sends a ranging initiation message (RIM) to M Responders, for example, by broadcast, or by unicast or multicast.
可选的,按照IEEE 802.15.4标准,Initiator可以在时刻t I,0向M个Responder广播测距发起信号RIM。Responder m在接收到测距发起信号之后,记录此时的时间戳t Rm,0,m=1……M。经过固定的时间间隔t reply之后,各Responder向Initiator发送测距响应信号。 Optionally, according to the IEEE 802.15.4 standard, the Initiator may broadcast a ranging initiation signal RIM to M Responders at time t1,0 . Responder m records the time stamp t Rm,0 at this time after receiving the ranging initiation signal, where m=1...M. After a fixed time interval t reply , each Responder sends a ranging response signal to the Initiator.
步骤404可以在接收到测距发起信号之后执行,也可以在接收到测距发起信号之前执行。Step 404 may be performed after receiving the ranging initiation signal, or may be performed before receiving the ranging initiation signal.
步骤406:Initiator在接收到不同Responder测距响应信号之后,解码出其中的前导码(ZCZ序列),将解码出的前导码(ZCZ序列)与本地前导码(ZCZ序列)做周期自相关,检测最大相关峰出现的位置,估计TOA,计算距离,完成测距。Step 406: After the Initiator receives the ranging response signals from different Responders, it decodes the preamble (ZCZ sequence) therein, performs periodic autocorrelation between the decoded preamble (ZCZ sequence) and the local preamble (ZCZ sequence), and detects The position where the maximum correlation peak appears, the TOA is estimated, the distance is calculated, and the ranging is completed.
Initiator在接收到Responder的测距响应信号之后,解码出其中的ZCZ序列,并通过和本地的ZCZ序列做循环移位自相关检测TOA。由于M个Responder分布范围ΔR小于该簇ZCZ序列的ZCZ区间可支持最大测距范围,因此对于Responder m(m=1……M)的测距响应信号来说,其他Responder测距响应信号对应的自相关和互相关均为0,因此可以精确地找出Responder m对应的最大自相关峰位置。After the Initiator receives the ranging response signal from the Responder, it decodes the ZCZ sequence, and detects the TOA by performing cyclic shift autocorrelation with the local ZCZ sequence. Since the distribution range ΔR of M Responders is smaller than the ZCZ interval of the cluster ZCZ sequence, the maximum ranging range can be supported, so for the ranging response signal of Responder m (m=1...M), other Responder ranging response signals correspond to Both autocorrelation and cross-correlation are 0, so the position of the maximum autocorrelation peak corresponding to Responder m can be accurately found.
假设找出的Responder m测距响应信号最大自相关峰位置对应的时刻为t Rm,1,那么Initiator和Responder m之间的距离为
Figure PCTCN2022114053-appb-000032
Assuming that the time corresponding to the maximum autocorrelation peak position of the Responder m ranging response signal found is t Rm,1 , then the distance between the Initiator and Responder m is
Figure PCTCN2022114053-appb-000032
本申请可以使用M个ZCZ序列支持M个Responder同步测距,从而可以提升测距序列容量。This application can use M ZCZ sequences to support M Responders for synchronous ranging, thereby improving the capacity of ranging sequences.
实施例2:Example 2:
上述实施例1介绍了在不同Responder的同步测距的场景中,从预配置的多个ZCZ序列中选择出多个ZCZ序列来进行同步测距。在实施例2中,可以使用一个ZCZ序列的循环移位来支持不同Responder的同步测距,从而进一步提升序列容量。The above-mentioned embodiment 1 introduces that in the scenario of synchronous ranging of different Responders, multiple ZCZ sequences are selected from multiple pre-configured ZCZ sequences to perform synchronous ranging. In Embodiment 2, a cyclic shift of a ZCZ sequence may be used to support synchronous ranging of different Responders, thereby further increasing the sequence capacity.
在第二装置为至少两个(一对多)的情况下,第一ZCZ序列不是直接从预配置多个ZCZ序列中选择出来的,该至少两个第一ZCZ序列可以是基于对第二ZCZ序列进行循环移位确定,所述第二ZCZ序列为预配置的多个ZCZ序列中的一个,即第二ZCZ序列为直接从预配置多个ZCZ序列中选择出来的。In the case of at least two second devices (one-to-many), the first ZCZ sequence is not directly selected from a plurality of pre-configured ZCZ sequences, and the at least two first ZCZ sequences may be based on the second ZCZ sequence The sequence is determined by cyclic shift, and the second ZCZ sequence is one of the preconfigured multiple ZCZ sequences, that is, the second ZCZ sequence is directly selected from the preconfigured multiple ZCZ sequences.
例如,序列1(表3中序号为1的序列):-1-1-1-1 1 1 1 1 1-1 1-1-1 1-1 1 1 1-1-1-1-1 1 1 -1 1 1-1 1-1-1 1。For example, sequence 1 (sequence number 1 in Table 3): -1-1-1-1 1 1 1 1 1-1 1-1-1 1-1 1 1 1-1-1-1-1 1 1 -1 1 1-1 1-1-1 1.
序列2(对序列1循环移位2位):-1 1-1-1-1-1 1 1 1 1 1-1 1-1-1 1-1 1 1 1-1-1-1-1 1 1 -1 1 1-1 1-1。Sequence 2 (rotate sequence 1 by 2 bits): -1 1-1-1-1-1 1 1 1 1 1-1 1-1-1 1-1 1 1 1-1-1-1-1 1 1 -1 1 1-1 1-1.
序列2中的第1个元素是序列1中的倒数第2个元素,序列2中的第2个元素是序列1中的倒数第1个元素,序列2中的第3个元素是序列1中的第1个元素,序列2中的第4个元素是序列1中的第2个元素,……,序列2中的最后1个元素是序列1中的倒数第 3个元素。The first element in sequence 2 is the second-to-last element in sequence 1, the second element in sequence 2 is the first-to-last element in sequence 1, and the third element in sequence 2 is the second-to-last element in sequence 1 The first element of , the fourth element in sequence 2 is the second element in sequence 1, ..., the last element in sequence 2 is the third last element in sequence 1.
实施例2相对于实施例1,序列的参数信息中的可支持最大测距时延差,可支持最大测距范围会发生变化。例如,如表12第一行所示,当ZCZ区间为5,如果不进行循环移位,可支持的最大测距时延差为160ns,可支持的最大测距范围为24m。当循环移位2位时,可用的ZCZ区间长度变为3,相应的,可支持的最大测距时延差为96ns,可支持的最大测距范围为14.4m。当ZCZ区间为9,如果不进行循环移位,可支持的最大测距时延差为288ns,可支持的最大测距范围为43.2m。当循环移位2位时,可用的ZCZ区间长度变为7,相应的,可支持的最大测距时延差为288*(7/9)=224ns,可支持的最大测距范围为43.2*(7/9)=33.6m。 Embodiment 2 Compared with Embodiment 1, the supportable maximum ranging delay difference and the supportable maximum ranging range in the sequence parameter information will change. For example, as shown in the first row of Table 12, when the ZCZ interval is 5, if no cyclic shift is performed, the maximum supported ranging delay difference is 160 ns, and the supported maximum ranging range is 24 m. When the cyclic shift is 2 bits, the available ZCZ interval length becomes 3, correspondingly, the maximum supported ranging delay difference is 96ns, and the supported maximum ranging range is 14.4m. When the ZCZ interval is 9, if no cyclic shift is performed, the maximum supported ranging delay difference is 288ns, and the supported maximum ranging range is 43.2m. When the cyclic shift is 2 bits, the available ZCZ interval length becomes 7. Correspondingly, the maximum ranging delay difference that can be supported is 288*(7/9)=224ns, and the maximum ranging range that can be supported is 43.2* (7/9) = 33.6m.
如表13所示,为在采用每次循环移位接近一半(即,(ZCZ区间长度-1)/2)的方式来生成新的ZCZ序列的情况下,表3-表11提供的ZCZ序列对应的参数信息如下:As shown in Table 13, in the case of generating a new ZCZ sequence in a way that each cyclic shift is close to half (that is, (ZCZ interval length-1)/2), the ZCZ sequence provided in Table 3-Table 11 The corresponding parameter information is as follows:
Figure PCTCN2022114053-appb-000033
Figure PCTCN2022114053-appb-000033
当使用一个ZCZ序列的循环移位来支持不同Responder的同步测距时,第一装置(Initiator)在向第二装置(Responder)发送序列配置信息时,序列配置信息包括:第二序列的索引和循环移位信息;其中,不同的第二装置对应的第二序列的索引相同,不同的第二装置对应的循环移位信息不同。When the cyclic shift of a ZCZ sequence is used to support the synchronous ranging of different Responders, when the first device (Initiator) sends sequence configuration information to the second device (Responder), the sequence configuration information includes: the index of the second sequence and Cyclic shift information; where different second apparatuses correspond to the same index of the second sequence, and different second apparatuses correspond to different cyclic shift information.
另外,第一装置向第二装置确定,第二装置是否支持第二ZCZ序列,第二ZCZ序列为预配置的多个ZCZ序列中的一个。当支持第二ZCZ序列时,也支持对第二ZCZ序列进行循环移位得到的第一ZCZ序列。In addition, the first device determines to the second device whether the second device supports the second ZCZ sequence, and the second ZCZ sequence is one of a plurality of preconfigured ZCZ sequences. When the second ZCZ sequence is supported, the first ZCZ sequence obtained by cyclically shifting the second ZCZ sequence is also supported.
Initiator在对Responder的分布范围有结果之后,可以在Responder分布范围远小于序列ZCZ区间对应的可支持最大测距范围的前提下,使用同一个序列的循环移位来进一步提升测距序列的容量。由于Responder分布范围仍然小于循环移位对应的可用的ZCZ区间对 应的可支持最大测距范围,因此仍然可以无干扰地分辨出多个Responder测距响应信号对应的最大相关峰。After the Initiator has a result on the distribution range of the Responder, it can use the cyclic shift of the same sequence to further increase the capacity of the ranging sequence on the premise that the distribution range of the Responder is much smaller than the maximum range that can be supported corresponding to the sequence ZCZ interval. Since the Responder distribution range is still smaller than the supported maximum ranging range corresponding to the available ZCZ interval corresponding to the cyclic shift, it is still possible to distinguish the maximum correlation peak corresponding to the ranging response signals of multiple Responders without interference.
实施例2的其余过程可以参考实施例1,不再重复赘述。For the rest of the process in Embodiment 2, reference may be made to Embodiment 1, and details are not repeated here.
实施例2可以通过降低序列的可支持最大测距范围(可支持最大测距时延差)为代价,进一步提升测距序列容量。如果将每簇(或组)ZCZ序列循环移位接近一半ZCZ区间长度,可以将序列容量提升一倍,可以使用数量为M的ZCZ序列支持2M个Responder同步测距。 Embodiment 2 can further increase the capacity of the ranging sequence at the cost of reducing the maximum range that can be supported by the sequence (the maximum time delay difference that can be supported for ranging). If the cyclic shift of each cluster (or group) of ZCZ sequences is close to half the length of the ZCZ interval, the sequence capacity can be doubled, and a number of M ZCZ sequences can be used to support 2M Responders for synchronous ranging.
前文介绍了本申请实施例的方法,下文中将介绍本申请实施例中的装置。方法、装置是基于同一技术构思的,由于方法、装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。The method in the embodiment of the present application is introduced above, and the device in the embodiment of the present application will be introduced in the following. The method and the device are based on the same technical concept. Since the principles of the method and the device to solve problems are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
本申请实施例可以根据上述方法示例,对装置进行功能模块的划分,例如,可以对应各个功能划分为各个功能模块,也可以将两个或两个以上的功能集成在一个模块中。这些模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,具体实现时可以有另外的划分方式。The embodiment of the present application may divide the device into functional modules according to the above method example, for example, each function may be divided into each functional module, or two or more functions may be integrated into one module. These modules can be implemented not only in the form of hardware, but also in the form of software function modules. It should be noted that the division of the modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be another division manner during specific implementation.
基于与上述方法的同一技术构思,参见图5,提供了一种测距装置500结构示意图,该装置500可以包括:处理模块510,可选的,还包括接收模块520a、发送模块520b、存储模块530。处理模块510可以分别与存储模块530和接收模块520a和发送模块520b相连,所述存储模块530也可以与接收模块520a和发送模块520b相连。Based on the same technical concept as the above-mentioned method, referring to FIG. 5 , a schematic structural diagram of a ranging device 500 is provided. The device 500 may include: a processing module 510, and optionally, a receiving module 520a, a sending module 520b, and a storage module 530. The processing module 510 may be connected to the storage module 530 and the receiving module 520a and the sending module 520b respectively, and the storage module 530 may also be connected to the receiving module 520a and the sending module 520b.
在一种示例中,上述的接收模块520a和发送模块520b也可以集成在一起,定义为收发模块。In an example, the above-mentioned receiving module 520a and sending module 520b may also be integrated together and defined as a transceiver module.
在一种示例中,该装置500可以为第一装置,也可以为应用于第一装置中的芯片或功能单元。该装置500具有上述方法中第一装置的任意功能,例如,该装置500能够执行上述图2、图4的方法中由第一装置执行的各个步骤。In an example, the device 500 may be the first device, or may be a chip or a functional unit applied in the first device. The device 500 has any function of the first device in the above method, for example, the device 500 can execute the various steps performed by the first device in the above methods in FIG. 2 and FIG. 4 .
所述接收模块520a,可以执行上述方法实施例中第一装置执行的接收动作。The receiving module 520a may perform the receiving action performed by the first device in the above method embodiment.
所述发送模块520b,可以执行上述方法实施例中第一装置执行的发送动作。The sending module 520b may execute the sending action performed by the first device in the above method embodiment.
所述处理模块510,可以执行上述方法实施例中第一装置执行的动作中,除发送动作和接收动作外的其它动作。The processing module 510 may perform actions other than the sending action and the receiving action among the actions performed by the first device in the above method embodiments.
在一种示例中,所述接收模块520a,用于接收来自第二装置的第一测距响应信号,所述第一测距响应信号基于第一零相关区ZCZ序列生成,所述第一ZCZ序列属于预配置的多个ZCZ序列中的序列;In an example, the receiving module 520a is configured to receive a first ranging response signal from the second device, the first ranging response signal is generated based on a first zero-correlation zone ZCZ sequence, and the first ZCZ The sequence belongs to a sequence among the pre-configured multiple ZCZ sequences;
所述处理模块510,用于基于所述第一测距响应信号,确定所述第一装置和所述第二装置之间的距离。The processing module 510 is configured to determine the distance between the first device and the second device based on the first ranging response signal.
一种示例中,所述发送模块520b,用于向所述第二装置发送第一消息,所述第一消息用于确定所述第二装置是否支持所述第一ZCZ序列;In an example, the sending module 520b is configured to send a first message to the second device, where the first message is used to determine whether the second device supports the first ZCZ sequence;
所述接收模块520a,用于接收来自所述第二装置的第二消息,所述第二消息用于指示所述第二装置支持所述第一ZCZ序列、或不支持所述第一ZCZ序列。The receiving module 520a is configured to receive a second message from the second device, where the second message is used to indicate that the second device supports the first ZCZ sequence or does not support the first ZCZ sequence .
在一种示例中,所述存储模块530,可以存储第一装置执行的方法的计算机执行指令,以使处理模块510和接收模块520a和发送模块520b执行上述示例中第一装置执行的方法。In an example, the storage module 530 may store computer-executed instructions of the method executed by the first device, so that the processing module 510, the receiving module 520a, and the sending module 520b execute the method executed by the first device in the above examples.
示例的,存储模块可以包括一个或者多个存储器,存储器可以是一个或者多个设备、电路中用于存储程序或者数据的器件。存储模块可以是寄存器、缓存或者RAM等,存储模块可以和处理模块集成在一起。存储模块可以是ROM或者可存储静态信息和指令的其他类型的静态存储设备,存储模块可以与处理模块相独立。Exemplarily, the storage module may include one or more memories, and the memories may be devices used to store programs or data in one or more devices and circuits. The storage module may be a register, cache or RAM, etc., and the storage module may be integrated with the processing module. The storage module can be ROM or other types of static storage devices that can store static information and instructions, and the storage module can be independent from the processing module.
所述收发模块可以是输入或者输出接口、管脚或者电路等。The transceiver module may be an input or output interface, a pin or a circuit, and the like.
在一种示例中,该装置500可以为第二装置,也可以为应用于第二装置中的芯片或功能单元。该装置500具有上述方法中第二装置的任意功能,例如,该装置500能够执行上述图2、图4的方法中由第二装置执行的各个步骤。In an example, the device 500 may be the second device, or may be a chip or a functional unit applied in the second device. The device 500 has any function of the second device in the above method, for example, the device 500 can execute the various steps performed by the second device in the above methods in FIG. 2 and FIG. 4 .
所述接收模块520a,可以执行上述方法实施例中第二装置执行的接收动作。The receiving module 520a may perform the receiving action performed by the second device in the above method embodiment.
所述发送模块520b,可以执行上述方法实施例中第二装置执行的发送动作。The sending module 520b may execute the sending action performed by the second device in the above method embodiment.
所述处理模块510,可以执行上述方法实施例中第二装置执行的动作中,除发送动作和接收动作外的其它动作。The processing module 510 may execute other actions except the sending action and the receiving action among the actions performed by the second device in the above method embodiment.
在一种示例中,所述处理模块510,用于基于第一ZCZ序列生成第一测距响应信号,所述第一ZCZ序列属于预配置的多个ZCZ序列中的序列;In an example, the processing module 510 is configured to generate a first ranging response signal based on a first ZCZ sequence, where the first ZCZ sequence belongs to a sequence in a plurality of preconfigured ZCZ sequences;
所述发送模块520b,用于向第一装置发送第一测距响应信号。The sending module 520b is configured to send a first ranging response signal to the first device.
在一种示例中,所述存储模块530,可以存储第二装置执行的方法的计算机执行指令,以使处理模块510和接收模块520a和发送模块520b执行上述示例中第二装置执行的方法。In an example, the storage module 530 may store computer-executed instructions of the method executed by the second device, so that the processing module 510, the receiving module 520a, and the sending module 520b execute the method executed by the second device in the above examples.
示例的,存储模块可以包括一个或者多个存储器,存储器可以是一个或者多个设备、电路中用于存储程序或者数据的器件。存储模块可以是寄存器、缓存或者RAM等,存储模块可以和处理模块集成在一起。存储模块可以是ROM或者可存储静态信息和指令的其他类型的静态存储设备,存储模块可以与处理模块相独立。Exemplarily, the storage module may include one or more memories, and the memories may be devices used to store programs or data in one or more devices and circuits. The storage module may be a register, cache or RAM, etc., and the storage module may be integrated with the processing module. The storage module can be ROM or other types of static storage devices that can store static information and instructions, and the storage module can be independent from the processing module.
所述收发模块可以是输入或者输出接口、管脚或者电路等。The transceiver module may be an input or output interface, a pin or a circuit, and the like.
作为一种可能的产品形态,装置可以由一般性的总线体系结构来实现。As a possible product form, the device can be realized by a general bus architecture.
如图6所示,提供了一种测距装置600的示意性框图。As shown in FIG. 6 , a schematic block diagram of a ranging device 600 is provided.
该装置600可以包括:处理器610,可选的,还包括收发器620、存储器630。该收发器620,可以用于接收程序或指令并传输至所述处理器610,或者,该收发器620可以用于该装置600与其他通信设备进行通信交互,比如交互控制信令和/或业务数据等。该收发器620可以为代码和/或数据读写收发器,或者,该收发器620可以为处理器与收发机之间的信号传输收发器。所述处理器610和所述存储器630之间电耦合。The apparatus 600 may include: a processor 610 , and optionally, a transceiver 620 and a memory 630 . The transceiver 620 can be used to receive programs or instructions and transmit them to the processor 610, or the transceiver 620 can be used for the device 600 to communicate and interact with other communication devices, such as interactive control signaling and/or business data etc. The transceiver 620 may be a code and/or data read/write transceiver, or the transceiver 620 may be a signal transmission transceiver between the processor and the transceiver. The processor 610 is electrically coupled to the memory 630 .
一种示例中,该装置600可以为第一装置,也可以为应用于第一装置中的芯片。应理解,该装置具有上述方法中第一装置的任意功能,例如,所述装置600能够执行上述图2、图4的方法中由第一装置执行的各个步骤。示例的,所述存储器630,用于存储计算机程序;所述处理器610,可以用于调用所述存储器630中存储的计算机程序或指令,执行上述示例中第一装置执行的方法,或者通过所述收发器620执行上述示例中第一装置执行的方法。In an example, the device 600 may be the first device, or may be a chip applied in the first device. It should be understood that the device has any function of the first device in the above method, for example, the device 600 can execute the various steps performed by the first device in the above methods in FIG. 2 and FIG. 4 . Exemplarily, the memory 630 is used to store computer programs; the processor 610 can be used to call the computer programs or instructions stored in the memory 630 to execute the method performed by the first device in the above example, or to use the The transceiver 620 performs the method performed by the first device in the above example.
一种示例中,该装置600可以为第二装置,也可以为应用于第二装置中的芯片。应理解,该装置具有上述方法中第二装置的任意功能,例如,所述装置600能够执行上述图2、 图4的方法中由第二装置执行的各个步骤。示例的,所述存储器630,用于存储计算机程序;所述处理器610,可以用于调用所述存储器630中存储的计算机程序或指令,执行上述示例中第二装置执行的方法,或者通过所述收发器620执行上述示例中第二装置执行的方法。In an example, the device 600 may be the second device, or may be a chip applied in the second device. It should be understood that the device has any function of the second device in the above method, for example, the device 600 can execute the various steps performed by the second device in the above methods in FIG. 2 and FIG. 4 . Exemplarily, the memory 630 is used to store computer programs; the processor 610 can be used to call the computer programs or instructions stored in the memory 630 to execute the method performed by the second device in the above examples, or to use the The transceiver 620 performs the method performed by the second device in the above example.
图5中的处理模块510可以通过所述处理器610来实现。The processing module 510 in FIG. 5 may be implemented by the processor 610 .
图5中的接收模块520a和发送模块520b可以通过所述收发器620来实现。或者,收发器620分为接收器和发送器,接收器执行接收模块的功能,发送器执行发送模块的功能。The receiving module 520a and the sending module 520b in FIG. 5 may be implemented by the transceiver 620 . Alternatively, the transceiver 620 is divided into a receiver and a transmitter, the receiver performs the function of the receiving module, and the transmitter performs the function of the sending module.
图5中的存储模块530可以通过所述存储器630来实现。The storage module 530 in FIG. 5 may be implemented by the memory 630 .
作为一种可能的产品形态,装置可以由通用处理器(通用处理器也可以称为芯片或芯片系统)来实现。As a possible product form, the device may be implemented by a general-purpose processor (a general-purpose processor may also be referred to as a chip or system-on-a-chip).
一种可能的实现方式中,实现应用于第一装置或第二装置的通用处理器包括:处理电路(处理电路也可以称为处理器);可选的,还包括:与所述处理电路内部连接通信的输入输出接口、存储介质(存储介质也可以称为存储器),所述存储介质用于存储处理电路执行的指令,以执行上述示例中第一装置或第二装置执行的方法。In a possible implementation manner, implementing a general-purpose processor applied to the first device or the second device includes: a processing circuit (the processing circuit may also be referred to as a processor); optionally, further includes: The input and output interfaces for communication and the storage medium (storage medium may also be referred to as memory) are connected, and the storage medium is used to store instructions executed by the processing circuit to execute the method executed by the first device or the second device in the above examples.
图5中的处理模块510可以通过处理电路来实现。The processing module 510 in FIG. 5 may be implemented by a processing circuit.
图5中的接收模块520a和发送模块520b可以通过输入输出接口来实现。或者,输入输出接口分为输入接口和输出接口,输入接口执行接收模块的功能,输出接口执行发送模块的功能。The receiving module 520a and the sending module 520b in FIG. 5 can be realized through input and output interfaces. Alternatively, the input-output interface is divided into an input interface and an output interface, the input interface performs the function of the receiving module, and the output interface performs the function of the sending module.
图5中的存储模块530可以通过存储介质来实现。The storage module 530 in FIG. 5 may be implemented by a storage medium.
作为一种可能的产品形态,本申请实施例的装置,还可以使用下述来实现:一个或多个FPGA(现场可编程门阵列)、PLD(可编程逻辑器件)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。As a possible product form, the device of the embodiment of the present application can also be realized using the following: one or more FPGAs (Field Programmable Gate Arrays), PLDs (Programmable Logic Devices), controllers, state machines, Any combination of gate logic, discrete hardware components, any other suitable circuitry, or circuitry capable of performing the various functions described throughout this application.
本申请实施例还提供了一种计算机可读存储介质,存储有计算机程序,该计算机程序被计算机执行时,可以使得所述计算机用于执行上述测距方法。或者说:所述计算机程序包括用于实现上述测距方法的指令。The embodiment of the present application also provides a computer-readable storage medium storing a computer program, and when the computer program is executed by a computer, the computer can be used to execute the distance measuring method. Or in other words: the computer program includes instructions for implementing the distance measuring method described above.
本申请实施例还提供了一种计算机程序产品,包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机可以执行上述提供的测距方法。The embodiment of the present application also provides a computer program product, including: computer program code, when the computer program code is run on the computer, the computer can execute the distance measuring method provided above.
本申请实施例还提供了一种测距的系统,所述测距系统包括:执行上述测距方法的第一转置和第二装置。An embodiment of the present application also provides a distance measuring system, the distance measuring system comprising: a first transpose and a second device for performing the above distance measuring method.
另外,本申请实施例中提及的处理器可以是中央处理器(central processing unit,CPU),基带处理器,基带处理器和CPU可以集成在一起,或者分开,还可以是网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片或其他通用处理器。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)及其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等或其任意组合。通用处 理器可以是微处理器或者该处理器也可以是任何常规的处理器等。In addition, the processor mentioned in the embodiment of the present application may be a central processing unit (central processing unit, CPU), a baseband processor, and the baseband processor and the CPU may be integrated or separated, or may be a network processor (network processing unit). processor, NP) or a combination of CPU and NP. Processors may further include hardware chips or other general-purpose processors. The aforementioned hardware chip may be an application-specific integrated circuit (application-specific integrated circuit, ASIC), a programmable logic device (programmable logic device, PLD) or a combination thereof. The above PLD can be complex programmable logic device (complex programmable logic device, CPLD), field programmable logic gate array (field-programmable gate array, FPGA), general array logic (generic array logic, GAL) and other programmable logic devices , discrete gate or transistor logic devices, discrete hardware components, etc., or any combination thereof. A general-purpose processor may be a microprocessor, or the processor may be any conventional processor, and the like.
本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本申请描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。The memory mentioned in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories. Among them, the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash. The volatile memory can be Random Access Memory (RAM), which acts as external cache memory. By way of illustration and not limitation, many forms of RAM are available, such as Static Random Access Memory (Static RAM, SRAM), Dynamic Random Access Memory (Dynamic RAM, DRAM), Synchronous Dynamic Random Access Memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (Synchlink DRAM, SLDRAM ) and Direct Memory Bus Random Access Memory (Direct Rambus RAM, DR RAM). It should be noted that the memories described herein are intended to include, but are not limited to, these and any other suitable types of memories.
本申请实施例中提及的收发器中可以包括单独的发送器,和/或,单独的接收器,也可以是发送器和接收器集成一体。收发器可以在相应的处理器的指示下工作。可选的,发送器可以对应物理设备中发射机,接收器可以对应物理设备中的接收机。The transceiver mentioned in the embodiment of the present application may include a separate transmitter and/or a separate receiver, or the transmitter and the receiver may be integrated. Transceivers can operate under the direction of corresponding processors. Optionally, the transmitter may correspond to the transmitter in the physical device, and the receiver may correspond to the receiver in the physical device.
本领域普通技术人员可以意识到,结合本文中所公开的实施例中描述的各方法步骤和单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤及组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。Those of ordinary skill in the art can realize that, in combination with the various method steps and units described in the embodiments disclosed herein, they can be implemented by electronic hardware, computer software, or a combination of the two. In order to clearly illustrate the possibility of hardware and software For interchangeability, in the above description, the steps and components of each embodiment have been generally described according to their functions. Whether these functions are executed by hardware or software depends on the specific application and design constraints of the technical solution. Those of ordinary skill in the art may implement the described functionality using different methods for each particular application, but such implementation should not be considered as exceeding the scope of the present application.
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。In the several embodiments provided in this application, it should be understood that the disclosed systems, devices and methods may be implemented in other ways. For example, the device embodiments described above are only illustrative. For example, the division of the units is only a logical function division. In actual implementation, there may be other division methods. For example, multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented. In addition, the mutual coupling or direct coupling or communication connection shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。The units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of the embodiment of the present application.
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。In addition, each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit. The above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者第二装置等)执行本申请各个实施例所述方法的全部 或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。If the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium. Based on this understanding, the technical solution of the present application is essentially or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of software products, and the computer software products are stored in a storage medium Among them, several instructions are included to make a computer device (which may be a personal computer, a server, or a second device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application. The aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
本申请中的“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本申请中所涉及的多个,是指两个或两个以上。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。"And/or" in this application describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B, may mean: A exists alone, A and B exist simultaneously, and B exists independently. situation. The character "/" generally indicates that the contextual objects are an "or" relationship. A plurality referred to in this application refers to two or more than two. In addition, it should be understood that in the description of this application, words such as "first" and "second" are only used for the purpose of distinguishing descriptions, and cannot be understood as indicating or implying relative importance, nor can they be understood as indicating or imply order.
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。While preferred embodiments of the present application have been described, additional changes and modifications to these embodiments can be made by those skilled in the art once the basic inventive concept is appreciated. Therefore, the appended claims are intended to be construed to cover the preferred embodiment and all changes and modifications which fall within the scope of the application.
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。Apparently, those skilled in the art can make various changes and modifications to the embodiments of the present application without departing from the spirit and scope of the embodiments of the present application. In this way, if the modifications and variations of the embodiments of the present application fall within the scope of the claims of the present application and their equivalent technologies, the present application also intends to include these modifications and variations.

Claims (26)

  1. 一种测距方法,其特征在于,包括:A distance measuring method, characterized in that, comprising:
    第一装置接收来自第二装置的第一测距响应信号,所述第一测距响应信号基于第一零相关区ZCZ序列生成,所述第一ZCZ序列属于预配置的多个ZCZ序列中的序列;The first device receives the first ranging response signal from the second device, the first ranging response signal is generated based on the first zero-correlation zone ZCZ sequence, and the first ZCZ sequence belongs to a plurality of pre-configured ZCZ sequences sequence;
    所述第一装置基于所述第一测距响应信号,确定所述第一装置和所述第二装置之间的距离。The first device determines a distance between the first device and the second device based on the first ranging response signal.
  2. 根据权利要求1所述的方法,其特征在于,还包括:The method according to claim 1, further comprising:
    所述第一装置向所述第二装置发送第一消息,所述第一消息用于确定所述第二装置是否支持所述第一ZCZ序列;The first device sends a first message to the second device, and the first message is used to determine whether the second device supports the first ZCZ sequence;
    所述第一装置接收来自所述第二装置的第二消息,所述第二消息用于指示所述第二装置支持所述第一ZCZ序列、或不支持所述第一ZCZ序列。The first device receives a second message from the second device, where the second message is used to indicate that the second device supports the first ZCZ sequence or does not support the first ZCZ sequence.
  3. 一种测距方法,其特征在于,包括:A distance measuring method, characterized in that, comprising:
    第二装置基于第一ZCZ序列生成第一测距响应信号,所述第一ZCZ序列属于预配置的多个ZCZ序列中的序列;The second device generates a first ranging response signal based on a first ZCZ sequence, and the first ZCZ sequence belongs to a sequence in a plurality of preconfigured ZCZ sequences;
    所述第二装置向第一装置发送所述第一测距响应信号。The second device sends the first ranging response signal to the first device.
  4. 根据权利要求3所述的方法,其特征在于,还包括:The method according to claim 3, further comprising:
    所述第二装置接收来自所述第一装置的第一消息,所述第一消息用于确定所述第二装置是否支持所述第一ZCZ序列;The second device receives a first message from the first device, the first message is used to determine whether the second device supports the first ZCZ sequence;
    所述第二装置向所述第一装置发送第二消息,所述第二消息用于指示所述第二装置支持所述第一ZCZ序列、或不支持所述第一ZCZ序列。The second device sends a second message to the first device, where the second message is used to indicate that the second device supports the first ZCZ sequence or does not support the first ZCZ sequence.
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述多个ZCZ序列均为二元序列。The method according to any one of claims 1-4, wherein the plurality of ZCZ sequences are all binary sequences.
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述多个ZCZ序列在ZCZ区间内具有完美的周期自相关性质和完美的周期互相关性质。The method according to any one of claims 1-5, characterized in that the multiple ZCZ sequences have perfect periodic autocorrelation properties and perfect periodic cross-correlation properties in the ZCZ interval.
  7. 根据权利要求1-6任一项所述的方法,其特征在于,在所述多个ZCZ序列中:The method according to any one of claims 1-6, wherein in the multiple ZCZ sequences:
    长度为32的ZCZ序列的ZCZ区间长度为5或9或17;或者,The ZCZ interval length of the ZCZ sequence of length 32 is 5 or 9 or 17; or,
    长度为128的ZCZ序列的ZCZ区间长度为9或17或33;或者,The ZCZ interval length of a ZCZ sequence of length 128 is 9 or 17 or 33; or,
    长度为256的ZCZ序列的ZCZ区间长度为17或33或65。The ZCZ interval length of a ZCZ sequence with a length of 256 is 17 or 33 or 65.
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述多个ZCZ序列包括以下一项或多项:The method according to any one of claims 1-7, wherein the multiple ZCZ sequences include one or more of the following:
    8条长度为32、ZCZ区间长度为5的ZCZ序列;8 ZCZ sequences with length 32 and ZCZ interval length 5;
    4条长度为32、ZCZ区间长度为9的ZCZ序列;4 ZCZ sequences with length 32 and ZCZ interval length 9;
    2条长度为32、ZCZ区间长度为17的ZCZ序列;2 ZCZ sequences with length 32 and ZCZ interval length 17;
    16条长度为128、ZCZ区间长度为9的ZCZ序列;16 ZCZ sequences with length 128 and ZCZ interval length 9;
    8条长度为128、ZCZ区间长度为17的ZCZ序列;8 ZCZ sequences with length 128 and ZCZ interval length 17;
    4条长度为128、ZCZ区间长度为33的ZCZ序列;4 ZCZ sequences with a length of 128 and a ZCZ interval length of 33;
    16条长度为256、ZCZ区间长度为17的ZCZ序列;16 ZCZ sequences with length 256 and ZCZ interval length 17;
    8条长度为256、ZCZ区间长度为33的ZCZ序列;8 ZCZ sequences with a length of 256 and a ZCZ interval length of 33;
    4条长度为256、ZCZ区间长度为65的ZCZ序列。4 ZCZ sequences with a length of 256 and a ZCZ interval length of 65.
  9. 根据权利要求7或8所述的方法,其特征在于,长度为32、ZCZ区间长度为5的ZCZ序列包括以下一个或多个:The method according to claim 7 or 8, wherein the ZCZ sequence whose length is 32 and whose ZCZ interval length is 5 includes one or more of the following:
    -1 -1 -1 -1 1 1 1 1 1 -1 1 -1 -1 1 -1 1 1 1 -1 -1 -1 -1 1 1 -1 1 1 -1 1 -1 -1 1;-1 -1 -1 -1 1 1 1 1 1 -1 1 -1 -1 1 -1 1 1 1 -1 -1 -1 -1 1 1 -1 1 1 -1 1 -1 -1 1;
    -1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 -1 1 1 -1 -1 1 1 -1;-1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 -1 1 1 -1 -1 1 1 -1;
    1 -1 1 -1 -1 1 -1 1 -1 -1 -1 -1 1 1 1 1 -1 1 1 -1 1 -1 -1 1 1 1 -1 -1 -1 -1 1 1;1 -1 1 -1 -1 1 -1 1 -1 -1 -1 -1 1 1 1 1 -1 1 1 -1 1 -1 -1 1 1 1 -1 -1 -1 -1 1 1;
    1 -1 1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1 1 -1 1 1 -1 -1 1 1 -1 -1;1 -1 1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1 1 -1 1 1 -1 -1 1 1 -1 -1;
    1 1 -1 -1 -1 -1 1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 -1 -1 1 1 1 1 1 -1 1 -1 -1 1 -1 1;1 1 -1 -1 -1 -1 1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 -1 -1 1 1 1 1 1 -1 1 -1 -1 1 -1 1;
    1 1 -1 -1 1 1 -1 -1 -1 1 1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 1 -1 1 -1;1 1 -1 -1 1 1 -1 -1 -1 1 1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 1 -1 1 -1;
    -1 1 1 -1 1 -1 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 1 -1 -1 1 -1 1 -1 -1 -1 -1 1 1 1 1;-1 1 1 -1 1 -1 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 1 -1 -1 1 -1 1 -1 -1 -1 -1 1 1 1;
    -1 1 1 -1 -1 1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1;和/或,-1 1 1 -1 -1 1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1; and/or,
    长度为32、ZCZ区间长度为9的ZCZ序列包括说明书具体实施方式中的表5中的一个或多个序列;和/或,The ZCZ sequence with a length of 32 and a ZCZ interval length of 9 includes one or more sequences in Table 5 in the specific embodiments of the specification; and/or,
    长度为32、ZCZ区间长度为17的ZCZ序列包括说明书具体实施方式中的表6中的一个或多个序列;和/或,The ZCZ sequence with a length of 32 and a ZCZ interval length of 17 includes one or more sequences in Table 6 in the specific embodiments of the specification; and/or,
    长度为128、ZCZ区间长度为9的ZCZ序列包括说明书具体实施方式中的表4中的一个或多个序列;和/或,The ZCZ sequence with a length of 128 and a ZCZ interval length of 9 includes one or more sequences in Table 4 in the specific embodiments of the specification; and/or,
    长度为128、ZCZ区间长度为17的ZCZ序列包括说明书具体实施方式中的表7中的一个或多个序列;和/或,The ZCZ sequence with a length of 128 and a ZCZ interval length of 17 includes one or more sequences in Table 7 in the specific embodiments of the specification; and/or,
    长度为128、ZCZ区间长度为33的ZCZ序列包括说明书具体实施方式中的表8中的一个或多个序列;和/或,The ZCZ sequence with a length of 128 and a ZCZ interval length of 33 includes one or more sequences in Table 8 in the specific embodiments of the specification; and/or,
    长度为256、ZCZ区间长度为17的ZCZ序列包括说明书具体实施方式中的表9中的一个或多个序列;和/或,The ZCZ sequence with a length of 256 and a ZCZ interval length of 17 includes one or more sequences in Table 9 in the specific embodiments of the specification; and/or,
    长度为256、ZCZ区间长度为33的ZCZ序列包括说明书具体实施方式中的表10中的一个或多个序列;和/或,The ZCZ sequence with a length of 256 and a ZCZ interval length of 33 includes one or more sequences in Table 10 in the specific embodiments of the specification; and/or,
    长度为256、ZCZ区间长度为65的ZCZ序列包括说明书具体实施方式中的表11中的一个或多个序列。The ZCZ sequence with a length of 256 and a ZCZ interval length of 65 includes one or more sequences in Table 11 in the specific embodiments of the specification.
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述第一测距响应信号基于第一ZCZ序列生成包括:The method according to any one of claims 1-9, wherein generating the first ranging response signal based on the first ZCZ sequence comprises:
    将长度为32的第一ZCZ序列中的每个码元后补充15个0,得到第一测距响应信号;After each symbol in the first ZCZ sequence with a length of 32, 15 0s are added to obtain the first ranging response signal;
    将长度为128的第一ZCZ序列中的每个码元后补充3个0,得到第一测距响应信号;After each symbol in the first ZCZ sequence with a length of 128, three 0s are added to obtain the first ranging response signal;
    将长度为32的第一ZCZ序列中的每个码元后补充3个0,得到第一测距响应信号。Each symbol in the first ZCZ sequence with a length of 32 is supplemented with three 0s to obtain a first ranging response signal.
  11. 根据权利要求1-10任一项所述的方法,其特征在于,在存在多个所述第二装置的 情况下,不同的第二装置发送的第一ZCZ序列不同,多个第二装置对应的多个所述第一ZCZ序列的参数信息相同,所述参数信息包括以下一项或多项:ZCZ区间长度、可支持最大测距时延差、可支持最大测距范围。The method according to any one of claims 1-10, wherein when there are multiple second devices, the first ZCZ sequences sent by different second devices are different, and the multiple second devices correspond to The parameter information of the multiple first ZCZ sequences is the same, and the parameter information includes one or more of the following: ZCZ interval length, supportable maximum ranging delay difference, and supportable maximum ranging range.
  12. 一种测距装置,其特征在于,包括:A distance measuring device, characterized in that it comprises:
    接收模块,用于接收来自第二装置的第一测距响应信号,所述第一测距响应信号基于第一零相关区ZCZ序列生成,所述第一ZCZ序列属于预配置的多个ZCZ序列中的序列;A receiving module, configured to receive a first ranging response signal from a second device, the first ranging response signal is generated based on a first zero-correlation zone ZCZ sequence, and the first ZCZ sequence belongs to a plurality of pre-configured ZCZ sequences sequence in
    处理模块,用于基于所述第一测距响应信号,确定所述测距装置和所述第二装置之间的距离。A processing module, configured to determine the distance between the ranging device and the second device based on the first ranging response signal.
  13. 根据权利要求12所述的装置,其特征在于,还包括:The device according to claim 12, further comprising:
    发送模块,用于向所述第二装置发送第一消息,所述第一消息用于确定所述第二装置是否支持所述第一ZCZ序列;a sending module, configured to send a first message to the second device, where the first message is used to determine whether the second device supports the first ZCZ sequence;
    所述接收模块,还用于接收来自所述第二装置的第二消息,所述第二消息用于指示所述第二装置支持所述第一ZCZ序列、或不支持所述第一ZCZ序列。The receiving module is further configured to receive a second message from the second device, where the second message is used to indicate that the second device supports the first ZCZ sequence or does not support the first ZCZ sequence .
  14. 一种测距装置,其特征在于,包括:A distance measuring device, characterized in that it comprises:
    处理模块,用于基于第一ZCZ序列生成第一测距响应信号,所述第一ZCZ序列属于预配置的多个ZCZ序列中的序列;A processing module, configured to generate a first ranging response signal based on a first ZCZ sequence, where the first ZCZ sequence belongs to a sequence in a plurality of preconfigured ZCZ sequences;
    发送模块,用于向第一装置发送所述第一测距响应信号。A sending module, configured to send the first ranging response signal to the first device.
  15. 根据权利要求14所述的装置,其特征在于,还包括:The device according to claim 14, further comprising:
    接收模块,用于接收来自所述第一装置的第一消息,所述第一消息用于确定所述测距装置是否支持所述第一ZCZ序列;A receiving module, configured to receive a first message from the first device, where the first message is used to determine whether the ranging device supports the first ZCZ sequence;
    发送模块,用于向所述第一装置发送第二消息,所述第二消息用于指示所述测距装置支持所述第一ZCZ序列、或不支持所述第一ZCZ序列。A sending module, configured to send a second message to the first device, where the second message is used to indicate that the ranging device supports the first ZCZ sequence or does not support the first ZCZ sequence.
  16. 根据权利要求12-15任一项所述的装置,其特征在于,所述多个ZCZ序列均为二元序列。The device according to any one of claims 12-15, wherein the multiple ZCZ sequences are all binary sequences.
  17. 根据权利要求12-16任一项所述的装置,其特征在于,所述多个ZCZ序列在ZCZ区间内具有完美的周期自相关性质和完美的周期互相关性质。The device according to any one of claims 12-16, wherein the multiple ZCZ sequences have perfect periodic autocorrelation properties and perfect periodic cross-correlation properties in the ZCZ interval.
  18. 根据权利要求12-17任一项所述的装置,其特征在于,在所述多个ZCZ序列中:The device according to any one of claims 12-17, wherein in the multiple ZCZ sequences:
    长度为32的ZCZ序列的ZCZ区间长度为5或9或17;或者,The ZCZ interval length of the ZCZ sequence of length 32 is 5 or 9 or 17; or,
    长度为128的ZCZ序列的ZCZ区间长度为9或17或33;或者,The ZCZ interval length of a ZCZ sequence of length 128 is 9 or 17 or 33; or,
    长度为256的ZCZ序列的ZCZ区间长度为17或33或65。The ZCZ interval length of a ZCZ sequence with a length of 256 is 17 or 33 or 65.
  19. 根据权利要求12-18任一项所述的装置,其特征在于,所述多个ZCZ序列包括以下一项或多项:The device according to any one of claims 12-18, wherein the multiple ZCZ sequences include one or more of the following:
    8条长度为32、ZCZ区间长度为5的ZCZ序列;8 ZCZ sequences with length 32 and ZCZ interval length 5;
    4条长度为32、ZCZ区间长度为9的ZCZ序列;4 ZCZ sequences with length 32 and ZCZ interval length 9;
    2条长度为32、ZCZ区间长度为17的ZCZ序列;2 ZCZ sequences with length 32 and ZCZ interval length 17;
    16条长度为128、ZCZ区间长度为9的ZCZ序列;16 ZCZ sequences with length 128 and ZCZ interval length 9;
    8条长度为128、ZCZ区间长度为17的ZCZ序列;8 ZCZ sequences with length 128 and ZCZ interval length 17;
    4条长度为128、ZCZ区间长度为33的ZCZ序列;4 ZCZ sequences with a length of 128 and a ZCZ interval length of 33;
    16条长度为256、ZCZ区间长度为17的ZCZ序列;16 ZCZ sequences with length 256 and ZCZ interval length 17;
    8条长度为256、ZCZ区间长度为33的ZCZ序列;8 ZCZ sequences with a length of 256 and a ZCZ interval length of 33;
    4条长度为256、ZCZ区间长度为65的ZCZ序列。4 ZCZ sequences with a length of 256 and a ZCZ interval length of 65.
  20. 根据权利要求18或19所述的装置,其特征在于,长度为32、ZCZ区间长度为5的ZCZ序列包括以下一个或多个:The device according to claim 18 or 19, wherein the ZCZ sequence with a length of 32 and a ZCZ interval length of 5 includes one or more of the following:
    -1 -1 -1 -1 1 1 1 1 1 -1 1 -1 -1 1 -1 1 1 1 -1 -1 -1 -1 1 1 -1 1 1 -1 1 -1 -1 1;-1 -1 -1 -1 1 1 1 1 1 -1 1 -1 -1 1 -1 1 1 1 -1 -1 -1 -1 1 1 -1 1 1 -1 1 -1 -1 1;
    -1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 -1 1 1 -1 -1 1 1 -1;-1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 -1 1 1 -1 -1 1 1 -1;
    1 -1 1 -1 -1 1 -1 1 -1 -1 -1 -1 1 1 1 1 -1 1 1 -1 1 -1 -1 1 1 1 -1 -1 -1 -1 1 1;1 -1 1 -1 -1 1 -1 1 -1 -1 -1 -1 1 1 1 1 -1 1 1 -1 1 -1 -1 1 1 1 -1 -1 -1 -1 1 1;
    1 -1 1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1 1 -1 1 1 -1 -1 1 1 -1 -1;1 -1 1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1 1 -1 1 1 -1 -1 1 1 -1 -1;
    1 1 -1 -1 -1 -1 1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 -1 -1 1 1 1 1 1 -1 1 -1 -1 1 -1 1;1 1 -1 -1 -1 -1 1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 -1 -1 1 1 1 1 1 -1 1 -1 -1 1 -1 1;
    1 1 -1 -1 1 1 -1 -1 -1 1 1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 1 -1 1 -1;1 1 -1 -1 1 1 -1 -1 -1 1 1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 1 -1 1 -1;
    -1 1 1 -1 1 -1 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 1 -1 -1 1 -1 1 -1 -1 -1 -1 1 1 1 1;-1 1 1 -1 1 -1 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 1 -1 -1 1 -1 1 -1 -1 -1 -1 1 1 1;
    -1 1 1 -1 -1 1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1;和/或,-1 1 1 -1 -1 1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1; and/or,
    长度为32、ZCZ区间长度为9的ZCZ序列包括说明书具体实施方式中的表5中的一个或多个序列;和/或,The ZCZ sequence with a length of 32 and a ZCZ interval length of 9 includes one or more sequences in Table 5 in the specific embodiments of the specification; and/or,
    长度为32、ZCZ区间长度为17的ZCZ序列包括说明书具体实施方式中的表6中的一个或多个序列;和/或,The ZCZ sequence with a length of 32 and a ZCZ interval length of 17 includes one or more sequences in Table 6 in the specific embodiments of the specification; and/or,
    长度为128、ZCZ区间长度为9的ZCZ序列包括说明书具体实施方式中的表4中的一个或多个序列;和/或,The ZCZ sequence with a length of 128 and a ZCZ interval length of 9 includes one or more sequences in Table 4 in the specific embodiments of the specification; and/or,
    长度为128、ZCZ区间长度为17的ZCZ序列包括说明书具体实施方式中的表7中的一个或多个序列;和/或,The ZCZ sequence with a length of 128 and a ZCZ interval length of 17 includes one or more sequences in Table 7 in the specific embodiments of the specification; and/or,
    长度为128、ZCZ区间长度为33的ZCZ序列包括说明书具体实施方式中的表8中的一个或多个序列;和/或,The ZCZ sequence with a length of 128 and a ZCZ interval length of 33 includes one or more sequences in Table 8 in the specific embodiments of the specification; and/or,
    长度为256、ZCZ区间长度为17的ZCZ序列包括说明书具体实施方式中的表9中的一个或多个序列;和/或,The ZCZ sequence with a length of 256 and a ZCZ interval length of 17 includes one or more sequences in Table 9 in the specific embodiments of the specification; and/or,
    长度为256、ZCZ区间长度为33的ZCZ序列包括说明书具体实施方式中的表10中的一个或多个序列;和/或,The ZCZ sequence with a length of 256 and a ZCZ interval length of 33 includes one or more sequences in Table 10 in the specific embodiments of the specification; and/or,
    长度为256、ZCZ区间长度为65的ZCZ序列包括说明书具体实施方式中的表11中的一个或多个序列。The ZCZ sequence with a length of 256 and a ZCZ interval length of 65 includes one or more sequences in Table 11 in the specific embodiments of the specification.
  21. 根据权利要求12-20任一项所述的装置,其特征在于,所述第一测距响应信号基于第一ZCZ序列生成包括:The device according to any one of claims 12-20, wherein the generation of the first ranging response signal based on the first ZCZ sequence includes:
    将长度为32的第一ZCZ序列中的每个码元后补充15个0,得到第一测距响应信号;After each symbol in the first ZCZ sequence with a length of 32, 15 0s are added to obtain the first ranging response signal;
    将长度为128的第一ZCZ序列中的每个码元后补充3个0,得到第一测距响应信号;After each symbol in the first ZCZ sequence with a length of 128, three 0s are added to obtain the first ranging response signal;
    将长度为32的第一ZCZ序列中的每个码元后补充3个0,得到第一测距响应信号。Each symbol in the first ZCZ sequence with a length of 32 is supplemented with three 0s to obtain a first ranging response signal.
  22. 根据权利要求12-21任一项所述的装置,其特征在于,在存在多个所述第二装置的情况下,不同的第二装置发送的第一ZCZ序列不同,多个第二装置对应的多个所述第一ZCZ序列的参数信息相同,所述参数信息包括以下一项或多项:ZCZ区间长度、可支持最大测距时延差、可支持最大测距范围。The device according to any one of claims 12-21, wherein when there are multiple second devices, the first ZCZ sequences sent by different second devices are different, and the multiple second devices correspond to The parameter information of the plurality of first ZCZ sequences is the same, and the parameter information includes one or more of the following: ZCZ interval length, maximum ranging delay difference that can be supported, and maximum ranging range that can be supported.
  23. 一种测距装置,其特征在于,包括处理器,所述处理器与存储器耦合;A distance measuring device, characterized in that it includes a processor, and the processor is coupled with a memory;
    所述存储器,用于存储计算机程序或指令;said memory for storing computer programs or instructions;
    所述处理器,用于执行所述存储器中的部分或者全部计算机程序或指令,当所述部分或者全部计算机程序或指令被执行时,用于实现如权利要求1-11任一项所述的方法。The processor is configured to execute part or all of the computer programs or instructions in the memory, and when the part or all of the computer programs or instructions are executed, it is used to implement the method described in any one of claims 1-11. method.
  24. 一种测距装置,其特征在于,包括处理器和存储器;A distance measuring device, characterized in that it includes a processor and a memory;
    所述存储器,用于存储计算机程序或指令;said memory for storing computer programs or instructions;
    所述处理器,用于执行所述存储器中的部分或者全部计算机程序或指令,当所述部分或者全部计算机程序或指令被执行时,用于实现如权利要求1-11任一项所述的方法。The processor is configured to execute part or all of the computer programs or instructions in the memory, and when the part or all of the computer programs or instructions are executed, it is used to implement the method described in any one of claims 1-11. method.
  25. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序包括用于实现权利要求1-11任一项所述的方法的指令。A computer-readable storage medium, characterized by being used for storing a computer program, the computer program including instructions for implementing the method according to any one of claims 1-11.
  26. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如权利要求1-11任一项所述的方法。A computer program product, characterized in that the computer program product comprises: computer program code, when the computer program code is run on a computer, the computer is made to execute the method according to any one of claims 1-11.
PCT/CN2022/114053 2021-08-26 2022-08-22 Ranging method and apparatus WO2023025111A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110987224.6 2021-08-26
CN202110987224 2021-08-26
CN202111194381.8A CN115932725A (en) 2021-08-26 2021-10-13 Distance measuring method and device
CN202111194381.8 2021-10-13

Publications (1)

Publication Number Publication Date
WO2023025111A1 true WO2023025111A1 (en) 2023-03-02

Family

ID=85321532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114053 WO2023025111A1 (en) 2021-08-26 2022-08-22 Ranging method and apparatus

Country Status (1)

Country Link
WO (1) WO2023025111A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101702827A (en) * 2009-11-19 2010-05-05 清华大学 TOA positioning estimation method and precise positioning method based on same
CN102273101A (en) * 2009-01-05 2011-12-07 Lg电子株式会社 Method for transmitting ranging information in wireless communication system and terminal thereof
US20160329981A1 (en) * 2014-02-18 2016-11-10 Lg Electronics Inc. Method for transreceiving signals using user-specific flexible tdd technology in wireless communication system and device for same
CN109557527A (en) * 2018-11-26 2019-04-02 中国石油大学(华东) A kind of vehicle odometry method based on mixing correlation reception and error iteration
CN111796260A (en) * 2019-08-12 2020-10-20 维沃移动通信有限公司 Distance measurement method and device
CN111989592A (en) * 2020-07-16 2020-11-24 北京小米移动软件有限公司 Ranging method, device and equipment in synchronous system and readable storage medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102273101A (en) * 2009-01-05 2011-12-07 Lg电子株式会社 Method for transmitting ranging information in wireless communication system and terminal thereof
CN101702827A (en) * 2009-11-19 2010-05-05 清华大学 TOA positioning estimation method and precise positioning method based on same
US20160329981A1 (en) * 2014-02-18 2016-11-10 Lg Electronics Inc. Method for transreceiving signals using user-specific flexible tdd technology in wireless communication system and device for same
CN109557527A (en) * 2018-11-26 2019-04-02 中国石油大学(华东) A kind of vehicle odometry method based on mixing correlation reception and error iteration
CN111796260A (en) * 2019-08-12 2020-10-20 维沃移动通信有限公司 Distance measurement method and device
CN111989592A (en) * 2020-07-16 2020-11-24 北京小米移动软件有限公司 Ranging method, device and equipment in synchronous system and readable storage medium

Similar Documents

Publication Publication Date Title
JP6816857B2 (en) Synchronous information transmission method and device
US10615929B2 (en) Apparatus, system and method of multi user (MU) range measurement
WO2017219996A1 (en) Method for transmitting user sequence, network device, and terminal device
WO2022016971A1 (en) Wireless communication method and apparatus, base station, and tag device
CN104202712A (en) Device-to-device synchronization signal transmitting method and device, and user equipment
WO2017113176A1 (en) Method for service discovery in neighbor awareness network (nan) and terminal device
JPWO2020198671A5 (en)
WO2023151081A1 (en) Communication method and communication apparatus
WO2021135264A1 (en) Communication resource configuration method and device, terminal, and readable storage medium
WO2021032024A1 (en) Reference signal indication method and apparatus
WO2023025111A1 (en) Ranging method and apparatus
WO2020228433A1 (en) Synchronization method and device
Rezazadeh et al. Message-efficient localization in mobile wireless sensor networks
WO2018171373A1 (en) Method and device for determining preamble sequence of physical random access channel
WO2018127146A1 (en) Transmitting node, receiving node, and transmission method
WO2023024940A1 (en) Uwb communication method, communication apparatus and system
US8873691B2 (en) Generating codes for sync words to avoid cyclic collision
CN115932725A (en) Distance measuring method and device
TWI729196B (en) Method for transmitting system information, network device and terminal device
WO2024012259A1 (en) Communication method and apparatus
WO2023207602A1 (en) Communication method and related apparatus
WO2024066564A1 (en) Ultra-wideband-based sensing method and apparatus
CN115174023B (en) Multi-antenna base station ranging system, method and device
WO2023061311A1 (en) Method and apparatus for transmitting physical protocol data unit
WO2023185633A1 (en) Communication method, apparatus, and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE