WO2023024768A1 - Rt-5g路由报文的发布方法、装置、存储介质和电子装置 - Google Patents

Rt-5g路由报文的发布方法、装置、存储介质和电子装置 Download PDF

Info

Publication number
WO2023024768A1
WO2023024768A1 PCT/CN2022/106719 CN2022106719W WO2023024768A1 WO 2023024768 A1 WO2023024768 A1 WO 2023024768A1 CN 2022106719 W CN2022106719 W CN 2022106719W WO 2023024768 A1 WO2023024768 A1 WO 2023024768A1
Authority
WO
WIPO (PCT)
Prior art keywords
route
routing
node
esi
message
Prior art date
Application number
PCT/CN2022/106719
Other languages
English (en)
French (fr)
Inventor
王玉保
舒晔
张征
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023024768A1 publication Critical patent/WO2023024768A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]

Definitions

  • the present disclosure relates to the communication field, in particular, to a method, device, storage medium and electronic device for publishing RT-5G routing messages.
  • the DC gateway GW learns a private network prefix (CE-Prefix) behind the CE from a certain CE device
  • the private network next hop of the CE-Prefix is a loopback address IP1
  • the DC GW directly uses IP1 as the GW-IP field of the RT-5G route when issuing the RT-5G route for the CE-Prefix (for the convenience of expression, this RT-5G route can be called original RT-5G route or unproxyed RT-5G route)
  • the node such as TOR1
  • the corresponding RT-2 route needs to be iterated again in the IP-VRF routing table according to the next-hop IP address found in the first iteration.
  • TOR1 needs to have high performance. If TOR1 is a node with low performance for RT-5G routing processing (ie, a low-end RT-5 node), it will affect the packet forwarding efficiency.
  • Embodiments of the present disclosure provide a method, device, storage medium and electronic device for publishing RT-5G routing messages, so as to at least solve the problem that restricted nodes cannot forward data messages to CE-Prefix according to RT-5G routing.
  • a method for publishing RT-5G routing messages including: the first device publishes RT-5G routing messages for CE-Prefix, so that the low-end RT-5 nodes receive all Describe the RT-5G routing message,
  • a method for publishing RT-5 routing messages including: the first device publishes RT-5 routing messages for CE-Prefix, so that the low-end RT-5 nodes The RT-5 routing message is received, wherein the ESI field of the RT-5 routing message carries the first ESI, the Overlay next hop of the CE-Prefix is the second IP, and the second IP is allowed to be reached through the node to which the first ESI belongs, and the RT-5 routing message is used to instruct the low-end RT-5 node to resolve the ESI field carried in the RT-5 routing message into an RT- 1 routing; sending the RT-5 routing message to the third device.
  • an RT-5G routing packet publishing device which is applied to the first device, including: a first publishing module, configured to issue RT-5G routing packets for CE-Prefix text, so that the low-end RT-5 node receives the RT-5G routing message, wherein the GW-IP field of the RT-5G routing message carries the first IP, and the Overlay of the CE-Prefix One hop is the second IP, and the second IP is allowed to be reached by the node to which the first IP belongs, and the RT-5G routing message is used to instruct the low-end RT-5 node to transfer the RT-5G
  • the GW-IP field carried in the routing message is resolved as an RT-2 route, where the second IP is not in the directly connected subnet of the EVPN.
  • an apparatus for issuing RT-5 routing messages including: a second publishing module configured to issue RT-5 routing messages for CE-Prefix, so that the low-end The RT-5 node receives the RT-5 routing message, wherein the ESI field of the RT-5 routing message carries the first ESI, and the Overlay next hop of the CE-Prefix is the second IP, and The second IP is allowed to be reached through the node to which the first ESI belongs, and the RT-5 routing message is used to instruct the low-end RT-5 node to transfer the ESI field carried in the RT-5 routing message to It is resolved into an RT-1 route; and the RT-5 route message is sent to the third device.
  • a computer-readable storage medium where a computer program is stored in the computer-readable storage medium, wherein the computer program is configured to perform any of the above-mentioned items when running.
  • an electronic device including a memory, a processor, and a computer program stored in the memory and operable on the processor, wherein the processor executes the above-mentioned tasks through the computer program. one method.
  • the first device is used to publish RT-5G routing messages for CE-Prefix, so that low-end RT-5 nodes receive the RT-5G routing messages, wherein the RT-5G routing messages
  • the first IP is carried in the GW-IP field of the CE-Prefix
  • the Overlay next hop of the CE-Prefix is the second IP
  • the second IP is allowed to be reached through the node to which the first IP belongs
  • the RT-5G route is used to instruct the low-end RT-5 node to resolve the GW-IP field carried in the RT-5G routing message into a method for RT-2 routing, using a method to replace the GW-IP field in the RT-5G routing
  • the mechanism of IP value selection solves the problem that the sending end of the route notifies the receiving end of the RT-5G route for the CE-Prefix from the CE without upgrading the low-end RT-5 node as the receiving end, that is, the restricted node cannot
  • the RT-5G route forwards the data message to the CE-Prefix
  • Fig. 1 is the block diagram of the hardware structure of the computer terminal of the distributing method of the RT-5G routing message of the embodiment of the present disclosure
  • Fig. 2 is a flow chart of a publishing method of an RT-5G routing message according to an embodiment of the present disclosure
  • Fig. 3 is a flow chart of the publishing method of the RT-5 routing message according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of an iterative process of proxying RT-5G routing for TOR through a DGW according to an embodiment of the present disclosure
  • Fig. 5 is a schematic diagram of GW-IP for selecting the best agent to issue RT-5G according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of establishing a CE-BGP session according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of component connections in an EPVN network according to an embodiment of the present disclosure.
  • FIG. 8 is a structural block diagram (1) of an apparatus for publishing an RT-5G routing message according to an embodiment of the present disclosure
  • Fig. 9 is a structural block diagram (2) of an apparatus for publishing RT-5 routing messages according to an embodiment of the present disclosure.
  • FIG. 1 is a block diagram of a hardware structure of a computer terminal in a method for publishing RT-5G routing messages according to an embodiment of the present disclosure.
  • the computer terminal can include one or more (only one is shown in Figure 1) processor 102 (processor 102 can include but not limited to microprocessor (Microprocessor Unit, MPU for short) or programmable logic device (Programmable logic device, referred to as PLD)) and a memory 104 configured to store data, in an exemplary embodiment, the above-mentioned computer terminal may also include a transmission device 106 and an input/output device 108 configured as a communication function.
  • MPU Microprocessor Unit
  • PLD programmable logic device
  • the above-mentioned computer terminal may also include a transmission device 106 and an input/output device 108 configured as a communication function.
  • the structure shown in FIG. 1 is only for illustration, and it does not limit the structure of the above computer terminal.
  • the computer terminal may also include more or less components than those shown in FIG. 1 , or have a different configuration with functions equivalent to those shown in FIG. 1 or more functions than those shown in FIG. 1 .
  • the memory 104 can be set to store computer programs, for example, software programs and modules of application software, such as the computer program corresponding to the publishing method of the RT-5G routing message in the embodiment of the present disclosure, and the processor 102 stores in the memory 104 by running A computer program to perform various functional applications and data processing, that is, to realize the above-mentioned method.
  • the memory 104 may include high-speed random access memory, and may also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 104 may further include a memory that is remotely located relative to the processor 102, and these remote memories may be connected to a computer terminal through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the transmission device 106 is configured to receive or transmit data via a network.
  • the specific example of the above-mentioned network may include a wireless network provided by the communication provider of the computer terminal.
  • the transmission device 106 includes a network interface controller (NIC for short), which can be connected to other network devices through a base station so as to communicate with the Internet.
  • the transmission device 106 may be a radio frequency (Radio Frequency, referred to as RF) module, which is configured to communicate with the Internet in a wireless manner.
  • RF radio frequency
  • the above-mentioned computer terminal executing the method for publishing the RT-5G routing message can also execute the method for publishing the RT-5E routing message, which will not be repeated in this disclosure.
  • the RT-5G routing message is the RT-5 routing message whose GW-IP is not 0, and the RT-5E routing message is the RT-5 routing message whose ESI is not 0.
  • the RT-5 routing message may be a fifth type of EVPN (Ethernet virtual private network, Ethernet virtual private network) routing message, that is, an EVPN IP prefix routing message, and the GW-IP field and The ESI fields are all different types of Overlay Indexes of the RT-5 route.
  • EVPN Ethernet virtual private network, Ethernet virtual private network
  • Section 3.2 in "draft-ietf-bess-evpn-prefix-advertisement" defines RT-5 routing (RT-5G routing) with GW-IP as the Overlay Index, because its definition of RT-5G routing exists Ambiguity, causing some devices in the network to only support resolving the GW-IP of the RT-5G route to another RT-2 route, but not to resolve the GW-IP of the RT-5G route to other types of routes (such as another RT-5 routing), for the convenience of description, we can call this kind of node as a functionally limited RT-5G node.
  • TOR Top of Rack, top-of-rack equipment
  • Fig. 2 is a flow chart of the publishing method of the RT-5G routing message according to an embodiment of the present disclosure. As shown in Fig. 2, the steps of the method include:
  • Step S202 the first device publishes the RT-5G routing message for the CE-Prefix, so that the low-end RT-5 node receives the RT-5G routing message, wherein the GW- The IP field carries the first IP, the Overlay next hop of the CE-Prefix is the second IP, and the second IP is allowed to be reached through the node to which the first IP belongs, and the RT-5G routing message uses Instructing the low-end RT-5 node to resolve the GW-IP field carried in the RT-5G routing message into an RT-2 route, wherein the second IP is not in the directly connected subnet of the EVPN .
  • the second IP is not in the directly connected subnet of the EVPN on the first device.
  • node P when a PE node P notifies another PE node Q of the RT-5G route in which the IP prefix matches IPx and the GW-IP is IPy, from the perspective of node Q, it can be considered that node P sends a route to node Q A route indicating that IPx is reachable via IPy is advertised.
  • a low-end RT-5 node can be understood as a restricted RT-5G node, including a function-restricted RT-5G node and a performance-restricted RT-5G node.
  • the low-end RT-5G node in some embodiments of the present disclosure
  • the -5 node is a RT-5G node with limited performance.
  • the RT-5G node with limited performance can resolve the GW-IP of the RT-5G route to a non-RT-2 route, but when N+1 routing iterations are required performance is lower than when only N routing iterations are required.
  • the RT-5G routing message is also used to instruct the low-end RT-5 node according to the The forwarding information in the RT-2 route is forwarded to the data packet of the CE-Prefix.
  • the first device issues the RT-5G routing message for the CE-Prefix, so that before the low-end RT-5 node receives the RT-5G routing message, the embodiments of the present disclosure also provide the following technical solutions, Including: determining whether the first device has received the RT-2 route corresponding to the first IP; if received, carrying the first IP in the GW-IP field of the RT-5G routing message ; If not received, carry the second IP in the GW-IP field of the RT-5G routing message.
  • the first device publishes the RT-5G routing message for the CE-Prefix, so that before the low-end RT-5 node receives the RT-5G routing message, if the second condition is met, all
  • the GW-IP field of the RT-5G routing message carries the first IP
  • the second condition includes: the node to which the third IP belongs can be reached through the first IP, and the node to which the third IP belongs can be reached through the third IP, and the For the second IP, the route corresponding to the first IP does not have an Overlay Index or the Overlay Index is not an IP address.
  • the first IP corresponds to a first set, where the first set is composed of PE nodes, and the PE nodes in the first set have notified that they are allowed to reach the For the route of the second IP, no other PE node advertises in the EVPN, indicating that it is allowed to reach the route of the second IP through other private network IPs, and the other PE nodes are the PE nodes in the EVPN except the first set other nodes.
  • A, B, and C can be The same node, or any two of A, B, and C may be the same node, or, A, B, and C are all different nodes.
  • the first IP corresponds to a second set, wherein the second set is composed of PE nodes, and the PE nodes in the second set have notified that they are allowed to reach the The route of the second IP, for the target PE node among other PE nodes, if the target PE node advertises in the EVPN that the route to the second IP can be reached through the Xth IP, but the EVPN network
  • the total number of PE nodes that have notified the route that can reach the second IP through the X IP is less than the number of PE nodes in the second set, and the IP corresponding to the second set (that is, the first IP) is determined to be carried in the GW-IP field of the RT-5G routing message.
  • the first device is used to publish RT-5G routing messages for CE-Prefix, so that the low-end RT-5 nodes receive the RT-5G routing messages, wherein the RT-5G routing messages
  • the first IP is carried in the GW-IP field of the CE-Prefix
  • the Overlay next hop of the CE-Prefix is the second IP
  • the second IP is allowed to be reached through the node to which the first IP belongs
  • the RT-5G route The message is used to instruct the low-end RT-5 node to resolve the GW-IP field carried in the RT-5G routing message into an RT-2 route, using the method described in this disclosure, compared with the prior art , through a mechanism to replace the GW-IP value in the RT-5G route, it solves the problem that the sending end of the route notifies the receiving end of the CE-Prefix from the CE without upgrading the low-end RT-5 node as the receiving end
  • the problem of RT-5G routing that is, the problem that the restricted node cannot forward the data packet
  • the RT-5G route distribution mechanism described in this disclosure can be applied to any EVPN network, especially to a data center network, and is a general technical solution.
  • the DC gateway can also release RT-5G routes for CE-Prefix.
  • Fig. 3 is a flow chart of the publishing method of the RT-5 routing message according to the embodiment of the disclosure, as shown in Fig. 3, the steps of the method include:
  • Step S302 the first device issues an RT-5 routing message for the CE-Prefix, so that the low-end RT-5 node receives the RT-5 routing message, wherein the ESI field of the RT-5 routing message Carry the first ESI in the CE-Prefix, the Overlay next hop of the CE-Prefix is the second IP, and the second IP is allowed to be reached through the node to which the first ESI belongs, and the RT-5 routing message is used to indicate The low-end RT-5 node parses the ESI field carried in the RT-5 routing message into an RT-1 route.
  • the first device issues the RT-5 routing message for the CE-Prefix, so that the low-end RT-5 node receives the RT-5 routing message, wherein the RT-5 routing message
  • the ESI field carries the first ESI
  • the Overlay next hop of the CE-Prefix is the second IP
  • the second IP is allowed to be reached through the node to which the first ESI belongs
  • the RT-5 routing message uses Instructing the low-end RT-5 node to resolve the ESI field carried in the RT-5 routing message into an RT-1 route, which solves the problem of connecting with the low-end RT-5 node.
  • Both the embodiment of the present disclosure and the embodiment in FIG. 2 are aimed at solving the problem of docking with low-end RT-5 nodes.
  • the embodiment in FIG. For the problem of RT-5 node docking, the embodiment of the present disclosure solves the problem of connecting with low-end RT-5 nodes by converting RT-5G into RT-5E.
  • first Ethernet tag identifier may be an Ethernet Tag ID.
  • RT-5G routing is also RT-5 routing, and the technical solutions in the embodiments of the present disclosure can be applied to RT-5G routing and RT-5E routing, where the RT-5 routing whose ESI is not 0 is RT -5E, RT-5 whose GW-IP is not 0 is RT-5G.
  • the first ESI is the ESI that needs to be passed to reach the first MAC
  • the RT-5 route carries the first routing target, the first MAC and the first identifier at the same time
  • the first The MAC is the MAC corresponding to the fourth IP
  • the fourth IP is the IP in the first broadcast domain BD
  • the fourth IP is the second IP or the second IP can be reached through the fourth IP
  • the first routing target is the derived routing target eRT of the IP-VRF instance to which the CE-Prefix belongs
  • the first broadcast domain BD is the BD corresponding to the directly connected subnet on the first device
  • the The first identifier is the identifier of the first broadcast domain BD, wherein the first MAC is used to instruct the third device to send the data packet to the first device according to the RT-5 route.
  • the first MAC is used as the destination MAC, and the first ESI and the first identifier are used to indicate that the third device sends a data packet to the first device according to the first
  • the ESI and the first identifier determine the RT-1 route, wherein the first device publishes a third route, the third route is an RT-1 route, and the ESI of the third route is the The first ESI, and the first Ethernet label identifier field is the first identifier, and the third route and/or the RT-5 route also carries the second MAC, wherein the second The MAC is used to instruct the third device to use the second MAC as a source MAC when sending a data packet to the first device according to the third route.
  • the RT-5 route and/or the RT-1 route further carry a first indicator, where the first indicator is used to instruct the third device to When sending the data packet to the first device, the source MAC and the destination MAC need to be encapsulated.
  • the third route also carries the first route target, and the first broadcast domain BD does not exist on the third device, and the first IP-VRF instance on the third device does not import all The export route target eRT of the first broadcast domain BD, wherein the first IP-VRF instance is an IP-VRF instance that imports the RT-5 route, and the third route does not carry the first broadcast domain Export route target eRT of BD.
  • the first ESI is the ESI corresponding to the IP-VRF instance to which the RT-5 route belongs, the first Ethernet label identifier field of the RT-5 route is the second IP, and The first Ethernet label identifier field of the RT-1 route is the second IP, and the ESI field of the RT-1 route is the first ESI.
  • the method further includes: the first device receives the first RT-5E route, and if at least one of the third condition, the fourth condition, and the fifth condition is met, the first device The RT-5E route is localized; wherein, the first RT-5E route is the RT-5E route published by the third device, and the third condition is the first node set, the second node set, and the third node The set satisfies the sixth condition.
  • the fourth condition is that the first MAC carried in the first RT-5E route is the MAC in the BD to which the fourth AC belongs or the second MAC carried in the first RT-5E route.
  • the MAC is the MAC of the IRB interface corresponding to the BD to which the fourth AC belongs
  • the fifth condition is that the first RT-5E route carries the first indicator
  • the localization is the The fourth AC serves as a forwarding interface of the first RT-5E route
  • the first set of nodes is a set of nodes with a first tuple
  • the second set of nodes is a set of nodes with a second tuple set
  • the third node set is a node set with a third tuple
  • the sixth condition is that the intersection of the first node set and the second node set is not empty and the third node set and the The intersection of the second set of nodes is not empty
  • the fourth AC is the AC on the first device in the BD
  • the first tuple is the ⁇ ESI, Ethernet Tag ID> to which the fourth AC belongs
  • the first device publishes a second routing packet
  • the second routing packet is an RT-1 routing packet
  • the ESI of the second routing packet is the first ESI
  • the The first Ethernet label identifier field of the second routing packet is the second IP.
  • the RT-5 route is published, otherwise the RT-5 route is still Publishing the RT-5G route whose GW-IP is the second IP, wherein each node T publishes the RT-1 route to the first device, and each node K publishes the RT-1 route to the first device through Node K can reach the route of the second IP, the ESI in the RT-1 route is the ESI and the first Ethernet label identifier is the second IP.
  • the RT-1 route corresponding to the ⁇ first ESI, first Ethernet label identifier> of the first device performs AC acceptance for the ⁇ first ESI, first Ethernet label identifier> Affected DF elections.
  • the first device is the ⁇ first ESI, the first Ethernet label identifier> carry out the DF election affected by the AC, wherein, this embodiment does not limit the equipment participating in the election, for example, the equipment participating in the election may be the RT-1 route published by the third equipment, or It can be other devices.
  • the third device performs AC-affected DF election for the ⁇ ESI, first Ethernet label identifier> according to the RT1 route.
  • the method before publishing the second routing message, the method further includes: instructing the first device to publish the second routing message.
  • the second route message in the embodiment of the present disclosure can be understood as the RT-1 route sent by the first device, or other routes that have the same ESI field and the first Ethernet label identifier as the second route message The route for the field.
  • the method before publishing the RT-5 route, the method further includes: instructing the first device to publish the RT-5 route.
  • the RT-1 route is updated so that the updated RT-1 route carries the Primary/Backup attribute set according to the DF election result.
  • the RT-5 routing message is also used to instruct the low-end RT-5 node to 1.
  • the forwarding information in the route is forwarded to the data packet of the CE-Prefix.
  • the embodiment of the present disclosure also provides a technical solution before the first device publishes the RT-5 routing message for the CE-Prefix, so that the low-end RT-5 node receives the RT-5 routing message , specifically: determine whether the first device has received the RT-1 route corresponding to the first ESI; if received, carry the first ESI in the ESI field of the RT-5 route message ; If not received, carry the second IP in the GW-IP field of the RT-5G routing message.
  • Fig. 4 is a schematic diagram of an iterative process of proxying RT-5G routing for TOR through a DGW according to an embodiment of the present disclosure.
  • PE1, PE2, DGW1, and R1 form a data center network, in which R1 is a CE device, PE2 is a low-end RT-5 node, PE1 is a non-low-end RT-5 node, and CE passes through physical port P1 (not shown in FIG. 1 ) connected to PE1, and connected to PE2 through physical port P2 (not shown in FIG.
  • the P1 and P2 are aggregated into a link aggregation group LAG on the CE, and the virtual interface of the LAG is SG21 (not shown in Figure 1), the CE communicates with the IP-VRF instance IPVRF1 on the PE1/PE2 through the subnet 10.0.0.0/24, wherein the CE side IP address is 10.0.0.2 (that is, 10.2 in the figure), On sub-interface SG21.1 (not shown in Figure 1), the IP addresses of PE1 and PE2 are 10.0.0.9 (that is, 10.9 in the figure), which are respectively on sub-interfaces P1.1 and P2.1.
  • SG21.1 It is a sub-interface of SG21 interface
  • P1.1 is a sub-interface of P1 interface
  • P2.1 is a sub-interface of P2 interface
  • P1 and P2 are bound to ESI21.
  • the Loopback interface address of R1 is 1.1.1.1
  • the Looback interface address of DGW1 is 3.3.3.3
  • 3.3.3.3 is in IPVRF1
  • the relationship between R1 and DGW1 (that is, DGW1 in the figure) is established through 1.1.1.1 and 3.3.3.3 A CE-BGP session, and then perform the following steps:
  • Step S1 configure a static route S1 for 1.1.1.0/24 on PE1, S1 is in IPVRF1, and the next hop of the private network is 10.0.0.2 (that is, 10.2 in the figure).
  • step S2 the ARP entry of 10.0.0.2 is learned on PE1.
  • Step S3 PE1 publishes the RT2 route X0 for the ARP entry, the IP of X0 is 10.0.0.2, the ESI is ESI21 in Figure 1, the MPLSLabel2 field of X0 is filled with the EVPN label of IPVRF1, and the route target RT is filled with the exported route target eRT of IPVRF1, MPLS The Label1 field is filled with a pre-configured label.
  • Step S4 PE1 advertises RT-5G route X1 for 1.1.1.0/24, GW-IP is 10.0.0.2.
  • Step S5 DGW1 (that is, the first device) learns an IP prefix CE_Prefiex1 (that is, 9.9.9.0/24) behind R1 through the BGP session, and the private network next hop of CE_Prefix1 is 1.1.1.1.
  • Step S6 DGW1 receives RT-5 route X1 from PE1, the IP prefix of X1 is 1.1.1.0/24, and the GW-IP is 10.0.0.2.
  • Step S7 DGW1 can know according to X1 that the node where 10.0.0.2 (ie the first IP) is located can reach the node to which 1.1.1.1 (ie the second IP) belongs, and 1.1.1.1 is the Overlay of CE_Prefix1 (ie the first route) The next hop, therefore, DGW1 publishes an RT-5G routing packet X2 (that is, the first routing packet) for CE_Prefix1, and the GW-IP is 10.0.0.2.
  • Step S8, PE2 receives X0, and forms an ARP entry in the local 10.0.0/24 network segment (obtainable by matching 10.0.0.2 in X0) of IPVRF1 (obtainable through routing target or ESI23 matching) .
  • Step S9 PE2 receives X2, because it can resolve the GW-IP of X2 into an RT-2 route (that is, the RT-2 route X0 sent by PE1), therefore, PE2 adds the CE_Prefix in the X2 message to the EVPN route
  • a routing entry RE2 is formed, and the next hop of the private network of RE2 is the value of GW-IP (namely 10.0.0.2).
  • Step S10 PE1 receives X2, can resolve the GW-IP of X2 to the local directly connected network segment 10.0.0.0/24, and then adds the CE_Prefix in the X2 packet to the EVPN routing table to form routing table entries RE1, RE1
  • the next hop of the private network is the value of GW-IP (namely 10.0.0.2). It should be noted that PE1 is not a low-end RT-5 node, therefore, it is not necessary to be able to resolve the GW-IP of X2 into an RT-2 route.
  • Step S11 PE2 node receives in IPVRF1 the data message DP9 sent by router R2 to a host 9.9.9.1 in CE_Prefix1, hits the routing table item RE2 according to the destination IP of the message, and obtains the next hop IP according to RE2 as 10.0.0.2, according to the next-hop IP, it matches the interface AC2 to which 10.0.0.1 belongs, checks the ARP entry corresponding to 10.0.0.2 on AC2, encapsulates the Ethernet header with DP9, and sends DP9 from AC2.
  • the VTEP address of PE1 (such as 100.1.1.1).
  • the PE node address of PE1 (or TOR1) is recorded as VTEP_IP1
  • the PE node address of PE2 (or TOR2) is recorded as VTEP_IP2
  • the PE node address of TOR3 is recorded as VTEP_IP3
  • the PE node address of DGW1 is recorded as It is VTEP_IP4.
  • the 100.1.1.1 is a value of VTEP_IP1 in this example.
  • DGW acts as a proxy for RT-5G routing iteration process for TOR (such as PE1 and PE2), which avoids requiring TOR to support complex RT-5G routing iteration, thereby improving the forwarding efficiency on TOR , and it makes the choice of TOR equipment wider, which helps to reduce the cost of network construction.
  • Embodiment 1 This embodiment is the same as Embodiment 1 except where specified.
  • the value of the MPLSLabel2 field in the X0 route advertised by PE1 is the EVPN label of IPVRF1; after receiving the X0 route, PE2 forms a FIB entry RE3, the prefix of RE3 is 10.0.0.2/32, and the outgoing
  • the EVPN label is the label indicated by the MPLS Label2 field, and RE3 stores the tunnel encapsulation information to PE1.
  • the PE2 node when the PE2 node receives in IPVRF1 the data message DP9 sent by router R2 to a host 9.9.9.1 in CE_Prefix1, it hits the routing table item RE3 according to the destination IP of the data message DP9, The EVPN label and tunnel information of PE1 are obtained from RE3, and an outer tunnel encapsulation is added to DP9 according to the EVPN label and tunnel information, and then DP9 is forwarded to IPVRF1 of PE1.
  • the PE1 node receives the data message DP9 in IPVRF1, hits the routing table entry RE1 according to the destination IP of the data message DP9, obtains the next-hop IP as 10.0.0.2 according to RE1, and according to the following
  • the one-hop IP matches the interface AC1 to which 10.0.0.1 belongs, so it knows that the forwarding egress is AC1, checks the ARP entry corresponding to 10.0.0.2 on AC1, encapsulates the Ethernet header for DP9, and forwards DP9 from AC1.
  • the embodiment of the present disclosure proposes a method for issuing RT-5E routes to low-end RT-5 nodes, which is applied to the first device.
  • the specific technical solution is as follows:
  • the first device is the first routing information (that is, CE-Prefix, The prefix information behind the CE) publishes the first routing message (that is, the RT-5E routing).
  • the ESI field of the first routing packet carries the first ESI.
  • the Overlay next hop of CE-Prefix is the second IP, the first condition is that the node to which the first ESI belongs can reach the second IP, and the first routing message is used by the second device according to the RT-1 corresponding to the first ESI
  • the forwarding information in the route is forwarded to the CE-Prefix data packet.
  • the first device sets the ESI field as the first ESI only when the RT-1 route corresponding to the first ESI is received; otherwise, the GW-IP field (note: the GW-IP field and ESI fields cannot be non-zero at the same time) is set as the second IP.
  • the second device is a low-end RT-5 node.
  • the low-end RT-5 node is a function-restricted RT-5 node
  • the function-restricted RT-5 node cannot correctly Process the original RT-5G route but cannot forward the CE-Prefix data packets.
  • the above-mentioned multiple embodiments solve the problem of docking with low-end RT-5 nodes by converting complex RT-5G into simple RT-5G and converting RT-5G into RT-5E. problem, improving the efficiency of packet forwarding.
  • Fig. 5 is a schematic diagram of GW-IP for selecting the best agent to send out RT-5G according to an embodiment of the present disclosure.
  • TOR1 equivalent to PE1 in Figure 4 above, that is, the non-low-end RT-5 node
  • TOR2 (equivalent to PE2 in Figure 4 above, that is, the low-end RT-5 node)
  • TOR3 is another A node with the same function as PE1/PE2
  • R2 is a node with the same function as R1, where R1 is set (and 10.0.0.0/24 subnet) on the Ethernet segment ES10, and R2 is set (and 20.0.
  • the gateway address of R1 is 10.0.0.9
  • the gateway address of R2 is 20.0.0.9
  • the gateway addresses of R1 and R2 are both on the TOR node
  • Prefix3 is both behind R1 and The IP prefix behind R2, and 7.7.7.7 is the common IP address of R1 and R2 (equivalent to 7.7.7.7 is an Anycast address), then perform the following steps:
  • Step S401 configure a static route S21 for 7.7.7.0/24 on TOR1, S21 is in IPVRF1, the next hop of the private network is 10.0.0.2 (that is, 10.2 in the figure), and configure a static route for 7.7.7.0/24 on TOR2 S22, S22 is in IPVRF1, the next hop of the private network is 10.0.0.2 and 20.0.0.2 (20.2 in the figure), configure a static route for 7.7.7.0/24 on TOR3 S23, S23 is in IPVRF1, the next hop of the private network is Jump to 20.0.0.2.
  • step S402 the ARP entry of 10.0.0.2 is learned on PE1, and the ARP entry of 20.0.0.2 is learned on PE3.
  • Step S403 PE1 publishes the RT2 route X0a for the ARP entry, the IP of X0a is 10.0.0.2, the ESI is ESI21, the MPLS Label2 field of X0a is filled with the EVPN label of IPVRF1, the route target RT is filled with the export route target eRT of IPVRF1, and the MPLS Label1 field is filled A pre-configured label.
  • Step S404 PE3 publishes the RT2 route X0c for the ARP entry, the IP of X0c is 20.0.0.2, the ESI is ESI22, the MPLS Label2 field of X0c is filled with the EVPN label of IPVRF1, the route target RT is filled with the exported route target eRT of IPVRF1, and the MPLS Label1 field is filled A pre-configured label.
  • Step S405 PE1 publishes RT-5G route X1a for 7.7.7.0/24, GW-IP is 10.0.0.2; PE2 publishes RT-5G route X1b for 7.7.7.0/24, GW-IP is 10.0.0.2 or 20.0 .0.2; RT-5G route X1c is advertised for 7.7.7.0/24 on PE3, and the GW-IP is 20.0.0.2.
  • Step S406 PE1 publishes RT-1 per EVI route ET1 for ESI21; PE2 publishes RT-1 per EVI route ET2 for ESI21, and at the same time, publishes RT-1 per EVI route ET3 for ESI22; PE3 publishes RT-1 per EVI for ESI22 Routing ET4.
  • Step S407 DGW1 learns an IP prefix CE_Prefix3 (ie 8.8.8.0/24) behind R1 through the BGP session, and the private network next hop of CE_Prefix3 (ie Overlay next hop) is 7.7.7.7.
  • Step S408 DGW1 receives RT-5 route X1a from PE1, the IP prefix of X1a is 7.7.7.0/24, GW-IP is 10.0.0.2, DGW1 receives RT-5 route X1b from PE2, the IP prefix of X1b is 7.7 .7.0/24, GW-IP is 10.0.0.2 or 20.0.0.2, DGW1 receives RT-5 route X1c from PE3, IP prefix of X1c is 7.7.7.0/24, GW-IP is 20.0.0.2.
  • Step S409 according to X1a, X1b, and X1c, DGW1 can know that different PEs respectively believe that the node where at least one of 10.0.0.2 (ie, the first IP) and 20.0.0.2 is located can reach 7.7.7.7 (ie, the second IP).
  • 10.0.0.2 ie, the first IP
  • 20.0.0.2 7.7.7.7
  • DGW1 publishes an RT-5G routing packet X2b (that is, the first routing packet) for CE_Prefix3, and the GW-IP is 7.7.7.7 , instead of 10.0.0.2 or 20.0.0.2, that is, DGW1 no longer acts as a proxy routing iteration process for PE1/PE2/PE3.
  • DGW1 can divide the PE nodes in the network into three sets by integrating X1a, X1b, X1c, ET1, ET2, ET3, and ET4: the first set, the second set, and the set composed of other PE nodes ;
  • the PEs in the first set that is, PE1 and PE2
  • the PEs in the second set that is, PE2 and PE3
  • DGW1 executes the proxy routing iterative process for Prefix3.
  • CE_Prefix3 the data packet to the CE_Prefix3 will only be sent between PE2 and PE3
  • PE1 also has the ability to forward CE_Prefix3, so this proxy makes CE_Prefix3 lose a load sharing path, in some cases, especially when there are no nodes with limited functions in the network Under the circumstances, some personnel may think that it is a better choice not to perform proxying.
  • This embodiment avoids that some protection paths (such as load sharing paths) cannot be used for forwarding due to proxy RT-5G routing iterations in these networks of these personnel. The problem.
  • step S410 R1 is also connected to TOR3 through ES10.
  • the first set (that is, the set of PE nodes indicating that the second IP can be reached via 10.0.0.2) includes ⁇ PE1, PE2, PE3 ⁇
  • the second set includes ⁇ PE2, PE3 ⁇
  • the second set includes ⁇ PE2, PE3 ⁇ .
  • the second set is a subset of the first set, so DGW1 performs proxy routing iteration process for Prefix3, and the iterated GW-IP selects the IP corresponding to the largest of the two sets (that is, the first set) (that is, 10.0.0.2, also That is, the first IP) serves as the GW-IP.
  • the effect of proxying with a suboptimal set is not as good as not proxying for some management strategies. If it is a function-limited RT-5G node, the effect of proxying with a suboptimal set is better than that of not proxying; because no proxy means that the forwarding path is blocked, and using a suboptimal set for proxying may only result in partial loss of protection
  • the forwarding path fails. That is, if all nodes are not function-limited nodes, they will not be proxied, but when some nodes are function-limited nodes, the suboptimal set will be used for proxying.
  • the network administrator does not need to know which nodes in the network are nodes with limited functions, and does not need to close the suboptimal set in order to determine which nodes Targeted network management activities are carried out by proxy, which reduces the burden of network management and reduces the risk of abnormal message forwarding caused by improperly closing the suboptimal collective proxy function.
  • the original next hop of the CE-Prefix is used as the GW-IP to publish the corresponding RT-5G routing message for the CE-Prefix ;
  • the agent in some embodiments, refers to publishing the RT-5 route based on the information obtained by the original next hop iteration, and what is published at this time may be the RT-5G route or other routes (such as RT-5E routing), if it is RT-5G routing, GW-IP is no longer the original next hop, but an IP address that is easier to handle for the receiving end of the RT-5G routing , thus reducing the processing load of the receiving end and improving the processing efficiency of the receiving end.
  • the CE-Prefix is the IP prefix behind the CE
  • the IP prefix behind the CE is the IP prefix to which the IP address that can be reached from the PE node needs to pass through the CE node.
  • the low-end RT-5 nodes in the network are not function-limited RT-5 nodes, no proxy will not affect the function, and the success of proxy can improve performance.
  • the proxy conditions are met In some cases, the processing performance of the low-end RT-5 node is improved due to the proxy behavior of the first device.
  • the proxy conditions must be satisfied, so that these function-limited nodes can forward data for the CE-Prefix, and other nodes can process the CE-Prefix. The performance of routing corresponding to Prefix is improved.
  • the BGP next hop value of the EVPN route (such as X1a) advertised by each PE node to always be the PE node address of the PE node
  • the nodes receiving these EVPN routes It is possible to know which EVPN routes are published by which PE node, so as to determine whether proxying should be performed based on this.
  • the BGP next-hop VTEP_IP1 of X1a is the PE node address of the PE1 node, so X1a is advertised by the PE1 node.
  • the first device is used to publish RT-5G routing messages for CE-Prefix, so that the low-end RT-5 nodes receive the RT-5G routing messages, wherein the RT-5G routing messages
  • the first IP is carried in the GW-IP field of the CE-Prefix
  • the Overlay next hop of the CE-Prefix is the second IP
  • the second IP is allowed to be reached through the node to which the first IP belongs
  • the RT-5G route The message is used to instruct the low-end RT-5 node to resolve the GW-IP field carried in the RT-5G routing message into an RT-2 route, using the method described in this disclosure, compared with the prior art , through a mechanism to replace the GW-IP value in the RT-5G route, it solves the problem that the sending end of the route notifies the receiving end of the CE-Prefix from the CE without upgrading the low-end RT-5 node as the receiving end
  • the problem of RT-5G routing that is, the problem that the restricted node cannot forward the data packet
  • a method for connecting the DC gateway to the low-end RT-5 nodes is described, so that it can support the original RT-5 nodes without upgrading these low-end RT-5 nodes.
  • the problem of narrowness realizes the function of using old equipment to implement complex EVPN networks, reduces network maintenance costs, and prolongs the time for TOR nodes to withdraw from their original network roles.
  • Embodiment 4 This embodiment is the same as Embodiment 4 except where specified.
  • R1 does not need to be connected to TOR3 in this embodiment
  • CE does not establish CE-BGP with the DC gateway (DGW), but establishes CE-BGP with some TOR nodes nearby.
  • DGW DC gateway
  • this example assumes that R2 and TOR3 establishes a CE-BGP session S2003; as shown in FIG. 6, FIG. 6 is a schematic diagram of establishing a CE-BGP session according to an embodiment of the present disclosure.
  • Step S7000 bind ESI321 for IPVRF1 on TOR1, TOR2 and TOR3 respectively.
  • step S7010 TOR1, TOR2, and TOR3 are respectively instructed to issue RT-1 per EVI routes in 7.7.7.7, wherein, the ESI of the RT-1 per EVI routes is ESI321, and the first RT-1 per EVI routes
  • the Ethernet Tag Identifier has the same value as described in 7.7.7.7 (denoted ETI7).
  • the first Ethernet tag identifier may be the Ethernet Tag ID field of the RT-1 route.
  • Step S7040 TOR1 publishes RT-1 per EVI route Y1a for 7.7.7.7, TOR2 publishes RT-1 per EVI route Y1b for 7.7.7.7, and TOR3 publishes RT-1 per EVI route Y1c for 7.7.7.7 (i.e. two routes).
  • Step S7090 TOR3 learns an IP prefix CE_Prefix3 (namely 8.8.8.0/24) behind R2 (also behind R1) through the CE-BGP session S2003, and the private network next hop of CE_Prefix3 is 7.7.7.7.
  • step S7100 TOR3 receives routes Y1a and Y1b of RT-1 from PE1 and PE2 respectively.
  • Step S7110 TOR3 can know from Y1a, Y1b, Y1c, X1a, X1b, X1c that the node where ESI321 (ie the first ESI) is located can reach the node to which 7.7.7.7 (ie the second IP) belongs, and 7.7.7.7 is CE_Prefix3 (i.e. the first route) Overlay next hop, therefore, TOR3 issues an RT-5E routing message Y2c5 (i.e. the first route message) for CE_Prefix3, ESI is ESI321, ET-ID (Ethernet Tag ID, the first Ether Tag Identifier field) has the same value as 7.7.7.7 (denoted as ETI7).
  • ETI7 ETI7
  • TOR3 can know that the second IP can be reached through the Ethernet Tag whose value is the second IP on the ES identified by ESI321, or, simply put, the second IP can be reached through the first ESI.
  • Step S7120 TOR2 (PE2) receives the RT-5E routing message Y2c5 and the RT-1 per EVI routing message Y1a and Y1c, so that PE2 can forward the data message whose destination IP is 8.8.8.0/24 for TOR1 and TOR3 because the ESI and ET-ID of the Y2c5 are the same as the ESI and ET-ID of the Y1a and Y1c.
  • TOR3 converts the route that would have been advertised by RT-5G routing packets with GW-IP 7.7.7.7 to RT-5E routing packets, thereby simplifying the processing on TOR2, and at the same time, since the three TOR nodes have issued RT-1 per EVI routes for the ⁇ ESI321, ETI7 (ie 7.7. Protection or load sharing is performed between ACs of TOR nodes.
  • the corresponding RT-1 per EVI route is also set to perform all-active ESI or Single-Active ESI forwarding on PE nodes such as DGW that are not adjacent to any of the R1 and R2, and the corresponding RT-1 per The EVI route can also be set to perform egress link protection on the TOR adjacent to at least one node of R1 and R2, and the egress link protection is when the Overlay next hop of the CE_Prefix3 (such as the 7.7.7.7) Protection in case of inaccessibility.
  • CE_Prefix3 such as the 7.7.7.7 Protection
  • TOR3 thinks that TOR2 is either not the node where ESI321 is located, or the node where 7.7.7.7 is located node, or has not been properly configured for this embodiment, so it is not a node that can be judged as fully satisfying the condition that the node where ESI321 is located can reach the node to which 7.7.7.7 belongs, but it also satisfies part of the conditions, Therefore, it is also possible that the node that can reach 7.7.7.7 (has this capability but has not been properly configured), at this time, it is not necessary to perform proxy for CE_Prefix3, or to publish the RT-5G route with GW-IP 7.7.7.7, so that Let other nodes process the RT-5G routing according to the original multiple routing iteration process.
  • the ESI is ESI321 RT-1 per EVI route (such as Y1a) and any one of the nodes with 7.7.7.7 as the IP prefix If a private network route (such as X1a) is not received by TOR3 at the same time, TOR3 will not think that the node can reach 7.7.7.7 through ESI321.
  • TOR3 will not It is considered that the RT-5E route whose ESI is ESI321 and ET-ID is 7.7.7.7 can be sent for the CE-Prefix with 7.7.7.7 as the next hop of the private network.
  • each group of CEs has a batch of CE-Prefixes, and each batch of CE-Prefixes has an address like 7.7.7.7 as the second IP.
  • the present embodiment only needs to configure an ESI (such as ESI321), thus only needs to issue an RT-1 per ES route, thereby avoiding the RT-1 per ES route issued when each such second IP is configured with an ESI Excessive issues, reducing the burden of EVPN routing in the network.
  • this embodiment adopts the DF election method influenced by the AC to elect a DF for each second IP, which makes it easier to implement Service Carving, and also It is easier to make DFs with different second IPs fall on different PE nodes, and solve the problem that more configuration information is required when mapping an independent ESI for each second IP to make DFs with different second IPs fall on different PE nodes The problem.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • This embodiment is the same as Embodiment 5 except where specified.
  • R1 and R2 are two components of the same virtual network function VNF, and the function of this VNF is as a virtual router, and 7.7.7.7 is the BGP Router ID on the virtual router , R1 and R2 are the two LPUs of the virtual router;
  • the private network next hop of CE_Prefix3 received by TOR3 from S2003 is IP612 instead of 7.7.7.7
  • the CE_Prefix3 is an IPv6 prefix
  • the IP612 is an IPv6 address
  • the IP612 is also the common IP address on R1 and R2;
  • CE_Prefix3 is referred to as CE_Prefix3 hereafter.
  • this embodiment also needs the following steps:
  • Step S7104 instruct PE1 to publish for IP612 (that is, publish the route whose IP prefix matches IP612) RT-5 route Z1a, whose auxiliary Overlay Index is 7.7.7.7.
  • Step S7105 instruct PE2 to publish RT-5 route Z1b for IP612, and its auxiliary Overlay Index is 7.7.7.7.
  • Step S7106 instruct PE3 to publish the RT-5 route Z1c for IP612, whose auxiliary Overlay Index is 7.7.7.7.
  • Step S7107 the PE1, PE2, and PE3 issue the Z1a, Z1b, and Z1c respectively.
  • S7104, S7105, S7106 and S7107 are before S7110.
  • TOR3 needs to know the location where ESI 321 (namely the first ESI) is based on Y1a, Y1b, Y1c, X1a, X1b, X1c, Z1a, Z1b, Z1c.
  • the node can reach the node to which IP612 (i.e. the second IP) belongs, and IP612 is the Overlay next hop of CE_Prefix3 (i.e. the first route). Therefore, TOR3 issues an RT-5E routing message Y2c6 (i.e. the first routing message) for CE_Prefix3.
  • ESI is ESI321, and ET-ID has the same value as 7.7.7.7.
  • Y1a and X1a it can be known that the node where ESI321 is located can reach 7.7.7.7, and Z1a can be known that IP612 can be reached through 7.7.7.7. Therefore, according to Y1a, X1a and Z1a, it can be reached through ESI321 IP621.
  • the TOR2 may choose not to act as a proxy for the CE_Prefix3, but to directly notify the GW-IP that it is the RT-5G route of the IP612. Through this judging mechanism of whether the proxy mechanism can improve the forwarding effect, some negative effects caused by the proxy are further avoided.
  • TOR1 and TOR2 received the Y2c6 sent by TOR3, because they have the same ESI and the same ET-ID locally, when the Y2c6 is installed on the forwarding plane, the Overlay next hop is replaced by An IP address with the same value as this ET-ID (ie 7.7.7.7).
  • the DGW node receives the Y2c6, because it does not have the same ESI and the same ET-ID locally, it uses ⁇ the ESI, the ET-ID> when installing the Y2c6 on the forwarding plane Perform IP-aliasing.
  • the auxiliary Overlay Index may be carried through a BGP extended community attribute.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • Embodiment 6 This embodiment is the same as Embodiment 6 unless otherwise specified.
  • the subnets directly connected between R1 and R2 and TOR in this embodiment are also IPv6 subnets (respectively denoted as NH_SN1 and NH_SN2), therefore, the static route configured for 7.7.7.7 in step S401
  • the IP prefix is no longer an IPv4 prefix, but an IPv6 prefix A6P7;
  • the A6P7 is obtained by mapping the BGP Router ID of the VNF (that is, the 7.7.7.7) according to the following rules (denoted as rule 1): the A6P7 It is a 96-bit prefix, the upper 64 bits of the A6P7 are the first specified value, and the lower 32 bits of the A6P7 are the BGP Router ID.
  • the three routes X1a, X1b, and X1c advertised in step S405 are advertised for the A6P7, where the GW of X1a-
  • the IP is the address of R1 in the NH_SN1
  • the GW-IP of X1b is the address of R1 in the NH_SN1 or the address of R2 in the NH_SN2
  • the GW-IP of X1c is the address of R1 in the NH_SN2.
  • TOR1 and TOR2 receive the Y2c6 sent by TOR3, because they have the same ESI and the same ET-ID locally, and they install the Y2c6 on the forwarding plane , the Overlay next hop is replaced with the IP address in the IPv6 prefix (ie the A6P7) mapped from the IP address (ie 7.7.7.7) having the same value as the ET-ID according to rule 1.
  • IP address in a certain IP prefix refers to the IP address that can match the IP prefix, for example, 10.0.0.2 is the IP address in the IP prefix 10.0.0.0/24.
  • CE_Prefix3 is directly learned by TOR2 through the CE-BGP session (denoted as case 1), and TOR3 is routed through the unproxyed RT-5G
  • case 2 the forwarding table entries formed by installing the CE_Prefix3 on the forwarding plane in the two cases are the same, so TOR2 can handle case 1 but not case 2 , because TOR2 is a low-end RT-5 node, it only has limitations in the analysis of RT-5G routes in the control plane (only supported when there is an NLRI-IP for the GW-IP field of the RT-5G route
  • the RT-5G route can only be installed on the forwarding plane under the condition of equal RT-2 routes), and its forwarding plane, for the RT-5G route (that is, the RT-5G route corresponding to CE_Prefix3 in case 2) in Other routes with the same shape on
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • Embodiment 4 This embodiment is the same as Embodiment 4 except where specified.
  • the present embodiment provides a method for distributing RT-5 routing messages, the method comprising:
  • the first ESI is the ESI that needs to be passed to reach the first MAC, and the RT-5 route carries the first routing target, the first MAC, the second MAC and the first identifier at the same time, wherein the first The MAC is the MAC corresponding to the fourth IP, the fourth IP is the IP in the first broadcast domain BD, and the fourth IP is the second IP or the second IP can be reached through the fourth IP,
  • the first routing target is the derived routing target eRT of the IP-VRF instance to which the CE-Prefix belongs
  • the second MAC is the MAC of the IRB interface of the first broadcast domain BD
  • the first broadcast domain BD is the BD corresponding to the directly connected subnet on the first device
  • the first identifier is an identifier of the first broadcast domain BD, wherein the first MAC is used to indicate that the third device When sending a data packet to the first device according to the RT-5 route, the first MAC is used as the destination MAC, and the second MAC is used
  • the RT-5 route also carries a first indicator, where the first indicator is used to instruct the third device to send a data packet to the first device according to the RT-5 route It is necessary to encapsulate the source MAC and destination MAC.
  • ES10 and ES20 (the identifier ESI22 is the first ESI) access the IPVRF1 through the broadcast domain BD on TOR, wherein R1 accesses through BD1 IPVRF1, R2 accesses IPVRF1 through BD2 (i.e. the first broadcast domain BD); the interface connecting BD1 and IPVRF1 on each node is IRB1, and the interface connecting BD2 and IPVRF2 is IRB2 (i.e. the first IRB), correspondingly , the 10.0.0.9 (i.e.
  • 10.9 shown in Figure 4) and 20.0.0.9 are also the IP addresses of IRB1 and IRB2 respectively; in this embodiment, IRB1 on different nodes have the same The MAC address is marked as MAC2a, and the IRB2 on different nodes has the same MAC address, which is marked as MAC2b (i.e. the second MAC); the MAC of the 10.2 is marked as MAC1a, and the 20.2 (i.e. the fourth IP)
  • the MAC is marked as MAC1b (that is, the first MAC); the BD2 is identified by an Ethernet Tag ID (that is, the first identifier) with a value of ETI8 in the EVPN network.
  • the EVPN labels in the ET1, ET2, ET3, and ET4 are EVPN labels used to determine the BD1 or BD2, and the ET4 (that is, the third routing report text) as an example, where the EVPN label (that is, the first label) is the EVPN label used to determine the BD2 on the TOR3; the routing targets in the ET1, ET2, ET3, and ET4 are not BD1 or
  • the export route target eRT (Export Route Target) of BD2 is the export route target eRT (ie the first route target) of IPVRF1 (ie the first IP-VRF instance).
  • the RT-5E route finally issued also needs to carry the first MAC and the second MAC, and the first MAC is the MAC1b in this embodiment, The second MAC is MAC2b in this embodiment.
  • Fig. 7 is a schematic diagram of component connections in an EPVN network according to an embodiment of the present disclosure.
  • Step S8090 TOR3 learns an IP prefix CE_Prefix3 (namely 8.8.8.0/24) behind R2 (also behind R1) through the CE-BGP session S2003, and the private network next hop of CE_Prefix3 is 7.7.7.7.
  • step S8100 TOR3 receives ET1, ET2 and ET3 and X1a and X1b from PE1 and PE2 respectively.
  • ET4 and X1c are routes announced by TOR3 itself, and it can be considered that they have been received from TOR3 before they are sent out.
  • Step S8110 TOR3 can know from ET1, ET2, ET3, ET4, X1a, X1b, X1c that the node where ESI21 or ESI22 is located can reach the node to which 7.7.7.7 (ie the second IP) belongs, and 7.7.7.7 is CE_Prefix3 (ie The Overlay next hop of the first route), therefore, TOR3 publishes an RT-5E routing message Y2c8 (ie, the first route message) for CE_Prefix3, ESI is ESI22 (ie, the first ESI), ET-ID is ETI8, RMAC (Router's MAC, router MAC) is described first MAC, carries described second MAC by BGP attribute (such as TLV, community attribute or extended community attribute), and described second MAC and described first MAC can pass BGP The type encoding of the attributes to distinguish them from each other.
  • BGP attribute such as TLV, community attribute or extended community attribute
  • TOR3 chooses ESI22 instead of ESI21 because ESI22 is the ESI to which the AC in the BD corresponding to a local directly connected subnet (that is, the subnet 20.0.0.0/24 where IRB2 is located) belongs to.
  • Step S8120 TOR2 (PE2) receives the RT-5E routing message Y2c8 and the RT-1 per EVI routing message ET3 and ET4, so that TOR2 can use the destination IP as the data message DP888 of 8.8.8.0/24 Forward to the first AC (that is, the AC on ES20 of BD2 on TOR2) or TOR3, because the ESI and ET-ID of Y2c8 are the same as the ESI and ET-ID of ET3 and ET4.
  • TOR2 did not directly learn the route of CE_Prefix3 with the next hop of the private network as 20.0.0.2 from CE-BGP, TOR2 can still forward DP888 from the first AC, because the first AC and Y2c8 With the same ESI and ET-ID, by carrying the ESI and ET-TI corresponding to the first AC in Y2c8 at the same time, this embodiment solves the problem that the remote PE (such as TOR3) cannot be synchronized without carrying the private network next
  • the problem of corresponding the RT-5 route (such as Y2c8) of the jump to the AC (such as the first AC) in the local BD (such as BD2 on TOR2) has reached a datagram that can directly correspond to this RT-5 route
  • the technical effect of directly forwarding files (such as DP888) from the local area improves the utilization rate of bandwidth between PE and CE, and improves the uniformity of load sharing in the case of load sharing.
  • TOR2 when TOR2 chooses load sharing between the first AC and TOR3, and TOR3 chooses load sharing between TOR2 and the third AC (that is, the AC of BD2 on ES20 on TOR3), TOR2 load sharing to TOR3
  • the data packets (such as DP888) will not be sent back to TOR2 by TOR3.
  • the data packets shared by TOR3 to TOR2 will not be sent back to TOR3 by TOR2, thus avoiding the data packets caused by mutual load sharing.
  • TOR2 load-sharing data packets to TOR3 will not be sent back to TOR2 by TOR3 is because, when TOR2 sends the data packet (such as DP888) to TOR3, it is encapsulated according to ET4
  • the EVPN label is the label that identifies BD2. Therefore, the DP888 on TOR3 only performs MAC forwarding in BD2, but does not perform IP forwarding in IPVRF1.
  • Step S8130 TOR2 (PE2) receives the EVPN data packet DP888 whose destination IP is 8.8.8.0/24.
  • This DP888 is an IP packet.
  • TOR2 can It is known that an Ethernet header needs to be added to the DP888, the source MAC of the Ethernet header is the second MAC, and the destination MAC is the first MAC.
  • the type code used to carry the TLV or routing attribute of the second MAC in Y2c8 can be used as the first indicator.
  • the IRB interface corresponding to BD1 or BD2 does not need to exist on the DGW1, and the IRB interface corresponding to BD2 does not need to exist on the TOR1.
  • ET2 forwards DP888, it cannot fill in the appropriate source MAC for DP888. If the source MAC is not filled in properly, it may cause abnormality in the MAC forwarding entry on the CE side.
  • this embodiment avoids the The problem of abnormal MAC forwarding entries on the CE side caused by incorrectly filled source MAC addresses improves network security.
  • Step S8140 TOR1 (PE1) receives the RT-5E routing message Y2c8 and the RT-1 per EVI routing message ET2, ET3, so that TOR1 can DP888 the data message whose destination IP is 8.8.8.0/24 Forward it to the second AC (that is, the AC of BD1 on TOR1 on ES10).
  • the first MAC is the MAC (ie MAC1a) of the host (ie 10.2) in the BD (ie BD1) to which the second AC belongs.
  • MAC1a the MAC of the next hop 10.2 of the second IP in the subnet 10.0.0.0/24 corresponding to BD1, referred to as the next hop MAC corresponding to the second IP and BD1
  • MAC1b The MAC of the next hop 20.2 of the second IP in the subnet 20.0.0.0/24 corresponding to BD2, referred to as the next hop MAC corresponding to the second IP and BD2 is planned on the premise of the same MAC address.
  • this embodiment further solves the problem of The ES (such as ES20) identified by the ESI (such as ES20 as the first ESI) of the RT-5E route does not exist on the node (such as TOR1) of the message (such as Y2c8) or the ET routed by the RT-5E does not exist
  • the Ethernet Tag identified by -ID i.e., the first Ethernet tag identifier field
  • the data message (such as DP888) corresponding to the RT-5E route cannot be forwarded from the local AC (such as the second AC) nearby. It can only be detoured from the remote end (such as TOR2 or TOR3) (passing through more PEs and finally arriving at the same VNF, so it is called detour).
  • the RT-5E route forwards the data message, it can be forwarded from the local AC nearby, and it can be said that the node receiving the RT-5E route can localize the RT-5E route.
  • the so-called localization means that at least one corresponding The local AC acts as a forwarding interface of the RT-5E route.
  • R1 and R2 belong to the same VNF and IP addresses 10.2 and 20.2 belong to different broadcast domains, it is technically convenient to plan them to have the same MAC address.
  • the same VNF often uses different ⁇ ESI, ET-ID>combinations are interleaved to different paired TORs, as long as there are combination 1, combination 2 and combination 3 that meet the third condition at the ingress node and the egress node, the node receiving the RT-5E routing message can 5E routing is localized, wherein, the third condition is: combination 1 is adjacent to the entry node, combination 3 is adjacent to the exit node, and the two have at least one common adjacent node with combination 2 (and there is the PE node of an IP-VRF instance), wherein, combination 1, combination 2, and combination 3 may all or partly be the same combination.
  • the third condition is easy to satisfy. Therefore, it is easy to implement whether the received RT-5E route can be localized based on whether the third condition is satisfied. Simplifies the network administration required for localization.
  • the so-called localization means that the ingress node uses the fourth AC as a forwarding interface of the RT-5E route, wherein, the so-called fourth AC is the local AC on the ingress node corresponding to combination 1.
  • the third condition can also jointly determine whether the received RT-5E route can be localized together with the fourth condition and the fifth condition.
  • the so-called fourth condition refers to: the first MAC carried in the RT-5E route is the MAC in the BD to which the fourth AC belongs and/or the second MAC carried in the RT-5E route is The MAC address of the IRB interface corresponding to the BD to which the fourth AC belongs; the so-called fifth condition means: the RT-5E route carries the first indicator.
  • this embodiment further prevents some received RT-5E routes from being misconfigured.
  • the abnormal forwarding caused by inappropriate localization of 5E routing simplifies the constraints of network planning and configuration.
  • the network will It is more efficient to determine whether the RT-5E route can be localized by the first MAC carried in the RT-5E route, because the second MAC only needs to be compared with the MAC of the IRB interface, and the first MAC needs to be in all MAC lookup, which is relatively inefficient.
  • TOR3 converts the route to be advertised by the RT-5G routing message (that is, the original RT-5G routing message) with GW-IP 7.7.7.7 to The RT-5E routing message is published, thereby simplifying the processing on TOR2, and at the same time, since both TOR2 and TOR3 nodes have issued RT-1 per EVI routing for the ⁇ ESI22, ETI8>, TOR2 can send the data message to Protection or load sharing is performed between the ACs of the two TOR nodes.
  • the source MAC is directly specified for the ingress node (for example, for Y2c8, the node receiving the Y2c8 route is the ingress node) through the egress node (for example, for Y2c8, the node that sends the Y2c8 route is the egress node)
  • the source MAC search process is eliminated, the forwarding efficiency is improved, and the requirements for the ingress node are simplified.
  • the ingress node is a low-end RT-5 node, it is easier to implement.
  • the ingress node by removing the dependence on the IRB interface corresponding to the BD (such as BD2) to which the egress AC (such as BD2's AC on ES20) belongs on the ingress node, the need to exist on the ingress node and the egress AC Dependence on the BD to which it belongs, so that data packets can be forwarded for the CE-Prefix on the ingress node where the BD does not exist, so that it is not necessary to activate the ability to forward data packets for the CE-Prefix forwarded through the egress AC , and configure the BD on a PE node that does not have a local host in the subnet corresponding to the BD (for example, there is no host in the 20.0.0.0/24 subnet locally on DGW1) (for example, there is no need to configure BD2 on DGW1 ), which simplifies network deployment and reduces the difficulty of network deployment.
  • BD such as BD2
  • Embodiment 8 This embodiment is the same as Embodiment 8 unless otherwise specified.
  • the 10.2 and the 20.2 are located on different Ethernet Tags (identified by the Ethernet Tag) on the same ES, rather than being located in two different ESs.
  • ES10 and ES20 represents the same ES, which is marked as E82010
  • ESI21 and ESI22 represent the same ESI, which is marked as ESI2010
  • ESI2010 is used to identify E82010. Therefore, in this embodiment, the ESIs in Y2c8, ET1, ET2, ET3, and ET4 are all ESI2010.
  • ET1 and ET2 also carry MAC2a
  • ET3 and ET4 also carry MAC2b (that is, the second MAC).
  • the ET1, ET2, ET3, and ET4 also need to carry the first MAC, and the first MAC is the MAC1a or MAC1b; taking the ET4 as an example, its The first MAC carried is the MAC1b
  • the ET1, ET2, ET3, and ET4 also need to carry the second MAC
  • the second MAC is the RT-1 per EVI route (i.e. ET1, ET2, ET3 or ET4) is the MAC of the IRB of the BD to which the ET4 belongs; taking the ET4 as an example, the second MAC carried by it is the MAC2b.
  • a data message DP888b to the host in the CE_Prefix3 according to the Y2c8 route (with the same destination IP as DP888, but received on a different node ), it is not limited to the ET-ID in Y2c8 to determine the corresponding RT-1 per EVI route, as long as one RT-1 per EVI route RT1_for9 has the same ESI as the Y2c8, and RT1_for9 and Y2c8 have the same IP -VRF, that is, it can be used to forward DP888b, but in some implementation manners, the route with the same ET-ID as the Y2c8 can be preferentially selected with a higher priority.
  • the node receiving the Y2c8 route (such as DGW1) can not only send DP888b to TOR2 and TOR3 according to ET3 and ET4, but also send DP888b to TOR1 and TOR2 according to ET1 and ET2, among which, ET2 and ET3 All correspond to TOR2, which can make TOR2 have a probability of 2/4 instead of 1/3 to be selected as the tunnel destination node to DP888b when DGW1 performs load sharing on DP888b, because TOR2 can be used to forward the bandwidth resources of DP888b ( That is, the physical link of ES2010) is more sufficient than TOR1 and TOR3, and this approach can improve the accuracy of its load sharing.
  • the Y2c8 can only carry the MAC of the IRB of BD2.
  • DGW1 sends DP888b to TOR1 and finally forwards it from the second AC to R1
  • the source MAC expected by R1 is the MAC of the IRB of BD1.
  • the RT-1 per EVI routes issued by the egress node for ACs in different BDs can carry different second MACs, so , when the ingress node forwards DP888b to different egress ACs according to different RT-1 per EVI routes (such as forwarding to the second AC according to ET1, forwarding to the third AC according to ET4), different source MACs can be encapsulated.
  • the technical solution of this embodiment describes the case where the second MAC carried by the RT-1 route and the RT-5 route are different.
  • the second MAC in the RT-1 route is preferred as the source MAC, which solves the problem that the source MAC received by the CE may not be encapsulated according to the second MAC in the RT-5E route.
  • the problem of meeting expectations avoids the requirement of planning the MAC addresses of IRBs of different BDs (for example, IRB1 and IRB2) to be the same MAC address, which simplifies network planning.
  • this embodiment is the same as embodiment 8 or embodiment 9.
  • the ET1, ET2, ET3, and ET4 also need to carry the eRT of the corresponding BD, and the BD no longer publishes its own RT-1 per EVI route for the same AC.
  • ET1, ET2, ET3, and ET4 can be referenced by the MAC forwarding entry in the BD (for Layer 2 forwarding), and can be referenced by the IP forwarding entry in the IP-VRF (for Layer 3 forwarding).
  • this embodiment is the corresponding BD (the BD to which the AC belongs) and IP -VRF (the IP-VRF to which the IRB of the BD to which the AC belongs) publishes the same RT-1 per EVI route for the same AC (that is, carries the RT-1 per EVI route of the eRT of the BD and the eRT of the IP-VRF at the same time) , greatly reducing the number of RT-1 routes, reducing routing and forwarding resources and processor resource consumption in the EVPN network.
  • the EVPN label encapsulated when forwarding the data packet according to the RT-1 route in the IP-VRF may be the EVPN label identifying the BD, in this embodiment, the The same AC merges the RT-1 per EVI routes advertised by the corresponding BD and IP-VRF.
  • route advertisement mechanism described in the present disclosure may be a route advertisement mechanism relayed by a route reflector RR.
  • the RT-5G route release mechanism described in this disclosure can be applied to any EVPN network, especially to a data center network, and is a general technical solution. Based on the RT-5G route release mechanism, when there are low-end RT-5 nodes in the data center, the DC gateway can also release RT-5G routes for CE-Prefix.
  • an apparatus for issuing RT-5G routing messages is also provided, and the apparatus is configured to implement the above-mentioned embodiments and preferred implementation manners, and those that have already been described will not be described in detail.
  • the term "module” may be a combination of software and/or hardware that realizes a predetermined function.
  • the devices described in the following embodiments are preferably implemented in software, implementations in hardware, or a combination of software and hardware are also possible and contemplated.
  • Fig. 8 is a structural block diagram of an apparatus for issuing RT-5G routing messages according to an embodiment of the present disclosure. As shown in Figure 8, it can be applied to the first device, including: a first issuing module 82, configured to issue RT-5G routing messages for CE-Prefix, so that low-end RT-5 nodes receive the RT-5G Routing message, wherein, the GW-IP field of the RT-5G routing message carries the first IP, the Overlay next hop of the CE-Prefix is the second IP, and the second IP is allowed to pass through the The node to which the first IP belongs arrives, and the RT-5G routing message is used to instruct the low-end RT-5 node to resolve the GW-IP field carried in the RT-5G routing message into an RT-2 route, Wherein, the second IP is not in the directly connected subnet of the EVPN.
  • a first issuing module 82 configured to issue RT-5G routing messages for CE-Prefix, so that low-end RT-5 nodes receive the
  • the first device is used to publish RT-5G routing messages for CE-Prefix, so that the low-end RT-5 nodes receive the RT-5G routing messages, wherein the RT-5G routing messages
  • the first IP is carried in the GW-IP field of the CE-Prefix
  • the Overlay next hop of the CE-Prefix is the second IP
  • the second IP is allowed to be reached through the node to which the first IP belongs
  • the RT-5G route The message is used to instruct the low-end RT-5 node to resolve the GW-IP field carried in the RT-5G routing message into an RT-2 route, using the method described in this disclosure, compared with the prior art , through a mechanism to replace the GW-IP value in the RT-5G route, it solves the problem that the sending end of the route notifies the receiving end of the CE-Prefix from the CE without upgrading the low-end RT-5 node as the receiving end
  • the problem of RT-5G routing that is, the problem that the restricted node cannot forward the data packet
  • the RT-5G routing message is also used to instruct the low-end RT-5 node according to the The forwarding information in the RT-2 route is forwarded to the data packet of the CE-Prefix.
  • the first device issues the RT-5G routing message for the CE-Prefix, so that before the low-end RT-5 node receives the RT-5G routing message, the embodiments of the present disclosure also provide the following technical solutions, Including: determining whether the first device has received the RT-2 route corresponding to the first IP; if received, carrying the first IP in the GW-IP field of the RT-5G routing message ; If not received, carry the second IP in the GW-IP field of the RT-5G routing message.
  • the first device publishes the RT-5G routing message for the CE-Prefix, so that before the low-end RT-5 node receives the RT-5G routing message, if the second condition is met, all
  • the GW-IP field of the RT-5G routing message carries the first IP
  • the second condition includes that the node to which the third IP belongs can be reached through the first IP
  • the node to which the third IP belongs can be reached through the third IP.
  • the route corresponding to the first IP does not have an Overlay Index or the Overlay Index is not an IP address.
  • the first IP corresponds to a first set, where the first set is composed of PE nodes, and the PE nodes in the first set have notified that they are allowed to reach the For the RT-5G route of the second IP, no other PE node has notified in EVPN that it is allowed to reach the RT-5G route of the second IP through other private network IPs. Nodes other than the PE nodes of the first set.
  • the first IP corresponds to a second set, wherein the second set is composed of PE nodes, and the PE nodes in the second set have notified that they are allowed to reach the The RT-5G route of the second IP, for the target PE node in other PE nodes, if the target PE node notifies in the EVPN that it can reach the RT-5G route of the second IP through the Xth IP, However, the total number of PE nodes in the EVPN network that have notified the RT-5G route indicating that the second IP can reach the second IP through the Xth IP is less than the number of PE nodes in the second set, and will be the same as the number of PE nodes in the second set.
  • the IPs corresponding to the two sets are determined to be carried in the GW-IP field of the RT-5G routing message.
  • Fig. 9 is a structural block diagram of an apparatus for publishing RT-5 routing messages according to an embodiment of the present disclosure.
  • the publishing device of RT-5 routing message includes:
  • the second publishing module 92 is configured to issue the RT-5 routing message for the CE-Prefix, so that the low-end RT-5 node receives the RT-5 routing message, wherein the RT-5 routing message
  • the ESI field carries the first ESI
  • the Overlay next hop of the CE-Prefix is the second IP
  • the second IP is allowed to be reached through the node to which the first ESI belongs
  • the RT-5 routing message uses Instructing the low-end RT-5 node to resolve the ESI field carried in the RT-5 routing message into an RT-1 route.
  • the first device to publish RT-5G routing packets for CE-Prefix, so that the low-end RT-5 nodes receive the RT-5G routing packets, wherein the RT-5G routing packets
  • the first IP is carried in the GW-IP field of the CE-Prefix
  • the Overlay next hop of the CE-Prefix is the second IP
  • the second IP is allowed to be reached through the node to which the first IP belongs
  • the RT-5G route The message is used to instruct the low-end RT-5 node to resolve the GW-IP field carried in the RT-5G routing message into an RT-2 route, using the method described in this disclosure, compared with the prior art , through a mechanism to replace the GW-IP value in the RT-5G route, it solves the problem that the sending end of the route notifies the receiving end of the CE-Prefix from the CE without upgrading the low-end RT-5 node as the receiving end
  • the problem of RT-5G routing that is, the problem that the restricted node cannot efficiently
  • a PE publishes such a simplified RT-5G route for other PEs, regardless of whether the opposite end is a low-end RT-5 node, its processing efficiency for RT-5G routes will be improved and can Benefited from.
  • the peer node that is indeed a low-end RT-5 node it can be processed from being unable to handle before simplification to being able to handle after simplification.
  • the RT-5 routing message is also used to instruct the low-end RT-5 node to 1.
  • the forwarding information in the route is forwarded to the data packet of the CE-Prefix.
  • the embodiment of the present disclosure also provides a technical solution before the first device publishes the RT-5 routing message for the CE-Prefix, so that the low-end RT-5 node receives the RT-5 routing message , specifically: determine whether the first device has received the RT-1 route corresponding to the first ESI; if received, carry the first ESI in the ESI field of the RT-5 route message ; If not received, carry the second IP in the GW-IP field of the RT-5G routing message.
  • the above-mentioned computer-readable storage medium may include but not limited to: U disk, read-only memory (Read-Only Memory, referred to as ROM), random access memory (Random Access Memory, referred to as RAM) , mobile hard disk, magnetic disk or optical disk and other media that can store computer programs.
  • ROM read-only memory
  • RAM random access memory
  • mobile hard disk magnetic disk or optical disk and other media that can store computer programs.
  • Embodiments of the present disclosure also provide an electronic device, including a memory and a processor, where a computer program is stored in the memory, and the processor is configured to run the computer program to execute the steps in any one of the above method embodiments.
  • the above-mentioned processor may be configured to execute the following steps through a computer program:
  • the first device publishes an RT-5G routing packet for CE-Prefix, so that the low-end RT-5 node receives the RT-5G routing packet, wherein the GW-IP of the RT-5G routing packet
  • the field carries the first IP
  • the Overlay next hop of the CE-Prefix is the second IP
  • the second IP is allowed to be reached through the node to which the first IP belongs
  • the RT-5G routing message is used for Instructing the low-end RT-5 node to resolve the GW-IP field carried in the RT-5G routing message into an RT-2 route; wherein, the second IP is not in the directly connected subnet of the EVPN.
  • the above-mentioned processor may also be configured to execute the following steps through a computer program:
  • the first device issues an RT-5 routing message for the CE-Prefix, so that the low-end RT-5 node receives the RT-5 routing message, wherein the ESI field of the RT-5 routing message Carrying the first ESI, the Overlay next hop of the CE-Prefix is the second IP, and the second IP is allowed to be reached through the node to which the first ESI belongs, and the RT-5 routing message is used to indicate the
  • the low-end RT-5 node parses the ESI field carried in the RT-5 routing message into an RT-1 route; and sends the RT-5 routing message to the third device.
  • the electronic device may further include a transmission device and an input and output device, wherein the transmission device is connected to the processor, and the input and output device is connected to the processor.
  • each module or each step of the above-mentioned disclosure can be realized by a general-purpose computing device, and they can be concentrated on a single computing device, or distributed in a network composed of multiple computing devices In fact, they can be implemented in program code executable by a computing device, and thus, they can be stored in a storage device to be executed by a computing device, and in some cases, can be executed in an order different from that shown here. Or described steps, or they are fabricated into individual integrated circuit modules, or multiple modules or steps among them are fabricated into a single integrated circuit module for implementation. As such, the present disclosure is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本公开实施例提供了一种RT-5G路由报文的发布方法、装置、存储介质和电子装置,上述方法包括:第一设备为CE-Prefix发布RT-5G路由报文,以使低端RT-5节点接收到所述RT-5G路由报文,其中,所述RT-5G路由报文的GW-IP字段中携带第一IP,所述CE-Prefix的Overlay下一跳为第二IP,且所述第二IP允许通过所述第一IP所属的节点到达,所述RT-5G路由报文用于指示所述低端RT-5节点将所述RT-5G路由报文中携带的GW-IP字段解析为RT-2路由;其中,所述第二IP不在EVPN的直连子网中。

Description

RT-5G路由报文的发布方法、装置、存储介质和电子装置
本公开要求于2021年8月25日提交中国专利局、申请号为202110984683.9、发明名称“RT-5G路由报文的发布方法、装置、存储介质和电子装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及通信领域,具体而言,涉及一种RT-5G路由报文的发布方法、装置、存储介质和电子装置。
背景技术
在DC网络中,当DC网关GW(Gateway)从某个CE设备学到该CE背后的一条私网前缀(即CE-Prefix)时,该CE-Prefix的私网下一跳为CE上的一个loopback地址IP1,如果DC GW在为该CE-Prefix发布RT-5G路由时,直接将IP1作为该RT-5G路由的GW-IP字段(为表达方便起见,可以将这种RT-5G路由称为原始RT-5G路由或者未经代理的RT-5G路由),那么,接收该RT-5G路由的节点(比如TOR1),仅根据该GW-IP在IP-VRF中只迭代一次是无法解析到一条对应的RT-2路由的,需要根据第一次迭代找到的下一跳IP地址在IP-VRF路由表中再次进行迭代。在这种情况下,需要TOR1具有较高的性能,如果TOR1是一个对RT-5G路由处理性能较低的节点(即低端RT-5节点),它将影响报文的转发效率。
针对相关技术,低端RT-5节点无法高效地根据RT-5G路由转发到CE-Prefix的数据报文的问题,目前尚未提出有效的解决方案。
因此,有必要对相关技术予以改良以克服相关技术中的缺陷。
发明内容
本公开实施例提供了一种RT-5G路由报文的发布方法、装置、存储介质和电子装置,以至少解决受限节点无法根据RT-5G路由转发到CE-Prefix的数据报文的问题。
根据本公开实施例的一方面,提供一种RT-5G路由报文的发布方法,包括:第一设备为CE-Prefix发布RT-5G路由报文,以使低端RT-5节点接收到所述RT-5G路由报文,
根据本公开实施例的又一方面,还提供了一种RT-5路由报文的发布方法,包括:第一设备为CE-Prefix发布RT-5路由报文,以使低端RT-5节点接收到所述RT-5路由报文,其中,所述RT-5路由报文的ESI字段中携带第一ESI,所述CE-Prefix的Overlay下一跳为第二IP,且所述第二IP允许通过所述第一ESI所属的节点到达,所述RT-5路由报文用于指示所述低端RT-5节点将所述RT-5路由报文中携带的ESI字段解析为RT-1路由;将所述RT-5路由报文发给第三设备。
根据本公开实施例的又一方面,还提供了一种RT-5G路由报文的发布装置,应用于第一设备,包括:第一发布模块,设置为为CE-Prefix发布RT-5G路由报文,以使低端RT-5节点接收到所述RT-5G路由报文,其中,所述RT-5G路由报文的GW-IP字段中携带第一IP,所述 CE-Prefix的Overlay下一跳为第二IP,且所述第二IP允许通过所述第一IP所属的节点到达,所述RT-5G路由报文用于指示所述低端RT-5节点将所述RT-5G路由报文中携带的GW-IP字段解析为RT-2路由,其中,所述第二IP不在所述EVPN的直连子网中。
根据本公开实施例的又一方面,还提供了一种RT-5路由报文的发布装置,包括:第二发布模块,设置为为CE-Prefix发布RT-5路由报文,以使低端RT-5节点接收到所述RT-5路由报文,其中,所述RT-5路由报文的ESI字段中携带第一ESI,所述CE-Prefix的Overlay下一跳为第二IP,且所述第二IP允许通过所述第一ESI所属的节点到达,所述RT-5路由报文用于指示所述低端RT-5节点将所述RT-5路由报文中携带的ESI字段解析为RT-1路由;将所述RT-5路由报文发给第三设备。
根据本公开实施例的又一方面,还提供了一种计算机可读的存储介质,该计算机可读的存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项的方法。
根据本公开实施例的又一方面,还提供了一种电子装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,上述处理器通过计算机程序执行上述任一项的方法。
通过本公开,通过采用第一设备为CE-Prefix发布RT-5G路由报文,以使低端RT-5节点接收到所述RT-5G路由报文,其中,所述RT-5G路由报文的GW-IP字段中携带第一IP,所述CE-Prefix的Overlay下一跳为第二IP,且所述第二IP允许通过所述第一IP所属的节点到达,所述RT-5G路由报文用于指示所述低端RT-5节点将所述RT-5G路由报文中携带的GW-IP字段解析为RT-2路由的方法,采用一种替换RT-5G路由中的GW-IP取值的机制解决了在不升级作为接收端的低端RT-5节点的情况下,路由发送端为来自CE的CE-Prefix向接收端通告RT-5G路由的问题,即受限节点无法根据RT-5G路由转发到CE-Prefix的数据报文的问题,并且,所述RT-5G路由不会导致相应数据报文经网关(其中,所述CE不与网关邻接)绕行。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示例性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是本公开实施例的RT-5G路由报文的发布方法的计算机终端的硬件结构框图;
图2是根据本公开实施例的RT-5G路由报文的发布方法的流程图;
图3是根据本公开实施例的RT-5路由报文的发布方法的流程图;
图4是根据本公开实施例的通过DGW为TOR代理RT-5G路由迭代流程的示意图;
图5是根据本公开实施例的一种选择最佳代理发出RT-5G的GW-IP的示意图;
图6是根据本公开实施例的一种建立CE-BGP会话的示意图;
图7是根据本公开实施例的一种在EPVN网络中的组件连接的示意图;
图8是根据本公开实施例的RT-5G路由报文的发布装置的结构框图(一);
图9是根据本公开实施例的RT-5路由报文的发布装置的结构框图(二)。
具体实施方式
为了使本技术领域的人员更好地理解本公开方案,下面将结合本公开实施例中的附图, 对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分的实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本公开保护的范围。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本公开实施例中所提供的方法实施例可以在计算机终端或者类似的运算装置中执行。以运行在计算机终端上为例,图1是本公开实施例的RT-5G路由报文的发布方法的计算机终端的硬件结构框图。如图1所示,计算机终端可以包括一个或多个(图1中仅示出一个)处理器102(处理器102可以包括但不限于微处理器(Microprocessor Unit,简称是MPU)或可编程逻辑器件(Programmable logic device,简称是PLD))和设置为存储数据的存储器104,在一个示例性实施例中,上述计算机终端还可以包括设置为通信功能的传输设备106以及输入输出设备108。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述计算机终端的结构造成限定。例如,计算机终端还可包括比图1中所示更多或者更少的组件,或者具有与图1所示等同功能或比图1所示功能更多的不同的配置。
存储器104可设置为存储计算机程序,例如,应用软件的软件程序以及模块,如本公开实施例中的RT-5G路由报文的发布方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至计算机终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106设置为经由一个网络接收或者发送数据。上述的网络具体实例可包括计算机终端的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,简称为RF)模块,其设置为通过无线方式与互联网进行通讯。
需要说明的是,上述执行RT-5G路由报文的发布方法的计算机终端同样可以执行RT-5E路由报文的发布方法,本公开在此不再赘述。
需要说明的是,所述RT-5G路由报文即GW-IP不为0的RT-5路由报文,所述RT-5E路由报文即ESI不为0的RT-5路由报文,在一些实施例中,所述RT-5路由报文可以是第五类EVPN(Ethernet virtual private network,以太虚拟专用网络)路由报文,也就是EVPN IP前缀路由报文,所述GW-IP字段和所述ESI字段均是所述RT-5路由的不同类型的Overlay Index。
对本公开实施例中的部分术语的说明如下:
《draft-ietf-bess-evpn-prefix-advertisement》一书中的Section 3.2定义了以GW-IP作为Overlay Index的RT-5路由(RT-5G路由),由于其对RT-5G路由的定义存在歧义,导致网络中的一些设备只支持将RT-5G路由的GW-IP解析为另一条RT-2路由,却不支持将RT-5G路由的GW-IP解析为其它类型的路由(比如另一条RT-5路由),为描述方便起见,我们可以将这种节点称为功能受限RT-5G节点。相关技术中,尤其是数据中心DC网络中的TOR(Top of Rack,架顶设备)等低端设备有更大可能是这种功能受限RT-5G节点(可简称为受限节点)。
图2是根据本公开实施例的RT-5G路由报文的发布方法的流程图,如图2所示,该方法的步骤包括:
步骤S202,第一设备为CE-Prefix发布RT-5G路由报文,以使低端RT-5节点接收到所述RT-5G路由报文,其中,所述RT-5G路由报文的GW-IP字段中携带第一IP,所述CE-Prefix的Overlay下一跳为第二IP,且所述第二IP允许通过所述第一IP所属的节点到达,所述RT-5G路由报文用于指示所述低端RT-5节点将所述RT-5G路由报文中携带的GW-IP字段解析为RT-2路由,其中,所述第二IP不在所述EVPN的直连子网中。
需要说明的是,所述第二IP不在第一设备上所述EVPN的直连子网中。
需要说明的是,当一个PE节点P对另一个PE节点Q通告了其中IP前缀匹配IPx且GW-IP为IPy的RT-5G路由时,从节点Q的角度,就可以认为节点P向节点Q通告了指示经过IPy可以到达IPx的路由。
需要说明的是,低端RT-5节点可以理解为受限RT-5G节点,包括功能受限RT-5G节点的和性能受限的RT-5G节点,本公开一些实施例中的低端RT-5节点为性能受限的RT-5G节点,性能受限RT-5G节点可以将RT-5G路由的GW-IP解析为非RT-2路由,但在需要N+1次路由迭代的情况下的性能比只需要N次路由迭代的情况下性能要低。
可选的,在所述RT-5G路由报文的GW-IP字段中携带第一IP的情况下,所述RT-5G路由报文还用于指示所述低端RT-5节点根据所述RT-2路由中的转发信息转发到所述CE-Prefix的数据报文。
可选的,第一设备为CE-Prefix发布RT-5G路由报文,以使低端RT-5节点接收到所述RT-5G路由报文之前,本公开实施例还提供了以下技术方案,包括:确定所述第一设备是否收到了与所述第一IP对应的RT-2路由;在收到的情况下,在所述RT-5G路由报文的GW-IP字段中携带第一IP;在未收到的情况下,在所述RT-5G路由报文的GW-IP字段中携带第二IP。
可选的,第一设备为CE-Prefix发布RT-5G路由报文,以使低端RT-5节点接收到所述RT-5G路由报文之前,在符合第二条件的情况下,在所述RT-5G路由报文的GW-IP字段中携带第一IP,所述第二条件包括:经过所述第一IP可以到达第三IP所属的节点,经过所述第三IP可以到达所述第二IP,与所述第一IP对应的路由不存在Overlay Index或者Overlay Index不是IP地址。
可选的,所述第一IP与第一集合对应,其中,所述第一集合由PE节点组成,所述第一 集合中的PE节点都通告了表示允许经过所述第一IP到达所述第二IP的路由,其他PE节点均未在EVPN中通告表示允许经过其它私网IP到达所述第二IP的路由,所述其他PE节点为所述EVPN中除所述第一集合的PE节点之外的节点。
需要说明的是,当一个PE节点A通告了表示经过第YESI可以到达第一IP的路由,另一个PE节点B通告了表示经过第一IP可以到达所述第二IP的路由,再一个PE节点C通告了指示可以经其到达第X ESI的路由时,同样可以认为该PE节点C通告了经过所述第一IP到达所述第二IP的路由,其中,A、B、C三者可以为同一节点,或者,A、B、C三者中的任意两者可以为同一节点,或者,A、B、C三者均为不同节点。
可选的,所述第一IP与第二集合对应,其中,所述第二集合由PE节点组成,所述第二集合中的PE节点都通告了表示允许经过所述第一IP到达所述第二IP的路由,对于其他PE节点中的目标PE节点,如果所述目标PE节点在所述EVPN中通告了表示经过第X IP可以到达所述第二IP的路由,但所述EVPN网络中所有通告了表示经过第X IP可以到达所述第二IP的路由的PE节点加起来的数量小于所述第二集合的PE节点的数量,将与所述第二集合对应的IP(即第一IP)确定携带在所述RT-5G路由报文的GW-IP字段中。
通过上述步骤,通过采用第一设备为CE-Prefix发布RT-5G路由报文,以使低端RT-5节点接收到所述RT-5G路由报文,其中,所述RT-5G路由报文的GW-IP字段中携带第一IP,所述CE-Prefix的Overlay下一跳为第二IP,且所述第二IP允许通过所述第一IP所属的节点到达,所述RT-5G路由报文用于指示所述低端RT-5节点将所述RT-5G路由报文中携带的GW-IP字段解析为RT-2路由,采用本公开所述的方法,与现有技术相比,通过一种替换RT-5G路由中的GW-IP取值的机制解决了在不升级作为接收端的低端RT-5节点的情况下,路由发送端为来自CE的CE-Prefix向接收端通告RT-5G路由的问题,即受限节点无法根据RT-5G路由转发到CE-Prefix的数据报文的问题,并且,所述RT-5G路由不会导致相应数据报文经网关(其中,所述CE不与网关邻接)绕行。
另外,本公开所述的RT-5G路由发布机制可应用于任何EVPN网络中,尤其是数据中心网络中,是一种通用技术方案。基于所述RT-5G路由发布机制,在数据中心中存在低端RT-5节点时,DC网关也能为CE-Prefix发布RT-5G路由。
图3是根据本公开实施例的RT-5路由报文的发布方法的流程图,如图3所示,该方法的步骤包括:
步骤S302,第一设备为CE-Prefix发布RT-5路由报文,以使低端RT-5节点接收到所述RT-5路由报文,其中,所述RT-5路由报文的ESI字段中携带第一ESI,所述CE-Prefix的Overlay下一跳为第二IP,且所述第二IP允许通过所述第一ESI所属的节点到达,所述RT-5路由报文用于指示所述低端RT-5节点将所述RT-5路由报文中携带的ESI字段解析为RT-1路由。
通过上述步骤,通过第一设备为CE-Prefix发布RT-5路由报文,以使低端RT-5节点接收到所述RT-5路由报文,其中,所述RT-5路由报文的ESI字段中携带第一ESI,所述CE-Prefix的Overlay下一跳为第二IP,且所述第二IP允许通过所述第一ESI所属的节点到达,所述RT-5路由报文用于指示所述低端RT-5节点将所述RT-5路由报文中携带的ESI字段解析为 RT-1路由,解决了与低端RT-5节点对接的问题。
本公开实施例与图2中的实施例都是为了解决与低端RT-5节点对接的问题,图2中的实施例是通过将复杂RT-5G转化为简单RT-5G来解决与低端RT-5节点对接的问题,本公开实施例则是通过将RT-5G转化为RT-5E来解决与低端RT-5节点对接的问题。
需要说明的是,上述第一以太网标签标识符可以为Ethernet Tag ID。
需要说明的是,RT-5G路由也是RT-5路由,本公开实施例中的技术方案可以适用于RT-5G路由和RT-5E路由,其中,ESI不为0的RT-5路由即为RT-5E,GW-IP不为0的RT-5就是RT-5G。
可选的,所述第一ESI为到达第一MAC所需经过的ESI,且所述RT-5路由中同时携带第一路由目标、第一MAC和第一标识符,其中,所述第一MAC为与第四IP对应的MAC,所述第四IP为第一广播域BD中的IP,且所述第四IP为第二IP或经过所述第四IP可以到达所述第二IP,所述第一路由目标为所述CE-Prefix所属的IP-VRF实例的导出路由目标eRT,所述第一广播域BD为与所述第一设备上的直连子网对应的BD,所述第一标识符为所述第一广播域BD的标识符,其中,所述第一MAC用于指示所述第三设备根据所述RT-5路由给所述第一设备发送数据包时将所述第一MAC作为目的MAC,所述第一ESI和所述第一标识符用于指示所述第三设备根据所述RT-5路由给所述第一设备发送数据包时根据所述第一ESI和所述第一标识符确定所述RT-1路由,其中,所述第一设备发布第三路由,所述第三路由为RT-1路由,且所述第三路由的ESI为所述第一ESI,且第一以太标签标识符字段为所述第一标识符,且所述第三路由和/或所述RT-5路由中还携带所述第二MAC,其中,所述第二MAC用于指示所述第三设备根据所述第三路由给所述第一设备发送数据包时将所述第二MAC作为源MAC。
可选的,所述RT-5路由和/或所述RT-1路由中还携带第一指示符,其中,所述第一指示符用于指示所述第三设备根据所述RT-5路由给所述第一设备发送数据包时需要封装源MAC和目的MAC。
可选的,所述第三路由中还携带第一路由目标,且所述第三设备上不存在所述第一广播域BD,所述第三设备上第一IP-VRF实例也不导入所述第一广播域BD的导出路由目标eRT,其中,所述第一IP-VRF实例为导入所述RT-5路由的IP-VRF实例,所述第三路由中不携带所述第一广播域BD的导出路由目标eRT。
可选的,所述第一ESI为与所述RT-5路由所属的IP-VRF实例对应的ESI,所述RT-5路由的第一以太网标签标识符字段为所述第二IP,且所述RT-1路由的第一以太网标签标识符字段为所述第二IP,且所述RT-1路由的ESI字段为所述第一ESI。
可选地,所述方法还包括:所述第一设备接收第一RT-5E路由,在满足第三条件、第四条件、第五条件三者至少之一的情况下,为所述第一RT-5E路由进行本地化;其中,所述第一RT-5E路由为所述第三设备发布的RT-5E路由,所述第三条件为第一节点集合、第二节点集合和第三节点集合满足第六条件,所述第四条件为所述第一RT-5E路由中携带的第一MAC为第四AC所属的BD中的MAC或者所述第一RT-5E路由中携带的第二MAC为与所述第四AC所属的BD对应的IRB接口的MAC,所述第五条件为所述第一RT-5E路由中携带了所述第一指示符,所述本地化为将所述第四AC作为所述第一RT-5E路由的一个转发出接口;其中,所述第一节点集合为存在第一元组的节点集合,所述第二节点集合为存在第二元组的节点集合,所述第三节点集合为存在第三元组的节点集合,所述第六条件为所述第一节点集合与所述第二 节点集合的交集非空且所述第三节点集合与所述第二节点集合的交集非空,所述第四AC为BD中的所述第一设备上的AC,所述BD与导入所述第一RT-5E路由的第十IP-VRF实例中的本地子网对应,所述第一元组为所述第四AC所属的<ESI,Ethernet Tag ID>,所述第二元组为所述EVPN网络中的<ESI,Ethernet Tag ID>;所述第三元组为<所述RT-5E路由的ESI,所述第一RT-5E路由的第一以太标签标识符字段>;其中,所述第一元组、第二元组、第三元组三者可以全部或部分相同。
可选的,所述第一设备发布第二路由报文,所述第二路由报文为RT-1路由报文,且所述第二路由报文的ESI为所述第一ESI,且所述第二路由报文的第一以太网标签标识符字段为所述第二IP。
可选的,当每个节点T均收到了表示通过节点T可以到达第二IP的路由,且当每个节点K均收到了RT-1路由时,才发布所述RT-5路由,否则仍然发布GW-IP为第二IP的RT-5G路由,其中,所述每个节点T向所述第一设备发布了RT-1路由,所述每个节点K向所述第一设备发布了通过节点K可以到达第二IP的路由,所述RT-1路由中的ESI为所述ESI且第一以太网标签标识符为所述第二IP。
可选的,所述第一设备与所述<第一ESI,第一以太网标签标识符>对应的RT-1路由为所述<第一ESI,第一以太网标签标识符>进行受AC影响的DF选举。
需要说明的是,本公开实施例中,所述第一设备根据所述第三设备为所述<第一ESI,第一以太网标签标识符>发布的RT-1路由为所述<第一ESI,第一以太网标签标识符>进行受AC影响的DF选举,其中,本实施例并不限定参与选举的设备,例如,参与选举的设备可以是第三设备发布的RT-1路由,也可以是其它设备。
需要说明的是,上述RT-1路由是由第三设备为所述<第一ESI,第一以太网标签标识符>发布的。
可选的,所述第三设备根据所述RT1路由为所述<ESI,第一以太网标签标识符>进行受AC影响的DF选举。
可选的,在发布所述第二路由报文之前,所述方法还包括:指示所述第一设备发布所述第二路由报文。
需要说明的是,本公开实施例中的第二路由报文可以理解为第一设备发的那条RT-1路由,或者其它与第二路由报文具有相同ESI字段和第一以太标签标识符字段的路由。
可选的,在发布所述RT-5路由之前,所述方法还包括:指示所述第一设备发布所述RT-5路由。
可选的,更新所述RT-1路由,使得更新后的RT-1路由中携带有根据DF选举结果设置的Primary/Backup属性。
可选的,在所述RT-5路由报文的ESI字段中携带第一ESI的情况下,所述RT-5路由报文还用于指示所述低端RT-5节点根据所述RT-1路由中的转发信息转发到所述CE-Prefix的数据报文。
可选的,本公开实施例还提供了所述第一设备为CE-Prefix发布RT-5路由报文,以使低端RT-5节点接收到所述RT-5路由报文之前的技术方案,具体为:确定所述第一设备是否收到了与所述第一ESI对应的RT-1路由;在收到的情况下,在所述RT-5路由报文的ESI字段中携带第一ESI;在未收到的情况下,在所述RT-5G路由报文的GW-IP字段中携带第二IP。
接下来,结合以下实施例对本公开中的RT-5G路由报文的发布方法以及RT-5路由报文的发布方法进行说明。
实施例1:
图4是根据本公开实施例的通过DGW为TOR代理RT-5G路由迭代流程的示意图。如图4所示,PE1和PE2、DGW1以及R1组成一个数据中心网络,其中的R1为CE设备,PE2为低端RT-5节点,PE1为非低端RT-5节点,CE通过物理端口P1(图1未示出)接入PE1,通过物理端口P2(图1未示出)接入PE2,所述P1和P2在CE上聚合为一个链路聚合组LAG,所述LAG的虚接口为SG21(图1未示出),所述CE通过子网10.0.0.0/24与PE1/PE2上的IP-VRF实例IPVRF1通信,其中,CE侧IP地址为10.0.0.2(即图中10.2),在子接口SG21.1(图1未示出)上,PE1和PE2侧IP地址为10.0.0.9(即图中10.9),分别在子接口P1.1和P2.1上,其中,SG21.1为SG21接口的子接口,P1.1为P1接口的子接口,P2.1为P2接口的子接口,P1和P2绑定ESI21。其中,R1的Loopback接口地址为1.1.1.1,DGW1的Looback接口地址为3.3.3.3,并且3.3.3.3在IPVRF1中,R1和DGW1(即图中DGW1)之间通过1.1.1.1和3.3.3.3建立一个CE-BGP会话,然后执行如下步骤:
步骤S1,在PE1上为1.1.1.0/24配置静态路由S1,S1在IPVRF1中,私网下一跳为10.0.0.2(即图中10.2)。
步骤S2,PE1上学习到10.0.0.2的ARP条目。
步骤S3,PE1为ARP条目发布RT2路由X0,X0的IP为10.0.0.2,ESI为图1中的ESI21,X0的MPLSLabel2字段填IPVRF1的EVPN标签,路由目标RT填写IPVRF1的导出路由目标eRT,MPLS Label1字段填写预先配置的一个标签。
步骤S4,PE1上为1.1.1.0/24发布RT-5G路由X1,GW-IP为10.0.0.2。
步骤S5,DGW1(即第一设备)通过该BGP会话学习到R1背后的一条IP前缀CE_Prefiex1(即9.9.9.0/24),CE_Prefix1的私网下一跳为1.1.1.1。
步骤S6,DGW1从PE1收到RT-5路由X1,X1的IP前缀为1.1.1.0/24,GW-IP为10.0.0.2。
步骤S7,DGW1根据X1可以知道经过10.0.0.2(即第一IP)所在的节点可以到达1.1.1.1(即第二IP)所属的节点,且1.1.1.1为CE_Prefix1(即第一路由)的Overlay下一跳,因此,DGW1为CE_Prefix1发布一个RT-5G路由报文X2(即第一路由报文),GW-IP为10.0.0.2。
步骤S8,PE2收到X0,在IPVRF1(可通过路由目标或ESI23匹配得到)的本地的10.0.0/24网段(可通过X0中的10.0.0.2匹配得到此网段)中形成一条ARP条目。
步骤S9,PE2收到X2,因为能够将X2的GW-IP解析为一条RT-2路由(即PE1发来的RT-2路由X0),因此,PE2将X2报文中的CE_Prefix添加到EVPN路由表中,形成路由表项RE2,RE2的私网下一跳为GW-IP的值(即10.0.0.2)。
步骤S10,PE1收到X2,能够将X2的GW-IP解析为本地直连网段10.0.0.0/24,于是将 X2报文中的CE_Prefix添加到EVPN路由表中,形成路由表项RE1,RE1的私网下一跳为GW-IP的值(即10.0.0.2)。值得注意的是,PE1不是低端RT-5节点,因此,不需要能够将X2的GW-IP解析为一条RT-2路由。
步骤S11,PE2节点在IPVRF1中收到路由器R2发给CE_Prefix1中的一个主机9.9.9.1的数据报文DP9,根据该报文的目的IP命中路由表项RE2,根据RE2获得到下一跳IP为10.0.0.2,根据该下一跳IP匹配到10.0.0.1所属的接口AC2,在AC2上查10.0.0.2对应的ARP表项给DP9封装以太头,并将DP9从AC2发出。
值得注意的是,PE1所发布的RT-2路由X0的下一跳Next hop为PE1的VTEP地址(比如100.1.1.1)。为描述方便起见,将PE1(或TOR1)的PE节点地址记为VTEP_IP1,将PE2(或TOR2)的PE节点地址记为VTEP_IP2,将TOR3的PE节点地址记为VTEP_IP3,将DGW1的PE节点地址记为VTEP_IP4。如此一来,所述100.1.1.1就是VTEP_IP1在本例中的一种取值。
需要说明的是,虽然PE2节点是根据来自DGW1的RT-5G路由X2转发DP9的,但是DP9并不会经过DGW1绕行。
通过上述步骤,通过DGW(DC GW,比如DGW1)为TOR(比如PE1和PE2)代理RT-5G路由迭代流程,避免了要求TOR支持复杂的RT-5G路由迭代,从而提高了TOR上的转发效率,并且,使得TOR设备的选择范围更宽,有助于降低建网成本。
实施例2:
除特殊说明之处以外,本实施例与实施例1相同。
以下为具体的特殊说明之处:
第一,与实施例1不同,PE1发布的X0路由中MPLSLabel2字段取值为IPVRF1的EVPN标签;PE2收到X0路由以后,形成一条FIB表项RE3,RE3的前缀为10.0.0.2/32,出向EVPN标签为MPLS Label2字段指示的标签,RE3中保存了到PE1的隧道封装信息。
第二,与实施例1不同,当PE2节点在IPVRF1中收到路由器R2发给CE_Prefix1中的一个主机9.9.9.1的数据报文DP9时,根据数据报文DP9的目的IP命中路由表项RE3,根据RE3获得到PE1的EVPN标签和隧道信息,并根据EVPN标签和隧道信息给DP9添加外层隧道封装后将DP9转发到PE1的IPVRF1。
第三,与实施例1不同,PE1节点在IPVRF1中收到数据报文DP9,根据数据报文DP9目的IP命中路由表项RE1,根据RE1获得得到下一跳IP为10.0.0.2,根据该下一跳IP匹配到10.0.0.1所属的接口AC1,于是知道转发出口为AC1,在AC1上查10.0.0.2对应的ARP表项给DP9封装以太头,并将DP9从AC1转发出去。
实施例3:
本公开实施例提出了一种向低端RT-5节点发布RT-5E路由的方法,应用于第一设备,具体的技术方案如下:
第一设备为满足第一条件(即“私网下一跳不是第一ESI但其私网下一跳IP可以通过第一ESI所属的节点到达”)的第一路由信息(即CE-Prefix,CE背后的前缀信息)发布第一路由报文(即RT-5E路由)。第一路由报文的ESI字段中携带第一ESI。CE-Prefix的Overlay下一跳为第二IP,第一条件为通过第一ESI所属的节点可以到达第二IP,第一路由报文用于第二设备根据与第一ESI对应的RT-1路由中的转发信息转发到CE-Prefix的数据报文。
在一个实施例中,第一设备只有在收到了与第一ESI对应的RT-1路由时,才将ESI字段设置为第一ESI,否则,仍然将GW-IP字段(注:GW-IP字段和ESI字段不可同时为非0值)设置为第二IP。
在一个实施例中,第二设备为低端RT-5节点。
需要说明的是,当低端RT-5节点为功能受限RT-5节点时,通过将原始RT-5G路由转换为该RT-5E路由,避免了该功能受限RT-5节点因无法正确处理原始RT-5G路由而无法转发该CE-Prefix的数据报文。
需要说明的是,通过向第二设备发布RT-5E路由,而不是向第二设备发布RT-5G路由,降低了因RT-5G路由无法被第二设备正确迭代而导致的报文转发异常的概率,提高了报文转发的效率。
上述的多个实施例基于相同的技术思路,分别通过将复杂RT-5G转化为简单RT-5G,以及将RT-5G转化为RT-5E的技术角度解决了与低端RT-5节点对接的问题,提高了报文转发的效率。
实施例4:
图5是根据本公开实施例的一种选择最佳代理发出RT-5G的GW-IP的示意图。如图5所示,TOR1(相当于上述图4中的PE1,即非低端RT-5节点),TOR2(相当于上述图4中的PE2,即低端RT-5节点),TOR3是另一台与PE1/PE2具有相同功能的节点,R2是与R1具有相同功能的节点,其中,R1设置(以及10.0.0.0/24子网)在以太分段ES10上,而R2设置(以及20.0.0.0/24子网)在以太分段ES20上,R1的网关地址为10.0.0.9,R2的网关地址为20.0.0.9,R1和R2的网关地址均在TOR节点上,Prefix3是既在R1背后又在R2背后的IP前缀,并且,7.7.7.7是R1与R2共同的IP地址(相当于7.7.7.7是一个Anycast地址),接下来执行如下步骤:
步骤S401,在TOR1上为7.7.7.0/24配置静态路由S21,S21在IPVRF1中,私网下一跳为10.0.0.2(即图中10.2),在TOR2上为7.7.7.0/24配置静态路由S22,S22在IPVRF1中,私网下一跳为10.0.0.2和20.0.0.2(即图中20.2),在TOR3上为7.7.7.0/24配置静态路由S23,S23在IPVRF1中,私网下一跳为20.0.0.2。
步骤S402,PE1上学习到10.0.0.2的ARP条目,PE3上学习到20.0.0.2的ARP条目。
步骤S403,PE1为ARP条目发布RT2路由X0a,X0a的IP为10.0.0.2,ESI为ESI21, X0a的MPLS Label2字段填IPVRF1的EVPN标签,路由目标RT填写IPVRF1的导出路由目标eRT,MPLS Label1字段填写预先配置的一个标签。
步骤S404,PE3为ARP条目发布RT2路由X0c,X0c的IP为20.0.0.2,ESI为ESI22,X0c的MPLS Label2字段填IPVRF1的EVPN标签,路由目标RT填写IPVRF1的导出路由目标eRT,MPLS Label1字段填写预先配置的一个标签。
步骤S405,PE1上为7.7.7.0/24发布RT-5G路由X1a,GW-IP为10.0.0.2;PE2上为7.7.7.0/24发布RT-5G路由X1b,GW-IP为10.0.0.2或20.0.0.2;PE3上为7.7.7.0/24发布RT-5G路由X1c,GW-IP为20.0.0.2。
步骤S406,PE1为ESI21发布RT-1 per EVI路由ET1;PE2为为ESI21发布RT-1 per EVI路由ET2,同时,为ESI22发布RT-1 per EVI路由ET3;PE3为ESI22发布RT-1 per EVI路由ET4。
步骤S407,DGW1通过该BGP会话学习到R1背后的一条IP前缀CE_Prefix3(即8.8.8.0/24),CE_Prefix3的私网下一跳(即Overlay下一跳)为7.7.7.7。
步骤S408,DGW1从PE1收到RT-5路由X1a,X1a的IP前缀为7.7.7.0/24,GW-IP为10.0.0.2,DGW1从PE2收到RT-5路由X1b,X1b的IP前缀为7.7.7.0/24,GW-IP为10.0.0.2或20.0.0.2,DGW1从PE3收到RT-5路由X1c,X1c的IP前缀为7.7.7.0/24,GW-IP为20.0.0.2。
步骤S409,DGW1根据X1a、X1b、X1c可以知道不同PE分别认为经过10.0.0.2(即第一IP)和20.0.0.2其中至少之一所在的节点可以到达7.7.7.7(即第二IP)所属的节点,且7.7.7.7为CE_Prefix3(即第一路由)的Overlay下一跳,因此,DGW1为CE_Prefix3发布一个RT-5G路由报文X2b(即第一路由报文),GW-IP为7.7.7.7,而不是10.0.0.2或20.0.0.2,也就是说,DGW1不再为PE1/PE2/PE3代理路由迭代流程。DGW1进行此决策的依据是,DGW1综合X1a、X1b、X1c、ET1、ET2、ET3、ET4可以将网络中的PE节点分为三个集合:第一集合、第二集合和其它PE节点组成的集合;其中,第一集合中的PE(即PE1和PE2)指示它7.7.7.7经过10.0.0.2可达,第二集合中的PE(即PE2和PE3)指示它7.7.7.7经过20.0.0.2可达;而DGW1只有当第一集合为第二集合的子集或第二集合为第一集合的子集时,才为Prefix3执行代理路由迭代流程。
需要说明的是,假设此时进行代理,比如,选择与第二集合对应的20.0.0.2作为GW-IP发布RT-5G路由,则到所述CE_Prefix3的数据报文就只会在PE2和PE3之间进行负荷分担,但是,实际上PE1也具有为CE_Prefix3转发的能力,因此,本次代理使CE_Prefix3损失了一条负荷分担路径,在某些情况下,尤其是网络中不存在功能受限节点的情况下,有些人员可以认为不进行代理是更好的选择,本实施例避免了在这些人员的这些网络中因为代理RT-5G路由迭代而导致的部分保护路径(比如负荷分担路径)不能用于转发的问题。
步骤S410,将R1也连接到TOR3,并且,是通过ES10连接。
通过以上步骤,TOR1、TOR2、TOR3均为ESI21发布了RT-1 per EVI路由。因此,在DGW1节点看来,第一集合(即指示经10.0.0.2可以到达第二IP的PE节点组成的集合)包括{PE1、PE2、PE3},第二集合包括{PE2、PE3},第二集合是第一集合的子集,于是DGW1为Prefix3进行代理路由迭代流程,迭代出的GW-IP选择两个集合中最大的那个(即第一集合)对应的IP(即10.0.0.2,也即第一IP)作为GW-IP。
需要说明的是,通过找出到各个候选GW-IP的PE集合,并找出其中能够作为所有其它集 合的超集的那个集合,用该集合对应的候选GW-IP作为最佳GW-IP,并封装到最终发出去的RT-5G路由中。本实施例通过找出具有最佳可达性的GW-IP作为最终发出的RT-5G路由的GW-IP,进一步避免了在用户误配置的情况下因为RT-5G路由迭代的代理功能而导致的部分保护路径无法用于转发的问题,减少了由于用户不正确地使用RT-5G路由迭代的代理功能而导致的网络保护功能不完备的风险。而在找不出可以作为所有其它集合的超集的集合的情况下,认为不存在最佳集合,也就是不同集合之间优势互补(比如,各选择了一部分保护性转发路径),此时,勉强选择一个包含PE数最多的集合作为次优集合,在不存在功能受限RT-5节点的网络中有些人员可能会认为还不如不代理(在转发路径是否全面和路由处理性能之间如何选择是各有得失的不同策略,都具有合理性),但是,如果网络中确实存在功能受限RT-5节点,用次优集合进行代理也比不代理的效果要好。
其中,如果是低端RT-5节点,用次优集合进行代理的效果对于某些管理策略来说不如不代理的效果好。如果是功能受限RT-5G节点,用次优集合进行代理的效果比不代理的效果要好;因为不代理意味着转发的路径不通,而使用次优集合进行代理只是可能会导致部分缺失保护的转发路径不通。即所有节点均不是功能受限节点,则不代理,但在部分节点为功能受限节点时,则使用次优集合进行代理。
需要说明的是,在一些实施例中,通过统一允许采用次优集合进行代理,使得网络管理员可以不必了解网络中哪些节点是功能受限节点,也不需要为了确定哪些节点可以关闭次优集合代理而对网络进行针对性的管理活动,减轻了网络管理负担,减少了因为不恰当地关闭次优集合代理功能而导致报文转发异常的风险。
需要说明的是,在一些实施例中,在所述不代理的情况下,即是指以CE-Prefix的原始下一跳作为GW-IP为该CE-Prefix发布对应的RT-5G路由报文;所述代理,在一些实施例中,即是指以根据所述原始下一跳迭代所获得的信息来发布RT-5路由,此时发布的可能是RT-5G路由,也可能是其它路由(比如RT-5E路由),如果是RT-5G路由,GW-IP也不再是所述原始下一跳,而是一个对所述RT-5G路由的接收端来说更易于处理的IP地址,因此减轻了所述接收端的处理负担,提高了所述接收端的处理效率。其中,所述CE-Prefix即CE背后的IP前缀,所述CE背后的IP前缀,即从PE节点需要经过CE节点才能到达的IP地址所属的IP前缀。
需要说明的是,当网络中的低端RT-5节点均不是功能受限RT-5节点时,不代理也不影响功能,代理成功则能提高性能,通过恰当的配置,在满足代理条件的情况下,所述低端RT-5节点因为所述第一设备的此种代理行为而提升了处理性能。尤其在网络中存在一部分功能受限RT-5节点时,务必使代理条件得到满足,这样既能使这部分功能受限节点得以为该CE-Prefix转发数据,又能使其它节点处理该CE-Prefix对应的路由时性能得以提升。
需要说明的是,在一些实施方式中,通过设定每个PE节点发布的EVPN路由(比如X1a)的BGP下一跳取值总是为该PE节点的PE节点地址,接收这些EVPN路由的节点就可以知道哪些EVPN路由是哪个PE节点发布的,从而可以据此对是否应当进行代理进行判断。比如X1a的BGP下一跳VTEP_IP1是PE1节点的PE节点地址,因此X1a是PE1节点发布的。
通过上述步骤,通过采用第一设备为CE-Prefix发布RT-5G路由报文,以使低端RT-5节点接收到所述RT-5G路由报文,其中,所述RT-5G路由报文的GW-IP字段中携带第一IP,所 述CE-Prefix的Overlay下一跳为第二IP,且所述第二IP允许通过所述第一IP所属的节点到达,所述RT-5G路由报文用于指示所述低端RT-5节点将所述RT-5G路由报文中携带的GW-IP字段解析为RT-2路由,采用本公开所述的方法,与现有技术相比,通过一种替换RT-5G路由中的GW-IP取值的机制解决了在不升级作为接收端的低端RT-5节点的情况下,路由发送端为来自CE的CE-Prefix向接收端通告RT-5G路由的问题,即受限节点无法根据RT-5G路由转发到CE-Prefix的数据报文的问题,并且,所述RT-5G路由不会导致相应数据报文经网关(其中,所述CE不与网关邻接)绕行。
通过上述实施例所提供的技术方案,描述了一种使DC网关与所述低端RT-5节点对接的方法,以使其不升级这些低端RT-5节点的前提下,使其支持原本只有在“它们所在的位置上(或所属相同角色)的节点”支持“将RT-5G路由解析为另一条RT-5路由”的前提下才能支持的场景,解决了RT-5G路由对接范围过窄的问题,实现了利用旧设备实现复杂EVPN网络的功能,降低了网络维护成本,延长了TOR节点退出原有网络角色的时间。
实施例5:
除特殊说明之处以外,本实施例与实施例4相同。
本公开实施例的特殊说明之处如下:
第一,与实施例4不同,本实施例中R1并不需要连接TOR3;
第二.与实施例4不同,本实施例中,CE不是与DC网关(DGW)建立CE-BGP,而是就近与部分TOR节点建立CE-BGP,不失一般性,本例假设由R2跟TOR3建立CE-BGP会话S2003;如图6所示,图6是根据本公开实施例的一种建立CE-BGP会话的示意图。
第三,与实施例4不同,本实施例还需要结合图6对如下步骤进行说明:
步骤S7000,在TOR1、TOR2和TOR3上分别为IPVRF1绑定ESI321。
步骤S7010,在TOR1、TOR2、TOR3上分别指示为7.7.7.7发布RT-1 per EVI路由,其中,所述RT-1 per EVI路由的ESI为ESI321,所述RT-1 per EVI路由的第一以太网标签标识符与所述7.7.7.7具有相同的值(记为ETI7)。
需要说明的是,在一些实施方式中,所述第一以太网标签标识符可以是所述RT-1路由的Ethernet Tag ID字段。
步骤S7040,TOR1上为7.7.7.7发布RT-1 per EVI路由Y1a,TOR2上为7.7.7.7发布RT-1 per EVI路由Y1b,TOR3上为7.7.7.7发布RT-1 per EVI路由Y1c(即第二路由)。
步骤S7090,TOR3通过该CE-BGP会话S2003学习到R2背后(同时也是R1背后)的一条IP前缀CE_Prefix3(即8.8.8.0/24),CE_Prefix3的私网下一跳为7.7.7.7。
步骤S7100,TOR3从PE1和PE2分别收到RT-1路由Y1a和Y1b。
步骤S7110,TOR3根据Y1a、Y1b、Y1c、X1a、X1b、X1c可以知道经过ESI321(即第一ESI)所在的节点可以到达7.7.7.7(即第二IP)所属的节点,且7.7.7.7为CE_Prefix3(即第一路由)的Overlay下一跳,因此,TOR3为CE_Prefix3发布一个RT-5E路由报文Y2c5(即第一路由报文),ESI为ESI321,ET-ID(Ethernet Tag ID,即第一以太标签标识符字段)与7.7.7.7具有相同的值(记为ETI7)。
需要说明的是,可选地,TOR3可以知道经过由ESI321标识的ES上的值为第二IP的 Ethernet Tag可以到达第二IP,或者,简单地说经过第一ESI可以到达第二IP。
步骤S7120,TOR2(PE2)收到所述RT-5E路由报文Y2c5和所述RT-1 per EVI路由报文Y1a和Y1c,使得PE2可以将目的IP为8.8.8.0/24的数据报文转发给TOR1和TOR3,因为所述Y2c5的ESI和ET-ID与所述Y1a和Y1c的ESI和ET-ID是相同的。
需要说明的是,由于TOR2是低端RT-5节点,TOR3将原本将要以GW-IP为7.7.7.7的RT-5G路由报文发布的路由转换为以RT-5E路由报文发布,从而简化了TOR2上的处理,同时,由于三个TOR节点都为所述<ESI321,ETI7(即7.7.7.7)>发布了RT-1 per EVI路由,因此,TOR2可以将数据报文可以在这三个TOR节点的AC之间进行保护或者负荷分担。
需要说明的是,相应RT-1 per EVI路由还设置为在DGW等不与所述R1和R2其中任何一个邻接的PE节点上进行all-active ESI或Single-Active ESI转发,相应RT-1 per EVI路由还可以设置为在与R1和R2其中至少一个节点邻接的TOR上进行出口链路保护,所述出口链路保护即为当所述CE_Prefix3的Overlay下一跳(比如所述7.7.7.7)不可达时的保护。
需要说明的是,如果TOR3只从TOR2上收到了Y1b,而没有收到X1b,或者只收到了X1b,没有收到Y1b,则TOR3认为TOR2或者不是ESI321所在的节点,或者不是7.7.7.7所在的节点,或者没有被进行本实施例所需的恰当的配置,因而并不是能被断定为充分满足经ESI321所在的节点可以到达7.7.7.7所属的节点的条件的节点,但它又满足部分条件,因此也有可能是可以到达7.7.7.7的节点(有此能力但没有被恰当地配置),此时可以不为CE_Prefix3进行代理,还是要发布GW-IP为7.7.7.7的RT-5G路由出去,以便让其它节点根据原始的多次路由迭代流程对所述RT-5G路由进行处理。
只要任何一个节点为7.7.7.7发布(即ET-ID为7.7.7.7的)的ESI为ESI321的RT-1 per EVI路由(比如Y1a)与该节点发布的以7.7.7.7为IP前缀的任意一种私网路由(比如X1a)没有同时被TOR3收到,TOR3就不会认为该节点认可经过ESI321可以到达7.7.7.7,只要无法确定任一节点认可经过ESI321可以到达7.7.7.7,TOR3就不会认为可以为以7.7.7.7为私网下一跳的CE-Prefix发送ESI为ESI321,ET-ID为7.7.7.7的RT-5E路由。
需要说明的是,当IP-VRF中有多组CE,每组CE各有一批CE-Prefix,每批CE-Prefix都有一个像7.7.7.7那样的地址作为第二IP,对于所有这些CE-Prefix,本实施例只需要配置一个ESI(比如ESI321),因而只需要发布一条RT-1 per ES路由,因而避免了为每个此种第二IP配置一个ESI时发布的RT-1 per ES路由过多的问题,减少了网络中的EVPN路由负担。
需要说明的是,由于同一IP-VRF中所有同类的第二IP共享同一ESI,本实施例采用受AC影响的DF选举方法为每个第二IP选举DF,更容易实现服务刻画Service Carving,也就是更容易使不同第二IP的DF落到不同PE节点上,解决了为每个第二IP映射一个独立的ESI时需要更多配置信息才能使不同第二IP的DF落到不同PE节点上的问题。
实施例6:
除特殊说明之处以外,本实施例与实施例5相同。
本公开实施例的特殊说明之处如下:
第一,与实施例5不同,本实施例中R1和R2是同一虚拟网络功能VNF的两个组件,该VNF的功能是作为一台虚拟路由器,7.7.7.7是该虚拟路由器上的BGP Router ID,R1和R2是该虚拟路由器的两个LPU;
第二,与实施例5不同,本实施例中,在S7090中,TOR3从S2003收到的CE_Prefix3的私网下一跳为IP612而不是7.7.7.7,该CE_Prefix3为IPv6前缀,该IP612是一个IPv6地址,该IP612也是R1和R2上的共同IP地址;
需要说明的是,为与前面的实施例相区分,此后将这种CE_Prefix3称为CE_Prefix3。
第三,与实施例5不同,本实施例还需要如下步骤:
步骤S7104,指示PE1上为IP612发布(即发布IP前缀匹配IP612的路由)RT-5路由Z1a,其辅助Overlay Index为7.7.7.7。
步骤S7105,指示PE2上为IP612发布RT-5路由Z1b,其辅助Overlay Index为7.7.7.7。
步骤S7106,指示PE3上为IP612发布RT-5路由Z1c,其辅助Overlay Index为7.7.7.7。
步骤S7107,所述PE1、PE2、PE3分别发布所述Z1a、Z1b和Z1c。
需要说明的是,所述S7104、S7105、S7106和S7107在所述S7110之前。
与实施例5不同,在本实施例中,在步骤S7110中,TOR3需根据Y1a、Y1b、Y1c、X1a、X1b、X1c、Z1a、Z1b、Z1c才可以知道经过ESI321(即第一ESI)所在的节点可以到达IP612(即第二IP)所属的节点,且IP612为CE_Prefix3(即第一路由)的Overlay下一跳,因此,TOR3为CE_Prefix3发布一个RT-5E路由报文Y2c6(即第一路由报文),ESI为ESI321,ET-ID与7.7.7.7具有相同的值。
需要说明的是,根据所述Y1a和X1a可以知道经过ESI321所在的节点可以到达7.7.7.7,通过Z1a可以知道经过7.7.7.7可以到达IP612,因此,根据Y1a、X1a和Z1a可以知道经过ESI321可以到达IP621。
需要说明的是,如果TOR1、TOR2和TOR3中任何一个节点通告了X组(即X1a、X1b、X1c)、Y组(即Y1a、Y1b、Y1c)、Z组(即Z1a、Z1b、Z1c)三组路由中的任意一组中的一条路由W1,但该节点没有通告其余两组中的任意一组中与W1对应的那条路由W2,则此时,说明所述代理对性能提升效果不佳或者相应配置信息还不完整(比如误配置的情况下),所述TOR2可以选择不为所述CE_Prefix3进行代理,而是直接通告GW-IP为所述IP612的RT-5G路由。通过此种对所述代理机制是否可以提高转发效果的判断机制,进一步避免了因为所述代理导致一些负面影响。
需要说明的是,通过引入Z组路由(比如Z1a)和在代理过程中利用Z组路由进行迭代,解决了当所述CE_Prefix3的Overlay下一跳为IPv6地址(比如所述IP612)时,因IPv6地址无法在第一以太网标签标识符字段中携带而导致相应RT-1 per EVI路由无法在此情况下发布的问题。
需要说明的是,TOR1和TOR2收到TOR3发出的所述Y2c6,因为其本地存在相同的ESI和相同的ET-ID,其在将所述Y2c6安装到转发面时,Overlay下一跳被替换为与该ET-ID具有相同值的IP地址(即7.7.7.7)。而在DGW节点收到所述Y2c6时,因为其本地不存在相同的 ESI和相同的ET-ID,其在将所述Y2c6安装到转发面时,采用<所述ESI,所述ET-ID>进行IP-aliasing。
需要说明的是,在一些实施方式中,所述辅助Overlay Index可以通过BGP扩展团体属性来携带。
实施例7:
除特殊说明之处以外,本实施例与实施例6相同。
本公开实施例的特殊说明之处如下:
第一,与实施例6不同,本实施例中R1和R2与TOR直连的子网也是IPv6子网(分别记为NH_SN1和NH_SN2),因此,在步骤S401中为7.7.7.7配置的静态路由的IP前缀不再是IPv4前缀,而是一个IPv6前缀A6P7;所述A6P7由所述VNF的BGP Router ID(即所述7.7.7.7)按如下规则(记为规则1)映射得到:所述A6P7为一个96位前缀,所述A6P7的高64位为第一指定值,所述A6P7的低32位为所述BGP Router ID。
需要说明的是,在与所述VNF邻接的每个PE上,均需为同一A6P7配置静态路由。
第二,与实施例6不同,本实施例中,在步骤S405(从实施例4中继承的步骤)中发布的X1a、X1b和X1c三条路由是为所述A6P7发布的,其中X1a的GW-IP是R1在所述NH_SN1中的地址,X1b的GW-IP是R1在所述NH_SN1中的地址或R2在所述NH_SN2中的地址,X1c的GW-IP是R1在所述NH_SN2中的地址。
第三,与实施例6不同,本实施例中,TOR1和TOR2收到TOR3发出的所述Y2c6,因为其本地存在相同的ESI和相同的ET-ID,其在将所述Y2c6安装到转发面时,Overlay下一跳被替换为由与该ET-ID具有相同值的IP地址(即7.7.7.7)按规则1映射而成的IPv6前缀(即所述A6P7)中的IP地址。
需要说明的是,某个IP前缀中的IP地址,指的是能匹配该IP前缀的IP地址,比如,10.0.0.2是IP前缀10.0.0.0/24中的IP地址。
需要说明的是,通过将VNF的BGP Router ID映射为IPv6前缀,统一了CE_Prefix3自身的IP地址版本与其下一跳的IP地址版本以及CE与PE之间直连子网的IP地址版本,从而简化了处理流程。
需要说明的是,假如CE-BGP是在TOR2与R2之间建立,则CE_Prefix3是TOR2通过所述CE-BGP会话直接学到的(记为情况1),与TOR3通过未代理的RT-5G路由将所述CE_Prefix3发给它的情况(记为情况2)相比,两种情况下所述CE_Prefix3安装到转发面形成的转发表项是一样的,之所以TOR2能处理情况1而不能处理情况2,是因为,TOR2作为一个低端RT-5节点,它只是在控制面对RT-5G路由的解析存在限制(只支持在存在一条NLRI-IP为与所述RT-5G路由的GW-IP字段相等的RT-2路由的条件下才能将所述RT-5G路由安装到转发面),而其转发面,对于与该RT-5G路由(即情况2中的CE_Prefix3对应的RT-5G路由)在转发面的形态(比如相应FIB表项的形态)相同的其它路由(比如所述情况1中安装到转发面后的CE_Prefix3)并没有处理限制。
实施例8:
除特殊说明之处以外,本实施例与实施例4相同。
本实施例提供了一种RT-5路由报文的发布方法,方法包括:
所述第一ESI为到达第一MAC所需经过的ESI,且所述RT-5路由中同时携带第一路由目标、第一MAC、第二MAC和第一标识符,其中,所述第一MAC为与第四IP对应的MAC,所述第四IP为第一广播域BD中的IP,且所述第四IP为第二IP或经过所述第四IP可以到达所述第二IP,所述第一路由目标为所述CE-Prefix所属的IP-VRF实例的导出路由目标eRT,所述第二MAC为所述第一广播域BD的IRB接口的MAC,所述第一广播域BD为与所述第一设备上的直连子网对应的BD,所述第一标识符为所述第一广播域BD的标识符,其中,所述第一MAC用于指示所述第三设备根据所述RT-5路由给所述第一设备发送数据包时将所述第一MAC作为目的MAC,所述第二MAC用于指示所述第三设备根据所述RT-5路由给所述第一设备发送数据包时将所述第二MAC作为源MAC,所述第一ESI和所述第一标识符用于指示所述第三设备根据所述RT-5路由给所述第一设备发送数据包时根据所述第一ESI和所述第一标识符确定所述RT-1路由。
可选的,所述RT-5路由中还携带第一指示符,其中,所述第一指示符用于指示所述第三设备根据所述RT-5路由给所述第一设备发送数据包时需要封装源MAC和目的MAC。
本公开实施例的其它特殊说明之处如下:
第一,与实施例4不同,本实施例中ES10和ES20(其标识符ESI22即为所述第一ESI)通过TOR上的广播域BD才接入所述IPVRF1,其中,R1通过BD1接入IPVRF1,R2通过BD2(即所述第一广播域BD)接入IPVRF1;各节点上连接BD1与IPVRF1的接口为IRB1,连接BD2与IPVRF2的接口为IRB2(即所述第一IRB),相应地,所述10.0.0.9(即图4中所示10.9)和20.0.0.9(图中未示出)也分别为IRB1和IRB2的IP地址;在本实施例中,不同节点上的IRB1具有相同的MAC地址,记为MAC2a,不同节点上的IRB2具有相同的MAC地址,记为MAC2b(即所述第二MAC);所述10.2的MAC记为MAC1a,所述20.2(即所述第四IP)的MAC记为MAC1b(即所述第一MAC);所述BD2在所述EVPN网络中通过值为ETI8的Ethernet Tag ID(即所述第一标识)来标识。
第二,与实施例4不同,本实施例中,所述ET1、ET2、ET3、ET4中的EVPN标签为用于确定所述BD1或BD2的EVPN标签,以所述ET4(即第三路由报文)为例,其中的EVPN标签(即为所述第一标签)为在所述TOR3上确定所述BD2所用的EVPN标签;所述ET1、ET2、ET3、ET4中的路由目标并不是BD1或BD2的导出路由目标eRT(Export Route Target),而是IPVRF1(即第一IP-VRF实例)的导出路由目标eRT(即第一路由目标)。
第三,与实施例4不同,本实施例中,最终发布的RT-5E路由中还需要携带所述第一MAC和第二MAC,所述第一MAC在本实施例中即所述MAC1b,所述第二MAC在本实施例中即为MAC2b。
第四,与实施例4不同,本实施例还需要结合图7对如下步骤进行说明:
图7是根据本公开实施例的一种在EPVN网络中的组件连接的示意图。
步骤S8090,TOR3通过该CE-BGP会话S2003学习到R2背后(同时也是R1背后)的一条IP前缀CE_Prefix3(即8.8.8.0/24),CE_Prefix3的私网下一跳为7.7.7.7。
步骤S8100,TOR3从PE1和PE2分别收到ET1、ET2和ET3以及X1a、X1b。
需要说明的是,ET4和X1c是TOR3自己发布的路由,可以认为发出前就已从自己收到。
步骤S8110,TOR3根据ET1、ET2、ET3、ET4、X1a、X1b、X1c可以知道经过ESI21或ESI22所在的节点可以到达7.7.7.7(即第二IP)所属的节点,且7.7.7.7为CE_Prefix3(即第一路由)的Overlay下一跳,因此,TOR3为CE_Prefix3发布一个RT-5E路由报文Y2c8(即第一路由报文),ESI为ESI22(即第一ESI),ET-ID为ETI8,RMAC(Router’s MAC,路由器MAC)为所述第一MAC,通过BGP属性(比如TLV、团体属性或扩展团体属性)来携带所述第二MAC,所述第二MAC与所述第一MAC可以通过BGP属性的类型编码来相互区别。
需要说明的是,TOR3选择ESI22而不是ESI21,是因为ESI22是与其本地某个直连子网(即IRB2所在的子网20.0.0.0/24)对应的BD中的AC所属的ESI。
步骤S8120,TOR2(PE2)收到所述RT-5E路由报文Y2c8和所述RT-1 per EVI路由报文ET3和ET4,使得TOR2可以将目的IP为8.8.8.0/24的数据报文DP888转发给第一AC(即TOR2上的BD2在ES20上的AC)或TOR3,因为所述Y2c8的ESI和ET-ID与所述ET3和ET4的ESI和ET-ID是相同的。
需要说明的是,尽管TOR2没有直接从CE-BGP学到私网下一跳为20.0.0.2的CE_Prefix3的路由,但TOR2还是可以将DP888从第一AC转发出去,这是因为第一AC与Y2c8具有相同的ESI和ET-ID,通过在Y2c8中同时携带与第一AC对应的ESI和ET-TI,本实施例解决了无法将远端PE(比如TOR3)同步来的没有携带私网下一跳的RT-5路由(比如Y2c8)与本地BD(比如TOR2上的BD2)中的AC(比如第一AC)对应起来的问题,达成了可以直接将与这种RT-5路由对应的数据报文(比如DP888)直接从本地转发出去的技术效果,提高了PE和CE之间带宽的利用率,在负荷分担情况下提高了负荷分担的均匀性。
需要说明的是,当TOR2选择在第一AC和TOR3之间负荷分担,而TOR3选择在TOR2和第三AC(即TOR3上BD2在ES20上的AC)之间负荷分担时,TOR2负荷分担给TOR3的数据报文(比如DP888)不会被TOR3再发回给TOR2,同理,TOR3负荷分担给TOR2的数据报文不会被TOR2再发回给TOR3,从而避免了因为互相负荷分担而造成数据报文在TOR2和TOR3之间乒乓传递的问题。
需要说明的是,之所以TOR2负荷分担给TOR3的数据报文不会被TOR3再发回给TOR2,这是因为,当TOR2给TOR3发送该数据报文(比如DP888)时,其按照ET4封装的EVPN标签是标识BD2的标签,因此,所述DP888在TOR3上只会在BD2中进行MAC转发,而不在IPVRF1中进行IP转发,又因为该负荷分担行为只IPVRF1中的转发行为,所以DP888到达TOR3上不再进行该负荷分担行为,从而避免了由于IP-VRF中的负荷分担行为导致的数据报文被来回转发的问题,从而避免了带宽浪费,也避免了正常流量被这些乒乓流量挤占带宽,从而提高了正常流量的安全性。
步骤S8130,TOR2(PE2)收到目的IP为8.8.8.0/24的EVPN数据报文DP888,此DP888为一个IP报文,在根据Y2c8转发DP888时,根据所述第一指示符,TOR2即可知道要为DP888添加以太头,该以太头的源MAC为第二MAC,目的MAC为第一MAC。
需要说明的是,在一种实施方式中,在Y2c8中用于携带所述第二MAC的TLV或路由属性 的类型编码就可以作为所述第一指示符。
需要说明的是,无论TOR2将DP888从第一AC转发出去,还是将其转发到TOR3,源MAC和目的MAC均按所述Y2c8中的第一指示符的指示进行封装(见S8130),此处不需要查ARP/ND表项,因而提高了转发效率,降低了转发流程复杂度,有利于降低转发芯片成本。
需要说明的是,在本实施例中,并不需要所述DGW1上存在与BD1或BD2对应的IRB接口,所述TOR1上也不需要存在与BD2对应的IRB接口,因此,这些节点在根据ET1或ET2转发DP888时,无法给DP888填写适当的源MAC,如果源MAC填写不当,可能会导致在CE侧的MAC转发表项出现异常,通过在Y2c8中携带第二MAC,本实施例避免了因源MAC填写不当导致的CE侧MAC转发表项出现异常的问题,提高了网络的安全性。
步骤S8140,TOR1(PE1)收到所述RT-5E路由报文Y2c8和所述RT-1 per EVI路由报文ET2、ET3,使得TOR1可以将目的IP为8.8.8.0/24的数据报文DP888转发给第二AC(即TOR1上的BD1在ES10上的AC)。
需要说明的是,因为所述Y2c8的ESI和ET-ID与所述ET3的ESI和ET-ID是相同的,并且所述ET3与所述ET2均是来自同一PE节点(即TOR2),并且所述第一MAC是所述第二AC所属BD(即BD1)中的主机(即10.2)的MAC(即MAC1a)。这是建立在网络规划时将MAC1a(第二IP在与BD1对应的子网10.0.0.0/24中的下一跳10.2的MAC,简称为第二IP与BD1对应的下一跳MAC)与MAC1b(第二IP在与BD2对应的子网20.0.0.0/24中的下一跳20.2的MAC,简称为第二IP与BD2对应的下一跳MAC)规划为相同的MAC地址的前提上的。
需要说明的是,通过将第二IP与BD1对应的下一跳MAC和第二IP与BD2对应的下一跳MAC预先规划为相同的MAC值,本实施例进一步解决了当接收RT-5E路由报文(比如Y2c8)的节点(比如TOR1)上不存在由该RT-5E路由的ESI(比如作为第一ESI的ES20)标识的ES(比如ES20)或者不存在由该RT-5E路由的ET-ID(即第一以太标签标识符字段)标识的Ethernet Tag的情况下,与所述RT-5E路由对应的数据报文(比如DP888)不能就近从本地AC(比如第二AC)转发出去而只能从远端(比如TOR2或TOR3)绕行(多经过一些PE而最终到达的仍然是同一VNF,因此称为绕行)的问题。
为描述方便起见,当接收RT-5E路由报文的节点上不存在由该RT-5E路由的ESI标识的ES或者不存在由该RT-5E路由的ET-ID标识的Ethernet Tag时,如果按所述RT-5E路由转发数据报文时能够就近从本地AC转发出去,就可以称为接收该RT-5E路由的该节点对该RT-5E路由可以进行本地化,所谓本地化即将至少一条相应本地AC作为该RT-5E路由的一个转发出接口。
需要说明的是,由于R1和R2属于同一VNF且IP地址10.2和20.2属于不同广播域,将其规划为相同MAC地址在技术上是便于实施的,而且,由于同一VNF经常通过不同的<ESI,ET-ID>组合交错连接到不同的成对TOR,只要入口节点和出口节点存在符合第三条件的组合1和组合2和组合3,接收RT-5E路由报文的节点就可以对该RT-5E路由进行本地化,其中,所述第三条件为:组合1与入口节点邻接,组合3与出口节点邻接,两者分别与组合2至少有一个共同的邻接节点(并且是一个其上存在该IP-VRF实例的PE节点),其中,组合1、组 合2、组合3三者可以全部或部分为同一组合。
需要说明的是,当CE为VNF时,所述第三条件是便于满足的,因此,以第三条件是否满足为标准决定是否可以对接收的RT-5E路由进行本地化,是便于实施的,简化了为了进行本地化而需要进行的网络管理工作。
需要说明的是,当根据所述第三条件对接收的RT-5E路由进行本地化时,所谓本地化即是指所述入口节点将第四AC作为该RT-5E路由的一个转发出接口,其中,所谓第四AC即与组合1对应的所述入口节点上的本地AC。
需要说明的是,所述第三条件还可以与第四条件和第五条件共同决定是否可以对接收的RT-5E路由进行本地化。其中,所谓第四条件即是指:所述RT-5E路由中携带的第一MAC为所述第四AC所属的BD中的MAC和/或所述RT-5E路由中携带的第二MAC为与所述第四AC所属的BD对应的IRB接口的MAC地址;所谓第五条件即是指:所述RT-5E路由中携带了第一指示符。
需要说明的是,通过在同时满足第三条件、第四条件和第五条件时才对接收的RT-5E路由进行本地化,本实施例进一步防止了由于误配置而对接收的某些RT-5E路由进行了不恰当的本地化而造成的转发异常,简化了网络的规划和配置的约束条件。
需要说明的是,当在第四条件中通过所述RT-5E路由中携带的第二MAC来决定是否可以对所述RT-5E路由进行本地化时,网络将比通过所述RT-5E路由中携带的第一MAC来决定是否可以对所述RT-5E路由进行本地化更加高效,因为所述第二MAC只需要与IRB接口的MAC进行比较,而所述第一MAC要在BD的所有MAC查找,后者比较低效。
需要说明的是,由于TOR2是低端RT-5节点,TOR3将原本将要以GW-IP为7.7.7.7的RT-5G路由报文(即原始RT-5G路由报文)发布的路由转换为以RT-5E路由报文发布,从而简化了TOR2上的处理,同时,由于TOR2和TOR3节点都为所述<ESI22,ETI8>发布了RT-1 per EVI路由,因此,TOR2可以将数据报文可以在这两个TOR节点的AC之间进行保护或者负荷分担。
需要说明的是,通过出口节点(比如,对于Y2c8来说,发送Y2c8路由的节点为出口节点)直接为入口节点(比如,对于Y2c8来说,接收Y2c8路由的节点为入口节点)指定源MAC的方式,去除了源MAC查找流程,提高了转发效率,简化了对入口节点的要求,当入口节点为低端RT-5节点时,更易于实施。
需要说明的是,通过去除对入口节点上需存在与出口AC(比如BD2在ES20上的AC)所属BD(比如BD2)对应的IRB接口的依赖,从而去除了对入口节点上需存在与出口AC所属BD的依赖,从而使得在不存在该BD的入口节点上也能为该CE-Prefix转发数据报文,从而不需要仅仅为了激活为经由该出口AC转发的CE-Prefix转发数据报文的能力,而在不存在该BD对应的子网中的本地主机的PE节点(比如DGW1上本地就不存在20.0.0.0/24子网中的主机)上配置该BD(比如DGW1上就不需要配置BD2),从而简化了网络部署,降低了网络部署难度。
实施例9
除特殊说明之处以外,本实施例与实施例8相同。
本公开实施例的特殊说明之处如下:
与实施例8不同,所述10.2和所述20.2位于同一ES上的不同Ethernet Tag(由Ethernet Tag标识)上,而不是位于两个不同的ES,换句话说,在本实施例中,ES10与ES20表示同一ES,该ES记为E82010,ESI21与ESI22表示同一ESI,该ESI记为ESI2010,ESI2010用于标识E82010。因此,本实施例中,Y2c8和ET1、ET2、ET3、ET4中的ESI均为ESI2010。
与实施例8不同,本实施例中,ET1、ET2中还携带MAC2a,ET3、ET4中还携带MAC2b(即第二MAC)。
与实施例8不同,本实施例中,所述ET1、ET2、ET3、ET4中还需要携带所述第一MAC,所述第一MAC即所述MAC1a或MAC1b;以所述ET4为例,其所携带的所述第一MAC即所述MAC1b
与实施例8不同,本实施例中,所述ET1、ET2、ET3、ET4中还需要携带所述第二MAC,所述第二MAC即所述RT-1 per EVI路由(即ET1、ET2、ET3或ET4)所属BD的IRB的MAC;以所述ET4为例,其所携带的所述第二MAC即所述MAC2b。
与实施例8不同,本实施例中接收所述Y2c8路由的节点上,根据所述Y2c8路由给所述CE_Prefix3中的主机发送数据报文DP888b(与DP888具有相同目的IP,但在不同节点上接收)时,并不局限于所述Y2c8中的ET-ID去确定对应的RT-1 per EVI路由,只要一条RT-1 per EVI路由RT1_for9的ESI与所述Y2c8一样,并且RT1_for9与Y2c8属性同一IP-VRF,即可用于转发DP888b,只不过,在一些实施方式中,与所述Y2c8具有相同ET-ID的路由可以具有更高的优先级被优先选用。
经过如此改进之后,收到所述Y2c8路由的节点(比如DGW1)不仅可以根据ET3和ET4将DP888b发送给TOR2和TOR3,还可以根据ET1和ET2将DP888b发给TOR1和TOR2,其中,ET2和ET3均与TOR2对应,这可以使得在DGW1对DP888b进行负荷分担时,TOR2有2/4而不是1/3的机率被选中为到DP888b的隧道目的节点,由于TOR2上可用于转发DP888b的带宽资源(即ES2010的物理链路)比TOR1和TOR3更充足,这种做法可以提高其负荷分担的精确度。
需要说明的是,所述Y2c8中只能携带BD2的IRB的MAC,但是,当DGW1将DP888b发给TOR1并最终从第二AC转发给R1时,R1期望的源MAC是BD1的IRB的MAC,通过在RT-1 per EVI路由(RT-1路由的一种形式)中携带第二MAC,出口节点为不同BD中的AC发布的RT-1 per EVI路由中可以携带不同的第二MAC,因此,当入口节点为根据不同RT-1 per EVI路由转发DP888b到不同出口AC(比如根据ET1转发到第二AC,根据ET4转发到第三AC)时,就可以封装不同的源MAC。
需要说明的是,本实施例的技术方案对所述RT-1路由与所述RT-5路由两者携带的所述第二MAC不同的情况进行了说明,与上述其他实施例相比,本实施例中的这种优先以所述RT-1路由中的第二MAC作为源MAC的情况,解决了按照RT-5E路由中的第二MAC封装源MAC可能导致CE收到的源MAC可能不符合期望的问题,从而避免了要求将不同BD的IRB(比如IRB1和IRB2)的MAC地址规划为同一MAC地址的要求,能够简化了网络规划。
实施例10
除特殊说明之处以外,本实施例与实施例8或实施例9相同。
本公开实施例的特殊说明之处如下:
本实施例中,所述ET1、ET2、ET3、ET4中同时还需要携带相应BD的eRT,并且,所述BD中不再为相同AC发布自己的RT-1 per EVI路由。
需要说明的是,所述ET1、ET2、ET3、ET4既可以被BD中的MAC转发表项引用(用于进行二层转发),又可以被IP-VRF中的IP转发表项引用(用于进行三层转发)。
需要说明的是,与BD和IP-VRF分别为同一AC发布不同(比如RD和路由目标不同)的RT-1 per EVI路由相比,本实施例为相应BD(该AC所属的BD)和IP-VRF(该AC所属BD的IRB所属的IP-VRF)实例为同一AC发布同一RT-1 per EVI路由(即同时携带该BD的eRT和该IP-VRF的eRT的RT-1 per EVI路由),大大减少了RT-1路由的数量,减少了EVPN网络中的路由和转发资源以及处理器资源消耗。
需要说明的是,由于在实施例8中,在IP-VRF中根据所述RT-1路由转发数据报文时封装的EVPN标签可以是标识BD的EVPN标签,在本实施例中,才可以将同一AC为相应BD和IP-VRF发布的RT-1 per EVI路由进行合并。
需要说明的是,本公开所述的路由发布机制,可以是经过路由反射器RR中继的路由发布机制。
本公开所述的RT-5G路由发布机制可应用于任何EVPN网络中,尤其是数据中心网络中,是一种通用技术方案。基于所述RT-5G路由发布机制,在数据中心中存在低端RT-5节点时,DC网关也能为CE-Prefix发布RT-5G路由。
在本实施例中还提供了RT-5G路由报文的发布装置,该装置设置为实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的设备较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图8是根据本公开实施例的RT-5G路由报文的发布装置的结构框图。如图8所示,可以应用于第一设备,包括:第一发布模块82,设置为为CE-Prefix发布RT-5G路由报文,以使低端RT-5节点接收到所述RT-5G路由报文,其中,所述RT-5G路由报文的GW-IP字段中携带第一IP,所述CE-Prefix的Overlay下一跳为第二IP,且所述第二IP允许通过所述第一IP所属的节点到达,所述RT-5G路由报文用于指示所述低端RT-5节点将所述RT-5G路由报文中携带的GW-IP字段解析为RT-2路由,其中,所述第二IP不在所述EVPN的直连子网中。
通过上述步骤,通过采用第一设备为CE-Prefix发布RT-5G路由报文,以使低端RT-5节点接收到所述RT-5G路由报文,其中,所述RT-5G路由报文的GW-IP字段中携带第一IP,所述CE-Prefix的Overlay下一跳为第二IP,且所述第二IP允许通过所述第一IP所属的节点到达,所述RT-5G路由报文用于指示所述低端RT-5节点将所述RT-5G路由报文中携带的GW-IP字段解析为RT-2路由,采用本公开所述的方法,与现有技术相比,通过一种替换RT-5G路由中的GW-IP取值的机制解决了在不升级作为接收端的低端RT-5节点的情况下,路由发送端为来自CE的CE-Prefix向接收端通告RT-5G路由的问题,即受限节点无法根据RT-5G路由转发到CE-Prefix的数据报文的问题,并且,所述RT-5G路由不会导致相应数据报文经网关(其中,所述CE不与网关邻接)绕行。
可选的,在所述RT-5G路由报文的GW-IP字段中携带第一IP的情况下,所述RT-5G路由报文还用于指示所述低端RT-5节点根据所述RT-2路由中的转发信息转发到所述CE-Prefix的数据报文。
可选的,第一设备为CE-Prefix发布RT-5G路由报文,以使低端RT-5节点接收到所述RT-5G路由报文之前,本公开实施例还提供了以下技术方案,包括:确定所述第一设备是否收到了与所述第一IP对应的RT-2路由;在收到的情况下,在所述RT-5G路由报文的GW-IP字段中携带第一IP;在未收到的情况下,在所述RT-5G路由报文的GW-IP字段中携带第二IP。
可选的,第一设备为CE-Prefix发布RT-5G路由报文,以使低端RT-5节点接收到所述RT-5G路由报文之前,在符合第二条件的情况下,在所述RT-5G路由报文的GW-IP字段中携带第一IP,所述第二条件包括经过所述第一IP可以到达第三IP所属的节点,经过所述第三IP可以到达所述第二IP,与所述第一IP对应的路由不存在Overlay Index或者Overlay Index不是IP地址。
可选的,所述第一IP与第一集合对应,其中,所述第一集合由PE节点组成,所述第一集合中的PE节点都通告了表示允许经过所述第一IP到达所述第二IP的RT-5G路由,其他PE节点均未在EVPN中通告表示允许经过其它私网IP到达所述第二IP的RT-5G路由,所述其他PE节点为所述EVPN中除所述第一集合的PE节点之外的节点。
可选的,所述第一IP与第二集合对应,其中,所述第二集合由PE节点组成,所述第二集合中的PE节点都通告了表示允许经过所述第一IP到达所述第二IP的RT-5G路由,对于其他PE节点中的目标PE节点,如果所述目标PE节点在所述EVPN中通告了表示经过第X IP可以到达所述第二IP的RT-5G路由,但所述EVPN网络中所有通告了表示经过第X IP可以到达所述第二IP的RT-5G路由的PE节点加起来的数量小于所述第二集合的PE节点的数量,将与所述第二集合对应的IP确定携带在所述RT-5G路由报文的GW-IP字段中。
图9是根据本公开实施例的RT-5路由报文的发布装置的结构框图。如图9所示,RT-5路由报文的发布装置包括:
第二发布模块92,设置为为CE-Prefix发布RT-5路由报文,以使低端RT-5节点接收到所述RT-5路由报文,其中,所述RT-5路由报文的ESI字段中携带第一ESI,所述CE-Prefix的Overlay下一跳为第二IP,且所述第二IP允许通过所述第一ESI所属的节点到达,所述RT-5路由报文用于指示所述低端RT-5节点将所述RT-5路由报文中携带的ESI字段解析为RT-1路由。
通过上述方案,通过采用第一设备为CE-Prefix发布RT-5G路由报文,以使低端RT-5节点接收到所述RT-5G路由报文,其中,所述RT-5G路由报文的GW-IP字段中携带第一IP,所述CE-Prefix的Overlay下一跳为第二IP,且所述第二IP允许通过所述第一IP所属的节点到达,所述RT-5G路由报文用于指示所述低端RT-5节点将所述RT-5G路由报文中携带的GW-IP字段解析为RT-2路由,采用本公开所述的方法,与现有技术相比,通过一种替换RT-5G路由中的GW-IP取值的机制解决了在不升级作为接收端的低端RT-5节点的情况下,路由发送端为来自CE的CE-Prefix向接收端通告RT-5G路由的问题,即受限节点无法根据RT-5G路由高效转发到CE-Prefix的数据报文的问题,并且,所述RT-5G路由不会导致相应数据报文经网关(其中,所述CE不与网关邻接)绕行。
需要说明的是,当一个PE为其它PE发布经过如此简化的RT-5G路由时,无论对端是否低端RT-5节点,其对RT-5G路由的处理效率均会有所提高,均能从中受益。对于确实为低端RT-5节点的对端节点来说,使其从简化前的不能处理变为简化后的可以处理。
可选的,在所述RT-5路由报文的ESI字段中携带第一ESI的情况下,所述RT-5路由报文还用于指示所述低端RT-5节点根据所述RT-1路由中的转发信息转发到所述CE-Prefix的数据报文。
可选的,本公开实施例还提供了所述第一设备为CE-Prefix发布RT-5路由报文,以使低端RT-5节点接收到所述RT-5路由报文之前的技术方案,具体为:确定所述第一设备是否收到了与所述第一ESI对应的RT-1路由;在收到的情况下,在所述RT-5路由报文的ESI字段中携带第一ESI;在未收到的情况下,在所述RT-5G路由报文的GW-IP字段中携带第二IP。
在一个示例性实施例中,上述计算机可读存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本实施例中的具体示例可以参考上述实施例及示例性实施方式中所描述的示例,本实施例在此不再赘述。
本公开的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
可选地,在本实施例中,上述处理器可以被设置为通过计算机程序执行以下步骤:
S1,第一设备为CE-Prefix发布RT-5G路由报文,以使低端RT-5节点接收到所述RT-5G路由报文,其中,所述RT-5G路由报文的GW-IP字段中携带第一IP,所述CE-Prefix的Overlay下一跳为第二IP,且所述第二IP允许通过所述第一IP所属的节点到达,所述RT-5G路由报文用于指示所述低端RT-5节点将所述RT-5G路由报文中携带的GW-IP字段解析为RT-2路由;其中,所述第二IP不在所述EVPN的直连子网中。
可选的,在其他实施例中,上述处理器还可以被设置为通过计算机程序执行以下步骤:
S1,第一设备为CE-Prefix发布RT-5路由报文,以使低端RT-5节点接收到所述RT-5路由报文,其中,所述RT-5路由报文的ESI字段中携带第一ESI,所述CE-Prefix的Overlay下一跳为第二IP,且所述第二IP允许通过所述第一ESI所属的节点到达,所述RT-5路由报文用于指示所述低端RT-5节点将所述RT-5路由报文中携带的ESI字段解析为RT-1路由;将所述RT-5路由报文发给第三设备。
在一个示例性实施例中,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
本实施例中的具体示例可以参考上述实施例及示例性实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (25)

  1. 一种RT-5G路由报文的发布方法,包括:
    第一设备为CE-Prefix发布RT-5G路由报文,以使低端RT-5节点接收到所述RT-5G路由报文,其中,
    所述RT-5G路由报文的GW-IP字段中携带第一IP,所述CE-Prefix的Overlay下一跳为第二IP,且所述第二IP允许通过所述第一IP所属的节点到达,所述RT-5G路由报文用于指示所述低端RT-5节点将所述RT-5G路由报文中携带的GW-IP字段解析为RT-2路由;其中,
    所述第二IP不在EVPN的直连子网中。
  2. 根据权利要求1所述的RT-5G路由报文的发布方法,其中,所述方法还包括:
    在所述RT-5G路由报文的GW-IP字段中携带第一IP的情况下,所述RT-5G路由报文还用于指示所述低端RT-5节点根据所述RT-2路由中的转发信息转发到所述CE-Prefix的数据报文。
  3. 根据权利要求1所述的RT-5G路由报文的发布方法,其中,第一设备为CE-Prefix发布RT-5G路由报文,以使低端RT-5节点接收到所述RT-5G路由报文之前,所述方法还包括:
    确定所述第一设备是否收到了与所述第一IP对应的RT-2路由;
    在收到的情况下,在所述RT-5G路由报文的GW-IP字段中携带第一IP;
    在未收到的情况下,在所述RT-5G路由报文的GW-IP字段中携带第二IP。
  4. 根据权利要求1所述的RT-5G路由报文的发布方法,其中,第一设备为CE-Prefix发布RT-5G路由报文,以使低端RT-5节点接收到所述RT-5G路由报文之前,所述方法还包括:
    在符合第二条件的情况下,在所述RT-5G路由报文的GW-IP字段中携带第一IP,所述第二条件包括:经过所述第一IP可以到达第三IP所属的节点,经过所述第三IP可以到达所述第二IP,与所述第一IP对应的路由不存在Overlay Index或者Overlay Index不是IP地址。
  5. 根据权利要求1所述的RT-5G路由报文的发布方法,其中,所述方法还包括:
    所述第一IP与第一集合对应,其中,所述第一集合由PE节点组成,所述第一集合中的PE节点都通告了表示允许经过所述第一IP到达所述第二IP的路由,其他PE节点均未在EVPN中通告表示允许经过其它私网IP到达所述第二IP的路由,所述其他PE节点为所述EVPN中除所述第一集合的PE节点之外的节点。
  6. 根据权利要求1所述的RT-5G路由报文的发布方法,其中,所述方法还包括:
    所述第一IP与第二集合对应,其中,所述第二集合由PE节点组成,所述第二集合中的PE节点都通告了表示允许经过所述第一IP到达所述第二IP的路由,对于其他PE节点中的目标PE节点,如果所述目标PE节点在所述EVPN中通告了表示经过第X IP可以到达所述第二IP的路由,但所述EVPN网络中所有通告了表示经过第X IP可以到达所述第二IP的路由的PE节点加起来的数量小于所述第二集合的PE节点的数量,将与所述第二集合对应的IP确定携带在所述RT-5路由报文的GW-IP字段中。
  7. 一种RT-5路由报文的发布方法,包括:
    第一设备为CE-Prefix发布RT-5路由报文,以使低端RT-5节点接收到所述RT-5路由报文,其中,
    所述RT-5路由报文的ESI字段中携带第一ESI,所述CE-Prefix的Overlay下一跳为第二IP,且所述第二IP允许通过所述第一ESI所属的节点到达,所述RT-5路由报文用于指示所述低端RT-5节点将所述RT-5路由报文中携带的ESI字段解析为RT-1路由;
    将所述RT-5路由报文发给第三设备。
  8. 根据权利要求7所述的RT-5路由报文的发布方法,其中,所述方法还包括:
    所述第一ESI为到达第一MAC所需经过的ESI,且所述RT-5路由中同时携带第一路由目标、第一MAC和第一标识符,其中,所述第一MAC为与第四IP对应的MAC,所述第四IP为第一广播域BD中的IP,且所述第四IP为第二IP或经过所述第四IP可以到达所述第二IP,所述第一路由目标为所述CE-Prefix所属的IP-VRF实例的导出路由目标eRT,所述第一广播域BD为与所述第一设备上的直连子网对应的BD,所述第一标识符为所述第一广播域BD的标识符,其中,所述第一MAC用于指示所述第三设备根据所述RT-5路由给所述第一设备发送数据包时将所述第一MAC作为目的MAC,所述第一ESI和所述第一标识符用于指示所述第三设备根据所述RT-5路由给所述第一设备发送数据包时根据所述第一ESI和所述第一标识符确定所述RT-1路由,其中,
    所述第一设备发布第三路由,所述第三路由为RT-1路由,且所述第三路由的ESI为所述第一ESI,且第一以太标签标识符字段为所述第一标识符,且所述第三路由和/或所述RT-5路由中还携带第二MAC,其中,所述第二MAC用于指示所述第三设备根据所述第三路由给所述第一设备发送数据包时将所述第二MAC作为源MAC。
  9. 根据权利要求8所述的RT-5路由报文的发布方法,其中,所述方法还包括:
    所述第三路由中还携带第一标签且所述RT-5路由和/或所述第三路由中还携带第一指示符,其中,所述第一标签为用于确定所述第一广播域BD的标签,所述第一指示符用于指示所述第三设备根据所述RT-5路由给所述第一设备发送数据包时需要封装源MAC和目的MAC。
  10. 根据权利要求8所述的RT-5路由报文的发布方法,其中,所述方法还包括:
    所述第三路由中还携带第一路由目标,且所述第三设备上不存在所述第一广播域BD,所述第三设备上第一IP-VRF实例也不导入所述第一广播域BD的导出路由目标eRT,其中,所述第一IP-VRF实例为导入所述RT-5路由的IP-VRF实例。
  11. 根据权利要求8所述的RT-5路由报文的发布方法,其中,所述方法还包括:
    所述第一设备接收第一RT-5E路由,在满足第三条件、第四条件、第五条件三者至少之一的情况下,为所述第一RT-5E路由进行本地化;其中,所述第一RT-5E路由为所述第三设备发布的RT-5E路由,所述第三条件为第一节点集合、第二节点集合和第三节点集合满足第六条件,所述第四条件为所述第一RT-5E路由中携带的第一MAC为第四AC所属的BD中的MAC和/或所述RT-5E路由中携带的第二MAC为与所述第四AC所属的BD对应的IRB接口的MAC,所述第五条件为所述RT-5E路由中携带了所述第一指示符,所述本地化为将所述第四AC作为所述第一RT-5E路由的一个转发出接口;其中,所述第一节点集合为存在第一元组的节点集合,所述第二节点集合为存在第二元组的节点集合,所述第三节点集合为存在第三元组的节点集合,所述第六条件为所述第一节点集合与所述第二节点集合的交集非空且所述第三节点 集合与所述第二节点集合的交集非空,所述第四AC为BD中的所述第一设备上的AC,所述BD与导入所述第一RT-5E路由的第十IP-VRF实例中的本地子网对应,所述第一元组为所述第四AC所属的<ESI,Ethernet Tag ID>,所述第二元组为所述EVPN网络中的<ESI,Ethernet Tag ID>;所述第三元组为<所述第一RT-5E路由的ESI,所述第一RT-5E路由的第一以太标签标识符字段>;其中,所述第一元组、第二元组、第三元组三者可以全部或部分相同。
  12. 根据权利要求7所述的RT-5路由报文的发布方法,其中,所述方法还包括:
    所述第一ESI为与所述RT-5路由所属的IP-VRF实例对应的ESI,所述RT-5路由的第一以太网标签标识符字段为所述第二IP,且所述RT-1路由的第一以太网标签标识符字段为所述第二IP,且所述RT-1路由的ESI字段为所述第一ESI。
  13. 根据权利要求12所述的RT-5路由报文的发布方法,其中,所述方法还包括:
    所述第一设备发布第二路由报文,所述第二路由报文为RT-1路由报文,且所述第二路由报文的ESI为所述第一ESI,且所述第二路由报文的第一以太网标签标识符字段为所述第二IP。
  14. 根据权利要求12所述的RT-5路由报文的发布方法,其中,所述方法还包括:
    当所述第一设备收到了表示通过节点T可以到达第二IP的路由但没有收到所述节点T发布的RT-1路由时,或者,当所述第一设备收到了节点K发布的RT-1路由但没有收到表示通过节点K可以到达第二IP的路由时,仍然发布GW-IP为第二IP的RT-5G路由,否则,才发布所述RT-5路由,其中,所述RT-1路由中的ESI为所述第一ESI且第一以太网标签标识符为所述第二IP,所述节点T与所述节点K为所述EVPN网络中的任意两个PE节点。
  15. 根据权利要求12所述的RT-5路由报文的发布方法,其中,所述方法还包括:
    所述第一设备根据与<第一ESI,第一以太网标签标识符>对应的RT-1路由为所述<ESI,第一以太网标签标识符>进行受AC影响的DF选举。
  16. 根据权利要求12所述的RT-5路由报文的发布方法,其中,所述方法还包括:
    所述第三设备根据所述RT1路由为所述<第一ESI,第一以太网标签标识符>进行受AC影响的DF选举。
  17. 根据权利要求12所述的RT-5路由报文的发布方法,其中,在发布所述第二路由报文之前,所述方法还包括:
    指示所述第一设备发布所述第二路由报文。
  18. 根据权利要求7所述的RT-5路由报文的发布方法,其中,在发布所述RT-5路由之前,所述方法还包括:
    指示所述第一设备发布所述RT-5路由。
  19. 根据权利要求12所述的RT-5路由报文的发布方法,其中,所述方法还包括:
    更新所述RT-1路由,使得更新后的RT-1路由中携带有根据DF选举结果设置的Primary/Backup属性。
  20. 根据权利要求7所述的RT-5路由报文的发布方法,其中,所述方法还包括:
    在所述RT-5路由报文的ESI字段中携带第一ESI的情况下,所述RT-5路由报文还用于指示所述低端RT-5节点根据所述RT-1路由中的转发信息转发到所述CE-Prefix的数据报文。
  21. 根据权利要求7所述的RT-5路由报文的发布方法,其中,所述第一设备为CE-Prefix 发布RT-5路由报文,以使低端RT-5节点接收到所述RT-5路由报文之前,所述方法还包括:
    确定所述第一设备是否收到了与所述第一ESI对应的RT-1路由;
    在收到的情况下,在所述RT-5路由报文的ESI字段中携带第一ESI;
    在未收到的情况下,在所述RT-5路由报文的GW-IP字段中携带第二IP。
  22. 一种RT-5G路由报文的发布装置,应用于第一设备,包括:
    第一发布模块,设置为为CE-Prefix发布RT-5G路由报文,以使低端RT-5节点接收到所述RT-5G路由报文,其中,
    所述RT-5G路由报文的GW-IP字段中携带第一IP,所述CE-Prefix的Overlay下一跳为第二IP,且所述第二IP允许通过所述第一IP所属的节点到达,所述RT-5G路由报文用于指示所述低端RT-5节点将所述RT-5G路由报文中携带的GW-IP字段解析为RT-2路由;其中,
    所述第二IP不在所述EVPN的直连子网中。
  23. 一种RT-5路由报文的发布装置,包括:
    第二发布模块,设置为为CE-Prefix发布RT-5路由报文,以使低端RT-5节点接收到所述RT-5路由报文,其中,
    所述RT-5路由报文的ESI字段中携带第一ESI,所述CE-Prefix的Overlay下一跳为第二IP,且所述第二IP允许通过所述第一ESI所属的节点到达,所述RT-5路由报文用于指示所述低端RT-5节点将所述RT-5路由报文中携带的ESI字段解析为RT-1路由;
    将所述RT-5路由报文发给第三设备。
  24. 一种计算机可读的存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至6任一项中所述的方法,或所述权利要求7至21任一项中所述的方法。
  25. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为通过所述计算机程序执行所述权利要求1至6任一项中所述的方法,或所述权利要求7至21任一项中所述的方法。
PCT/CN2022/106719 2021-08-25 2022-07-20 Rt-5g路由报文的发布方法、装置、存储介质和电子装置 WO2023024768A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110984683.9A CN115842764A (zh) 2021-08-25 2021-08-25 Rt-5g路由报文的发布方法、装置、存储介质和电子装置
CN202110984683.9 2021-08-25

Publications (1)

Publication Number Publication Date
WO2023024768A1 true WO2023024768A1 (zh) 2023-03-02

Family

ID=85321543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106719 WO2023024768A1 (zh) 2021-08-25 2022-07-20 Rt-5g路由报文的发布方法、装置、存储介质和电子装置

Country Status (2)

Country Link
CN (1) CN115842764A (zh)
WO (1) WO2023024768A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017032300A1 (zh) * 2015-08-25 2017-03-02 华为技术有限公司 一种数据传输方法、虚拟网络管理装置及数据传输系统
CN107566265A (zh) * 2017-10-16 2018-01-09 中国联合网络通信有限公司广东省分公司 一种对称转发模型下的evpn vxlan 网关esi 冗余接入方法
CN109861924A (zh) * 2017-11-30 2019-06-07 中兴通讯股份有限公司 报文的发送、处理方法及装置,pe节点,节点
CN111786884A (zh) * 2019-04-04 2020-10-16 中兴通讯股份有限公司 一种路由方法及路由设备
CN113242181A (zh) * 2021-01-18 2021-08-10 网络通信与安全紫金山实验室 基于ESP封装和压缩IP在overlay层实现源路由的报文及发送方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017032300A1 (zh) * 2015-08-25 2017-03-02 华为技术有限公司 一种数据传输方法、虚拟网络管理装置及数据传输系统
CN107566265A (zh) * 2017-10-16 2018-01-09 中国联合网络通信有限公司广东省分公司 一种对称转发模型下的evpn vxlan 网关esi 冗余接入方法
CN109861924A (zh) * 2017-11-30 2019-06-07 中兴通讯股份有限公司 报文的发送、处理方法及装置,pe节点,节点
CN111786884A (zh) * 2019-04-04 2020-10-16 中兴通讯股份有限公司 一种路由方法及路由设备
CN113242181A (zh) * 2021-01-18 2021-08-10 网络通信与安全紫金山实验室 基于ESP封装和压缩IP在overlay层实现源路由的报文及发送方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
J. RABADAN, ED. W. HENDERICKX NOKIA J. DRAKE W. LIN JUNIPER A. SAJASSI CISCO: "IP Prefix Advertisement in EVPN draft-ietf-bess-evpn-prefix-advertisement-10; draft-ietf-bess-evpn-prefix-advertisement-10.txt", IP PREFIX ADVERTISEMENT IN EVPN DRAFT-IETF-BESS-EVPN-PREFIX-ADVERTISEMENT-10; DRAFT-IETF-BESS-EVPN-PREFIX-ADVERTISEMENT-10.TXT; INTERNET-DRAFT: BESS WORKGROUP, INTERNET ENGINEERING TASK FORCE, IETF; STANDARDWORKINGDRAFT, INTERNET SOCIETY (ISOC) 4, RU, no. 10, 27 February 2018 (2018-02-27), Internet Society (ISOC) 4, rue des Falaises CH- 1205 Geneva, Switzerland, pages 1 - 34, XP015155079 *
Y. WANG Z. ZHANG ZTE CORPORATION: "ARP/ND Synching And IP Aliasing without IRB draft-wang-bess-evpn-arp-nd-synch-without-irb-07; draft-wang-bess-evpn-arp-nd-synch-without-irb-07.txt", ARP/ND SYNCHING AND IP ALIASING WITHOUT IRB DRAFT-WANG-BESS-EVPN-ARP-ND-SYNCH-WITHOUT-IRB-07; DRAFT-WANG-BESS-EVPN-ARP-ND-SYNCH-WITHOUT-IRB-07.TXT; INTERNET-DRAFT: BESS WG, INTERNET ENGINEERING TASK FORCE, IETF; STANDARDWORKINGDRAFT, INTERNET SOCIETY, no. 07, 9 August 2021 (2021-08-09), Internet Society (ISOC) 4, rue des Falaises CH- 1205 Geneva, Switzerland , pages 1 - 19, XP015147333 *
Y. WANG ZTE CORPORATION: "Ethernet Tag ID Usage Update for Ethernet A-D per EVI Route draft-wang-bess-evpn-ether-tag-id-usage-02; draft-wang-bess-evpn-ether-tag-id-usage-02.txt", ETHERNET TAG ID USAGE UPDATE FOR ETHERNET A-D PER EVI ROUTE DRAFT-WANG-BESS-EVPN-ETHER-TAG-ID-USAGE-02; DRAFT-WANG-BESS-EVPN-ETHER-TAG-ID-USAGE-02.TXT; INTERNET-DRAFT: BESS WG, INTERNET ENGINEERING TASK FORCE, IETF; STANDARDWORKINGDRAFT, INTERNET SOC, no. 02, 23 August 2021 (2021-08-23), Internet Society (ISOC) 4, rue des Falaises CH- 1205 Geneva, Switzerland , pages 1 - 37, XP015147495 *

Also Published As

Publication number Publication date
CN115842764A (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
USRE49485E1 (en) Overlay management protocol for secure routing based on an overlay network
US11025677B2 (en) Using symmetric and asymmetric flow response paths from an autonomous system
US9992154B2 (en) Layer 3 convergence for EVPN link failure
US20200067812A1 (en) First Hop Gateway Redundancy In A Network Computing Environment
US9912614B2 (en) Interconnection of switches based on hierarchical overlay tunneling
CN107637031B (zh) 用于网络业务的路径计算单元中央控制器
CN109075984B (zh) 计算的spring组播的多点到多点树
US8995444B2 (en) Method and system for extending routing domain to non-routing end stations
US8694664B2 (en) Active-active multi-homing support for overlay transport protocol
CN102037685B (zh) 通过链路状态协议控制的以太网的ip转发
US11252199B2 (en) Redirecting packets in an autonomous system
US20200245206A1 (en) Bit indexed explicit replication based multicast for locator identifier separation protocol
US10637687B2 (en) EVPN implicit aliasing
US20160226753A1 (en) Scheme for performing one-pass tunnel forwarding function on two-layer network structure
WO2017141076A1 (en) Stateless multicast protocol for low-power and lossy networks
WO2021134434A1 (en) Method and system for ethernet virtual private network (evpn) split-horizon filtering
US20220311643A1 (en) Method and system to transmit broadcast, unknown unicast, or multicast (bum) traffic for multiple ethernet virtual private network (evpn) instances (evis)
US11375405B2 (en) Identifier-locator network protocol (ILNP) coordinated multipoint (CoMP) and multiple connectivity
WO2023024768A1 (zh) Rt-5g路由报文的发布方法、装置、存储介质和电子装置
CN114205297B (zh) 流量转发处理方法及设备
WO2023284675A1 (zh) 转发表的查找方法及装置、存储介质及电子装置
WO2020100150A1 (en) Routing protocol blobs for efficient route computations and route downloads
EP3190752A1 (en) Method, system and medium for avoiding traffic flooding due to asymmetric mac learning and achieving predictable convergence for pbb-evpn active-active redundancy
WO2024061184A1 (zh) 对应关系的获取方法、参数通告方法、装置、设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860114

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022860114

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022860114

Country of ref document: EP

Effective date: 20240325