WO2023022340A1 - Cap plate for secondary battery having vent structure, and method for manufacturing cap plate - Google Patents

Cap plate for secondary battery having vent structure, and method for manufacturing cap plate Download PDF

Info

Publication number
WO2023022340A1
WO2023022340A1 PCT/KR2022/007981 KR2022007981W WO2023022340A1 WO 2023022340 A1 WO2023022340 A1 WO 2023022340A1 KR 2022007981 W KR2022007981 W KR 2022007981W WO 2023022340 A1 WO2023022340 A1 WO 2023022340A1
Authority
WO
WIPO (PCT)
Prior art keywords
cap plate
main body
mold
secondary battery
vent
Prior art date
Application number
PCT/KR2022/007981
Other languages
French (fr)
Korean (ko)
Inventor
김종찬
Original Assignee
주식회사 파인디앤씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 파인디앤씨 filed Critical 주식회사 파인디앤씨
Publication of WO2023022340A1 publication Critical patent/WO2023022340A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a cap plate for a secondary battery having a vented structure, a mold for manufacturing the cap plate, and a method for manufacturing the cap plate using the mold (CAP PLATE FOR SECONDARY BATTERIES HAVING VENT STRUCTURE, AND MANUFACTURING MATHOD OF THE CAP PLATE). More specifically, the present invention relates to a cap plate for a secondary battery having a vent structure in which the manufacturing process is simplified by integrally molding the vent part in the manufacturing process of the cap plate, a mold for manufacturing the cap plate, and a method of manufacturing the cap plate using the mold.
  • a lithium ion secondary battery in general, includes an electrode plate assembly wound or stacked in a jelly roll form, a substantially hexahedron-shaped can into which the electrode plate assembly is inserted and fixed, and lithium ions filled in the can to allow movement of lithium ions. It consists of an electrolyte solution to do so, and a cap plate that blocks the can on top of the electrode plate assembly and the electrolyte solution.
  • a lithium ion secondary battery After stacking a positive electrode plate attached with a positive electrode active material, a negative electrode plate attached with a negative electrode active material, and a separator, they are wound or laminated in a jelly roll form, put back into a can, and sealed by welding a cap plate on the top. do. Thereafter, after injecting the electrolyte solution, charging and inspection are performed to complete a bare cell type lithium ion secondary battery. Of course, a normal battery pack is completed by assembling and inspecting after attaching various safety devices and protection circuit boards to the bare cell type lithium ion secondary battery.
  • lithium ion secondary battery uses a constant voltage/constant current charging method, there is no overcharging phenomenon when the charging voltage is accurately controlled by the charger.
  • the charger is damaged or malfunctions, resulting in abnormal charging.
  • the battery voltage continues to rise due to the characteristic of the positive electrode active material, for example, lithium baltate (LiCoO2), whose potential continuously rises, and also causes abnormal charging. fever occurs.
  • LiCoO2 lithium baltate
  • Safety measures against this phenomenon include the incorporation of a positive temperature coefficient thermistor, the adoption of a separator with a shutdown function, and a protective circuit board that controls the charging and discharging voltage. There is a safety vent operated by
  • the vent portion usually refers to a thinner area formed on the cap plate, which ruptures or breaks when the internal pressure of the battery rises due to gas generation and releases gas inside the can to the outside, thereby causing extreme extremes such as explosion of the lithium ion secondary battery. It plays a role in preventing incidents.
  • the gas is generated as the electrolyte or active material is decomposed when the charging voltage of the lithium ion secondary battery rises above the reference voltage.
  • This gas usually causes the can to swell by increasing the internal pressure of the battery, and the vent part ruptures, ruptures, or ruptures due to the increase in the internal pressure of the battery, thereby preventing extreme explosion or fire of the lithium ion secondary battery. .
  • the vent unit is designed to operate automatically when the internal pressure of the battery exceeds a predetermined pressure.
  • the conventional vent portion is processed to make a predetermined area of the cap plate relatively thin, there is a problem in that the operating speed of each battery is slightly different.
  • a vent structure of a battery according to the prior art forms a hole in a cap plate for a vent function, and adopts a method of bonding components having a separately formed vent structure through welding (laser) or thermal fusion.
  • this method has a problem of increasing manufacturing cost due to an increase in the number of parts and manufacturing processes, and a problem in that material management and process time increase because secondary processes necessary for welding and thermal fusion must be performed.
  • this prior art has a problem in that the compression rate of the cap plate material is excessive in order to form the vent structure.
  • the difference between the molding thickness of the bent structure and the thickness of the cap plate is large, resulting in buckling, concentration of stress, and wrinkles caused by rapid changes in the material of the cap plate around the bent structure.
  • a defect in the cap plate itself occurs due to the occurrence of the cap plate itself. Therefore, these conventional technologies are evaluated as impossible technologies to be applied in practice.
  • the present invention has been made to solve the above problems, and its object is to simplify the manufacturing process of forming a vent structure without deformation of the periphery while integrally molding the vent part together in the manufacturing process of the cap plate. It is to provide a cap plate for a secondary battery having a cap plate, a mold for manufacturing the cap plate, and a manufacturing method of the cap plate using the mold.
  • a cap plate for sealing a case accommodating an electrode assembly comprising: a body portion covering the electrode assembly; and a vent part formed in the main body part.
  • the bent part and the main body part are formed together by a single press process, and the bent part has a thickness corresponding to that of the main body part, and a break support part and the break support part and the main body part are displaced from the planar direction of the main body part.
  • a cap plate for a secondary battery comprising a structurally weak portion formed by shear deformation at a boundary between the cells is provided.
  • the compression rate of the fracture support portion is characterized in that it has a compression rate corresponding to the compression rate of the body portion.
  • the fracture support portion is characterized in that it protrudes in one direction of the vertical direction of the horizontal surface of the body portion.
  • the structurally weak portion is formed with a relatively thin thickness in a portion where the strain is increased due to shear deformation.
  • the structurally weak portion is characterized in that the ductility is smaller than that of the fracture support portion and the main body portion.
  • the weak structural part is molded in a shape surrounding the main body so that its cross-sectional shape is symmetrical.
  • the breakage support part of the bent part has a flat plate shape, and the breakage support part is coupled with the flat plate-shaped body part with a height difference to form a weak structural part surrounding the breakage support part.
  • 10 to 20% of the total vertical length of the coupling side surface surrounding the fracture support portion is connected to the coupling side surface of the body portion, so that the structural soft part is formed so that the fracture support portion and the body portion share 10 to 20% of the coupling side surface.
  • 21 to 70% of the total vertical length of the coupling side surface surrounding the fracture support portion is connected to the coupling side surface of the body portion, so that the structural weakness is formed so that the fracture support portion and the body portion share 21 to 70% of the coupling side surface.
  • the breakage support part of the bent part has a flat plate shape
  • the breakage support part has a height difference with the body part of the flat plate shape
  • the coupling side surface surrounding the breakage support unit shares the coupling side surface of the body portion and the coupling side surface. It is characterized in that the structurally weak part is formed in a band shape without
  • the fracture support portion is formed including a base portion formed at the same height as the main body portion and a bent portion formed to protrude upward from the base portion in an L-shape, and the bent portion is formed from the base portion Consisting of a first extension portion extending vertically and a second extension portion extending horizontally from the first extension portion, the horizontally formed base portion has the same vertical height as the main body portion, and the upper portion is formed by the first extension portion.
  • the second extension part protruding to is characterized in that it protrudes upward compared to the main body part.
  • the fracture support portion has a shape in which the first and second bends are connected to both ends of the line-shaped straight portion, and the first and second bends are located at the center at both ends of the straight portion It is formed in a 'V' shape extending from the end of the straight part, and the straight part formed horizontally, the first bent part and the second bent part are characterized in that they protrude upward compared to the main body part.
  • the upper mold and the lower mold are pressed with a metal base material interposed therebetween, so that the body part and the vent part of the cap plate are together. It can be molded, and one side of the upper mold or the lower mold is provided with a protrusion in the direction in which the pressure of the press is applied or in the opposite direction, and a concave portion corresponding to the protrusion is provided on the other side, and the side of the protrusion and the concave portion are provided.
  • a mold for manufacturing a cap plate characterized in that an empty gap portion is formed between the side surfaces to generate a shear force during pressing to form a structurally weak portion.
  • the distance between the upper mold and the lower mold at the part where the fracture support is formed is a distance corresponding to the distance between the upper mold and the lower mold forming the main body. It is characterized by having
  • the structurally weak portion is formed with a relatively thin thickness in a portion where the strain is increased due to shear deformation.
  • a method of manufacturing a cap play according to the above-described characteristics includes interposing a raw metal plate between an upper mold and a lower mold; and forming a raw material metal plate into a cap plate comprising a main body part and a vent part by performing press working by applying a predetermined pressure to the base metal material using an upper mold and a lower mold.
  • one side of the upper mold or lower mold is provided with a protrusion in the direction in which the pressure of the press is applied or in the opposite direction, and a concave portion corresponding to the protrusion is provided on the other side, and the side of the protrusion and the side of the concave portion
  • a method for manufacturing a cap plate is provided, wherein an empty gap is formed between the cap plates and a shear force is generated during pressing to form the structurally weak parts.
  • the structurally weak portion is formed with a relatively thin thickness in a portion where the strain is increased due to shear deformation.
  • the present invention it is possible to simplify the manufacturing process by integrally molding the vent part in the manufacturing process of the cap plate, thereby reducing manufacturing cost.
  • the vent portion by forming the vent portion with a thickness corresponding to that of the cap plate, but having a structurally weak portion that is sheared at the boundary, it has a structure and property suitable for rupture or rupture both physically and materially, so that when the internal pressure of the secondary battery rises, it is faster and more accurate. It is possible to form an efficient vent structure that can be effectively ruptured or broken.
  • an effect of increasing productivity by excluding the addition of a separate component other than the cap plate can be expected while resolving the problem of deformation of the peripheral portion caused by excessive compressibility of the material.
  • FIG. 1 is a perspective view of a secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of a cap plate according to an embodiment of the present invention.
  • FIG. 3 is a conceptual diagram of a method of manufacturing a cap plate according to an embodiment of the present invention.
  • 5 to 9 are views for explaining first to fifth embodiments of the vent unit in the cap plate according to the present invention.
  • cap plate 141 body part
  • vent part 142a fracture support part
  • first, second, A, and B may be used to describe various components, but the components should not be limited by the terms. These terms are only used for the purpose of distinguishing one component from another. For example, a first element may be termed a second element, and similarly, a second element may be termed a first element, without departing from the scope of the present invention.
  • the terms and/or include any combination of a plurality of related recited items or any of a plurality of related recited items.
  • FIG. 1 is a perspective view of a secondary battery according to an embodiment of the present invention.
  • a secondary battery 100 includes a case 110 accommodating an electrode assembly (not shown) therein, and a cap plate 140 closing the case 110 accommodating the electrode assembly. do.
  • the cap plate 140 may be coupled to the case 110, and a welding portion may be formed along an edge of the cap plate 140 and the case 110 that come into contact with each other. Such a weld may be formed by laser welding between the cap plate 100 and the case 180 .
  • the electrode assembly is formed by winding a separator, which is an insulator, between the positive electrode and the negative electrode.
  • the secondary battery 100 has been illustrated and described as an example of a prismatic lithium ion secondary battery, but it can be applied to various types of batteries such as lithium polymer batteries or cylindrical batteries, and the configuration of the electrode assembly is in this field Various known technologies may be selectively applied.
  • the case 110 forms the overall appearance of the secondary battery 100, and may be formed of a metal material such as aluminum, aluminum alloy, or nickel-plated steel.
  • the cap plate 140 has a large area over the electrode assembly.
  • the cap plate 140 may be made of a thin metal plate such as aluminum or aluminum alloy.
  • a pair of electrode terminals 120 and 130 having opposite polarities, for example, first and second electrode terminals 120 and 130 may be formed on the cap plate 140 to protrude outward. More specifically, first and second electrode terminals 120 and 130 may be formed to pass through the cap plate 140 .
  • the first and second electrode terminals 120 and 130 are installed through the cap plate 140, and a gasket is provided between the first and second electrode terminals 120 and 130 and the cap plate 140 for insulation and sealing.
  • first and second electrode terminals 120 and 130 are electrically connected to an electrode assembly accommodated inside a secondary battery, and each of the first and second electrode terminals 120 and 130 is an electrode assembly It is electrically connected to the first and second electrode plates to supply discharge power accumulated in the secondary battery to the outside or function as positive and negative terminals to receive charging power from the outside.
  • first and second electrode terminals 120 and 130 may be formed on both sides of the secondary battery.
  • the cap plate 140 of the secondary battery may be electrically connected to the electrode assembly to function as a terminal.
  • any one of the first and second electrode terminals 120 and 130 may be One electrode terminal 120 or 130 may be omitted.
  • the cap plate 140 is coupled to an upper end of the case 110 in which the electrode assembly is accommodated, and may seal an opening of the case 110 .
  • the cap plate 140 and the case 110 may be welded together along an edge of the cap plate 140 .
  • the cap plate 140 has a relatively fragile structure, and a vent portion 142 designed to be ruptured or broken is formed to provide a gas discharge path when the pressure inside the secondary battery exceeds a set point.
  • an electrolyte injection hole for injecting electrolyte into the case 110 may be formed in the cap plate 140, and the electrolyte injection hole may be closed by a sealing stopper 160 after the electrolyte injection is completed.
  • planar shape of the vent part 142 is approximately elliptical in the drawing, the present invention is not limited to the planar shape of the vent part 142. That is, the planar shape of the vent part 142 can be of various shapes such as a circle, an ellipse, a rectangle, and a pentagon.
  • FIG. 2 is a perspective view of a cap plate according to an embodiment of the present invention.
  • the cap plate 140 of the present invention may be formed by applying press working to a plate-shaped metal base material.
  • the metal base material is preferably aluminum or aluminum alloy, and in addition, any material having a certain strength and malleability can be applied.
  • the plate-shaped metal base material may be formed into the cap plate 140 through press working in which the plate-shaped metal base material is interposed between the upper mold and the lower mold and a predetermined pressure is applied.
  • the present invention presses the upper mold and the lower mold once against the plate-shaped metal base material to integrally mold the vent portion 142 together in the manufacturing process of the cap plate 140 without deformation of the peripheral portion and effectively when the internal pressure rises. It is possible to manufacture the cap plate 140 having a vent structure that can be ruptured or broken.
  • the cap plate 140 may include a body portion 141 covering the electrode assembly and a vent portion 142 formed in the body portion 141 .
  • the main body portion 141 is formed by pressing a plate-shaped base metal material with an upper mold and a lower mold once to have a certain thickness.
  • An electrode through-hole through which an electrode terminal can penetrate may be formed in the main body 141, an electrolyte injection hole for injecting an electrolyte into the case 110 may be formed, and an internal gas discharge path may be provided.
  • a vent portion 142 designed to be ruptured or breakable may be formed.
  • the body portion 141 and the vent portion 142 of the cap plate 140 are formed at once by pressing the plate-shaped metal base material with the upper mold and the lower mold once.
  • the electrode through hole and the electrolyte injection hole will also be formed together.
  • the bent portion 142 has a substantially elliptical planar shape, but the present invention is not limited to the shape of the bent portion 142 . That is, the planar shape of the vent part 142 can be of various shapes such as a circle, an ellipse, a rectangle, and a pentagon.
  • 3 is a conceptual diagram of a method of manufacturing a cap plate according to an embodiment of the present invention.
  • 4 is a stress strain curve of aluminum as a metal base material according to an embodiment of the present invention.
  • the present invention simplifies the manufacturing process by integrally molding the bent portion 142 together in the manufacturing process of the cap plate 140 by pressing the upper mold and the lower mold once with respect to the plate-shaped metal base material, while shear strain is concentrated and the shear strain is reduced.
  • the cap plate 140 having a bent structure that can be ruptured or broken more quickly and accurately without deformation of the periphery can be manufactured.
  • FIG. 3 (a) is a conceptual diagram illustrating an upper mold, (b) a lower mold, and (c) a cap plate having a vent portion.
  • the metal base material may be formed into the cap plate 140 having the bent part 142 formed thereon through press working in which a metal base material is interposed between the upper mold (a) and the lower mold (b) and a predetermined pressure is applied thereto. there is.
  • the upper mold and the lower mold used for one-time press processing of the cap plate 140 have forming parts capable of forming not only the body part 141 of the cap plate 140 formed in a plate shape, but also the bent part 142 .
  • the body portion 141 and the vent portion 142 are molded together by a pressing process.
  • the body portion 141 of the cap plate 140 and the fracture support portion 142a are formed by compression molding, and the structurally weak portion 142b is formed by using an upper mold (a) and a lower mold (b) in a press process. It is formed in the area where shear strain is concentrated by the shear force generated at the boundary of Aluminum, aluminum alloy, or other metal materials may be used as the material for the cap plate of the present invention.
  • the metal material has excellent malleability, so that a relatively thin structural weak part can be formed in a region where shear strain is concentrated and strain is increased.
  • A indicates a site where shear force occurs
  • B indicates a site where shear strain is concentrated and the strain increases.
  • the shear stress is increased in the shear strain concentration region (B), and when entering the plastic region, the strain is relatively increased to form a thin structural weak part. You can do it.
  • the strain is increased compared to the main body part 141 and the fracture support part 142a due to this shear strain, so that it is molded to a relatively thin thickness, and the crystal structure changes due to shear strain ( slip, twinning, dislocation, etc.) occur and the ductility is relatively reduced.
  • vent portion of the cap plate should be ruptured or broken when the internal pressure of the battery increases, thereby reducing the internal pressure of the battery and preventing the battery from exploding.
  • the area to be physically ruptured or fractured is processed to a relatively thin thickness, so that the stress against internal pressure is reduced compared to other areas.
  • a more effective vent structure can be formed if the material properties of the corresponding portion are structurally suitable for rupture or fracture.
  • a relatively thin structural weakness in an area where shear strain is concentrated and strain increases, it has a property that is relatively close to brittle fracture compared to other areas, resulting in faster, more accurate and effective rupture in the structural weakness.
  • it can have a vent structure that can be broken.
  • a more efficient vent structure can be formed in terms of material properties.
  • the compressive stress at 142a is the same, and it is not preferable that there is a large difference.
  • the compressive stress in the body portion 141 and the fracture support portion 142a will be proportional to their compressibility, so it is preferable that the compression rates of the body portion 141 and the fracture support portion 142a are the same, and a large difference is Not desirable. That is, the compression rate of the fracture support portion 142a must have a compression rate corresponding to that of the body portion 141.
  • having a compression rate corresponding to that of the body portion 141 in the compression rate of the fracture support portion 142b means that the difference is 30% or less.
  • the mold for manufacturing the cap plate of the present invention has the following structure. should have
  • one side of the upper mold (a) or the lower mold (b) is provided with a protrusion in the direction in which the pressure of the press is applied or in the opposite direction (see FIG. 3 (a)), and the other side has the A concave portion corresponding to the protrusion is provided (see (b) of FIG. 3).
  • a shear force is generated at one side or both sides of the boundary between the protrusion and the concave portion (part A in FIG. 3), and the shear force concentrates the shear strain by the shear force, resulting in a relatively thin structural weakness in the area (B) where the strain increases.
  • the fracture support portion 142a and the body portion 141 are formed at the portion where the portion 142b is formed and compressed.
  • an empty gap portion is formed between the side surface of the protruding portion and the side surface of the concave portion forming the structurally weak portion 142b, to which the vertical pressure of the press is not directly applied, so that the structurally weak portion 142b can be molded.
  • the spacing of the gap portion corresponds to the thickness of the structurally weak portion 142b that may rupture or break when the internal pressure of the battery increases. Therefore, the interval between the gaps is determined according to the rupture characteristics of the secondary battery when the internal pressure is generated, the nature of the parent material, and the like, and is 0.1 mm (based on 20 bar) in one embodiment of the present invention. In this case, aluminum having a thickness of 0.3 mm to 0.6 mm is used as the metal base material.
  • the gap between the upper mold and the lower mold at the portion where the breakage supporting portion 142a is formed in a pressed state through the metal base material is the upper part forming the body portion 141. It should have a gap corresponding to the gap between the mold and the lower mold. This is because, as described above, in order to effectively form the weak structural portion 142b due to shear deformation, the compression rate of the fracture support portion 142a must have a compression rate corresponding to that of the body portion 141.
  • the compression rate of the fracture support portion 142a has a compression rate corresponding to that of the main body portion 141, so that shear force is efficiently generated through the gap portion.
  • the structurally weak portion 142b is formed relatively thin in the portion where the shear deformation is concentrated and the strain increases compared to the fracture support portion 142a or the body portion 141, and as described above,
  • the material properties of the corresponding part have structurally suitable properties for rupture or fracture due to the increase in strain due to shear deformation. It is possible to form an efficient vent structure that can be broken.
  • the manufacturing process can be reduced through component unification, thereby reducing manufacturing cost.
  • (a) is a perspective view showing the cap plate on which the vent part and the main body part are formed
  • (b) is a cross-sectional view showing the fracture support part of the vent part and structurally weak parts
  • (c) is a structural weakness due to an increase in battery internal pressure. It is a cross-sectional view for explaining the state in which the part is broken.
  • the fracture support portion 142a of the vent portion 142 includes the fracture support portion 142a having the same thickness as the main body portion 141 and displaced from the planar direction of the body portion 141, the fracture support portion 142a and the main body portion. It includes a structurally weak portion 142b formed by shear deformation at the boundary between (141).
  • the fracture support portion 142a has a thickness corresponding to that of the body portion 141 of the cap plate 140 as a whole. That is, the thickness of the fracture support portion 142a may be determined to be the same as or to a degree that does not significantly differ from the thickness of the main body portion 141 .
  • the thickness of the fracture support portion 142b having a thickness corresponding to the thickness of the main body portion 141 means that the difference is 30% or less. it means.
  • the fracture supporting portion 142a is molded together in a single pressing process by an upper mold and a lower mold that mold the entire cap plate 140 . Accordingly, the compression rate of the fracture support portion 142a has a compression rate corresponding to that of the body portion 141 . That is, it is preferable that the compressibility of the fracture support portion 142a is the same as that of the main body portion 141 or the difference is determined to be 30% or less.
  • the fracture supporting portion 142a is also molded together in one pressing process by the upper and lower molds that mold the entire cap plate 140, its thickness is thicker or longer than other parts (the entire cap plate). Thin control is not easy. When the thickness of the actual breakage support 142a is increased, the compressibility is low and the mechanical robustness is deteriorated, which may lead to breakage of the breakage support 142a itself, which is an area where breakage is not expected. Conversely, when the thickness of the fracture support 142a is thinned, if the compressibility of the fracture support 142a is excessive in the pressing process, buckling occurs due to rapid material change in the fracture support 142a or its surroundings, and concentration of stress occurs.
  • Defects may occur in the fracture support 142a itself due to the occurrence of wrinkles or the like.
  • the compressibility of the fracture supporting portion 142a is excessive, shear deformation of the structurally weak portion 142b is hindered, and thus the structurally weak portion 142b having a desired thickness and shape may not be formed.
  • the thickness of the fracture support portion 142a is formed to a thickness corresponding to that of the body portion 141 of the cap plate 140, thereby inducing desirable shear deformation of the weak structural portion 142b, thereby having effective fracture characteristics.
  • a weak portion 142b may be formed, and unexpected breakage of the fracture support portion 142a may be prevented, and structural defects of the fracture support portion 142a that may occur in a pressing process may be prevented.
  • the breakage support portion 142a has a feature of being displaced from the planar direction of the main body portion 141 .
  • the breakage support part 142a protrudes in one of the vertical directions of the horizontal plane, so that when the structural weakness part 142b is broken, the broken part is easily lifted and broken.
  • the fracture support 142a can be easily rotated by internal pressure around the structurally weak portion 142b of the unsupported portion. In this way, the fractured portion is easily lifted, and the rotation of the fracture support portion 142a centered on the structurally weak portion 142b of the non-fractured portion prevents the internal gas discharge path from being blocked after the structurally weak portion 142b is fractured. will make sure not
  • the structurally weak part 142b surrounds the breakable support part 142a as a whole and is formed at the boundary between the breakage support part 142a and the body part 141, and the breakage support part 142a can induce breakage by an external force. ) and the body portion 141, it is sheared and formed in a region where the strain increases, so that it has efficient breaking characteristics not only physically but also materially.
  • One of these structurally weak parts 142b may be broken in a point or line shape.
  • the structurally weak portion 142b is molded together with the fracture support portion 142a in a single pressing process by an upper mold and a lower mold that mold the entire cap plate 140 .
  • the weak structural portion 142b is formed in a shape surrounding the body portion 141 so that its cross-sectional shape is symmetrical. Therefore, when the internal pressure of the secondary battery rises, it is possible to prevent rapid rupture or breakage only in a specific direction.
  • the weak structural portion 142b is formed with a relatively thin thickness at a portion where the strain is increased due to shear deformation, stress concentration can be physically induced when the internal pressure of the secondary battery is increased, as well as material properties of the corresponding portion.
  • This structurally has a property suitable for rupture or fracture, so that efficient rupture or fracture can be induced.
  • the cross-sectional shape of the structurally weak portion 142b is symmetrical so that the fractured portion can be easily lifted, and the fracture support portion 142a is resistant to internal pressure around the structurally weak portion 142b of the non-broken portion. makes it easy to rotate. In this way, the fractured portion is easily lifted, and the rotation of the fracture support portion 142a centered on the structurally weak portion 142b of the non-fractured portion prevents the internal gas discharge path from being blocked after the structurally weak portion 142b is fractured. will make sure not
  • FIG. 5 is a diagram for explaining the first embodiment of the present invention.
  • the vent portion 142 is formed together with the body portion 141 of the cap plate 140 through a single pressing process.
  • the fracture support portion 142a of the bent portion 142 is generally formed in an elliptical shape and has a flat plate shape.
  • the shear deformation at the boundary surrounding the fracture support portion 142a causes structural weakness with a relatively thin thickness in the region where the strain is increased.
  • a portion 142b is formed together.
  • the structurally weak portion 142b is broken when the internal pressure of the battery rises due to gas generation, and becomes a portion for discharging internal gas to the outside. The lower this is, the rupture will occur even at a lower internal pressure, and the higher the ratio of the joint surfaces that are shared, the higher the internal pressure will be endured.
  • the fracture support portion 142a has a plate shape and has a thickness corresponding to that of the body portion 141 of the cap plate 140 to effectively form the shear-deformed structurally weak portion 142b, and the fracture support portion ( In 142a), unexpected breakage can be prevented.
  • FIG. 6 is a diagram for explaining a second embodiment of the present invention.
  • the vent portion 142 is formed together with the body portion 141 of the cap plate 140 by a single pressing process.
  • the fracture support portion 142a of the bent portion 142 is generally formed in an elliptical shape and has a flat plate shape.
  • the shear deformation at the boundary surrounding the fracture support portion 142a causes structural weakness with a relatively thin thickness in the region where the strain is increased.
  • a portion 142b is formed together.
  • 21 to 70% of the total vertical length of the coupling side surface surrounding the fracture support portion 142a is connected to the coupling side surface of the body portion 141, thereby forming the structurally weak portion 142b. That is, the fracture support portion 142a and the main body portion 141 share 21 to 70% of the coupling side.
  • the structurally weak portion 142b is broken when the internal pressure of the battery rises due to gas generation, and becomes a portion for discharging internal gas to the outside. The lower this is, the rupture will occur even at a lower internal pressure, and the higher the ratio of the joint surfaces that are shared, the higher the internal pressure will be endured.
  • the fracture support portion 142a has a plate shape and has a thickness corresponding to that of the body portion 141 of the cap plate 140 to effectively form the shear-deformed structurally weak portion 142b, and the fracture support portion ( In 142a), unexpected breakage can be prevented.
  • the fracture support 142a of the second embodiment has a small amount of protrusion in the vertical direction, enabling a compact configuration and improving assemblyability.
  • FIG. 7 is a diagram for explaining a third embodiment of the present invention.
  • the vent portion 142 is formed together with the body portion 141 of the cap plate 140 through a single pressing process.
  • the fracture support portion 142a of the bent portion 142 is generally formed in an elliptical shape and has a flat plate shape.
  • the shear deformation at the boundary surrounding the fracture support portion 142a causes structural weakness with a relatively thin thickness in the region where the strain is increased.
  • a portion 142b is formed together.
  • the coupling side surface surrounding the fracture support portion 142a does not share the coupling side surface with the coupling side surface of the body portion 141, and the weak structural portion 142b is formed in a thin belt shape by a pressing process.
  • Such a structurally weak portion 142b is broken when the internal pressure of the battery rises due to gas generation, and becomes a portion for discharging internal gas to the outside.
  • the fracture support portion 142a has a plate shape and has a thickness corresponding to that of the body portion 141 of the cap plate 140 to effectively form the shear-deformed structurally weak portion 142b, and the fracture support portion ( In 142a), unexpected breakage can be prevented.
  • the structurally weak portion 142b of the third embodiment is molded into a thin strip shape, it will be easily broken even at a low internal pressure.
  • FIG. 8 is a diagram for explaining a fourth embodiment of the present invention.
  • the vent portion 142 is formed together with the body portion 141 of the cap plate 140 by a single pressing process.
  • the fracture support portion 142a of the bent portion 142 is formed in an oval shape as a whole, has a flat plate shape, and has a thickness corresponding to that of the body portion 141. It is formed, and is formed including a base portion 142a1 formed at the same height as the body portion 141 and a bent portion 142a2 formed to protrude upward from the base portion 142a1 in an L-shape.
  • the bent part 142a2 is composed of a first extension part 142a3 extending vertically from the base part 142a1 and a second extension part 142a4 extending horizontally from the first extension part 142a3. .
  • the base part 142a1 formed horizontally has the same vertical height as the body part 141, and the second extension part 142a4 protruding upward by the first extension part 142a3 is the main body part ( 141), it protrudes upward.
  • the coupling side surface surrounding the second extension portion 142a4 does not share the coupling side surface with the coupling side surface of the main body portion 141, and the weak structural portion 142b is formed in a thin strip shape by a pressing process. do.
  • Such a structurally weak portion 142b is broken when the internal pressure of the battery rises due to gas generation, and becomes a portion for discharging internal gas to the outside.
  • the fracture support portion 142a has a thickness corresponding to the thickness of the body portion 141 of the cap plate 140 as a whole, thereby effectively forming the shear-deformed structurally weak portion 142b and breaking support portion 142a. Unexpected breakage can be prevented.
  • the structurally weak portion 142b of the fourth embodiment is easily broken even at a low internal pressure.
  • Fig. 9 is a diagram for explaining a fifth embodiment of the present invention.
  • the vent portion 142 is formed together with the body portion 141 of the cap plate 140 through a single pressing process.
  • the fracture support portion 142a of the bent portion 142 is formed in a generally linear shape, has a flat plate shape, and has a thickness corresponding to that of the main body portion 141. is formed
  • the breakage support part 142a has a shape in which the first bent part 142a6 and the second bent part 142a7 are connected to both ends of the line-shaped straight part 142a5.
  • the straight portion 142a5 is formed in the horizontal direction at the center of the body portion 141 .
  • the first bent portion 142a6 and the second bent portion 142a7 extend from both ends of the straight portion 142a5 toward the outside of the straight portion 142a5 and have a 'V' shape. That is, the 'V'-shaped central portion extends to the end of the straight portion 142a5.
  • the linear portion 142a5, the first bent portion 142a6, and the second bent portion 142a7 may be broken together by transmission of the fracture when broken.
  • the coupling side surfaces surrounding the straight portion 142a5, the first bent portion 142a6, and the second bent portion 142a7 do not share the coupling side surface with the coupling side surface of the body portion 141, thin strip shape As a result, the structurally weak portion 142b is molded by a pressing process.
  • Such a structurally weak portion 142b is broken when the internal pressure of the battery rises due to gas generation, and becomes a portion for discharging internal gas to the outside.
  • the fracture support portion 142a has a thickness corresponding to the thickness of the body portion 141 of the cap plate 140 as a whole, thereby effectively forming the shear-deformed structurally weak portion 142b and breaking support portion 142a. Unexpected breakage can be prevented.
  • the cap plate 140 of the first to fifth embodiments described above may be formed by applying press working to a plate-shaped metal base material using an upper mold and a lower mold as shown in FIG. 3 .
  • the raw metal plate may be formed into the cap plate 140 through press working in which the raw metal plate is interposed between the upper mold and the lower mold and a predetermined pressure is applied.
  • the upper and lower molds used for press processing of the cap plate 140 once not only the main body 141 of the cap plate 140 formed in a plate shape, but also those of the first to fifth embodiments described above are formed.
  • a forming portion capable of forming the bent portion 142 is included, so that the bent portion 142 is molded together with the main body portion 141 of the cap plate 140 by a pressing process.
  • a protrusion in the shape of the breakage support 142a of the bent part 142 is formed on one side of the upper mold or the lower mold (see FIG. 8(a)), and a concave portion corresponding to the protrusion is formed on the other side (FIG. 8 (b) of) it is possible to mold the fracture support portion 142a.
  • an empty gap is formed between the side surface of the protruding portion and the side surface of the concave portion, so that the structurally weak portion 142b can be formed.
  • the compression rate of the fracture support portion 142a has a compression rate corresponding to that of the main body portion 141, so that shear force is efficiently generated through the gap portion.
  • the structurally weak portion 142b is formed relatively thinly in the area where the shear deformation is concentrated and the strain increases compared to the fracture support portion 142a or the main body portion 141, not only physically but also In terms of materials, it has a structure and property suitable for rupture or fracture, so that an efficient vent structure capable of being ruptured or ruptured more quickly and accurately when the internal pressure of a secondary battery rises can be formed.
  • the manufacturing process can be reduced through unifying parts, and manufacturing cost can be reduced through this.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)

Abstract

The present invention relates to a cap plate for a secondary battery having a vent structure that is being manufactured through simplified manufacturing processes by integrally forming a vent portion with the cap plate in a cap plate manufacturing process, a mold for manufacturing the cap plate, and a method for manufacturing the cap plate by using the mold. The cap plate of the present invention is for sealing a case accommodating an electrode assembly and comprises: a main body covering the electrode assembly; and a vent portion formed in the main body, wherein the vent portion and the main body are formed of an identical material through a single press process, the thickness of the vent portion corresponds to the main body, and the vent portion includes an interrupted support portion to be out of line with the plane direction of the main body and a weak structure portion which is formed through shear deformation at the boundary between the interrupted support portion and the main body.

Description

벤트 구조를 갖는 이차 전지용 캡 플레이트 및 캡 플레이트의 제조방법Cap plate for secondary battery having a vented structure and manufacturing method of the cap plate
본 발명은 벤트 구조를 갖는 이차 전지용 캡 플레이트, 캡 플레이트 제조용 금형 및 그 금형을 이용한 캡 플레이트의 제조방법(CAP PLATE FOR SECONDARY BATTERIES HAVING VENT STRUCTURE, AND MANUFACTURING MATHOD OF THE CAP PLATE)에 관한 것으로, 보다 상세하게는 벤트부를 캡 플레이트의 제조 공정에서 함께 일체 성형하여 제조 공정을 간소화시킨 벤트 구조를 갖는 이차 전지용 캡 플레이트, 캡 플레이트 제조용 금형 및 그 금형을 이용한 캡 플레이트의 제조방법에 관한 것이다. The present invention relates to a cap plate for a secondary battery having a vented structure, a mold for manufacturing the cap plate, and a method for manufacturing the cap plate using the mold (CAP PLATE FOR SECONDARY BATTERIES HAVING VENT STRUCTURE, AND MANUFACTURING MATHOD OF THE CAP PLATE). More specifically, the present invention relates to a cap plate for a secondary battery having a vent structure in which the manufacturing process is simplified by integrally molding the vent part in the manufacturing process of the cap plate, a mold for manufacturing the cap plate, and a method of manufacturing the cap plate using the mold.
일반적으로 리튬 이온 이차 전지는 젤리롤(jelly roll) 형태로 권취 또는 적층된 극판 조립체와, 상기 극판 조립체가 삽입되어 고정되는 대략 육면체 형태의 캔과, 상기 캔의 내부에 채워져 리튬 이온의 이동이 가능하도록 하는 전해액과, 상기 극판 조립체 및 전해액 상부의 캔을 막는 캡 플레이트로 이루어져 있다.In general, a lithium ion secondary battery includes an electrode plate assembly wound or stacked in a jelly roll form, a substantially hexahedron-shaped can into which the electrode plate assembly is inserted and fixed, and lithium ions filled in the can to allow movement of lithium ions. It consists of an electrolyte solution to do so, and a cap plate that blocks the can on top of the electrode plate assembly and the electrolyte solution.
이러한 리튬 이온 이차 전지는 양극 활물질이 부착된 양극판, 음극 활물질이 부착된 음극판 및 세퍼레이터를 적층한 후, 이를 젤리 롤 형태로 권취 또는 적층하고, 이를 다시 캔에 넣은 후 상부에 캡 플레이트를 용접하여 밀봉한다. 이후, 전해액을 주입한 후, 충전 및 검사를 수행함으로써, 베어 셀(bare cell) 형태의 리튬 이온 이차 전지를 완성한다. 물론, 이후 상기 베어 셀 형태의 리튬 이온 이차 전지에 각종 안전 장치 및 보호회로기판 등을 부착한 후 조립 및 검사함으로써, 통상의 전지 팩을 완성한다.In such a lithium ion secondary battery, after stacking a positive electrode plate attached with a positive electrode active material, a negative electrode plate attached with a negative electrode active material, and a separator, they are wound or laminated in a jelly roll form, put back into a can, and sealed by welding a cap plate on the top. do. Thereafter, after injecting the electrolyte solution, charging and inspection are performed to complete a bare cell type lithium ion secondary battery. Of course, a normal battery pack is completed by assembling and inspecting after attaching various safety devices and protection circuit boards to the bare cell type lithium ion secondary battery.
한편, 이러한 리튬 이온 이차 전지는 정전압/정전류 충전법을 사용하기 때문에 충전기에서 충전 전압이 정확하게 제어되면 과충전 현상은 없다. 그러나, 충전기가 파손되거나 오동작하여 이상 충전을 하는 경우가 있으며, 이러한 경우에는 양극활물질 예를 들면, 발트산리튬(LiCoO2)의 전위가 지속적으로 상승하는 특성으로 인해 전지 전압이 계속 상승하고, 또한 이상 발열 현상이 발생한다.Meanwhile, since such a lithium ion secondary battery uses a constant voltage/constant current charging method, there is no overcharging phenomenon when the charging voltage is accurately controlled by the charger. However, there are cases in which the charger is damaged or malfunctions, resulting in abnormal charging. In this case, the battery voltage continues to rise due to the characteristic of the positive electrode active material, for example, lithium baltate (LiCoO2), whose potential continuously rises, and also causes abnormal charging. fever occurs.
이러한 현상에 대한 안전대책으로는 피티씨 서미스터(Positive Temperature Coefficient thermistor)의 내장, 셧다운(shut down) 기능이 있는 세퍼레이터의 채택, 충방전 전압을 제어하는 보호회로기판 등이 있고, 이것 외에 가스 발생에 의해 작동하는 벤트부(safety vent)가 있다.Safety measures against this phenomenon include the incorporation of a positive temperature coefficient thermistor, the adoption of a separator with a shutdown function, and a protective circuit board that controls the charging and discharging voltage. There is a safety vent operated by
여기서, 상기 벤트부는 통상 캡 플레이트에 형성된 좀더 얇은 영역을 지칭하며, 이는 가스 발생으로 전지 내압이 상승할 경우 파열 또는 파단되며 캔 내부의 가스를 외부로 방출함으로써, 리튬 이온 이차 전지의 폭발과 같은 극단적인 상황을 예방하는 역할을 한다.Here, the vent portion usually refers to a thinner area formed on the cap plate, which ruptures or breaks when the internal pressure of the battery rises due to gas generation and releases gas inside the can to the outside, thereby causing extreme extremes such as explosion of the lithium ion secondary battery. It plays a role in preventing incidents.
상기 가스는 리튬 이온 이차 전지의 충전 전압이 기준 전압 이상으로 상승할 경우, 상기 전해액이나 활물질이 분해되면서 발생한다. 이러한 가스는 통상 전지 내압을 상승시킴으로써, 캔을 스웰링(swelling)시키고, 이러한 전지의 내압 증가에 의해 상기 벤트부가 파열 또는 파열 또는 파단하여, 리튬 이온 이차 전지의 극단적인 폭발이나 화재를 방지하게 된다.The gas is generated as the electrolyte or active material is decomposed when the charging voltage of the lithium ion secondary battery rises above the reference voltage. This gas usually causes the can to swell by increasing the internal pressure of the battery, and the vent part ruptures, ruptures, or ruptures due to the increase in the internal pressure of the battery, thereby preventing extreme explosion or fire of the lithium ion secondary battery. .
이와 같이 상기 벤트부는 전지 내압이 소정 압력 이상이 되면 자동적으로 작동하도록 설계된다. 그러나, 이러한 종래의 벤트부는 캡 플레이트 중 소정 영역이 상대적으로 얇게 되도록 가공한 것으로서, 전지마다 작동 속도가 약간씩 틀린 문제가 있다.As such, the vent unit is designed to operate automatically when the internal pressure of the battery exceeds a predetermined pressure. However, since the conventional vent portion is processed to make a predetermined area of the cap plate relatively thin, there is a problem in that the operating speed of each battery is slightly different.
종래기술에 따른 전지의 벤트 구조는 벤트 기능을 위해 캡 플레이트에 홀을 형성하고, 별도로 형성되는 벤트 구조를 갖는 구성을 용접(레이저) 또는 열융착을 통해 결합시키는 방식을 취하고 있다.A vent structure of a battery according to the prior art forms a hole in a cap plate for a vent function, and adopts a method of bonding components having a separately formed vent structure through welding (laser) or thermal fusion.
그러나, 이와 같은 방법은 부품수 및 제조공정수가 증가되어 제조비용이 증가되는 문제점이 있고, 용접, 열융착 등에 필요한 2차 공정이 필수적으로 이루어져야 함으로 자재의 관리와 공정시간이 증가되는 문제점이 있다. However, this method has a problem of increasing manufacturing cost due to an increase in the number of parts and manufacturing processes, and a problem in that material management and process time increase because secondary processes necessary for welding and thermal fusion must be performed.
이 같은 문제점에 따라 최근에는 캡 플레이트에 주변의 다른 부분보다 두께가 얇은 벤트를 형성하는 코이닝(coining) 방식으로 벤트부를 구성하는 특허들이 공개되어 있다(한국특허공개 제2007-0071232호 참조).In accordance with this problem, recently, patents for constructing a vent part in a coining method in which a vent having a thickness smaller than that of other parts around the cap plate are formed have been disclosed (see Korean Patent Publication No. 2007-0071232).
그러나, 이와 같은 종래기술은 벤트 구조를 형성하기 위해 캡 플레이트 소재의 압축률이 과도하게 이루어지는 문제점이 있다. 이와 같은 종래기술은 벤트 구조를 일체로 형성할 때 벤트 구조의 성형 두께와 캡 플레이트의 두께 차이가 커 벤트 구조의 주변으로 이루어지는 급격한 캡 플레이트 소재의 변화에 따른 좌굴의 발생, 응력의 집중, 주름의 발생 등으로 캡 플레이트 자체의 결함이 발생되는 문제점이 있다. 따라서 이러한 종래 기술은 실제 적용되기에는 불가능한 기술로 평가되고 있다.However, this prior art has a problem in that the compression rate of the cap plate material is excessive in order to form the vent structure. In the prior art, when the bent structure is integrally formed, the difference between the molding thickness of the bent structure and the thickness of the cap plate is large, resulting in buckling, concentration of stress, and wrinkles caused by rapid changes in the material of the cap plate around the bent structure. There is a problem in that a defect in the cap plate itself occurs due to the occurrence of the cap plate itself. Therefore, these conventional technologies are evaluated as impossible technologies to be applied in practice.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로, 그 목적은 벤트부를 캡 플레이트의 제조 공정에서 함께 일체 성형하면서도 주변부의 변형이 없고 효과적으로 벤트 구조를 형성할 수 있는 제조 공정을 간소화시킨 벤트 구조를 갖는 이차 전지용 캡 플레이트, 캡 플레이트 제조용 금형 및 그 금형을 이용한 캡 플레이트의 제조방법을 제공하는데 있다. The present invention has been made to solve the above problems, and its object is to simplify the manufacturing process of forming a vent structure without deformation of the periphery while integrally molding the vent part together in the manufacturing process of the cap plate. It is to provide a cap plate for a secondary battery having a cap plate, a mold for manufacturing the cap plate, and a manufacturing method of the cap plate using the mold.
본 발명에 따르면, 전극 조립체를 수용하는 케이스를 밀봉하기 위한 캡 플레이트로서, 상기 전극 조립체를 덮는 본체부; 및 상기 본체부에 형성되는 벤트부; 를 포함하며, 상기 벤트부와 상기 본체부는 단일 프레스 공정에 의해 함께 형성되며, 상기 벤트부는, 본체부와 대응되는 두께를 가지며, 본체부의 평면방향과 어긋나게 배치되는 파단 지지부와 상기 파단 지지부와 본체부 간의 경계에서 전단변형되어 형성되는 구조 연약부로 이루어지는 이차 전지용 캡 플레이트를 제공한다. According to the present invention, a cap plate for sealing a case accommodating an electrode assembly, comprising: a body portion covering the electrode assembly; and a vent part formed in the main body part. The bent part and the main body part are formed together by a single press process, and the bent part has a thickness corresponding to that of the main body part, and a break support part and the break support part and the main body part are displaced from the planar direction of the main body part. A cap plate for a secondary battery comprising a structurally weak portion formed by shear deformation at a boundary between the cells is provided.
바람직하게는, 상기 파단 지지부의 압축률은 상기 본체부의 압축률과 대응되는 압축률을 가지는 것을 특징으로 한다.Preferably, the compression rate of the fracture support portion is characterized in that it has a compression rate corresponding to the compression rate of the body portion.
바람직하게는, 상기 파단 지지부는 본체부의 수평면의 상하 방향 중 한 방향으로 돌출 형성되는 것을 특징으로 한다. Preferably, the fracture support portion is characterized in that it protrudes in one direction of the vertical direction of the horizontal surface of the body portion.
바람직하게는, 상기 구조 연약부는 전단변형되어 변형률이 커진 부위에 상대적으로 얇은 두께로 형성되는 것을 특징으로 한다. Preferably, the structurally weak portion is formed with a relatively thin thickness in a portion where the strain is increased due to shear deformation.
바람직하게는 상기 구조연약부는 상기 파단 지지부 및 상기 본체부 보다 연성이 작은 것을 특징으로 한다.Preferably, the structurally weak portion is characterized in that the ductility is smaller than that of the fracture support portion and the main body portion.
바람직하게는, 상기 구조 연약부는 상기 본체부를 둘러싸는 형태로 성형되어 그 단면 형상이 대칭을 가지게 성형되는 것을 특징으로 한다. Preferably, the weak structural part is molded in a shape surrounding the main body so that its cross-sectional shape is symmetrical.
바람직하게는, 상기 벤트부의 파단 지지부는 평평한 플레이트 형상을 가지며, 이 파단 지지부가 평평한 플레이트 형상의 본체부와 높이차를 가지게 결합됨으로써 해당 파단 지지부를 둘러싸는 구조 연약부가 함께 형성되는 것을 특징으로 한다. Preferably, the breakage support part of the bent part has a flat plate shape, and the breakage support part is coupled with the flat plate-shaped body part with a height difference to form a weak structural part surrounding the breakage support part.
바람직하게는, 상기 파단 지지부를 둘러싸는 결합측면의 전체 수직길이 중 10 내지 20%가 상기 본체부의 결합측면에 연결됨으로써 구조 연약부가 구성되어 파단 지지부와 본체부는 결합측면을 10 내지 20% 공유하는 것을 특징으로 한다. Preferably, 10 to 20% of the total vertical length of the coupling side surface surrounding the fracture support portion is connected to the coupling side surface of the body portion, so that the structural soft part is formed so that the fracture support portion and the body portion share 10 to 20% of the coupling side surface. to be characterized
바람직하게는, 상기 파단 지지부를 둘러싸는 결합측면의 전체 수직길이 중 21 내지 70%가 상기 본체부의 결합측면에 연결됨으로써 구조 연약부가 구성되어 파단 지지부와 본체부는 결합측면을 21 내지 70% 공유하는 것을 특징으로 한다. Preferably, 21 to 70% of the total vertical length of the coupling side surface surrounding the fracture support portion is connected to the coupling side surface of the body portion, so that the structural weakness is formed so that the fracture support portion and the body portion share 21 to 70% of the coupling side surface. to be characterized
바람직하게는, 상기 벤트부의 파단 지지부는 평평한 플레이트 형상을 가지며, 이 파단 지지부가 평평한 플레이트 형상의 본체부와 높이차를 가지며, 파단 지지부를 둘러싸는 결합측면은 상기 본체부의 결합측면과 결합측면을 공유하지 않고 띠 형상으로 구조 연약부가 형성되는 것을 특징으로 한다. Preferably, the breakage support part of the bent part has a flat plate shape, the breakage support part has a height difference with the body part of the flat plate shape, and the coupling side surface surrounding the breakage support unit shares the coupling side surface of the body portion and the coupling side surface. It is characterized in that the structurally weak part is formed in a band shape without
바람직하게는, 상기 파단 지지부는 상기 본체부와 동일한 높이에 형성되는 베이스부와 상기 베이스부에서 ㄱ자 형상을 가지고 상부로 돌출되게 연장되어 형성되는 절곡부를 포함하여 형성되며, 상기 절곡부는 상기 베이스부에서 수직하게 연장되는 제 1 연장부와 이 제 1 연장부에서 수평하게 연장되는 제 2 연장부로 구성되고, 수평하게 형성된 상기 베이스부는 상기 본체부와 동일한 수직높이를 가지며, 상기 제 1 연장부에 의해 상부로 돌출되는 제 2 연장부는 상기 본체부에 비해 상부로 돌출되는 것을 특징으로 한다. Preferably, the fracture support portion is formed including a base portion formed at the same height as the main body portion and a bent portion formed to protrude upward from the base portion in an L-shape, and the bent portion is formed from the base portion Consisting of a first extension portion extending vertically and a second extension portion extending horizontally from the first extension portion, the horizontally formed base portion has the same vertical height as the main body portion, and the upper portion is formed by the first extension portion. The second extension part protruding to is characterized in that it protrudes upward compared to the main body part.
바람직하게는, 상기 파단 지지부는 라인 형태의 직선부에서 그 양 끝단에 제 1 꺽임부 및 제 2 꺽임부가 연결된 형상을 가지며, 상기 제 1 꺽임부 및 제 2 꺽임부는 직선부의 양 끝단에서 중심부위가 직선부의 말단에 연장되는 형태를 가지는 'V'자형으로 형성되며, 수평하게 형성된 상기 직선부, 제 1 꺽임부 및 제 2 꺽임부는 상기 본체부에 비해 상부로 돌출되는 것을 특징으로 한다. Preferably, the fracture support portion has a shape in which the first and second bends are connected to both ends of the line-shaped straight portion, and the first and second bends are located at the center at both ends of the straight portion It is formed in a 'V' shape extending from the end of the straight part, and the straight part formed horizontally, the first bent part and the second bent part are characterized in that they protrude upward compared to the main body part.
한편 본 발명의 다른 측면에 따르면, 전술한 특징들 중 하나에 따른 캡 플레이트를 제조하기 위한 금형으로서, 상부 금형과 하부 금형은 금속재 모재를 개재한 상태에서 프레스되어 캡 플레이트의 본체부와 벤트부를 함께 성형할 수 있으며, 상기 상부 금형 또는 하부 금형 중 일측에는 프레스의 압력이 가해지는 방향 또는 그 반대 방향으로 돌출부가 구비되고 타측에는 상기 돌출부에 대응되는 오목부가 구비되고, 상기 돌출부의 측면과 상기 오목부의 측면의 사이에는 빈 간극부가 형성되어 프레스시 전단력을 발생시켜 구조 연약부를 성형하는 것을 특징으로 하는 캡 플레이트 제조용 금형을 제공한다. Meanwhile, according to another aspect of the present invention, as a mold for manufacturing the cap plate according to one of the above features, the upper mold and the lower mold are pressed with a metal base material interposed therebetween, so that the body part and the vent part of the cap plate are together. It can be molded, and one side of the upper mold or the lower mold is provided with a protrusion in the direction in which the pressure of the press is applied or in the opposite direction, and a concave portion corresponding to the protrusion is provided on the other side, and the side of the protrusion and the concave portion are provided. A mold for manufacturing a cap plate characterized in that an empty gap portion is formed between the side surfaces to generate a shear force during pressing to form a structurally weak portion.
바람직하게는 상기 상부 금형 및 상기 하부 금형은, 프레스된 상태에서 파단지지부를 형성하는 부위의 상부 금형과 하부 금형 사이의 간격은 본체부를 형성하는 상부 금형과 하부금형 사이의 간격과 대응하는 간격을 가지는 것을 특징으로 한다.Preferably, the upper mold and the lower mold, in a pressed state, the distance between the upper mold and the lower mold at the part where the fracture support is formed is a distance corresponding to the distance between the upper mold and the lower mold forming the main body. It is characterized by having
바람직하게는 상기 구조 연약부는 전단변형되어 변형률이 커진 부위에 상대적으로 얇은 두께로 형성되는 것을 특징으로 한다.Preferably, the structurally weak portion is formed with a relatively thin thickness in a portion where the strain is increased due to shear deformation.
한편 본 발명의 또다른 측면에 따르면, 전술한 특징에 따른 캡 플레이를 제조하는 방법으로서, 상부 금형과 하부 금형의 사이에 원소재 금속판을 개재하는 단계; 및 상부 금형와 하부 금형으로 금속재 모재에 소정의 압력을 적용하는 프레스 가공을 진행하여 원소재 금속판을 본체부와 벤트부로 이루어지는 캡 플레이트로 성형하는 단계; 를 포함하며, 상기 상부 금형 또는 하부 금형 중 일측에는 프레스의 압력이 가해지는 방향 또는 그 반대 방향으로 돌출부가 구비되고 타측에는 상기 돌출부에 대응되는 오목부가 구비되고, 상기 돌출부의 측면과 오목부의 측면의 사이에는 빈 간극부가 형성되어 프레스시 전단력을 발생시켜 구조 연약부를 성형하는 것을 특징으로 하는 캡 플레이트의 제조방법을 제공한다. Meanwhile, according to another aspect of the present invention, a method of manufacturing a cap play according to the above-described characteristics includes interposing a raw metal plate between an upper mold and a lower mold; and forming a raw material metal plate into a cap plate comprising a main body part and a vent part by performing press working by applying a predetermined pressure to the base metal material using an upper mold and a lower mold. Including, one side of the upper mold or lower mold is provided with a protrusion in the direction in which the pressure of the press is applied or in the opposite direction, and a concave portion corresponding to the protrusion is provided on the other side, and the side of the protrusion and the side of the concave portion A method for manufacturing a cap plate is provided, wherein an empty gap is formed between the cap plates and a shear force is generated during pressing to form the structurally weak parts.
바람직하게는 상기 구조 연약부는 전단변형되어 변형률이 커진 부위에 상대적으로 얇은 두께로 형성되는 것을 특징으로 한다.Preferably, the structurally weak portion is formed with a relatively thin thickness in a portion where the strain is increased due to shear deformation.
본 발명에 따르면, 벤트부를 캡 플레이트의 제조 공정에서 함께 일체 성형하여 제조 공정을 간소화시킬 수 있으며 이를 통해 제조 원가를 절감할 수 있게 되는 효과가 있다. According to the present invention, it is possible to simplify the manufacturing process by integrally molding the vent part in the manufacturing process of the cap plate, thereby reducing manufacturing cost.
또한 벤트부를 캡 플레이트와 대응되는 두께로 형성시키되 그 경계부에서 전단변형된 구조 연약부를 구비시킴으로써 물리적으로뿐만 아니라 재료적으도도 파열 또는 파단에 적합한 구조 및 성질을 가지게 되어 이차 전지 내압 상승시 보다 빠르고 정확하게 효과적으로 파열 또는 파단될 수 있는 효율적인 벤트 구조를 형성할 수 있게 된다.In addition, by forming the vent portion with a thickness corresponding to that of the cap plate, but having a structurally weak portion that is sheared at the boundary, it has a structure and property suitable for rupture or rupture both physically and materially, so that when the internal pressure of the secondary battery rises, it is faster and more accurate. It is possible to form an efficient vent structure that can be effectively ruptured or broken.
또한, 본 발명은 소재의 압축률이 과도하게 이루어져 발생하는 주변부 변형의 문제점을 해소하면서도 캡 플레이트 외에 별도의 구성요소의 추가를 배제하여 생산성을 높일 수 있는 효과를 기대할 수 있다. In addition, according to the present invention, an effect of increasing productivity by excluding the addition of a separate component other than the cap plate can be expected while resolving the problem of deformation of the peripheral portion caused by excessive compressibility of the material.
도 1은 본 발명의 일 실시형태에 따른 이차 전지의 사시도이다.1 is a perspective view of a secondary battery according to an embodiment of the present invention.
도 2는 본 발명의 일 실시형태에 따른 캡 플레이트의 사시도이다. 2 is a perspective view of a cap plate according to an embodiment of the present invention.
도 3은 본 발명의 일 실시형태에 따른 캡 플레이트를 제조하는 방법에 대한 개념도이다. 3 is a conceptual diagram of a method of manufacturing a cap plate according to an embodiment of the present invention.
도 4는 본 발명의 일 실시형태에 따른 금속재 모재로서 알루미늄의 응력-변형률 곡선이다.4 is a stress-strain curve of aluminum as a metal base material according to an embodiment of the present invention.
도 5 내지 도 9은 본 발명에 따른 캡 플레이트에서 벤트부의 제 1 내지 제 5 실시형태를 설명하기 위한 도면이다. 5 to 9 are views for explaining first to fifth embodiments of the vent unit in the cap plate according to the present invention.
<부호의 설명><Description of codes>
100 : 이차 전지 110 : 케이스100: secondary battery 110: case
120 : 제 1 전극 단자 130 : 제 2 전극 단자120: first electrode terminal 130: second electrode terminal
140 : 캡 플레이트 141 : 본체부140: cap plate 141: body part
142 : 벤트부 142a : 파단 지지부142: vent part 142a: fracture support part
142b : 구조 연약부142b: structural soft part
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.Since the present invention can make various changes and have various embodiments, specific embodiments will be illustrated in the drawings and described in detail in the detailed description. However, this is not intended to limit the present invention to specific embodiments, and should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. Like reference numerals have been used for like elements throughout the description of each figure.
제1, 제2, A, B 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.Terms such as first, second, A, and B may be used to describe various components, but the components should not be limited by the terms. These terms are only used for the purpose of distinguishing one component from another. For example, a first element may be termed a second element, and similarly, a second element may be termed a first element, without departing from the scope of the present invention. The terms and/or include any combination of a plurality of related recited items or any of a plurality of related recited items.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.It is understood that when an element is referred to as being "connected" or "connected" to another element, it may be directly connected or connected to the other element, but other elements may exist in the middle. It should be. On the other hand, when an element is referred to as “directly connected” or “directly connected” to another element, it should be understood that no other element exists in the middle.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Terms used in this application are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this application, the terms "include" or "have" are intended to designate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, but one or more other features It should be understood that the presence or addition of numbers, steps, operations, components, parts, or combinations thereof is not precluded.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs. Terms such as those defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related art, and unless explicitly defined in the present application, they should not be interpreted in an ideal or excessively formal meaning. don't
이하, 본 발명에 따른 바람직한 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.Hereinafter, preferred embodiments according to the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시형태에 따른 이차 전지의 사시도이다. 1 is a perspective view of a secondary battery according to an embodiment of the present invention.
도 1을 참조하면, 이차 전지(100)는, 내부에 전극 조립체(도시 않음)를 수용하는 케이스(110)와, 상기 전극 조립체를 수용한 케이스(110)를 마감하는 캡 플레이트(140)를 포함한다. 예를 들어, 상기 캡 플레이트(140)는 케이스(110) 상에 결합될 수 있고, 서로 맞닿는 캡 플레이트(140)와 케이스(110)의 가장자리를 따라 용접부가 형성될 수 있다. 이러한 용접부는 캡 플레이트(100)와 케이스(180) 간의 레이저 용접 등에 의해 형성될 수 있다.Referring to FIG. 1 , a secondary battery 100 includes a case 110 accommodating an electrode assembly (not shown) therein, and a cap plate 140 closing the case 110 accommodating the electrode assembly. do. For example, the cap plate 140 may be coupled to the case 110, and a welding portion may be formed along an edge of the cap plate 140 and the case 110 that come into contact with each other. Such a weld may be formed by laser welding between the cap plate 100 and the case 180 .
이때, 전극 조립체는 양극과 음극 사이에 절연체인 세퍼레이터를 개재하여 귄취되어 형성된다. 본 발명에서 이차 전지(100)는 리튬 이온 2차 전지로서 각형인 것을 예로서 도시하여 설명하였으나, 리튬 폴리머 전지 또는 원통형 전지 등 다양한 형태의 전지에 적용될 수 있을 것이고, 전극 조립체의 구성은 이 분야에서 이미 다양하게 알려진 기술들이 선택적으로 적용될 수 있을 것이다.At this time, the electrode assembly is formed by winding a separator, which is an insulator, between the positive electrode and the negative electrode. In the present invention, the secondary battery 100 has been illustrated and described as an example of a prismatic lithium ion secondary battery, but it can be applied to various types of batteries such as lithium polymer batteries or cylindrical batteries, and the configuration of the electrode assembly is in this field Various known technologies may be selectively applied.
이와 같은 이차 전지(100)에서 케이스(110)는 이차 전지(100)의 전체적인 외관을 형성하며, 알루미늄, 알루미늄 합금 또는 니켈이 도금된 스틸과 같은 금속재 등으로 형성될 수 있다. In such a secondary battery 100, the case 110 forms the overall appearance of the secondary battery 100, and may be formed of a metal material such as aluminum, aluminum alloy, or nickel-plated steel.
상기 캡 플레이트(140)는 전극 조립체 상부에 걸쳐 넓은 면적으로 형성된다. 이 같은 캡 플레이트(140)는 알루미늄, 알루미늄합금 등의 얇은 금속판으로 이루어질 수 있다. The cap plate 140 has a large area over the electrode assembly. The cap plate 140 may be made of a thin metal plate such as aluminum or aluminum alloy.
상기 캡 플레이트(140) 상에는 서로 반대 극성을 갖는 한 쌍의 전극 단자(120, 130), 예를 들어, 제1, 제2 전극 단자(120, 130)가 외측으로 돌출되어 형성될 수 있다. 보다 구체적으로, 상기 캡 플레이트(140)를 관통하도록 제1, 제2 전극 단자(120, 130)가 형성될 수 있다. 제1, 제2 전극 단자(120, 130)는 캡 플레이트(140)를 관통하여 설치되고, 제1, 제2 전극 단자(120, 130)와 캡 플레이트(140) 사이에는 절연 및 밀봉을 위하여 가스킷이 설치된다. 예를 들어, 상기 제1, 제2 전극 단자(120, 130)는 이차 전지의 내부에 수용된 전극 조립체와 전기적으로 연결되며, 각각의 제1, 제2 전극 단자(120, 130)는, 전극 조립체의 제1, 제2 전극판과 전기적으로 연결되어 이차 전지에 축적된 방전 전력을 외부로 공급하거나, 외부로부터의 충전 전력을 입력받기 위한 양극 및 음극 단자의 기능을 할 수 있다. 예를 들어, 상기 제1, 제2 전극 단자(120, 130)는 이차 전지의 양측에 형성될 수 있다.A pair of electrode terminals 120 and 130 having opposite polarities, for example, first and second electrode terminals 120 and 130 may be formed on the cap plate 140 to protrude outward. More specifically, first and second electrode terminals 120 and 130 may be formed to pass through the cap plate 140 . The first and second electrode terminals 120 and 130 are installed through the cap plate 140, and a gasket is provided between the first and second electrode terminals 120 and 130 and the cap plate 140 for insulation and sealing. is installed For example, the first and second electrode terminals 120 and 130 are electrically connected to an electrode assembly accommodated inside a secondary battery, and each of the first and second electrode terminals 120 and 130 is an electrode assembly It is electrically connected to the first and second electrode plates to supply discharge power accumulated in the secondary battery to the outside or function as positive and negative terminals to receive charging power from the outside. For example, the first and second electrode terminals 120 and 130 may be formed on both sides of the secondary battery.
본 발명의 다른 실시형태에서, 상기 이차 전지의 캡 플레이트(140)가 전극 조립체와 전기적으로 연결되어 단자의 기능을 수행할 수도 있으며, 이때 상기 제1, 제2 전극 단자(120, 130) 중에서 어느 한 전극 단자(120, 130)는 생략될 수도 있다.In another embodiment of the present invention, the cap plate 140 of the secondary battery may be electrically connected to the electrode assembly to function as a terminal. At this time, any one of the first and second electrode terminals 120 and 130 may be One electrode terminal 120 or 130 may be omitted.
상기 캡 플레이트(140)는 전극 조립체가 수용된 케이스(110)의 상단에 결합되며, 케이스(110)의 개구부를 밀봉할 수 있다. 예를 들어, 상기 캡 플레이트(140)와 케이스(110)는 캡 플레이트(140)의 가장자리를 따라 용접 결합될 수 있다.The cap plate 140 is coupled to an upper end of the case 110 in which the electrode assembly is accommodated, and may seal an opening of the case 110 . For example, the cap plate 140 and the case 110 may be welded together along an edge of the cap plate 140 .
상기 캡 플레이트(140)에는 상대적으로 취약한 구조로 형성되어, 이차 전지 내부의 압력이 설정 포인트를 초과하면 가스의 배출 경로를 제공하도록 파열 또는 파단 가능하게 설계된 벤트부(142)가 형성된다. 또한, 상기 캡 플레이트(140)에는 케이스(110) 내부로 전해액을 주입하기 위한 전해액 주입구가 형성될 수 있으며, 전해액 주입이 완료된 이후에는 실링 마개(160)에 의해 전해액 주입구가 폐쇄될 수 있다.The cap plate 140 has a relatively fragile structure, and a vent portion 142 designed to be ruptured or broken is formed to provide a gas discharge path when the pressure inside the secondary battery exceeds a set point. In addition, an electrolyte injection hole for injecting electrolyte into the case 110 may be formed in the cap plate 140, and the electrolyte injection hole may be closed by a sealing stopper 160 after the electrolyte injection is completed.
비록 도면에서는 상기 벤트부(142)의 평면 형상이 대략 타원형 형태로 되어 있으나, 이러한 벤트부(142)의 평면 형태로 본 발명을 한정하는 것은 아니다. 즉, 상기 벤트부(142)의 평면 형상은 원형, 타원형, 사각형, 오각형 등 매우 다양한 형태가 가능하다.Although the planar shape of the vent part 142 is approximately elliptical in the drawing, the present invention is not limited to the planar shape of the vent part 142. That is, the planar shape of the vent part 142 can be of various shapes such as a circle, an ellipse, a rectangle, and a pentagon.
도 2는 본 발명의 일 실시형태에 따른 캡 플레이트의 사시도이다.2 is a perspective view of a cap plate according to an embodiment of the present invention.
본 발명의 캡 플레이트(140)는 판상의 금속재 모재에 대해 프레스 가공을 적용함으로써 형성될 수 있다. 금속재 모재는 알루미늄, 알루미늄합금이 바람직하며, 그 외에도 일정 강도를 가지고 전연성을 갖는 소재라면 모두 적용 가능하다. 본 발명은 상부 금형 및 하부 금형 사이에 판상의 금속재 모재를 개재하고 소정의 압력을 가하는 프레스 가공을 통하여, 판상의 금속재 모재를 캡 플레이트(140)로 형성할 수 있다. The cap plate 140 of the present invention may be formed by applying press working to a plate-shaped metal base material. The metal base material is preferably aluminum or aluminum alloy, and in addition, any material having a certain strength and malleability can be applied. In the present invention, the plate-shaped metal base material may be formed into the cap plate 140 through press working in which the plate-shaped metal base material is interposed between the upper mold and the lower mold and a predetermined pressure is applied.
이때 본 발명은 판상의 금속재 모재에 대해 상부 금형 및 하부 금형을 한 차례 프레싱함으로써 벤트부(142)를 캡 플레이트(140)의 제조 공정에서 함께 일체 성형하면서도 주변부의 변형이 없고 내부 압력이 상승시 효과적으로 파열 또는 파단될 수 있는 벤트 구조를 갖는 캡 플레이트(140)를 제조할 수 있게 된다.At this time, the present invention presses the upper mold and the lower mold once against the plate-shaped metal base material to integrally mold the vent portion 142 together in the manufacturing process of the cap plate 140 without deformation of the peripheral portion and effectively when the internal pressure rises. It is possible to manufacture the cap plate 140 having a vent structure that can be ruptured or broken.
캡 플레이트(140)는 전극 조립체를 덮는 본체부(141)와 이 본체부(141)에 형성되는 벤트부(142)를 포함하여 구성될 수 있다. The cap plate 140 may include a body portion 141 covering the electrode assembly and a vent portion 142 formed in the body portion 141 .
본체부(141)는 일정한 두께를 가지도록 판상의 금속재 모재를 상부 금형 및 하부 금형으로 한 차례 프레싱하여 형성하게 된다. The main body portion 141 is formed by pressing a plate-shaped base metal material with an upper mold and a lower mold once to have a certain thickness.
이 같은 본체부(141)에는 전극 단자가 관통될 수 있는 전극 관통구가 형성될 수 있고, 케이스(110) 내부로 전해액을 주입하기 위한 전해액 주입구가 형성될 수 있으며, 내부 가스의 배출 경로를 제공하도록 파열 또는 파단 가능하게 설계된 벤트부(142)가 형성될 수 있다.An electrode through-hole through which an electrode terminal can penetrate may be formed in the main body 141, an electrolyte injection hole for injecting an electrolyte into the case 110 may be formed, and an internal gas discharge path may be provided. A vent portion 142 designed to be ruptured or breakable may be formed.
따라서 캡 플레이트(140)의 본체부(141)와 벤트부(142)는 판상의 금속재 모재를 상부 금형 및 하부 금형으로 한 차례 프레싱하여 한번에 형성되게 된다. 물론 이 과정에서 상기 전극 관통구와 전해액 주입구 역시 함께 형성될 것이다. Accordingly, the body portion 141 and the vent portion 142 of the cap plate 140 are formed at once by pressing the plate-shaped metal base material with the upper mold and the lower mold once. Of course, in this process, the electrode through hole and the electrolyte injection hole will also be formed together.
도 2에서는 상기 벤트부(142)의 평면 형상이 대략 타원형 형태로 되어 있으나, 이러한 벤트부(142)의 형상으로 본 발명을 한정하는 것은 아니다. 즉, 상기 벤트부(142)의 평면 형상은 원형, 타원형, 사각형, 오각형 등 매우 다양한 형태가 가능하다.In FIG. 2 , the bent portion 142 has a substantially elliptical planar shape, but the present invention is not limited to the shape of the bent portion 142 . That is, the planar shape of the vent part 142 can be of various shapes such as a circle, an ellipse, a rectangle, and a pentagon.
도 3은 본 발명의 일 실시형태에 따른 캡 플레이트를 제조하는 방법에 대한 개념도이다. 도 4는 본 발명의 일 실시형태에 따른 금속재 모재로서 알루미늄의 응력-변형률 곡선(stress strain curve)이다.3 is a conceptual diagram of a method of manufacturing a cap plate according to an embodiment of the present invention. 4 is a stress strain curve of aluminum as a metal base material according to an embodiment of the present invention.
본 발명은 판상의 금속재 모재에 대해 상부 금형 및 하부 금형을 한 차례 프레싱함으로써 벤트부(142)를 캡 플레이트(140)의 제조 공정에서 함께 일체 성형하여 제조공정을 단순화시키면서도 전단변형이 집중되어 전단변형률이 큰 부위에 구조 연약부(142b)를 형성하여 주변부의 변형이 없고 더욱 빠르고 정확하게 효과적으로 파열 또는 파단될 수 있는 벤트 구조를 갖는 캡 플레이트(140)를 제조할 수 있다.The present invention simplifies the manufacturing process by integrally molding the bent portion 142 together in the manufacturing process of the cap plate 140 by pressing the upper mold and the lower mold once with respect to the plate-shaped metal base material, while shear strain is concentrated and the shear strain is reduced. By forming the structurally weak portion 142b in this large area, the cap plate 140 having a bent structure that can be ruptured or broken more quickly and accurately without deformation of the periphery can be manufactured.
도 3의 (a)는 상부금형, (b)는 하부금형, (c)는 벤트부가 형성된 캡 플레이트를 나타내는 개념도이다. 3 (a) is a conceptual diagram illustrating an upper mold, (b) a lower mold, and (c) a cap plate having a vent portion.
본 발명은 상부 금형(a) 및 하부 금형(b) 사이에 금속재 모재를 개재하고 소정의 압력을 적용하는 프레스 가공을 통하여 금속재 모재를 벤트부(142)가 형성된 캡 플레이트(140)로 형성할 수 있다. According to the present invention, the metal base material may be formed into the cap plate 140 having the bent part 142 formed thereon through press working in which a metal base material is interposed between the upper mold (a) and the lower mold (b) and a predetermined pressure is applied thereto. there is.
또한 캡 플레이트(140)에 대한 한 차례 프레스 가공시 사용되는 상부 금형 및 하부 금형에는 판상으로 형성되는 캡 플레이트(140)의 본체부(141) 뿐만 아니라 벤트부(142)를 성형할 수 있는 성형 부위가 포함되어 본 발명의 캡 플레이트(140)는 본체부(141)와 벤트부(142)가 프레싱 공정에 의해 함께 성형되게 된다. In addition, the upper mold and the lower mold used for one-time press processing of the cap plate 140 have forming parts capable of forming not only the body part 141 of the cap plate 140 formed in a plate shape, but also the bent part 142 . In the cap plate 140 of the present invention, the body portion 141 and the vent portion 142 are molded together by a pressing process.
본 발명에서는 캡 플레이트(140)의 본체부(141)와 파단지지부(142a)는 압축성형에 의해 형성되고, 구조 연약부(142b)는 프레스 과정에서 상부 금형(a) 및 하부 금형(b)의 경계부에서 발생하는 전단력에 의해 전단변형이 집중되는 부위에 형성된다. 본 발명의 캡 플레이트 소재는 알루미늄, 알루미늄 합금 또는 기타 금속재 소재가 사용될 수 있는데, 금속재 소재는 전연성이 뛰어나 전단변형이 집중되어 변형률이 커진 부위에 상대적으로 얇은 구조 연약부가 형성될 수 있다. In the present invention, the body portion 141 of the cap plate 140 and the fracture support portion 142a are formed by compression molding, and the structurally weak portion 142b is formed by using an upper mold (a) and a lower mold (b) in a press process. It is formed in the area where shear strain is concentrated by the shear force generated at the boundary of Aluminum, aluminum alloy, or other metal materials may be used as the material for the cap plate of the present invention. The metal material has excellent malleability, so that a relatively thin structural weak part can be formed in a region where shear strain is concentrated and strain is increased.
도 3에서 A는 전단력이 발생하는 부위를 나타내는 것이고, B는 전단변형이 집중되어 변형률이 커진 부위를 나타낸다. 도 3 및 도 4를 참조하면 본 발명에서 프레스 가공시 전단변형 집중부위(B)에서 전단응력(shear stress)이 증가되어 소성영역에 들어서면 상대적으로 변형률(strain)이 증가되어 얇은 구조 연약부를 형성할 수 있게 된다. 전단변형이 집중되는 부위(B)에서는 이러한 전단변형에 의해 본체부(141) 및 파단지지부(142a)에 비해 변형률이 커져 상대적으로 얇은 두께로 성형되는 것과 함께 전단변형에 의한 결정구조의 변화(슬립, 쌍정, 전위 등)가 일어나게 되고 상대적으로 연성이 감소하게 된다. 이러한 재료성질의 변화는 수직응력에 의한 압축변형 부위에 비해 전단응력에 의한 전단변형 부위에서 상대적으로 잘 일어나게 되고, 변형률이 클 수록 잘 일어나게 된다.In FIG. 3, A indicates a site where shear force occurs, and B indicates a site where shear strain is concentrated and the strain increases. Referring to FIGS. 3 and 4, when press working in the present invention, the shear stress is increased in the shear strain concentration region (B), and when entering the plastic region, the strain is relatively increased to form a thin structural weak part. You can do it. In the region (B) where shear strain is concentrated, the strain is increased compared to the main body part 141 and the fracture support part 142a due to this shear strain, so that it is molded to a relatively thin thickness, and the crystal structure changes due to shear strain ( slip, twinning, dislocation, etc.) occur and the ductility is relatively reduced. These changes in material properties occur relatively well in the shear deformation area due to shear stress compared to the compression deformation area due to normal stress, and the greater the strain, the better it occurs.
캡 플레이트에서 벤트부는 전지의 내압이 상승할 경우 파열 또는 파단되어 전지의 내압을 감소시켜 전지의 폭발을 방지하는 역할을 해야 한다. 그런데 본 발명에서와 같이 하나의 소재를 가지고 한 번의 가공으로 이러한 벤트구조를 형성함에 있어서, 물리적으로 파열 또는 파단되어야 할 부위가 상대적으로 얇은 두께로 가공되어 다른 부위에 비해 내압에 대한 응력(stress)이 커지게 하는 것에 더하여 재료적으로 해당 부위의 재료성질이 구조적으로 파열 또는 파단에 적합한 성질을 가지게 한다면 보다 효과적인 벤트구조를 형성할 수 있을 것이다. 본 발명에서는 전단변형이 집중되어 변형률이 커지는 부위에 상대적으로 얇게 형성되는 구조 연약부를 형성함으로써 다른 부위에 비해 상대적으로 취성 파괴(brittle fracture)에 가까운 성질을 가지게 되어 구조 연약부에서 보다 빠르고 정확하게 효과적으로 파열 또는 파단될 수 있는 벤트구조를 가질 수 있게 된다. 본 발명에 의해 상대적으로 연성이 큰 다른 부위에 비해 상대적으로 연성이 감소한 구조 연약부를 형성함으로써 재료적 특성에서도 보다 효율적인 벤트구조를 형성할 수 있다.The vent portion of the cap plate should be ruptured or broken when the internal pressure of the battery increases, thereby reducing the internal pressure of the battery and preventing the battery from exploding. However, as in the present invention, in forming such a vent structure with one material and one processing, the area to be physically ruptured or fractured is processed to a relatively thin thickness, so that the stress against internal pressure is reduced compared to other areas. In addition to increasing this size, a more effective vent structure can be formed if the material properties of the corresponding portion are structurally suitable for rupture or fracture. In the present invention, by forming a relatively thin structural weakness in an area where shear strain is concentrated and strain increases, it has a property that is relatively close to brittle fracture compared to other areas, resulting in faster, more accurate and effective rupture in the structural weakness. Alternatively, it can have a vent structure that can be broken. According to the present invention, by forming a structurally weak portion having relatively reduced ductility compared to other portions having relatively high ductility, a more efficient vent structure can be formed in terms of material properties.
한편, 도 3의 (c)에서 전단변형이 집중되는 부위에 구조 연약부(142b)가 효과적으로 형성되기 위해서는, 프레스 가공시 구조 연약부(142b)와 연결되어 있는 본체부(141) 및 파단지지부(142a)에서의 압축응력이 동일한 것이 바람직하고 큰 차이가 나는 것은 바람직하지 않다. 본체부(141) 및 파단지지부(142a)에서의 압축응력은 이들의 압축률과 비례할 것이며, 따라서 본체부(141) 및 파단지지부(142a)의 압축률이 동일한 것이 바람직하고 큰 차이가 나는 것은 바람직하지 않다. 즉, 파단 지지부(142a)의 압축률이 본체부(141)의 압축률과 대응하는 압축률을 가져야 한다.(본 발명에서는 동일하거나 차이가 있더라도 큰 차이가 나지 않는다는 것을 '대응한다'로 표현할 것이며, 이하 같다.) 본 발명에서는 본체부(141) 및 파단지지부(142a)에서 받는 압축응력이 다를 경우 압축응력의 차이가 이들과 연결된 구조 연약부(142b)에 작용하는 전단응력을 방해하게 되어 효과적인 전단변형이 일어나지 않게 된다. On the other hand, in order to effectively form the structurally weak portion 142b in the region where shear strain is concentrated in FIG. It is preferable that the compressive stress at 142a is the same, and it is not preferable that there is a large difference. The compressive stress in the body portion 141 and the fracture support portion 142a will be proportional to their compressibility, so it is preferable that the compression rates of the body portion 141 and the fracture support portion 142a are the same, and a large difference is Not desirable. That is, the compression rate of the fracture support portion 142a must have a compression rate corresponding to that of the body portion 141. .) In the present invention, when the compressive stress received by the main body portion 141 and the fracture support portion 142a are different, the difference in compressive stress interferes with the shear stress acting on the structurally weak portion 142b connected thereto, resulting in effective shear deformation. this won't happen
실제 제조공정에 적용해 본 결과, 본체부(141) 및 파단지지부(142a)의 압축률 차이가 30%를 초과할 경우 구조 연약부(142b)가 변형되어 효과적으로 형성되지 않는 것으로 확인되었다. 따라서, 본 발명에서 파단지지부(142b)의 압축률이 본체부(141)의 압축률에 대응하는 압축률을 가진다는 것은 그 차이가 30% 이하인 것을 의미한다.As a result of application to the actual manufacturing process, it was confirmed that when the difference in compressibility between the body portion 141 and the fracture support portion 142a exceeds 30%, the structurally weak portion 142b is deformed and not formed effectively. Therefore, in the present invention, having a compression rate corresponding to that of the body portion 141 in the compression rate of the fracture support portion 142b means that the difference is 30% or less.
전술한 바와 같이, 본 발명의 캡 플레이트(140)의 구조 연약부(142b)가 프레스에 의해 전단변형이 집중되는 부위에 형성하기 위하여, 본 발명의 캡 플레이트를 제조하는 금형은 다음과 같은 구조를 가져야 한다.As described above, in order to form the structurally weak portion 142b of the cap plate 140 of the present invention in a region where shear deformation is concentrated by pressing, the mold for manufacturing the cap plate of the present invention has the following structure. should have
도 3을 참조하여 설명하면, 상부 금형(a) 또는 하부 금형(b) 중 일측에는 프레스의 압력이 가해지는 방향 또는 그 반대 방향으로 돌출부가 구비되고(도 3의 (a) 참조) 타측에는 상기 돌출부에 대응되는 오목부가 구비된다(도 3의 (b) 참조). 프레스 과정에서 상기 돌출부 및 상기 오목부의 일측 또는 양측 경계(도 3의 A 부위)에서는 전단력이 발생하며, 이러한 전단력에 의해 전단변형이 집중되어 변형률이 커지는 부위(B)에 상대적으로 얇은 두께의 구조 연약부(142b)가 형성되고 압축변형되는 부위에는 파단지지부(142a)와 본체부(141)가 형성된다.Referring to FIG. 3, one side of the upper mold (a) or the lower mold (b) is provided with a protrusion in the direction in which the pressure of the press is applied or in the opposite direction (see FIG. 3 (a)), and the other side has the A concave portion corresponding to the protrusion is provided (see (b) of FIG. 3). During the pressing process, a shear force is generated at one side or both sides of the boundary between the protrusion and the concave portion (part A in FIG. 3), and the shear force concentrates the shear strain by the shear force, resulting in a relatively thin structural weakness in the area (B) where the strain increases. The fracture support portion 142a and the body portion 141 are formed at the portion where the portion 142b is formed and compressed.
또한 구조 연약부(142b)를 형성하는 돌출부의 측면과 오목부의 측면의 사이에는 프레스의 수직 압력이 직접적으로 가해지지 않는 빈 간극부가 형성되어 구조 연약부(142b)를 성형할 수 있게 된다. 간극부의 간격은 전지의 내부 압력 증가시 파열 또는 파단될 수 있는 구조 연약부(142b)의 두께에 대응하게 된다. 따라서 간극부의 간격은 이차 전지의 내압 발생시 파열특성, 모재의 성질 등에 따라 결정되며, 본 발명의 일실시 형태에서는 0.1mm(20bar 기준)이다. 이 경우 금속재 모재는 0.3mm 내지 0.6mm 두께의 알루미늄을 사용한다.In addition, an empty gap portion is formed between the side surface of the protruding portion and the side surface of the concave portion forming the structurally weak portion 142b, to which the vertical pressure of the press is not directly applied, so that the structurally weak portion 142b can be molded. The spacing of the gap portion corresponds to the thickness of the structurally weak portion 142b that may rupture or break when the internal pressure of the battery increases. Therefore, the interval between the gaps is determined according to the rupture characteristics of the secondary battery when the internal pressure is generated, the nature of the parent material, and the like, and is 0.1 mm (based on 20 bar) in one embodiment of the present invention. In this case, aluminum having a thickness of 0.3 mm to 0.6 mm is used as the metal base material.
또한, 본 발명의 캡 플레이트를 제조하는 금형에서 금속재 모재를 개재하여 프레스된 상태에서 파단지지부(142a)를 형성하는 부위의 상부 금형과 하부 금형 사이의 간격은 본체부(141)를 형성하는 상부 금형과 하부금형 사이의 간격과 대응하는 간격을 가져야 한다. 이는 전술한 바와 같이, 전단변형에 의한 구조 연약부(142b)가 효과적으로 성형되기 위해서는 파단 지지부(142a)의 압축률이 본체부(141)의 압축률과 대응하는 압축률을 가져야 하기 때문이다.In addition, in the mold for manufacturing the cap plate of the present invention, the gap between the upper mold and the lower mold at the portion where the breakage supporting portion 142a is formed in a pressed state through the metal base material is the upper part forming the body portion 141. It should have a gap corresponding to the gap between the mold and the lower mold. This is because, as described above, in order to effectively form the weak structural portion 142b due to shear deformation, the compression rate of the fracture support portion 142a must have a compression rate corresponding to that of the body portion 141.
상기 간극부는 상부 금형이나 하부 금형의 돌출부와 오목부에 의해 프레스의 수직 압력이 직접적으로 가해지지 않기 때문에 전단력이 발생될 것이다(도 3의 (c) 참조). 또한, 프레스된 상태에서 파단지지부(142a)의 압축률은 본체부(141)의 압축률과 대응하는 압축률을 가지게 되어 상기 간극부를 통해 효율적으로 전단력이 발생할 것이다. 이 같은 금형의 구조적 전단력 인가에 의해 상기 구조 연약부(142b)는 파단 지지부(142a)나 본체부(141)에 비해 전단변형이 집중되어 변형률이 커지는 부위에 상대적으로 얇게 형성되며, 전술한 바와 같이 다른 부위에 비해 내압에 대한 응력(stress)이 커지는 것에 더하여 전단변형에 따른 변형률 증가로 해당 부위의 재료성질이 구조적으로 파열 또는 파단에 적합한 성질을 가지게 되어 이차 전지 내압 상승시 보다 빠르고 정확하게 효과적으로 파열 또는 파단될 수 있는 효율적인 벤트 구조를 형성할 수 있게 된다.Since the vertical pressure of the press is not directly applied to the gap portion by the protrusions and concave portions of the upper or lower mold, shear force will be generated (see (c) of FIG. 3). In addition, in the pressed state, the compression rate of the fracture support portion 142a has a compression rate corresponding to that of the main body portion 141, so that shear force is efficiently generated through the gap portion. By applying the structural shear force of the mold, the structurally weak portion 142b is formed relatively thin in the portion where the shear deformation is concentrated and the strain increases compared to the fracture support portion 142a or the body portion 141, and as described above, In addition to the increased stress for internal pressure compared to other parts, the material properties of the corresponding part have structurally suitable properties for rupture or fracture due to the increase in strain due to shear deformation. It is possible to form an efficient vent structure that can be broken.
또한, 캡 플레이트의 제조 공정에서 벤트부 형성을 위한 별도의 공정이 추가되지 않기 때문에 부품 단일화를 통한 제조 공정의 축소가 가능하고 이를 통해 제조 원가를 절감시킬 수 있게 될 것이다. In addition, since a separate process for forming the vent portion is not added in the manufacturing process of the cap plate, the manufacturing process can be reduced through component unification, thereby reducing manufacturing cost.
또한, 금형의 빈 간극부에 대한 간격 조정을 통해 다양한 사양의 안전 벤트를 만들 수 있게 될 것이다. In addition, it will be possible to create safety vents with various specifications by adjusting the gap for the empty gap of the mold.
이제 도 5 내지 도 9를 참조하여 본 발명에 따른 벤트부의 제 1 내지 제 5 실시형태에 대해 상세히 설명하기로 한다. Now, with reference to FIGS. 5 to 9 , first to fifth embodiments of the vent unit according to the present invention will be described in detail.
도 5 내지 도 9에서 (a)는 벤트부와 본체부가 형성된 캡 플레이트를 나타내는 사시도이고, (b)는 벤트부의 파단 지지부와 구조 연약부를 나타내는 단면도이며, (c)는 전지 내압 상승에 의해 구조 연약부가 파단되는 상태를 설명하기 위한 단면도이다.5 to 9, (a) is a perspective view showing the cap plate on which the vent part and the main body part are formed, (b) is a cross-sectional view showing the fracture support part of the vent part and structurally weak parts, and (c) is a structural weakness due to an increase in battery internal pressure. It is a cross-sectional view for explaining the state in which the part is broken.
상기 벤트부(142)의 파단 지지부(142a)는 본체부(141)와 같은 두께를 가지며 본체부(141)의 평면방향과 어긋나게 배치되는 파단 지지부(142a)와, 파단 지지부(142a)와 본체부(141) 간의 경계에 전단변형되어 형성되는 구조 연약부(142b)를 포함한다. The fracture support portion 142a of the vent portion 142 includes the fracture support portion 142a having the same thickness as the main body portion 141 and displaced from the planar direction of the body portion 141, the fracture support portion 142a and the main body portion. It includes a structurally weak portion 142b formed by shear deformation at the boundary between (141).
상기 파단 지지부(142a)는 전체적으로 상기 캡 플레이트(140)의 본체부(141)의 두께와 대응되는 두께를 가진다. 즉 파단 지지부(142a)의 두께는 본체부(141)의 두께와 동일하거나 큰 차이가 나지 않는 정도에서 결정될 수 있다. The fracture support portion 142a has a thickness corresponding to that of the body portion 141 of the cap plate 140 as a whole. That is, the thickness of the fracture support portion 142a may be determined to be the same as or to a degree that does not significantly differ from the thickness of the main body portion 141 .
전술한 바와 같이 실제 제조공정에 적용해 본 결과, 본체부(141) 및 파단지지부(142a)의 압축률 차이가 30%를 초과할 경우 구조 연약부(142b)가 변형되어 효과적으로 형성되지 않는 것으로 확인되었다. 동일한 두께의 금속재 모재를 사용할 경우 압축률은 두께와 비례하게 되므로, 본 발명에서 파단지지부(142b)의 두께는 본체부(141)의 두께에 대응하는 두께를 가진다는 것은 그 차이가 30% 이하인 것을 의미한다.As a result of application to the actual manufacturing process as described above, it was confirmed that when the difference in compressibility between the body part 141 and the fracture support part 142a exceeds 30%, the structurally weak part 142b is deformed and is not formed effectively. It became. Since the compressibility is proportional to the thickness when using a metal base material of the same thickness, in the present invention, the thickness of the fracture support portion 142b having a thickness corresponding to the thickness of the main body portion 141 means that the difference is 30% or less. it means.
이 같은 파단 지지부(142a)는 전체 캡 플레이트(140)를 성형하는 상부 금형 및 하부 금형에 의해 한 차례의 프레싱 공정에서 함께 성형된다. 따라서 상기 파단 지지부(142a)의 압축률은 본체부(141)의 압축률과 대응되는 압축률을 가진다. 즉 파단 지지부(142a)의 압축률은 본체부(141)의 압축률과 동일하거나 그 차이가 30% 이하에서 결정되는 것이 바람직하다.The fracture supporting portion 142a is molded together in a single pressing process by an upper mold and a lower mold that mold the entire cap plate 140 . Accordingly, the compression rate of the fracture support portion 142a has a compression rate corresponding to that of the body portion 141 . That is, it is preferable that the compressibility of the fracture support portion 142a is the same as that of the main body portion 141 or the difference is determined to be 30% or less.
이 같은 파단 지지부(142a) 역시 전체 캡 플레이트(140)를 성형하는 상부 금형 및 하부 금형에 의해 한 차례의 프레싱 공정에서 함께 성형되기 때문에 그 두께를 다른 부위(전체 캡 플레이트)에 비해 더 두껍거나 더 얇게 제어하는 것은 용이하지 않다. 실제 파단 지지부(142a)의 두께를 두껍게 할 경우 압축률이 낮아 기계적 견고성이 떨어지게 되고 이는 곧 파단을 기대하지 않는 부위인 파단 지지부(142a) 자체의 파단을 유도할 수 있다. 반대로 파단 지지부(142a)의 두께를 얇게 할 경우 프레싱 공정에서 파단 지지부(142a)의 압축률이 과도하게 이루어지게 되면 파단 지지부(142a) 또는 그 주변에서 급격한 소재의 변화에 따른 좌굴의 발생, 응력의 집중, 주름의 발생 등으로 파단 지지부(142a) 자체에 결함이 발생될 수 있다. 또한, 파단 지지부(142a)의 압축률이 과도할 경우 구조 연약부(142b)의 전단변형을 방해하게 되어 원하는 두께 및 형상의 구조 연약부(142b)가 형성되지 않을 수 있다.Since the fracture supporting portion 142a is also molded together in one pressing process by the upper and lower molds that mold the entire cap plate 140, its thickness is thicker or longer than other parts (the entire cap plate). Thin control is not easy. When the thickness of the actual breakage support 142a is increased, the compressibility is low and the mechanical robustness is deteriorated, which may lead to breakage of the breakage support 142a itself, which is an area where breakage is not expected. Conversely, when the thickness of the fracture support 142a is thinned, if the compressibility of the fracture support 142a is excessive in the pressing process, buckling occurs due to rapid material change in the fracture support 142a or its surroundings, and concentration of stress occurs. Defects may occur in the fracture support 142a itself due to the occurrence of wrinkles or the like. In addition, if the compressibility of the fracture supporting portion 142a is excessive, shear deformation of the structurally weak portion 142b is hindered, and thus the structurally weak portion 142b having a desired thickness and shape may not be formed.
본 발명에서는 파단 지지부(142a)의 두께를 캡 플레이트(140)의 본체부(141)의 두께와 대응되는 두께로 형성함으로써 구조 연약부(142b)의 바람직한 전단변형을 유도하여 효과적인 파단 특성을 갖는 구조 연약부(142b)를 형성할 수 있으며, 파단 지지부(142a)에서 기대하지 않은 파단을 방지하고 프레싱 공정에서 이루어질 수 있는 파단 지지부(142a)의 구조적 결함을 예방하게 된다.In the present invention, the thickness of the fracture support portion 142a is formed to a thickness corresponding to that of the body portion 141 of the cap plate 140, thereby inducing desirable shear deformation of the weak structural portion 142b, thereby having effective fracture characteristics. A weak portion 142b may be formed, and unexpected breakage of the fracture support portion 142a may be prevented, and structural defects of the fracture support portion 142a that may occur in a pressing process may be prevented.
또한 상기 파단 지지부(142a)는 본체부(141)의 평면방향과 어긋나게 배치되는 특징을 갖는다. 전체적으로 평탄한 수평면을 가지게 형성되는 본체부(141)에서 상기 파단 지지부(142a)는 수평면의 상하 방향 중 한 방향으로 돌출 형성됨으로써 구조 연약부(142b)의 파단시 파단 부위가 쉽게 들려지게 만들고 파단이 이루어지지 않은 부위의 구조 연약부(142b)를 중심으로 파단 지지부(142a)가 내부 압력에 의해 용이하게 회전될 수 있게 만든다. 이 같이 파단 부위가 쉽게 들려지게 만들고 파단이 이루어지지 않은 부위의 구조 연약부(142b)를 중심으로 한 파단 지지부(142a)의 회전은 구조 연약부(142b)의 파단 후 내부 가스의 배출 경로가 막히지 않도록 할 것이다. In addition, the breakage support portion 142a has a feature of being displaced from the planar direction of the main body portion 141 . In the body part 141 formed to have a flat horizontal surface as a whole, the breakage support part 142a protrudes in one of the vertical directions of the horizontal plane, so that when the structural weakness part 142b is broken, the broken part is easily lifted and broken. The fracture support 142a can be easily rotated by internal pressure around the structurally weak portion 142b of the unsupported portion. In this way, the fractured portion is easily lifted, and the rotation of the fracture support portion 142a centered on the structurally weak portion 142b of the non-fractured portion prevents the internal gas discharge path from being blocked after the structurally weak portion 142b is fractured. will make sure not
이 같은 파단 지지부(142a)의 다양한 형태는 이하의 도 3 내지 도 7에서 도면을 참조하여 상세히 설명될 것이다. Various forms of the fracture support 142a will be described in detail with reference to the drawings in FIGS. 3 to 7 below.
또한 상기 구조 연약부(142b)는 전체적으로 상기 파단 지지부(142a)를 둘러싸면서 상기 파단 지지부(142a)와 본체부(141) 간의 경계에 형성되며, 외력에 의해 파단이 유도될 수 있도록 파단 지지부(142a)와 본체부(141)의 사이에서 전단변형되어 변형률이 커지는 부위에 형성됨으로써 물리적으로뿐만 아니라 재료적으로도 효율적인 파단 특성을 가지게 된다. In addition, the structurally weak part 142b surrounds the breakable support part 142a as a whole and is formed at the boundary between the breakage support part 142a and the body part 141, and the breakage support part 142a can induce breakage by an external force. ) and the body portion 141, it is sheared and formed in a region where the strain increases, so that it has efficient breaking characteristics not only physically but also materially.
이러한 구조 연약부(142b)는 그 중 한 곳에서 점 혹은 선 형태로 파단이 이루어질 수 있다. One of these structurally weak parts 142b may be broken in a point or line shape.
이 같은 구조 연약부(142b)는 전체 캡 플레이트(140)를 성형하는 상부 금형 및 하부 금형에 의해 한 차례의 프레싱 공정에서 상기 파단 지지부(142a)와 함께 성형된다. The structurally weak portion 142b is molded together with the fracture support portion 142a in a single pressing process by an upper mold and a lower mold that mold the entire cap plate 140 .
또한 구조 연약부(142b)는 본체부(141)를 둘러싸는 형태로 성형되어 그 단면 형상이 대칭을 가지게 성형된다. 따라서, 이차 전지 내압 상승시 특정 방향으로만의 급격한 파열 또는 파단을 방지할 수 있다.In addition, the weak structural portion 142b is formed in a shape surrounding the body portion 141 so that its cross-sectional shape is symmetrical. Therefore, when the internal pressure of the secondary battery rises, it is possible to prevent rapid rupture or breakage only in a specific direction.
본 발명에서는 구조 연약부(142b)가 전단변형되어 변형률이 커지는 부위에 상대적으로 얇은 두께로 형성됨으로써 물리적으로 이차 전지 내압 증가시 응력 집중을 유도할 수 있음은 물론 재료적으로도 해당 부위의 재료성질이 구조적으로 파열 또는 파단에 적합한 성질을 가지게 되어 효율적인 파열 또는 파단을 유도할 수 있다.In the present invention, since the weak structural portion 142b is formed with a relatively thin thickness at a portion where the strain is increased due to shear deformation, stress concentration can be physically induced when the internal pressure of the secondary battery is increased, as well as material properties of the corresponding portion. This structurally has a property suitable for rupture or fracture, so that efficient rupture or fracture can be induced.
또한, 구조 연약부(142b)의 단면 형상이 대칭을 가지게 하여 파단이 이루어진 부위가 쉽게 들려지게 만들고 파단이 이루어지지 않은 부위의 구조 연약부(142b)를 중심으로 파단 지지부(142a)가 내부 압력에 의해 용이하게 회전될 수 있게 만든다. 이 같이 파단 부위가 쉽게 들려지게 만들고 파단이 이루어지지 않은 부위의 구조 연약부(142b)를 중심으로 한 파단 지지부(142a)의 회전은 구조 연약부(142b)의 파단 후 내부 가스의 배출 경로가 막히지 않도록 할 것이다. In addition, the cross-sectional shape of the structurally weak portion 142b is symmetrical so that the fractured portion can be easily lifted, and the fracture support portion 142a is resistant to internal pressure around the structurally weak portion 142b of the non-broken portion. makes it easy to rotate. In this way, the fractured portion is easily lifted, and the rotation of the fracture support portion 142a centered on the structurally weak portion 142b of the non-fractured portion prevents the internal gas discharge path from being blocked after the structurally weak portion 142b is fractured. will make sure not
도 5는 본 발명의 제 1 실시형태를 설명하기 위한 도면이다. 5 is a diagram for explaining the first embodiment of the present invention.
도 5의 (a)에 도시된 바와 같이 캡 플레이트(140)의 본체부(141)에는 벤트부(142)가 단일 프레싱 공정에 의해 함께 성형된다. As shown in (a) of FIG. 5 , the vent portion 142 is formed together with the body portion 141 of the cap plate 140 through a single pressing process.
도 5의 (b)를 참고하면, 제 1 실시형태에서 벤트부(142)의 파단 지지부(142a)는 전체적으로 타원형으로 형성되며 평평한 플레이트 형상을 가진다. 그리고 이 파단 지지부(142a)가 평평한 플레이트 형상의 본체부(141)와 높이차를 가지게 결합됨으로써 해당 파단 지지부(142a)를 둘러싸는 경계에서 전단변형되어 변형률이 커진 부위에 상대적으로 얇은 두께로 구조 연약부(142b)가 함께 형성된다. Referring to (b) of FIG. 5 , in the first embodiment, the fracture support portion 142a of the bent portion 142 is generally formed in an elliptical shape and has a flat plate shape. In addition, as the fracture support portion 142a is coupled with the flat plate-shaped main body portion 141 with a height difference, the shear deformation at the boundary surrounding the fracture support portion 142a causes structural weakness with a relatively thin thickness in the region where the strain is increased. A portion 142b is formed together.
상기 파단 지지부(142a)를 둘러싸는 결합측면의 전체 수직길이 중 10 내지 20%가 상기 본체부(141)의 결합측면에 연결됨으로써 구조 연약부(142b)가 구성되는 것이다. 즉 파단 지지부(142a)와 본체부(141)는 결합측면을 10 내지 20% 공유하게 되는 것이다. 10 to 20% of the total vertical length of the coupling side surface surrounding the fracture support portion 142a is connected to the coupling side surface of the body portion 141, thereby forming the structurally weak portion 142b. That is, the fracture support 142a and the main body 141 share 10 to 20% of the coupling side.
이 같은 구조 연약부(142b)는 가스 발생으로 전지 내압이 상승할 경우 파단되어 내부의 가스를 외부로 방출하는 부위가 되며, 파단 지지부(142a)와 본체부(141)가 공유하는 결합측면의 비율이 낮을수록 낮은 내압에도 파단이 이루어지고 공유하는 결합측면의 비율이 높을수록 높은 내압을 견디게 될 것이다. The structurally weak portion 142b is broken when the internal pressure of the battery rises due to gas generation, and becomes a portion for discharging internal gas to the outside. The lower this is, the rupture will occur even at a lower internal pressure, and the higher the ratio of the joint surfaces that are shared, the higher the internal pressure will be endured.
여기에서 파단 지지부(142a)는 플레이트 형상으로서 그 두께를 캡 플레이트(140)의 본체부(141)의 두께와 대응되는 두께로 형성함으로써 전단변형된 구조 연약부(142b)를 효과적으로 형성하고 파단 지지부(142a)에서 기대하지 않은 파단을 방지할 수 있다. Here, the fracture support portion 142a has a plate shape and has a thickness corresponding to that of the body portion 141 of the cap plate 140 to effectively form the shear-deformed structurally weak portion 142b, and the fracture support portion ( In 142a), unexpected breakage can be prevented.
그리고 구조 연약부(142b)를 이루는 파단 지지부(142a)와 본체부(141)가 공유하는 결합측면의 간단하고 직관적인 비율 조절을 통해 다양한 사양의 안전 벤트를 만들 수 있게 될 것이다. In addition, it will be possible to create safety vents of various specifications through simple and intuitive ratio adjustment of the coupling surface shared by the fracture support portion 142a constituting the structurally weak portion 142b and the main body portion 141.
도 6는 본 발명의 제 2 실시형태를 설명하기 위한 도면이다. 6 is a diagram for explaining a second embodiment of the present invention.
도 6의 (a)에 도시된 바와 같이 캡 플레이트(140)의 본체부(141)에는 벤트부(142)가 단일 프레싱 공정에 의해 함께 성형된다. As shown in (a) of FIG. 6 , the vent portion 142 is formed together with the body portion 141 of the cap plate 140 by a single pressing process.
도 6의 (b)를 참고하면, 제 2 실시형태에서 벤트부(142)의 파단 지지부(142a)는 전체적으로 타원형으로 형성되며 평평한 플레이트 형상을 가진다. 그리고 이 파단 지지부(142a)가 평평한 플레이트 형상의 본체부(141)와 높이차를 가지게 결합됨으로써 해당 파단 지지부(142a)를 둘러싸는 경계에서 전단변형되어 변형률이 커진 부위에 상대적으로 얇은 두께로 구조 연약부(142b)가 함께 형성된다. Referring to (b) of FIG. 6 , in the second embodiment, the fracture support portion 142a of the bent portion 142 is generally formed in an elliptical shape and has a flat plate shape. In addition, as the fracture support portion 142a is coupled with the flat plate-shaped main body portion 141 with a height difference, the shear deformation at the boundary surrounding the fracture support portion 142a causes structural weakness with a relatively thin thickness in the region where the strain is increased. A portion 142b is formed together.
상기 파단 지지부(142a)를 둘러싸는 결합측면의 전체 수직길이 중 21 내지 70%가 상기 본체부(141)의 결합측면에 연결됨으로써 구조 연약부(142b)가 구성되는 것이다. 즉 파단 지지부(142a)와 본체부(141)는 결합측면을 21 내지 70% 공유하게 되는 것이다. 21 to 70% of the total vertical length of the coupling side surface surrounding the fracture support portion 142a is connected to the coupling side surface of the body portion 141, thereby forming the structurally weak portion 142b. That is, the fracture support portion 142a and the main body portion 141 share 21 to 70% of the coupling side.
이 같은 구조 연약부(142b)는 가스 발생으로 전지 내압이 상승할 경우 파단되어 내부의 가스를 외부로 방출하는 부위가 되며, 파단 지지부(142a)와 본체부(141)가 공유하는 결합측면의 비율이 낮을수록 낮은 내압에도 파단이 이루어지고 공유하는 결합측면의 비율이 높을수록 높은 내압을 견디게 될 것이다. The structurally weak portion 142b is broken when the internal pressure of the battery rises due to gas generation, and becomes a portion for discharging internal gas to the outside. The lower this is, the rupture will occur even at a lower internal pressure, and the higher the ratio of the joint surfaces that are shared, the higher the internal pressure will be endured.
여기에서 파단 지지부(142a)는 플레이트 형상으로서 그 두께를 캡 플레이트(140)의 본체부(141)의 두께와 대응되는 두께로 형성함으로써 전단변형된 구조 연약부(142b)를 효과적으로 형성하고 파단 지지부(142a)에서 기대하지 않은 파단을 방지할 수 있다. Here, the fracture support portion 142a has a plate shape and has a thickness corresponding to that of the body portion 141 of the cap plate 140 to effectively form the shear-deformed structurally weak portion 142b, and the fracture support portion ( In 142a), unexpected breakage can be prevented.
그리고 구조 연약부(142b)를 이루는 파단 지지부(142a)와 본체부(141)가 공유하는 결합측면의 간단하고 직관적인 비율 조절을 통해 다양한 사양의 안전 벤트를 만들 수 있게 될 것이다. In addition, it will be possible to create safety vents of various specifications through simple and intuitive ratio adjustment of the coupling surface shared by the fracture support portion 142a constituting the structurally weak portion 142b and the main body portion 141.
특히 제 1 실시예의 구조 연약부(142b)에 비해 제 2 실시예의 구조 연약부(142b)에서 파단 지지부(142a)와 본체부(141)가 공유하는 결합측면의 비율이 높기 때문에 해당 구조 연약부(142b)가 높은 내압을 견디게 될 것이다. 또한 제 1 실시예에 비해 제 2 실시예의 파단 지지부(142a)가 수직방향 돌출량이 적어 컴팩트한 구성이 가능하고 조립성이 개선될 수 있게 될 것이다. In particular, compared to the structurally weak portion 142b of the first embodiment, in the structurally weak portion 142b of the second embodiment, since the ratio of the coupling side shared by the fracture support portion 142a and the body portion 141 is high, the corresponding structurally weak portion ( 142b) will withstand high internal pressure. In addition, compared to the first embodiment, the fracture support 142a of the second embodiment has a small amount of protrusion in the vertical direction, enabling a compact configuration and improving assemblyability.
도 7는 본 발명의 제 3 실시형태를 설명하기 위한 도면이다. 7 is a diagram for explaining a third embodiment of the present invention.
도 7의 (a)에 도시된 바와 같이 캡 플레이트(140)의 본체부(141)에는 벤트부(142)가 단일 프레싱 공정에 의해 함께 성형된다. As shown in (a) of FIG. 7 , the vent portion 142 is formed together with the body portion 141 of the cap plate 140 through a single pressing process.
도 7의 (b)를 참고하면, 제 3 실시형태에서 벤트부(142)의 파단 지지부(142a)는 전체적으로 타원형으로 형성되며 평평한 플레이트 형상을 가진다. 그리고 이 파단 지지부(142a)가 평평한 플레이트 형상의 본체부(141)와 높이차를 가지게 결합됨으로써 해당 파단 지지부(142a)를 둘러싸는 경계에서 전단변형되어 변형률이 커진 부위에 상대적으로 얇은 두께로 구조 연약부(142b)가 함께 형성된다. Referring to (b) of FIG. 7 , in the third embodiment, the fracture support portion 142a of the bent portion 142 is generally formed in an elliptical shape and has a flat plate shape. In addition, as the fracture support portion 142a is coupled with the flat plate-shaped main body portion 141 with a height difference, the shear deformation at the boundary surrounding the fracture support portion 142a causes structural weakness with a relatively thin thickness in the region where the strain is increased. A portion 142b is formed together.
상기 파단 지지부(142a)를 둘러싸는 결합측면은 상기 본체부(141)의 결합측면과 결합측면을 공유하지 않게 되며, 얇은 띠 형상으로 구조 연약부(142b)가 프레싱 공정에 의해 성형되게 된다. The coupling side surface surrounding the fracture support portion 142a does not share the coupling side surface with the coupling side surface of the body portion 141, and the weak structural portion 142b is formed in a thin belt shape by a pressing process.
이 같은 구조 연약부(142b)는 가스 발생으로 전지 내압이 상승할 경우 파단되어 내부의 가스를 외부로 방출하는 부위가 된다. Such a structurally weak portion 142b is broken when the internal pressure of the battery rises due to gas generation, and becomes a portion for discharging internal gas to the outside.
여기에서 파단 지지부(142a)는 플레이트 형상으로서 그 두께를 캡 플레이트(140)의 본체부(141)의 두께와 대응되는 두께로 형성함으로써 전단변형된 구조 연약부(142b)를 효과적으로 형성하고 파단 지지부(142a)에서 기대하지 않은 파단을 방지할 수 있다. Here, the fracture support portion 142a has a plate shape and has a thickness corresponding to that of the body portion 141 of the cap plate 140 to effectively form the shear-deformed structurally weak portion 142b, and the fracture support portion ( In 142a), unexpected breakage can be prevented.
특히 제 1 실시예 및 제 2 실시예의 구조 연약부(142b)에 비해 제 3 실시예의 구조 연약부(142b)는 얇은 띠 형상으로 성형되기 때문에 낮은 내압에도 파단이 쉽게 이루어지게 될 것이다. In particular, compared to the structurally weak portions 142b of the first and second embodiments, since the structurally weak portion 142b of the third embodiment is molded into a thin strip shape, it will be easily broken even at a low internal pressure.
도 8은 본 발명의 제 4 실시형태를 설명하기 위한 도면이다. 8 is a diagram for explaining a fourth embodiment of the present invention.
도 8의 (a)에 도시된 바와 같이 캡 플레이트(140)의 본체부(141)에는 벤트부(142)가 단일 프레싱 공정에 의해 함께 성형된다. As shown in (a) of FIG. 8 , the vent portion 142 is formed together with the body portion 141 of the cap plate 140 by a single pressing process.
도 8의 (b)를 참고하면, 제 4 실시형태에서 벤트부(142)의 파단 지지부(142a)는 전체적으로 타원형으로 형성되며 평평한 플레이트 형상을 가지고 상기 본체부(141)의 두께와 대응되는 두께로 형성되며, 상기 본체부(141)와 동일한 높이에 형성되는 베이스부(142a1)와 상기 베이스부(142a1)에서 ㄱ자 형상을 가지고 상부로 돌출되게 연장되어 형성되는 절곡부(142a2)를 포함하여 형성된다. 여기에서 절곡부(142a2)는 상기 베이스부(142a1)에서 수직하게 연장되는 제 1 연장부(142a3)와 이 제 1 연장부(142a3)에서 수평하게 연장되는 제 2 연장부(142a4)로 구성된다. 그리고 수평하게 형성된 상기 베이스부(142a1)는 상기 본체부(141)와 동일한 수직높이를 가지며, 상기 제 1 연장부(142a3)에 의해 상부로 돌출되는 제 2 연장부(142a4)는 상기 본체부(141)에 비해 상부로 돌출되게 된다. 그리고 상기 제 2 연장부(142a4)를 둘러싸는 결합측면은 상기 본체부(141)의 결합측면과 결합측면을 공유하지 않게 되며, 얇은 띠 형상으로 구조 연약부(142b)가 프레싱 공정에 의해 성형되게 된다. Referring to (b) of FIG. 8 , in the fourth embodiment, the fracture support portion 142a of the bent portion 142 is formed in an oval shape as a whole, has a flat plate shape, and has a thickness corresponding to that of the body portion 141. It is formed, and is formed including a base portion 142a1 formed at the same height as the body portion 141 and a bent portion 142a2 formed to protrude upward from the base portion 142a1 in an L-shape. . Here, the bent part 142a2 is composed of a first extension part 142a3 extending vertically from the base part 142a1 and a second extension part 142a4 extending horizontally from the first extension part 142a3. . And the base part 142a1 formed horizontally has the same vertical height as the body part 141, and the second extension part 142a4 protruding upward by the first extension part 142a3 is the main body part ( 141), it protrudes upward. In addition, the coupling side surface surrounding the second extension portion 142a4 does not share the coupling side surface with the coupling side surface of the main body portion 141, and the weak structural portion 142b is formed in a thin strip shape by a pressing process. do.
이 같은 구조 연약부(142b)는 가스 발생으로 전지 내압이 상승할 경우 파단되어 내부의 가스를 외부로 방출하는 부위가 된다. Such a structurally weak portion 142b is broken when the internal pressure of the battery rises due to gas generation, and becomes a portion for discharging internal gas to the outside.
여기에서 파단 지지부(142a)는 그 두께를 전체적으로 캡 플레이트(140)의 본체부(141)의 두께와 대응되는 두께로 형성함으로써 전단변형된 구조 연약부(142b)를 효과적으로 형성하고 파단 지지부(142a)에서 기대하지 않은 파단을 방지할 수 있다. Here, the fracture support portion 142a has a thickness corresponding to the thickness of the body portion 141 of the cap plate 140 as a whole, thereby effectively forming the shear-deformed structurally weak portion 142b and breaking support portion 142a. Unexpected breakage can be prevented.
특히 대략 평면 형상으로 파단 지지부(142a)가 형성되는 제 1 실시예 내지 제 3 실시예에 비해 파단 지지부(142a)의 외곽 부위가 상부로 돌출된 호 형상을 가지기 때문에 해당 부위에 내압이 집중될 수 있어 제 1 실시예 내지 제 3 실시예의 구조 연약부(142b)에 비해 제 4 실시예의 구조 연약부(142b)는 낮은 내압에도 파단이 쉽게 이루어지게 될 것이다. In particular, compared to the first to third embodiments in which the fracture support portion 142a is formed in a substantially flat shape, since the outer portion of the fracture support portion 142a has an arc shape protruding upward, the internal pressure can be concentrated at the corresponding portion. Therefore, compared to the structurally weak portions 142b of the first to third embodiments, the structurally weak portion 142b of the fourth embodiment is easily broken even at a low internal pressure.
도 9는 본 발명의 제 5 실시형태를 설명하기 위한 도면이다. Fig. 9 is a diagram for explaining a fifth embodiment of the present invention.
도 9의 (a)에 도시된 바와 같이 캡 플레이트(140)의 본체부(141)에는 벤트부(142)가 단일 프레싱 공정에 의해 함께 성형된다. As shown in (a) of FIG. 9 , the vent portion 142 is formed together with the body portion 141 of the cap plate 140 through a single pressing process.
도 9의 (b)를 참고하면, 제 5 실시형태에서 벤트부(142)의 파단 지지부(142a)는 전체적으로 선형으로 형성되며 평평한 플레이트 형상을 가지고 상기 본체부(141)의 두께와 대응되는 두께로 형성된다. Referring to (b) of FIG. 9 , in the fifth embodiment, the fracture support portion 142a of the bent portion 142 is formed in a generally linear shape, has a flat plate shape, and has a thickness corresponding to that of the main body portion 141. is formed
이때 상기 파단 지지부(142a)는 도 9의 (a)에 도시된 바와 같이 라인 형태의 직선부(142a5)에서 그 양 끝단에 제 1 꺽임부(142a6) 및 제 2 꺽임부(142a7)가 연결된 형상이다. 구체적으로, 상기 직선부(142a5)는 본체부(141)의 중앙에서 가로 방향으로 형성된다. 그리고, 상기 제 1 꺽임부(142a6) 및 제 2 꺽임부(142a7)는 직선부(142a5)의 양 끝단에서 직선부(142a5)의 밖을 향해 연장되어 형성되며, 'V'자형이다. 즉 'V'자형의 중심부위가 직선부(142a5)의 말단에 연장되는 형태로 형성된다. 이 같은 선 형태의 직선부(142a5), 제 1 꺽임부(142a6) 및 제 2 꺽임부(142a7)는 파단시 파단의 전달에 의해 함께 파단될 수 있다. At this time, as shown in (a) of FIG. 9, the breakage support part 142a has a shape in which the first bent part 142a6 and the second bent part 142a7 are connected to both ends of the line-shaped straight part 142a5. am. Specifically, the straight portion 142a5 is formed in the horizontal direction at the center of the body portion 141 . The first bent portion 142a6 and the second bent portion 142a7 extend from both ends of the straight portion 142a5 toward the outside of the straight portion 142a5 and have a 'V' shape. That is, the 'V'-shaped central portion extends to the end of the straight portion 142a5. The linear portion 142a5, the first bent portion 142a6, and the second bent portion 142a7 may be broken together by transmission of the fracture when broken.
그리고 수평하게 형성된 상기 직선부(142a5), 제 1 꺽임부(142a6) 및 제 2 꺽임부(142a7)는 상기 본체부(141)에 비해 상부로 돌출되게 된다. 그리고 상기 직선부(142a5), 제 1 꺽임부(142a6) 및 제 2 꺽임부(142a7)를 둘러싸는 결합측면은 상기 본체부(141)의 결합측면과 결합측면을 공유하지 않게 되며, 얇은 띠 형상으로 구조 연약부(142b)가 프레싱 공정에 의해 성형되게 된다. In addition, the straight portion 142a5 formed horizontally, the first bent portion 142a6 and the second bent portion 142a7 protrude upward compared to the body portion 141 . And the coupling side surfaces surrounding the straight portion 142a5, the first bent portion 142a6, and the second bent portion 142a7 do not share the coupling side surface with the coupling side surface of the body portion 141, thin strip shape As a result, the structurally weak portion 142b is molded by a pressing process.
이 같은 구조 연약부(142b)는 가스 발생으로 전지 내압이 상승할 경우 파단되어 내부의 가스를 외부로 방출하는 부위가 된다. Such a structurally weak portion 142b is broken when the internal pressure of the battery rises due to gas generation, and becomes a portion for discharging internal gas to the outside.
여기에서 파단 지지부(142a)는 그 두께를 전체적으로 캡 플레이트(140)의 본체부(141)의 두께와 대응되는 두께로 형성함으로써 전단변형된 구조 연약부(142b)를 효과적으로 형성하고 파단 지지부(142a)에서 기대하지 않은 파단을 방지할 수 있다. Here, the fracture support portion 142a has a thickness corresponding to the thickness of the body portion 141 of the cap plate 140 as a whole, thereby effectively forming the shear-deformed structurally weak portion 142b and breaking support portion 142a. Unexpected breakage can be prevented.
상술한 제 1 실시형태 내지 제 5 실시형태의 캡 플레이트는(140)는 판상의 금속 모재에 대해 도 3에 도시된 바와 같은 상부 금형 및 하부 금형을 이용해 프레스 가공을 적용함으로써 형성될 수 있다. The cap plate 140 of the first to fifth embodiments described above may be formed by applying press working to a plate-shaped metal base material using an upper mold and a lower mold as shown in FIG. 3 .
구체적으로는 상부 금형 및 하부 금형 사이에 원소재 금속판을 개재하고 소정의 압력을 적용하는 프레스 가공을 통하여, 원소재 금속판을 캡 플레이트(140)로 형성할 수 있다. Specifically, the raw metal plate may be formed into the cap plate 140 through press working in which the raw metal plate is interposed between the upper mold and the lower mold and a predetermined pressure is applied.
또한 캡 플레이트(140)에 대한 한 차례 프레스 가공시 사용되는 상부 금형 및 하부 금형에는 판상으로 형성되는 캡 플레이트(140)의 본체부(141) 뿐만 아니라 상술한 제 1 실시형태 내지 제 5 실시형태의 벤트부(142)를 성형할 수 있는 성형 부위가 포함되어 캡 플레이트(140)의 본체부(141)에는 벤트부(142)가 프레싱 공정에 의해 함께 성형되게 된다. In addition, in the upper and lower molds used for press processing of the cap plate 140 once, not only the main body 141 of the cap plate 140 formed in a plate shape, but also those of the first to fifth embodiments described above are formed. A forming portion capable of forming the bent portion 142 is included, so that the bent portion 142 is molded together with the main body portion 141 of the cap plate 140 by a pressing process.
즉 상부 금형 또는 하부 금형 중 일측에는 상기 벤트부(142)의 파단 지지부(142a) 형상의 돌출부가 형성되고(도 8의 (a) 참조) 타측에는 이 돌출부에 대응되는 오목부가 형성되어(도 8의 (b) 참조) 파단 지지부(142a)를 성형할 수 있게 된다. That is, a protrusion in the shape of the breakage support 142a of the bent part 142 is formed on one side of the upper mold or the lower mold (see FIG. 8(a)), and a concave portion corresponding to the protrusion is formed on the other side (FIG. 8 (b) of) it is possible to mold the fracture support portion 142a.
또한 상기 돌출부의 측면과 오목부의 측면의 사이에는 빈 간극부가 형성되어 구조 연약부(142b)를 성형할 수 있게 된다. In addition, an empty gap is formed between the side surface of the protruding portion and the side surface of the concave portion, so that the structurally weak portion 142b can be formed.
상기 간극부는 상부 금형이나 하부 금형의 돌출부와 오목부에 의해 프레스의 수직 압력이 직접적으로 가해지지 않기 때문에 전단력이 발생될 것이다(도 3의 (c) 참조). 또한, 프레스된 상태에서 파단지지부(142a)의 압축률은 본체부(141)의 압축률과 대응하는 압축률을 가지게 되어 상기 간극부를 통해 효율적으로 전단력이 발생할 것이다. 이 같은 금형의 구조적 전단력 인가에 의해 상기 구조 연약부(142b)는 파단 지지부(142a)나 본체부(141)에 비해 전단변형이 집중되어 변형률이 커지는 부위에 상대적으로 얇게 형성되어, 물리적으로뿐만 아니라 재료적으도도 파열 또는 파단에 적합한 구조 및 성질을 가지게 되어 이차 전지 내압 상승시 보다 빠르고 정확하게 효과적으로 파열 또는 파단될 수 있는 효율적인 벤트 구조를 형성할 수 있게 된다.Since the vertical pressure of the press is not directly applied to the gap portion by the protrusions and concave portions of the upper or lower mold, shear force will be generated (see (c) of FIG. 3). In addition, in the pressed state, the compression rate of the fracture support portion 142a has a compression rate corresponding to that of the main body portion 141, so that shear force is efficiently generated through the gap portion. By applying the structural shear force of the mold, the structurally weak portion 142b is formed relatively thinly in the area where the shear deformation is concentrated and the strain increases compared to the fracture support portion 142a or the main body portion 141, not only physically but also In terms of materials, it has a structure and property suitable for rupture or fracture, so that an efficient vent structure capable of being ruptured or ruptured more quickly and accurately when the internal pressure of a secondary battery rises can be formed.
특히 이 같은 금형의 빈 간극부에 대한 간격 조정을 통해 전체적인 벤트부(142)의 파단 압력을 간단하게 직관적으로 설정할 수 있어서 다양한 사양의 안전 벤트를 만들 수 있게 될 것이다. In particular, it is possible to easily and intuitively set the breaking pressure of the entire vent part 142 through the adjustment of the gap between the hollow gaps of the mold, so that safety vents with various specifications can be made.
따라서 전체적인 캡 플레이트 (140)의 제조 공정에서 별도의 벤트부(142) 형성을 위한 공정이 추가되지 않기 때문에 부품 단일화를 통한 제조 공정의 축소가 가능하고 이를 통해 제조 원가를 절감시킬 수 있게 될 것이다. Therefore, since a separate process for forming the vent portion 142 is not added in the overall manufacturing process of the cap plate 140, the manufacturing process can be reduced through unifying parts, and manufacturing cost can be reduced through this.
이상과 같이 도면과 명세서에서 최적 실시 예가 개시되었다. 여기서 특정한 용어들이 사용되었으나, 이는 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미 한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시 예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.As described above, the optimal embodiment has been disclosed in the drawings and specifications. Although specific terms have been used herein, they are only used for the purpose of describing the present invention and are not used to limit the scope of the present invention described in the claims. Therefore, those skilled in the art will understand that various modifications and equivalent other embodiments are possible therefrom. Therefore, the true technical protection scope of the present invention should be determined by the technical spirit of the appended claims.

Claims (17)

  1. 전극 조립체를 수용하는 케이스를 밀봉하기 위한 캡 플레이트로서,A cap plate for sealing a case accommodating an electrode assembly,
    상기 전극 조립체를 덮는 본체부; 및 a body portion covering the electrode assembly; and
    상기 본체부에 형성되는 벤트부; 를 포함하며, a vent part formed in the body part; Including,
    상기 벤트부와 상기 본체부는 단일 프레스 공정에 의해 함께 형성되며,The vent portion and the body portion are formed together by a single press process,
    상기 벤트부는, 본체부와 대응되는 두께를 가지며, 본체부의 평면방향과 어긋나게 배치되는 파단 지지부와 상기 파단 지지부와 본체부 간의 경계에서 전단변형되어 형성되는 구조 연약부로 이루어지는 것을 특징으로 하는 이차 전지용 캡 플레이트.The cap plate for a secondary battery of claim 1 , wherein the vent portion includes a breakage support portion having a thickness corresponding to that of the body portion and displaced from a planar direction of the body portion, and a structurally weak portion formed by shear deformation at a boundary between the breakage support portion and the body portion. .
  2. 제 1항에 있어서, According to claim 1,
    상기 파단 지지부의 압축률은 상기 본체부의 압축률과 대응되는 압축률을 가지는 것을 특징으로 하는 이차 전지용 캡 플레이트.A cap plate for a secondary battery, characterized in that the compressibility of the breakage supporting part has a compression ratio corresponding to that of the main body part.
  3. 제 1항에 있어서, According to claim 1,
    상기 파단 지지부는 본체부의 수평면의 상하 방향 중 한 방향으로 돌출 형성되는 것을 특징으로 하는 이차 전지용 캡 플레이트.The cap plate for a secondary battery, characterized in that the breakage support part protrudes in one of the vertical directions of the horizontal surface of the body part.
  4. 제 1항에 있어서, According to claim 1,
    상기 구조 연약부는 전단변형되어 변형률이 커진 부위에 상대적으로 얇은 두께로 형성되는 것을 특징으로 하는 이차 전지용 캡 플레이트.The cap plate for a secondary battery, characterized in that the structurally weak portion is formed with a relatively thin thickness in a portion where the strain is increased due to shear deformation.
  5. 제 1항에 있어서,According to claim 1,
    상기 구조연약부는 상기 파단 지지부 및 상기 본체부 보다 연성이 작은 것을 특징으로 하는 이차 전지용 캡 플레이트.The cap plate for a secondary battery, characterized in that the structurally weak portion has less ductility than the fracture support portion and the main body portion.
  6. 제 1항에 있어서, According to claim 1,
    상기 구조 연약부는 상기 파단 지지부를 둘러싸는 형태로 성형되어 그 단면 형상이 대칭을 가지게 성형되는 것을 특징으로 하는 이차 전지용 캡 플레이트.The cap plate for a secondary battery, wherein the structurally weak portion is formed in a shape surrounding the fracture support portion so that the cross-sectional shape thereof is symmetrical.
  7. 제 1항에 있어서, According to claim 1,
    상기 벤트부의 파단 지지부는, 평평한 플레이트 형상을 가지며, 이 파단 지지부가 평평한 플레이트 형상의 본체부와 높이차를 가지게 결합됨으로써 해당 파단 지지부를 둘러싸는 구조 연약부와 함께 형성되는 것을 특징으로 하는 이차 전지용 캡 플레이트.The breakage support part of the vent part has a flat plate shape, and the breakage support part is coupled with the flat plate-shaped body part with a height difference, so that it is formed together with a structurally weak part surrounding the breakage support part. plate.
  8. 제 7항에 있어서, According to claim 7,
    상기 파단 지지부를 둘러싸는 결합측면의 전체 수직길이 중 10 내지 20%가 상기 본체부의 결합측면에 연결됨으로써 구조 연약부가 구성되어 파단 지지부와 본체부는 결합측면을 10 내지 20% 공유하는 것을 특징으로 하는 이차 전지용 캡 플레이트.Secondary characterized in that 10 to 20% of the total vertical length of the coupling side surface surrounding the fracture support portion is connected to the coupling side surface of the main body portion, thereby forming a structural weak portion, so that the fracture support portion and the body portion share 10 to 20% of the coupling side surface. Cap plate for batteries.
  9. 제 7항에 있어서, According to claim 7,
    상기 파단 지지부를 둘러싸는 결합측면의 전체 수직길이 중 21 내지 70%가 상기 본체부의 결합측면에 연결됨으로써 구조 연약부가 구성되어 파단 지지부와 본체부는 결합측면을 21 내지 70% 공유하는 것을 특징으로 하는 이차 전지용 캡 플레이트.Secondary characterized in that 21 to 70% of the total vertical length of the coupling side surface surrounding the fracture support portion is connected to the coupling side surface of the main body part, thereby forming a structural weak part, so that the fracture support portion and the main body share 21 to 70% of the coupling side surface. Cap plate for batteries.
  10. 제 1항에 있어서, According to claim 1,
    상기 벤트부의 파단 지지부는 평평한 플레이트 형상을 가지며, 이 파단 지지부가 평평한 플레이트 형상의 본체부와 높이차를 가지며, 파단 지지부를 둘러싸는 결합측면은 상기 본체부의 결합측면과 결합측면을 공유하지 않고 띠 형상으로 구조 연약부가 형성되는 것을 특징으로 하는 이차 전지용 캡 플레이트.The fracture support portion of the bent portion has a flat plate shape, the fracture support portion has a height difference from the flat plate-shaped body portion, and the coupling side surface surrounding the fracture support portion does not share the coupling side surface of the main body portion and is band-shaped. A cap plate for a secondary battery, characterized in that a structurally weak portion is formed by the.
  11. 제 10항에 있어서, According to claim 10,
    상기 파단 지지부는 상기 본체부와 동일한 높이에 형성되는 베이스부와 상기 베이스부에서 ㄱ자 형상을 가지고 상부로 돌출되게 연장되어 형성되는 절곡부를 포함하여 형성되며, The fracture support portion is formed including a base portion formed at the same height as the main body portion and a bent portion formed to protrude upward from the base portion in an L-shape,
    상기 절곡부는 상기 베이스부에서 수직하게 연장되는 제 1 연장부와 이 제 1 연장부에서 수평하게 연장되는 제 2 연장부로 구성되고, The bent part is composed of a first extension part extending vertically from the base part and a second extension part extending horizontally from the first extension part,
    수평하게 형성된 상기 베이스부는 상기 본체부와 동일한 수직높이를 가지며, 상기 제 1 연장부에 의해 상부로 돌출되는 제 2 연장부는 상기 본체부에 비해 상부로 돌출되는 것을 특징으로 하는 이차 전지용 캡 플레이트.The cap plate for a secondary battery of claim 1 , wherein the horizontally formed base portion has the same vertical height as the main body portion, and the second extension portion protrudes upward compared to the main body portion.
  12. 제 10항에 있어서, According to claim 10,
    상기 파단 지지부는 라인 형태의 직선부에서 그 양 끝단에 제 1 꺽임부 및 제 2 꺽임부가 연결된 형상을 가지며, The fracture support has a shape in which a first bent part and a second bent part are connected to both ends of a line-shaped straight part,
    상기 제 1 꺽임부 및 제 2 꺽임부는 직선부의 양 끝단에서 중심부위가 직선부의 말단에 연장되는 형태를 가지는 'V'자형으로 형성되며, The first bent part and the second bent part are formed in a 'V' shape having a form in which the center portion extends to the end of the straight part at both ends of the straight part,
    수평하게 형성된 상기 직선부, 제 1 꺽임부 및 제 2 꺽임부는 상기 본체부에 비해 상부로 돌출되는 것을 특징으로 하는 이차 전지용 캡 플레이트.The cap plate for a secondary battery, characterized in that the horizontally formed straight part, the first bent part and the second bent part protrude upward compared to the body part.
  13. 제 1항 내지 제 12항 중 어느 한 항에 따른 캡 플레이트를 제조하기 위한 금형으로서, A mold for manufacturing the cap plate according to any one of claims 1 to 12,
    상부 금형과 하부 금형은 금속재 모재를 개재한 상태에서 프레스되어 캡 플레이트의 본체부와 벤트부를 함께 성형할 수 있으며, The upper mold and the lower mold may be pressed with a metal base material interposed therebetween to mold the body part and the vent part of the cap plate together.
    상기 상부 금형 또는 하부 금형 중 일측에는 프레스의 압력이 가해지는 방향 또는 그 반대 방향으로 돌출부가 구비되고 타측에는 상기 돌출부에 대응되는 오목부가 구비되고,One side of the upper mold or the lower mold is provided with a protrusion in the direction in which the press pressure is applied or in the opposite direction, and a concave portion corresponding to the protrusion is provided on the other side,
    상기 돌출부의 측면과 상기 오목부의 측면의 사이에는 빈 간극부가 형성되어 프레스시 전단력을 발생시켜 구조 연약부를 성형하는 것을 특징으로 하는 캡 플레이트 제조용 금형.A mold for manufacturing a cap plate, characterized in that an empty gap is formed between a side surface of the protruding part and a side surface of the concave part to form a structurally weak part by generating a shear force during pressing.
  14. 제 13항에 있어서,According to claim 13,
    상기 상부 금형 및 상기 하부 금형은,The upper mold and the lower mold,
    프레스된 상태에서 파단지지부를 형성하는 부위의 상부 금형과 하부 금형 사이의 간격은 본체부를 형성하는 상부 금형과 하부금형 사이의 간격과 대응하는 간격을 가지는 것을 특징으로 하는 캡 플레이트 제조용 금형.A mold for manufacturing a cap plate, characterized in that a gap between an upper mold and a lower mold in a region where the breakage support part is formed in a pressed state corresponds to a gap between the upper mold and the lower mold forming the main body part.
  15. 제 13항에 있어서,According to claim 13,
    상기 구조 연약부는 전단변형되어 변형률이 커진 부위에 상대적으로 얇은 두께로 형성되는 것을 특징으로 하는 캡 플레이트 제조용 금형.The mold for manufacturing a cap plate, characterized in that the structurally weak portion is formed with a relatively thin thickness in a portion where the strain is increased due to shear deformation.
  16. 제 1항 내지 제 12항 중 어느 한 항에 따른 캡 플레이트를 제조하는 방법으로서, A method of manufacturing the cap plate according to any one of claims 1 to 12,
    상부 금형과 하부 금형의 사이에 원소재 금속판을 개재하는 단계; 및 Interposing a raw material metal plate between the upper mold and the lower mold; and
    상부 금형와 하부 금형으로 금속재 모재에 소정의 압력을 적용하는 프레스 가공을 진행하여 원소재 금속판을 본체부와 벤트부로 이루어지는 캡 플레이트로 성형하는 단계; 를 포함하며, forming a raw metal plate into a cap plate composed of a body part and a vent part by performing press working by applying a predetermined pressure to a metal base material using an upper mold and a lower mold; Including,
    상기 상부 금형 또는 하부 금형 중 일측에는 프레스의 압력이 가해지는 방향 또는 그 반대 방향으로 돌출부가 구비되고 타측에는 상기 돌출부에 대응되는 오목부가 구비되고,One side of the upper mold or the lower mold is provided with a protrusion in the direction in which the press pressure is applied or in the opposite direction, and a concave portion corresponding to the protrusion is provided on the other side,
    상기 돌출부의 측면과 오목부의 측면의 사이에는 빈 간극부가 형성되어 프레스시 전단력을 발생시켜 구조 연약부를 성형하는 것을 특징으로 하는 캡 플레이트의 제조방법. A method of manufacturing a cap plate, characterized in that an empty gap is formed between the side surface of the protruding part and the side surface of the concave part to form a structurally weak part by generating a shear force during pressing.
  17. 제 16항에 있어서,According to claim 16,
    상기 구조 연약부는 전단변형되어 변형률이 커진 부위에 상대적으로 얇은 두께로 형성되는 것을 특징으로 하는 특징으로 하는 캡 플레이트의 제조방법.The method of manufacturing a cap plate, characterized in that the structurally weak portion is formed with a relatively thin thickness in a portion where the strain is increased due to shear deformation.
PCT/KR2022/007981 2021-08-18 2022-06-07 Cap plate for secondary battery having vent structure, and method for manufacturing cap plate WO2023022340A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210109063A KR102406193B1 (en) 2021-08-18 2021-08-18 Cap plate for secondary batteries having vent structure, and manufacturing mathod of the cap plate
KR10-2021-0109063 2021-08-18

Publications (1)

Publication Number Publication Date
WO2023022340A1 true WO2023022340A1 (en) 2023-02-23

Family

ID=81986240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/007981 WO2023022340A1 (en) 2021-08-18 2022-06-07 Cap plate for secondary battery having vent structure, and method for manufacturing cap plate

Country Status (2)

Country Link
KR (2) KR102406193B1 (en)
WO (1) WO2023022340A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141518A (en) * 2005-11-15 2007-06-07 Xerom:Kk Explosion-proof structure of secondary battery
KR101416520B1 (en) * 2013-02-18 2014-07-09 (주)영하이테크 Cap plate for secondary batteries having vent structure and manufacturing mathod of it
KR20140135082A (en) * 2013-05-15 2014-11-25 삼성에스디아이 주식회사 Cap plate and secondary battery having the same
KR20170109919A (en) * 2016-03-22 2017-10-10 삼성에스디아이 주식회사 Rechargeable battery
KR20180031374A (en) * 2016-09-20 2018-03-28 삼성에스디아이 주식회사 Rechargeable battery having safety vent embossed

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141518A (en) * 2005-11-15 2007-06-07 Xerom:Kk Explosion-proof structure of secondary battery
KR101416520B1 (en) * 2013-02-18 2014-07-09 (주)영하이테크 Cap plate for secondary batteries having vent structure and manufacturing mathod of it
KR20140135082A (en) * 2013-05-15 2014-11-25 삼성에스디아이 주식회사 Cap plate and secondary battery having the same
KR20170109919A (en) * 2016-03-22 2017-10-10 삼성에스디아이 주식회사 Rechargeable battery
KR20180031374A (en) * 2016-09-20 2018-03-28 삼성에스디아이 주식회사 Rechargeable battery having safety vent embossed

Also Published As

Publication number Publication date
KR102406193B1 (en) 2022-06-10
KR20230026899A (en) 2023-02-27

Similar Documents

Publication Publication Date Title
WO2014109481A1 (en) Secondary battery comprising integrated anode lead and cathode lead, and manufacturing method therefor
WO2016010294A1 (en) Hollow-type secondary battery
WO2013009148A2 (en) Cylindrical rechargeable battery
WO2016195457A1 (en) Cap assembly for secondary battery
KR20160045930A (en) Battery cell with surge protector
WO2022019504A1 (en) Ultrasonic welding device and welding method for secondary battery
WO2021118160A1 (en) Method for manufacturing secondary battery and pre-degassing apparatus for manufacturing secondary battery
WO2020022678A1 (en) Secondary battery pack comprising cell frame having application preventing portion
WO2018221836A1 (en) Battery pack and manufacturing method therefor
WO2023022340A1 (en) Cap plate for secondary battery having vent structure, and method for manufacturing cap plate
WO2021206418A1 (en) Secondary battery and device including same
WO2019146927A1 (en) Insulation plate for rechargeable battery and method for manufacturing same
WO2022177157A1 (en) Battery module and battery pack comprising same
WO2022145809A1 (en) Exterior material and battery using exterior material
WO2022092662A1 (en) Cap assembly and secondary battery including same
WO2019004545A1 (en) Battery cell having overcharge prevention member
WO2021141311A1 (en) Apparatus for manufacturing secondary battery and method for manufacturing secondary battery
WO2020130595A1 (en) Battery case, secondary battery, and method for manufacturing same
WO2019146926A1 (en) Rechargeable battery and insulation plate for rechargeable battery
WO2019235714A1 (en) Cylindrical secondary battery including adhesive portion including gas generating material
WO2024106884A1 (en) Secondary battery and secondary battery manufacturing method
WO2022050616A1 (en) Secondary battery, secondary battery manufacturing device and manufacturing method
WO2024136118A1 (en) Battery cell, battery pack, and vehicle comprising same
WO2023054946A1 (en) Secondary battery
WO2024136606A1 (en) Sealing device and pouch type secondary battery sealed thereby

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE