WO2023022493A1 - 딥러닝 기반 심전도 데이터의 노이즈 제거 시스템 - Google Patents

딥러닝 기반 심전도 데이터의 노이즈 제거 시스템 Download PDF

Info

Publication number
WO2023022493A1
WO2023022493A1 PCT/KR2022/012244 KR2022012244W WO2023022493A1 WO 2023022493 A1 WO2023022493 A1 WO 2023022493A1 KR 2022012244 W KR2022012244 W KR 2022012244W WO 2023022493 A1 WO2023022493 A1 WO 2023022493A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrocardiogram
electrocardiogram data
data
deep learning
style
Prior art date
Application number
PCT/KR2022/012244
Other languages
English (en)
French (fr)
Other versions
WO2023022493A9 (ko
WO2023022493A8 (ko
Inventor
권준명
Original Assignee
주식회사 메디컬에이아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 메디컬에이아이 filed Critical 주식회사 메디컬에이아이
Priority to CN202280056118.9A priority Critical patent/CN117813053A/zh
Priority to EP22858730.9A priority patent/EP4371490A1/en
Publication of WO2023022493A1 publication Critical patent/WO2023022493A1/ko
Publication of WO2023022493A9 publication Critical patent/WO2023022493A9/ko
Publication of WO2023022493A8 publication Critical patent/WO2023022493A8/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/30Input circuits therefor
    • A61B5/307Input circuits therefor specially adapted for particular uses
    • A61B5/308Input circuits therefor specially adapted for particular uses for electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/327Generation of artificial ECG signals based on measured signals, e.g. to compensate for missing leads
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/725Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7278Artificial waveform generation or derivation, e.g. synthesising signals from measured signals
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients

Definitions

  • the present invention maintains the electrical signal unique to the heart from the measured ECG data, reflects the characteristics of the subject and the characteristics of the measurement method, and provides deep learning-based electrocardiogram data that can effectively remove noise caused by external electrical signals. It is about a noise cancellation system.
  • AI algorithms can detect subtle changes in electrocardiogram waveforms, and furthermore, electrocardiogram interpretation can be improved.
  • the electrocardiogram used in the medical field is a 12-lead electrocardiogram, which can be measured by attaching 10 electrodes of three limb electrodes, six chest electrodes, and one ground electrode, and the measured electrocardiogram data can be remotely transmitted.
  • electrocardiogram is data that is output after measuring the electrical signal of the heart on the body surface, and is measured with considerable noise. It is mixed with the ECG, the movement of the chest is included in the ECG as the chest moves up and down while breathing while taking the ECG, noise is generated from the wires from the electrodes in contact with the body to the ECG device, and the ECG device itself Noise is also generated by alternating current, and noise due to walking or movement may be included in the electrocardiogram in the case of an exercise load electrocardiogram and an active electrocardiogram that are attached and moved instead of electrocardiograms measured in a stationary state.
  • the technical problem to be achieved by the spirit of the present invention is to maintain the electrical signal unique to the heart from the measured electrocardiogram data, and to reflect the characteristics of the subject and the measurement method to effectively remove noise caused by external electrical signals. It is to provide a noise removal system of electrocardiogram data based on deep learning.
  • an embodiment of the present invention includes an electrocardiogram measurement unit for measuring electrocardiogram data for each induction from the body of a subject; And based on a large number of electrocardiogram data, electrocardiogram data for each conduction with low noise and electrocardiogram generation deep learning algorithm built by pre-learning the unique style learning dataset of the electrocardiogram data for each conduction, the characteristics and Reflecting the characteristics of the measurement method, the unique style is extracted from the electrocardiogram data measured by the electrocardiogram measurement unit, and the extracted unique style is converted into electrocardiogram data of a specific induction style that does not contain noise and generated , Style-based electrocardiogram generation unit; provides a system for removing noise from deep learning-based electrocardiogram data, including a.
  • a plurality of deep learning algorithms for electrocardiogram generation may be generated for each induction of electrocardiogram data, and may be constructed by pre-learning the learning data set.
  • the electrocardiogram generating deep learning algorithm for each induction may learn electrocardiogram data having one or more unique styles.
  • electrocardiogram generation deep learning algorithm may be implemented alone or in combination with an auto-encoder or an adversarial generator network to extract a unique style of electrocardiogram data for each derivation.
  • the auto-encoder is composed of an encoder representing a unique style of ECG data and a decoder restoring the original style to the original ECG data, so that the unique style of the ECG data can be learned.
  • the adversarial generative network is composed of a generative network for generating synthesized electrocardiogram data using randomly generated variables as inputs, and a classification network for classifying whether the synthesized electrocardiogram data is similar to actual electrocardiogram data.
  • the unique style of ECG data can be learned.
  • the generation network may be changed into the form of the auto-encoder to merge the auto-encoder and the adversarial generation network.
  • the present invention it is possible to effectively remove noise caused by an external electrical signal by maintaining the electrical signal unique to the heart from the measured electrocardiogram data and reflecting the characteristics of the examinee and the measurement method, and the noise is removed. It is possible to more accurately predict and diagnose diseases through electrocardiogram data, and to quantify the degree of noise by comparing and analyzing the electrocardiogram data from which noise has been removed and the original electrocardiogram data.
  • FIG. 1 is a schematic configuration diagram of a system for removing noise from electrocardiogram data based on deep learning according to an embodiment of the present invention.
  • FIG. 2 illustrates an auto-encoder of the deep learning-based electrocardiogram data denoising system of FIG. 1 .
  • FIG. 3 illustrates an adversarial generation network of the system for removing noise of electrocardiogram data based on deep learning of FIG. 1 .
  • FIG. 4 illustrates noise removal by the deep learning-based noise removal system of electrocardiogram data of FIG. 1 .
  • the deep learning-based electrocardiogram data noise elimination system has low noise based on the electrocardiogram measurement unit 110 that measures electrocardiogram data for each conduction from the body of an examinee and a plurality of electrocardiogram data.
  • Electrocardiogram measurement by reflecting the characteristics of the examinee and the characteristics of the measurement method through the electrocardiogram generation deep learning algorithm 121 built by pre-learning the ECG data for each induction and the learning dataset of the unique style of the ECG data for each induction Includes a style-based electrocardiogram generator 120 that extracts a unique style from the electrocardiogram data measured by the unit 110, converts the extracted unique style into electrocardiogram data of a specific induction style that does not contain noise, and generates the electrocardiogram data.
  • the main point is to increase the accuracy of disease diagnosis prediction by generating electrocardiogram data from which noise is removed.
  • the electrocardiogram measurement unit 110 measures one or more electrocardiogram data for each induction from the body of the examinee, transmits the data to the style-based electrocardiogram generator 120, and provides the result.
  • the electrocardiogram measurement unit 110 is a wearable electrocardiogram patch 111 capable of contact or non-contact electrocardiogram measurement during daily life, a smart watch 112, a 6-lead electrocardiogram bar measured in a short time, or standard-lead electrocardiogram measurement of more than 1 lead Asynchronous or synchronous electrocardiography can be measured, including possible electrocardiogram devices in medical institutions.
  • the electrocardiogram measurement unit 110 may measure the examinee's continuous electrocardiogram and transmit it to the style-based electrocardiogram generating unit 120 or may measure two electrocardiograms at a time interval and transmit the electrocardiogram to the style-based electrocardiogram generating unit 120. there is.
  • the style-based electrocardiogram generation unit 120 reflects the characteristics of the examinee and the characteristics of the measurement method through the electrocardiogram generation deep learning algorithm 121, from the electrocardiogram data for each induction from the electrocardiogram measurement unit 110. Convert to electrocardiogram data from which noise has been removed.
  • the style-based electrocardiogram generation unit 120 generates electrocardiogram data for each conduction with low noise and a unique style of the electrocardiogram data for each conduction based on a plurality of electrocardiogram data, for example, standard 12-lead electrocardiogram data accumulated in medical institutions.
  • electrocardiogram generating deep learning algorithm 121 built by pre-learning the learning dataset, the characteristics of the examinee and the measurement method are reflected, and the corresponding unique style is generated from the electrocardiogram data measured by the electrocardiogram measurement unit 110. It can be generated by extracting and converting ECG data of a specific induction style that does not contain noise through the extracted unique style.
  • the electrocardiogram of each induction is a three-dimensional electrical flow measured in the direction (potential vector) looking at the heart from a predetermined direction, and each has its own style.
  • the V6 induction electrocardiogram always draws positively.
  • the electrocardiogram of each induction has its own style and may include not only the characteristics of the P, Q, R, S, and T waveforms, but also curves of curves or noise signals that cannot be specified with existing medical knowledge.
  • the electrocardiogram generation deep learning algorithm 121 extracts a unique style characteristic of each derived electrocardiogram data from the large-scale electrocardiogram data accumulated in medical institutions and uses it as a learning data set. Multiple copies are generated for each induction of the electrocardiogram data. It can be built by pre-learning the learning data set, and the deep learning algorithm for generating ECG for each induction learns ECG data having one or more unique styles, and the deep learning algorithm 121 generates one ECG. In addition, it can learn based on ECG data having two or more unique styles.
  • V1-derived electrocardiogram data can be created by converting the form into a corresponding style.
  • the electrocardiogram generation deep learning algorithm 121 reflects the characteristics of the examinee's age, gender, disease, etc., the electrode attachment location, and the characteristics of the measurement method due to the electrocardiogram device, etc., and a unique style for each ECG data induction can be identified with high accuracy, and based on this, electrocardiogram data for each induction can be more accurately converted and generated.
  • the electrocardiogram generation deep learning algorithm 121 extracts a unique style, which is a potential characteristic, for given electrocardiogram data through learning by a self-supervised learning method, and converts the electrocardiogram data input from the electrocardiogram measuring unit 110 into each unique style. It can be generated by converting into electrocardiogram data of, for example, implemented alone or merged with an auto-encoder or hostile generation network, so that a unique style of electrocardiogram data for each induction is extracted to generate electrocardiogram data of a corresponding unique style.
  • the auto-encoder is composed of an encoder 121a expressing a unique style of ECG data and a decoder 121b restoring the original style to the original ECG data, and converting the ECG data into more than one hidden layer. It is input to the encoder 121a including (Hidden1,2), uses a decoder 121b including one or more hidden layers (Hidden2,3) from the extracted unique style, and adds Gaussian noise to obtain the original Through the process of recognizing the structure of ECG data and restoring the ECG data used as input, the unique style of the ECG data can be learned to restore the original ECG data.
  • the adversarial generator network includes a generator network 121c that generates synthesized ECG data using randomly generated variables as inputs, and a classification network 121d that classifies whether the synthesized ECG data is similar to actual ECG data. ), the generation network 121c attempts to generate synthetic ECG data so that the classification network 121d cannot distinguish between synthetic ECG data and actual ECG data, and the classification network 121d attempts to generate synthetic ECG data and actual ECG data. Through the process of trying to distinguish well, the generation network 121c can learn the unique style of ECG data.
  • the generation network 121c can be changed to the form of an auto-encoder to merge the auto-encoder and the adversarial generation network. It can be implemented by conditionally inputting an index for desired ECG data together with a random variable.
  • FIG. 4 illustrates noise removal by the deep learning-based electrocardiogram data noise removal system of FIG. 1, and the noise removal will be described in detail with reference to this.
  • Electrocardiogram data accumulated in medical institutions is an electrocardiogram with reduced noise as much as possible.
  • electrocardiogram electrodes are attached to the patient's body and observed for a certain period of time to check the state of reduced noise, such as holding their breath or relaxing their entire body. If the electrocardiogram is photographed and is not valuable as a medical record due to a lot of noise, the electrocardiogram data for learning of the electrocardiogram generation deep learning algorithm 121 may be an electrocardiogram with low noise by deleting the electrocardiogram and re-photographing the electrocardiogram.
  • electrocardiogram data with a lot of noise measured by the electrocardiogram measurement unit 110 is input to the electrocardiogram generating deep learning algorithm 121, it can be converted into unique style electrocardiogram data with low noise and output.
  • distortion of the ECG signal may be removed by applying noise filtering customized for each examinee by reflecting the characteristics of the examinee and the characteristics of the measurement method, and only noise may be removed while leaving tremors inherent in the heart intact.
  • FIG. 4 is a graph illustrating the experimental results by the electrocardiogram generating deep learning algorithm 121, the thick line is the actual electrocardiogram by the electrocardiogram measuring unit 110, and the thin line is the electrocardiogram generated by the deep learning algorithm 121 This is the result of generating an electrocardiogram.
  • the baseline is actually moving due to noise, and it can be confirmed that the noise is removed in the process of generating V6 derivation by inputting it to the electrocardiogram generating deep learning algorithm 121.
  • the ECG information input to the ECG generation deep learning algorithm 121 is by identifying the characteristics of each ECG, it can be used to generate new ECG information through this.
  • synchronized electrocardiogram information can be generated, asynchronous electrocardiogram information is generated when a model used for disease diagnosis uses asynchronous electrocardiogram or a model that does not synchronize and use time-series information.
  • electrocardiogram information may be generated without considering synchronization.
  • the degree of noise in the ECG can be measured by comparing the initially input ECG data with the ECG from which the noise has been removed.
  • noise-free electrocardiogram data is generated and the dropped electrocardiogram data is filled in. In this way, more accurate disease diagnosis, prediction, and screening can be performed.
  • electrocardiogram data generated by the style-based electrocardiogram generator 120 and noise removed can be used as an input to more accurately predict diseases predictable from the electrocardiogram data.
  • the health state prediction unit 130 includes diseases of the circulatory system, endocrine, nutritional and metabolic diseases, neoplastic diseases, mental and behavioral disorders, diseases of the nervous system, diseases of the eyes and appendages, ears and Breast diseases, respiratory system diseases, digestive system diseases, skin and skin tissue diseases, musculoskeletal system and connective tissue diseases, urogenital system diseases, pregnancy, childbirth and postpartum diseases, Congenital anomalies, deformations and chromosomal abnormalities can be diagnosed and predicted.
  • the health state prediction unit 130 damage due to physical trauma can be confirmed, prognosis can be confirmed, pain can be measured, the risk of death or aggravation due to trauma can be predicted, and concurrent complications can be captured. It is possible to identify or predict specific conditions before and after birth, and as a healthcare area, aging, sleep, weight, blood pressure, blood sugar, oxygen saturation, metabolism, stress, tension, fear, drinking, smoking, problem behavior, Lung capacity, exercise, pain management, obesity, body mass, body composition, diet, exercise type, life pattern recommendation, emergency management, chronic disease management, medication prescription, examination recommendation, examination recommendation, nursing care, remote health management, telemedicine, vaccination And it may be possible to measure, diagnose, examine, and predict the health status of the examinee, which can lead to services such as post-inoculation management.
  • the health state predictor 130 generates a generalized reference electrocardiogram of the examinee's normal healthy state, and then compares and analyzes the electrocardiogram data provided in real time from the electrocardiogram measurement unit 110 to obtain an electrocardiogram measured without errors. It monitors to check whether there is an abnormality in the health condition of the examinee, etc., and generates warning information through the warning unit 140 when an error or abnormality is predicted, so that the smart watch type single-lead electrocardiogram measurement unit 110 or a separate You can transmit warning information with a beep sound through your smart device.
  • the electrical signal unique to the heart is maintained from the measured electrocardiogram data, and the characteristics of the examinee and the characteristics of the measurement method are reflected, so that the external electrical Noise caused by signals can be effectively removed, diseases can be more accurately predicted and diagnosed through ECG data from which noise has been removed, and the degree of noise can be quantified by comparing and analyzing the ECG data from which noise has been removed and the original ECG data. You may.
  • electrocardiogram measuring unit 120 style-based electrocardiogram generating unit
  • electrocardiogram generation deep learning algorithm 121a encoder
  • decoder 121c generation network
  • classification network 130 health condition prediction unit

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Data Mining & Analysis (AREA)
  • Signal Processing (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Cardiology (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

본 발명은, 피검진자의 신체로부터 각 유도별 심전도 데이터를 측정하는 심전도 측정부(110), 및 다수의 심전도 데이터를 기반으로, 노이즈가 적은 각 유도별 심전도 데이터 및 각 유도별 심전도 데이터의 고유 스타일의 학습데이터셋을 미리 학습하여 구축된 심전도 생성 딥러닝 알고리즘(121)을 통해, 피검진자의 특성 및 측정방식의 특성을 반영하여, 심전도 측정부(110)에 의해 측정된 심전도 데이터로부터 고유 스타일을 추출하고, 추출된 고유 스타일을 통해 노이즈가 포함되지 않는 특정 유도 스타일의 심전도 데이터로 변환하여 생성하는, 스타일기반 심전도 생성부(120)를 포함하여, 노이즈가 제거된 심전도 데이터를 생성하여 질환 진단 예측의 정확도를 높일 수 있는, 딥러닝 기반 심전도 데이터의 노이즈 제거 시스템을 개시한다.

Description

딥러닝 기반 심전도 데이터의 노이즈 제거 시스템
본 발명은 측정된 심전도 데이터로부터 심장 고유의 전기적 신호는 유지하고, 피검진자의 특성 및 측정방식의 특성을 반영하여, 외부의 전기적 신호로 인한 노이즈를 효과적으로 제거할 수 있는, 딥러닝 기반 심전도 데이터의 노이즈 제거 시스템에 관한 것이다.
주지하는 바와 같이, 심전도의 개발 이후, 심전도 관련 지식은 기하급수적으로 확대되었고, 심전도 검사에서 심장의 전기적 기능에 대한 정보를 얻고 부정맥, 관상동맥질환, 심근질환 등 다양한 심장질환을 진단할 수 있다.
최근, 심전도의 AI 알고리즘에 대한 연구가 활발히 진행되고 있으며, AI 알고리즘에 의해 심부전을 감지하고, 부정맥 리듬 중 심방세동을 예측하거나, 성별을 결정하기도 한다.
이와 같이, 인간의 한계를 극복하여, AI 알고리즘에 의해 심전도 파형의 미묘한 변화를 감지할 수 있고, 더 나아가 심전도 해석을 향상시킬 수도 있다.
예컨대, 의료분야에서 사용되고 있는 심전도는 12유도 심전도로서, 3개의 사지전극과 6개의 흉부전극과 1개의 접지전극의 10개의 전극을 부착하여 측정하고, 측정된 심전도 데이터를 원격전송하도록 할 수 있다.
한편, 심전도는 심장의 전기적 신호를 체표면에서 측정한 후 출력되는 데이터로서 상당한 노이즈가 섞여서 측정되는데, 가슴에 위치하는 근육과 팔다리 근육의 수축으로 인한 근전도 및 피부와 전극의 접촉면에서 발생하는 노이즈가 심전도와 섞이기도 하고, 심전도를 촬영하는 중에 호흡을 하면서 가슴이 오르내리면서 심전도에 가슴의 움직임이 포함되기도 하고, 신체와 접촉한 전극에서 심전도 기기까지의 전선에서도 노이즈가 발생하며, 심전도 기기 자체의 교류전류에 의해서도 노이즈가 발생하고, 정지 상태에서 측정하는 심전도가 아닌 부착한 후 움직이는 운동부하심전도 및 활동심전도의 경우에는 걷거나 움직임으로 인한 노이즈도 심전도에 포함될 수 있다.
종래에는 일정 주파수 이하와 이상의 잡음을 일괄적으로 제거하는 방법을 사용하여, 심장에서 주로 만들어지지 않는 주파수 대역인 0.05Hz 이하나 150Hz 이상의 신호를 일괄적으로 삭제하는 방법으로 노이즈를 제거하기도 하지만, 심전도 신호 자체의 변형을 일으켜 질환 진단의 정확도가 저하되는 문제점이 있다.
이와 같이, 피검진자의 특성, 측정 환경과 측정 기기에서 발생하는 노이즈를 심장 자체의 전기적 신호와 구분하여 제거하는 것은 쉽지 않으며, 일정 주파수를 기준으로 일괄적으로 제거하는 방식은 심전도 고유의 신호를 왜곡하고 심전도를 기반으로 질환을 진단하거나 발생을 예측하는 정확도를 저하시킨다.
이에, 심전도 데이터의 노이즈를 제거하여 고품질의 심전도를 생성하여 높은 진단 정확도를 보장하기 위한 기술이 요구된다.
본 발명의 사상이 이루고자 하는 기술적 과제는, 측정된 심전도 데이터로부터 심장 고유의 전기적 신호는 유지하고, 피검진자의 특성 및 측정방식의 특성을 반영하여, 외부의 전기적 신호로 인한 노이즈를 효과적으로 제거할 수 있는, 딥러닝 기반 심전도 데이터의 노이즈 제거 시스템을 제공하는 데 있다.
전술한 목적을 달성하고자, 본 발명의 실시예는, 피검진자의 신체로부터 각 유도별 심전도 데이터를 측정하는 심전도 측정부; 및 다수의 심전도 데이터를 기반으로, 노이즈가 적은 각 유도별 심전도 데이터 및 상기 각 유도별 심전도 데이터의 고유 스타일의 학습데이터셋을 미리 학습하여 구축된 심전도 생성 딥러닝 알고리즘을 통해, 피검진자의 특성 및 측정방식의 특성을 반영하여, 상기 심전도 측정부에 의해 측정된 상기 심전도 데이터로부터 상기 고유 스타일을 추출하고, 상기 추출된 고유 스타일을 통해 노이즈가 포함되지 않는 특정 유도 스타일의 심전도 데이터로 변환하여 생성하는, 스타일기반 심전도 생성부;를 포함하는, 딥러닝 기반 심전도 데이터의 노이즈 제거 시스템을 제공한다.
여기서, 상기 심전도 생성 딥러닝 알고리즘은 심전도 데이터의 각 유도별로 복수로 각각 생성되어 상기 학습데이터셋을 미리 학습하여 구축될 수 있다.
또한, 상기 각 유도별 심전도 생성 딥러닝 알고리즘은 1개 이상의 고유 스타일을 갖는 심전도 데이터를 학습할 수 있다.
또한, 상기 심전도 생성 딥러닝 알고리즘은 오토 인코더 또는 적대적 생성망 단독으로 구현되거나 병합하여 구현되어 상기 각 유도별 심전도 데이터의 고유 스타일을 추출할 수 있다.
또한, 상기 오토 인코더는 심전도 데이터의 고유 스타일을 표현하는 인코더와, 해당 고유 스타일을 원본의 심전도 데이터로 복원하는 디코더로 구성되어, 상기 심전도 데이터의 고유 스타일을 학습할 수 있다.
또한, 상기 적대적 생성망은 무작위로 생성된 변수들을 입력으로 하여 합성 심전도 데이터를 생성하는 생성망과, 상기 합성 심전도 데이터가 실제 심전도 데이터와 유사한지를 분류하는 분류망으로 구성되어, 상기 생성망이 상기 심전도 데이터의 고유 스타일을 학습할 수 있다.
또한, 상기 생성망을 상기 오토 인코더의 형태로 변경하여 상기 오토 인코더와 상기 적대적 생성망을 병합할 수 있다.
본 발명에 의하면, 측정된 심전도 데이터로부터 심장 고유의 전기적 신호는 유지하고, 피검진자의 특성 및 측정방식의 특성을 반영하여, 외부의 전기적 신호로 인한 노이즈를 효과적으로 제거할 수 있으며, 노이즈가 제거된 심전도 데이터를 통해 질환을 보다 정확하게 예측하여 진단할 수 있고, 노이즈가 제거된 심전도 데이터와 원본의 심전도 데이터를 비교분석하여 노이즈의 정도를 정량화할 수 있는 효과가 있다.
도 1은 본 발명의 실시예에 의한 딥러닝 기반 심전도 데이터의 노이즈 제거 시스템의 개략적인 구성도를 도시한 것이다.
도 2는 도 1의 딥러닝 기반 심전도 데이터의 노이즈 제거 시스템의 오토 인코더를 예시한 것이다.
도 3은 도 1의 딥러닝 기반 심전도 데이터의 노이즈 제거 시스템의 적대적 생성망을 예시한 것이다.
도 4는 도 1의 딥러닝 기반 심전도 데이터의 노이즈 제거 시스템에 의한 노이즈 제거를 예시한 것이다.
이하, 첨부된 도면을 참조로 전술한 특징을 갖는 본 발명의 실시예를 더욱 상세히 설명하고자 한다.
본 발명의 실시예에 의한 딥러닝 기반 심전도 데이터의 노이즈 제거 시스템은, 피검진자의 신체로부터 각 유도별 심전도 데이터를 측정하는 심전도 측정부(110), 및 다수의 심전도 데이터를 기반으로, 노이즈가 적은 각 유도별 심전도 데이터 및 각 유도별 심전도 데이터의 고유 스타일의 학습데이터셋을 미리 학습하여 구축된 심전도 생성 딥러닝 알고리즘(121)을 통해, 피검진자의 특성 및 측정방식의 특성을 반영하여, 심전도 측정부(110)에 의해 측정된 심전도 데이터로부터 고유 스타일을 추출하고, 추출된 고유 스타일을 통해 노이즈가 포함되지 않는 특정 유도 스타일의 심전도 데이터로 변환하여 생성하는, 스타일기반 심전도 생성부(120)를 포함하여, 노이즈가 제거된 심전도 데이터를 생성하여 질환 진단 예측의 정확도를 높이는 것을 요지로 한다.
이하, 도 1 내지 도 4를 참조하여, 전술한 구성의 딥러닝 기반 심전도 데이터의 노이즈 제거 시스템을 구체적으로 상술하면 다음과 같다.
우선, 심전도 측정부(110)는 피검진자의 신체로부터 1개 이상의 각 유도별 심전도 데이터를 측정하여 스타일기반 심전도 생성부(120)로 전송하여 제공한다.
예컨대, 심전도 측정부(110)는 일상생활 중에 접촉시 또는 비접촉식의 심전도 측정이 가능한 웨어러블 심전도패치(111), 스마트워치(112), 단시간 측정되는 6유도 심전도 바 또는 1유도 이상의 표준유도 심전도 측정이 가능한 의료기관 심전도기기를 포함하여서 비동기적 또는 동기적 심전도를 측정할 수 있다.
여기서, 심전도 측정부(110)는 피검진자의 연속적인 심전도를 측정하여 스타일기반 심전도 생성부(120)로 전송하거나 시간간격을 두고 2개의 심전도를 측정하여 스타일기반 심전도 생성부(120)로 전송할 수도 있다.
다음, 스타일기반 심전도 생성부(120)는, 심전도 생성 딥러닝 알고리즘(121)을 통해, 피검진자의 특성 및 측정방식의 특성을 반영하여, 심전도 측정부(110)로부터의 각 유도별 심전도 데이터로부터 노이즈가 제거된 심전도 데이터로 변환한다.
구체적으로, 스타일기반 심전도 생성부(120)는, 다수의 심전도 데이터, 예컨대 의료기관에 축적된 표준 12유도 심전도 데이터를 기반으로, 노이즈가 적은 각 유도별 심전도 데이터 및 각 유도별 심전도 데이터의 고유 스타일의 학습데이터셋을 미리 학습하여 구축된 심전도 생성 딥러닝 알고리즘(121)을 통해, 피검진자의 특성 및 측정방식의 특성을 반영하여서, 심전도 측정부(110)에 의해 측정된 심전도 데이터로부터 해당 고유 스타일을 추출하고, 추출된 고유 스타일을 통해 노이즈가 포함되지 않는 특정 유도 스타일의 심전도 데이터로 변환하여 생성할 수 있다.
즉, 각 유도의 심전도는 정해진 방향에서 심장을 바라보는 방향(전위 벡터)으로 측정되는 3차원의 전기적인 흐름으로 각각의 고유 스타일을 가지게 되는데, 예로, V6유도 심전도는 항상 양으로 그려지는 스타일을 가지는 것처럼 각 유도의 심전도는 각각 고유 스타일을 가지고 P,Q,R,S,T 파형의 특성뿐만 아니라 기존 의학적 지식으로 특정할 수 없는 곡선의 굴곡 또는 잡음 신호를 포함할 수 있다.
여기서, 심전도 생성 딥러닝 알고리즘(121)은 의료기관에 축적된 대규모의 심전도 데이터로부터 해당 유도 심전도 데이터별 특징인 고유의 스타일을 추출하여 학습데이터셋으로 활용하는데, 심전도 데이터의 각 유도별로 복수로 각각 생성되어 학습데이터셋을 미리 학습하여 구축될 수 있으며, 각 유도별 심전도 생성 딥러닝 알고리즘은 1개 이상의 고유 스타일을 갖는 심전도 데이터를 학습하여서 1개의 심전도 생성 딥러닝 알고리즘(121)은 1개의 심전도 데이터뿐만 아니라 2개 이상의 복수의 고유 스타일을 갖는 심전도 데이터를 기반으로 학습할 수 있다.
예를 들면, 심전도 생성 딥러닝 알고리즘(121)은 V1유도 심전도 데이터를 생성하기 위해서, 대규모의 V1유도 심전도 데이터를 기반으로 V1유도 심전도 데이터의 고유 스타일을 학습하고, 심전도 측정부(110)로부터의 V1유도 심전도 데이터를 해당 고유 스타일로 형태를 변환하여 생성할 수 있다.
한편, 심전도 생성 딥러닝 알고리즘(121)은 피검진자의 연령, 성별, 질환 등으로 인한 특성 및 전극의 부착위치, 심전도 기기 등으로 인한 측정방식의 특성을 반영하여서, 각 심전도 데이터의 유도별 고유 스타일을 높은 정확도롤 파악할 수 있고, 이를 기반으로 각 유도별 심전도 데이터를 보다 더 정확하게 변환하여 생성할 수 있다.
또한, 심전도 생성 딥러닝 알고리즘(121)은 자기지도학습방법에 의한 학습을 통해 주어진 심전도 데이터에 대해 잠재적인 특성인 고유 스타일을 추출하고, 심전도 측정부(110)로부터 입력되는 심전도 데이터를 각 고유 스타일의 심전도 데이터로 변환하여 생성할 수 있는데, 예컨대 오토 인코더 또는 적대적 생성망 단독으로 구현되거나 병합하여 구현되어서, 각 유도별 심전도 데이터의 고유 스타일을 추출하여 해당 고유 스타일의 심전도 데이터를 생성할 수 있다.
예컨대, 도 2를 참고하면, 오토 인코더는 심전도 데이터의 고유 스타일을 표현하는 인코더(121a)와, 해당 고유 스타일을 원본의 심전도 데이터로 복원하는 디코더(121b)로 구성되어, 심전도 데이터를 한층 이상의 은닉층(Hidden1,2)을 포함하는 인코더(121a)에 입력하고, 추출된 고유 스타일로부터 한층 이상의 은닉층(Hidden2,3)을 포함하는 디코더(121b)를 이용하고, 가우시안 노이즈(Gaussian noise)를 가미하여 원본의 심전도 데이터의 구조를 파악하여 입력으로 사용된 심전도 데이터를 복원하는 과정을 통해서, 원본의 심전도 데이터를 복원하기 위해 심전도 데이터의 고유 스타일을 학습할 수 있다.
또는, 도 3을 참고하면, 적대적 생성망은 무작위로 생성된 변수들을 입력으로 하여 합성 심전도 데이터를 생성하는 생성망(121c)과, 합성 심전도 데이터가 실제 심전도 데이터와 유사한지를 분류하는 분류망(121d)으로 구성되어, 생성망(121c)은 분류망(121d)이 합성 심전도 데이터와 실제 심전도 데이터를 잘 구분하지 못하도록 합성 심전도 데이터를 생성하려고 하고, 분류망(121d)은 합성 심전도 데이터와 실제 심전도 데이터를 잘 구분하려 하는 과정을 통해, 생성망(121c)은 심전도 데이터의 고유 스타일을 학습할 수 있다.
한편, 생성망(121c)을 오토 인코더의 형태로 변경하여 오토 인코더와 적대적 생성망을 병합할 수 있는데, 무작위 변수와 함께 원하는 심전도 데이터에 대한 색인을 조건적으로 입력하여 구현할 수 있다.
도 4는 도 1의 딥러닝 기반 심전도 데이터의 노이즈 제거 시스템에 의한 노이즈 제거를 예시한 것으로, 이를 참조하여 노이즈 제거를 상술하면 다음과 같다.
의료기관에 축적된 심전도 데이터는 노이즈를 최대한 줄인 심전도로서, 실제 의료 현장에서는 심전도 전극을 환자 몸에 붙이고 일정 시간동안 관찰하면서 숨을 참게 하거나 온몸에 힘을 빼도록 하는 등 노이즈가 감소된 상태를 확인하고 촬영하며, 촬영한 심전도가 노이즈가 많아서 의료기록으로서 가치가 없다면 해당 심전도를 삭제하고 재촬영하여서, 심전도 생성 딥러닝 알고리즘(121)의 학습을 위한 심전도 데이터는 노이즈가 적은 심전도일 수 있다.
이에, 심전도 측정부(110)에 의해 측정되는 노이즈가 많은 심전도 데이터를 심전도 생성 딥러닝 알고리즘(121)에 입력을 하게 되면 노이즈가 적은 고유 스타일의 심전도 데이터로 변환되어 출력될 수 있다.
또한, 피검진자의 특성 및 측정방식의 특성을 반영하여, 피검진자별 맞춤형의 노이즈 필터링을 적용하여서, 심전도 신호의 왜곡을 제거할 수 있고, 심장 고유의 떨림은 그대로 두고 노이즈만을 제거할 수 있다.
도 4는 심전도 생성 딥러닝 알고리즘(121)에 의한 실험 결과를 그래프로 예시한 것으로서, 굵은선은 심전도 측정부(110)에 의한 실제 심전도이며, 가는선은 심전도 생성 딥러닝 알고리즘(121)에 의해 심전도를 생성한 결과이다.
우측 하단의 V6유도의 예를 보면, 실제는 노이즈로 인해 기저선이 움직이고 있는데, 이를 심전도 생성 딥러닝 알고리즘(121)에 입력하여 V6유도를 생성하는 과정에서 노이즈가 제거되는 것을 확인할 수 있다.
이와 같이, 각 심전도의 특성을 파악하여 심전도 생성 딥러닝 알고리즘(121)으로 입력된 심전도 정보가 어떤 유도의 심전도 정보인지를 파악한 후, 이를 통해 새로운 유도의 심전도 정보를 생성하는데 이용할 수도 있다.
또한, 동기화된 심전도 정보를 생성할 수도 있지만, 질환 진단을 위해 사용하는 모델이 비동기적 심전도를 사용하는 경우에, 또는 시계열적 정보를 동기화하여 사용하지 않는 모델인 경우에, 비동기적 심전도 정보를 생성하거나 동기화를 고려하지 않고 심전도 정보를 생성할 수도 있다.
부언하자면, 심전도 데이터를 이용하여 질환을 예측하고자 하는 경우, 입력된 심전도 데이터에 포함된 노이즈를 계측하는 것이 중요하며, 이를 통해 심전도를 질환 예측에 사용할지 아니면 재측정할지를 결정할 수도 있으며, 심전도 데이터의 입력 후 출력되는 결과에 대한 신뢰도를 사전에 확인할 수도 있다.
따라서, 심전도 데이터에서 노이즈를 측정하는 방법으로, 초기 입력된 심전도 데이터와 노이즈가 제거된 심전도를 비교하여서 심전도에서 노이즈의 정도를 계측할 수 있다.
또한, 심전도 데이터에서 일부 유도나 일부 구간의 심전도 데이터에 노이즈가 많이 포함되거나 전극 접촉이 떨어지는 등의 이유로 인해 측정이 되지 않는 경우, 노이즈가 없는 유도의 심전도 데이터를 생성하여서, 탈락된 심전도 데이터를 채워 넣어서 보다 더 정확한 질환의 진단과 예측과 검진을 수행할 수 있다.
또한, 건강상태 예측부(130)를 통해, 스타일기반 심전도 생성부(120)에 의해 생성되어 노이즈가 제거된 심전도 데이터를 입력으로 하여, 심전도 데이터로부터 예측가능한 질환을 보다 더 정확하게 예측하도록 할 수 있다.
예컨대, 건강상태 예측부(130)는 순환 계통의 질환과, 내분비, 영양 및 대사 질환과, 신생물 질환과, 정신 및 행동장애와, 신경계통의 질환과, 눈 및 부속기의 질환과, 귀 및 유돌의 질환과, 호흡계통의 질환과, 소화계통의 질환과, 피부 및 피부조직의 질환과, 근골격계통 및 결압조직의 질환과, 비뇨생식계통의 질환과, 임신, 출산 및 산후기 질환과, 선천기형, 변형 및 염색체이상을 진단하여 예측할 수 있다.
이외에도, 건강상태 예측부(130)를 통해서, 신체외상으로 인한 손상을 확인하고, 예후를 확인하며 통증을 계측할 수 있으며, 외상으로 인한 사망 위험성이나 악화 위험성을 예측할 수 있고, 병발한 합병증을 포착하거나 예측할 수 있고, 출생 전후기에 나타나는 특정 병태를 파악할 수도 있고, 헬스케어 영역으로서, 노화, 수면, 체중, 혈압, 혈당, 산소포화도, 신진대사, 스트레스, 긴장, 공포, 음주, 흡연, 문제행동, 폐활량, 운동량, 통증관리, 비만, 체질량, 체성분, 식단, 운동 종류, 생활패턴 추천, 응급상황 관리, 만성질환 관리, 약제 처방, 검사 추천, 검진 추천, 간병, 원격건강관리, 원격진료, 예방접종 및 접종 이후 관리 등의 서비스로 이어질 수 있는 피검진자의 건강상태를 계측하며 진단하고 검진하고 예측하는 것이 가능할 수 있다.
한편, 건강상태 예측부(130)는 피검진자의 평상기 건강한 상태의 일반화된 기준심전도를 생성하고, 이후 심전도 측정부(110)로부터 실시간 제공되는 심전도 데이터와 비교분석하여 심전도가 오류없이 측정된 심전도인지, 피검진자의 건강상태에 이상이 없는지 등을 확인하도록 모니터링하고, 오류나 이상 예측시에 경고부(140)를 통해 경고정보를 생성하여, 스마트워치 형태의 단일유도 심전도 측정부(110) 또는 별도의 스마트기기를 통해 비프음과 함께 경고정보를 전송할 수 있다.
따라서, 전술한 바와 같은 딥러닝 기반 심전도 데이터의 노이즈 제거 시스템의 구성에 의해서, 측정된 심전도 데이터로부터 심장 고유의 전기적 신호는 유지하고, 피검진자의 특성 및 측정방식의 특성을 반영하여, 외부의 전기적 신호로 인한 노이즈를 효과적으로 제거할 수 있으며, 노이즈가 제거된 심전도 데이터를 통해 질환을 보다 정확하게 예측하여 진단할 수 있고, 노이즈가 제거된 심전도 데이터와 원본의 심전도 데이터를 비교분석하여 노이즈의 정도를 정량화할 수도 있다.
본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원 시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
110 : 심전도 측정부 120 : 스타일기반 심전도 생성부
121 : 심전도 생성 딥러닝 알고리즘 121a : 인코더
121b : 디코더 121c : 생성망
121d : 분류망 130 : 건강상태 예측부
140 : 경고부

Claims (7)

  1. 피검진자의 신체로부터 각 유도별 심전도 데이터를 측정하는 심전도 측정부; 및
    다수의 심전도 데이터를 기반으로, 노이즈가 적은 각 유도별 심전도 데이터 및 상기 각 유도별 심전도 데이터의 고유 스타일의 학습데이터셋을 미리 학습하여 구축된 심전도 생성 딥러닝 알고리즘을 통해, 피검진자의 특성 및 측정방식의 특성을 반영하여, 상기 심전도 측정부에 의해 측정된 상기 심전도 데이터로부터 상기 고유 스타일을 추출하고, 상기 추출된 고유 스타일을 통해 노이즈가 포함되지 않는 특정 유도 스타일의 심전도 데이터로 변환하여 생성하는, 스타일기반 심전도 생성부;를 포함하는,
    딥러닝 기반 심전도 데이터의 노이즈 제거 시스템.
  2. 제1항에 있어서,
    상기 심전도 생성 딥러닝 알고리즘은 심전도 데이터의 각 유도별로 복수로 각각 생성되어 상기 학습데이터셋을 미리 학습하여 구축되는 것을 특징으로 하는,
    딥러닝 기반 심전도 데이터의 노이즈 제거 시스템.
  3. 제2항에 있어서,
    상기 각 유도별 심전도 생성 딥러닝 알고리즘은 1개 이상의 고유 스타일을 갖는 심전도 데이터를 학습하는 것을 특징으로 하는,
    딥러닝 기반 심전도 데이터의 노이즈 제거 시스템.
  4. 제1항에 있어서,
    상기 심전도 생성 딥러닝 알고리즘은 오토 인코더 또는 적대적 생성망 단독으로 구현되거나 병합하여 구현되어 상기 각 유도별 심전도 데이터의 고유 스타일을 추출하는 것을 특징으로 하는,
    딥러닝 기반 심전도 데이터의 노이즈 제거 시스템.
  5. 제4항에 있어서,
    상기 오토 인코더는 심전도 데이터의 고유 스타일을 표현하는 인코더와, 해당 고유 스타일을 원본의 심전도 데이터로 복원하는 디코더로 구성되어, 상기 심전도 데이터의 고유 스타일을 학습하는 것을 특징으로 하는,
    딥러닝 기반 심전도 데이터의 노이즈 제거 시스템.
  6. 제4항에 있어서,
    상기 적대적 생성망은 무작위로 생성된 변수들을 입력으로 하여 합성 심전도 데이터를 생성하는 생성망과, 상기 합성 심전도 데이터가 실제 심전도 데이터와 유사한지를 분류하는 분류망으로 구성되어, 상기 생성망이 상기 심전도 데이터의 고유 스타일을 학습하는 것을 특징으로 하는,
    딥러닝 기반 심전도 데이터의 노이즈 제거 시스템.
  7. 제5항 또는 제6항에 있어서,
    상기 생성망을 상기 오토 인코더의 형태로 변경하여 상기 오토 인코더와 상기 적대적 생성망을 병합하는 것을 특징으로 하는,
    딥러닝 기반 심전도 데이터의 노이즈 제거 시스템
PCT/KR2022/012244 2021-08-17 2022-08-17 딥러닝 기반 심전도 데이터의 노이즈 제거 시스템 WO2023022493A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280056118.9A CN117813053A (zh) 2021-08-17 2022-08-17 以深度学习为基础的心电图数据的噪声去除系统
EP22858730.9A EP4371490A1 (en) 2021-08-17 2022-08-17 Deep learning-based electrocardiogram data noise removal system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210107771A KR20230025956A (ko) 2021-08-17 2021-08-17 딥러닝 기반 심전도 데이터의 노이즈 제거 시스템
KR10-2021-0107771 2021-08-17

Publications (3)

Publication Number Publication Date
WO2023022493A1 true WO2023022493A1 (ko) 2023-02-23
WO2023022493A9 WO2023022493A9 (ko) 2023-06-22
WO2023022493A8 WO2023022493A8 (ko) 2023-12-21

Family

ID=85239578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/012244 WO2023022493A1 (ko) 2021-08-17 2022-08-17 딥러닝 기반 심전도 데이터의 노이즈 제거 시스템

Country Status (4)

Country Link
EP (1) EP4371490A1 (ko)
KR (1) KR20230025956A (ko)
CN (1) CN117813053A (ko)
WO (1) WO2023022493A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190066332A (ko) * 2017-12-05 2019-06-13 아주대학교산학협력단 심전도 데이터를 이용한 혈중 칼륨농도 예측모델 생성장치 및 그 방법
KR102093257B1 (ko) * 2017-10-20 2020-03-25 이명해 심전도 신호에서의 노이즈 분별 필터 장치 및 필터링 방법
KR20200063364A (ko) * 2018-11-23 2020-06-05 네이버 주식회사 시계열 의료 데이터를 통한 질병 예후 예측을 위한 딥 뉴럴 네트워크의 분류 결과 시각화 방법 및 시스템
JP2020536693A (ja) * 2017-11-27 2020-12-17 上海▲優▼加利健康管理有限公司Shanghai Yocaly Health Management Co., Ltd. 人工知能自己学習に基づく心電図自動解析方法及び装置
JP2021101965A (ja) * 2019-12-25 2021-07-15 キヤノン株式会社 制御装置、光干渉断層撮影装置、光干渉断層撮影装置の制御方法、及びプログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180012891A (ko) 2016-07-27 2018-02-07 주식회사 라이프사이언스테크놀로지 생체신호 노이즈 제거방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102093257B1 (ko) * 2017-10-20 2020-03-25 이명해 심전도 신호에서의 노이즈 분별 필터 장치 및 필터링 방법
JP2020536693A (ja) * 2017-11-27 2020-12-17 上海▲優▼加利健康管理有限公司Shanghai Yocaly Health Management Co., Ltd. 人工知能自己学習に基づく心電図自動解析方法及び装置
KR20190066332A (ko) * 2017-12-05 2019-06-13 아주대학교산학협력단 심전도 데이터를 이용한 혈중 칼륨농도 예측모델 생성장치 및 그 방법
KR20200063364A (ko) * 2018-11-23 2020-06-05 네이버 주식회사 시계열 의료 데이터를 통한 질병 예후 예측을 위한 딥 뉴럴 네트워크의 분류 결과 시각화 방법 및 시스템
JP2021101965A (ja) * 2019-12-25 2021-07-15 キヤノン株式会社 制御装置、光干渉断層撮影装置、光干渉断層撮影装置の制御方法、及びプログラム

Also Published As

Publication number Publication date
CN117813053A (zh) 2024-04-02
WO2023022493A9 (ko) 2023-06-22
EP4371490A1 (en) 2024-05-22
WO2023022493A8 (ko) 2023-12-21
KR20230025956A (ko) 2023-02-24

Similar Documents

Publication Publication Date Title
Zhai et al. Automated ECG classification using dual heartbeat coupling based on convolutional neural network
US11476000B2 (en) Methods and systems using mathematical analysis and machine learning to diagnose disease
Zhao et al. An IoT-based wearable system using accelerometers and machine learning for fetal movement monitoring
Anbalagan et al. Analysis of various techniques for ECG signal in healthcare, past, present, and future
WO2023022485A9 (ko) 비동기 심전도를 이용한 건강상태 예측 시스템
WO2023022493A1 (ko) 딥러닝 기반 심전도 데이터의 노이즈 제거 시스템
WO2023022519A1 (ko) 2유도 심전도 데이터를 이용한 복수개의 표준 심전도 데이터 생성 시스템
KR20230025963A (ko) 복수의 심전도를 이용한 딥러닝기반 건강상태 예측 시스템
WO2024038930A1 (ko) 복수의 심전도를 이용한 딥러닝기반 건강상태 예측 시스템
Orphanidou et al. Signal quality assessment in physiological monitoring: requirements, practices and future directions
WO2023022484A1 (ko) 단일유도 심전도기기를 활용한 건강상태 예측 시스템
WO2023022521A1 (ko) 딥러닝기반 모델 및 원칙기반 모델 통합 심전도 판독 시스템
KR102670032B1 (ko) 2유도 심전도 데이터를 이용한 복수개의 표준 심전도 데이터 생성 시스템
Behar et al. Editorial on Remote Health Monitoring: from chronic diseases to pandemics
WO2024049053A1 (ko) 클러스터링을 이용하여 생체 신호 분석을 지원하기 위한 방법, 시스템 및 비일시성의 컴퓨터 판독 가능한 기록 매체
Mahajan et al. Building an AI Model on ECG Data for Identifying Burnout/Stressed Healthcare Workers Involved in Covid-19 Management
Klinge et al. Towards automatic pathology classification for a 24/7 ECG-based telemonitoring service
Gundlapalle et al. A Novel Single Lead to 12-Lead ECG Reconstruction Methodology Using Convolutional
Pyysing Movement artifacts in electrocardiography
Prakash et al. 13 An Automated Diagnosis
Souza et al. Cardiac Arrhythmia Detection in Electrocardiogram Signals with CNN-LSTM.
Korucuk et al. Estimation of atrial fibrillation from lead-I ECGs: Comparison with cardiologists and machine learning model (CurAlive), a clinical validation study
TASIM et al. Wavelet-Based Heart-Rate Detection And Ecg Classification Of Arrhythmia Using Alexnet Deep Cnn
Pérez et al. Non-Invasive Detection of Fetal Ischemia Through Electrocardiography
Karvounis et al. Remote maternal and fetal health monitoring during pregnancy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858730

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280056118.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022858730

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022858730

Country of ref document: EP

Effective date: 20240214

NENP Non-entry into the national phase

Ref country code: DE