WO2023024270A1 - 一种非接触式心肺监测仪及心肺监测系统 - Google Patents

一种非接触式心肺监测仪及心肺监测系统 Download PDF

Info

Publication number
WO2023024270A1
WO2023024270A1 PCT/CN2021/130291 CN2021130291W WO2023024270A1 WO 2023024270 A1 WO2023024270 A1 WO 2023024270A1 CN 2021130291 W CN2021130291 W CN 2021130291W WO 2023024270 A1 WO2023024270 A1 WO 2023024270A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
heart
monitoring
monitoring system
lung
Prior art date
Application number
PCT/CN2021/130291
Other languages
English (en)
French (fr)
Inventor
廖曦文
王云峰
Original Assignee
广东省大湾区集成电路与系统应用研究院
中国科学院微电子研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东省大湾区集成电路与系统应用研究院, 中国科学院微电子研究所 filed Critical 广东省大湾区集成电路与系统应用研究院
Publication of WO2023024270A1 publication Critical patent/WO2023024270A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4803Speech analysis specially adapted for diagnostic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/003Detecting lung or respiration noise
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/02Stethoscopes
    • A61B7/04Electric stethoscopes

Definitions

  • This application relates to the technical field of health monitoring, specifically a non-contact cardiopulmonary monitor and a cardiopulmonary monitoring system.
  • Cardiopulmonary parameters are the main physiological indicators to measure the basic state of vital signs, so it is very important to carry out effective daily monitoring.
  • the work intensity and pressure faced by contemporary young people are very high, and some diseases are also getting younger, and people often ignore their own body.
  • Health a large number of families also lack equipment for daily health continuous monitoring. If some potential diseases cannot be detected early, they will pose a major risk to health.
  • the aging society is serious in contemporary society, and the problem of living alone for the elderly facing the elderly is prominent. Most of the elderly are accompanied by some potential cardiopulmonary diseases. They also need daily regular monitoring of their health. Problems such as poor wearing comfort and inconvenient monitoring operation have resulted in the low probability of use of some devices and cannot perform their due monitoring functions.
  • ECG monitors Electronic cardiac recorders
  • ear-hook stethoscopes etc.
  • These instruments have a split structure, that is, the equipment used to detect different items such as heart sounds, lung sounds, heart rate, and lung rate are independent instruments. It requires multiple operations by medical staff, and the use is relatively complicated, and the wearing comfort is not good.
  • medical staff are faced with monitoring a large number of patients every day, which increases the number of contacts between medical staff and patients, resulting in an increased risk of infection.
  • a non-contact cardiopulmonary monitoring instrument which includes an instrument body, a heart rate and respiration rate monitoring device is integrated in the instrument body, and the heart rate and respiration rate monitoring device is used to detect the user's heart rate and respiration rate, and it is characterized in that it also A detachable heart sound and lung sound monitoring device is integrated.
  • the heart sound and lung sound monitoring device is used to detect heart sound and lung sound.
  • the heart rate and respiratory rate monitoring device and the heart sound and lung sound monitoring device are connected to external terminal equipment through a communication module.
  • the heart sound and lung sound monitoring device is embedded in the instrument body
  • a heart rate and respiratory rate monitoring system is integrated in the heart rate and respiratory rate monitoring device
  • a heart sound and lung sound monitoring system is integrated in the heart sound and lung sound monitoring device
  • the heart and lung sound monitoring device is also used to detect snoring.
  • a cardiopulmonary monitoring system for the non-contact cardiopulmonary monitor includes the heart rate and respiration rate monitoring system, characterized in that the heart rate and respiration rate monitoring system includes a first controller, a biological radar , a front-end processing circuit, a first data processor, a communication module, and a power module;
  • the main controller is electrically connected, the power module is used to supply power to the main controller, the communication module, and the bio-radar, and the bio-radar is used to collect the heart rate and respiration rate of the user, the front-end processing circuit, the first
  • the data processor sequentially processes the heart rate and respiration rate and sends them to the first controller.
  • the communication module includes a first communication unit and a second communication unit, and the first communication unit is used to send the processed The heart rate and respiration rate are sent to an external terminal device, and the second communication unit is used to communicate and connect the first main controller with the heart sound and lung sound monitoring device.
  • the biological radar is ultra-wideband radar, continuous wave radar or FMCW radar;
  • the heart rate and respiratory rate monitoring system also includes a storage module, the storage module is used to save and record the data generated when the offline state or the network environment is poor, and when the network status is restored, the stored and recorded data sending data to the external terminal device;
  • the heart rate and respiration rate monitoring system also includes an indicator light, which is electrically connected to the first controller, and the indicator light is used to indicate network connection status and Bluetooth connection status;
  • the external terminal includes a system platform or a mobile phone, the system platform includes a human-computer interaction interface, and a monitoring APP is installed in the mobile phone;
  • the first communication unit includes 4G/5G communication or WIFI communication;
  • the second communication unit is a Bluetooth device.
  • a cardiopulmonary monitoring system for the non-contact cardiopulmonary monitor includes the heart sound lung sound monitoring system, characterized in that the heart sound lung sound monitoring system includes a second controller, a microphone, The second communication unit, the second data processor, the button, the microphone is electrically connected with the preamp circuit, the second data processor, and the second controller in turn, and the microphone is used to collect the heart sound and Lung sounds, the preamplifier circuit and the second data processor sequentially amplify and process the collected heart sound and lung sound signals, and then send them to the second controller, and the second controller passes the
  • the second communication unit communicates with the heart rate and respiratory rate monitoring system;
  • the heart sound and lung sound monitoring system also includes a button, the button is electrically connected to the second controller, and the button is used to monitor the heart sound and lung sound Different functional modes of the monitoring device are controlled.
  • the microphone is also used to collect the snoring sound
  • the heart sound and lung sound monitoring system also includes a post-amplification circuit and a second filter circuit, the second filter circuit is electrically connected to the second data processor and the post-amplification circuit respectively, and the second filter circuit, post-amplification circuit
  • the amplifying circuit sequentially filters and amplifies the heart sounds, lung sounds and snoring sounds processed by the second data processor, and transmits the second amplified heart sounds, lung sounds and snoring sounds through the second communication unit sent to the heart rate respiration rate monitoring system;
  • the heart sound and lung sound monitoring system also includes a breathing light, the breathing light is electrically connected to the second controller, and the breathing light is used to display different operating frequency states; the operating frequency states include heart sound mode, breathing mode, Bluetooth disconnect mode;
  • buttons include four, and the function modes include heart sound monitoring function, lung sound monitoring function, snoring monitoring function, and Bluetooth pairing.
  • the four buttons are respectively connected to the second controller for controlling the heart sound monitoring function, The lung sound monitoring function, snoring monitoring function, and Bluetooth pairing can be turned on or off.
  • a heart rate, breathing rate monitoring method uses the non-contact cardiopulmonary monitor and the heart rate breathing rate monitoring system, characterized in that the method comprises:
  • A3. Send the processed heart rate and respiration rate to an external terminal device
  • the user acquires the heart rate and respiration rate through the external terminal device.
  • step A1 the body surface micro-motion signals of the heart and lungs are collected by the bioradar;
  • step A2 the heart rate and respiration rate are sequentially processed by the front-end processing circuit and the first data processor;
  • step A3 the processed heart rate and respiration rate are sent to an external terminal device through the first communication unit.
  • a heart sound, lung sound monitoring method applies the non-contact cardiopulmonary monitor and the heart sound lung sound monitoring system, characterized in that the method comprises:
  • the heart sound and lung sound monitoring device Place the heart sound and lung sound monitoring device on the corresponding position of the body according to the selected functional mode (the position refers to the heart and lung of the body);
  • B6 Send the heart sound, lung sound and/or snoring sound to the first controller, and the first controller sends the heart sound, lung sound and/or snoring sound to an external terminal device.
  • step B1 select the corresponding function mode through the key
  • step B3 collecting the heart sound, lung sound and/or snoring sound through the microphone;
  • step B4 the heart sound, lung sound and/or snoring sound are amplified and processed sequentially through the preamplifier circuit and the second data processor;
  • step B5 sending the processed heart sound, lung sound and/or snoring sound to the second controller through the second communication unit;
  • step B6 the second controller sends the processed heart sound, lung sound and/or snoring sound to the first controller through the second communication unit, and the first controller sends the processed sound to the first controller through the first
  • the communication unit sends the heart sound, lung sound and/or snoring sound to the external terminal device.
  • the second controller sends the processed heart sound, lung sound and/or snoring sound to the first controller through a Bluetooth device; the first controller communicates through 4G/5G Or send the processed heart sound, lung sound and/or snoring sound to the external terminal device through WIFI communication.
  • the application integrates at least two devices for heart and lung monitoring: heart rate and respiratory rate monitoring device, heart sound and lung sound monitoring device, and the heart rate and respiratory rate monitoring device is used to detect the user's heart rate , respiration rate, and the heart sound and lung sound monitoring device are used to detect the user's heart sound and lung sound. Therefore, the heart and lung monitor not only realizes the monitoring of heart rate and respiration rate, but also realizes the real-time monitoring of heart sound and lung sound.
  • the cardiopulmonary monitor of the present application integrates the heart rate and respiratory rate monitoring device and the heart sound and lung sound monitoring device into the same instrument, which not only improves The degree of integration is improved, and the monitoring operation is simple, quick and easy to use.
  • this application conducts comprehensive analysis and monitoring through multi-dimensional data such as heart rate, respiration rate, heart sound and lung sound, and the monitoring accuracy rate is significantly improved.
  • the cardiopulmonary monitor When the cardiopulmonary monitor is used for cardiopulmonary monitoring, there is no need for outsiders to operate.
  • the heart rate and respiratory rate monitoring device and the heart sound and lung sound monitoring device are connected to the external terminal equipment through the communication module. Therefore, the user or monitor can remotely obtain the Cardiopulmonary related information of the user, thereby realizing non-contact monitoring, easy to use, and convenient to monitor a large number of patients, reducing the risk of infection.
  • Fig. 1 is the schematic diagram of the front view structure of the non-contact cardiopulmonary monitor of the present application
  • Fig. 2 is the rear view structure schematic diagram of the non-contact cardiopulmonary monitor of the present application
  • Fig. 3 is a schematic structural diagram of the front view of the heart sound and lung sound monitoring device of the present application.
  • Fig. 4 is the system structural block diagram of the cardiopulmonary monitoring system of the present application.
  • Fig. 5 is the flow chart of the method for heart rate and respiration rate monitoring of the present application.
  • Fig. 6 is the flow chart of the method for heart sound and lung sound monitoring of the present application.
  • Fig. 7 is the circuit schematic diagram of front-end processing circuit or preamplifier circuit of the present application.
  • Fig. 8 is the circuit schematic diagram of the power supply module of the present application.
  • Fig. 9 is the circuit schematic diagram of the filter circuit of the present application.
  • Fig. 10 is the circuit schematic diagram of the post-amplification circuit of the present application.
  • Fig. 11 is a waveform diagram of the heart sound signal before and after processing by the cardiopulmonary monitoring system of the present application.
  • a non-contact cardiopulmonary monitor which includes an instrument body 1, a heart rate and respiratory rate monitoring device integrated in the instrument body 1, a detachable heart sound and lung sound monitoring device 2, heart sound and lung sound
  • the monitoring device 2 is embedded in the rear end of the instrument body 1.
  • the rear end of the instrument body 1 has a groove matching the shape of the heart sound and lung sound monitoring device 2.
  • the bottom of the groove and the bottom of the heart sound and lung sound monitoring device are installed correspondingly.
  • There is a magnetic adsorption charging head and the heart sound and lung sound monitoring device 2 is fixed in the groove through the magnetic adsorption charging head.
  • the heart rate and respiration rate monitoring device is used to detect the user's heart rate and respiration rate.
  • the heart sound and lung sound monitoring device 2 is used to detect heart sound, lung sound and snoring sound.
  • the heart and lung monitor is integrated with a heart and lung monitoring system.
  • the heart and lung monitoring system communicates with the user through the communication module.
  • the external terminal equipment is connected. In this embodiment, the external terminal equipment is a system platform in a mobile phone and a computer.
  • the front end of the instrument body 1 is provided with a switch key 3 and a reminder light 4 .
  • cardiopulmonary monitoring system comprises heart rate respiratory rate monitoring system 5
  • heart rate respiratory rate monitoring system 5 comprises a first controller (represented by MCU1 in Fig. 4) 51.
  • Biological radar 52, front-end processing circuit 53, first data processor (represented by DSP1 in FIG. 4 ) 54, storage module 55, indicator light 4, communication module, power supply module 56, and biological radar 52 are electrically connected to front-end processing circuit in turn 53 , a first data processor 54 , and a first controller 51 .
  • the power supply module 56 is used to supply power to the main controller 51 , the communication module and the biological radar 52 .
  • the bio-radar 52 is used to collect the user's heart rate and respiration rate. After the front-end processing circuit 53 and the first data processor 54 process the heart rate and respiration rate in turn, they are sent to the first controller 51.
  • the communication module includes a first communication unit 57, The second communication unit 58 (the second communication unit is a bluetooth device), the first communication unit is used to send the processed heart rate and respiration rate to the mobile phone and the system platform 59, and the second communication unit is used to send the first main controller 51 Communication connection with the heart sound and lung sound monitoring system, in the present embodiment, the biological radar 52 can select any one of ultra-wideband radar (ultra-wideband radar is a radar whose fractional bandwidth FBW of the transmitted signal is greater than 0.25), continuous wave radar or FMCW radar, Biological radar can emit electromagnetic waves according to a certain direction angle.
  • ultra-wideband radar is a radar whose fractional bandwidth FBW of the transmitted signal is greater than 0.25
  • continuous wave radar or FMCW radar Biological radar can emit electromagnetic waves
  • the first communication unit is 4G/5G communication or WIFI communication
  • the second communication unit is Bluetooth communication of Bluetooth devices. Bluetooth devices are used for Transmission of audio data.
  • the first controller 51 is used to control each module, and the model of the first controller 51 is STM32F401, which is used to control the first data processor to obtain results such as heart rate and respiration rate, and to control the Bluetooth device to connect And audio data acquisition, control the communication between 4G/5G communication or WIFI communication and the background server of the external terminal equipment (the background server of the system platform and the background server of the mobile phone), and control the storage module to save and read the monitoring data during the network disconnection.
  • STM32F401 is used to control the first data processor to obtain results such as heart rate and respiration rate, and to control the Bluetooth device to connect And audio data acquisition, control the communication between 4G/5G communication or WIFI communication and the background server of the external terminal equipment (the background server of the system platform and the background server of the mobile phone), and control the storage module to save and read the monitoring data during the network disconnection.
  • the front-end processing circuit 53 is used to filter and amplify the collected heart rate and respiration rate.
  • the front-end processing circuit 53 includes amplifiers U2, U3, U4, and U5.
  • the positive input of the amplifier U2 is connected to parallel capacitors C5 and resistors.
  • R6 is connected to the RADAR port (i.e.
  • the positive input terminal of U5 is connected with capacitors C12 and C13 connected in parallel and the reference voltage VREF
  • the output terminal of amplifier U3 is connected with the positive input terminal of amplifier U4 through resistors R7 and R9
  • the positive input terminal of amplifier U4 is also connected with capacitor C11
  • the inverting input terminal of the amplifier U4 is connected to the resistors R3 and R4 connected in parallel, and the output terminal of the amplifier U4 is connected to the output terminal of the amplifier U4
  • the power module is composed of power supply BT1, power management chip U20 and its peripheral circuits.
  • the main power supply voltages are 3.3V (VLDO) and 3.8V (VBUS). Due to the high performance requirements of the power supply for biological radar and MEMS microphone processing circuits , using the power management chip U20 for reasonable power distribution and independent power supply isolation for this part of the sensitive circuit to avoid mutual interference, thereby reducing the adverse effects of noise on the results.
  • the model of power management chip U20 is LTC3553.
  • the peripheral circuit of power management chip U20 includes capacitors C4, C5, C9, C10, resistors R2, R3, R4, R5, R6, R23, key switch S1, light-emitting diode D1, power management chip Pin 5 of U20 is connected to the power supply terminal of the bio-radar for powering the bio-radar, and the power management chip U20 charges the battery in the heart sound and lung sound monitoring device 2 through the magnetic adsorption charging head.
  • the storage module 55 is used to save and record the data generated when the offline state or the network environment is poor. When the network state is restored, the data saved and recorded are sent to the mobile phone and the system platform through the first communication unit, and are used for the mobile phone and the system platform. At the same time, the cardiopulmonary monitor can also download the new version to the storage module (memory) through 4G/5G communication or WIFI communication, and automatically upgrade and update the system when it is idle and the power is sufficient.
  • the indicator light 4 is electrically connected to the first controller 51. The indicator light 4 is used to indicate the network connection status and the Bluetooth connection status. For example, the indicator light flashes quickly to indicate that the network is being distributed, and if it is always on, it indicates that the network connection is normal.
  • a cardiopulmonary monitoring system for the above-mentioned non-contact cardiopulmonary monitor includes a heart sound and lung sound monitoring system 6, and the heart sound and lung sound monitoring system includes a second controller (represented by MCU2 in FIG. 4 ) 61, a microphone 62, The second communication unit 58, the second data processor (represented by DSP2 in Fig. 4) 64, the preamplifier circuit 63, the button, the microphone 62 and the preamplifier circuit 63, the second data processor 64, the second controller successively 61 is electrically connected, and the microphone 62 is used to collect heart sounds, lung sounds and snoring sounds.
  • MCU2 the heart sound and lung sound monitoring system 6
  • the heart sound and lung sound monitoring system includes a second controller (represented by MCU2 in FIG. 4 ) 61, a microphone 62, The second communication unit 58, the second data processor (represented by DSP2 in Fig. 4) 64, the preamplifier circuit 63, the button, the microphone 62 and the preamplifier circuit
  • the preamplifier circuit 63 and the second data processor 64 sequentially amplify and process the collected heart sound and lung sound signals, and then send them to the second controller 61, the second controller 61 communicates with the heart rate and respiratory rate monitoring system 5 through the second communication unit 58; the buttons are electrically connected with the second controller 61, and the buttons are used to control different functional modes of the heart sound and lung sound monitoring device 2.
  • the function modes include heart sound monitoring function 31, lung sound monitoring function 32, snoring monitoring function 33, and Bluetooth pairing 34.
  • the four buttons are respectively connected to the second controller 61 for heart sound monitoring. Function 31, lung sound monitoring function 32, snoring monitoring function 33, and Bluetooth pairing 34 are turned on or off.
  • the second controller 61 is mainly used to control the Bluetooth communication and the second data processor 64, control the connection and interruption of the Bluetooth device, and control the function selection of the buttons, etc.
  • the second controller The model is gd32f103.
  • the structure of the preamplifier circuit 63 is the same as that of the front-end processing circuit 53, as shown in FIG. 7, for filtering and amplifying heart sounds, lung sounds and/or snoring sounds.
  • the heart sound and lung sound monitoring system 6 also includes a post-amplification circuit 65, a second filter circuit 66, the second filter circuit 66 is electrically connected to the second data processor 64, the post-amplification circuit 65 respectively, the second filter circuit 66, the post-amplification circuit
  • the amplification circuit 65 sequentially filters and amplifies the signals processed by the second data processor, and sends the amplified heart sounds, lung sounds and snoring sounds to the second control system in the heart rate and respiratory rate monitoring system through Bluetooth communication.
  • the second filter circuit 66 is mainly to further improve the signal-to-noise ratio, in order to reduce the overall output noise, it is necessary to reduce the input noise, reduce the distortion in the signal transmission and amplification process, and reduce the noise generated by the circuit itself.
  • the second filter circuit The circuit 66 adopts a differential mode, which effectively suppresses common-mode interference signals and improves the signal-to-noise ratio.
  • the electronic components and their connection structures included in the second filter circuit 66 are shown in FIG. 9.
  • the second filter circuit 66 includes capacitors C62-C67, resistors R28 ⁇ R35, the ports M1 and M2 are used to connect the data processing chip in the second data processor, the ports O1+ and O1- are the sound signal test ports before filtering, and the ports IN1- and IN2- are used to connect the post amplifier circuit 65.
  • the second filter circuit 66 can effectively filter out low-frequency sound signals below 20 Hz in sound signals such as heart sounds, lung sounds, and snoring sounds, reduce DC interference, and further improve monitoring accuracy.
  • the electronic components included in the post-amplification circuit 65 and the connection structure of each electronic component are shown in Figure 10.
  • the post-amplification circuit 65 includes an amplifier chip U8, capacitors C68-C73 connected to the amplifier chip U8, resistors R36-R40, and a diode D3.
  • the specific model of the amplifier chip U8 is tap6100.
  • the port IN1 in the second filter circuit 66 is connected to pins 5, 6, 7, and 12 of the amplifier chip U8 through a resistor R36 and a capacitor C69, and the port IN2 is connected to pins 4 of the amplifier chip U8.
  • the sound signal filtered by the second filter circuit 66 enters the post-amplification circuit 65 through the ports IN1-, IN2-, the post-amplification circuit 65 amplifies the two-way differential input, and passes through the post-stage audio ports O3+, O3 -Transfer to data terminal or bluetooth device.
  • resistors R37, R40 are pull-up resistors, resistors R39, R36 and resistors R31, R34 in the second filter circuit 66 respectively form voltage dividing resistors for voltage division, the ratio of the voltage division of resistors R39, R36 to the voltage division of resistors R31, R34 It is the magnification of the amplifier chip U8.
  • the capacitors C69 and C73 are filter capacitors for preventing interference.
  • the ports O3+ and O3- are for outputting the amplified sound signal to the audio interface or the audio data interface of the Bluetooth device.
  • the capacitor C71 is The low-pass filter capacitor is used to filter out noise, which further improves the monitoring accuracy of the cardiopulmonary detector.
  • the heart sound and lung sound monitoring system 6 also includes a breathing lamp 67 and a battery 68.
  • the breathing lamp 67 is electrically connected to the second controller.
  • the breathing lamp 67 is used to display different operating frequency states; the operating frequency states include heart sound mode, breathing mode, and Bluetooth disconnection. Mode, the breathing light blinks fast to indicate the heart sound mode, the medium blinking frequency indicates the breathing mode, and the breathing light is constant to indicate the Bluetooth disconnection mode.
  • the battery 68 is used to supply power to each module in the heart sound and lung sound monitoring system 6, and provides 3.3V voltage for each module to ensure its normal operation.
  • the system platform includes a human-computer interaction interface, and a monitoring APP is installed in the mobile phone.
  • the human-computer interaction interface of the system platform obtains heart rate, respiration rate, heart sound and lung sound, etc., and users obtain health information such as heart rate, respiration rate, heart sound and lung sound through the monitoring APP.
  • This method uses a non-contact cardiopulmonary monitor and a heart rate respiration rate monitoring system. Before monitoring, the non-contact cardiopulmonary monitor is placed on the bedside, and the monitor is aligned The upper body of the human body can be turned on and off to work.
  • the monitoring methods include: A1, collecting micro-motion signals on the body surface of the heart and lungs through the bio-radar 52 to obtain heart rate and respiration rate;
  • the heart rate and respiration rate are sequentially processed by the front-end processing circuit 53 and the first data processor 54, and then sent to the first controller 51.
  • the first filter circuit, amplifier circuit, and analog-to-digital conversion circuit in the front-end processing circuit 53 filter, amplify, and analog-to-digital conversion successively to the collected heart rate and respiration rate, and the first filter circuit filters the noise in the signal and improves
  • the signal-to-noise ratio of the useful signal converts the analog heart rate and respiration rate signals into digital signals through analog-to-digital conversion, so as to facilitate subsequent circuit processing; through the first data processor, the heart rate and respiration rate signals after analog-to-digital conversion are synthesized , obtain the spatial amplitude intensity signal reflecting the environmental information, then preprocess the spatial amplitude intensity signal, remove the background, obtain the effective respiratory heartbeat signal and high-frequency noise signal, and use the spatial distribution of the respiratory heartbeat signal to locate the effective distance interval , within the effective distance interval, extract the noise energy in the effective interval, and
  • A3. Send the processed heart rate and respiration rate to the mobile phone and system platform through 4G/5G communication or WIFI communication;
  • the monitor obtains the heart rate and breathing rate of the monitored person in real time through the system platform, and the monitored person or his family members and nursing staff obtain the heart rate and breathing rate in real time through the monitoring APP of the mobile phone.
  • FIG. 6 a method for monitoring heart and lung sounds.
  • This method uses a non-contact cardiopulmonary monitor and a heart and lung sound monitoring system.
  • the heart sound and lung sound monitoring device can be taken out and placed on the corresponding part of the human body for monitoring.
  • the heart sound and lung sound monitoring device is taken out of the back cover, it will automatically connect with the bound Bluetooth.
  • the monitoring methods include:
  • buttons include four
  • the function modes include the heart sound monitoring function 31, the lung sound monitoring function 32, the snoring monitoring function 33, and the Bluetooth pairing 34.
  • the four buttons are respectively connected to the second controller 61, It is used to turn on or off the heart sound monitoring function 31, lung sound monitoring function 32, snoring monitoring function 33, and Bluetooth pairing 34;
  • the heart sound and lung sound monitoring device can also be used for sleep monitoring. When monitoring, place it on the pillow, and use the microphone to collect the sound of snoring all night, and evaluate the user's sleep quality through the sound of snoring .
  • FIG. 11 provides the waveform of the heart sound signal before and after processing by the heart sound and lung sound monitoring system
  • the abscissa represents the time
  • the ordinate represents the sound amplitude.
  • the snoring sound is processed by the second data processor, and the snoring sound is used for sleep quality evaluation to obtain the user's sleep quality.
  • the specific evaluation method includes; Sleep quality is assessed by frequency and AHI, which includes apnea index (AI) and hypopnea index (HI).
  • an apnea is defined as the absence of airflow for more than 10 seconds with hypoxemia
  • airflow reduction is defined as hypopnea
  • the apnea index (AI) is the number of apneas throughout the night divided by 7 hours
  • the hypopnea index (HI) is the number of hypopnea divided by 7 throughout the night hour
  • the respiratory disturbance index is the sum of the apnea index and the hypopnea index.
  • the sleep quality is evaluated by multiple features such as the duration of each snoring sound, the snoring frequency throughout the night, and the respiratory disturbance index (AHI), which improves the accuracy of sleep quality evaluation.
  • the first controller sends the processed heart sound, lung sound or snoring sound to the mobile phone or remote system platform through 4G/5G communication or WIFI communication, and monitors the heart rate, breathing rate, heart sound and lung sound through the mobile phone or system platform Systematic processing and big data analysis of snoring and snoring data, and health risk assessment based on heart rate, breathing rate, heart sound, lung sound and other multi-dimensional information.
  • one item is abnormal, it indicates that the user’s health is at a medium risk.
  • two or more of the abnormalities are detected, it indicates that the user’s health is at a high risk, so as to realize a preliminary diagnosis of the user’s health and remind the user to seek medical treatment in time.
  • the cardiopulmonary monitor also has the following advantages: (1) It has many functions and is easy to operate. This application has multiple functions, which can not only monitor heart rate and respiration rate, but also monitor heart and lung sounds. For snoring, the accuracy of health judgment is improved through multi-dimensional data analysis and statistics of heart rate, breathing rate, heart sound, lung sound and sleep quality.
  • the heart and lung monitor meets the user's continuous monitoring and management of health. Head, the radar can work when facing the human body, easy to operate and easy to use.
  • This cardiopulmonary monitor is different from traditional monitoring equipment. There is no cable binding during the continuous monitoring of heart rate, breathing rate, and snoring. It only needs a short operation to monitor heart and lung sounds. No impact on user experience.
  • This cardiopulmonary monitor includes a heart rate and respiratory rate monitoring device and a heart sound and lung sound monitoring device. Therefore, it includes a double detection mode, and the judgment accuracy is as high as 99%. Users can browse their own health status in the mobile phone monitoring APP, including sleep quality, heart rate, respiration rate, number of apnea, heart sound, lung sound, etc., to have a better understanding of their physical health and help users Adjust your behavior in time.
  • the cardiopulmonary monitor not only realizes the monitoring of heart rate, respiratory rate and other signs, but also the sound information of the heart and lungs contains a large amount of physiological information, which has important clinical diagnostic value.
  • the existing heart sounds and lung sounds are classified and identified, and a preliminary screening is performed for the user's health. If the user has any doubts, he can conduct a telemedicine consultation or go to the hospital for further diagnosis, which further facilitates the user's use.
  • This application integrates various sensors such as bio-radar and microphone, and monitors the heart and lungs through various dimensions such as heart rate, breathing rate, heart sound, lung sound and sleep quality, and realizes non-contact monitoring without the need for outsiders to operate.
  • the communication module (4G/5G communication or WIFI communication)
  • the data analyzed by the cardiopulmonary monitor such as heart rate, breathing rate, heart sound, lung sound and sleep quality (sleep quality is obtained through snoring sound analysis), etc.
  • uploaded to the background server in real time for users to download and obtain their own heart rate, lung rate, heart sound, lung sound evaluation results, detailed data and change curves of sleep activity, and Fig.
  • FIG 11 is the heart sound signal change curve obtained by using the cardiopulmonary monitor of the present application An example.
  • the user can also control the cardiopulmonary monitor through the communication module through the mobile phone monitoring APP, and complete human-computer interaction functions such as early warning control of leaving the bed.
  • This cardiopulmonary monitor is suitable for long-term monitoring at home and keeps an eye on your health. Especially in today's outbreak of the new crown epidemic, in hospitals with scarce medical resources or high risk, using this application can effectively monitor the patient's condition, prevent patients from mild to severe, reduce frequent contact of medical staff, and reduce infection. risk.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Physiology (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Psychiatry (AREA)
  • Artificial Intelligence (AREA)
  • Pulmonology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Cardiology (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Power Engineering (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种非接触式心肺监测仪及心肺监测系统,其无需医护人员操作即可进行心肺监测,便于使用,并且便于对大量患者进行监测,可降低感染风险,包括仪器本体(1),仪器本体(1)内集成有心率呼吸率监测装置、可拆卸的心音肺音监测装置(2),心率呼吸率监测装置用于检测用户的心率和呼吸率,心音肺音监测装置(2)用于检测心音和肺音,心率呼吸率监测装置、心音肺音监测装置(2)通过通信模块与外部终端设备连接,心肺监测系统包括心率呼吸率监测系统(5)、心音肺音监测系统(6)。

Description

一种非接触式心肺监测仪及心肺监测系统
本申请要求于2021年08月25日提交中国专利局、申请号为202110979327.8、发明名称为“一种非接触式心肺监测仪及心肺监测系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及健康监测技术领域,具体为一种非接触式心肺监测仪及心肺监测系统。
背景技术
心肺参数作为衡量生命体征基本状态的主要生理指标,对其进行日常有效监测显得非常重要,当代年轻人所面临工作强度、压力都非常大,一些疾病也随之年轻化,人们往往也忽视自己身体健康,大量家庭也都缺乏日常健康持续监测的设备,一些潜在疾病如果不能及早发现,会对健康产生重大风险。同样当代社会老龄化严重,老年人所面临的独居养老问题突出,老人多伴有一些潜在的心肺疾病,他们同样需要进行身体健康的日常定期监护,有一些家庭会购买相关监测设备,但受制于佩戴舒适性差、监测操作不方便等问题,导致一些设备使用几率低,无法发挥其应有的监测功能。
传统的心肺功能监测常采用心电监护仪、耳挂式听诊器等,这些仪器为分体式结构,即用于心音、肺音、心率、肺率等不同项目检测的设备为各自独立的仪器,往往需要医护人员多次操作,使用较为复杂,且佩戴舒适度不佳。特别是在面对重大传染疾病时,医护人员每天面临对大量患者监测操作,增加了医护人员与患者的接触次数,导致感染风险上升。
发明内容
针对现有技术中存在的用于心肺功能监测的心电监护仪、耳挂式听诊器等 使用较为复杂,不仅不便于使用,而且需要医护人员操作,易增加接触感染风险的问题,本申请提供了一种非接触式心肺监测仪,其集成度高,监测操作简单,便于使用,并且便于对大量患者进行监测,可降低感染风险。
为实现上述目的,本申请采用如下技术方案:
一种非接触式心肺监测仪,其包括仪器本体,所述仪器本体内集成有心率呼吸率监测装置,所述心率呼吸率监测装置用于检测用户的心率和呼吸率,其特征在于,其还集成有可拆卸的心音肺音监测装置,所述心音肺音监测装置用于检测心音和肺音,所述心率呼吸率监测装置、心音肺音监测装置通过通信模块与外部终端设备连接。
其进一步特征在于,
所述心音肺音监测装置嵌装于所述仪器本体;
所述心率呼吸率监测装置中集成有心率呼吸率监测系统;
所述心音肺音监测装置中集成有心音肺音监测系统;
所述心音肺音监测装置还用于检测打鼾声。
一种用于所述非接触式心肺监测仪的心肺监测系统,所述心肺监测系统包括所述心率呼吸率监测系统,其特征在于,所述心率呼吸率监测系统包括第一控制器、生物雷达、前端处理电路、第一数据处理器,通信模块、电源模块,所述生物雷达依次电连接所述前端处理电路、第一数据处理器、第一控制器,所述通信模块与所述第一主控制器电连接,所述电源模块用于给所述主控制器、通信模块、生物雷达供电,所述生物雷达用于采集用户的所述心率和呼吸率,所述前端处理电路、第一数据处理器依次对所述心率、呼吸率处理后,发送给所述第一控制器,所述通信模块包括第一通信单元、第二通信单元,所述第一通信单元用于将处理后的所述心率、呼吸率发送给外部终端设备,所述第二通信单元用于将所述第一主控制器与所述心音肺音监测装置通信连接。
其进一步特征在于,
所述生物雷达为超宽带雷达、连续波雷达或FMCW雷达;
所述心率呼吸率监测系统还包括存储模块,所述存储模块用于保存、记录离线状态或网络环境差时产生的数据,在网络状态恢复时,通过所述第一通信 单元将保存、记录的数据发送至所述外部终端设备;
所述心率呼吸率监测系统还包括指示灯,所述指示灯与所述第一控制器电连接,所述指示灯用于指示网络连接状况、蓝牙连接状况;
所述外部终端包括系统平台或手机,所述系统平台包括人机交互界面,所述手机内安装有监测APP;
所述第一通信单元包括4G/5G通信或WIFI通信;
所述第二通信单元为蓝牙设备。
一种用于所述非接触式心肺监测仪的心肺监测系统,所述心肺监测系统包括所述心音肺音监测系统,其特征在于,所述心音肺音监测系统包括第二控制器、麦克风、所述第二通信单元、第二数据处理器、按键,所述麦克风依次与所述前置放大电路、第二数据处理器、第二控制器电连接,所述麦克风用于采集所述心音和肺音,所述前置放大电路、第二数据处理器依次对采集的所述心音、肺音信号进行放大、处理后,发送给所述第二控制器,所述第二控制器通过所述第二通信单元与所述心率呼吸率监测系统通信连接;所述心音肺音监测系统还包括按键,所述按键与所述第二控制器电连接,所述按键用于对所述心音肺音监测装置的不同功能模式进行控制。
其进一步特征在于,
所述麦克风还用于采集所述打鼾声;
所述心音肺音监测系统还包括后置放大电路、第二滤波电路,所述第二滤波电路分别与所述第二数据处理器、后置放大电路电连接,所述第二滤波电路、后置放大电路依次对所述第二数据处理器处理后的心音、肺音和打鼾声进行滤波、二次放大,并通过所述第二通信单元将二次放大后的心音、肺音和打鼾声发送给所述心率呼吸率监测系统;
所述心音肺音监测系统还包括呼吸灯,所述呼吸灯与所述第二控制器电连接,所述呼吸灯用于显示不同工作频率状态;所述工作频率状态包括心音模式、呼吸模式、蓝牙断开模式;
所述按键包括四个,所述功能模式包括心音监测功能、肺音监测功能、打鼾监测功能、蓝牙配对,四个按键分别与所述第二控制器连接,用于对所述心 音监测功能、肺音监测功能、打鼾监测功能、蓝牙配对进行开启或关闭。
一种心率、呼吸率监测方法,该方法应用了所述非接触式心肺监测仪及所述心率呼吸率监测系统,其特征在于,所述方法包括:
A1、获取心率、呼吸率;
A2、对所述心率、呼吸率处理后,发送给所述第一控制器;
A3、将处理后的所述心率、呼吸率发送给外部终端设备;
A4、用户通过所述外部终端设备获取所述心率、呼吸率。
其进一步特征在于,
步骤A1中,通过所述生物雷达采集心、肺的体表表面微动信号;
步骤A2中,通过所述前端处理电路、第一数据处理器依次对所述心率、呼吸率进行处理;
步骤A3中,通过所述第一通信单元将处理后的所述心率、呼吸率发送给外部终端设备。
一种心音、肺音监测方法,该方法应用了所述非接触心肺监测仪及所述心音肺音监测系统,其特征在于,所述方法包括:
B1、选择相应的功能模式;
B2、根据选择的所述功能模式将所述心音肺音监测装置放置于身体相应的位置(位置指身体的心肺部);
B3、采集所述心音和肺音;
B4、对所述心音、肺音和/或打鼾声进行放大、处理;
B5、将处理后的所述心音、肺音和/或打鼾声发送给所述第二控制器;
B6、将所述心音、肺音和/或打鼾声发送给所述第一控制器,所述第一控制器将所述心音、肺音和/或打鼾声发送给外部终端设备。
其进一步特征在于,
步骤B1中,通过所述按键选择相应的功能模式;
步骤B3中,通过所述麦克风采集所述心音、肺音和/或打鼾声;
步骤B4中,通过所述前置放大电路、第二数据处理器依次对所述心音、 肺音和/或打鼾声进行放大、处理;
步骤B5中,通过所述第二通信单元将处理后的所述心音、肺音和/或打鼾声发送给所述第二控制器;
步骤B6中,所述第二控制器通过所述第二通信单元将处理后的所述心音、肺音和/或打鼾声发送给第一控制器,所述第一控制器通过所述第一通信单元将所述心音、肺音和/或打鼾声发送给所述外部终端设备。
步骤B5、B6中,所述第二控制器通过蓝牙设备将处理后的所述心音、肺音和/或打鼾声发送给所述第一控制器;所述第一控制器通过4G/5G通信或WIFI通信将处理后的心音、肺音和/或打鼾声发送给所述外部终端设备。
采用本申请上述结构可以达到如下有益效果:本申请集成了至少两种用于心、肺监测的装置:心率呼吸率监测装置、心音肺音监测装置,心率呼吸率监测装置用于检测用户的心率、呼吸率,心音肺音监测装置用于检测用户的心音、肺音,因此,通过该心肺监测仪不仅实现了心率和呼吸率的监测,而且实现了心音、肺音的实时监测,相比于现有的采用独立的心电监护仪、耳挂式听诊器等对用户的心肺进行监测的方式,本申请心肺监护仪将心率呼吸率监测装置、心音肺音监测装置集成于同一仪器中,不仅提高了集成化程度,而且监测操作简单快捷,便于使用。相比于现有的只通过心率、呼吸率对心脏、肺进行监测方式,本申请通过心率、呼吸率、心音和肺音等多个维度数据进行综合分析、监测,监测准确率显著提高。
采用该心肺监测仪进行心肺监测时,无需借助外人操作,心率呼吸率监测装置、心音肺音监测装置通过通信模块与外部终端设备连接,因此,使用者或监测者通过外部终端设备即可远程获取用户的心肺相关信息,从而实现了非接触式监测,使用方便,并且便于对大量患者进行监测,降低了感染风险。
附图说明
图1为本申请非接触式心肺监测仪的主视结构示意图;
图2为本申请非接触式心肺监测仪的后视结构示意图;
图3为本申请心音肺音监测装置的主视结构示意图;
图4为本申请心肺监测系统的系统结构框图;
图5为本申请心率、呼吸率监测的方法流程图;
图6为本申请心音、肺音监测的方法流程图;
图7为本申请前端处理电路或前置放大电路的电路原理图;
图8为本申请电源模块的电路原理图;
图9为本申请滤波电路的电路原理图;
图10为本申请后置放大电路的电路原理图;
图11为通过本申请心肺监测系统对心音信号处理前和处理后的波形图。
具体实施方式
见图1、图2、图3,一种非接触式心肺监测仪,其包括仪器本体1,仪器本体1内集成有心率呼吸率监测装置、可拆卸的心音肺音监测装置2,心音肺音监测装置2嵌装于仪器本体1后端,本实施例中仪器本体1的后端开有与心音肺音监测装置2形状匹配的凹槽,凹槽底端、心音肺音监测装置底部对应安装有磁吸附充电头,心音肺音监测装置2通过磁吸附充电头吸附固定于凹槽内,在不使用心音肺音监测装置2时,防止了心音肺音监测装置2从仪器本体1内掉出,同时磁吸附充电头2与心音肺音监测装置2中的电池电连接。心率呼吸率监测装置用于检测用户的心率和呼吸率,心音肺音监测装置2用于检测心音、肺音和打鼾声,该心肺监测仪中集成有心肺监测系统,心肺监测系统通过通信模块与外部终端设备连接,本实施例中外部终端设备为手机和电脑中的系统平台,仪器本体1的前端设置有开关键3、提示灯4。
见图4,一种用于上述非接触式心肺监测仪的心肺监测系统,心肺监测系统包括心率呼吸率监测系统5,心率呼吸率监测系统5包括第一控制器(图4中用MCU1表示)51、生物雷达52、前端处理电路53、第一数据处理器(图4中用DSP1表示)54、存储模块55、指示灯4、通信模块、电源模块56,生物雷达52依次电连接前端处理电路53、第一数据处理器54、第一控制器51。电源模块56用于给主控制器51、通信模块、生物雷达52供电。生物雷达52用于采集用户的心率和呼吸率,前端处理电路53、第一数据处理器54依次对心率、呼吸率处理后,发送给第一控制器51,通信模块包括第一通信单元57、 第二通信单元58(第二通信单元为蓝牙设备),第一通信单元用于将处理后的心率、呼吸率发送给手机和系统平台59,第二通信单元用于将第一主控制器51与心音肺音监测系统通信连接,本实施例中生物雷达52可选取超宽带雷达(超宽带雷达为发射信号的分数带宽FBW大于0.25的雷达)、连续波雷达或FMCW雷达中的任意一种,生物雷达可以按照一定的方向角发射电磁波,电磁波穿透一定的介质(如腔体、楼板、空气、衣物等)接触到生命体后反射回来,回波中带有生命体的心跳、呼吸和体动等信号,因此,生物雷达的作用是捕捉人体心跳、呼吸引起的微动信号,第一通信单元为4G/5G通信或WIFI通信,第二通信单元为蓝牙设备的蓝牙通信,蓝牙设备用于音频数据的传输。
本实施例中,第一控制器51用于对各个模块进行控制,第一控制器51的型号为STM32F401,用于控制第一数据处理器进行心率和呼吸率等结果获取,控制蓝牙设备进行连接和音频数据获取,控制4G/5G通信或WIFI通信与外部终端设备的后台服务器(系统平台的后台服务器和手机的后台服务器)的通信,控制存储模块进行断网期间监测数据的保存以及读取。
见图7,前端处理电路53用于对采集的心率、呼吸率进行滤波、放大,前端处理电路53包括放大器U2、U3、U4、U5,放大器U2的正向输入端连接并联的电容C5、电阻R6,并通过电容C5与生物雷达的RADAR端口(即总线输出端口)连接,通过电阻R6与放大器U5的反向输入端、输出端连接,放大器U3的正向输入端连接并联的电容C9、电阻R10,并通过电容C3连接放大器U2的输出端,放大器U3的反向输入端连接并联的电阻R1、R2,并通过电阻R1连接放大器U5的输出端,通过电阻R2连接放大器U3的输出端,放大器U5的正向输入端连接并联的电容C12、C13、参考电压VREF,放大器U3的输出端通过电阻R7、R9连接放大器U4的正向输入端,放大器U4的正向输入端还连接有电容C11,放大器U4的反向输入端连接并联的电阻R3、R4,并通过电阻R4连接放大器U4的输出端,放大器U4的输出端还连接有电阻R8,电阻R8连接并联的电阻R11、C10、模数转换端口ADC,该前端处理电路53通过模数转换端口ADC连接第一数据处理器的数据处理芯片。
见图8,电源模块由电源BT1和电源管理芯片U20及其外围电路组成,主要供电电压为3.3V(VLDO)和3.8V(VBUS),由于生物雷达和MEMS麦 克风处理电路对电源的性能要求高,利用电源管理芯片U20进行合理电源分配并对该部分敏感电路进行独立供电隔离,避免相互之间干扰,从而降低噪声对结果产生的不良影响。电源管理芯片U20的型号为LTC3553,电源管理芯片U20的外围电路包括电容C4、C5、C9、C10、电阻R2、R3、R4、R5、R6、R23、按键开关S1、发光二极管D1,电源管理芯片U20的5管脚与生物雷达的电源端连接,用于给生物雷达供电,并且电源管理芯片U20通过磁吸附充电头给心音肺音监测装置2中的电池充电。
存储模块55用于保存、记录离线状态或网络环境差时产生的数据,在网络状态恢复时,通过第一通信单元将保存、记录的数据发送至手机和系统平台,用于对手机和系统平台中的数据进行完善和矫正;同时,该心肺监测仪也可以通过4G/5G通信或WIFI通信下载新版本至存储模块(存储器)中,在闲置且电量充足时,自动进行系统升级和更新。指示灯4与第一控制器51电连接,指示灯4用于指示网络连接状况、蓝牙连接状况,例如指示灯快闪表示网络正在配网中,常亮则表示网络连接正常。
一种用于上述非接触式心肺监测仪的心肺监测系统,心肺监测系统包括心音肺音监测系统6,心音肺音监测系统包括第二控制器(图4中用MCU2表示)61、麦克风62、第二通信单元58、第二数据处理器(图4中用DSP2表示)64、前置放大电路63、按键,麦克风62依次与前置放大电路63、第二数据处理器64、第二控制器61电连接,麦克风62用于采集心音、肺音和打鼾声,前置放大电路63、第二数据处理器64依次对采集的心音、肺音信号进行放大、处理后,发送给第二控制器61,第二控制器61通过第二通信单元58与心率呼吸率监测系统5通信连接;按键与第二控制器61电连接,按键用于对心音肺音监测装置2的不同功能模式进行控制。本实施例中,按键包括四个,功能模式包括心音监测功能31、肺音监测功能32、打鼾监测功能33、蓝牙配对34,四个按键分别与第二控制器61连接,用于对心音监测功能31、肺音监测功能32、打鼾监测功能33、蓝牙配对34进行开启或关闭。
本实施例中,第二控制器61主要用于对蓝牙通信和第二数据处理器64进行控制,控制蓝牙设备的连接与中断,并控制按键的功能选取等,本实施例中第二控制器的型号为gd32f103,本实施例中前置放大电路63的结构与前端 处理电路53的结构相同,见图7,用于对心音、肺音和/或打鼾声进行滤波、放大。
心音肺音监测系统6还包括后置放大电路65、第二滤波电路66,第二滤波电路66分别与第二数据处理器64、后置放大电路65电连接,第二滤波电路66、后置放大电路65依次对第二数据处理器处理后的信号进行滤波、二次放大,并通过蓝牙通信将二次放大后的心音、肺音和打鼾声发送给心率呼吸率监测系统中的第二控制器61;第二滤波电路66主要为了进一步提高信噪比,为了降低整体输出噪声,需要降低输入噪声、降低信号传输与放大过程中的失真、减少电路自身产生的噪声,本例中第二滤波电路66采用差分方式,有效抑制了共模干扰信号,提高了信噪比,第二滤波电路66包含的电子元件及其连接结构见图9,该第二滤波电路66包括电容C62~C67、电阻R28~R35,其端口M1、M2用于连接第二数据处理器中的数据处理芯片,端口O1+、O1-为滤波前的声音信号测试端口,端口IN1-、IN2-用于连接后置放大电路65,通过该第二滤波电路66可以有效滤除心音、肺音及打鼾声等声音信号中的20Hz以下的低频声音信号,降低直流干扰,进一步提高了监测准确率。
后置放大电路65所包含的电子元件及各电子元件的连接结构见图10,该后置放大电路65包括放大芯片U8、与放大器芯片U8连接的电容C68~C73、电阻R36~R40、二极管D3,放大芯片U8的具体型号为tap6100,第二滤波电路66中的端口IN1-通过电阻R36、电容C69连接放大芯片U8的5、6、7、12管脚,端口IN2-连接放大芯片U8的4管脚,经第二滤波电路66滤波后的声音信号经端口IN1-、IN2-进入后置放大电路65中,后置放大电路65将两路差分输入放大后,经后级音频端口O3+、O3-传输至数据终端或蓝牙设备中。其中电阻R37、R40为上拉电阻,电阻R39、R36与第二滤波电路66中的电阻R31、R34分别组成分压电阻进行分压,电阻R39、R36分压与电阻R31、R34分压的比值即为放大芯片U8的放大倍数,电容C69、C73分别为滤波电容,用于防止干扰,端口O3+、O3-为将放大后的声音信号输出至音频接口或蓝牙设备的音频数据接口,电容C71为低通滤波电容,用于滤除杂音,进一步提高了本心肺检测仪的监测准确率。
心音肺音监测系统6还包括呼吸灯67、电池68,呼吸灯67与第二控制器 电连接,呼吸灯67用于显示不同工作频率状态;工作频率状态包括心音模式、呼吸模式、蓝牙断开模式,呼吸灯闪烁频率快表示心音模式,闪烁频率中等表示呼吸模式,呼吸灯常量表示蓝牙断开模式。电池68用于给心音肺音监测系统6中的各个模块供电,为各个模块提供3.3V电压保证其正常工作,本申请中系统平台包括人机交互界面,手机内安装有监测APP,监测者通过系统平台的人机交互界面获取心率、呼吸率、心音和肺音等,使用者通过监测APP获取心率、呼吸率、心音和肺音等健康信息。
见图5,一种心率、呼吸率监测方法,该方法应用了非接触式心肺监测仪及心率呼吸率监测系统,监测前将该非接触式心肺监测仪放置于床头,将监测仪对准人体上半身,打开开关键即可工作。
监测方法包括:A1、通过生物雷达52采集心、肺的体表表面微动信号,获取心率、呼吸率;
A2、通过前端处理电路53、第一数据处理器54依次对心率、呼吸率处理后,发送给第一控制器51。前端处理电路53中的第一滤波电路、放大电路、模数转换电路依次对采集的心率、呼吸率进行滤波、放大、模数转换,第一滤波电路滤波将信号中的噪声滤除,并提高有用信号的信噪比,通过模数转换将模拟的心率、呼吸率信号转换为数字信号,以便于后续电路进行处理;通过第一数据处理器对模数转换后的心率、呼吸率信号进行合成,获取反映环境信息的空间幅值强度信号,然后,对空间幅值强度信号进行预处理,剔除背景,获取有效的呼吸心跳信号及高频噪声信号,利用呼吸心跳信号的空间分布定位有效距离区间,在有效距离区间内,提取有效区间内噪声能量,根据噪声能量评估是否体动;提取呼吸率,评估是否无人;提取时域波形形态特征以及频域频段能量占比,评估是否为可用于呼吸率心率计算的有效生理信号,若满足,则在呼吸率与心率各自的特征频段内利用谱估计定位峰值,从而确定呼吸率和心率,若不满足,则输出信号未确定的识别状态。
A3、通过4G/5G通信或WIFI通信将处理后的心率、呼吸率发送给手机和系统平台;
A4、监测者通过系统平台实时获取被监测者的心率、呼吸率,被监测者或其家人、护理人员通过手机的监测APP实时获取心率和呼吸率。
见图6,一种心音、肺音监测方法,该方法应用了非接触心肺监测仪及心音肺音监测系统,当需要监听心音、肺音时,使用者只需将心肺监测仪后端嵌装的心音肺音监测装置取出,并放置于人体相应的部位即可进行监测,当心音肺音监测装置从后盖中取出时,自动与绑定的蓝牙进行连接,监测方法包括:
B1、通过按键选择相应的功能模式;按键包括四个,功能模式包括心音监测功能31、肺音监测功能32、打鼾监测功能33、蓝牙配对34,四个按键分别与第二控制器61连接,用于对心音监测功能31、肺音监测功能32、打鼾监测功能33、蓝牙配对34进行开启或关闭;
B2、根据选择的功能模式将心音肺音监测装置放置于身体相应的器官位置;
B3、通过麦克风采集心音和肺音,该心音肺音监测装置还可以用于睡眠监测,监测时,将其放置于枕头处,通麦克风采集整夜的打鼾声,通过打鼾声评估用户的睡眠质量。
B4、通过前置放大电路、第二数据处理器对心音、肺音和打鼾声依次进行放大、分析处理;图11给出了通过该心音肺音监测系统对心音信号处理前和处理后的波形图,图11中,横坐标表示时间,纵坐标表示声音幅值,从图中可以看出,采用本申请前置放大电路、第二数据处理器对心音信号处理后,心音信号中的干扰信号被有效滤除,便于清晰分辨心音信号中的大小信号,信噪比得到明显改善。本实施例中,通过第二数据处理器对打鼾声进行处理,打鼾声用于进行睡眠质量评估,获取用户的睡眠质量,具体评估方法包括;通过统计每次鼾声的持续时长、整晚的打鼾频率以及呼吸紊乱指数(AHI)对睡眠质量进行评估,呼吸紊乱指数包括呼吸暂停指数(AI)和低通气指数(HI),通常一次呼吸暂停定义为气流消失超过10秒并伴有低氧血症,而气流减少则定义为低通气,例如每晚7小时睡眠中,呼吸暂停指数(AI)为整晚呼吸暂停次数除以7小时,低通气指数(HI)为整晚低通气次数除以7小时,呼吸紊乱指数为呼吸暂停指数和低通气指数的总和。通过每次鼾声的持续时长、整晚的打鼾频率以及呼吸紊乱指数(AHI)等多个特征对睡眠质量进行评估,提高了睡眠质量评估的准确性。
B5、将处理后的心音、肺音和打鼾声发送给第二控制器,第二控制器通 过蓝牙设备将处理后的心音、肺音和打鼾声发送给第一控制器;
B6、第一控制器通过4G/5G通信或WIFI通信将处理后的心音、肺音或打鼾声,发送给手机或远程的系统平台,通过手机或系统平台对心率、呼吸率、心音、肺音和打鼾声数据进行系统化处理和大数据分析,根据心率、呼吸率、心音、肺音等多维度信息进行健康风险评估,当检测到用户或患者的心率、呼吸率、心音或肺音中任一项异常时,表明该用户健康存在中风险,当检测到其中两项及以上存在异常时,表明该用户健康存在高度风险,从而实现用户健康的初步诊断,提醒用户及时就医。
该心肺监测仪还具有以下优点:(1)功能多、操作简单,本申请具有多种功能,不仅能够监测心率和呼吸率,而且还能监测心音和肺音,对于夜间睡眠还能监测用户的打鼾情况,通过心率、呼吸率、心音、肺音和睡眠质量多维度数据分析统计,提高了健康判断准确性,通过该心肺监测仪满足了用户对健康的持续监测和管理,只需放置于床头,雷达朝向人体便可工作,操作简单,使用方便。
(2)束缚性小、体验舒适,本心肺监测仪不同于传统的监测设备,在使用其持续监测心率、呼吸率、打鼾期间没有任何线缆束缚,监测心音和肺音则只需短暂操作,对用户体验无影响。
(3)判断准确、效果直观,本心肺监测仪包括心率呼吸率监测装置及心音肺音监测装置,因此包含双重检测模式,判断的准确性高达百分之九十九。用户可以在手机监测APP中浏览自己的健康情况,包括睡眠质量、心跳频率、呼吸率,呼吸暂停次数、心音、肺音等,对自己的身体健康情况有一个更好的了解,有助于用户及时调整自己的行为习惯。
(4)健康初筛、远程问诊,本心肺监测仪不仅实现了心率、呼吸率等体征监测,而且心脏和肺部的声音信息包含了大量的生理信息,具有重要的临床诊断价值,服务器对已有的心音和肺音进行分类识别,为用户健康进行初筛,用户如有疑问可进行远程医疗问诊或到医院进一步确诊,进一步方便了用户使用。
本申请融合了生物雷达、麦克风等多种传感器,通过如心率、呼吸率、心音、肺音和睡眠质量等多种维度对心脏和肺进行监测,无需借助外人操作,实 现了非接触式监测。在联网状态下,通过通信模块(4G/5G通信或WIFI通信)将该心肺监测仪分析完的数据,如心率、呼吸率、心音、肺音和睡眠质量(睡眠质量通过打鼾声分析获得)等,实时上传到后台服务器,供用户下载和获得自己心率、肺率、心音、肺音评估结果、睡眠活动的详细数据以及变化曲线,图11为采用本申请心肺监测仪获取的心音信号变化曲线的一种示例。并且用户还可以通过手机监测APP经通信模块控制该心肺监测仪,完成离床预警控制等人机交互功能。该心肺监测仪适合放在家庭进行长期监测,持续关注身体健康。特别是在新冠疫情大爆发的今天,在医疗资源匮乏或者危险性较大的医院,使用本申请能有效监测患者的病情,防止患者由轻症转重症,并减少医护人员的频繁接触,降低感染风险。
以上的仅是本申请的优选实施方式,本申请不限于以上实施例。可以理解,本领域技术人员在不脱离本申请的精神和构思的前提下直接导出或联想到的其他改进和变化,均应认为包含在本申请的保护范围之内。

Claims (10)

  1. 一种非接触式心肺监测仪,其包括仪器本体,所述仪器本体内集成有心率呼吸率监测装置,所述心率呼吸率监测装置用于检测用户的心率和呼吸率,其特征在于,其还集成有可拆卸的心音肺音监测装置,所述心音肺音监测装置用于检测心音和肺音,所述心率呼吸率监测装置、心音肺音监测装置通过通信模块与外部终端设备连接。
  2. 根据权利要求1所述的非接触式心肺监测仪,其特征在于,所述心音肺音监测装置嵌装于所述仪器本体。
  3. 根据权利要求2所述的非接触式心肺监测仪,其特征在于,所述心率呼吸率监测装置中集成有心率呼吸率监测系统;所述心音肺音监测装置中集成有心音肺音监测系统;所述心音肺音监测装置还用于检测打鼾声。
  4. 一种心肺监测系统,将该心肺监测系统应用于权利要求1或3所述的心肺监测仪中,所述心肺监测系统包括心率呼吸率监测系统,其特征在于,所述心率呼吸率监测系统包括第一控制器、生物雷达、前端处理电路、第一数据处理器、通信模块和电源模块,所述生物雷达依次电连接所述前端处理电路、第一数据处理器、第一控制器,所述通信模块与所述第一主控制器电连接,所述电源模块用于给所述主控制器、通信模块和生物雷达供电,所述生物雷达用于采集用户的所述心率和呼吸率,所述前端处理电路、第一数据处理器依次对所述心率、呼吸率处理后,发送给所述第一控制器,所述通信模块包括第一通信单元、第二通信单元,所述第一通信单元用于将处理后的所述心率、呼吸率发送给外部终端设备,所述第二通信单元用于将所述第一主控制器与所述心音肺音监测装置通信连接。
  5. 根据权利要求4所述的心肺监测系统,其特征在于,所述生物雷达为超宽带雷达、连续波雷达或FMCW雷达。
  6. 根据权利要求5所述的心肺监测系统,其特征在于,所述心率呼吸率监测系统还包括存储模块、指示灯,所述存储模块用于保存、记录离线状态或网络环境差时产生的数据,在网络状态恢复时,通过所述第一通信单元将保存、记录的数据发送至所述外部终端设备;所述指示灯与所述第一控制器电连接,所述指示灯用于指示网络连接状况、蓝牙连接状况。
  7. 根据权利要求6所述的一种心肺监测系统,其特征在于,所述外部终端包括系统平台或手机,所述系统平台包括人机交互界面,所述手机内安装有监测APP;所述第一通信单元包括4G/5G通信或WIFI通信。
  8. 一种心肺监测系统,将该心肺监测系统应用于权利要求1、2、3或7所述的心肺监测仪中,所述心肺监测系统包括所述心音肺音监测系统,其特征在于,所述心音肺音监测系统包括第二控制器、麦克风、第二通信单元、第二数据处理器、按键,所述麦克风依次与前置放大电路、第二数据处理器、第二控制器电连接,所述麦克风用于采集所述心音和肺音,所述前置放大电路、第二数据处理器依次对采集的所述心音、肺音信号进行放大、处理后,发送给所述第二控制器,所述第二控制器通过所述第二通信单元与所述心率呼吸率监测系统通信连接;所述心音肺音监测系统还包括按键,所述按键与所述第二控制器电连接,所述按键用于对所述心音肺音监测装置的不同功能模式进行控制。
  9. 根据权利要求8所述的心肺监测系统,其特征在于,所述麦克风还用于采集所述打鼾声;所述心音肺音监测系统还包括后置放大电路、第二滤波电路,所述第二滤波电路分别与所述第二数据处理器、后置放大电路电连接,所述第二滤波电路、后置放大电路依次对所述第二数据处理器处理后的心音、肺音和打鼾声进行滤波、二次放大,并通过所述第二通信单元将二次放大后的心音、肺音和打鼾声发送给所述心率呼吸率监测系统。
  10. 根据权利要求9所述的心肺监测系统,其特征在于,所述心音肺音监测系统还包括呼吸灯,所述呼吸灯与所述第二控制器电连接,所述呼吸灯用于显示不同工作频率状态;所述工作频率状态包括心音模式、呼吸模式、蓝牙断开模式;所述按键包括四个,所述功能模式包括心音监测功能、肺音监测功能、打鼾监测功能、蓝牙配对,四个按键分别与所述第二控制器连接,并与所述心音监测功能、肺音监测功能、打鼾监测功能、蓝牙配对一一对应。
PCT/CN2021/130291 2021-08-25 2021-11-12 一种非接触式心肺监测仪及心肺监测系统 WO2023024270A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110979327.8 2021-08-25
CN202110979327.8A CN113662519A (zh) 2021-08-25 2021-08-25 一种非接触式心肺监测仪及心肺监测系统

Publications (1)

Publication Number Publication Date
WO2023024270A1 true WO2023024270A1 (zh) 2023-03-02

Family

ID=78545944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130291 WO2023024270A1 (zh) 2021-08-25 2021-11-12 一种非接触式心肺监测仪及心肺监测系统

Country Status (2)

Country Link
CN (1) CN113662519A (zh)
WO (1) WO2023024270A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114587347B (zh) * 2022-03-25 2023-04-28 深圳市华屹医疗科技有限公司 肺功能检测方法、系统、装置、计算机设备和存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000083927A (ja) * 1998-09-11 2000-03-28 Nippon Avionics Co Ltd 非接触式心肺機能監視装置
WO2003011132A2 (en) * 2001-07-31 2003-02-13 Bluescope Medical Technologies Ltd Cardio-pulmonary monitoring device
CN102078201A (zh) * 2010-07-28 2011-06-01 上海理工大学 便携式无线电子听诊器
US20140194793A1 (en) * 2010-05-14 2014-07-10 Kai Medical, Inc. Systems and methods for non-contact multiparameter vital signs monitoring, apnea therapy, apnea diagnosis, and snore therapy
CN109646042A (zh) * 2019-01-29 2019-04-19 电子科技大学 一种基于压电传感器的可穿戴心音和肺音监测装置
CN111870273A (zh) * 2020-07-13 2020-11-03 中国人民解放军联勤保障部队第九二〇医院 一种远程肺音监测装置、系统及其方法
CN111904458A (zh) * 2020-08-27 2020-11-10 广东汉泓医疗科技有限公司 辅助准确听诊的心肺音听诊检测仪、听诊系统及听诊方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120184825A1 (en) * 2011-01-17 2012-07-19 Meir Ben David Method for detecting and analyzing sleep-related apnea, hypopnea, body movements, and snoring with non-contact device
CN105962890A (zh) * 2015-12-06 2016-09-28 宣建民 一种睡眠监测仪
US11234675B2 (en) * 2016-03-28 2022-02-01 Robert Bosch Gmbh Sonar-based contactless vital and environmental monitoring system and method
CN106264501A (zh) * 2016-10-13 2017-01-04 杭州电子科技大学 一种基于连续波多普勒雷达的生理信号检测系统
WO2020252317A1 (en) * 2019-06-12 2020-12-17 Kadidal Sushir Portable health monitoring apparatus, system, and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000083927A (ja) * 1998-09-11 2000-03-28 Nippon Avionics Co Ltd 非接触式心肺機能監視装置
WO2003011132A2 (en) * 2001-07-31 2003-02-13 Bluescope Medical Technologies Ltd Cardio-pulmonary monitoring device
US20140194793A1 (en) * 2010-05-14 2014-07-10 Kai Medical, Inc. Systems and methods for non-contact multiparameter vital signs monitoring, apnea therapy, apnea diagnosis, and snore therapy
CN102078201A (zh) * 2010-07-28 2011-06-01 上海理工大学 便携式无线电子听诊器
CN109646042A (zh) * 2019-01-29 2019-04-19 电子科技大学 一种基于压电传感器的可穿戴心音和肺音监测装置
CN111870273A (zh) * 2020-07-13 2020-11-03 中国人民解放军联勤保障部队第九二〇医院 一种远程肺音监测装置、系统及其方法
CN111904458A (zh) * 2020-08-27 2020-11-10 广东汉泓医疗科技有限公司 辅助准确听诊的心肺音听诊检测仪、听诊系统及听诊方法

Also Published As

Publication number Publication date
CN113662519A (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
CN106937808B (zh) 一种智能床垫的数据采集系统
TWI321227B (en) Sun glass type sleep detecting and preventing device
CN107506569A (zh) 用于评估和干预的生活质量参数的无接触和最小接触监控
US11510613B2 (en) Biological condition determining apparatus and biological condition determining method
CN105796124B (zh) 基于物联网的移动心音听诊系统及其方法
CN104799849A (zh) 一种便携式的睡眠呼吸暂停综合症监测方法与装置
CN204909911U (zh) 一种带有睡眠数据采集系统的多功能自动调节床
US20090259138A1 (en) Automatic bio-signal supervising system for medical care
CN208582430U (zh) 多功能医疗护理听诊器
CN113633260B (zh) 多导睡眠监测方法、监测仪、计算机设备及可读存储介质
CN105662459A (zh) 可穿戴式肺音检测装置
CN104188683A (zh) 一种可显示、储存与传输心电信号的多功能智慧听诊器
WO2023024270A1 (zh) 一种非接触式心肺监测仪及心肺监测系统
CN102058406A (zh) 便携式无线心电心音呼吸音信号显示存储装置
Frank et al. A low cost bluetooth powered wearable digital stethoscope for cardiac murmur
CN202589502U (zh) 一种便携式无线远程心电监护仪
CN105796055A (zh) 一种便携式无线鼾声监测系统
US8641636B2 (en) Electronic vital-sign monitoring system
CN103654742A (zh) 一种监测人体健康状态的多参数识别系统
WO2020133339A1 (zh) 一种监护系统、数据采集端、数据接收显示端及监护方法
TWM585969U (zh) 結合智慧床組的健康管理系統
CN109998504A (zh) 一种医用麻醉深度智能监测装置
CN113598758A (zh) 一种非接触式睡眠监测方法及系统
CN113616171A (zh) 一种感测心率呼吸体动的监测系统
CN209118778U (zh) 用于医疗床的健康信息连续监测设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE