WO2023022309A1 - Method for designing array antenna for increasing mid-range wireless power transmission efficiency - Google Patents

Method for designing array antenna for increasing mid-range wireless power transmission efficiency Download PDF

Info

Publication number
WO2023022309A1
WO2023022309A1 PCT/KR2021/020157 KR2021020157W WO2023022309A1 WO 2023022309 A1 WO2023022309 A1 WO 2023022309A1 KR 2021020157 W KR2021020157 W KR 2021020157W WO 2023022309 A1 WO2023022309 A1 WO 2023022309A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
power
power transmission
transmitting
wireless power
Prior art date
Application number
PCT/KR2021/020157
Other languages
French (fr)
Korean (ko)
Inventor
유종원
김솔
임성주
이찬희
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2023022309A1 publication Critical patent/WO2023022309A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters

Definitions

  • the present technology relates to a method for designing an array antenna to increase the efficiency of mid-range wireless power transmission.
  • a conventional retrodirective beamforming technique is as follows.
  • a pilot signal is transmitted from the receiving end to the transmitting end.
  • the transmitting end determines the position of the receiving end through the phase difference of the pilot signal.
  • the antennas of the receiving end are focused toward the antenna of the transmitting end using a phase shifter or a delay device. As the number of antennas of the transmitting end increases, the amount of power transmitted for the same time increases.
  • each antenna is provided with an active element such as a phase shifter and a delay element, the complexity of the system increases.
  • the phase shifter and the delay element are active elements, and when they are used, power consumption of the transmitter is severe and system complexity increases.
  • a subarray antenna may be used. However, in the Fresnel area, the distance between the transmit antenna and the receive antenna is short. Since the beam width is narrow when a sub-array antenna is used, the reverse directional beamforming technology using a sub-array has low efficiency in the Fresnel area.
  • a retrodirective beamforming technique As a beam forming technique in the Fresnel area, a retrodirective beamforming technique is used. However, since this technology uses a phase shifter, a delay device, and the like, power consumption in the transmitter is severe and transmission power loss occurs. Therefore, in wireless power transmission where efficiency is important, the use of active elements should be minimized.
  • each antenna of the transmitting end steers the beam not in front but at an angle so that the beam is focused on the receiving end.
  • the antenna gain is reduced compared to when the beam is directed forward. This causes an effect of reducing the amount of transmitted power, so the efficiency is very low. Therefore, there is a need to prevent loss of transmission power by preventing the antenna of the transmitting end from tilting the beam as much as possible.
  • the present invention is based on using an inclined beam to improve the efficiency of wireless power transmission in the Fresnel area.
  • the present invention is designed through a total of three steps: determining the angle between the transmitter and the receiver according to the gain of a given receiving antenna, determining the size of the transmitter based on the distance between the given transmitter and the receiver and the previously determined angle, and finally transmitting The number of antennas to be used is determined according to the antenna gain.
  • an advantage of reducing transmission power loss is provided by preventing an antenna of a transmitting end from tilting a beam as much as possible.
  • Figure 1 (a) shows a reverse directional beamforming antenna of a linear array
  • Figure 1 (b) is a diagram showing a wireless power transmission system according to this embodiment.
  • FIG. 2 is a diagram illustrating received power according to the number of transmit antennas when the gain of the receive antenna is determined.
  • 3 is a diagram illustrating received power according to the number of transmit antennas when a power transmission distance is determined.
  • FIG. 4 is a diagram illustrating received power according to the number of transmit antennas when the size of a receiving end is determined.
  • FIG. 5 is a diagram showing the results of electromagnetic wave simulation by implementing a 4*1 transmitter using a 4*4 subarray antenna.
  • FIG. 6(a) shows a 4*1 transmitter using a 4*4 subarray antenna
  • FIG. 6(b) shows an environment for measuring it.
  • FIG. 1(a) is a diagram showing an existing linear array reverse directional beamforming antenna
  • FIG. 1(b) is a diagram showing an outline of a wireless power transmission device according to this embodiment.
  • the antennas of the transmitting end are arranged in an arc shape so that the distances from each antenna to the receiving antenna are equal.
  • microwaves transmitted from each transmitting antenna arrive at the receiving antenna with the same phase, so active elements such as phase shifters and delay devices are required. don't need
  • the distance between the transmit antenna and the receive antenna is calculated as Equations (1) and (2) in Equation 1 below. Through this, all antennas of the receiving end can transmit the same power.
  • the present invention may include three steps.
  • the present invention for example, (1) determining the maximum angle of the transmitting end toward the receiving antenna in consideration of the gain and beam width of the receiving antenna, (2) the distance between the given transmitting end and the receiving end and the maximum angle obtained in step (1) and (3) determining the number of antennas to be used in the transmitting terminal according to the gain of the transmitting antenna.
  • the receiving antenna cannot collect power steered out of the beam width of the receiving antenna. As a result, even if the number of transmit antennas increases, there is a limit to the power transmitted during the same time period. Therefore, the maximum angle between the receiving end and the transmitting end can be determined through the limit of the received power.
  • FIG. 2 is a graph in which received power according to the number of transmit antennas is classified according to the gain of the receive antenna as a result of electromagnetic wave simulation. Finally, the number of transmit antennas is determined through transmit antenna design.
  • 3 is a graph in which received power according to the number of antennas is classified according to the gain of the transmission antenna based on the previously determined size of the transmitter.
  • 4 is a diagram illustrating received power according to the number of transmit antennas when the size of a receiving end is determined.
  • 5 is a result of electromagnetic wave simulation by implementing a 4*1 transmitter using a 4*4 subarray antenna. Compared to the conventional reverse beamforming technology, it can be seen that the amount of power to be transmitted is greater because the power is concentrated.
  • FIG. 6 shows a 4x1 transmitter using a 4*4 subarray antenna and a measurement environment
  • FIG. 7 is a graph showing simulation results and actual measurement results.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

The present invention is based on using an inclined beam to improve wireless power transmission efficiency in a Fresnel region. Power is concentrated toward a reception antenna by arranging, to be tilted, a transmission antenna of the same gain and pattern for transmitting power.

Description

중거리 무선 전력 전송 효율을 높이기 위한 배열 안테나 설계 방법Array Antenna Design Method for Higher Mid-Range Wireless Power Transmission Efficiency
본 기술은 중거리 무선 전력 전송 효율을 높이기 위한 배열 안테나 설계 방법과 관련된다.The present technology relates to a method for designing an array antenna to increase the efficiency of mid-range wireless power transmission.
종래 기술에 의한 역 지향성 빔포밍(Retrodirective Beamforming) 기술은 다음과 같다. 수신단에서 송신단으로 파일럿 신호를 전송한다. 송신단은 파일럿 신호의 위상차를 통해 수신단의 위치를 파악한다. 수신단의 안테나들은 위상변환기(Phase Shifter) 또는 지연소자(Delay Device)를 이용해 송신단의 안테나를 향해 초점을 맞춘다. 송신단의 안테나 수를 늘릴수록 동일 시간 대비 전송하는 전력량은 증가한다. A conventional retrodirective beamforming technique is as follows. A pilot signal is transmitted from the receiving end to the transmitting end. The transmitting end determines the position of the receiving end through the phase difference of the pilot signal. The antennas of the receiving end are focused toward the antenna of the transmitting end using a phase shifter or a delay device. As the number of antennas of the transmitting end increases, the amount of power transmitted for the same time increases.
각 안테나마다 위상변환기와 지연소자 등의 능동소자가 부여되므로 시스템의 복잡도가 증가한다. 위상변환기와 지연소자는 능동소자로 이를 이용할 경우 송신단의 전력소모가 심하고 시스템 복잡도가 증가한다. 시스템 복잡도를 개선하기 위해 부배열 안테나(Subarray Antenna)를 이용할 수 있다. 그러나 프레스넬 영역에서는 송신 안테나와 수신 안테나 간의 거리가 짧다. 부배열 안테나를 이용하면 빔 폭(Beamwidth)이 좁기 때문에 부배열을 이용한 역 지향성 빔포밍 기술은 프레스넬 영역에서 효율이 떨어진다.Since each antenna is provided with an active element such as a phase shifter and a delay element, the complexity of the system increases. The phase shifter and the delay element are active elements, and when they are used, power consumption of the transmitter is severe and system complexity increases. To improve system complexity, a subarray antenna may be used. However, in the Fresnel area, the distance between the transmit antenna and the receive antenna is short. Since the beam width is narrow when a sub-array antenna is used, the reverse directional beamforming technology using a sub-array has low efficiency in the Fresnel area.
프레스넬 영역에서 빔 형성 기법으로는 역 지향성 빔포밍(Retrodirective Beamforming) 기술을 이용한다. 그러나 이 기술은 위상변환기(Phase Shifter), 지연소자(Delay Device) 등을 이용하기 때문에 송신단에서의 전력소모가 심하고, 전송전력에 손실이 발생한다. 때문에 효율이 중요한 무선전력전송에서는 능동소자의 활용을 최소화해야 한다.As a beam forming technique in the Fresnel area, a retrodirective beamforming technique is used. However, since this technology uses a phase shifter, a delay device, and the like, power consumption in the transmitter is severe and transmission power loss occurs. Therefore, in wireless power transmission where efficiency is important, the use of active elements should be minimized.
프레스넬 영역에서는 송신단과 수신단의 거리가 가깝다. 때문에 송신단의 각 안테나는 빔을 정면이 아닌 기울어지게 조향하여 수신단에 초점이 맞춰지도록 한다. 안테나가 빔을 기울어지게 조향할 경우 안테나 이득이 정면을 향할 때보다 감소한다. 이는 전송하는 전력량이 감소하는 효과를 초래하므로 효율이 매우 떨어진다. 따라서, 송신단의 안테나가 최대한 빔을 기울이지 않도록 하여 전송전력의 손실을 막아야할 필요성이 있다. In the Fresnel area, the distance between the transmitter and the receiver is close. Therefore, each antenna of the transmitting end steers the beam not in front but at an angle so that the beam is focused on the receiving end. When the antenna steers the beam obliquely, the antenna gain is reduced compared to when the beam is directed forward. This causes an effect of reducing the amount of transmitted power, so the efficiency is very low. Therefore, there is a need to prevent loss of transmission power by preventing the antenna of the transmitting end from tilting the beam as much as possible.
본 발명은 프레스넬 영역에서의 무선전력전송 효율을 개선하기 위하여 기울어진 빔을 이용하는 것에 기초한다. 전력을 전송하는 동일한 이득과 패턴의 송신 안테나를 기울어지게 배치함으로써 수신안테나를 향해 전력이 집중되도록 한다. The present invention is based on using an inclined beam to improve the efficiency of wireless power transmission in the Fresnel area. By arranging transmit antennas of the same gain and pattern for transmitting power at an angle, power is concentrated toward the receive antenna.
본 발명은 총 세 단계를 거쳐서 디자인한다: 주어진 수신 안테나의 이득에 맞추어 송신단과 수신단 간의 각을 결정하고, 주어진 송신단과 수신단 간의 거리와 앞서 결정된 각을 기준으로 송신단의 크기를 결정한 뒤, 마지막으로 송신 안테나의 이득에 따라 사용할 안테나 개수를 결정한다.The present invention is designed through a total of three steps: determining the angle between the transmitter and the receiver according to the gain of a given receiving antenna, determining the size of the transmitter based on the distance between the given transmitter and the receiver and the previously determined angle, and finally transmitting The number of antennas to be used is determined according to the antenna gain.
본 발명에 의하면, 송신단의 안테나가 최대한 빔을 기울이지 않도록 하여 전송전력의 손실을 감소시킬 수 있다는 장점이 제공된다.According to the present invention, an advantage of reducing transmission power loss is provided by preventing an antenna of a transmitting end from tilting a beam as much as possible.
도 1(a)는 선형배열의 역지향성 빔포밍 안테나를 도시하며, 도 1(b)는 본 실시예에 의한 무선전력전송 시스템을 도시한 도면이다.Figure 1 (a) shows a reverse directional beamforming antenna of a linear array, Figure 1 (b) is a diagram showing a wireless power transmission system according to this embodiment.
도 2는 수신 안테나의 이득이 결정되었을 때, 송신 안테나 수에 따른 수신 전력을 도시한 도면이다.2 is a diagram illustrating received power according to the number of transmit antennas when the gain of the receive antenna is determined.
도 3은 전력 전송 거리가 결정되었을 때, 송신 안테나 수에 따른 수신 전력을 도시한 도면이다. 3 is a diagram illustrating received power according to the number of transmit antennas when a power transmission distance is determined.
도 4는 수신단의 크기가 결정되었을 때, 송신 안테나 수에 따른 수신 전력을 도시한 도면이다. 4 is a diagram illustrating received power according to the number of transmit antennas when the size of a receiving end is determined.
도 5는 4*4의 부배열 안테나를 이용해 4*1의 송신단을 구현하여 전자기파 시뮬레이션을 시행한 결과를 도시한 도면이다.FIG. 5 is a diagram showing the results of electromagnetic wave simulation by implementing a 4*1 transmitter using a 4*4 subarray antenna.
도 6(a)는 4*4의 부배열 안테나를 이용한 4*1의 송신단을 도시하며, 도 6(b)는 이를 측정하는 환경을 도시한 도면이다. FIG. 6(a) shows a 4*1 transmitter using a 4*4 subarray antenna, and FIG. 6(b) shows an environment for measuring it.
도 7은 시뮬레이션 결과와 실제 측정 결과를 같이 도시한 그래프이다. 7 is a graph showing simulation results and actual measurement results together.
도 1(a)는 기존 선형배열의 역지향성 빔포밍 안테나를 도시한 도면이고, 도 1(b)는 본 실시예에 의한 무선전력전송 장치의 개요를 도시한 도면이다. 도 1을 참조하면, 본 실시예에 의하면 송신단의 안테나를 아크형태로 배치하여 각 안테나부터 수신 안테나까지의 거리를 동일하게 한다. 송신 안테나에서 수신 안테나까지의 거리가 동일할 경우, 각 송신 안테나에서 전송된 마이크로파는 동일한 위상을 가진 채 수신 안테나에 도달하기 때문에 위상변환기(Phase Shifter), 지연소자(Delay Device) 등의 능동소자를 필요로 하지 않는다. 1(a) is a diagram showing an existing linear array reverse directional beamforming antenna, and FIG. 1(b) is a diagram showing an outline of a wireless power transmission device according to this embodiment. Referring to FIG. 1, according to the present embodiment, the antennas of the transmitting end are arranged in an arc shape so that the distances from each antenna to the receiving antenna are equal. When the distance from the transmitting antenna to the receiving antenna is the same, microwaves transmitted from each transmitting antenna arrive at the receiving antenna with the same phase, so active elements such as phase shifters and delay devices are required. don't need
송신 안테나와 수신 안테나 간의 거리는 아래의 수학식 1의 (1)식과 (2)식과 같이 계산된다. 이를 통해 수신단의 모든 안테나는 동일한 전력을 전송할 수 있다.The distance between the transmit antenna and the receive antenna is calculated as Equations (1) and (2) in Equation 1 below. Through this, all antennas of the receiving end can transmit the same power.
Figure PCTKR2021020157-appb-img-000001
Figure PCTKR2021020157-appb-img-000001
본 발명은 세 단계를 포함할 수 있다. 본 발명은 일 예로, (1) 수신 안테나의 이득과 빔폭을 고려하여 수신 안테나를 향한 송신단의 최대 각도를 정하는 단계와, (2) 주어진 송신단과 수신단 간의 거리와 (1)단계에서 구한 최대 각도를 바탕으로 송신단의 크기를 결정하는 단계 및 (3) 송신 안테나의 이득에 맞추어 송신단에 사용할 안테나의 수를 결정하는 단계를 포함할 수 있다. The present invention may include three steps. The present invention, for example, (1) determining the maximum angle of the transmitting end toward the receiving antenna in consideration of the gain and beam width of the receiving antenna, (2) the distance between the given transmitting end and the receiving end and the maximum angle obtained in step (1) and (3) determining the number of antennas to be used in the transmitting terminal according to the gain of the transmitting antenna.
수신 안테나를 향해 초점을 맞춘 송신 안테나가 많을수록 전송되는 전력은 더 많다. 그러나, 수신 안테나의 빔 폭을 벗어난 곳에서 조향되는 전력의 경우 수신 안테나가 수집할 수 없다. 결국 송신 안테나의 수가 증가해도 같은 시간동안 전송되는 전력은 한계점이 존재한다. 때문에 수신 전력의 한계점을 통해 수신단과 송신단 사이의 최대 각도를 정할 수 있다. The more transmit antennas focused towards the receive antenna, the more power is transmitted. However, the receiving antenna cannot collect power steered out of the beam width of the receiving antenna. As a result, even if the number of transmit antennas increases, there is a limit to the power transmitted during the same time period. Therefore, the maximum angle between the receiving end and the transmitting end can be determined through the limit of the received power.
도 2는 전자기파 시뮬레이션 결과 송신 안테나의 수에 따른 수신 전력을 수신 안테나의 이득에 따라 분류한 그래프이다. 마지막으로 송신 안테나 디자인을 통해 송신 안테나의 수를 결정한다. 2 is a graph in which received power according to the number of transmit antennas is classified according to the gain of the receive antenna as a result of electromagnetic wave simulation. Finally, the number of transmit antennas is determined through transmit antenna design.
도 3은 앞서 결정된 송신단의 크기를 바탕으로, 안테나 수에 따른 수신 전력을 송신 안테나의 이득에 따라 분류한 그래프이다. 도 4는 수신단의 크기가 결정되었을 때, 송신 안테나 수에 따른 수신 전력을 도시한 도면이다. 위의 세 단계를 거쳐 기존보다 더 높은 효율을 갖는 무선전력전송 시스템을 구현할 수 있다. 3 is a graph in which received power according to the number of antennas is classified according to the gain of the transmission antenna based on the previously determined size of the transmitter. 4 is a diagram illustrating received power according to the number of transmit antennas when the size of a receiving end is determined. Through the above three steps, it is possible to implement a wireless power transmission system with higher efficiency than before.
도 5는 4*4의 부배열 안테나를 이용해 4*1의 송신단을 구현하여 전자기파 시뮬레이션을 시행한 결과이다. 기존의 역 지향성 빔포밍 기술에 비해 전력이 집중되어 전송하는 전력량이 더 많은 것을 확인할 수 있다.5 is a result of electromagnetic wave simulation by implementing a 4*1 transmitter using a 4*4 subarray antenna. Compared to the conventional reverse beamforming technology, it can be seen that the amount of power to be transmitted is greater because the power is concentrated.
도 6은 4*4의 부배열 안테나를 이용한 4ㅧ1의 송신단이며, 이를 측정하는 환경을 도시하며, 도 7은 시뮬레이션 결과와 실제 측정 결과를 같이 도시한 그래프이다. 이를 통해 알 수 있듯 본 발명(디자인 방안)을 통해 별도의 복잡한 시스템 (능동소자, 지연소자, 혹은 pc) 없이도 고효율의 무선전력전송 시스템을 구현한 것을 확인할 수 있다.6 shows a 4x1 transmitter using a 4*4 subarray antenna and a measurement environment, and FIG. 7 is a graph showing simulation results and actual measurement results. As can be seen from this, it can be confirmed that a highly efficient wireless power transmission system is implemented without a separate complicated system (active element, delay element, or pc) through the present invention (design plan).

Claims (2)

  1. 전력 전송 장치는: 전력을 전송하는 동일한 이득과 동일한 이득 패턴을 가지는 복수의 송신 안테나를 포함하며, The power transmission device includes: a plurality of transmit antennas having the same gain and the same gain pattern for transmitting power;
    수신안테나를 향해 전력이 집중되도록 상기 복수의 송신 안테나들은 아크 형태로 배치된 전력 전송 장치.The plurality of transmit antennas are arranged in an arc shape so that power is concentrated toward the receive antenna.
  2. 전력 전송 방법은: The power transfer method is:
    수신 안테나의 이득과 빔폭으로부터 수신 안테나를 향한 송신단의 최대 각도를 결정하는 단계와, Determining a maximum angle of the transmitting end toward the receiving antenna from the gain and beam width of the receiving antenna;
    상기 송신단과 수신단 사이의 거리와 상기 최대 각도로부터 상기 송신단의 크기를 결정하는 단계 및 determining the size of the transmitting end from the distance between the transmitting end and the receiving end and the maximum angle; and
    상기 송신 안테나의 이득에 부합하도록 상기 송신단에 사용할 안테나의 개수를 결정하는 단계를 포함하는 전력 전송 방법.and determining the number of antennas to be used in the transmitting terminal to match the gain of the transmitting antenna.
PCT/KR2021/020157 2021-08-18 2021-12-29 Method for designing array antenna for increasing mid-range wireless power transmission efficiency WO2023022309A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210108596 2021-08-18
KR10-2021-0108596 2021-08-18

Publications (1)

Publication Number Publication Date
WO2023022309A1 true WO2023022309A1 (en) 2023-02-23

Family

ID=85239593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/020157 WO2023022309A1 (en) 2021-08-18 2021-12-29 Method for designing array antenna for increasing mid-range wireless power transmission efficiency

Country Status (1)

Country Link
WO (1) WO2023022309A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170095028A (en) * 2016-02-12 2017-08-22 삼성전자주식회사 Apparatus and method for beamforming in an wireless communication system
US20200145078A1 (en) * 2018-11-01 2020-05-07 Samsung Electronics Co., Ltd. Apparatus and method for arranging beam in wireless communication system
KR20200132346A (en) * 2019-05-17 2020-11-25 한국과학기술원 Antenna apparatus for wireless power transfer
KR102225531B1 (en) * 2012-11-09 2021-03-08 캘리포니아 인스티튜트 오브 테크놀로지 Smart rf lensing: efficient, dynamic and mobile wireless power transfer
KR102265795B1 (en) * 2019-08-20 2021-06-16 경희대학교 산학협력단 Control apparatus of transmit antenna for improving wirless-power transfer efficiency and control method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102225531B1 (en) * 2012-11-09 2021-03-08 캘리포니아 인스티튜트 오브 테크놀로지 Smart rf lensing: efficient, dynamic and mobile wireless power transfer
KR20170095028A (en) * 2016-02-12 2017-08-22 삼성전자주식회사 Apparatus and method for beamforming in an wireless communication system
US20200145078A1 (en) * 2018-11-01 2020-05-07 Samsung Electronics Co., Ltd. Apparatus and method for arranging beam in wireless communication system
KR20200132346A (en) * 2019-05-17 2020-11-25 한국과학기술원 Antenna apparatus for wireless power transfer
KR102265795B1 (en) * 2019-08-20 2021-06-16 경희대학교 산학협력단 Control apparatus of transmit antenna for improving wirless-power transfer efficiency and control method thereof

Similar Documents

Publication Publication Date Title
US11005546B2 (en) Antenna system, signal processing system, and signal processing method
EP3411727B1 (en) Polarimetric phased array radar system and method for operating thereof
KR100902810B1 (en) Wireless communication method and apparatus for forming, steering and selectively receiving a sufficient number of usable beam paths in both azimuth and elevation
CN108232470A (en) A kind of antenna system and mobile terminal
EP0618641A2 (en) Ultra wideband phased array antenna
JP6710701B2 (en) Sequential multi-beam radar for maximum likelihood tracking and fence search
WO2016153596A1 (en) Low cost space-fed reconfigurable phased array for spacecraft and aircraft applications
CN105372648B (en) A kind of angle searching method based on multibeam signals
GB2443456A (en) MIMO radar system
EP3271968B1 (en) An amplitude comparison monopulse radar system
US5257031A (en) Multibeam antenna which can provide different beam positions according to the angular sector of interest
CN108199128A (en) A kind of antenna system and mobile terminal
WO2023022309A1 (en) Method for designing array antenna for increasing mid-range wireless power transmission efficiency
US6906665B1 (en) Cluster beam-forming system and method
KR102163696B1 (en) Method for sending multiple beam steering jamming signal and system thereof
EP2985838B1 (en) Systems and methods for high power microwave combining and switching
CN201498599U (en) Multimode monopulse antenna
US9134400B2 (en) Comparator of mono-pulse radar and signal generation method thereof
WO1986000760A1 (en) Multibeam antenna, which can provide different beam positions according to the angular sector of interest
US9054752B2 (en) High rate RF link technology utilizing near-maximum likelihood MIMO signal processing
US20170149133A1 (en) Radar Antenna System
KR100457180B1 (en) Apparatus for Coupling Signal in Active Phase Array Antenna System
EP3780274A1 (en) An array antenna arrangement
US3028591A (en) Directive antenna systems
US10663576B2 (en) Method for controlling transmission of an electronically steerable antenna system and such electronically steerable antenna system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE