WO2023024669A1 - 基于架空输电线电磁场探测的飞行防撞方法及装置 - Google Patents

基于架空输电线电磁场探测的飞行防撞方法及装置 Download PDF

Info

Publication number
WO2023024669A1
WO2023024669A1 PCT/CN2022/099319 CN2022099319W WO2023024669A1 WO 2023024669 A1 WO2023024669 A1 WO 2023024669A1 CN 2022099319 W CN2022099319 W CN 2022099319W WO 2023024669 A1 WO2023024669 A1 WO 2023024669A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
magnetic field
power line
transmission line
overhead
Prior art date
Application number
PCT/CN2022/099319
Other languages
English (en)
French (fr)
Inventor
高鸣阳
严风硕
喻辉
边岱泉
熊奎
舒炎昕
牛夏蕾
曾婧
Original Assignee
中国民用航空总局第二研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国民用航空总局第二研究所 filed Critical 中国民用航空总局第二研究所
Publication of WO2023024669A1 publication Critical patent/WO2023024669A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/04Anti-collision systems

Definitions

  • the present application relates to the technical field of aircraft control, in particular to a flight collision avoidance method and device based on electromagnetic field detection of overhead transmission lines.
  • Aircraft low-altitude flight has the characteristics of low altitude, fast speed, and complex environment.
  • the pilot of the aircraft mainly relies on visual search to identify ground obstacles.
  • problems such as short detection distance, low judgment accuracy, and great limitations due to meteorological conditions.
  • the high-voltage line can only be found at a distance of 100m to 200m when the visibility is good. It is impossible to accurately and quickly find overhead power transmission cables and effectively avoid them, posing potential safety hazards and prone to line collision accidents.
  • the overhead transmission cable detection technology of low-altitude aircraft is mainly divided into active detection and passive detection.
  • Active detection mainly includes lidar and millimeter-wave radar. Their working principles are relatively similar. They all transmit and receive electromagnetic waves reflected by obstacles, and process them through signal processing technology to obtain information such as the position and distance of the target.
  • an active detection radar it needs to consume a lot of power, has a high cost, and occupies a large space in the body. The above reasons limit the application of detection radars on small and medium-sized low-cost aircraft.
  • the resolution of millimeter-wave radars is low.
  • lidar is vulnerable to bad weather also needs to be further improved.
  • Passive detection mainly includes image recognition and electromagnetic field detection.
  • Image recognition is mainly by taking images of infrared, visible light, ultraviolet and other bands, and extracting and identifying overhead transmission cables through image processing technology and supporting algorithms. At present, this method has made some research progress, but similar to lidar, it will be greatly affected in bad weather, especially the detection ability of visible light band image recognition system will be greatly reduced at night compared with daytime.
  • the embodiment of the present application provides a flight collision avoidance method, device, electronic equipment and storage medium based on the electromagnetic field detection of overhead power lines, which can accurately measure the positional relationship between the aircraft and the overhead power lines to ensure the flight safety of the aircraft, and is suitable for more Complex and diverse scenes.
  • an embodiment of the present application provides a flight collision avoidance method based on electromagnetic field detection of overhead transmission lines, including:
  • the overhead power line is an AC power line, determining the positional relationship between the aircraft and the overhead power line based on a phase distribution model, an electric field phase and a magnetic field phase measured by a phase detector on the aircraft; wherein , the phase distribution model is used to describe the distribution of the electric field phase and magnetic field phase generated by the AC transmission line at each point in three-dimensional space;
  • the positional relationship between the aircraft and the overhead transmission line is determined based on the magnetic field intensity distribution model and the magnetic field intensity collected by the magnetic field intensity sensor on the aircraft; wherein, the The magnetic field strength distribution model is used to represent the relationship between the magnetic field strength of each point in the three-dimensional space and the vertical distance from each point to the overhead transmission line;
  • the aircraft is controlled based on the positional relationship between the aircraft and the overhead power line.
  • an embodiment of the present application provides a flight collision avoidance device based on electromagnetic field detection of overhead transmission lines, including:
  • a power line type identification module configured to determine whether the surrounding overhead power lines are AC power lines or DC power lines based on the output of the resonant circuit on the aircraft;
  • the first processing module is used to determine the relationship between the aircraft and the overhead power line based on the phase distribution model, the electric field phase and the magnetic field phase measured by the phase detector on the aircraft if the overhead power line is an AC power line The positional relationship between; wherein, the phase distribution model is used to describe the distribution of the electric field phase and magnetic field phase generated by the AC transmission line at each point in three-dimensional space;
  • the second processing module is used to determine the distance between the aircraft and the overhead power line based on the magnetic field strength distribution model and the magnetic field strength collected by the magnetic field strength sensor on the aircraft if the overhead power line is a DC power line positional relationship; wherein, the magnetic field strength distribution model is used to represent the relationship between the magnetic field strength of each point in the three-dimensional space and the vertical distance from each point to the overhead transmission line;
  • a control module configured to control the aircraft based on the positional relationship between the aircraft and the overhead power line.
  • an embodiment of the present application provides an electronic device, including a memory, a processor, and a computer program stored in the memory and operable on the processor, wherein, when the processor executes the computer program, any one of the above-mentioned methods is implemented A step of.
  • an embodiment of the present application provides a computer-readable storage medium, on which computer program instructions are stored, and when the computer program instructions are executed by a processor, the steps of any one of the above-mentioned methods are implemented.
  • an embodiment of the present application provides a computer program product or computer program, where the computer program product or computer program includes computer instructions, and the computer instructions are stored in a computer-readable storage medium.
  • the processor of the computer device reads the computer instruction from the computer-readable storage medium, and the processor executes the computer instruction, so that the computer device executes the method provided in any of the above-mentioned various optional implementation manners of TCP transmission performance control.
  • the flight collision avoidance method, device, electronic equipment, and storage medium based on the electromagnetic field detection of overhead transmission lines provided by the embodiments of the present application can process different models for AC transmission lines and DC transmission lines, and can learn from each other to solve problems in a single model. Inherent defects and theoretical errors that are difficult to solve, accurately measure the positional relationship between the aircraft and the overhead power line, thereby preventing the aircraft from colliding with the AC power line, ensuring the flight safety of the aircraft, and applicable to more complex and diverse scenarios.
  • FIG. 1A is a schematic diagram of the application scenario of the flight collision avoidance method based on the electromagnetic field detection of overhead transmission lines provided by the embodiment of the present application;
  • Fig. 1B is a structural block diagram of the measuring equipment on the aircraft provided by the embodiment of the present application.
  • Fig. 2 is a schematic flow chart of a flight collision avoidance method based on overhead transmission line electromagnetic field detection provided by an embodiment of the present application;
  • FIG. 3 is a schematic flow diagram of positioning combined with the phase method and the field strength method provided by the embodiment of the present application;
  • FIG. 4 is a schematic flow diagram of positioning based on the field strength method provided by the embodiment of the present application.
  • FIG. 5 is a schematic diagram of a two-dimensional model provided in an embodiment of the present application.
  • FIG. 6A is a schematic diagram of a three-dimensional model provided by an embodiment of the present application.
  • Fig. 6B is a schematic diagram of the relationship between the positions of the aircraft at time t1 and time t2 ;
  • FIG. 6C is a schematic diagram of projecting r 1,t1 , r 2,t1 , r 1,t2 , r 2,t2 and OM into a plane perpendicular to the overhead transmission line;
  • FIG. 7 is a schematic flow diagram of positioning combined with the field strength method and Poynting vector provided by the embodiment of the present application.
  • Fig. 8 is a schematic diagram of the spatial relationship between the aircraft and the overhead power line provided by the embodiment of the present application.
  • FIG. 9 is a schematic flow chart of positioning based on the phase method provided by the embodiment of the present application.
  • FIG. 10 is a schematic flow chart of positioning based on the phase method provided by the embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a flight avoidance device based on electromagnetic field detection of overhead transmission lines provided by an embodiment of the present application;
  • FIG. 12 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Aircraft It is a broad category of aircraft, and refers to any machine that obtains aerodynamic lift-off through the relative movement of the fuselage and the air (not the reaction of the air to the ground).
  • Aircraft in the embodiments of the present application include, but are not limited to, balloons, airships, airplanes, gliders, rotorcraft, helicopters, flappers, tiltrotors, and the like.
  • the aircraft in this embodiment of the present application may be a manned or unmanned aircraft.
  • Overhead transmission lines mainly refer to DC or AC transmission lines erected outdoors, especially high-voltage transmission lines in the wild.
  • the high-voltage transmission cables transmit the alternating current of the industrial frequency frequency.
  • the industrial frequency of the AC transmission lines used in most countries including China is 50Hz, and the industrial frequency of the AC transmission lines used in a few countries such as the United States and Canada. It is 60Hz, and the high-voltage transmission cable transmits the alternating current of the industrial frequency frequency.
  • Resonant circuit A circuit with resonance as the main working state is called a resonant circuit. Under the action of sinusoidal excitation, the phenomenon of fundamental resonance, higher harmonic resonance, subharmonic resonance and current (or voltage) amplitude and phase jump will appear in the circuit. variable electromagnetic field.
  • Impact distance It is the distance from the aircraft along the flight direction to the vertical plane where the AC power line is located.
  • Poynting vector refers to the energy flow density vector in the electromagnetic field.
  • the electric field strength in a certain space is E
  • the magnetic field strength is H
  • the direction is determined by E and H according to the right-hand spiral rule, along the propagation direction of electromagnetic waves.
  • is the angle between E and H, which means the energy passing through the vertical unit area per unit time, and the unit is watts/(meter).
  • the cable current When the AC power line is working, the cable current will generate a power frequency electromagnetic field.
  • the aircraft When the AC power line is working, the cable current will generate a power frequency electromagnetic field.
  • the aircraft When the AC power line is working, the cable current will generate a power frequency electromagnetic field.
  • the aircraft When the AC power line is working, the cable current will generate a power frequency electromagnetic field.
  • the aircraft When the AC power line is working, the cable current will generate a power frequency electromagnetic field.
  • the aircraft When the AC power line is working, the cable current will generate a power frequency electromagnetic field.
  • the aircraft When the AC power line is working, the cable current will generate a power frequency electromagnetic field.
  • the aircraft When the AC power line is working, the cable current will generate a power frequency electromagnetic field.
  • the aircraft When the AC power line is working, the cable current will generate a power frequency electromagnetic field.
  • the aircraft When the AC power line is working, the cable current will generate a power frequency electromagnetic field.
  • the aircraft When the AC power line is working, the cable current
  • the aircraft is in the near field region of the power frequency electromagnetic field at this time.
  • the electric field and magnetic field are independent components that can be measured separately, and there is no synchronous phase relationship. It can be considered that what exists in space is an independent power frequency electric field and power frequency magnetic field.
  • the above-mentioned research and technology development work has perfected the aircraft anti-collision line technology based on power frequency electromagnetic field detection, but there are still some deficiencies.
  • the power line position information obtained by the above-mentioned detection means is usually fuzzy information, and the pilot can only be reminded that the distance is approaching through the enhancement of signal strength, but the specific distance value will not be displayed;
  • the physical model of the power-frequency electromagnetic field around the power line is relatively simple, and there is a deviation from the actual situation;
  • the above-mentioned scheme is limited by the performance of electronic components and the processing capacity of the computer at that time.
  • the response time is long and false alarms The rate is high, so there is no large-scale promotion.
  • the application provides a flight collision avoidance method based on the electromagnetic field detection of overhead transmission lines, which determines whether the surrounding overhead transmission lines are AC transmission lines or DC transmission lines based on the resonant circuit on the aircraft;
  • the phase distribution model constructed, the electric field phase and magnetic field phase measured by the phase detector on the aircraft, determine the positional relationship between the aircraft and the overhead transmission line; if it is a DC transmission line, based on the magnetic field strength distribution model and the magnetic field strength sensor on the aircraft
  • the collected magnetic field strength determines the positional relationship between the aircraft and the overhead power line; based on the positional relationship between the aircraft and the overhead power line, the aircraft is controlled.
  • different models are processed separately, which can learn from each other, solve inherent defects and theoretical errors that are difficult to solve in a single model, and are suitable for more complex and diverse scenarios.
  • FIG. 1A it is a schematic diagram of an application scenario of an in-flight collision avoidance method based on electromagnetic field detection of overhead transmission lines provided by an embodiment of the present application.
  • the application scenario includes an aircraft 10 and an overhead AC power line 20.
  • the aircraft 10 is equipped with a resonant circuit 30, a first measuring device 40 suitable for the phase method, a second measuring device 50 suitable for the magnetic field strength method and a processor 60.
  • the resonant circuit 30 is used to detect whether there is an alternating electromagnetic field around, and the processor 60 is used to process the output data of the first measuring device 40 and the second measuring device 50 .
  • the first measurement device 40 includes a phase detector 401 for measuring electric field phase and magnetic field phase to measure electric field phase and magnetic field phase in the same spatial position.
  • the processor 60 obtains the electric field phase and the magnetic field phase collected by the phase detector 401 , and processes the electric field phase and the magnetic field phase to obtain the positional relationship between the aircraft 10 and the AC power line 20 .
  • the aircraft 10 is also provided with a sensor 402 for measuring the direction of the magnetic field and a sensor 403 for measuring the direction of the electric field, and the processor 60 determines the direction of the power line of the AC transmission line 20 based on the measured direction of the magnetic field and the direction of the electric field.
  • the second measuring device 50 includes a plurality of magnetic field strength sensors 501 arranged at different positions inside the aircraft 10 for measuring the magnetic field strength of the overhead power line 20 at different positions. Based on the data processing equipment inside the aircraft 10, the magnetic field strength measured by the plurality of magnetic field strength sensors 501 is processed to obtain the position of the aircraft phase 10 relative to the overhead power line 20.
  • the processor 60 determines that there is an AC power line around based on the output of the resonant circuit 30 , based on the processing results of the first measuring device 40 and/or the second measuring device 50 , guide the aircraft 10 to avoid the overhead power line to ensure flight safety of the aircraft.
  • the processor 60 determines that there is a DC transmission line around based on the output of the resonant circuit 30 , based on the processing result of the second measuring device 50 , it guides the aircraft 10 to avoid the overhead transmission line to ensure flight safety of the aircraft.
  • the method provided by the embodiment of the present application is not limited to the application scenario shown in FIG. 1A , and can also be used in other possible application scenarios, which is not limited by the embodiment of the present application.
  • the functions that can be realized by each device in the application scenario shown in FIG. 1A will be described together in subsequent method embodiments, and will not be repeated here.
  • the embodiment of the present application provides a flight collision avoidance method based on electromagnetic field detection of overhead transmission lines, including the following steps:
  • step S202 Based on the output of the resonant circuit, determine whether the surrounding overhead power lines are AC power lines or DC power lines; if the overhead power lines are AC power lines, perform step S203; if the overhead power lines are DC power lines, perform step S204.
  • the electric field phase and the magnetic field phase measured by the phase detector on the aircraft determine the positional relationship between the aircraft and the overhead power line.
  • the phase distribution model is used to describe the distribution of the electric field phase and magnetic field phase generated by the AC transmission line at each point in three-dimensional space.
  • the magnetic field strength distribution model is used to represent the relationship between the magnetic field strength of each point in the three-dimensional space and the vertical distance from each point to the overhead transmission line.
  • the mathematical model of the three-dimensional field strength distribution of the power frequency electromagnetic field can be established by simulating the charge method, the moment method, etc., and then the distribution function of the relationship between the field strength and the distance can be obtained, that is, the magnetic field strength distribution model.
  • the power frequency electromagnetic field measurement in the power line area is carried out on the aircraft, and as much space electromagnetic field measurement data as possible is obtained, and the phase distribution model and the magnetic field strength distribution model are calibrated and improved by combining the measured data with the electromagnetic field simulation comparison. It is also possible to use a large amount of measured data to carry out deep learning training on the system based on the neural network model, so that the system can better identify the actual electromagnetic environment changes caused by different current parameters (size, DC or AC), so as to intelligently adjust the phase distribution model and The magnetic field strength distribution model is adjusted.
  • the positional relationship between the aircraft and the overhead power line includes at least one of the following: the vertical distance between the aircraft and the overhead power line, the impact distance between the aircraft and the overhead power line, the flight direction of the aircraft and the direction of the power line of the overhead power line. The angle between the aircraft and the height difference between the overhead power line.
  • a safety distance threshold can be set in advance, and if the vertical distance from the aircraft to the overhead transmission line is less than the safety distance threshold, an anti-collision alarm will be issued to prompt the aircraft to be too close to the overhead transmission line.
  • the aircraft operator can manually adjust the flight altitude, flight direction and flight speed of the aircraft to keep the aircraft away from the overhead power line.
  • the vertical distance from the aircraft to the overhead power line is less than the safety distance threshold, at least one parameter among the flight altitude, flight direction and flight speed of the aircraft can be automatically adjusted according to the vertical distance from the aircraft to the overhead power line, so that the aircraft Avoid overhead power lines.
  • the anti-collision method of automatically adjusting the attitude of the aircraft can ensure the flight safety of the unmanned aircraft.
  • a safety distance threshold corresponding to the collision distance may also be set, and when the collision distance between the aircraft and the overhead power line is smaller than the safety distance threshold, the aircraft is subjected to anti-collision control.
  • the specific anti-collision control method will not be described in detail.
  • the flight altitude, flight direction, and flight speed can be adjusted more accurately to prevent the aircraft from colliding with the overhead power line.
  • the aircraft can fly close to the overhead power line when it inspects the overhead power line, which improves the accuracy of the inspection while ensuring the safety of the aircraft.
  • the embodiment of this application integrates the phase distribution model and the magnetic field strength distribution model for the first time, which is beneficial to reduce the inherent defects and errors of each model, so that they can learn from each other, and obtain a more accurate value and relative direction of the power line distance, thereby obtaining the three-dimensional space of the power line location information, and is applicable to more complex and diverse scene ranges.
  • the positional relationship between the aircraft and the overhead power lines obtained by the phase method and the field strength method can be combined to further improve the positioning accuracy.
  • the specific process is as follows:
  • the electric field phase and the magnetic field phase measured by the phase detector on the aircraft determine a first positional relationship between the aircraft and the overhead power line.
  • weighted summation can be performed on the first positional relationship and the second positional relationship, and the weighted summation result is used as the positional relationship between the aircraft and the overhead power line, and the aircraft is subsequently controlled based on the weighted summation result.
  • the weights respectively corresponding to the first positional relationship and the second positional relationship may be preset.
  • the first weight corresponding to the first positional relationship and the second weighting corresponding to the second positional relationship during fusion may be determined based on the estimated distance from the aircraft to the overhead power line, wherein the estimated distance is positively correlated with the first weight, and the estimated distance is correlated with The second weight is negatively correlated.
  • the distance from the aircraft to the overhead power line can be determined based on the positional relationship between the aircraft and the overhead power line measured at the last moment, as the estimated distance from the aircraft to the overhead power line.
  • an approximate distance from the aircraft to the overhead power line is estimated as the estimated distance from the aircraft to the overhead power line.
  • the estimated distance from the aircraft to the overhead power line is less than the preset value, then determine that the first position relationship corresponds to the weight value W 1 , and the second position relationship corresponds to the weight value W 2 , otherwise, determine that the first position relationship corresponds to W 2 , the second positional relationship corresponds to W 1 , wherein W 1 is smaller than W 2 .
  • the error adjustment of the phase distribution model and the magnetic field strength distribution model can be carried out in combination with a large amount of actual data, and the applicable distance range can be judged, so as to select a suitable preset value.
  • the specific implementation of the positioning method based on the field strength method is introduced below.
  • the location method based on magnetic field strength is suitable for both DC and AC power lines.
  • step S204 specifically includes the following steps:
  • the aircraft includes at least two magnetic field strength sensors installed at different positions, so that the magnetic field strength generated by the overhead power line at different positions in three-dimensional space can be measured.
  • the installation position and quantity of the magnetic field strength sensors can be set according to actual application requirements.
  • the magnetic field strength sensor may be a Gauss meter, a Hall effect sensor, etc., and is not limited.
  • the interval period for obtaining the magnetic field strength (that is, the interval period between the current moment and the previous moment) can be set according to the actual situation, such as obtaining the magnetic field strength collected by the magnetic field strength sensor every 2 seconds.
  • the interval period can also be dynamically adjusted in combination with the flight speed of the aircraft, the faster the flight speed, the shorter the interval period. It should be noted that what each magnetic field strength sensor collects at different times is: the magnetic field strength at different positions on the flight track of the aircraft.
  • S402. Determine the positional relationship between the aircraft and the overhead power line based on the magnetic field strength distribution model of the overhead power line in three-dimensional space, the acquired magnetic field strength, and the relative positional relationship between the magnetic field strength sensors.
  • the overhead power line near the aircraft can be regarded as an approximately straight wire whose length is much larger than the diameter, so as to obtain the magnetic field intensity distribution model of the overhead power line in three-dimensional space.
  • the magnetic field intensity distribution model can be expressed by the following formula: Among them, I is the current intensity of the overhead transmission line, r is the vertical distance from a certain point in the three-dimensional space to the overhead transmission line, B is the magnetic field intensity generated by the overhead transmission line at a certain point in the three-dimensional space, ⁇ 0 is the vacuum magnetic permeability , ⁇ is pi.
  • the positional relationship between the aircraft and the overhead power line includes at least one of the following: the vertical distance between the aircraft and the overhead power line, the impact distance between the aircraft and the overhead power line, the flight direction of the aircraft and the direction of the power line of the overhead power line. The angle between the aircraft and the height difference between the overhead power line.
  • the flight direction of the aircraft can be obtained based on positioning systems such as GPS and gyroscope on the aircraft, and the specific process will not be repeated here. Based on the spatial position of the overhead power line relative to the aircraft and the flight direction of the aircraft, the impact distance of the aircraft to the overhead power line can be determined.
  • a safety distance threshold can be set in advance, and if the vertical distance from the aircraft to the overhead transmission line is less than the safety distance threshold, an anti-collision alarm will be issued to prompt the aircraft to be too close to the overhead transmission line.
  • the aircraft operator can manually adjust the flight altitude, flight direction and flight speed of the aircraft to keep the aircraft away from the overhead power line.
  • the vertical distance from the aircraft to the overhead power line is less than the safety distance threshold, at least one parameter among the flight altitude, flight direction and flight speed of the aircraft can be automatically adjusted according to the vertical distance from the aircraft to the overhead power line, so that the aircraft Avoid overhead power lines.
  • the anti-collision method of automatically adjusting the attitude of the aircraft can ensure the flight safety of the unmanned aircraft.
  • a safety distance threshold corresponding to the collision distance may also be set, and when the collision distance between the aircraft and the overhead power line is smaller than the safety distance threshold, the aircraft is subjected to anti-collision control.
  • the specific anti-collision control method will not be described in detail.
  • the flight altitude, flight direction, and flight speed can be adjusted more accurately to prevent the aircraft from colliding with the AC power line.
  • the aircraft can fly close to the AC power line when it inspects the AC power line, which improves the accuracy of the inspection while ensuring the safety of the aircraft.
  • the above positioning method based on magnetic field strength regards the AC power line near the aircraft as an approximately straight wire whose length is much larger than the diameter, constructs a magnetic field strength distribution model, and sets magnetic field strength sensors at multiple points on the aircraft.
  • the data collected by the magnetic field strength sensor multiple times can accurately measure the positional relationship between the aircraft and the overhead power line, thereby preventing the aircraft from colliding with the AC power line and ensuring the flight safety of the aircraft.
  • the second measuring device 50 may include: a magnetic field strength sensor Q 1 and a magnetic field strength sensor Q 2 are symmetrically arranged on both sides of the central axis of the aircraft, and the magnetic field strength sensor Q 1 and the distance between the magnetic field strength sensor Q2 is L.
  • the symmetrically arranged magnetic field strength sensors can reduce the difficulty of data processing.
  • the method of the embodiment of the present application further includes the following steps: if the magnetic field strength collected by the magnetic field strength sensor Q1 and the magnetic field strength sensor Q2 remains the same, then it is determined that the aircraft is flying along the overhead power line.
  • the magnetic field intensity collected by each magnetic field intensity sensor remains unchanged during the flight of the aircraft, indicating that the distance from the aircraft to the overhead transmission line remains unchanged, and it can be determined that the flight direction of the aircraft is parallel to the overhead transmission line.
  • the positional relationship between the aircraft and the overhead power line can be quickly judged. If the flight direction of the aircraft is parallel to the overhead power line, the magnetic field strengths output by the magnetic field strength sensors Q1 and Q2 are the same or remain unchanged; if there is a certain angle between the flight direction of the aircraft and the overhead power line, the magnetic field strength can be based on The difference between the outputs of sensors Q 1 and Q 2 is used to obtain the relationship between the flight direction of the aircraft and the position of the overhead power line by using the set model.
  • the following describes the specific method of using a simplified two-dimensional model or three-dimensional model in the magnetic field strength positioning method to determine the relationship between the flight direction of the aircraft and the position of the overhead power line.
  • the flying height of the aircraft is relatively close to the height of the overhead power line. Therefore, in one embodiment, the model for calculating the positional relationship between the aircraft and the overhead power line can be simplified to a two-dimensional model, that is, ignoring the aircraft The height difference from the overhead transmission line is considered to be at the same height. Taking Fig.
  • the magnetic field strength sensor Q 1 and the magnetic field strength sensor Q 2 are respectively installed on the wings of the aircraft 10 both sides, the distance between the magnetic field strength sensor Q 1 and the magnetic field strength sensor Q 2 is L, and the solid line
  • the aircraft 10 represents the position of the aircraft 10 at time t1
  • the dashed aircraft 10 represents the position of the aircraft 10 at time t2
  • v represents the flight direction of the aircraft 10 , and it is generally believed that the aircraft 10 is flying along a straight line at a constant speed at time t1-t2 , according to the geometric relationship shown in Figure 5, it can be known at time t 1 :
  • time t 2 can also be obtained:
  • step S402 may be: calculating the positional relationship between the aircraft and the overhead power line based on the following equations:
  • L is the distance between the magnetic field strength sensor Q1 and the magnetic field strength sensor Q2 , is the magnetic field strength collected by the magnetic field strength sensor Q1 at time t1 , is the magnetic field strength collected by the magnetic field strength sensor Q2 at time t1 , is the magnetic field strength collected by the magnetic field strength sensor Q1 at time t2 , is the magnetic field strength collected by the magnetic field strength sensor Q 2 at time t2, is the vertical distance from the magnetic field strength sensor Q1 to the overhead transmission line at time t1 , is the vertical distance from the magnetic field strength sensor Q2 to the overhead transmission line at time t1 , is the vertical distance from the magnetic field strength sensor Q1 to the overhead transmission line at time t2 , is the vertical distance from the magnetic field strength sensor Q2 to the overhead transmission line at time t2 , is the vertical distance from the magnetic field strength sensor Q2 to the overhead transmission line at time t2 , is the vertical distance from the magnetic field strength sensor Q2 to the overhead transmission line at time t2 , I is the current intensity of
  • step S202 may be: based on the magnetic field strength distribution model of the overhead power line in three-dimensional space, the obtained magnetic field strength, the distance between the two magnetic field strength sensors arranged symmetrically, the arrival time of the aircraft at the last moment The flight distance between the current moment determines the positional relationship between the aircraft and the overhead power line. Wherein, the last time is recorded as time t1 , and the current time is recorded as time t2 .
  • FIG. 6B is a schematic diagram of the relationship between the positions of the aircraft at time t1 and time t2 .
  • the solid line Q 1 Q 2 corresponds to the position of the aircraft at time t 1
  • the dotted line Q 1 Q 2 corresponds to the position of the aircraft at time t 2
  • OO' is the flight distance ⁇ S of the aircraft at time t 1 to t 2 .
  • ⁇ OO'M
  • OM ⁇ S ⁇ sin ⁇ .
  • Figure 6C shows the and OM projected into the plane perpendicular to the overhead transmission line, according to the Pythagorean theorem:
  • the vertical distance from point O to the overhead power line is the vertical distance from the aircraft to the overhead power line.
  • OP is the impact distance.
  • the second measuring device 50 further includes a magnetic field strength sensor Q 3 that is not on the same straight line as the magnetic field strength sensor Q 1 and the magnetic field strength sensor Q 2 .
  • a magnetic field strength sensor Q 3 that is not on the same straight line as the magnetic field strength sensor Q 1 and the magnetic field strength sensor Q 2 .
  • the second measuring device 50 further includes: a sensor for measuring the direction of the electric field and the direction of the magnetic field.
  • the sensor for measuring the direction of the electric field may be a three-dimensional electric field sensor, and the sensor for measuring the direction of the magnetic field may be a three-component fluxgate sensor.
  • the magnetic field direction output by the magnetic field direction sensor and the electric field direction output by the electric field direction sensor are both three-dimensional vectors.
  • the method of the embodiment of the present application further includes the following steps:
  • the magnetic field direction and the electric field direction are data collected at the same time.
  • the Poynting vector is a three-dimensional vector
  • the Poynting vector S E ⁇ H
  • E represents the direction of the electric field
  • H represents the direction of the magnetic field.
  • the direction of the Poynting vector is the direction of the energy flow density in the electromagnetic field.
  • the direction represented by the Poynting vector is the direction of the power line of the overhead transmission line.
  • the flight direction of the aircraft and the angle ⁇ between the power line trend of the overhead power line on the horizontal plane according to the direction of flight of the power line and the flight direction of the aircraft, and obtain the magnetic field strength collected by the magnetic field strength sensor Q 1 on the aircraft at the current moment
  • the magnetic field strength B 2 collected by B 1 and magnetic field strength sensor Q 2 is determined based on the magnetic field strength distribution model, B 1 , B 2 , angle ⁇ , and the relative positional relationship between the magnetic field strength sensor Q 1 and the magnetic field strength sensor Q 2 The positional relationship between aircraft and overhead power lines.
  • L is the distance between the magnetic field strength sensor Q1 and the magnetic field strength sensor Q2
  • r1 is the vertical distance from the magnetic field strength sensor Q1 to the overhead transmission line
  • r2 is the vertical distance from the magnetic field strength sensor Q2 to the overhead transmission line distance
  • I the current intensity of the overhead transmission line.
  • r 1 , r 2 and I are unknown quantities, and others are known quantities.
  • the direction of the power line is obtained through the Poynting vector, and the angle ⁇ is obtained by combining the direction of the aircraft, which can further simplify the two-dimensional model.
  • the flight altitude of the aircraft in real time. If the flight altitude is greater than the preset safety altitude, select the 3D model to calculate the positional relationship between the aircraft and the overhead power line. If the flight altitude is not greater than the safety altitude, select A simplified 2D model calculates the positional relationship between aircraft and overhead power lines. Among them, the safety altitude can be dynamically adjusted according to the current terrain environment of the aircraft.
  • step S203 specifically includes the following steps:
  • the phase detector is installed at the measurement point on the aircraft to obtain the electric field phase and the magnetic field phase generated by the AC power line at the measurement point.
  • the position of the measurement point in the three-dimensional space changes, so that the phase of the electric field and the phase of the magnetic field at different points of the AC power line in the three-dimensional space are measured.
  • the AC transmission line near the aircraft is regarded as an approximately straight wire whose length is much larger than the diameter, so as to obtain the phase distribution model of the AC transmission line in three-dimensional space.
  • the phase distribution model can be expressed by the following formula:
  • ⁇ H is the phase of the magnetic field
  • ⁇ E is the phase of the electric field
  • is the frequency of the current change of the AC transmission line (ie, the power frequency)
  • c is the speed of light
  • r is the vertical distance from the aircraft to the AC transmission line.
  • ⁇ and c are known quantities, and the electric field phase and magnetic field phase measured by the phase detector are input into the above phase distribution model, and the vertical distance r from the aircraft to the AC power line can be calculated.
  • the r calculated by the above formula is actually the vertical distance from the measurement point on the aircraft to the AC power line. Within the allowable range of error, r can be directly used as the vertical distance from the aircraft to the AC power line. If the measurement accuracy is to be improved, the vertical distance from the aircraft to the AC power line can be further determined based on the specific position of the measurement point on the aircraft and r.
  • the existing near-field electromagnetic ranging scheme uses a conventional model that needs to set three different position sensors for three-point positioning, but the space inside the aircraft is limited, and extremely high-precision sensors are needed to achieve high-precision distance measurement. It is difficult to realize in the actual scene.
  • the above positioning method based on the phase method regards the AC power line near the aircraft as an approximately straight wire whose length is much larger than the diameter, and uses the near-field electromagnetic phase characteristics to build a model, and proposes a positioning method based on a single-point sensor.
  • the scheme by obtaining the phase difference between the electric field component and the magnetic field component of the measurement point during the flight of the aircraft, and substituting the phase difference into the phase distribution model, the accurate vertical distance from the aircraft to the AC power line can be obtained in real time during the flight, so as to prevent the aircraft from colliding with the AC power line.
  • a magnetic field direction sensor and an electric field direction sensor can also be provided at the measuring point on the aircraft to detect the magnetic field direction and the electric field direction of the measuring point, and determine the direction of the power line of the AC transmission line based on the magnetic field direction and the electric field direction.
  • the sensor for measuring the direction of the electric field may be a three-dimensional electric field sensor, and the sensor for measuring the direction of the magnetic field may be a three-component fluxgate sensor.
  • the phase-based positioning method further includes the following steps:
  • the magnetic field direction and the electric field direction respectively output by the magnetic field direction sensor and the electric field direction sensor are three-dimensional vectors.
  • the Poynting vector is a three-dimensional vector
  • the Poynting vector S E ⁇ H
  • E represents the direction of the electric field
  • H represents the direction of the magnetic field.
  • the direction of the Poynting vector is the direction of the energy flow density in the electromagnetic field.
  • the direction represented by the Poynting vector is the direction of the power line of the AC transmission line.
  • Fig. 8 starting from the measurement point O of the aircraft along the electric field direction E, passing the vertical distance r to point A on the AC power line, at point A along the power line to S, the AC power line relative to the aircraft can be obtained Spatial location.
  • the electric field direction E and the electric force line S are perpendicular to each other.
  • the location information of the aircraft can be obtained through positioning systems such as GPS and gyroscope, and the spatial location of the AC power line can be determined based on the position information of the aircraft and the spatial position of the AC power line relative to the aircraft.
  • the accurate three-dimensional spatial position information of the AC power line measured at each position on the aircraft flight trajectory is obtained, so as to draw the distribution position of the AC power line in the map data based on a large amount of position information , and record in the database to update the obstacle data in the three-dimensional navigation map data.
  • the location information of AC power lines in China is not public, so the measurement data of the aircraft can continuously update the three-dimensional navigation map data to improve the flight safety of the aircraft.
  • the phase-based positioning method further includes the following steps: determining the impact distance from the aircraft to the AC power line based on the spatial position of the AC power line relative to the aircraft and the flight direction of the aircraft.
  • the flight direction of the aircraft can be obtained based on positioning systems such as GPS and gyroscope on the aircraft, and the specific process will not be repeated here.
  • the impact distance is the distance from the aircraft to the vertical plane where the AC power line is located along the direction of flight.
  • the flight altitude, flight direction, and flight speed can be adjusted more accurately to prevent the aircraft from colliding with the AC power line.
  • the aircraft can fly close to the AC power line when inspecting the AC power line. While improving the accuracy of the inspection, it can ensure the safety of the aircraft.
  • the location information of the aircraft can be obtained through positioning systems such as GPS and gyroscopes, and the spatial location of the overhead transmission line can be determined based on the location information of the aircraft and the spatial location of the overhead transmission line relative to the aircraft.
  • the accurate three-dimensional spatial position information of the AC power line measured at each position on the aircraft flight trajectory is obtained, so as to draw the distribution position of the AC power line in the map data based on a large amount of position information , and record in the database to update the obstacle data in the three-dimensional navigation map data.
  • the location information of AC power lines in China is not public, so the measurement data of the aircraft can continuously update the three-dimensional navigation map data to improve the flight safety of the aircraft.
  • the embodiment of the present application also provides a flight collision avoidance device 110 based on overhead transmission line electromagnetic field detection, including:
  • the power line type identification module 1101 is configured to determine whether the surrounding overhead power lines are AC power lines or DC power lines based on the output of the resonant circuit on the aircraft.
  • the first processing module 1102 is configured to determine the relationship between the aircraft and the overhead power transmission line based on the phase distribution model, the electric field phase and the magnetic field phase measured by the phase detector on the aircraft if the overhead power transmission line is an AC power transmission line The positional relationship between the lines; wherein, the phase distribution model is used to describe the distribution of the electric field phase and magnetic field phase generated by the AC transmission line at each point in three-dimensional space.
  • the second processing module 1103 is configured to determine the distance between the aircraft and the overhead transmission line based on the magnetic field intensity distribution model and the magnetic field intensity collected by the magnetic field intensity sensor on the aircraft if the overhead transmission line is a direct current transmission line The positional relationship among them; wherein, the magnetic field intensity distribution model is used to represent the relationship between the magnetic field intensity of each point in three-dimensional space and the vertical distance from each point to the overhead transmission line.
  • a control module 1104 configured to control the aircraft based on the positional relationship between the aircraft and the overhead power line.
  • the first processing module 1102 is specifically configured to: determine a second position between the aircraft and the overhead power line based on the magnetic field intensity distribution model and the magnetic field intensity collected by the magnetic field intensity sensor on the aircraft relationship; the first position relationship and the second position relationship are fused to obtain the position relationship between the aircraft and the overhead power line, wherein the first position relationship is a position obtained based on the phase distribution model relation.
  • the first processing module 1102 is further configured to: based on the estimated distance from the aircraft to the overhead power line, determine the first weight corresponding to the first position relationship and the second position when performing fusion A second weight corresponding to the relationship, wherein the estimated distance is positively correlated with the first weight, and the estimated distance is negatively correlated with the second weight.
  • the first processing module 1102 is specifically configured to: if the estimated distance from the aircraft to the overhead power line is less than a preset value, then determine the weight value W 1 corresponding to the first position relationship, the first The two positional relationships correspond to the weight value W 2 , otherwise, determine that the first positional relationship corresponds to W 2 , and the second positional relationship corresponds to W 1 , wherein W 1 is smaller than W 2 .
  • the first processing module 1102 is specifically configured to: obtain the vertical distance from the aircraft to the AC power line based on the phase distribution model and the electric field phase and magnetic field phase measured by the phase detector on the aircraft; Obtaining the magnetic field direction measured by the magnetic field direction sensor on the aircraft and the electric field direction measured by the electric field direction sensor; based on the measured magnetic field direction and electric field direction, obtaining the Poynting vector of the position of the aircraft; based on the Poynting vector determining the direction of the power line of the AC power line; and determining the spatial position of the AC power line relative to the aircraft based on the direction of the electric field, the vertical distance, and the direction of the power line.
  • the anti-flight anti-collision device based on electromagnetic field detection of overhead transmission lines proposed in the embodiment of the present application adopts the same inventive concept as the above-mentioned anti-flight anti-collision method based on electromagnetic field detection of overhead transmission lines, and can achieve the same beneficial effects, and will not be repeated here.
  • the embodiment of the present application also provides an electronic device, which can specifically be the control device or control system inside the aircraft, or it can be an additional Set up processing system, etc.
  • the electronic device 120 may include a processor 1201 and a memory 1202 .
  • the processor 1201 can be a general-purpose processor, such as a central processing unit (CPU), a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field Programmable Gate Array , FPGA) or other programmable logic devices, discrete gate or transistor logic devices, and discrete hardware components can implement or execute the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the methods disclosed in connection with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the memory 1202 can be used to store non-volatile software programs, non-volatile computer-executable programs and modules.
  • the memory may include at least one type of storage medium, such as flash memory, hard disk, multimedia card, card memory, random access memory (Random Access Memory, RAM), static random access memory (Static Random Access Memory, SRAM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Magnetic Memory, Disk, discs and more.
  • a memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory 1202 in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, and is used for storing program instructions and/or data.
  • the above-mentioned computer storage medium can be any available medium or data storage device that can be accessed by a computer, including but not limited to: removable storage device, random access memory (RAM, Random Access Memory), magnetic storage (such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical memory (such as CD, DVD, BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH) , Solid State Disk (SSD)) and other media that can store program code.
  • RAM random access memory
  • RAM Random Access Memory
  • magnetic storage such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical memory such as CD, DVD, BD, HVD, etc.
  • semiconductor memory such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH) , Solid State Disk (SSD) and other media that can store program code.
  • the above-mentioned integrated units of the present application are realized in the form of software function modules and sold or used as independent products, they can also be stored in a computer-readable storage medium.
  • the technical solution of the embodiment of the present application is essentially or the part that contributes to the prior art can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes several instructions for Make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: mobile storage devices, random access memory (RAM, Random Access Memory), magnetic storage (such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO) etc.), optical storage (such as CD, DVD, BD , HVD, etc.), and semiconductor memories (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state hard disk (SSD)) and other media that can store program codes.
  • RAM random access memory
  • RAM Random Access Memory
  • magnetic storage such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO) etc.
  • optical storage such as CD, DVD, BD , HVD, etc.
  • semiconductor memories such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state hard disk (SSD)
  • SSD solid-state hard disk

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Traffic Control Systems (AREA)

Abstract

本申请涉及航空器控制技术领域,公开了一种基于架空输电线电磁场探测的飞行防撞方法及装置,可准确测量出航空器和架空输电线的位置关系,保障航空器的飞行安全,且适用于更加复杂且多样的场景,该方法包括:基于航空器上的谐振电路的输出确定周围的架空输电线是交流输电线还是直流输电线;若架空输电线是交流输电线,则基于相位分布模型、航空器上的相位检测器测量的电场相位和磁场相位,确定航空器与架空输电线之间的位置关系;若架空输电线是直流输电线,则基于磁场强度分布模型和航空器上的磁场强度传感器采集的磁场强度,确定航空器与架空输电线之间的位置关系;基于航空器与架空输电线之间的位置关系,对航空器进行控制。

Description

基于架空输电线电磁场探测的飞行防撞方法及装置
本申请要求于2021年08月26日提交中国专利局、申请号为202110990261.2、发明名称为“基于架空输电线电磁场探测的飞行防撞方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及航空器控制技术领域,尤其涉及一种基于架空输电线电磁场探测的飞行防撞方法及装置。
背景技术
随着以直升机为代表的航空器在工农业生产与应急救援中应用越发广泛,无人机相关产业的迅猛发展以及中国低空空域开放改革的不断深入,在可以预见的未来,中国通用航空产业将会迎来一段发展的黄金时期,航空器的保有量将会呈现出迅猛上升的势头。航空器低空飞行具有高度低、速度快、环境复杂的特点,在飞行过程中,航空器驾驶员主要依靠目视搜索辨认地面障碍物,存在发现距离短、判断准确性低、受气象条件限制大的问题,特别是驾驶员在对架空输电线缆辨认时,在能见度良好的情况下,距离100m~200m才能发现高压线,低云、多雾等能见度较差的天气时发现距离会成倍缩短,使飞行员不能准确、迅速地发现架空输电线缆,并有效避让,存在安全隐患,极易发生撞线事故。
目前,低空航空器的架空输电线缆探测技术主要分为主动探测式和被动探测式。主动探测式主要有激光雷达与毫米波雷达,其工作原理较为类似,都是通过发射并接收障碍物反射的电磁波,通过信号处理技术对其进行处理,从而得到目标的位置与距离等信息。作为主动式的探测雷达,需要消耗较大的功率,成本较高,占据机体空间较大,以上原因限制了探测雷达在中小型低成本航空器上的应用,同时毫米波雷达的分辨率低的问题以及激光雷达易受恶劣天气影响的问题目前也需要进一步改善。被动探测式主要有图像识别与电磁场探测两种方法。图像识别主要是通过拍摄红外、可见光、紫外等波段的图像,通过图像处理技术及配套算法提取和识别架空输电线缆。目前此种方法已经有了一定的研究进展,但与激光雷达 类似,在恶劣天气时,受到的影响较大,尤其可见光波段图像识别系统在夜间时探测能力会较白天大幅下降。
发明内容
本申请实施例提供一种基于架空输电线电磁场探测的飞行防撞方法、装置、电子设备及存储介质,可准确测量出航空器和架空输电线的位置关系,保障航空器的飞行安全,且适用于更加复杂且多样的场景。
一方面,本申请一实施例提供了一种基于架空输电线电磁场探测的飞行防撞方法,包括:
基于航空器上的谐振电路的输出确定周围的架空输电线是交流输电线还是直流输电线;
若所述架空输电线是交流输电线,则基于相位分布模型、所述航空器上的相位检测器测量的电场相位和磁场相位,确定所述航空器与所述架空输电线之间的位置关系;其中,所述相位分布模型用于描述所述交流输电线在三维空间各点处产生的电场相位和磁场相位的分布;
所述架空输电线是直流输电线,则基于磁场强度分布模型和所述航空器上的磁场强度传感器采集的磁场强度,确定所述航空器与所述架空输电线之间的位置关系;其中,所述磁场场强分布模型用于表示三维空间内每个点的磁场强度和每个点到架空输电线的垂直距离之间的关系;
基于所述航空器与所述架空输电线之间的位置关系,对所述航空器进行控制。
一方面,本申请一实施例提供了一种基于架空输电线电磁场探测的飞行防撞装置,包括:
输电线类型识别模块,用于基于航空器上的谐振电路的输出确定周围的架空输电线是交流输电线还是直流输电线;
第一处理模块,用于若所述架空输电线是交流输电线,则基于相位分布模型、所述航空器上的相位检测器测量的电场相位和磁场相位,确定所述航空器与所述架空输电线之间的位置关系;其中,所述相位分布模型用于描述所述交流输电线在三维空间各点处产生的电场相位和磁场相位的分布;
第二处理模块,用于若所述架空输电线是直流输电线,则基于磁场强 度分布模型和所述航空器上的磁场强度传感器采集的磁场强度,确定所述航空器与所述架空输电线之间的位置关系;其中,所述磁场场强分布模型用于表示三维空间内每个点的磁场强度和每个点到架空输电线的垂直距离之间的关系;
控制模块,用于基于所述航空器与所述架空输电线之间的位置关系,对所述航空器进行控制。
一方面,本申请一实施例提供了一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,处理器执行计算机程序时实现上述任一种方法的步骤。
一方面,本申请一实施例提供了一种计算机可读存储介质,其上存储有计算机程序指令,该计算机程序指令被处理器执行时实现上述任一种方法的步骤。
一方面,本申请一实施例提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述任一种TCP传输性能的控制的各种可选实现方式中提供的方法。
本申请实施例提供的基于架空输电线电磁场探测的飞行防撞方法、装置、电子设备及存储介质,针对交流输电线和直流输电线,分别使不同的模型进行处理,能够取长补短,解决单一模型中难以解决的固有缺陷和理论误差,准确测量出航空器和架空输电线的位置关系,进而防止航空器撞到交流输电线,保障航空器的飞行安全,且适用于更加复杂且多样的场景。
说明书附图
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1A为本申请实施例提供的基于架空输电线电磁场探测的飞行防撞方法的应用场景示意图;
图1B为本申请实施例提供的航空器上的测量设备的结构框图;
图2为本申请实施例提供的一种基于架空输电线电磁场探测的飞行防撞方法的流程示意图;
图3为本申请实施例提供的结合相位法和场强法进行定位的流程示意图;
图4为本申请实施例提供的基于场强法进行定位的流程示意图;
图5为本申请实施例提供的二维模型的示意图;
图6A为本申请实施例提供的三维模型的示意图;
图6B为t 1时刻和t 2时刻的航空器所处位置之间的关系示意图;
图6C为将r 1,t1、r 2,t1、r 1,t2、r 2,t2和OM投射到垂直于架空输电线的平面内的示意图;
图7为本申请实施例提供的结合场强法和坡印廷矢量进行定位的流程示意图;
图8为本申请实施例提供的航空器和架空输电线之间的空间关系的示意图;
图9为本申请实施例提供的基于相位法进行定位的流程示意图;
图10为本申请实施例提供的基于相位法进行定位的流程示意图;
图11为本申请实施例提供的基于架空输电线电磁场探测的飞行防撞装置的结构示意图;
图12为本申请实施例提供的电子设备的结构示意图。
具体实施方式
下面结合附图对本发明实施例进行详细描述。
需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合;并且,基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
需要说明的是,下文描述在所附权利要求书的范围内的实施例的各种方面。应显而易见,本文中所描述的方面可体现于广泛多种形式中,且本文中所描述的任何特定结构及/或功能仅为说明性的。基于本公开,所属领域的技术人员应了解,本文中所描述的一个方面可与任何其它方面独立地实施,且可以各种方式组合这些方面中的两者或两者以上。举例来说, 可使用本文中所阐述的任何数目个方面来实施设备及/或实践方法。另外,可使用除了本文中所阐述的方面中的一或多者之外的其它结构及/或功能性实施此设备及/或实践此方法。
为了方便理解,下面对本申请实施例中涉及的名词进行解释:
航空器(aircraft):是航空器中的一个大类,是指通过机身与空气的相对运动(不是由空气对地面发生的反作用)而获得空气动力升空飞行的任何机器。本申请实施例中的航空器包括但不限于气球、飞艇、飞机、滑翔机、旋翼机、直升机、扑翼机、倾转旋翼机等。本申请实施例中的航空器可以是有人驾驶或无人驾驶的航空器。
架空输电线:主要是指在室外架设的直流或交流输电线,尤其是在野外的高压输电线。高压输电线缆所输送就是工频频率的交流电,包括中国在内的大多数国家使用的交流输电线的工频频率为50Hz,在美国、加拿大等少数国家的使用的交流输电线的工频频率为60Hz,高压输电线缆所输送就是工频频率的交流电。
谐振电路:以谐振为主要工作状态的电路称谐振电路。在正弦激励作用下,电路内会出现基波谐振、高次谐波谐振、分谐波谐振以及电流(或电压)的振幅和相位跳变的现象,基于该现象可以检测谐振电路周围是否存在交变电磁场。
撞击距离:是航空器沿飞行方向到达交流输电线所在竖直面的距离。
坡印廷矢量(Poynting vector):是指电磁场中的能流密度矢量。空间某处的电场强度为E,磁场强度为H,该处电磁场的能流密度为S=E×H,方向由E和H按右手螺旋定则确定,沿电磁波的传播方向。大小为S=EHsinθ,θ为E和H的夹角,表示单位时间通过垂直单位面积的能量,单位为瓦/(米)。
附图中的任何元素数量均用于示例而非限制,以及任何命名都仅用于区分,而不具有任何限制含义。
在具体实践过程中,现有较为成熟的主动探测式和被动探测式的架空输电线缆探测技术,均具有无法适应各种恶劣环境和探测精准度低的问题。
交流输电线在工作时线缆电流会产生工频电磁场,当航空器接近输电 线时,可通过探测电力线所发射电磁场,提取到其中所包含的电磁场特征信息,并通过算法转化后,可以获得电力线相对于航空器的距离、方向等信息,从而提醒航空器驾驶员及时规避。工频电磁场是一种超长波电磁场,按中国使用的50Hz工频频率来计算,工频电磁场的波长大约在6000km,通常航空器的电力线探测距离在10km以内,远远小于一个波长的距离。虽然目前电磁波远近场区域还没有严格的定义,但是不论以任何模型来判断,此时航空器都处于工频电磁场的近场区域。在电磁场近场区域,电场与磁场是可以分别测量的独立分量,同时也没有同步的相位关系,不同于一般意义上的远场区域电磁波,电场矢量与磁场矢量以波阻抗关系紧密耦合,此时可以认为存在于空间中的是独立的工频电场与工频磁场。
利用输电线发出的工频电磁场来进行航空器撞线防范的构想最早始于1978年,Young提出了一种通过探测工频磁场强度来对电力线附近航空器进行示警的方法,随着航空器不断接近电力线,其探测到的工频磁场强度也不断增大,从而提示飞行员提高警惕。1989年,Merritt又提出了通过探测工频电场来对接近电力线的航空器飞行员进行示警的方法,同样是根据电场强度来对相对距离进行判断。1998年,Greene设计了一套通过检测电力线发出的50Hz或者60Hz特定频率交流信号的声光示警系统,通过检测交流信号强度来警告飞行员正在接近电力线。在2003年,Greene又继续改进了基于交流信号检测的航空器防撞线示警系统,通过与GPS系统协同,把探测到的电力线信息整合到了视觉导航系统上,实现了电力线相对位置的可视化显示。
上述研究与技术开发工作完善了基于工频电磁场探测的航空器防撞线技术,但是也存在着一些不足。例如,通过上述探测手段获得的电力线位置信息通常是模糊信息,一般只能通过信号强度的增强来提醒飞行员距离接近,但不会显示具体的距离数值;早期方案中因为电磁波近场理论尚不成熟,对于电力线周围工频电磁场的物理模型设定的较为简单,与实际情况存在偏差;上述方案受限于当时电子元器件性能与计算机的处理能力,在实际应用中,反应时间较长,误报率较高,因此没有进行大规模推广。但随着无人机,高速直升机等新型低空通用航空器的大量使用,无论在军事还是民用领域,进一步探索和研究新一代电磁探测防撞线技术已变 得更加迫切。
为此,本申请提供了一种基于架空输电线电磁场探测的飞行防撞方法,基于航空器上的谐振电路确定周围的架空输电线是交流输电线还是直流输电线;若是交流输电线,则基于预先构建的相位分布模型、航空器上的相位检测器测量的电场相位和磁场相位,确定航空器与架空输电线之间的位置关系;若是直流输电线,则基于磁场强度分布模型和航空器上的磁场强度传感器采集的磁场强度,确定航空器与架空输电线之间的位置关系;基于航空器与架空输电线之间的位置关系,对航空器进行控制。针对交流输电线和直流输电线,分别使不同的模型进行处理,能够取长补短,解决单一模型中难以解决的固有缺陷和理论误差,适用于更加复杂且多样的场景。
在介绍完本申请实施例的设计思想之后,下面对本申请实施例的技术方案能够适用的应用场景做一些简单介绍,需要说明的是,以下介绍的应用场景仅用于说明本申请实施例而非限定。在具体实施时,可以根据实际需要灵活地应用本申请实施例提供的技术方案。
参考图1A,其为本申请实施例提供的基于架空输电线电磁场探测的飞行防撞方法的应用场景示意图。该应用场景包括航空器10和架空的交流输电线20,航空器10内部设置了谐振电路30、适用于相位法的第一测量设备40、适用于磁场强度法的第二测量设备50和处理器60。谐振电路30用于检测周围是否存在交变电磁场,处理器60用于对第一测量设备40和第二测量设备50的输出数据进行处理。
参考图1B,第一测量设备40包括用于测量电场相位和磁场相位的相位检测器401,以测量同一空间位置中的电场相位和磁场相位。在航空器10飞行过程中,处理器60获取相位检测器401采集的电场相位和磁场相位,对电场相位和磁场相位进行处理以获得航空器10到交流输电线20的位置关系。进一步地,航空器10上还设置了用于测量磁场方向的传感器402和用于测量电场方向的传感器403,处理器60基于测量的磁场方向和电场方向,确定交流输电线20的电力线走向。
第二测量设备50包括设置在航空器10内部不同位置的多个磁场强度传感器501,用于测量架空输电线20在不同位置处的磁场强度。基于航 空器10内部的数据处理设备对多个磁场强度传感器501测量的磁场强度进行处理,以获得航空器相10对架空输电线20的位置。
当处理器60基于谐振电路30的输出确定周围存在交流输电线时,基于第一测量设备40和/或第二测量设备50的处理结果,指导航空器10躲避架空输电线,保证航空器飞行安全。当处理器60基于谐振电路30的输出确定周围存在直流输电线时,基于第二测量设备50的处理结果,指导航空器10躲避架空输电线,保证航空器飞行安全。
当然,本申请实施例提供的方法并不限用于图1A所示的应用场景中,还可以用于其它可能的应用场景,本申请实施例并不进行限制。对于图1A所示的应用场景的各个设备所能实现的功能将在后续的方法实施例中一并进行描述,在此先不过多赘述。
为进一步说明本申请实施例提供的技术方案,下面结合附图以及具体实施方式对此进行详细的说明。虽然本申请实施例提供了如下述实施例或附图所示的方法操作步骤,但基于常规或者无需创造性的劳动在所述方法中可以包括更多或者更少的操作步骤。在逻辑上不存在必要因果关系的步骤中,这些步骤的执行顺序不限于本申请实施例提供的执行顺序。
参考图2,本申请实施例提供一种基于架空输电线电磁场探测的飞行防撞方法,包括以下步骤:
S201、获取航空器上的谐振电路的输出。
S202、基于谐振电路的输出判断周围的架空输电线是交流输电线还是直流输电线;若架空输电线是交流输电线,则执行步骤S203;若架空输电线是直流输电线,则执行步骤S204。
S203、基于相位分布模型、航空器上的相位检测器测量的电场相位和磁场相位,确定航空器与架空输电线之间的位置关系。
其中,相位分布模型用于描述交流输电线在三维空间各点处产生的电场相位和磁场相位的分布。
S204、基于磁场强度分布模型和航空器上的磁场强度传感器采集的磁场强度,确定航空器与架空输电线之间的位置关系。
其中,磁场场强分布模型用于表示三维空间内每个点的磁场强度和每个点到架空输电线的垂直距离之间的关系。可通过模拟电荷法、矩量法等 方法建立工频电磁场三维空间场强分布的数学模型,进而获得场强与距离关系的分布函数,即磁场场强分布模型。
在航空器上进行电力线区域工频电磁场测量,尽量获得较多的空间电磁场实测数据,并通过结合实测数据与电磁场仿真对比,对相位分布模型和磁场场强分布模型进行校准与改进。还可以利用大量实测数据对系统进行基于神经网络模型的深度学习训练,以期系统能够更好识别不同电流参数(大小、直流或者交流)造成的实际电磁环境变化,从而智能化的对相位分布模型和磁场场强分布模型进行调整。
S205、基于航空器与架空输电线之间的位置关系,对航空器进行控制。
具体实施时,航空器与架空输电线之间的位置关系包括以下至少一项:航空器到架空输电线的垂直距离,航空器到架空输电线的撞击距离,航空器的飞行方向和架空输电线的电力线走向之间的夹角,航空器和架空输电线之间的高度差。
具体实施时,可预先设置一个安全距离阈值,若航空器到架空输电线的垂直距离小于安全距离阈值,则进行防撞报警,用以提示航空器距离架空输电线过近。航空器操控员在接收到防撞报警后,可手动调整航空器的飞行高度、飞行方向和飞行速度等,使得航空器远离架空输电线。
进一步地,若航空器到架空输电线的垂直距离小于安全距离阈值,则可以根据航空器到架空输电线的垂直距离,自动调整航空器的飞行高度、飞行方向和飞行速度中的至少一项参数,使得航空器避开架空输电线。自动调整航空器姿态的防撞方式可以保证无人驾驶航空器的飞行安全。
当然,也可以设置撞击距离对应的安全距离阈值,当航空器到架空输电线的撞击距离小于该安全距离阈值时,对航空器进行防撞控制。具体的防撞控制方式不再赘述。
根据撞击距离和架空输电线相对于航空器的空间位置等数据,可以更精准地调整飞行高度、飞行方向和飞行速度等,防止航空器与架空输电线发生碰撞。基于高精度的测距和防撞控制方式,使得航空器在对架空输电线进行巡检时,可以贴近架空输电线进行飞行,在提高巡检准确度的同时,保证航空器安全。
本申请实施例首次对相位分布模型和磁场场强分布模型进行整合,有利于减少各个模型的固有缺陷及误差,使之取长补短,获得较为准确的电力线距离的数值与相对方向,从而获得电力线三维空间位置信息,且适用于更加复杂且多样的场景范围。
进一步地,当航空器周围的架空输电线是交流输电线时,可结合相位法和场强法获得的航空器和架空输电线的位置关系,进一步提高定位准确度,参考图3,具体过程如下:
S301、基于相位分布模型、航空器上的相位检测器测量的电场相位和磁场相位,确定航空器与架空输电线之间的第一位置关系。
S302、基于磁场强度分布模型和航空器上的磁场强度传感器采集的磁场强度,确定航空器与架空输电线之间的第二位置关系。
S303、对第一位置关系和第二位置关系进行融合,获得航空器与架空输电线之间的位置关系。
具体实施时,可对第一位置关系和第二位置关系进行加权求和,将加权求和结果作为航空器与架空输电线之间的位置关系,后续基于加权求和结果对航空器进行控制。
当航空器与架空输电线之间的位置关系多种类型时,如航空器到架空输电线的垂直距离,航空器到架空输电线的撞击距离,航空器的飞行方向和架空输电线的电力线走向之间的夹角,航空器和架空输电线之间的高度差,针对每种类型分别进行加权求和。
其中,第一位置关系和第二位置关系分别对应的权重可以是预先设定的。或者可以基于航空器到架空输电线的估计距离,确定进行融合时第一位置关系对应的第一权重和第二位置关系对应的第二权重,其中,估计距离与第一权重正相关,估计距离与第二权重负相关。
具体实施时,可基于上一时刻测量到的航空器与架空输电线之间的位置关系,确定航空器到架空输电线的距离,作为航空器到架空输电线的估计距离。或者,基于第一位置关系和第二位置关系,估算航空器到架空输电线的大概距离,作为航空器到架空输电线的估计距离。
具体实施时,若航空器到架空输电线的估计距离小于预设值,则确定第一位置关系对应权重值W 1,第二位置关系对应权重值W 2,否则,确 定第一位置关系对应W 2,第二位置关系对应W 1,其中,W 1小于W 2
其中,可结合大量实际数据对相位分布模型和磁场场强分布模型进行误差调整,判断其适用的距离范围,从而选出合适的预设值。
下面介绍基于场强法的定位方法的具体实现方式。基于磁场强度的定位方法适用于直流输电线和交流输电线。
参考图4,步骤S204具体包括如下步骤:
S401、分别获取当前时刻和上一时刻时航空器上的每个磁场强度传感器采集的磁场强度。
其中,航空器上包括至少两个安装在不同位置的磁场强度传感器,这样可以测量到架空输电线在三维空间中不同位置处产生的磁场强度。磁场强度传感器的安装位置和数量,可根据实际应用需求设定。
具体实施时,磁场强度传感器可以是高斯计、霍尔效应传感器等,不作限定。
其中,获取磁场强度的间隔周期(即当前时刻和上一时刻时的间隔周期)可根据实际情况设定,如每间隔2秒获取一次磁场强度传感器采集的磁场强度。也可以结合航空器的飞行速度动态调整间隔周期,飞行速度越快,间隔周期越短。需要说明的是,每个磁场强度传感器在不同时刻采集的是:航空器的飞行轨迹上不同位置处的磁场强度。
S402、基于架空输电线在三维空间中的磁场强度分布模型、获取的磁场强度以及磁场强度传感器之间的相对位置关系,确定航空器与架空输电线之间的位置关系。
具体实施时,可将航空器附近的架空输电线看作长度远大于直径的近似直导线,从而获得架空输电线在三维空间中的磁场强度分布模型。具体地,磁场强度分布模型可通过如下公式表示:
Figure PCTCN2022099319-appb-000001
其中,I为架空输电线的电流强度,r为三维空间内某一点到架空输电线的垂直距离,B为架空输电线在三维空间内某一点处产生的磁场强度,μ 0为真空磁导率,π为圆周率。
将不同时刻采集的磁场强度代入磁场强度分布模型,并结合磁场强度传感器之间的相对位置关系对磁场强度传感器对应的垂直距离r的限定, 获得航空器与架空输电线之间的位置关系。
具体实施时,航空器与架空输电线之间的位置关系包括以下至少一项:航空器到架空输电线的垂直距离,航空器到架空输电线的撞击距离,航空器的飞行方向和架空输电线的电力线走向之间的夹角,航空器和架空输电线之间的高度差。
其中,航空器的飞行方向可基于航空器上的GPS、陀螺仪等定位系统获取,具体过程不再赘述。基于架空输电线相对于航空器的空间位置和航空器的飞行方向,可确定航空器到架空输电线的撞击距离。
S403、基于航空器与架空输电线之间的位置关系,对航空器进行控制。
具体实施时,可预先设置一个安全距离阈值,若航空器到架空输电线的垂直距离小于安全距离阈值,则进行防撞报警,用以提示航空器距离架空输电线过近。航空器操控员在接收到防撞报警后,可手动调整航空器的飞行高度、飞行方向和飞行速度等,使得航空器远离架空输电线。
进一步地,若航空器到架空输电线的垂直距离小于安全距离阈值,则可以根据航空器到架空输电线的垂直距离,自动调整航空器的飞行高度、飞行方向和飞行速度中的至少一项参数,使得航空器避开架空输电线。自动调整航空器姿态的防撞方式可以保证无人驾驶航空器的飞行安全。
当然,也可以设置撞击距离对应的安全距离阈值,当航空器到架空输电线的撞击距离小于该安全距离阈值时,对航空器进行防撞控制。具体的防撞控制方式不再赘述。
根据撞击距离和交流输电线相对于航空器的空间位置等数据,可以更精准地调整飞行高度、飞行方向和飞行速度等,防止航空器与交流输电线发生碰撞。基于高精度的测距和防撞控制方式,使得航空器在对交流输电线进行巡检时,可以贴近交流输电线进行飞行,在提高巡检准确度的同时,保证航空器安全。
上述基于磁场强度的定位方法,将航空器附近的交流输电线看作长度远大于直径的近似直导线,构建了磁场强度分布模型,并在航空器上多个点位设置了磁场强度传感器,基于航空器飞行过程中磁场强度传感器多次采集的数据,准确测量出航空器和架空输电线的位置关系,进而防止航空 器撞到交流输电线,保障航空器的飞行安全。
在一种可能的实施方式中,为了方便后续的数据处理,第二测量设备50可包括:在航空器的中轴线两侧对称设置磁场强度传感器Q 1和磁场强度传感器Q 2,磁场强度传感器Q 1和磁场强度传感器Q 2之间的间距为L。对称设置的磁场强度传感器,可以降低数据处理的难度。
具体实施时,在航空器沿直线匀速飞行过程中,对称设置的磁场强度传感器Q 1和磁场强度传感器Q 2采集的磁场强度始终保持相同,表明磁场强度传感器Q 1和磁场强度传感器Q 2到架空输电线的距离始终相等,即表明航空器正沿着架空输电线飞行,此时可根据航空器的飞行轨迹,确定出架空输电线的空间位置。为此,本申请实施例的方法还包括如下步骤:若磁场强度传感器Q 1和磁场强度传感器Q 2采集的磁场强度保持相同,则确定航空器正沿着架空输电线飞行。
具体实施时,在航空器飞行过程中每个磁场强度传感器采集的磁场强度不变,表明航空器到架空输电线的距离保持不变,则可以确定航空器的飞行方向于架空输电线平行。
通过比较多个磁场强度传感器的输出,可以快速判断航空器与架空输电线之间的位置关系。若航空器的飞行方向与架空输电线平行,则磁场强度传感器Q 1和Q 2输出的磁场强度相同或维持不变;若航空器的飞行方向与架空输电线之间有一定角度,则可基于磁场强度传感器Q 1和Q 2输出的差值,利用设定好的模型得到航空器飞行方向与架空输电线的位置关系。
下面介绍磁场强度定位法中利用简化的二维模型或三维模型,确定航空器飞行方向与架空输电线的位置关系的具体方式。
在低空飞行场景中,航空器的飞行高度与架空输电线的高度较为相近,因此,在一种实施方式中,可将计算航空器和架空输电线的位置关系的模型简化为二维模型,即忽略航空器和架空输电线的高度差,将两者视为处于同一高度内。以图3为例,磁场强度传感器Q 1和磁场强度传感器Q 2分别安装在航空器10两侧的机翼上,磁场强度传感器Q 1和磁场强度传感器Q 2之间的间距为L,实线的航空器10代表t 1时刻航空器10所处位置,虚线的航空器10代表t 2时刻航空器10所处位置,v表示航空器10的飞行方向,一般认为t 1~t 2时刻航空器10是沿直线匀速飞行的,根据 图5所示的几何关系可知t 1时刻:
Figure PCTCN2022099319-appb-000002
同理也可以得到t 2时刻:
Figure PCTCN2022099319-appb-000003
为此,步骤S402的具体实施方式可以是:基于如下方程组计算航空器与架空输电线之间的位置关系:
Figure PCTCN2022099319-appb-000004
其中,L为磁场强度传感器Q 1和磁场强度传感器Q 2之间的间距,
Figure PCTCN2022099319-appb-000005
为t 1时刻磁场强度传感器Q 1采集的磁场强度,
Figure PCTCN2022099319-appb-000006
为t 1时刻磁场强度传感器Q 2采集的磁场强度,
Figure PCTCN2022099319-appb-000007
为t 2时刻磁场强度传感器Q 1采集的磁场强度,
Figure PCTCN2022099319-appb-000008
为t 2时刻磁场强度传感器Q 2采集的磁场强度,
Figure PCTCN2022099319-appb-000009
为t 1时刻磁场强度传感器Q 1到架空输电线的垂直距离,
Figure PCTCN2022099319-appb-000010
为t 1时刻磁场强度传感器Q 2到架空输电线的垂直距离,
Figure PCTCN2022099319-appb-000011
为t 2时刻磁场强度传感器Q 1到架空输电线的垂直距离,
Figure PCTCN2022099319-appb-000012
为t 2时刻磁场强度传感器Q 2到架空输电线的垂直距离,I为架空输电线的电流强度,α为航空器的飞行方向和架空输电线的电力线走向在水平面上的夹角。其中,
Figure PCTCN2022099319-appb-000013
I和α为未知量,其它为已知量。
通过求解上述方程组,可获得
Figure PCTCN2022099319-appb-000014
I和α,然后根据
Figure PCTCN2022099319-appb-000015
Figure PCTCN2022099319-appb-000016
可求得t 1时刻航空器中心点O到架空输电线的垂直距离
Figure PCTCN2022099319-appb-000017
航空器中心点O到架空输电线的撞击距离OP=d 1sinα;根据
Figure PCTCN2022099319-appb-000018
Figure PCTCN2022099319-appb-000019
可求得t 2时刻航空器中心点O到架空输电线的垂直距离
Figure PCTCN2022099319-appb-000020
航空器中心点O到架空输电线的撞击距离OP=d 2sinα。
在另一种可能的实施方式中,为了获得更加精准的航空器与架空输电 线之间的位置关系,可采用三维模型进行计算。为此,步骤S202的具体实施方式可以是:基于架空输电线在三维空间中的磁场强度分布模型、获取的磁场强度、对称设置的两个磁场强度传感器之间的间距、航空器在上一时刻到当前时刻之间的飞行距离,确定航空器与架空输电线之间的位置关系。其中,上一时刻记为t 1时刻,当前时刻记为t 2时刻。
以图6A为例,磁场强度传感器Q 1和磁场强度传感器Q 2分别安装在航空器10两侧的机翼上,磁场强度传感器Q 1和磁场强度传感器Q 2之间的间距为L,Q 1B、FC、Q 2C、CG均垂直于架空输电线,CG垂直于航空器所在的高度平面,O为Q 1Q 2的中点,由此可见FC=Q 1B;直线I’是架空输电线I平移到航空器所在的高度平面的,因此直线I’与架空输电线I平行,由于架空输电线I垂直于平面CGQ 2,因此直线I’也垂直于平面CGQ 2,由此可见Q 1F垂直于Q 2F;设航空器的飞行方向v和架空输电线的电力线走向I在水平面上的夹角为α,由于v⊥Q 1Q 2,因此∠Q 1Q 2F=α,Q 2F=Lcosα。以t 1时刻为例,设
Figure PCTCN2022099319-appb-000021
CG=h,根据勾股定理可获得
Figure PCTCN2022099319-appb-000022
h和Lcosα之间的关系:
Figure PCTCN2022099319-appb-000023
由于t 1时刻和t 2时刻较近,可认为t 1~t 2时段内,航空器在航空器高度内匀速直线飞行的,且航空器和输电线的高度差维持在h,同理可获得t 2时刻
Figure PCTCN2022099319-appb-000024
h和Lcosα之间的关系:
Figure PCTCN2022099319-appb-000025
图6B为t 1时刻和t 2时刻的航空器所处位置之间的关系示意图。其中,实线Q 1Q 2对应t 1时刻航空器所处位置,虚线Q 1Q 2对应t 2时刻航空器所处位置,OO’为t 1~t 2时刻航空器的飞行距离ΔS,具体可根据航空器飞行速度计算飞行距离,即ΔS=v(t 2-t 1),或者可根据t 1时刻和t 2时刻航空器的坐标位置计算飞行距离ΔS。∠OO’M=α,所以OM=ΔS·sinα。
图6C为将
Figure PCTCN2022099319-appb-000026
和OM投射到垂直于架空输电线的平面内的示意图,根据勾股定理可知:
Figure PCTCN2022099319-appb-000027
Figure PCTCN2022099319-appb-000028
求解以下方程组:
Figure PCTCN2022099319-appb-000029
以获得
Figure PCTCN2022099319-appb-000030
α、h的具体数值,基于这些量进一步计算获得垂直距离、撞击距离等。参考图6A,其中O点到架空输电线的垂直距离即为航空器到架空输电线的垂直距离,参考图6B,OP即为撞击距离。
在另一种可能的实施方式中,第二测量设备50还包括与磁场强度传感器Q 1和磁场强度传感器Q 2不在同一直线上的磁场强度传感器Q 3。通过三点定位的方式,确定航空器和架空输电线之间的位置关系,包括:航空器到架空输电线的垂直距离、航空器到架空输电线的撞击距离、航空器的飞行方向和架空输电线的电力线走向之间的夹角,航空器和架空输电线之间的高度差等。
具体实施时,利用二维模型,基于磁场强度传感器Q 1和Q 2采集的数据计算出一个二维平面内的一组结果,再基于磁场强度传感器Q 1和Q 2采集的数据计算出另一个二维平面内的一组结果,然后两个二维平面相交就形成了三维空间,综合两组结果获得航空器和架空输电线在三维空间的位置关系。
在另一种可能的实施方式中,第二测量设备50还包括:测量电场方向和磁场方向的传感器。具体实施时,测量电场方向的传感器可以是三维 电场传感器,测量磁场方向的传感器可以是三分量磁通门传感器。其中,磁场方向传感器输出的磁场方向和电场方向传感器输出的电场方向均为三维矢量。
为此,参考图7,本申请实施例的方法还包括如下步骤:
S701、获取当前时刻航空器上的磁场方向传感器测量的磁场方向和电场方向传感器测量的电场方向。
其中,磁场方向和电场方向是同一时刻采集的数据。
S702、基于测量的磁场方向和电场方向,获得航空器当前所在位置的坡印廷矢量,基于坡印廷矢量确定架空输电线的电力线走向。
其中,坡印廷矢量是一个三维矢量,坡印廷矢量S=E×H,E表示电场方向,H表示磁场方向。根据坡印廷定理,坡印廷矢量的方向即为电磁场中能流密度的方向,在近似无限长直导线模型中,可以认为坡印廷矢量的方向与架空输电线的电力线走向重合,因此,坡印廷矢量表示的方向即为架空输电线的电力线走向。
S703、基于当前时刻的电场方向、航空器到架空输电线的垂直距离和电力线走向,确定架空输电线相对于航空器的三维空间位置。
步骤S703中的垂直距离可以通过前述二维模型确定的。以图8为例,从航空器的测量点O开始沿着电场方向E经过垂直距离r到达交流输电线上的点A,在点A处沿电力线走向S,即可获得交流输电线相对于航空器的三维空间位置。其中,电场方向E和电力线走向S相互垂直。根据电场方向与竖直方向的夹角β和垂直距离r,可计算得到航空器和交流输电线的高度差h=rcosβ。将交流输电线平移到航空器所在高度,即可计算出航空器到交流输电线的撞击距离D,其中,OA’=rsinβ,根据航空器的飞行方向v和电力线走向S,计算出v和S的夹角α,进而计算出撞击距离D=rsinβ/sinα。
具体实施时,还可以根据电力线走向和航空器的飞行方向,确定航空器的飞行方向和架空输电线的电力线走向在水平面上的夹角α,获取当前时刻航空器上的磁场强度传感器Q 1采集的磁场强度B 1和磁场强度传感器Q 2采集的磁场强度B 2,基于磁场强度分布模型、B 1、B 2、夹角α以及磁场强度传感器Q 1和磁场强度传感器Q 2之间的相对位置关系,确定航空器与 架空输电线之间的位置关系。
以二维模型为例,通过以下方程组,获得航空器和架空输电线的位置关系:
Figure PCTCN2022099319-appb-000031
其中,L为磁场强度传感器Q 1和磁场强度传感器Q 2之间的间距,r 1为磁场强度传感器Q 1到架空输电线的垂直距离,r 2为磁场强度传感器Q 2到架空输电线的垂直距离,I架空输电线的电流强度。其中,r 1、r 2和I为未知量,其它为已知量。通过求解上述方程组可获得r 1和r 2,然后根据r 1和r 2可求得航空器中心点O到架空输电线的垂直距离d=(r 1+r 2)/2,航空器中心点O到架空输电线的撞击距离D=dsinα。
通过坡印廷矢量获得电力线走向,并结合飞行器方向获得夹角α,可进一步地简化二维模型。
具体实施时,还可以实时获取航空器的飞行高度,若飞行高度大于预设的安全高度时,则选择三维模型计算航空器和架空输电线之间的位置关系,若飞行高度不大于安全高度,则选择简化的二维维模型计算航空器和架空输电线之间的位置关系。其中,安全高度可根据航空器当前所处的地势环境进行动态调整。
下面介绍基于相位法进行定位的具体实现方式。基于相位的定位方法适用于交流输电线。参考图9,步骤S203具体包括如下步骤:
S901、获取航空器上的相位检测器测量的电场相位和磁场相位。
其中,相位检测器安装在航空器上的测量点,以获得到交流输电线在测量点处产生的电场相位和磁场相位。随着航空器的飞行,测量点在三维空间中的位置发生变化,从而测量到交流输电线在三维空间中不同点位的电场相位和磁场相位。
S902、基于交流输电线在三维空间中的相位分布模型、以及测量的 电场相位和磁场相位,确定航空器到交流输电线的垂直距离。
具体实施时,将航空器附近的交流输电线看作长度远大于直径的近似直导线,从而获得交流输电线在三维空间中的相位分布模型。具体地,相位分布模型可通过如下公式表示:
Figure PCTCN2022099319-appb-000032
其中,Φ H为磁场相位,Φ E为电场相位,ω为交流输电线的电流变化频率(即工频频率),c为光速,r为航空器到交流输电线的垂直距离。其中,ω和c为已知量,将相位检测器测量的电场相位和磁场相位输入上述相位分布模型中,即可计算出航空器到交流输电线的垂直距离r。
需要说明的是,通过上述公式计算获得的r实际上是航空器上的测量点到交流输电线的垂直距离,在误差允许范围内,可直接将r作为航空器到交流输电线的垂直距离。如果要提高测量精度,可基于测量点在航空器的具体位置和r,进一步地确定出航空器到交流输电线的垂直距离。
现有的近场电磁测距方案,使用需设置三个不同位置传感器进行三点定位的常规模型,而航空器内空间有限,需要极高精度的传感器才能实现较高精度的距离测量,在航空器的实际场景中很难实现。
上述基于相位法的定位方法,将航空器附近的交流输电线看作长度远大于直径的近似直导线,并利用近场电磁相位特性进行模型构建,提出了一种基于单点位置的传感器进行定位的方案,通过获取航空器飞行过程中测量点的电场分量与磁场分量的相位差,并将相位差代入相位分布模型,在飞行过程中实时获得准确的航空器到交流输电线的垂直距离,进而防止航空器撞到交流输电线,保障航空器的飞行安全。由于只需要在航空器的一个测量点上设置测量电场和磁场的传感器,可很好地适应航空器内的有限空间,并提高测量精度。
进一步地,还可以在航空器上的测量点处设置磁场方向传感器和电场方向传感器,以检测测量点的磁场方向和电场方向,基于磁场方向和电场方向确定交流输电线的电力线走向。其中,测量电场方向的传感器可以是三维电场传感器,测量磁场方向的传感器可以是三分量磁通门传感器。
基于此,参考图10,基于相位的定位方法还包括如下步骤:
S1001、获取航空器上的磁场方向传感器测量的磁场方向和电场方向传感器测量的电场方向。
其中,磁场方向传感器和电场方向传感器的分别输出磁场方向和电场方向均为三维矢量。
S1002、基于测量的磁场方向和电场方向,获得航空器所在位置的坡印廷矢量。
其中,坡印廷矢量是一个三维矢量,坡印廷矢量S=E×H,E表示电场方向,H表示磁场方向。
S1003、基于坡印廷矢量确定交流输电线的电力线走向。
根据坡印廷定理,坡印廷矢量的方向即为电磁场中能流密度的方向,在近似无限长直导线模型中,可以认为坡印廷矢量的方向与交流输电线的电流方向重合,因此,坡印廷矢量表示的方向即为交流输电线的电力线走向。
S1004、基于电场方向、垂直距离和电力线走向,确定交流输电线相对于航空器的位置关系。
以图8为例,从航空器的测量点O开始沿着电场方向E经过垂直距离r到达交流输电线上的点A,在点A处沿电力线走向S,即可获得交流输电线相对于航空器的空间位置。其中,电场方向E和电力线走向S相互垂直。根据电场方向与竖直方向的夹角β和垂直距离r,可计算得到航空器和交流输电线的高度差h=rcosβ。
进一步地,可通过GPS、陀螺仪等定位系统获取航空器的位置信息,基于航空器的位置信息和交流输电线相对于航空器的空间位置,确定交流输电线的空间位置。
通过上述方式,在航空器飞行过程中,获得航空器飞行轨迹上每个位置处测量得到的交流输电线的准确的三维空间位置信息,从而基于大量位置信息绘制出交流输电线在地图数据中的分布位置,并记录在数据库,以更新三维导航地图数据中的障碍物数据。目前中国的交流输电线的位置信息是不公开的,所以通过航空器的测量数据可不断更新三维导航地图数据,以提高航空器的飞行安全。
进一步地,基于相位的定位方法还包括如下步骤:基于交流输电线相 对于航空器的空间位置和航空器的飞行方向,确定航空器到交流输电线的撞击距离。其中,航空器的飞行方向可基于航空器上的GPS、陀螺仪等定位系统获取,具体过程不再赘述。撞击距离是航空器沿飞行方向到达交流输电线所在竖直面的距离。
以图8为例,将交流输电线平移到航空器所在高度,即可计算出航空器到交流输电线的撞击距离D,其中,OA’=rsinβ,根据航空器的飞行方向v和电力线走向S,计算出v和S的夹角α,进而计算出撞击距离D=rsinβ/sinα。
根据撞击距离和交流输电线相对于航空器的空间位置等数据,可以更精准地调整飞行高度、飞行方向和飞行速度等,防止航空器与交流输电线发生碰撞。
基于高精度的测距和防撞控制方式,使得航空器在对交流输电线进行巡检时,可以贴近交流输电线进行飞行,在提高巡检准确度的同事,保证航空器安全。
在上述任一实施方式的基础上,可通过GPS、陀螺仪等定位系统获取航空器的位置信息,基于航空器的位置信息和架空输电线相对于航空器的空间位置,确定架空输电线的空间位置。通过上述方式,在航空器飞行过程中,获得航空器飞行轨迹上每个位置处测量得到的交流输电线的准确的三维空间位置信息,从而基于大量位置信息绘制出交流输电线在地图数据中的分布位置,并记录在数据库,以更新三维导航地图数据中的障碍物数据。目前中国的交流输电线的位置信息是不公开的,所以通过航空器的测量数据可不断更新三维导航地图数据,以提高航空器的飞行安全。
如图11所示,基于与上述基于架空输电线电磁场探测的飞行防撞方法相同的发明构思,本申请实施例还提供了一种基于架空输电线电磁场探测的飞行防撞装置110,包括:
输电线类型识别模块1101,用于基于航空器上的谐振电路的输出确定周围的架空输电线是交流输电线还是直流输电线。
第一处理模块1102,用于若所述架空输电线是交流输电线,则基于相位分布模型、所述航空器上的相位检测器测量的电场相位和磁场相位,确定所述航空器与所述架空输电线之间的位置关系;其中,所述相位分布 模型用于描述所述交流输电线在三维空间各点处产生的电场相位和磁场相位的分布。
第二处理模块1103,用于若所述架空输电线是直流输电线,则基于磁场强度分布模型和所述航空器上的磁场强度传感器采集的磁场强度,确定所述航空器与所述架空输电线之间的位置关系;其中,所述磁场场强分布模型用于表示三维空间内每个点的磁场强度和每个点到架空输电线的垂直距离之间的关系。
控制模块1104,用于基于所述航空器与所述架空输电线之间的位置关系,对所述航空器进行控制。
可选地,第一处理模块1102具体用于:基于所述磁场强度分布模型和所述航空器上的磁场强度传感器采集的磁场强度,确定所述航空器与所述架空输电线之间的第二位置关系;对第一位置关系和所述第二位置关系进行融合,获得所述航空器与所述架空输电线之间的位置关系,其中所述第一位置关系为基于所述相位分布模型获得的位置关系。
可选地,所述第一处理模块1102还用于:基于所述航空器到所述架空输电线的估计距离,确定进行融合时所述第一位置关系对应的第一权重和所述第二位置关系对应的第二权重,其中,所述估计距离与所述第一权重正相关,所述估计距离与所述第二权重负相关。
可选地,所述第一处理模块1102具体用于:若所述航空器到所述架空输电线的估计距离小于预设值,则确定所述第一位置关系对应权重值W 1,所述第二位置关系对应权重值W 2,否则,确定所述第一位置关系对应W 2,所述第二位置关系对应W 1,其中,W 1小于W 2
可选地,第一处理模块1102具体用于:基于所述相位分布模型和所述航空器上的相位检测器测量的电场相位和磁场相位,获得所述航空器到所述交流输电线的垂直距离;获取所述航空器上的磁场方向传感器测量的磁场方向和电场方向传感器测量的电场方向;基于测量的磁场方向和电场方向,获得所述航空器所在位置的坡印廷矢量;基于所述坡印廷矢量确定所述交流输电线的电力线走向;基于所述电场方向、所述垂直距离和所述电力线走向,确定所述交流输电线相对于所述航空器的空间位置。
本申请实施例提的基于架空输电线电磁场探测的飞行防撞装置与上 述基于架空输电线电磁场探测的飞行防撞方法采用了相同的发明构思,能够取得相同的有益效果,在此不再赘述。
基于与上述基于架空输电线电磁场探测的飞行防撞方法相同的发明构思,本申请实施例还提供了一种电子设备,该电子设备具体可以为航空器内部的控制设备或控制系统,也可以是额外设置的处理系统等。如图12所示,该电子设备120可以包括处理器1201和存储器1202。
处理器1201可以是通用处理器,例如中央处理器(CPU)、数字信号处理器(DigitalSignal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
存储器1202作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块。存储器可以包括至少一种类型的存储介质,例如可以包括闪存、硬盘、多媒体卡、卡型存储器、随机访问存储器(Random Access Memory,RAM)、静态随机访问存储器(Static Random Access Memory,SRAM)、可编程只读存储器(Programmable Read Only Memory,PROM)、只读存储器(Read Only Memory,ROM)、带电可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、磁性存储器、磁盘、光盘等等。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器1202还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;上述计算机存储介质可以是计算机能够存取的任何可用介质或数据存储 设备,包括但不限于:移动存储设备、随机存取存储器(RAM,Random Access Memory)、磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等各种可以存储程序代码的介质。
或者,本申请上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本申请各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、随机存取存储器(RAM,Random Access Memory)、磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种基于架空输电线电磁场探测的飞行防撞方法,其特征在于,包括:
    基于航空器上的谐振电路的输出确定周围的架空输电线是交流输电线还是直流输电线;
    若所述架空输电线是交流输电线,则基于相位分布模型、所述航空器上的相位检测器测量的电场相位和磁场相位,确定所述航空器与所述架空输电线之间的位置关系;其中,所述相位分布模型用于描述所述交流输电线在三维空间各点处产生的电场相位和磁场相位的分布;
    若所述架空输电线是直流输电线,则基于磁场强度分布模型和所述航空器上的磁场强度传感器采集的磁场强度,确定所述航空器与所述架空输电线之间的位置关系;其中,所述磁场场强分布模型用于表示三维空间内每个点的磁场强度和每个点到架空输电线的垂直距离之间的关系;
    基于所述航空器与所述架空输电线之间的位置关系,对所述航空器进行控制。
  2. 根据权利要求1所述的方法,其特征在于,若所述架空输电线是交流输电线,所述方法还包括:
    基于所述磁场强度分布模型和所述航空器上的磁场强度传感器采集的磁场强度,确定所述航空器与所述架空输电线之间的第二位置关系;
    对第一位置关系和所述第二位置关系进行融合,获得所述航空器与所述架空输电线之间的位置关系,其中所述第一位置关系为基于所述相位分布模型获得的位置关系。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    基于所述航空器到所述架空输电线的估计距离,确定进行融合时所述第一位置关系对应的第一权重和所述第二位置关系对应的第二权重,其中,所述估计距离与所述第一权重正相关,所述估计距离与所述第二权重负相关。
  4. 根据权利要求3所述的方法,其特征在于,所述基于所述航空器到所述架空输电线的估计距离,确定进行融合时所述第一位置关系对应的第一权重和所述第二位置关系对应的第二权重,具体包括:
    若所述航空器到所述架空输电线的估计距离小于预设值,则确定所述第一位置关系对应权重值W 1,所述第二位置关系对应权重值W 2,否则,确定所述第一位置关系对应W 2,所述第二位置关系对应W 1,其中,W 1小于W 2
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述相位分布模型为:
    Figure PCTCN2022099319-appb-100001
    其中,Φ H为磁场相位,Φ E为电场相位,ω为所述交流输电线的电流变化频率,c为光速,r为所述航空器到所述交流输电线的垂直距离。
  6. 根据权利要求5所述的方法,其特征在于,所述基于相位分布模型、所述航空器上的相位检测器测量的电场相位和磁场相位,确定所述航空器与所述架空输电线之间的位置关系,具体包括:
    基于所述相位分布模型和所述航空器上的相位检测器测量的电场相位和磁场相位,获得所述航空器到所述交流输电线的垂直距离;
    获取所述航空器上的磁场方向传感器测量的磁场方向和电场方向传 感器测量的电场方向;
    基于测量的磁场方向和电场方向,获得所述航空器所在位置的坡印廷矢量;
    基于所述坡印廷矢量确定所述交流输电线的电力线走向;
    基于所述电场方向、所述垂直距离和所述电力线走向,确定所述交流输电线相对于所述航空器的空间位置。
  7. 根据权利要求1至4任一项所述的方法,其特征在于,所述航空器的中轴线两侧对称设置了磁场强度传感器Q 1和磁场强度传感器Q 2,磁场强度传感器Q 1和磁场强度传感器Q 2之间的间距为L;所述磁场强度分布模型为:
    Figure PCTCN2022099319-appb-100002
    其中,I为所述架空输电线的电流强度,r为三维空间内某一点到所述架空输电线的垂直距离,B为所述架空输电线在三维空间内某一点处产生的磁场强度。
  8. 一种基于架空输电线电磁场探测的飞行防撞装置,其特征在于,包括:
    输电线类型识别模块,用于基于航空器上的谐振电路的输出确定周围的架空输电线是交流输电线还是直流输电线;
    第一处理模块,用于若所述架空输电线是交流输电线,则基于相位分布模型、所述航空器上的相位检测器测量的电场相位和磁场相位,确定所述航空器与所述架空输电线之间的位置关系;其中,所述相位分布模型用于描述所述交流输电线在三维空间各点处产生的电场相位和磁场相位的分布;
    第二处理模块,用于若所述架空输电线是直流输电线,则基于磁场强 度分布模型和所述航空器上的磁场强度传感器采集的磁场强度,确定所述航空器与所述架空输电线之间的位置关系;其中,所述磁场场强分布模型用于表示三维空间内每个点的磁场强度和每个点到架空输电线的垂直距离之间的关系;
    控制模块,用于基于所述航空器与所述架空输电线之间的位置关系,对所述航空器进行控制。
  9. 一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至7任一项所述方法的步骤。
  10. 一种计算机可读存储介质,其上存储有计算机程序指令,其特征在于,该计算机程序指令被处理器执行时实现权利要求1至7任一项所述方法的步骤。
PCT/CN2022/099319 2021-08-26 2022-06-17 基于架空输电线电磁场探测的飞行防撞方法及装置 WO2023024669A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110990261.2A CN113703470B (zh) 2021-08-26 2021-08-26 基于架空输电线电磁场探测的飞行防撞方法及装置
CN202110990261.2 2021-08-26

Publications (1)

Publication Number Publication Date
WO2023024669A1 true WO2023024669A1 (zh) 2023-03-02

Family

ID=78655452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099319 WO2023024669A1 (zh) 2021-08-26 2022-06-17 基于架空输电线电磁场探测的飞行防撞方法及装置

Country Status (2)

Country Link
CN (1) CN113703470B (zh)
WO (1) WO2023024669A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117524386A (zh) * 2024-01-04 2024-02-06 之江实验室 基于微磁学和机器学习的磁性合金磁导率计算方法和装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113703470B (zh) * 2021-08-26 2023-07-07 中国民用航空总局第二研究所 基于架空输电线电磁场探测的飞行防撞方法及装置
CN115201582B (zh) * 2022-09-15 2022-12-27 国网湖北省电力有限公司经济技术研究院 一种高压输电电磁辐射检测方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150353196A1 (en) * 2014-06-09 2015-12-10 Izak Jan van Cruyningen UAV Constraint in Overhead Line Inspection
US20170097435A1 (en) * 2015-10-06 2017-04-06 U.S. Army Research Laboratory Attn: Rdrl-Loc-I Method of autonomous power line detection, avoidance, navigation, and inspection using aerial crafts
CN107515621A (zh) * 2017-07-12 2017-12-26 清华大学 基于输电线路电磁感知的巡线无人机飞行轨迹控制方法
CN109115217A (zh) * 2018-07-05 2019-01-01 国网陕西省电力公司电力科学研究院 基于电流磁场的输电线路特殊杆塔位置导线参数反演方法
CN113703470A (zh) * 2021-08-26 2021-11-26 中国民用航空总局第二研究所 基于架空输电线电磁场探测的飞行防撞方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107608386A (zh) * 2017-10-27 2018-01-19 上海工程技术大学 一种基于高压线电磁指纹分布的无人机导航系统及方法
CN108415080B (zh) * 2017-12-27 2019-05-21 华中科技大学 一种基于工频电磁场的水下目标探测方法
CN108469838B (zh) * 2018-05-15 2021-05-11 上海工程技术大学 基于特高压线区电场等势面的无人机自主导航系统及方法
CN110031828A (zh) * 2018-10-22 2019-07-19 国网浙江省电力有限公司检修分公司 一种基于输电线路电磁场分布的无人机测距系统及方法
CN110109471A (zh) * 2019-04-23 2019-08-09 国网浙江省电力有限公司检修分公司 一种基于电磁场测距的无人机飞行控制系统及其工作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150353196A1 (en) * 2014-06-09 2015-12-10 Izak Jan van Cruyningen UAV Constraint in Overhead Line Inspection
US20170097435A1 (en) * 2015-10-06 2017-04-06 U.S. Army Research Laboratory Attn: Rdrl-Loc-I Method of autonomous power line detection, avoidance, navigation, and inspection using aerial crafts
CN107515621A (zh) * 2017-07-12 2017-12-26 清华大学 基于输电线路电磁感知的巡线无人机飞行轨迹控制方法
CN109115217A (zh) * 2018-07-05 2019-01-01 国网陕西省电力公司电力科学研究院 基于电流磁场的输电线路特殊杆塔位置导线参数反演方法
CN113703470A (zh) * 2021-08-26 2021-11-26 中国民用航空总局第二研究所 基于架空输电线电磁场探测的飞行防撞方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117524386A (zh) * 2024-01-04 2024-02-06 之江实验室 基于微磁学和机器学习的磁性合金磁导率计算方法和装置
CN117524386B (zh) * 2024-01-04 2024-06-04 之江实验室 基于微磁学和机器学习的磁性合金磁导率计算方法和装置

Also Published As

Publication number Publication date
CN113703470B (zh) 2023-07-07
CN113703470A (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
WO2023024669A1 (zh) 基于架空输电线电磁场探测的飞行防撞方法及装置
US9964658B2 (en) Method of autonomous power line detection, avoidance, navigation, and inspection using aerial crafts
CN206057974U (zh) 一种应用在旋翼无人机上的避障系统
Scherer et al. Flying fast and low among obstacles
CN102891453B (zh) 一种基于毫米波雷达的无人机巡检线路走廊方法与装置
CN107368095B (zh) 一种小型固定翼无人机空中防撞系统及防撞方法
KR102449443B1 (ko) 상당히 다른 오차 크기를 가진 데이터를 이용한 공간 필터링 시스템 및 방법
CN106950978A (zh) 固定翼无人机避障系统及其避障方法以及固定翼无人机
CN107783106A (zh) 无人机与障碍物之间的数据融合方法
CN107783545A (zh) 基于ooda环多传感器信息融合的灾后救援旋翼无人机避障系统
CN111399535A (zh) 一种无人机避障方法、装置、无人机及存储介质
US20220326373A1 (en) Aerial analysis of ground surface using distance sensor of unmanned aerial vehicle
CN107783119A (zh) 应用在避障系统中的决策融合方法
CN111508282B (zh) 低空无人机农田作业飞行障碍物冲突检测方法
CN107783547A (zh) 灾后救援旋翼无人机避障系统及方法
Zhahir et al. Current development of UAV sense and avoid system
CN110531781B (zh) 一种确定架空输电线路与民用无人机安全距离的方法
CN113671992B (zh) 基于架空输电线磁场强度的飞行防撞方法及装置
US20240231374A1 (en) Flight anti-collision method and apparatus based on electromagnetic field detection of overhead transmission line
Veneruso et al. Analysis of ground infrastructure and sensing strategies for all-weather approach and landing in Urban Air Mobility
CN113485408B (zh) 基于相位法的交流输电线飞行防撞方法、装置及电子设备
Wikle Integration of a complete detect and avoid system for small unmanned aircraft systems
Shen et al. Aircraft wake recognition and strength classification based on deep learning
Sayed et al. UAV Classification Using Neural Networks and CAD-Generated Radar Datasets
Tirri et al. Advanced sensing issues for UAS collision avoidance.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17926879

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE