WO2023024795A1 - 天线装置、电子设备及天线装置的设计方法 - Google Patents

天线装置、电子设备及天线装置的设计方法 Download PDF

Info

Publication number
WO2023024795A1
WO2023024795A1 PCT/CN2022/107793 CN2022107793W WO2023024795A1 WO 2023024795 A1 WO2023024795 A1 WO 2023024795A1 CN 2022107793 W CN2022107793 W CN 2022107793W WO 2023024795 A1 WO2023024795 A1 WO 2023024795A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
electric field
antenna device
current
area
Prior art date
Application number
PCT/CN2022/107793
Other languages
English (en)
French (fr)
Inventor
周林
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023024795A1 publication Critical patent/WO2023024795A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors

Definitions

  • the present application relates to the technical field of communication, and in particular to an antenna device, electronic equipment and a design method of the antenna device.
  • electronic devices such as smart phones can realize more and more functions, and the communication modes of electronic devices are also more diversified.
  • electronic devices can implement functions such as cellular communication and near field communication.
  • the electromagnetic wave absorption rate (Specific absorption rate, referred to as "SAR") index is used to evaluate the influence of electromagnetic radiation generated by electronic equipment on the human body. The larger the SAR value, the greater the impact on the human body.
  • the present application provides an antenna device, an electronic device and a design method of the antenna device, which can reduce the SAR value of multiple antennas.
  • an antenna device including:
  • a first radiator configured to transmit a first wireless signal
  • the second radiator is arranged at a distance from the first radiator, the second radiator is used to transmit a second wireless signal, and the second wireless signal and the first wireless signal form a first electric field on a ground plane , the first electric field includes at least one excitation mode partial electric field;
  • the third radiator is spaced apart from the first radiator and the second radiator, and the third radiator is grounded; wherein,
  • the third radiator is electromagnetically coupled to at least one of the first radiator and the second radiator, so as to increase the number of current intensity spot regions of the at least one excitation mode partial electric field.
  • the present application provides an electronic device, including an antenna device, and the antenna device includes:
  • a first radiator configured to transmit a first wireless signal
  • the second radiator is arranged at a distance from the first radiator, the second radiator is used to transmit a second wireless signal, and the second wireless signal and the first wireless signal form a first electric field on a ground plane , the first electric field includes at least one excitation mode partial electric field;
  • the third radiator is spaced apart from the first radiator and the second radiator, and the third radiator is grounded; wherein,
  • the third radiator is electromagnetically coupled to at least one of the first radiator and the second radiator, so as to increase the number of current intensity spot regions of the at least one excitation mode partial electric field.
  • the present application provides a method for designing an antenna device, which is applied to the antenna device, and the antenna device includes a first radiator, a second radiator, and a third radiator; the method for designing the antenna device includes:
  • the first radiator controls the first radiator to transmit a first wireless signal, and the second radiator to transmit a second wireless signal; the first radiator is spaced apart from the second radiator;
  • the third radiator is electromagnetically coupled to at least one of the first radiator and the second radiator, so as to increase the number of current intensity point regions of the at least one excitation mode sub-electric field; the third radiator and The first radiator and the second radiator are arranged at intervals, and the third radiator is grounded.
  • FIG. 1 is a schematic diagram of a first structure of an antenna device provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the current distribution of the first electric field formed by the antenna device shown in FIG. 1 .
  • FIG. 3 is a schematic diagram of the current distribution of the sub-electric field in the first excitation mode of the first electric field shown in FIG. 2 .
  • FIG. 4 is a schematic diagram of the current distribution of the sub-electric field in the second excitation mode of the first electric field shown in FIG. 2 .
  • FIG. 5 is a schematic diagram of a second structure of an antenna device provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a third structure of an antenna device provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a fourth structure of an antenna device provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the current distribution of the second electric field formed by the antenna device shown in FIG. 5 .
  • FIG. 9 is a schematic diagram of the current distribution of the sub-electric field in the first excitation mode of the second electric field shown in FIG. 8 .
  • FIG. 10 is a schematic diagram of the current distribution of the sub-electric field in the second excitation mode of the second electric field shown in FIG. 8 .
  • FIG. 11 is a schematic diagram of SAR values of the antenna device shown in FIG. 1 and FIG. 5 under different feeding phases.
  • FIG. 12 is a schematic diagram of an S-parameter curve of the antenna device shown in FIG. 1 .
  • FIG. 13 is a schematic diagram of an S-parameter curve of the antenna device shown in FIG. 5 .
  • FIG. 14 is a heat map of SAR values of the antenna device shown in FIG. 1 .
  • FIG. 15 is a heat map of SAR values of the antenna device shown in FIG. 5 .
  • FIG. 16 is a schematic diagram of a fifth structure of the antenna device provided by the embodiment of the present application.
  • FIG. 17 is a schematic diagram of a sixth structure of an antenna device provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 19 is a schematic flow chart of a first method for designing an antenna device according to an embodiment of the present application.
  • FIG. 20 is a schematic flowchart of a second method for designing an antenna device provided in an embodiment of the present application.
  • An embodiment of the present application provides an antenna device, which can implement a wireless communication function.
  • the antenna device can transmit Wireless Fidelity (Wi-Fi) signals, Global Positioning System (GPS) signals, third-generation mobile communication technology (3rd-Generation, 3G for short), fourth-generation Mobile communication technology (4th-Generation, referred to as 4G), fifth-generation mobile communication technology (5th-Generation, referred to as 5G), near field communication (Near field communication, referred to as NFC) signal, Bluetooth (Bluetooth, referred to as BT) signal, Ultra Wideband communication (Ultra WideBand, referred to as UWB) signal, etc.
  • FIG. 1 is a schematic diagram of a first structure of an antenna device 100 provided in an embodiment of the present application.
  • the antenna device 100 includes a first radiator 110 , a second radiator 120 , a ground plane 140 , a first feed 150 and a second feed 160 .
  • the first radiator 110 can be directly or indirectly electrically connected to the first feed source 150.
  • a feed point such as a second feed point 111 can be set on the first radiator 110, and the second feed point 111 is connected to the first feed source 150.
  • the first feed source 150 can provide a first excitation current to the first radiator 110, and the first excitation current can excite the first radiator 110 to transmit a first wireless signal.
  • the second radiator 120 may be spaced apart from the first radiator 110 .
  • the second radiator 120 can be directly or indirectly electrically connected to the second feed source 160.
  • a feed point such as a first feed point 121 can be set on the second radiator 120, and the first feed point 121 is connected to the second feed source.
  • the second feed source 160 can provide a second excitation current to the second radiator 120 , and the second excitation current can excite the second radiator 120 to transmit a second wireless signal.
  • first excitation current and the second excitation current may be excitation currents of the same frequency, so that the second radiator 120 and the first radiator 110 can transmit the same wireless signal.
  • first excitation current and the second excitation current can also be excitation currents of different frequencies, so that the first radiator 110 and the second radiator 120 can transmit different wireless signals.
  • Ground plane 140 may form a common ground.
  • the ground plane 140 may be formed by conductors, printed lines, or metal printed layers in the antenna device 100 .
  • the ground plane 140 can be formed on the circuit board or small board of the antenna device 100 , the ground plane 140 can also be formed on the middle frame of the antenna device 100 , and the ground plane 140 can also be formed on the housing of the antenna device 100 .
  • the embodiment of the present application does not limit the specific location of the ground plane 140 .
  • the first feed source 150 and the second feed source 160 may be directly or indirectly electrically connected to the ground plane 140 to achieve grounding.
  • the first feed source 150 and the second feed source 160 can be electrically connected to the first radiator 110 and the second radiator 120 through the inner core of the coaxial line, and can also be connected to the ground plane 140 through the outer core of the coaxial line. electrical connection.
  • the first feed source 150 and the second feed source 160 may be electrically connected to circuit structures such as tuning circuits and filter circuits, and the second feed source 160 may be electrically connected to the ground plane 140 through circuit structures such as tuning circuits and filter circuits.
  • the first wireless signal and the second wireless signal may form a first electric field on the ground plane 140 .
  • the first electric field can be the electric field formed on the ground plane 140 by the first excitation current and the second excitation current through the first feed source 150 and the second feed source 160; the first electric field can also be the first excitation current, the second The excitation current flows into the ground plane 140 from the ground point of the first radiator 110 and the second radiator 120 and forms an electric field on the ground plane 140; the first electric field can also be the first excitation current, the second excitation current on the ground plane The electric field formed by the induced current on 140.
  • the first electric field can be decomposed into a plurality of excitation mode sub-electric fields according to the eigenmode theory.
  • the analysis method of eigenmode theory uses the method of moments combined with analytical eigenmode theory to solve electromagnetic problems.
  • the analysis method of eigenmode theory can use the information of different excitation modes obtained from the analysis to grasp the resonance characteristics of each excitation mode and the radiation characteristics of different excitation modes, etc., and select the best feeding position by means of the distribution of characteristic currents of different excitation modes to excite out the required incentives.
  • FIG. 2 is a schematic diagram of the current distribution of the first electric field formed by the antenna device 100 shown in FIG. 1, and FIG. 3 is a first excitation mode partial electric field of the first electric field shown in FIG.
  • FIG. 4 is a schematic diagram of the current distribution of the sub-electric field in the second excitation mode of the first electric field shown in FIG. 3 .
  • the first electric field can be decomposed at least into a first excitation mode partial electric field and a second excitation mode partial electric field.
  • different excitation modes have different current distributions in the sub-electric fields, and have different contributions to the SAR value of the first electric field.
  • the SAR value of the first electric field can be adjusted by adjusting the partial electric field of the excitation mode with uneven current distribution.
  • FIG. 5 is a schematic diagram of the second structure of the antenna device 100 provided by the embodiment of the present application.
  • FIG. 6 is a schematic diagram of the third structure of the antenna device 100 provided by the embodiment of the present application.
  • the antenna device 100 of the embodiment of the present application may further include a third radiator 130 .
  • the third radiator 130 may be spaced apart from the first radiator 110 and the second radiator 120 .
  • the third radiator 130 may include one or more radiation stubs.
  • the third radiator 130 may include a first radiation branch 131 and a second radiation branch 132; for another example, as shown in FIG. 6, the third radiator 130 may include a first radiation branch 131;
  • the third radiator 130 may include a second radiation branch 132 .
  • the first radiation branch 131 can be located between the first radiator 110 and the second radiator 120, and the first radiation branch 131 is grounded. At this time, on the one hand, the first radiation branch 131 can be reasonably Utilize the space between the first radiator 110 and the second radiator 120 to realize the miniaturization of the antenna device 100;
  • the radiator 120 is electromagnetically coupled, and the first radiator 110 and the second radiator 120 can also be electromagnetically coupled at the same time, and the antenna device 100 can form more resonance modes.
  • the second radiation branch 132 can be arranged on the side of the first radiator 110 away from the second radiator 120, and the second radiation branch 132 is grounded. At this time, the second radiation branch 132 can be connected to the first A radiator 110 is electromagnetically coupled.
  • the third radiator 130 includes both the first radiation branch 131 and the second radiation branch 132
  • the first radiation branch 131 can be electromagnetically coupled with the second radiator 120 and jointly transmit the second wireless signal
  • the second The radiation branch 132 can be electromagnetically coupled with the first radiator 110 and jointly transmit the first wireless signal
  • the first radiation branch 131 and the second radiation branch 132 can expand the bandwidth of the first wireless signal and the second wireless signal; at the same time, the first radiation The stub 131 and the second radiating stub 132 can also reduce the SAR value of the multi-antenna system formed by the first radiating stub 131 , the second radiating stub 132 , the first radiator 110 and the second radiator 120 .
  • the third radiator 130 is not limited to the above structure.
  • the third radiator 130 may also include a Radiation branches on one side of the radiator 110; for another example, the number of the first radiation branch 131 and the number of the second radiation branch 132 is not limited to one.
  • the embodiment of the present application does not limit the specific location of the third radiator 130 .
  • the third radiator 130 may be electrically connected to the ground plane 140 and grounded, for example, the first radiation stub 131 and the second radiation stub 132 may be grounded.
  • the third radiator 130 can be electromagnetically coupled with the first radiator 110, the third radiator 130 can also be electromagnetically coupled with the second radiator 120, and the third radiator 130 can also be coupled with the first radiator 110 and the second radiator at the same time. 120 electromagnetic coupling.
  • the third radiator 130 can change the electric field distribution of at least one excitation mode sub-electric field of the first electric field formed by the first radiator 110 and the second radiator 120, and increase the number of current strong point regions and the current distribution of the excitation mode sub-electric field Evenness.
  • FIG. 8 is a schematic diagram of the current distribution of the second electric field formed by the antenna device 100 shown in FIG. A schematic diagram of the current distribution of the electric field.
  • FIG. 10 is a schematic diagram of the current distribution of the sub-electric field in the second excitation mode of the second electric field shown in FIG. 8 .
  • FIG. 3 is a schematic diagram of the current distribution of the first excitation mode partial electric field of the first electric field formed by the first radiator 110 and the second radiator 120, which is formed in the area where the second radiator 120 is located.
  • Fig. 9 is a schematic diagram of the current distribution of the first excitation mode partial electric field of the second electric field jointly formed by the first radiator 110, the second radiator 120 and the third radiator 130, which is in the first Two current strong point regions are formed in the region where the radiator 110 and the second radiator 120 are located.
  • setting the third radiator 130 can increase the number of current intensity spot regions in the sub-electric fields of the first excitation mode, and can make the current distribution of the sub-electric fields in the first excitation mode more uniform.
  • Figure 4 is a schematic diagram of the current distribution of the second excitation mode sub-electric field of the first electric field formed by the first radiator 110 and the second radiator 120, which is formed in the area where the second radiator 120 is located.
  • Figure 10 is a schematic diagram of the current distribution of the second excitation mode sub-electric field in which the first radiator 110, the second radiator 120 and the third radiator 130 jointly form the second electric field. Two current strong point regions are formed in the region where the body 110 and the second radiator 120 are located.
  • setting the third radiator 130 can increase the number of current intensity spot regions in the sub-electric field of the second excitation mode, and can make the current distribution of the sub-electric field in the second excitation mode more uniform.
  • FIG. 2 is a current distribution diagram of the first electric field formed by the first radiator 110 and the second radiator 120 on the ground plane 140.
  • the region between a radiator 110 forms a current strong point region
  • FIG. 8 is a current distribution diagram of the second electric field formed by the first radiator 110, the second radiator 120 and the third radiator 130 on the ground plane 140 Among them, two current strong point regions are formed on the region where the first radiator 110 , the second radiator 120 and the third radiator 130 are located.
  • the third radiator 130 after setting the third radiator 130 to increase the number of current intensity spot regions in the first excitation mode and the second excitation mode, the first radiator 110, the second radiator 120 and the third radiator 130 shown in FIG. 8
  • the current distribution uniformity of the formed antenna system is higher, and the SAR value of the antenna system is lower.
  • the location, shape, structure and other characteristics of the third radiator 130 can be selected according to the adjustment of the partial electric fields of the first and second excitation modes.
  • the third radiator 130 can be arranged at a plurality of setting positions, and the first or second excitation mode partial electric field of each setting position is detected, and then the setting position with a more uniform current distribution is selected as the setting position of the third radiator 130.
  • Optimal setting position Similarly, the shape and structure of the third radiator 130 can also be adjusted according to the above manner.
  • the location, shape, and structure of the third radiator 130 that can increase the number of current strong point regions in the sub-electric field of the excitation mode and increase the uniformity of current distribution in the sub-electric field of the excitation mode are all within the protection of the embodiments of the present application. Within the scope, the embodiments of the present application do not limit this.
  • the first radiator 110 and the second radiator 120 form a first electric field on the ground plane 140, and the first electric field includes at least one excitation mode sub-electromagnetic field; the third radiator 130 and the first radiator
  • the body 110 and the second radiator 120 are arranged at intervals, the third radiator 130 is grounded and is electromagnetically coupled to at least one of the first radiator 110 and the second radiator 120, and the third radiator 130 can increase at least one excitation mode partial electric field
  • the number of current strong point regions, and make the current distribution uniformity of at least one excitation mode sub-electric field higher, thereby, the current of the electric field of the antenna system formed by the first radiator 110, the second radiator 120 and the third radiator 130 The distribution is more uniform and the SAR value of the antenna system is lower.
  • the matching degree of the current distribution of the sub-electric field of the excitation mode and the current distribution of the first electric field can be preferentially selected within the preset matching degree range.
  • One or several excitation mode sub-electric fields are used as the target excitation mode sub-electric field, and the antenna device 100 can mainly adjust the target excitation mode sub-electric field, so that the third radiator 130 can increase the number of current intensity regions and the number of target excitation mode sub-electric fields. Uniformity of current distribution.
  • the first electric field can be decomposed into five excitation modes of a, b, c, d, and e. If the matching degree of the two is within the preset matching degree range, then the third radiator 130 can adjust the current distribution of the sub-electric fields of the two excitation modes a and b to increase the distribution of the sub-electric fields of the two excitation modes a and b. Number of current intensity zones.
  • the matching degree of the current distribution of the sub-electric field of the excitation mode and the current distribution of the first electric field can refer to the similarity between the two, and the more similar the two are, the matching degree of the current distribution of the sub-electric field of the excitation mode and the first electric field higher.
  • the matching degree of the current distribution of the sub-electric field of the target excitation mode and the current distribution of the first electric field is within a preset matching range, and the third radiator 130 can be easily debugged and can increase the target excitation.
  • the mode divides the number of current intensity point regions of the electric field, and the third radiator 130 can make the current distribution of the first electric field more uniform, thereby reducing the SAR value of the antenna device 100 .
  • FIG. 11 is a schematic diagram of SAR values of the antenna device 100 shown in FIG. 1 and FIG. 5 under different feeding phases.
  • Curve S1 in FIG. 11 is a schematic diagram of the SAR value curves of the antenna device 100 shown in FIG. 1 under different feeding phases
  • curve S2 in FIG. 11 is a SAR value curve of the antenna device 100 shown in FIG. 5 under different feeding phases schematic diagram. Comparing the curve S1 and the curve S2, the phase difference of the antenna system of the first radiator 110, the second radiator 120 and the third radiator 130 is set. The SAR value of the antenna system of the second radiator 120 is generally low. Hence, the antenna system formed by the first radiator 110 , the second radiator 120 and the third radiator 130 has a lower SAR value after being adjusted by setting the resonance branch in the eigenmode theory.
  • FIG. 12 is a schematic diagram of the S-parameter curve of the antenna device 100 shown in FIG. 1
  • FIG. 13 is a schematic diagram of the S-parameter curve of the antenna device 100 shown in FIG. 5 .
  • the curve S3 is the S22 parameter curve of the antenna device 100 shown in Figure 1; the curve S4 is the S21 parameter curve of the antenna device 100 shown in Figure 1; the curve S5 is the antenna device 100 shown in Figure 1 S11 parameter curve.
  • the curve S6 is the S22 parameter curve of the antenna device 100 shown in Figure 5; the curve S7 is the S21 parameter curve of the antenna device 100 shown in Figure 5; the curve S8 is the antenna device 100 shown in Figure 5 S11 parameter curve.
  • the present application sets the third radiator 130, the first radiator 110, the second radiator 120 and the third radiator 110, which can increase the number of current strong point regions and the uniformity of current distribution in at least one excitation mode sub-electric field.
  • the reflection coefficient S11 of the antenna system formed by the radiator 130 in the frequency range of 2.4GHz to 2.5GHz is less than -6dB, and the antenna system can work in the 2.4G frequency band of Wi-Fi.
  • FIG. 14 is a heat map of SAR values of the antenna device 100 shown in FIG. 1
  • FIG. 15 is a heat map of SAR values of the antenna device 100 shown in FIG. 5 .
  • the human body model is placed 5mm below the antenna, and the receiving power of the antenna is specified to be 1W (watt), as can be seen from Figure 14, at 2.45GHz Under the frequency, the SAR peak value of the 1W normalized 10g average multi-antenna system of the antenna system formed by the first radiator 110 and the second radiator 120 at the frequency of 2.45GHz is 11.72W/kg, and the efficiency of the antenna system is 68.75%. . It can be seen from Fig.
  • the 1W normalized 10g average multi-antenna system SAR peak value of the antenna system formed by the first radiator 110, the second radiator 120 and the third radiator 130 at a frequency of 2.45GHz It is 10.1W/kg, and the efficiency of the antenna system is 78.55%.
  • the system SAR value generated by the antenna device 100 at a frequency of 2.45 GHz is reduced by about 13.8%, the system efficiency of the antenna device 100 is increased by about 14%, and the reduction effect of the antenna system SAR value is obvious.
  • the first radiation branch 131 is electromagnetically coupled to the second radiator 120, and the first radiation branch 131 can be used as a parasitic branch of the second radiator 120; the second radiation branch 132 is connected to the first radiator 110 Electromagnetic coupling, the second radiation branch 132 can be used as a parasitic branch of the first radiator 110; the first radiation branch 131 can disperse the current intensity area of the second radiator 120, and the second radiation branch 132 can disperse the current intensity of the first radiator 110
  • the area of current strength thus, in the antenna system formed by the first radiator 110, the second radiator 120 and the third radiator 130, the current strength area of the electric field formed by the antenna system is more dispersed, and the current distribution of the antenna system is more uniform , the SAR value of the antenna system is lower.
  • the first radiating branch 131 can be set away from the feeding branch of the second radiator 120 (such as the first feeding point 121), and the second radiating branch 132 can be set away from the feeding of the first radiator 110.
  • a stub (such as the second feeding point 111) is set.
  • the second radiator 120 may include a first end a and a second end b disposed opposite to each other.
  • the first end a and the second end b may be two ends of the second radiator 120 in the length direction, wherein the second end b may be located between the first end a and the first radiating branch 131, the first The end a can be set away from the first radiating branch 131, the first feeding point 121 can be set on the first end a, and the first feeding point 121 can be electrically connected with the second feeding source 160, so that the first radiating branch 131 can be far away from the first radiating branch 131.
  • Two feed sources 160 are set.
  • the first radiating branch 131 When the first radiating branch 131 is electromagnetically coupled with the second radiator 120, the electric field formed by the first radiating branch 131 and the electric field formed by the second radiating body 120 can be superimposed on each other without canceling each other (if the first radiating branch 131 is close to the second radiator When a feed point 121 is set, the first radiating branch 131 can easily excite the electric field opposite to the electric field of the second radiator 120, so that the electric fields of the first radiating branch 131 and the second radiator 120 will cancel each other and affect the second radiator 120. radiation performance), the first radiation branch 131 can optimize the radiation performance of the second radiator 120 .
  • the first radiator 110 may include a third end c and a fourth end d disposed opposite to each other.
  • the third end c and the fourth end d may be the two ends of the first radiator 110 in the radiation length direction, wherein the fourth end d may be located between the third end c and the second radiating branch 132, and the fourth end d may be located between the third end c and the second radiating branch 132.
  • the third end c can be set away from the second radiating branch 132, the second feeding point 111 can be set on the third end c, and the second feeding point 111 can be electrically connected with the first feeding source 150, so that the second radiating branch 132 can be far away from
  • the first feed source 150 is set so that the electric field formed by the second radiating branch 132 and the electric field formed by the first radiator 110 can be superimposed without canceling each other, and the second radiating branch 132 can optimize the radiation performance of the first radiator 110 .
  • a grounding section (such as the first grounding section 1314 shown in FIG. 14 ) may be provided on the first radiating branch 131 , the ground section can be set close to the third end c of the first radiator 110, so that the electric field formed by the first radiation branch 131 can be superimposed with the electric field formed by the first radiator 110 without canceling each other, and the first radiation branch 131 will not affect the radiation performance of the first radiator 110 .
  • the first radiation branch 131 is arranged away from the second feed source 160, and the second radiation branch 132 is arranged away from the first feed source 150.
  • the second radiator 120 and the first radiator 110 The distance between the feed branches is relatively long, and the isolation between the second radiator 120 and the first radiator 110 is better; on the other hand, the first radiation branch 131 and the second radiation branch 132 can optimize the first radiator 110 and the radiation performance of the second radiator 120, so that the radiation performance of the antenna device 100 can be improved.
  • FIG. 16 is a schematic diagram of a fifth structure of the antenna device 100 provided by the embodiment of the present application.
  • the second radiating body 120 includes a first radiating section 122 , a second radiating section 123 , a third radiating section 124 and a fourth radiating section 125 .
  • One end of the first radiating section 122 can be extended toward the direction where the ground plane 140 is located, and the first radiating section 122 can be provided with a first feeding point 121, and the first feeding point 121 can be electrically connected to the second feeding source 160 ;
  • One end of the second radiating section 123 can be connected to the other end of the first radiating section 122, and the other end of the second radiating section 123 can be extended toward the direction where the first radiating branch 131 and the first radiating body 110 are located;
  • the third One end of the radiating section 124 can be connected to the other end of the second radiating section 123, and the other end of the third radiating section 124 can be extended toward the direction where the ground plane 140 is located;
  • one end of the fourth radiating section 125 can be connected to the third radiating section 124 is connected to the other end, and the other end of the fourth radiating segment 125 can be extended in a direction away from the first radiating branch 131 and the first radiating body 110 .
  • the second radiating section 123 and the fourth radiating section 125 may extend toward the first direction H1 and may be parallel to each other, and the first radiating section 122 and the third radiating section 124 may extend toward the second direction H2 and may Parallel to each other, the second radiator 120 can be bent to form a ring structure.
  • the size of the ground plane 140 in the first direction H1 and the second direction H2 may be 140mm ⁇ 72mm; the size of the first radiating section 122 in the first direction H1 and the second direction H2 may be 1.5mm ⁇ 5.5mm; the size of the second radiating section 123 in the first direction H1 and the second direction H2 can be 14.5mm ⁇ 1.5mm; the size of the third radiating section 124 in the first direction H1 and the second direction H2 can be 3mm ⁇ 1 mm; the size of the fourth radiating section 125 in the first direction H1 and the second direction H2 may be 3 mm ⁇ 1.5 mm.
  • the first radiating branch 131 may include a fifth radiating segment 1311 , a sixth radiating segment 1312 and a seventh radiating segment 1313 .
  • One end of the fifth radiating section 1311 is adjacent to the first radiator 110 , the other end of the fifth radiating section 1311 can extend toward the direction where the second radiator 120 is located, and the fifth radiating section 1311 is close to the first radiator 110
  • One end of the sixth radiating section 1312 is connected to the other end of the fifth radiating section 1311, and the other end of the sixth radiating section 1312 can be extended toward the direction where the ground plane 140 is located;
  • One end of the seventh radiating section 1313 may be connected to the other end of the sixth radiating section 1312 , and the other end of the seventh radiating section 1313 may extend away from the second radiator 120 .
  • first radiating branch 131 may also include a first ground segment 1314, and the first ground segment 1314 may be connected to the two ends of the fifth radiating segment 1311 near the first radiator 110 and facing the ground plane 140. Extending in the same direction, the first ground segment 1314 can be electrically connected to the ground plane 140 and grounded.
  • the fifth radiating section 1311, the seventh radiating section 1313, the second radiating section 123 and the fourth radiating section 125 may extend along the first direction H1 and be parallel to each other, and the sixth radiating section 1312, the first radiating section 122
  • the third radiating segment 124 can extend along the second direction H2 and be parallel to each other, and the first radiating branch 131 can be bent to form a ring structure.
  • the size of the fifth radiating segment 1311 in the first direction H1 and the second direction H2 may be 17.5 mm ⁇ 1 mm; the size of the sixth radiating segment 1312 in the first direction H1 and the second direction H2 may be 1mm ⁇ 2mm; the size of the seventh radiating section 1313 in the first direction H1 and the second direction H2 may be 7.5mm ⁇ 1mm; the size of the first grounding section 1314 in the first direction H1 and the second direction H2 may be 1.5 mm ⁇ 3mm.
  • the second radiator 120 and the first radiation branch 131 in the embodiment of the present application can be bent to form a ring structure. On the one hand, it can not only meet the length requirements of the second radiator 120 and the first radiation branch 131, but also save the second radiation.
  • the space occupied by the first radiator 120 and the first radiator 110 realizes the miniaturization of the antenna device 100; on the other hand, the area of the second radiator 120 and the adjacent radiation branch 131 of the first radiation branch 131 is larger, which is more convenient for the first radiation
  • the electromagnetic coupling between the branch 131 and the second radiator 120 is
  • the first radiator 110 may include an eighth radiation section 112 , a ninth radiation section 113 and a tenth radiation section 114 .
  • the second radiating stub 132 may include an eleventh radiating section 1321 and a second grounding section 1322 .
  • One end of the eighth radiating section 112 can be extended toward the direction where the ground plane 140 is located, and the eighth radiating section 112 can be provided with a second feeding point 111, and the second feeding point 111 can be connected to the first feeding source 150;
  • One end of the ninth radiating section 113 can be connected to the eighth radiating section 112, and the other end of the ninth radiating section 113 can extend away from the first radiating branch 131 and the first radiator 110;
  • the tenth radiating section 114 One end may be connected to the other end of the ninth radiating section 113 , and the other end of the tenth radiating section 114 may be extended toward the direction where the ground plane 140 is located.
  • One end of the eleventh radiating section 1321 may be adjacent to the other end of the tenth radiating section 114 , and the other end of the eleventh radiating section 1321 may extend away from the first radiator 110 .
  • the second ground segment 1322 can be connected to the eleventh radiating segment 1321 and extend toward the direction where the ground plane 140 is located.
  • the eighth radiating section 112, the tenth radiating section 114 and the eleventh radiating section 1321 may extend toward the second direction H2 and may be parallel to each other, the ninth radiating section 113 may extend toward the first direction H1,
  • the first radiator 110 can be bent to form a ring structure.
  • the size of the eighth radiating segment 112 in the first direction H1 and the second direction H2 may be 1.5 mm ⁇ 5.5 mm; the size of the ninth radiating segment 113 in the first direction H1 and the second direction H2 may be The dimension of the tenth radiating section 114 in the first direction H1 and the second direction H2 may be 1.5mm ⁇ 15mm.
  • the size of the eleventh radiating segment 1321 in the first direction H1 and the second direction H2 may be 1 mm ⁇ 24 mm; the size of the second ground segment 1322 in the first direction H1 and the second direction H2 may be 4 mm ⁇ 2 mm.
  • first radiator 110 the second radiator 120 and the third radiator 130 in the embodiment of the present application.
  • the first radiator 110, the second radiator 120 and the third radiator The shape, structure, and size of the body 130 are not limited to the above examples, and are not specifically limited in this embodiment of the present application.
  • the first radiator 110 and the second radiator 120 may form a multiple-input multiple-output (Multiple-Input Multiple-Output, MIMO for short) system, a main diversity transmission system, etc., at this time, the first radiator 110 1.
  • MIMO Multiple-Input Multiple-Output
  • the SAR value of the multi-antenna system formed by the second radiator 120 and the third radiator 130 is low, and the radiation performance of the multi-antenna system is better.
  • FIG. 17 is a schematic diagram of a sixth structure of the antenna device 100 provided by the embodiment of the present application.
  • the ground plane 140 includes a first region 141 and a second region 142, the first radiator 110 is arranged corresponding to the first region 141, the second radiator 120 is arranged corresponding to the second region 142, and the second region 142 is the radiation transmitted by the first radiator 110.
  • the current weak spot area of the third electric field formed by the first wireless signal on the ground plane 140 is a schematic diagram of a sixth structure of the antenna device 100 provided by the embodiment of the present application.
  • the first radiator 110 is set corresponding to the first region 141, which may be that the first radiator 110 is connected to the first region 141, or part or all of the projection of the first radiator 110 on the ground plane 140 is located at within the first area 141.
  • the second radiator 120 is set corresponding to the second region 142, and may be connected to the second region 142, or part or all of the projection of the second radiator 120 on the ground plane 140 is located at the second region 140. In the second area 142.
  • the third electric field may be the electric field formed by the first wireless signal flowing into the ground plane 140 through the first feed 150 , or it may be that the first wireless signal flows into the ground plane 140 through the ground point on the second radiator 120
  • the electric field formed may also be an electric field formed by an induced current generated by the first wireless signal on the ground plane 140 .
  • the second radiator 120 is arranged in the second region 142 , the current weak spot region formed on the ground plane 140 by the first excitation current transmitted by the first radiator 110 , compared with the second region 142
  • the antenna device 100 of the embodiment of the present application can make the overall average current distribution of the multi-antenna system formed by the second radiator 120 and the first radiator 110 more uniform , can reduce the SAR value of the multi-antenna system formed by the second radiator 120 and the first radiator 110 .
  • the embodiment of the present application also provides an electronic device 10.
  • the electronic device 10 may be a smart phone, a tablet computer, etc., or a game device or an augmented reality (Augmented Reality, AR) device. , automotive devices, data storage devices, audio playback devices, video playback devices, notebook computers, desktop computing devices, etc.
  • FIG. 18 is a schematic structural diagram of an electronic device 10 provided by an embodiment of the present application.
  • the electronic device 10 may include the antenna device 100 of the foregoing embodiments.
  • the antenna device 100 may include a first radiator 110 , a second radiator 120 and a third radiator 130 .
  • the first radiator 110 is used to transmit the first wireless signal;
  • the second radiator 120 is spaced apart from the first radiator 110, the second radiator 120 is used to transmit the second wireless signal, and the second wireless signal and the first wireless signal
  • a first electric field is formed on the ground plane, and the first electric field includes at least one excitation mode sub-electric field;
  • the third radiator 130 is spaced apart from the first radiator 110 and the second radiator 120, and the third radiator 130 is grounded; wherein, the first The three radiators 130 are electromagnetically coupled to at least one of the first radiator 110 and the second radiator 120, so as to increase the number of current strong point regions of at least one excitation mode partial electric field.
  • the current distribution matching degree of at least one excitation mode sub-electric field and the first electric field is within a preset matching degree range.
  • the third radiator 130 may include a first radiation branch 131 , the first radiation branch 131 may be located between the first radiator 110 and the second radiator 120 , and the first radiation branch 131 is grounded.
  • the second radiator 120 includes a first end a and a second end b oppositely arranged, the second end b is located between the first end a and the first radiation branch 131, and the first end a is provided with a first feeding Point 121.
  • the second radiator 120 includes a first radiation section 122 , a second radiation section 123 , a third radiation section 124 and a fourth radiation section 125 .
  • the first radiating section extends toward the direction of the ground plane 140 , the first radiating section 122 is provided with a first feeding point 121 ; the second radiating section 123 is connected to the first radiating section 122 and faces the first radiating branch 131
  • the third radiating section 124 is connected to the second radiating section 123 and extends toward the direction where the ground plane 140 is located; the fourth radiating section 125 is connected to the third radiating section 124 and is facing away from the first radiating branch 131 direction extension set.
  • the first radiating branch includes a fifth radiating segment 1311 , a sixth radiating segment 1312 and a seventh radiating segment 1313 .
  • the fifth radiating section 1311 extends toward the direction where the second radiator 120 is located, and the fifth radiating section 1311 is grounded;
  • the sixth radiating section 1312 is connected to the fifth radiating section 1311 and extends toward the direction where the ground plane 140 is located;
  • the seventh radiating section 1313 is connected to the sixth radiating section 1312 and extends away from the second radiator 120 .
  • the third radiator 130 may further include a second radiation branch 132 .
  • the second radiation branch 132 is located on a side of the first radiator 110 away from the second radiator 120 , and the second radiation branch 132 is grounded.
  • the first radiator 110 includes a third end c and a fourth end d oppositely arranged, the fourth end d is located between the third end c and the second radiating branch 132, and the third end c is provided with a second feeding Point 111.
  • the ground plane 140 includes a first area 141 and a second area 142, the first radiator 110 is set corresponding to the first area, the second radiator 120 is set corresponding to the second area, and the second area is the first wireless signal on the ground plane 140.
  • the electronic device 10 may further include a display screen 200 , a middle frame 300 , a circuit board 400 , a battery 500 and a rear case 600 .
  • the display screen 200 can be installed on the middle frame 300 and connected to the back cover through the middle frame 300 to form the display surface of the electronic device 10 .
  • the display screen 200 can be used to display information such as images and texts.
  • the display screen 200 may be an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display device or an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display or other type of display device.
  • the middle frame 300 may include a frame (not shown) and a carrying board (not shown), and the carrying board may provide support for electronic devices or electronic devices in the electronic device 10 .
  • the frame is connected to the edge of the carrier board and protrudes from the carrier board.
  • the frame and the carrier board form an accommodating space, and electronic components and electronic devices in the electronic device 10 can be installed and fixed in the accommodating space.
  • the circuit board 400 may be installed on the middle frame 300 .
  • the circuit board 400 may be a main board of the electronic device 10 .
  • the circuit board 400 may be integrated with one or two of electronic devices such as a microphone, a loudspeaker, a receiver, a headphone jack, a universal serial bus interface (USB interface), a camera assembly, a distance sensor, an environmental sensor, a gyroscope, and a processor. one or more.
  • the display screen 200 can be electrically connected to the circuit board 400 so as to control the display of the display screen 200 through the processor on the circuit board 400 .
  • One or more of the first feed source 150 and the second feed source 160 may be disposed on the circuit board 400 so as to control the above-mentioned devices through a processor.
  • the battery 500 may be installed in the middle frame 300 . Meanwhile, the battery 500 is electrically connected to the circuit board 400 so that the battery 500 supplies power to the electronic device 10 .
  • a power management circuit may be provided on the circuit board 400 . The power management circuit is used to distribute the voltage provided by the battery 500 to various electronic devices in the electronic device 10 .
  • the rear case 600 may be connected to the middle frame 300 .
  • the rear case 600 is used to seal the electronic devices and functional components of the electronic device 10 inside the electronic device 10 together with the middle frame 300 and the display screen 200 , so as to protect the electronic devices and functional components of the electronic device 10 .
  • the ground plane 140 of the antenna device 100 may be, but not limited to, formed on the circuit board 400, the middle frame 300, the rear case 600 and other components of the electronic device 10, and the first radiator 110, the second radiator 120 and the third radiator 130 may be But it is not limited to be formed on the middle frame 300 , the rear case 600 and other components of the electronic device 10 .
  • the embodiment of the present application does not limit the specific manner in which the antenna device 100 is disposed on the electronic device 10 .
  • the embodiment of the present application also provides a design method of the antenna device 100, the design method of the antenna device 100 can be applied to the antenna device 100 in any of the above-mentioned embodiments, the antenna device 100 may include a first radiator 110 , a second radiator 120 and a third radiator 130 .
  • FIG. 19 is a schematic flowchart of a first method for designing the antenna device 100 provided in the embodiment of the present application.
  • the processing module or control module of the antenna device 100 can control the first radiator 110 and the second radiator 120 to be in the working state and transmit the first wireless signal and the second wireless signal, and the first wireless signal and the second wireless signal can be grounded
  • a first electric field is formed on the plane 140 , and a current distribution diagram of the first electric field on the ground plane 140 can be obtained according to the first electric field.
  • the third radiator 130 is set to be electromagnetically coupled with at least one of the first radiator 110 and the second radiator 120, so as to increase the number of current strong point regions of at least one excitation mode partial electric field; the third radiator 130 and The first radiator 110 and the second radiator 120 are arranged at intervals, and the third radiator 130 is grounded.
  • the first electric field can be decomposed according to the eigenmode theory to obtain at least one excitation mode sub-electric field, and the current distribution of at least one excitation mode sub-electric field can be adjusted by adjusting the setting position, shape, structure and size of the third radiator 130, so as to Increase the number of current strong points and the uniformity of current distribution in at least one excitation mode sub-electric field.
  • excitation modes have different current distributions in the sub-electric fields, and have different contributions to the SAR value of the first electric field.
  • the SAR value of the first electric field can be adjusted by adjusting the partial electric field of the excitation mode with uneven current distribution.
  • the first radiator 110 and the second radiator 120 form a first electric field on the ground plane 140, and the first electric field includes at least one excitation mode sub-electromagnetic field; the third radiator 130 and The first radiator 110 and the second radiator 120 are spaced apart, the third radiator 130 is grounded and electromagnetically coupled to at least one of the first radiator 110 and the second radiator 120, and the third radiator 130 can increase at least one excitation
  • the current intensity point region quantity of the mode sub-electric field can also increase the current distribution uniformity of at least one excitation mode sub-field, thereby, the electric field of the antenna system formed by the first radiator 110, the second radiator 120 and the third radiator 130 The current distribution is more uniform and the SAR value of the antenna system is lower.
  • the second radiator 120 after analyzing the first electric field according to the eigenmode theory and obtaining at least one excitation mode sub-electric field, it includes: selecting an excitation mode sub-electric field whose matching degree with the current distribution of the first electric field is within a preset matching range Divide the electric field as the target excitation mode.
  • Setting the third radiator 130 to be electromagnetically coupled with at least one of the first radiator 110 and the second radiator 120 to increase the number of current intensity points in at least one excitation mode sub-electric field includes: setting the third radiator 130 and the second radiator 130 At least one of the first radiator 110 and the second radiator 120 is electromagnetically coupled to increase the number of current strong spot regions of the partial electric field of the target excitation mode.
  • the design method of the antenna device 100 further includes: determining the first area 141 on the ground plane 140; setting the first radiator 110 corresponding to the first area 141; controlling the first radiator 110 to transmit the first wireless signal , and determine the second area 142 on the ground plane 140, the second area 142 is the current weak point area of the second electric field formed by the first wireless signal on the ground plane 140; the second radiator 120 is set corresponding to the second area 142.
  • determining the second region on the ground plane 140 includes: sequentially changing the phase of the first excitation current with a preset phase difference, and determining how much the ground plane 140 is formed under the action of the first excitation current of different phases.
  • a current area distribution diagram the first excitation current is used to excite the first radiator 110 to transmit the first wireless signal; determine the average current distribution diagram formed by the ground plane 140 under the action of the first excitation current according to the plurality of current area distribution diagrams; The current weak spot area in the average current profile is identified as the second area 142 .
  • FIG. 20 is a schematic flowchart of a second design method of the antenna device 100 provided by the embodiment of the present application.
  • a first region 141 is determined on the ground plane 140;
  • the first radiator 110 when designing the first radiator 110, it is often necessary to reserve a clearance area without arranging metal conductors in a certain space above and below it. Therefore, the first radiator 110 is often arranged on the edge of the ground plane 140, The first area 141 may be an edge area on the ground plane 140 .
  • the first region 141 can be determined on the ground plane 140 according to factors such as the shape and structure of the electronic device 10 , the radiation frequency requirement of the first radiator 110 , and the like.
  • the first radiator 110 may be disposed at the upper left corner of the electronic device 10 , and correspondingly, the first region 141 may be the upper left corner of the ground plane 140 .
  • the embodiment of the present application does not limit the specific manner of determining the first region 141 , and any manner in which the first region 141 can be determined on the ground plane 140 is within the protection scope of the embodiment of the present application.
  • the first radiator 110 is set corresponding to the first region 141, which may be that the first radiator 110 is connected to the first region 141, or part or all of the projection of the first radiator 110 on the ground plane 140 is located at within the first area 141.
  • the first radiator 110 is controlled to transmit the first wireless signal, and the second area 142 is determined on the ground plane 140; the second area 142 is the current weak point of the second electric field formed by the first wireless signal on the ground plane 140 area;
  • the second radiator 120 is disposed corresponding to the second region 142 .
  • the second radiator 120 is set corresponding to the second region 142, which may be that the second radiator 120 is connected to the second region 142, or part or all of the projection of the second radiator 120 on the ground plane 140 is located at within the second area 142 .
  • the antenna device 100 or the electronic device 10 can determine the second area 142 according to the current area distribution diagram of the first excitation current on the ground plane 140 . Then, the second radiator 120 may be disposed corresponding to the second region 142 .
  • determining the second region 142 on the ground plane 140 may include: sequentially changing the phase of the first excitation current with a preset phase difference, and determining the multiple regions formed by the ground plane 140 under the action of the first excitation current of different phase The current area distribution diagram; determine the average current distribution diagram formed by the ground plane 140 under the action of the first excitation current according to the multiple current area distribution diagrams; determine the current weak point area in the average current distribution diagram as the second region 142 .
  • the phase of the exciting current can be sequentially changed with a preset phase difference within a period from 0° to 360°, so as to obtain multiple phases formed by the ground plane 140 under the action of the first exciting current in each phase.
  • the preset phase difference may be 10°
  • the ground plane 140 may be sequentially obtained under the action of the first excitation current with phases of 10°, 20°, 30°, . . . to form a plurality of current area distribution diagrams. It can be understood that, according to the current area distribution diagram formed by the obtained first excitation currents of multiple different phases, and then obtain multiple current area distributions according to the normalization algorithm, average algorithm, etc. The average current distribution diagram formed under the action. After the average current distribution diagram of the first excitation current is obtained, the current weak spot area in the average current distribution diagram can be determined as the second area 142 .
  • the antenna device 100 or the electronic device 10 may also determine the second region 142 by directly testing the current weak spot region formed on the ground plane 140 by the first excitation current of a certain phase through a simulation experiment.
  • the antenna device 100 or the electronic device 10 may also determine the second area 142 according to the current weak spot area formed on the ground plane 140 by the induced current generated on the ground plane 140 when the first radiator 110 transmits the first excitation current.
  • the second radiator 120 is arranged in the current weak point area formed on the ground plane 140 by the first excitation current transmitted by the first radiator 110, and the antenna device 100 can make the multi-antenna formed by the first radiator 110 and the second radiator 120
  • the overall average current distribution of the system is more uniform, which can reduce the SAR value of the multi-antenna system formed by the first radiator 110 and the second radiator 120, and can improve the multi-antenna system formed by the first radiator 110 and the second radiator 120 the overall efficiency of the system.
  • Decomposing the first electric field according to the eigenmode theory can obtain at least one excitation mode sub-electric field, and the current distribution of at least one excitation mode sub-electric field can be adjusted by adjusting the setting position, shape, structure and size of the third radiator 130 to increase At least one excitation mode divides the number of current strong points of the electric field and the uniformity of current distribution.
  • the third radiator 130 is set to be electromagnetically coupled with at least one of the first radiator 110 and the second radiator 120, so as to increase the number of current strong point regions in the sub-electric field of the target excitation mode; the third radiator 130 and the second radiator The first radiator 110 and the second radiator 120 are arranged at intervals, and the third radiator 130 is grounded.
  • the matching degree of the current distribution of the sub-electric field of the excitation mode and the current distribution of the first electric field can refer to the similarity between the two, and the more similar the two are, the matching degree of the current distribution of the sub-electric field of the excitation mode and the first electric field higher. In actual debugging, it can be judged whether the two are similar or match according to the position of the area where the current strong point is located in the current distribution diagram.
  • the matching degree of the current distribution of the sub-electric field of the target excitation mode and the current distribution of the first electric field is within the preset matching range, and the third radiator 130 is easy to be debugged and can increase the sub-electric field of the target excitation mode.
  • the third radiator 130 can make the current distribution of the first electric field more uniform, thereby reducing the SAR value of the antenna device 100 .

Abstract

一种天线装置、电子设备及天线装置的设计方法,天线装置的第一辐射体和第二辐射体在接地平面上形成包括至少一个激励模式分电磁场的第一电场;第三辐射体与第一辐射体和第二辐射体间隔设置,第三辐射体接地且与第一辐射体、第二辐射体中的至少一个电磁耦合,第三辐射体可增加至少一个激励模式分电场的电流强点区域数量。

Description

天线装置、电子设备及天线装置的设计方法
本申请要求于2021年08月23日提交中国专利局、申请号为202110969967.0、发明名称为“天线装置、电子设备及天线装置的设计方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种天线装置、电子设备及天线装置的设计方法。
背景技术
随着通信技术的发展,诸如智能手机等电子设备能够实现的功能越来越多,电子设备的通信模式也更加多样化。例如,电子设备可以实现蜂窝通信、近场通信等功能。
但是,人们在享受电子设备带来的各种便利的同时,也越来越关注电子设备产生的电磁辐射对人体健康的影响。一般,在天线设计的过程中,通过电磁波吸收比率(Specific absorption rate,简称“SAR”)指标来评价电子设备产生的电磁辐射对人体的影响。SAR值越大,表示对人体的影响越大。
发明内容
本申请提供一种天线装置、电子设备及天线装置的设计方法,可以降低多个天线的SAR值。
第一方面,本申请提供一种天线装置,包括:
第一辐射体,用于传输第一无线信号;
第二辐射体,与所述第一辐射体间隔设置,所述第二辐射体用于传输第二无线信号,所述第二无线信号和所述第一无线信号在接地平面上形成第一电场,所述第一电场包括至少一个激励模式分电场;及
第三辐射体,与所述第一辐射体和所述第二辐射体均间隔设置,所述第三辐射体接地;其中,
所述第三辐射体与所述第一辐射体、所述第二辐射体中的至少一个电磁耦合,以增加所述至少一个激励模式分电场的电流强点区域数量。
第二方面,本申请提供了一种电子设备,包括天线装置,天线装置包括:
第一辐射体,用于传输第一无线信号;
第二辐射体,与所述第一辐射体间隔设置,所述第二辐射体用于传输第二无线信号,所述第二无线信号和所述第一无线信号在接地平面上形成第一电场,所述第一电场包括至少一个激励模式分电场;及
第三辐射体,与所述第一辐射体和所述第二辐射体均间隔设置,所述第三辐射体接地;其中,
所述第三辐射体与所述第一辐射体、所述第二辐射体中的至少一个电磁耦合,以增加所述至少一个激励模式分电场的电流强点区域数量。
第三方面,本申请提供了一种天线装置的设计方法,应用于天线装置,所述天线装置 包括第一辐射体、第二辐射体和第三辐射体;所述天线装置的设计方法包括:
控制第一辐射体传输第一无线信号、第二辐射体传输第二无线信号;所述第一辐射体与所述第二辐射体间隔设置;
在接地平面上确定第一无线信号和第二无线信号形成的第一电场;
依据特征模理论对所述第一电场进行分析并得到至少一个激励模式分电场;
设置第三辐射体与所述第一辐射体、所述第二辐射体中的至少一个电磁耦合,以增加所述至少一个激励模式分电场的电流强点区域数量;所述第三辐射体与所述第一辐射体和所述第二辐射体均间隔设置,所述第三辐射体接地。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的天线装置的第一种结构示意图。
图2为图1所示的天线装置形成的第一电场的电流分布示意图。
图3为图2所示的第一电场的第一激励模式分电场的电流分布示意图。
图4为图2所示的第一电场的第二激励模式分电场的电流分布示意图。
图5为本申请实施例提供的天线装置的第二种结构示意图。
图6为本申请实施例提供的天线装置的第三种结构示意图。
图7为本申请实施例提供的天线装置的第四种结构示意图。
图8为图5所示的天线装置形成的第二电场的电流分布示意图。
图9为图8所示的第二电场的第一激励模式分电场的电流分布示意图。
图10为图8所示的第二电场的第二激励模式分电场的电流分布示意图。
图11为图1和图5所示的天线装置在不同馈电相位下的SAR值示意图。
图12为图1所示的天线装置的S参数曲线示意图。
图13为图5所示的天线装置的S参数曲线示意图。
图14为图1所示的天线装置的SAR值热点图。
图15为图5所示的天线装置的SAR值热点图。
图16为本申请实施例提供的天线装置的第五种结构示意图。
图17为本申请实施例提供的天线装置的第六种结构示意图。
图18为本申请实施例提供的电子设备的一种结构示意图。
图19为本申请实施例提供的天线装置的设计方法的第一种流程示意图。
图20为本申请实施例提供的天线装置的设计方法的第二种流程示意图。
具体实施方式
下面将结合本申请实施例中的附图1至附图20,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施 例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供一种天线装置,天线装置可以实现无线通信功能。例如天线装置可以传输无线保真(Wireless Fidelity,简称Wi-Fi)信号、全球定位系统(Global Positioning System,简称GPS)信号、第三代移动通信技术(3rd-Generation,简称3G)、第四代移动通信技术(4th-Generation,简称4G)、第五代移动通信技术(5th-Generation,简称5G)、近场通信(Near field communication,简称NFC)信号、蓝牙(Blue tooth,简称BT)信号、超宽带通信(Ultra WideBand,简称UWB)信号等。
请参考图1,图1为本申请实施例提供的天线装置100的第一种结构示意图。天线装置100包括第一辐射体110、第二辐射体120、接地平面140、第一馈源150和第二馈源160。
第一辐射体110可以与第一馈源150直接或间接电连接,例如,第一辐射体110上可以设置馈电点例如第二馈电点111,第二馈电点111与第一馈源150电连接。第一馈源150可向第一辐射体110提供第一激励电流,第一激励电流可激励第一辐射体110传输第一无线信号。
第二辐射体120可与第一辐射体110间隔设置。第二辐射体120可与第二馈源160直接或间接电连接,例如,第二辐射体120上可以设置馈电点例如第一馈电点121,第一馈电点121与第二馈源160电连接,第二馈源160可向第二辐射体120提供第二激励电流,第二激励电流可激励第二辐射体120传输第二无线信号。
可以理解的是,第一激励电流和第二激励电流可以是相同频率的激励电流,以使得第二辐射体120和第一辐射体110可以传输同一无线信号。当然,第一激励电流和第二激励电流也可以是不同频率的激励电流,以使得第一辐射体110和第二辐射体120可以传输不同的无线信号。
接地平面140可以形成公共地。接地平面140可以通过天线装置100中的导体、印刷线路或者金属印刷层等形成。例如,接地平面140可以形成在天线装置100的电路板或小板上,接地平面140也可以形成在天线装置100的中框上,接地平面140也可以形成在天线装置100的壳体上。本申请实施例对接地平面140的具体设置位置不进行限定。
第一馈源150和第二馈源160可以直接或间接与接地平面140电连接,以实现接地。例如,第一馈源150、第二馈源160可以通过同轴线的内芯与第一辐射体110、第二辐射体120电连接,同时也可以通过同轴线的外芯与接地平面140电连接。再例如,第一馈源150、第二馈源160可以与调谐电路、滤波电路等电路结构电连接,第二馈源160可通过调谐电路、滤波电路等电路结构与接地平面140电连接。
第一无线信号和第二无线信号可以在接地平面140上形成第一电场。该第一电场可以是第一激励电流和第二激励电流通过第一馈源150、第二馈源160在接地平面140上形成的电场;该第一电场也可以是第一激励电流、第二激励电流从第一辐射体110、第二辐射体120的接地点流入接地平面140并在接地平面140上形成的电场;该第一电场还可以是第一激励电流、第二激励电流在接地平面140上的感应电流形成的电场。
其中,第一电场按照特征模理论可以被分解为多个激励模式分电场。特征模理论分析方法利用矩量法结合解析本征模理论求解电磁问题。特征模理论分析方法可以利用分析得到的不同激励模式信息,掌握每一激励模式谐振特性以及不同激励模式的辐射特性等,借助于不同激励模式特征电流的分布来选择最佳的馈电位置以激发出需要的激励模式。
示例性的,请参考图2至4,图2为图1所示的天线装置100形成的第一电场的电流分布示意图,图3为图2所示的第一电场的第一激励模式分电场的电流分布示意图,图4为图3所示的第一电场的第二激励模式分电场的电流分布示意图。第一电场按照特征模理论至少可以分解为第一激励模式分电场和第二激励模式分电场。
如图2至图4所示,不同的激励模式分电场的电流分布不同,对于第一电场的SAR值的贡献度也不同。激励模式分电场的电流分布越均匀,其对第一电场的SAR值的贡献度越小,天线装置100的SAR值越小;反之,激励模式分电场的电流分布越不均匀,其对第一电场的SAR值的贡献度越大,天线装置100的SAR值越大。可以通过调节电流分布不均匀的激励模式分电场,来调节第一电场的SAR值。
请参考图5至7,图5为本申请实施例提供的天线装置100的第二种结构示意图,图6为本申请实施例提供的天线装置100的第三种结构示意图,图7为本申请实施例提供的天线装置100的第四种结构示意图。本申请实施例的天线装置100还可以包括第三辐射体130。
第三辐射体130可以与第一辐射体110、第二辐射体120均间隔设置。第三辐射体130可以包括一个或多个辐射枝节。例如,如图5所示,第三辐射体130可以同时包括第一辐射枝节131和第二辐射枝节132;再例如,如图6所示,第三辐射体130可以包括第一辐射枝节131;又例如,如图7所示,第三辐射体130可以包括第二辐射枝节132。
如图5和图6所示,第一辐射枝节131可以位于第一辐射体110和第二辐射体120之间,第一辐射枝节131接地,此时,一方面,第一辐射枝节131可以合理利用第一辐射体110和第二辐射体120之间的空间,实现天线装置100的小型化;另一方面,第一辐射枝节131既可以与第一辐射体110电磁耦合,也可以与第二辐射体120电磁耦合,还可以同时以第一辐射体110、第二辐射体120电磁耦合,天线装置100可以形成更多的谐振模式。
如图5和图7所示,第二辐射枝节132可以设置于第一辐射体110远离第二辐射体120的一侧,第二辐射枝节132接地,此时,第二辐射枝节132可与第一辐射体110电磁耦合。
可以理解的是,当第三辐射体130同时包括第一辐射枝节131和第二辐射枝节132时,第一辐射枝节131可与第二辐射体120电磁耦合并共同传输第二无线信号,第二辐射枝节132可与第一辐射体110电磁耦合并共同传输第一无线信号,第一辐射枝节131和第二辐射枝节132可以扩展第一无线信号、第二无线信号的带宽;同时,第一辐射枝节131和第二辐射枝节132也可以降低第一辐射枝节131、第二辐射枝节132、第一辐射体110和第二辐射体120形成的多天线系统的SAR值。
需要说明的是,以上仅为第三辐射体130的示例性举例,第三辐射体130并不局限于上述结构,例如,第三辐射体130还可以包括设置于第二辐射体120远离第一辐射体110的一侧的辐射枝节;再例如,第一辐射枝节131、第二辐射枝节132的数量并不局限于一 个。本申请实施例对第三辐射体130的具体设置位置不进行限定。
第三辐射体130可以与接地平面140电连接并实现接地,例如,第一辐射枝节131和第二辐射枝节132可以接地设置。第三辐射体130可与第一辐射体110电磁耦合,第三辐射体130也可与第二辐射体120电磁耦合,第三辐射体130还可以同时与第一辐射体110及第二辐射体120电磁耦合。第三辐射体130可以改变第一辐射体110和第二辐射体120形成的第一电场的至少一个激励模式分电场的电场分布,并增加该激励模式分电场的电流强点区域数量及电流分布均匀度。
示例性的,请参考图8至图10,图8为图5所示的天线装置100形成的第二电场的电流分布示意图,图9为图8所示的第二电场的第一激励模式分电场的电流分布示意图,图10为图8所示的第二电场的第二激励模式分电场的电流分布示意图。
对比图3和图9,图3为第一辐射体110和第二辐射体120形成的第一电场的第一激励模式分电场的电流分布示意图,其在第二辐射体120所在的区域内形成了一个电流强点区域;而图9为第一辐射体110、第二辐射体120和第三辐射体130共同形成的第二电场的第一激励模式分电场的电流分布示意图,其在第一辐射体110和第二辐射体120所在的区域内形成了两个电流强点区域。显然,设置第三辐射体130可增加第一激励模式分电场的电流强点区域数量,可使第一激励模式分电场的电流分布均匀度更高。
对比图4和图10,图4为第一辐射体110和第二辐射体120形成的第一电场的第二激励模式分电场的电流分布示意图,其在第二辐射体120所在的区域内形成了一个电流强点区域;而图10为第一辐射体110、第二辐射体120和第三辐射体130共同形成第二电场的第二激励模式分电场的电流分布示意图,其在第一辐射体110和第二辐射体120所在的区域内形成了两个电流强点区域。显然,设置第三辐射体130可增加第二激励模式分电场的电流强点区域数量,可使第二激励模式分电场的电流分布均匀度更高。
对比2和图8,图2为第一辐射体110和第二辐射体120在接地平面140上形成的第一电场的电流分布图,其在第二辐射体120及第二辐射体120与第一辐射体110之间的区域形成一个电流强点区域;而图8为第一辐射体110、第二辐射体120和第三辐射体130在接地平面140上形成的第二电场的电流分布图中,其在第一辐射体110、第二辐射体120和第三辐射体130所在的区域上形成两个电流强点区域。显然,当设置第三辐射体130增加了第一激励模式和第二激励模式的电流强点区域数量后,图8所示的第一辐射体110、第二辐射体120和第三辐射体130形成的天线系统的电流分布均匀度更高,天线系统的SAR值更低。
可以理解的是,在电流分布示意图中,电流强点区域的数量越少,电流强点区域更集中,电流分布均匀度更低,天线装置100的SAR值更高;反之,电流强点区域的数量越多,电流强点区域更分散,电流分布均匀度更高,天线装置100的SAR值更低。
可以理解的是,第三辐射体130的设置位置、形状、结构等特征可以根据第一、第二激励模式分电场的调节来选择。例如,可以将第三辐射体130设置在多个设置位置处,并检测每一设置位置的第一或第二激励模式分电场,然后选择电流分布更均匀的设置位置作 为第三辐射体130的最佳设置位置。同理,第三辐射体130的形状和结构也可以根据上述方式进行调试。
可以理解的是,凡是能增加激励模式分电场的电流强点区域数量、增加激励模式分电场的电流分布均匀度的第三辐射体130的设置位置及形状、结构均在本申请实施例的保护范围内,本申请实施例对此不进行限定。
本申请实施例的天线装置100,第一辐射体110和第二辐射体120在接地平面140上形成第一电场,第一电场包括至少一个激励模式分电磁场;第三辐射体130与第一辐射体110、第二辐射体120间隔设置,第三辐射体130接地且与第一辐射体110、第二辐射体120中的至少一个电磁耦合,第三辐射体130可增加至少一个激励模式分电场的电流强点区域数量,并使至少一个激励模式分电场的电流分布均匀度更高,从而,第一辐射体110、第二辐射体120和第三辐射体130形成的天线系统的电场的电流分布更均匀,天线系统的SAR值更低。
其中,天线装置100依据特征模理论对一个或多个激励模式分电场进行分析时,可以优先选择激励模式分电场的电流分布与第一电场的电流分布的匹配度处于预设匹配度范围内的一个或几个激励模式分电场作为目标激励模式分电场,天线装置100主要可以对该目标激励模式分电场进行调节,使得第三辐射体130可以增加该目标激励模式分电场的电流强度区域数量及电流分布均匀度。
例如,第一电场按照特征模理论可以被分解成a、b、c、d、e五种激励模式分电场,其中,a和b两种激励模式分电场的电流分布与第一电场的电流分布比较相似,二者的匹配度处于预设匹配度范围内,那么,第三辐射体130可以调节a和b两种激励模式分电场的电流分布,以增加a和b两种激励模式分电场的电流强度区域数量。
可以理解的是,激励模式分电场的电流分布与第一电场的电流分布的匹配度可以是指二者的相似度,二者越相似则表明激励模式分电场与第一电场的电流分布匹配度越高。实际调试中可以根据电流分布图中电流强点所在的区域的位置来判断二者是否相似或是否匹配。例如,如图2所示,第一电场的电流强点区域分布在第二辐射体120所在的区域,如图3和图4所示,第一激励模式分电场和第二激励模式分电场的电流强点区域也分布在第二辐射体120所在的区域,因此,可以认为第一激励模式分电场和第二激励模式分电场与第一电场的电流分布匹配度处于预设匹配度范围内。
本申请实施例的天线装置100,目标激励模式分电场的电流分布与第一电场的电流分布匹配度处于预设匹配度范围内,第三辐射体130可以较容易地被调试并可增加目标激励模式分电场的电流强点区域数量,第三辐射体130可以使第一电场的电流分布更均匀,从而可以降低天线装置100的SAR值。
请结合图5并请参考图11,图11为图1和图5所示的天线装置100在不同馈电相位下的SAR值示意图。
图11中曲线S1为图1所示的天线装置100在不同馈电相位下的SAR值曲线示意图,图11中曲线S2为图5所示的天线装置100在不同馈电相位下的SAR值曲线示意图。对比曲线S1和曲线S2,设置第一辐射体110、第二辐射体120和第三辐射体130的天线系统的 相位差从0度至306度遍历的SAR值相比设置第一辐射体110和第二辐射体120的天线系统的SAR值普遍偏低。显然,经过特征模理论设置谐振枝节进行调节后,第一辐射体110、第二辐射体120和第三辐射体130形成的天线系统具有更低的SAR值。
请结合图1和图5并请参考图12和图13,图12为图1所示的天线装置100的S参数曲线示意图,图13为图5所示的天线装置100的S参数曲线示意图。
如图12所示,曲线S3为图1所示的天线装置100的S22参数曲线;曲线S4为图1所示的天线装置100的S21参数曲线;曲线S5为图1所示的天线装置100的S11参数曲线。如图13所示,曲线S6为图5所示的天线装置100的S22参数曲线;曲线S7为图5所示的天线装置100的S21参数曲线;曲线S8为图5所示的天线装置100的S11参数曲线。
对比曲线S5和S8可知,本申请设置可增加至少一个激励模式分电场的电流强点区域数量和电流分布均匀度的第三辐射体130,第一辐射体110、第二辐射体120和第三辐射体130形成的天线系统在2.4GHz至2.5GHz的频率范围内的反射系数S11小于-6dB,天线系统可工作于Wi-Fi的2.4G频段。
请结合图1、图2并请参考图14和图15,图14为图1所示的天线装置100的SAR值热点图,图15为图5所示的天线装置100的SAR值热点图。
图1和图5所示的天线装置100在进行多天线系统SAR值仿真时,将人体模型放置在天线下方5mm处,规定天线的接收功率为1W(瓦特),由图14可知,在2.45GHz频率下,第一辐射体110和第二辐射体120形成的天线系统在2.45GHz频率下的1W归一化10g平均多天线系统的SAR峰值为11.72W/kg,此时天线系统效率为68.75%。由图15可知,在2.45GHz频率下,第一辐射体110、第二辐射体120和第三辐射体130形成的天线系统在2.45GHz频率下的1W归一化10g平均多天线系统的SAR峰值为10.1W/kg,此时天线系统效率为78.55%。显然,经过特征模理论设置谐振枝节进行调节后,天线装置100在2.45GHz频率下产生的系统SAR值降低了13.8%左右,天线装置100的系统效率提升了约14%,天线系统SAR值降低效果明显。
本申请实施例的天线装置100,第一辐射枝节131与第二辐射体120电磁耦合,第一辐射枝节131可作为第二辐射体120的寄生枝节;第二辐射枝节132与第一辐射体110电磁耦合,第二辐射枝节132可作为第一辐射体110的寄生枝节;第一辐射枝节131可分散第二辐射体120的电流强点区域、第二辐射枝节132可分散第一辐射体110的电流强点区域,从而,第一辐射体110、第二辐射体120和第三辐射体130形成的天线系统中,天线系统形成的电场的电流强点区域更分散,天线系统的电流分布更均匀,天线系统的SAR值更低。
其中,如图5所示,第一辐射枝节131可以远离第二辐射体120的馈电枝节(例如第一馈电点121)设置,第二辐射枝节132可以远离第一辐射体110的馈电枝节(例如第二馈电点111)设置。
第二辐射体120可以包括相对设置的第一端a和第二端b。该第一端a和第二端b可以是第二辐射体120在长度方向上的两个端部,其中,第二端b可位于第一端a和第一辐射 枝节131之间,第一端a可远离第一辐射枝节131设置,第一端a上可设置第一馈电点121,第一馈电点121可与第二馈源160电连接,从而第一辐射枝节131可远离第二馈源160设置。当第一辐射枝节131与第二辐射体120电磁耦合时,第一辐射枝节131形成的电场可与第二辐射体120形成的电场相互叠加而不会相互抵消(如果第一辐射枝节131靠近第一馈电点121设置,第一辐射枝节131容易激励起与第二辐射体120电场相反的电场,从而第一辐射枝节131与第二辐射体120的电场会相互抵消而影响第二辐射体120的辐射性能),第一辐射枝节131可优化第二辐射体120的辐射性能。
同理,第一辐射体110可包括相对设置的第三端c和第四端d。该第三端c和第四端d可以是第一辐射体110在辐射长度方向上的两个端部,其中,第四端d可位于第三端c和第二辐射枝节132之间,第三端c可远离第二辐射枝节132设置,第三端c上可设置第二馈电点111,第二馈电点111可与第一馈源150电连接,从而第二辐射枝节132可远离第一馈源150设置,第二辐射枝节132形成的电场可与第一辐射体110形成的电场相互叠加而不会相互抵消,第二辐射枝节132可优化第一辐射体110的辐射性能。
可以理解的是,当第一辐射枝节131位于第二辐射体120和第一辐射体110之间时,第一辐射枝节131上可设置接地段(例如图14所示的第一接地段1314),该接地段可靠近第一辐射体110的第三端c设置,以使得第一辐射枝节131形成的电场可与第一辐射体110形成的电场相互叠加而不会相互抵消,第一辐射枝节131不会影响第一辐射体110的辐射性能。
本申请实施例的天线装置100,第一辐射枝节131远离第二馈源160设置、第二辐射枝节132远离第一馈源150设置,一方面,第二辐射体120和第一辐射体110的馈电枝节之间的距离较远,第二辐射体120和第一辐射体110之间的隔离度较好;另一方面,第一辐射枝节131和第二辐射枝节132可优化第一辐射体110和第二辐射体120的辐射性能,从而可提高天线装置100的辐射性能。
其中,请参考图16,图16为本申请实施例提供的天线装置100的第五种结构示意图。第二辐射体120包括第一辐射段122、第二辐射段123、第三辐射段124和第四辐射段125。
第一辐射段122的一端可朝着接地平面140所在的方向延伸设置,第一辐射段122可上设有第一馈电点121,第一馈电点121可与第二馈源160电连接;第二辐射段123的一端可与第一辐射段122的另一端连接、第二辐射段123的另一端可朝着第一辐射枝节131和第一辐射体110所在的方向延伸设置;第三辐射段124的一端可与第二辐射段123的另一端连接,第三辐射段124的另一端可朝着接地平面140所在的方向延伸设置;第四辐射段125的一端可与第三辐射段124的另一端连接,第四辐射段125的另一端可朝着背离第一辐射枝节131、第一辐射体110的方向延伸设置。
可以理解的是,第二辐射段123和第四辐射段125可朝着第一方向H1延伸并可相互平行,第一辐射段122和第三辐射段124可朝着第二方向H2延伸并可相互平行,第二辐射体120可弯折形成环形结构。
可以理解的是,接地平面140在第一方向H1和第二方向H2上的尺寸可为140mm× 72mm;第一辐射段122在第一方向H1和第二方向H2上的尺寸可为1.5mm×5.5mm;第二辐射段123在第一方向H1和第二方向H2上的尺寸可为14.5mm×1.5mm;第三辐射段124在第一方向H1和第二方向H2上的尺寸可为3mm×1mm;第四辐射段125在第一方向H1和第二方向H2上的尺寸可为3mm×1.5mm。
其中,如图16所示,第一辐射枝节131可包括第五辐射段1311、第六辐射段1312和第七辐射段1313。第五辐射段1311的一端与第一辐射体110相邻,第五辐射段1311的另一端可朝着第二辐射体120所在的方向延伸,第五辐射段1311靠近第一辐射体110的部位处可与接地平面140电连接并实现接地;第六辐射段1312的一端与第五辐射段1311的另一端连接,第六辐射段1312的另一端可朝着接地平面140所在的方向延伸设置;第七辐射段1313的一端可与第六辐射段1312的另一端连接,第七辐射段1313的另一端可朝着背离第二辐射体120的方向延伸设置。
可以理解的是,第一辐射枝节131还可以包括第一接地段1314,第一接地段1314可连接于第五辐射段1311的两端部靠近第一辐射体110的部位并朝着接地平面140所在的方向延伸设置,第一接地段1314可与接地平面140电连接并实现接地。
可以理解的是,第五辐射段1311、第七辐射段1313、第二辐射段123和第四辐射段125可沿第一方向H1延伸并相互平行,第六辐射段1312、第一辐射段122和第三辐射段124可沿第二方向H2延伸并相互平行,第一辐射枝节131可弯折形成环形结构。
可以理解的是,第五辐射段1311在第一方向H1和第二方向H2上的尺寸可为17.5mm×1mm;第六辐射段1312在第一方向H1和第二方向H2上的尺寸可为1mm×2mm;第七辐射段1313在第一方向H1和第二方向H2上的尺寸可为7.5mm×1mm;第一接地段1314在第一方向H1和第二方向H2上的尺寸可为1.5mm×3mm。
本申请实施例的第二辐射体120和第一辐射枝节131可弯折形成环形结构,一方面,既可以满足第二辐射体120、第一辐射枝节131的长度需求,又可节省第二辐射体120和第一辐射体110占据的空间,实现天线装置100的小型化;另一方面,第二辐射体120和第一辐射枝节131相邻的辐射枝节的面积更大,更便于第一辐射枝节131与第二辐射体120的电磁耦合。
其中,如图16所示,第一辐射体110可包括第八辐射段112、第九辐射段113和第十辐射段114。第二辐射枝节132可包括第十一辐射段1321和第二接地段1322。
第八辐射段112的一端可朝着接地平面140所在的方向延伸设置,第八辐射段112上可设有第二馈电点111,第二馈电点111可与第一馈源150连接;第九辐射段113的一端可与第八辐射段112连接,第九辐射段113的另一端可朝着远离第一辐射枝节131、第一辐射体110的方向延伸设置;第十辐射段114的一端可与第九辐射段113的另一端连接,第十辐射段114的另一端可朝着接地平面140所在的方向延伸设置。
第十一辐射段1321的一端可与第十辐射段114的另一端相邻,第十一辐射段1321的另一端可朝着背离第一辐射体110的方向延伸设置。第二接地段1322可连接于第十一辐射段1321并朝着接地平面140所在的方向延伸设置。
可以理解的是,第八辐射段112、第十辐射段114和第十一辐射段1321可朝着第二方向H2延伸并可相互平行,第九辐射段113可朝着第一方向H1延伸,第一辐射体110可弯折形成环形结构。
可以理解的是,第八辐射段112在第一方向H1和第二方向H2上的尺寸可为1.5mm×5.5mm;第九辐射段113在第一方向H1和第二方向H2上的尺寸可为6mm×1.5mm;第十辐射段114在第一方向H1和第二方向H2上的尺寸可为1.5mm×15mm。第十一辐射段1321在第一方向H1和第二方向H2上的尺寸可为1mm×24mm;第二接地段1322在第一方向H1和第二方向H2上的尺寸可为4mm×2mm。
需要说明的是,以上仅为本申请实施例的第一辐射体110、第二辐射体120和第三辐射体130的示例性举例,第一辐射体110、第二辐射体120和第三辐射体130的形状、结构、尺寸并不局限于上述举例,本申请实施例对此不进行具体的限定。
可以理解的是,第一辐射体110和第二辐射体120中可以形成多输入多输出(Multiple-Input Multiple-Output,简称MIMO)系统、主分集传输系统等,此时,第一辐射体110、第二辐射体120、第三辐射体130形成的多天线系统的SAR值较低,多天线系统的辐射性能更优。
其中,为了进一步降低天线装置100的SAR值,参考图17,图17为本申请实施例提供的天线装置100的第六种结构示意图。接地平面140包括第一区域141和第二区域142,第一辐射体110对应第一区域141设置,第二辐射体120对应第二区域142设置,第二区域142为第一辐射体110传输的第一无线信号在接地平面140上形成的第三电场的电流弱点区域。
可以理解的是,第一辐射体110对应第一区域141设置,可以是第一辐射体110连接于第一区域141,也可以是第一辐射体110在接地平面140上的部分或全部投影位于第一区域141内。同理的,第二辐射体120对应第二区域142设置,可以是第二辐射体120连接于第二区域142,也可以是第二辐射体120在接地平面140上的部分或全部投影位于第二区域142内。
可以理解的是,第三电场可以是第一无线信号通过第一馈源150流入接地平面140而形成的电场,也可以是第一无线信号通过第二辐射体120上的接地点流入接地平面140而形成的电场,还可以是第一无线信号在接地平面140产生的感应电流形成的电场。
本申请实施例的天线装置100,将第二辐射体120设置于第一辐射体110传输的第一激励电流在接地平面140上形成的电流弱点区域-第二区域142内,相较于将第一辐射体110设置于其他非电流弱点区域内的方案而言,本申请实施例的天线装置100可使第二辐射体120和第一辐射体110形成的多天线系统的整体平均电流分布更均匀,可以降低第二辐射体120和第一辐射体110形成的多天线系统的SAR值。
基于上述天线装置100的结构,本申请实施例还提供了一种电子设备10,电子设备10可以是智能手机、平板电脑等设备,还可以是游戏设备、增强现实(Augmented Reality,简称AR)设备、汽车装置、数据存储装置、音频播放装置、视频播放装置、笔记本电脑、 桌面计算设备等。请参考图18,图18为本申请实施例提供的电子设备10的一种结构示意图。电子设备10可以包括前述实施例的天线装置100。
天线装置100可以包括第一辐射体110、第二辐射体120和第三辐射体130。第一辐射体110用于传输第一无线信号;第二辐射体120与第一辐射体110间隔设置,第二辐射体120用于传输第二无线信号,第二无线信号和第一无线信号在接地平面上形成第一电场,第一电场包括至少一个激励模式分电场;第三辐射体130与第一辐射体110和第二辐射体120均间隔设置,第三辐射体130接地;其中,第三辐射体130与第一辐射体110、第二辐射体120中的至少一个电磁耦合,以增加至少一个激励模式分电场的电流强点区域数量。
其中,至少一个激励模式分电场与第一电场的电流分布匹配度处于预设匹配度范围内。
其中,第三辐射体130可以包括第一辐射枝节131,第一辐射枝节131可以位于第一辐射体110和第二辐射体120之间,第一辐射枝节131接地。
其中,第二辐射体120包括相对设置的第一端a和第二端b,第二端b位于第一端a和第一辐射枝节131之间,第一端a上设有第一馈电点121。
其中,第二辐射体120包括第一辐射段122、第二辐射段123、第三辐射段124和第四辐射段125。第一辐射段朝着接地平面140所在的方向延伸设置,第一辐射段122上设有第一馈电点121;第二辐射段123与第一辐射段122连接并朝着第一辐射枝节131所在的方向延伸设置;第三辐射段124与第二辐射段123连接并朝着接地平面140所在的方向延伸设置;第四辐射段125与第三辐射段124连接并朝着背离第一辐射枝节131的方向延伸设置。
其中,第一辐射枝节包括第五辐射段1311、第六辐射段1312和第七辐射段1313。第五辐射段1311朝着第二辐射体120所在的方向延伸设置,第五辐射段1311接地;第六辐射段1312与第五辐射段1311连接并朝着接地平面140所在的方向延伸设置;第七辐射段1313与第六辐射段1312连接并朝着背离第二辐射体120的方向延伸设置。
其中,第三辐射体130还可以包括第二辐射枝节132。第二辐射枝节132位于第一辐射体110远离第二辐射体120的一侧,第二辐射枝节132接地。
其中,第一辐射体110包括相对设置的第三端c和第四端d,第四端d位于第三端c和第二辐射枝节132之间,第三端c上设有第二馈电点111。
其中,接地平面140包括第一区域141和第二区域142,第一辐射体110对应第一区域设置,第二辐射体120对应第二区域设置,第二区域为第一无线信号在接地平面140上形成的电场的电流弱点区域。
其中,电子设备10还可以包括显示屏200、中框300、电路板400、电池500和后壳600。
显示屏200可以安装在中框300上,并通过中框300连接至后盖上,以形成电子设备10的显示面。显示屏200可以用于显示图像、文本等信息。显示屏200可以是有机发光二极管(Organic Light-Emitting Diode,OLED)显示器件或有机发光二极管(Organic Light-Emitting Diode,OLED)显示器等类型的显示器件。
中框300可以包括边框(图未示)和承载板(图未示),承载板可以为电子设备10中的电子器件或电子器件提供支撑作用。边框连接于承载板的边缘并凸出于承载板,边框和承载板形成一容置空间,电子设备10中的电子元件、电子器件可以安装并固定在该容置空间内。
电路板400可以安装在中框300上。电路板400可以为电子设备10的主板。其中,电路板400上可以集成有麦克风、扬声器、受话器、耳机接口、通用串行总线接口(USB接口)、摄像头组件、距离传感器、环境传感器、陀螺仪以及处理器等电子器件中的一个、两个或多个。其中,显示屏200可以电连接至电路板400,以通过电路板400上的处理器对显示屏200的显示进行控制。第一馈源150、第二馈源160中的一个或多个可以设置于电路板400上,以通过处理器对上述器件进行控制。
电池500可以安装在中框300。同时,电池500电连接至电路板400,以实现电池500为电子设备10供电。电路板400上可以设置电源管理电路。电源管理电路用于将电池500提供的电压分配到电子设备10中的各个电子器件。
后壳600可以与中框300连接。后壳600用于与中框300、显示屏200共同将电子设备10的电子器件和功能组件密封在电子设备10内部,以对电子设备10的电子器件和功能组件形成保护作用。
天线装置100的接地平面140可以但不限于形成于电子设备10的电路板400、中框300、后壳600等部件上,第一辐射体110、第二辐射体120和第三辐射体130可以但不限于形成于电子设备10的中框300、后壳600等部件上。本申请实施例对天线装置100设置于电子设备10的具体方式不进行限定。
基于上述天线装置100及电子设备10,本申请实施例还提供了一种天线装置100的设计方法,该天线装置100的设计方法可以应用于上述任一实施例中的天线装置100中,天线装置100可以包括第一辐射体110、第二辐射体120和第三辐射体130。请参考图19,图19为本申请实施例提供的天线装置100的设计方法的第一种流程示意图。
在101中,控制第一辐射体110传输第一无线信号、第二辐射体120传输第二无线信号;第一辐射体110与第二辐射体120间隔设置;
在102中,在接地平面140上确定第一无线信号和第二无线信号形成的第一电场;
天线装置100的处理模块或控制模块可以控制第一辐射体110和第二辐射体120处于工作状态并传输第一无线信号和第二无线信号,该第一无线信号和第二无线信号可以在接地平面140上形成第一电场,根据该第一电场可以获取第一电场在接地平面140上的电流分布图。
在103中,依据特征模理论对第一电场进行分析并得到至少一个激励模式分电场;
在104中,设置第三辐射体130与第一辐射体110、第二辐射体120中的至少一个电磁耦合,以增加至少一个激励模式分电场的电流强点区域数量;第三辐射体130与第一辐射体110和第二辐射体120均间隔设置,第三辐射体130接地。
可以根据特征模理论对第一电场进行分解并得到至少一个激励模式分电场,可以通过 调节第三辐射体130的设置位置、形状、结构和尺寸来调节至少一个激励模式分电场的电流分布,以增加至少一个激励模式分电场的电流强点数量及电流分布均匀度。
可以理解的是,不同的激励模式分电场的电流分布不同,对于第一电场的SAR值的贡献度也不同。激励模式分电场的电流分布越均匀,其对第一电场的SAR值的贡献度越小,天线装置100的SAR值越小;反之,激励模式分电场的电流分布越不均匀,其对第一电场的SAR值的贡献度越大,天线装置100的SAR值越高。可以通过调节电流分布不均匀的激励模式分电场,来调节第一电场的SAR值。
本申请实施例的天线装置100的设计方法,第一辐射体110和第二辐射体120在接地平面140上形成第一电场,第一电场包括至少一个激励模式分电磁场;第三辐射体130与第一辐射体110和第二辐射体120间隔设置,第三辐射体130接地且与第一辐射体110、第二辐射体120中的至少一个电磁耦合,第三辐射体130可增加至少一个激励模式分电场的电流强点区域数量,也可以增加至少一个激励模式分电场的电流分布均匀度,从而,第一辐射体110、第二辐射体120和第三辐射体130形成的天线系统的电场的电流分布更均匀,天线系统的SAR值更低。
在一些实施例中,依据特征模理论对第一电场进行分析并得到至少一个激励模式分电场之后,包括:选择与第一电场的电流分布匹配度处于预设匹配度范围内的激励模式分电场作为目标激励模式分电场。设置第三辐射体130与第一辐射体110、第二辐射体120中的至少一个电磁耦合,以增加至少一个激励模式分电场的电流强点区域数量,包括:设置第三辐射体130与第一辐射体110第二辐射体120中的至少一个电磁耦合,以增加目标激励模式分电场的电流强点区域数量。
在一些实施例中,天线装置100的设计方法还包括:在接地平面140上确定第一区域141;将第一辐射体110对应第一区域141设置;控制第一辐射体110传输第一无线信号,并在接地平面140上确定第二区域142,第二区域142为第一无线信号在接地平面140上形成的第二电场的电流弱点区域;将第二辐射体120对应第二区域142设置。
在一些实施例中,在接地平面140上确定第二区域,包括:以预设相位差依次改变第一激励电流的相位,确定接地平面140在不同相位的第一激励电流的作用下形成的多个电流区域分布图,第一激励电流用于激励第一辐射体110传输第一无线信号;根据多个电流区域分布图确定接地平面140在第一激励电流的作用下形成的平均电流分布图;将平均电流分布图中的电流弱点区域确定为第二区域142。
基于此,请参考图20,图20为本申请实施例提供的天线装置100的设计方法的第二种流程示意图。
在201中,在接地平面140上确定第一区域141;
在202中,将第一辐射体110对应第一区域141设置;
可以理解的是,第一辐射体110在设计时往往需要在其上方和下方一定空间内不设置金属导体而预留出净空区域,因此,第一辐射体110往往设置在接地平面140的边缘,第一区域141可以是接地平面140上的边缘区域。
可以理解的是,可以根据电子设备10的形状、结构、第一辐射体110的辐射频率需求等因素在接地平面140上确定出第一区域141。例如,为了防止用户手握对第二辐射体120的影响,可以将第一辐射体110设置于电子设备10的左上角区域,相应的,第一区域141可以是接地平面140左上角的区域。
需要说明的是,本申请实施例对第一区域141的具体确定方式不进行限定,凡是可以在接地平面140上确定第一区域141的方式均在本申请实施例的保护范围内。
可以理解的是,第一辐射体110对应第一区域141设置,可以是第一辐射体110连接于第一区域141,也可以是第一辐射体110在接地平面140上的部分或全部投影位于第一区域141内。
在203中,控制第一辐射体110传输第一无线信号,并在接地平面140上确定第二区域142;第二区域142为第一无线信号在接地平面140上形成的第二电场的电流弱点区域;
在204中,将第二辐射体120对应第二区域142设置。
可以理解的是,第二辐射体120对应第二区域142设置,可以是第二辐射体120连接于第二区域142,也可以是第二辐射体120在接地平面140上的部分或全部投影位于第二区域142内。天线装置100或电子设备10可以通过第一激励电流在接地平面140上的电流区域分布图来确定第二区域142。然后,可将第二辐射体120对应第二区域142设置。
示例性的,在接地平面140上确定第二区域142可以包括:以预设相位差依次改变第一激励电流的相位,确定接地平面140在不同相位的第一激励电流的作用下形成的多个电流区域分布图;根据多个电流区域分布图确定接地平面140在第一激励电流的作用下形成的平均电流分布图;将平均电流分布图中的电流弱点区域确定为第二区域142。可以理解的是,可以选择在0°至360°的一个周期内以预设相位差依次改变激励电流的相位,来获取接地平面140在每一相位下的第一激励电流的作用下形成的多个电流区域分布图。例如,预设相位差可以是10°,可以依次获取接地平面140在10°、20°、30°……相位的第一激励电流的作用下形成多个电流区域分布图。可以理解的是,可以根据获取的多个不同相位的第一激励电流形成的电流区域分布图,然后根据归一化算法、平均算法等方式获取多个电流区域分布确定接地平面140在激励电流的作用下形成的平均电流分布图。得到第一激励电流的平均电流分布图后,可以将平均电流分布图中的电流弱点区域确定为第二区域142。
再示例性的,天线装置100或电子设备10还可以通过仿真实验直接测试某一相位的第一激励电流在接地平面140上形成的电流弱点区域来确定第二区域142。或者,天线装置100或电子设备10还可以根据第一辐射体110传输第一激励电流时接地平面140上产生的感应电流在接地平面140上形成的电流弱点区域来确定第二区域142。
需要说明的是,以上仅为在接地平面140上确定第二区域142的示例性举例,本申请实施例的方式不限于此。凡是可在接地平面140上确定出第二区域142的方式均在本申请实施例的保护范围内,本申请实施例对此不进行限定。
第二辐射体120设置于第一辐射体110传输的第一激励电流在接地平面140上形成的 电流弱点区域内,天线装置100可使第一辐射体110和第二辐射体120形成的多天线系统的整体平均电流分布更均匀,可以降低第一辐射体110和第二辐射体120形成的多天线系统的SAR值,并可以提高第一辐射体110和第二辐射体120形成的多天线系统的系统总效率。
在205中,控制第一辐射体110传输第一无线信号、第二辐射体120传输第二无线信号;第一辐射体110与第二辐射体120间隔设置;
在206中,在接地平面140上确定第一无线信号和第二无线信号形成的第一电场;
在207中,依据特征模理论对第一电场进行分析并得到至少一个激励模式分电场;
根据特征模理论对第一电场进行分解可以得到至少一个激励模式分电场,可以通过调节第三辐射体130的设置位置、形状、结构和尺寸来调节至少一个激励模式分电场的电流分布,以增加至少一个激励模式分电场的电流强点数量及电流分布均匀度。
在208中,选择与第一电场的电流分布匹配度处于预设匹配度范围内的激励模式分电场作为目标激励模式分电场;
在209中,设置第三辐射体130与第一辐射体110、第二辐射体120中的至少一个电磁耦合,以增加目标激励模式分电场的电流强点区域数量;第三辐射体130与第一辐射体110和第二辐射体120均间隔设置,第三辐射体130接地。
可以理解的是,激励模式分电场的电流分布与第一电场的电流分布的匹配度可以是指二者的相似度,二者越相似则表明激励模式分电场与第一电场的电流分布匹配度越高。实际调试中可以根据电流分布图中电流强点所在的区域的位置来判断二者是否相似或是否匹配。
本申请实施例的天线装置100,目标激励模式分电场的电流分布与第一电场的电流分布匹配度处于预设匹配度范围内,第三辐射体130容易被调试并可以增加目标激励模式分电场的电流强点区域数量,第三辐射体130可以使第一电场的电流分布更均匀,从而可以降低天线装置100的SAR值。
在本申请的描述中,需要理解的是,诸如“第一”、“第二”等术语仅用于区分类似的对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
以上对本申请实施例提供的天线装置、电子设备及天线装置的设计方法进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请。同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种天线装置,包括:
    第一辐射体,用于传输第一无线信号;
    第二辐射体,与所述第一辐射体间隔设置,所述第二辐射体用于传输第二无线信号,所述第二无线信号和所述第一无线信号在接地平面上形成第一电场,所述第一电场包括至少一个激励模式分电场;及
    第三辐射体,与所述第一辐射体和所述第二辐射体均间隔设置,所述第三辐射体接地;其中,
    所述第三辐射体与所述第一辐射体、所述第二辐射体中的至少一个电磁耦合,以增加所述至少一个激励模式分电场的电流强点区域数量。
  2. 根据权利要求1所述的天线装置,其中,所述至少一个激励模式分电场与所述第一电场的电流分布匹配度处于预设匹配度范围内。
  3. 根据权利要求1所述的天线装置,其中,所述第三辐射体包括:
    第一辐射枝节,位于所述第一辐射体和所述第二辐射体之间,所述第一辐射枝节接地。
  4. 根据权利要求3所述的天线装置,其中,所述第二辐射体包括相对设置的第一端和第二端,所述第二端位于所述第一端和所述第一辐射枝节之间,所述第一端上设有第一馈电点。
  5. 根据权利要求3所述的天线装置,其中,所述第二辐射体包括:
    第一辐射段,朝着所述接地平面所在的方向延伸设置,所述第一辐射段上设有第一馈电点;
    第二辐射段,与所述第一辐射段连接并朝着所述第一辐射枝节所在的方向延伸设置;
    第三辐射段,与所述第二辐射段连接并朝着所述接地平面所在的方向延伸设置;及
    第四辐射段,与所述第三辐射段连接并朝着背离所述第一辐射枝节的方向延伸设置。
  6. 根据权利要求3所述的天线装置,其中,所述第一辐射枝节包括:
    第五辐射段,朝着所述第二辐射体所在的方向延伸设置,所述第五辐射段接地;
    第六辐射段,与所述第五辐射段连接并朝着所述接地平面所在的方向延伸设置;及
    第七辐射段,与所述第六辐射段连接并朝着背离所述第二辐射体的方向延伸设置。
  7. 根据权利要求1所述的天线装置,其中,所述第三辐射体包括:
    第二辐射枝节,位于所述第一辐射体远离所述第二辐射体的一侧,所述第二辐射枝节接地。
  8. 根据权利要求7所述的天线装置,其中,所述第一辐射体包括相对设置的第三端和第四端,所述第四端位于所述第三端和所述第二辐射枝节之间,所述第三端上设有第二馈电点。
  9. 根据权利要求1所述的天线装置,其中,所述接地平面包括第一区域和第二区域,所述第一辐射体对应所述第一区域设置,所述第二辐射体对应所述第二区域设置,所述第二区域为所述第一无线信号在所述接地平面上形成的电场的电流弱点区域。
  10. 一种电子设备,包括天线装置,所述天线装置包括:
    第一辐射体,用于传输第一无线信号;
    第二辐射体,与所述第一辐射体间隔设置,所述第二辐射体用于传输第二无线信号,所述第二无线信号和所述第一无线信号在接地平面上形成第一电场,所述第一电场包括至少一个激励模式分电场;及
    第三辐射体,与所述第一辐射体和所述第二辐射体均间隔设置,所述第三辐射体接地;其中,
    所述第三辐射体与所述第一辐射体、所述第二辐射体中的至少一个电磁耦合,以增加所述至少一个激励模式分电场的电流强点区域数量。
  11. 根据权利要求10所述的电子设备,其中,所述至少一个激励模式分电场与所述第一电场的电流分布匹配度处于预设匹配度范围内。
  12. 根据权利要求10所述的电子设备,其中,所述第三辐射体包括:
    第一辐射枝节,位于所述第一辐射体和所述第二辐射体之间,所述第一辐射枝节接地。
  13. 根据权利要求12所述的电子设备,其中,所述第二辐射体包括相对设置的第一端和第二端,所述第二端位于所述第一端和所述第一辐射枝节之间,所述第一端上设有第一馈电点。
  14. 根据权利要求10所述的电子设备,其中,所述第三辐射体包括:
    第二辐射枝节,位于所述第一辐射体远离所述第二辐射体的一侧,所述第二辐射枝节接地。
  15. 根据权利要求14所述的电子设备,其中,所述第一辐射体包括相对设置的第三端和第四端,所述第四端位于所述第三端和所述第二辐射枝节之间,所述第三端上设有第二馈电点。
  16. 根据权利要求10所述的电子设备,其中,所述接地平面包括第一区域和第二区域,所述第一辐射体对应所述第一区域设置,所述第二辐射体对应所述第二区域设置,所述第二区域为所述第一无线信号在所述接地平面上形成的电场的电流弱点区域。
  17. 一种天线装置的设计方法,应用于天线装置,所述天线装置包括第一辐射体、第二辐射体和第三辐射体;所述天线装置的设计方法包括:
    控制第一辐射体传输第一无线信号、第二辐射体传输第二无线信号;所述第一辐射体与所述第二辐射体间隔设置;
    在接地平面上确定第一无线信号和第二无线信号形成的第一电场;
    依据特征模理论对所述第一电场进行分析并得到至少一个激励模式分电场;
    设置第三辐射体与所述第一辐射体、所述第二辐射体中的至少一个电磁耦合,以增加所述至少一个激励模式分电场的电流强点区域数量;所述第三辐射体与所述第一辐射体和所述第二辐射体均间隔设置,所述第三辐射体接地。
  18. 根据权利要求17所述的天线装置的设计方法,其中,所述依据特征模理论对所述第一电场进行分析并得到至少一个激励模式分电场之后,包括:
    选择与所述第一电场的电流分布匹配度处于预设匹配度范围内的激励模式分电场作为目标激励模式分电场;
    所述设置第三辐射体与所述第一辐射体、所述第二辐射体中的至少一个电磁耦合,以增加所述至少一个激励模式分电场的电流强点区域数量,包括:
    设置所述第三辐射体与所述第一辐射体、所述第二辐射体中的至少一个电磁耦合,以增加所述目标激励模式分电场的电流强点区域数量。
  19. 根据权利要求17所述的天线装置的设计方法,其中,还包括:
    在所述接地平面上确定第一区域;
    将所述第一辐射体对应所述第一区域设置;
    控制所述第一辐射体传输第一无线信号,并在所述接地平面上确定第二区域,所述第二区域为所述第一无线信号在所述接地平面上形成的电场的电流弱点区域;
    将所述第二辐射体对应所述第二区域设置。
  20. 根据权利要求19所述的天线装置的设计方法,其中,所述在所述接地平面上确定第二区域,包括:
    以预设相位差依次改变第一激励电流的相位,确定所述接地平面在不同相位的第一激励电流的作用下形成的多个电流区域分布图,所述第一激励电流用于激励所述第一辐射体传输所述第一无线信号;
    根据多个所述电流区域分布图确定所述接地平面在所述第一激励电流的作用下形成的平均电流分布图;
    将所述平均电流分布图中的电流弱点区域确定为所述第二区域。
PCT/CN2022/107793 2021-08-23 2022-07-26 天线装置、电子设备及天线装置的设计方法 WO2023024795A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110969967.0 2021-08-23
CN202110969967.0A CN113690570A (zh) 2021-08-23 2021-08-23 天线装置、电子设备及天线装置的设计方法

Publications (1)

Publication Number Publication Date
WO2023024795A1 true WO2023024795A1 (zh) 2023-03-02

Family

ID=78581536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107793 WO2023024795A1 (zh) 2021-08-23 2022-07-26 天线装置、电子设备及天线装置的设计方法

Country Status (2)

Country Link
CN (1) CN113690570A (zh)
WO (1) WO2023024795A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115084854A (zh) * 2021-03-16 2022-09-20 华为技术有限公司 天线及通讯设备
CN113690570A (zh) * 2021-08-23 2021-11-23 Oppo广东移动通信有限公司 天线装置、电子设备及天线装置的设计方法
CN116247420A (zh) * 2021-12-07 2023-06-09 Oppo广东移动通信有限公司 天线装置及电子设备
CN116613508A (zh) * 2022-02-08 2023-08-18 Oppo广东移动通信有限公司 天线装置及电子设备
CN117673734A (zh) * 2022-08-22 2024-03-08 Oppo广东移动通信有限公司 天线装置及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101320832A (zh) * 2007-06-04 2008-12-10 广达电脑股份有限公司 双频天线
US20130099980A1 (en) * 2011-10-19 2013-04-25 Kouji Hayashi Antenna device and electronic apparatus including antenna device
CN105529525A (zh) * 2014-10-21 2016-04-27 中兴通讯股份有限公司 一种天线结构
CN111613898A (zh) * 2019-02-22 2020-09-01 华为技术有限公司 终端天线结构及终端
CN112736461A (zh) * 2020-12-28 2021-04-30 Oppo广东移动通信有限公司 天线装置及电子设备
CN113690570A (zh) * 2021-08-23 2021-11-23 Oppo广东移动通信有限公司 天线装置、电子设备及天线装置的设计方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207818883U (zh) * 2018-03-12 2018-09-04 广东欧珀移动通信有限公司 天线组件及电子设备
CN109980364B (zh) * 2019-02-28 2021-09-14 华为技术有限公司 一种天线模块、天线装置以及终端设备
CN115149244A (zh) * 2019-10-31 2022-10-04 华为终端有限公司 天线装置及电子设备
CN112542678A (zh) * 2020-11-30 2021-03-23 Oppo广东移动通信有限公司 电子设备
CN112768875B (zh) * 2020-12-25 2023-07-25 Oppo广东移动通信有限公司 电子设备
CN213753059U (zh) * 2021-06-16 2021-07-20 荣耀终端有限公司 多频低sar天线及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101320832A (zh) * 2007-06-04 2008-12-10 广达电脑股份有限公司 双频天线
US20130099980A1 (en) * 2011-10-19 2013-04-25 Kouji Hayashi Antenna device and electronic apparatus including antenna device
CN105529525A (zh) * 2014-10-21 2016-04-27 中兴通讯股份有限公司 一种天线结构
CN111613898A (zh) * 2019-02-22 2020-09-01 华为技术有限公司 终端天线结构及终端
CN112736461A (zh) * 2020-12-28 2021-04-30 Oppo广东移动通信有限公司 天线装置及电子设备
CN113690570A (zh) * 2021-08-23 2021-11-23 Oppo广东移动通信有限公司 天线装置、电子设备及天线装置的设计方法

Also Published As

Publication number Publication date
CN113690570A (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
WO2023024795A1 (zh) 天线装置、电子设备及天线装置的设计方法
CN103904417B (zh) 移动装置
US20230335922A1 (en) Antenna apparatus and electronic device
CN104319478B (zh) 用于便携式终端的天线设备及具有天线设备的便携式终端
US8854266B2 (en) Antenna isolation elements
KR20190029445A (ko) 격리된 안테나 구조물들을 갖는 전자 디바이스
KR101687780B1 (ko) 메탈폰용 보조 슬롯 mimo 안테나 및 메탈폰용 보조 슬롯 mimo 안테나를 이용한 통신 방법
US20100207826A1 (en) Antenna system using housings of electronic device and electronic device comprising the same
CN105144477A (zh) 双频带wlan耦合辐射器天线
US20230318180A1 (en) Antenna Structure and Electronic Device
CN114530691A (zh) 电子设备
CN113690588A (zh) 天线装置、电子设备及天线装置的设计方法
US9601825B1 (en) Mobile device
Khan et al. Dual polarized antennas with reduced user effects for LTE-U MIMO mobile terminals
Chu et al. Internal coupled‐fed loop antenna integrated with notched ground plane for wireless wide area network operation in the mobile handset
CN104937772B (zh) 天线设备和具有该天线设备的移动终端
CN112864583B (zh) 天线装置及电子设备
EP2375488B1 (en) Planar antenna and handheld device
US11056781B2 (en) Antenna and mobile terminal
EP4266497A1 (en) Electronic device
CN115000684A (zh) 天线装置及电子设备
CN108199140B (zh) 遥控器
JP2018029313A (ja) 無線通信装置
WO2019096085A1 (zh) 移动终端
WO2023040928A1 (zh) 一种电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE