WO2023022236A1 - Composite material, sputtering target, thin-film coating member, and manufacturing method therefor - Google Patents

Composite material, sputtering target, thin-film coating member, and manufacturing method therefor Download PDF

Info

Publication number
WO2023022236A1
WO2023022236A1 PCT/JP2022/031445 JP2022031445W WO2023022236A1 WO 2023022236 A1 WO2023022236 A1 WO 2023022236A1 JP 2022031445 W JP2022031445 W JP 2022031445W WO 2023022236 A1 WO2023022236 A1 WO 2023022236A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
metal
powder
fluororesin
metal oxide
Prior art date
Application number
PCT/JP2022/031445
Other languages
French (fr)
Japanese (ja)
Inventor
康訓 多賀
Original Assignee
株式会社表面・界面工房
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021198807A external-priority patent/JP2023029170A/en
Application filed by 株式会社表面・界面工房 filed Critical 株式会社表面・界面工房
Publication of WO2023022236A1 publication Critical patent/WO2023022236A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Definitions

  • the present disclosure relates to composite materials containing inorganic materials and organic materials.
  • metal compounds which are inorganic materials
  • inorganic materials have high rigidity and are excellent in heat resistance and environmental resistance.
  • inorganic materials are generally inferior in flexibility, and require high-temperature processes for manufacturing and processing, lacking in energy efficiency.
  • organic materials include hydrocarbon compounds (methane-based, ethylene-based, acetylene-based, halogen-based, olefin-based, etc.) and fluorine-based compounds.
  • organic materials such as melamine resins, urea resins, alkyd resins, polyester resins, vinyl chloride resins, styrene resins, acrylic resins, polyethylene resins, and fluororesin silicon resins.
  • synthetic resin materials such as melamine resins, urea resins, alkyd resins, polyester resins, vinyl chloride resins, styrene resins, acrylic resins, polyethylene resins, and fluororesin silicon resins.
  • the advantage of organic materials is that they are flexible and flexible, but the disadvantages of organic materials are that they lack scratch resistance, heat resistance, and weather resistance (ultraviolet light resistance).
  • composite materials composed of inorganic and organic materials
  • PTFE polytetrafluoroethylene
  • the heat resistance of polytetrafluoroethylene (PTFE) is about 300°C.
  • an organic binder such as acrylic is usually used for the purpose of bonding and joining to maintain the shape during pressure molding.
  • composite materials sintered at a low temperature of about 300° C. are likely to crack or break due to insufficient mechanical strength, and there is concern about the effects of organic binder remaining in the composite material.
  • the object of the present disclosure was made in view of the above problems, that is, to propose a composite material with high mechanical strength and a method for producing the same.
  • One aspect of the present disclosure is a composite material that includes a matrix, a fluororesin, and a metal material.
  • the matrix is a metal oxide.
  • the metal material is one or more selected from the group including In, Sn, and Bi. Such composite materials have high mechanical strength.
  • the metal oxide may contain one or more selected from the group containing Ce, Y, Al, Si, and Nb as metal elements.
  • the fluororesin includes polytetrafluoroethylene, tetrafluoroethylene/hexafluoropropylene copolymer, tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene/ethylene copolymer and polyfluoride. It may contain at least one or more selected from the group containing vinylidene.
  • the mixed weight ratio of the metal oxide and the fluororesin may be in the range of 20:1 to 1:1. Further, the metal material may be 0.1% by weight or more and 50% by weight or less when the total weight of the metal oxide, the fluororesin, and the metal material is 100%. With such a mixture weight ratio, the composite material can have higher mechanical strength.
  • the composite material described above may form a composite compound phase of metal fluoride or fluorocarbon between the metal oxide and the fluororesin and between the metal material and the fluororesin.
  • Such a composite material can have higher mechanical strength.
  • One aspect of the present disclosure is a sputtering target, which is composed of the composite material described above.
  • a sputtering target has high mechanical strength and is less likely to be damaged even if it is enlarged, for example.
  • One aspect of the present disclosure is a thin film coated member comprising a workpiece and a thin film.
  • a thin film is formed on the surface of the workpiece by sputtering.
  • the thin film includes a matrix, a fluororesin, and a metal material.
  • the matrix is a metal oxide.
  • the metal material is one or more selected from the group including In, Sn, and Bi.
  • One aspect of the present disclosure is a method for producing a composite material, comprising: mixing material powders containing metal oxide powder, fluororesin powder, and metal material powder to obtain a mixture; and obtaining a sintered body by firing the molded product at 100° C. or higher and 350° C. or lower.
  • the metal material powder contains one or more metal materials selected from the group including In, Sn, and Bi.
  • One aspect of the present disclosure is a method for manufacturing a thin-film coated member, comprising: obtaining a mixture by mixing material powders containing metal oxide powder, fluororesin powder, and metal material powder; obtain a molded product by molding; obtain a sintered body by firing the molded product at 100° C. or higher and 350° C. or lower; and use the sintered body as a sputtering target to form a thin film on a predetermined work by sputtering. and forming.
  • the metal material powder contains one or more metal materials selected from the group including In, Sn, and Bi.
  • FIG. 4 is a graph showing spectral properties of a CeO 2 -PTFE-In film fabricated using a composite sputtering target.
  • 1 is a graph showing the nanoindenter hardness of CeO 2 -PTFE-In films fabricated using composite sputtering targets.
  • 1 is a graph showing the water contact angle of a CeO 2 -PTFE-In film fabricated using a composite sputtering target.
  • Composite materials of the present disclosure include metal oxides, fluororesins, and metal materials. Composites of the present disclosure may include other materials, for example, as long as they do not detract from the superior properties of the products described in the present disclosure.
  • Metal oxides are the matrix of the composite material and are contained in a relatively large proportion of the composite material. There are no particular restrictions on the specific types and blending ratios of the elements in the metal oxide. It is preferable that one or more selected from the group including Ce, Y, Al, Si and Nb be included as metal elements.
  • cerium Oxide As the cerium oxide used in the composite material according to the present embodiment, cerium trioxide (Ce 2 O 3 ) and cerium dioxide (CeO 2 ) are preferable, and cerium dioxide is more preferable. As the cerium oxide used in the composite material, one or a mixture of two or more of these cerium oxides may be used.
  • Aluminum Oxide Aluminum oxide (Al 2 O 3 ) is exemplified as an aluminum oxide that can be used in the composite material according to this embodiment.
  • Silicon Oxide Silicon oxide (SiO 2 ) is exemplified as a silicon oxide that can be used in the composite material according to the present embodiment.
  • Yttrium Oxide Yttrium oxide (Y 2 O 3 ) is exemplified as yttrium oxide that can be used in the composite material according to the present embodiment.
  • Niobium oxide (Nb 2 O 5 ) is exemplified as a niobium oxide that can be used in the composite material according to the present embodiment.
  • the average particle size of the metal oxide particles (powder) used to produce the composite material of the present embodiment is not particularly limited as long as the composite material can be produced.
  • the particle size of the metal oxide should be 0.5 ⁇ m to 50 ⁇ m, preferably 2 ⁇ m to 20 ⁇ m, more preferably 3 ⁇ m to 10 ⁇ m.
  • a fluororesin is a compound having a fluorine-carbon bond, typically a compound having a structure in which one or more hydrogen atoms of an organic compound such as a hydrocarbon are substituted with fluorine atoms.
  • the fluororesin used in the method for producing a composite material of the present embodiment includes, for example, a structural unit derived from a monomer having a structure in which one or more hydrogen atoms of an ⁇ -olefin are substituted with fluorine atoms.
  • a structural unit derived from a monomer having a structure in which one or more hydrogen atoms of an ⁇ -olefin are substituted with fluorine atoms Preferably, those containing as one of the main structural units can be exemplified.
  • the term "main structural unit” as used herein refers to one having the above structure in an amount of 20 mol% or more based on the total of 100 mol% of the structural units derived from all constituent monomers.
  • the above structure may preferably contain 40 mol % or more, more preferably 60 mol % or more, still more preferably 80 mol % or more, and most preferably 90 mol % or more.
  • Examples of monomers having a structure in which one or more hydrogen atoms of the ⁇ -olefin are substituted with fluorine atoms include tetrafluoroethylene, trifluoroethylene, vinylidene fluoride, vinyl fluoride, hexafluoropropylene, Examples include pentafluoropropylene, tetrafluoropropylene, trifluoropropylene, and chlorotrifluoroethylene.
  • the monomer having a structure in which one or more hydrogen atoms of the ⁇ -olefin are substituted with fluorine atoms one or a mixture of two or more thereof may be used.
  • fluororesins containing the above monomers as structural units include polytetrafluoroethylene (PTFE), polyhexafluoropropylene (PHFP), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVA), tetrafluoroethylene-hexa Fluoropropylene copolymer (FEP), tetrafluoroethylene/ethylene copolymer (ETFE), tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer (PFA), chlorotrifluoroethylene/ethylene copolymer (ECTFE), and Polychlorotrifluoroethylene (PCTFE) and the like can be mentioned. One or a mixture of two or more of these may be used as the fluororesin.
  • PTFE polytetrafluoroethylene
  • PHFP polyhexafluoropropylene
  • PVDF polyvinylidene fluoride
  • PVA polyvinyl fluoride
  • FEP
  • polytetrafluoroethylene tetrafluoroethylene
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • ETFE polytetrafluoroethylene-ethylene copolymer
  • VDF polyvinylidene fluoride
  • the average particle size of the fluororesin particles (powder) used in producing the composite material of the present embodiment is not particularly limited as long as the composite material can be produced.
  • the average particle size of the fluororesin is preferably 0.1 ⁇ m to 20 ⁇ m, preferably 0.2 ⁇ m to 10 ⁇ m, more preferably 0.3 ⁇ m to 5 ⁇ m.
  • the metal component is a metal material having a melting point of 400° C. or less.
  • the metal material used in the method for producing the composite material of the present embodiment one or more selected from the group including In, Sn, and Bi are preferable.
  • the average particle size of the metal material particles (metal material powder) used in producing the composite material of the present embodiment is not particularly limited, but is 0.1 ⁇ m to 50 ⁇ m, preferably 0.2 ⁇ m to 10 ⁇ m. Good to have.
  • the mixing weight ratio (mixing ratio) of the metal oxide, the fluororesin, and the metal material will be described.
  • the mixing ratio of the metal oxide particles (powder) and the fluororesin particles (powder) used when producing the composite material is such that the mixed weight ratio of the metal oxide and the fluororesin is in the range of 20:1 to 1:1. good too.
  • the ratio of the fluororesin is larger than 10:1.
  • the ratio of the fluororesin is smaller than 5:1.
  • the content of the metal material may be 0.1% by weight or more and 50% by weight or less when the total weight of the metal oxide, the fluororesin, and the metal material is taken as 100%.
  • the metal material is preferably 0.5% by weight or more, more preferably 5% by weight or more.
  • the metal material is 25% by weight or less.
  • the density of the composite material of the present embodiment is not particularly limited, it is 3.0 g/cm 3 or more and 8.0 g/cm 3 or less, preferably 3.2 g/cm 3 or more and 8.0 g/cm 3 or more when calculated based on the measured weight/volume. 0 g/cm 3 or less, more preferably 3.5 g/cm 3 or more and 5.3 g/cm 3 or less.
  • the breaking strength of the composite material of the present embodiment is measured according to the bending strength test method for fine ceramics specified in JIS R 1601, and when this is taken as the breaking strength, it is 0.2 MPa, preferably 0.5 MPa or more, More preferably, it is 1 MPa or more.
  • a bending strength evaluation test device JT Toshi lSC-2/100
  • an evaluation jig As shown in FIG. 1 , a sample 13 was fixed by a sample fixing jig 11 and a load was applied by a load applying jig 12 .
  • the metal oxide matrix contains the metal oxide component, the fluororesin component, and the compound derived from the metal. At this time, between the metal oxide component, the fluororesin, and the metal component, that is, between the metal oxide and the fluororesin, and between the metal material and the fluororesin, the metal fluoride or fluorocarbon Forming a complex compound phase is preferable.
  • XPS analysis X-ray photoelectron spectroscopy
  • an ESCA5400 type XPS analyzer manufactured by ULVAC-Phi is used, and Mg k ⁇ rays (for example, Mg k ⁇ rays with a beam diameter of 1.1 mm generated under the conditions of a power of 400 W and a voltage of 15 kV) are used as X-rays.
  • Mg k ⁇ rays for example, Mg k ⁇ rays with a beam diameter of 1.1 mm generated under the conditions of a power of 400 W and a voltage of 15 kV
  • Examples of the method of manufacturing the composite material include a first manufacturing method including a mixing step, a molding step, and a sintering step, and a second manufacturing method including a mixing step and a hot molding step.
  • the mixing step material powders containing fluororesin powder, metal oxide powder, and metal material powder are mixed to obtain a mixture.
  • the material powder may contain other materials.
  • the mixing ratio of the metal oxide particles (powder) and the fluororesin particles (powder) may be in the range of 20:1 to 1:1.
  • the metal material is 0.1% or more and 50% or less by weight.
  • the metal component used in the method for producing a composite material of the present embodiment is one or more selected from the group containing In, Sn, and Bi, and from metal oxide components (Ce, Y, Al, Si, Nb) It is preferred to contain a compound phase consisting of
  • the mixture obtained in the mixing step is compression-molded to obtain a molded product.
  • the molded product is molded by normal temperature pressurization (Cold Press, CP).
  • the applied pressure can be, for example, 1 to 1.5 t/cm 2 , but may be other than this.
  • the mixture may be mixed with a resin binder (acrylic, etc.) by several percent.
  • the molded product obtained in the molding step is fired at 100°C or higher and 350°C or lower, preferably 200°C or higher, and preferably 300°C or lower to obtain a sintered body.
  • the resulting sintered body is the composite material.
  • ⁇ Second manufacturing method> In the first production method, compression molding of the mixture to obtain a molded product and firing of the molded product at a temperature of 100° C. to 350° C. to obtain a sintered body were performed in different steps.
  • the second manufacturing method differs from the first manufacturing method in that these are performed in one step.
  • a second manufacturing method includes a mixing step and a thermoforming step.
  • the mixing step is the same as the mixing step in the first manufacturing method.
  • the mixture may be mixed with a resin binder (acrylic, etc.) by several percent.
  • the hot molding step after the mixing step, the mixture obtained in the mixing step is subjected to temperature-rising compression molding (hot press method, HP) at 100° C. to 350° C. to obtain a molded sintered body.
  • the resulting sintered body is the composite material.
  • Example 1 composite materials were made.
  • Example 49 the composite material of Example 5 was used as a sputtering target to form a film on a substrate to produce a thin-film coated member.
  • Molded workpieces were formed from the following materials.
  • Metal oxide CeO2 powder (manufactured by Nikki Co., Ltd., average particle size 5 ⁇ m)
  • Fluorine resin PTFE powder (manufactured by Seishin Enterprise Co., Ltd., average particle size 3 ⁇ m)
  • Metal material In powder (manufactured by Mitsuwa Chemicals Co., Ltd., average particle size 40 ⁇ m)
  • a cerium oxide powder was prepared by a coprecipitation method.
  • Cerium oxide powder (average particle size 5 ⁇ m) and PTFE powder (average particle size 3 ⁇ m) were mixed at a weight ratio of 10: 1 (Examples 3, 6, 9, 12), 7: 1 (Examples 2, 5, 8, 11). ), 5:1 (Examples 1, 4, 7, and 10), and further, when the total weight of In as the metal material, the metal oxide, the fluororesin, and the metal material is 100%, the metal material was mixed in the range of 0.1% to 50% by weight.
  • the mixture was then pressed at a molding pressure of 1 ton/cm 2 and molded to a diameter of 3 inches and a thickness of 5 mm.
  • the molded product thus formed was sintered under normal pressure and heating conditions of 200°C for 3 hours to obtain a composite material as a sintered body. Also, the mechanical bending strength of the obtained composite material was measured.
  • Table 1 shows the blending ratio (mixed weight ratio) and bending strength measurement results of Examples 1-12. In Table 1, the value next to the mixed weight ratio of metal materials is the weight percent of the metal materials when the total weight is taken as 100%.
  • cerium oxide powder (average particle size 5 ⁇ m) as a metal oxide and PTFE powder (average particle size 3 ⁇ m) as a fluororesin were mixed at a weight ratio of 7:1, and further, a metal oxide, a fluororesin, and a resin binder were mixed.
  • a mixture containing 5% by weight of an acrylic resin as a resin binder is pressure-molded at room temperature and then sintered at 100°C. added to
  • Examples 13-15> A composite material was produced under the same conditions as in Example 4-6, except that the metal material was changed from In to Sn.
  • Metal oxide CeO2 powder (manufactured by Nikki Co., Ltd., average particle size 5 ⁇ m)
  • Fluorine resin PTFE powder (manufactured by Seishin Enterprise Co., Ltd., average particle size 3 ⁇ m)
  • Metal material Sn powder (SN-AT-350 D50: 27 ⁇ m, manufactured by Fukuda Metal Foil & Powder Co., Ltd.) Table 2 shows the mixing ratio (mixed weight ratio) and bending strength measurement results of Examples 13 and 15.
  • Examples 16-18> A composite material was produced under the same conditions as in Example 4-6, except that the metal material was changed from In to In-5% Sn powder.
  • Metal oxide CeO2 powder (manufactured by Nikki Co., Ltd., average particle size 5 ⁇ m)
  • Fluorine resin PTFE powder (manufactured by Seishin Enterprise Co., Ltd., average particle size 3 ⁇ m)
  • Metal material In-5% Sn powder (Mitsubishi Materials Electronic Chemicals, particle size 0.03 ⁇ m) Table 3 shows the mixing ratio (mixed weight ratio) and bending strength measurement results of Examples 16 and 18.
  • Examples 19-21> A composite material was produced under the same conditions as in Example 4-6, except that the metal material was changed from In to Bi.
  • Table 4 shows the mixing ratio (mixed weight ratio) and bending strength measurement results of Examples 19 to 21.
  • Examples 22-24> A composite material was produced under the same conditions as in Examples 4-6, except that the metal oxide was changed from CeO 2 to SiO 2 .
  • Table 5 shows the mixing ratio (mixed weight ratio) and bending strength measurement results of Examples 22-24.
  • Examples 25-27> A composite material was produced under the same conditions as in Examples 4-6, except that the metal oxide was changed from CeO 2 to Al 2 O 3 .
  • Metal oxide Al 2 O 3 powder (manufactured by EM Japan, particle size 1 ⁇ m)
  • Fluorine resin PTFE powder (manufactured by Seishin Enterprise Co., Ltd., average particle size 3 ⁇ m)
  • Metal material In powder (manufactured by Mitsuwa Chemicals Co., Ltd., average particle size 40 ⁇ m)
  • Table 6 shows the mixing ratio (mixed weight ratio) and bending strength measurement results of Examples 25 and 27.
  • Metal oxide Y 2 O 3 powder (made by Iwatani Corporation, particle size 1 ⁇ m)
  • Fluorine resin PTFE powder (manufactured by Seishin Enterprise Co., Ltd., average particle size 3 ⁇ m)
  • Metal material In powder (manufactured by Mitsuwa Chemicals Co., Ltd., average particle size 40 ⁇ m)
  • Table 7 shows the blending ratio (mixed weight ratio) and bending strength measurement results of Examples 28-30.
  • Examples 31-33> A composite material was produced under the same conditions as in Example 4-6, except that the metal oxide was changed from CeO 2 to Nb 2 O 5 .
  • Metal oxide Nb 2 O 5 powder (3N D50 manufactured by Taniobis Japan: 0.3 ⁇ m)
  • Fluorine resin PTFE powder (manufactured by Seishin Enterprise Co., Ltd., average particle size 3 ⁇ m)
  • Metal material In powder (manufactured by Mitsuwa Chemicals Co., Ltd., average particle size 40 ⁇ m)
  • Table 8 shows the mixing ratio (mixed weight ratio) and bending strength measurement results of Examples 31 and 33.
  • Examples 34-36> A composite material was produced under the same conditions as in Example 4-6, except that the metal oxide was changed from CeO 2 to Nb 2 O 5 and the metal material was changed from In to Sn.
  • Metal oxide Nb 2 O 5 powder (3N D50 manufactured by Taniobis Japan: 0.3 ⁇ m)
  • Fluorine resin PTFE powder (manufactured by Seishin Enterprise Co., Ltd., average particle size 3 ⁇ m)
  • Metal material Sn powder (SN-AT-350 D50: 27 ⁇ m, manufactured by Fukuda Metal Foil & Powder Co., Ltd.) Table 9 shows the blending ratio (mixed weight ratio) and bending strength measurement results of Examples 34 and 36.
  • Example 37-39 In Examples 37-39, CeO 2 , PTFE, and In were used as raw materials in the same manner as in Examples 1-12, but the grain size of CeO 2 was changed.
  • the CeO 2 powder had an average particle size of 0.8 ⁇ m, 5 ⁇ m, or 45 ⁇ m.
  • the molded product thus formed was sintered under normal pressure and heating conditions of 200°C for 3 hours to obtain a composite material as a sintered body. Also, the mechanical bending strength of the obtained composite material was measured. Table 10 shows the measurement results of the average particle size and bending strength of each component in Examples 37-39.
  • Examples 40-42> In Examples 40-42, CeO 2 , PTFE, and In were used as raw materials in the same manner as in Examples 1-12, but the particle size of PTFE was changed.
  • the PTFE powder had an average particle size of 3 ⁇ m, 10 ⁇ m, or 30 ⁇ m.
  • the molded product thus formed was sintered under normal pressure and heating conditions of 200°C for 3 hours to obtain a composite material as a sintered body. Also, the mechanical bending strength of the obtained composite material was measured. Table 11 shows the measurement results of the average particle size and bending strength of each component in Examples 40-42.
  • Example 43 the same materials and mixture ratio as in Example 37 were used to form a molded product at room temperature, followed by sintering at 100° C. for 1 hour to obtain a composite material as a sintered body.
  • Example 44 a molded product was formed at room temperature using the same materials and mixture ratio as in Example 38, and then sintered at 200°C for 1 hour to obtain a composite material as a sintered body.
  • Example 45 a molded product was formed at room temperature using the same materials and mixture ratio as in Example 39, and then sintered at 300°C for 1 hour to obtain a composite material as a sintered body.
  • Table 12 shows the compounding ratio (mixed weight ratio), test conditions, and bending strength measurement results of Examples 43-45.
  • Examples 46-48 were manufactured by the second manufacturing method. That is, a composite material was produced by subjecting the mixture to temperature-rising compression molding.
  • Example 46 although the same materials and mixture ratio as in Example 37 were used, temperature-rising compression molding was performed at a pressure of 1.5 t/cm 2 at 100° C. for 2 hours to obtain a composite material that is a sintered body. .
  • Example 47 although the same materials and mixture ratio as in Example 38 were used, temperature-rising compression molding was performed at a pressure of 1.5 t/cm 2 at 200° C. for 2 hours to obtain a composite material that is a sintered body. .
  • Example 48 although the same materials and mixture ratio as in Example 39 were used, temperature-rising compression molding was performed at a pressure of 1.5 t/cm 2 at 300° C. for 2 hours to obtain a composite material that is a sintered body. .
  • Table 13 shows the compounding ratio (mixed weight ratio), test conditions, and bending strength measurement results of Examples 46-48.
  • Example 49 the composite material of Example 5 was used as a sputtering target, and a film was formed on a substrate made of borosilicate glass to prepare a thin-film coated member.
  • the target standard was 3 inches in diameter and 5 mm in thickness.
  • the composite was adhesively attached to a copper backing plate and used for sputter deposition.
  • Sputtering film formation conditions RF magnetron sputtering method, sputtering gas pressure of 1 Pa, sputtering power of 4.4 W/cm 2 , target-substrate distance of 8 cm
  • target strength confirmed by the presence or absence of cracks or breakage during sputtering
  • XPS film composition/state evaluation
  • film characteristics evaluation spectral characteristics
  • FIG. 2 shows the spectral characteristics of the CeO 2 -PTFE-In film of the manufactured thin-film-coated member.
  • a thin film of about 100 nm formed by sputtering using a CeO 2 -PTFE-In composite material as a target exhibited a high light shielding rate for ultraviolet light ( ⁇ 380 nm) compared to Corning glass.
  • the CeO 2 -PTFE-In film of 103.6 nm showed a high transmittance of 85% or more around 500 nm, which has the highest visibility.
  • the CeO 2 -PTFE-In film is thickened (122.2 nm), interference with the substrate Corning glass appears. Light absorption in the near-infrared to infrared region is small.
  • FIG. 3 shows the nanoindenter hardness of the CeO 2 -PTFE-In film of the manufactured thin-film coated member.
  • the hardness of the film is low compared to the case where a CeO 2 film is formed on glass, the hardness is sufficiently high compared to the PTFE film or the glass itself.
  • the nanoindenter hardness of the sputtered CeO 2 film was about twice that of the substrate Corning glass (borosilicate glass).
  • the nanoindenter hardness of the CeO 2 -PTFE-In film that shields ultraviolet light is about 8 MPa, which is higher than that of the substrate borosilicate glass.
  • the nanoindenter hardness of the sputter-deposited PTFE film is about 1 GPa, which is three times that of the bulk PTFE plate.
  • FIG. 4 shows the water contact angle of the CeO 2 -PTFE-In film of the manufactured thin film coated member.
  • the CeO 2 , CeO 2 -PTFE and PTFE films all exhibit higher water contact angles than the glass substrate.
  • a high contact angle is an indicator of water repellency, and indicates that the CeO 2 -PTFE-In film has a water-repellent function of repelling water.
  • the thin film coated member described above includes a glass workpiece and a thin film formed on the surface of the workpiece by sputtering. , and Bi.
  • the method of manufacturing the thin-film coated member includes mixing metal oxide powder, fluororesin powder, and metal material powder to obtain a mixture, and compression-molding the mixture to obtain a molded product. , firing the molded product at a temperature of 100° C. or higher and 350° C. or lower to obtain a sintered body; and using the sintered body as a sputtering target to form a thin film on a predetermined work by sputtering. .
  • the lack of mechanical strength due to low-temperature sintering performed due to the lack of heat resistance of the organic material can be resolved.
  • PTFE polytetrafluoroethylene
  • the composite material of the present disclosure can obtain high mechanical strength even with low temperature sintering.
  • the composite material of the example does not contain an organic binder such as acrylic. Therefore, it is suppressed to affect the binder composite material.
  • the sputtering method is widely used for surface treatment of digital signage devices using large flat panel displays, automobiles, and windows of buildings and houses.
  • inorganic substances such as metals, oxides, nitrides, carbides and sulfides, composite inorganic compounds thereof, and organic compounds such as fluororesins have been used as sputtering targets for a long time.
  • Methods of producing such a hybrid film by sputtering include (i) a method of forming an inorganic target and an organic target simultaneously.
  • this method is not preferable as a production technique because the discharge may become unstable due to mutual interference of discharges on different targets arranged at close range.
  • Another method is (ii) a method of using an organic-inorganic composite target (organic-inorganic composite target).
  • organic-inorganic composite target organic-inorganic composite target
  • a mixture of different inorganic compound powders and organic compound powders is normally pressed at 1 to 1.5 t/cm 2 at room temperature (cold press method) and sintered at about 100 ° C. to 350 ° C., or It is performed by a hot press method in which temperature-rising molding and sintering are performed at a temperature of about 100°C to 350°C.
  • the mechanical strength of the low-temperature sintered composite material which is a mixed powder containing inorganic materials and organic materials (fluororesin, etc.) is extremely weak, and there were major problems in actual use due to cracks and fractures during mass production.
  • a resin binder acrylic, etc.
  • the resin binder is scattered during the subsequent high-temperature sintering (1000° C. or higher) and does not remain in the sintered body.
  • the sintering temperature of the organic-inorganic composite is as low as 300° C. or less, there is concern that the organic binder may remain in the composite and affect the composite.
  • the metal material melts and spreads between particles at the sintering temperature to exhibit a binder effect.
  • the In binder can be sintered at 300° C. or lower, and the target can be densified and strengthened by sintering.
  • a composite material with high strength can be produced with a reduced amount of organic binder or without using it, and the above-described problems can be solved. It should be noted that although the present disclosure allows the content of the organic binder to be reduced, it does not preclude the inclusion of an organic material that functions as a binder, if necessary or according to purpose.
  • the composite material of the present disclosure is not limited to combinations of elements and compounds described as examples, and various combinations within the technical scope of the present disclosure are possible. That is, the metal material should at least contain one or more selected from the group including In, Sn, and Bi. Moreover, the metal oxide to be combined may include one or more selected from the group including Ce, Y, Al, Si and Nb, or may be other metals. Moreover, the fluororesin to be combined is not limited to the resins specifically exemplified in the embodiments.
  • the composite material can be used as a sputtering target, but it may of course be used for other purposes.
  • the glass substrate is exemplified as the workpiece on which the film is formed, the thin film covering member may be formed on other materials.

Abstract

Provided is a composite material containing: a matrix of metal oxides; a fluororesin; and one or more types of metallic materials selected from the group consisting of In, Sn, and Bi.

Description

複合材料、スパッタリングターゲット、薄膜被覆部材、及び製造方法Composite material, sputtering target, thin film coated member, and manufacturing method 関連出願の相互参照Cross-reference to related applications
 本国際出願は、2021年8月20日に日本国特許庁に出願された日本国特許出願第2021-134966号、及び、2021年12月7日に日本国特許庁に出願された日本国特許出願第2021-198807号に基づく優先権を主張するものであり、日本国特許出願第2021-134966号、及び、日本国特許出願第2021-198807号の全内容を本国際出願に参照により援用する。 This international application is the Japanese Patent Application No. 2021-134966 filed with the Japan Patent Office on August 20, 2021, and the Japanese patent application filed with the Japan Patent Office on December 7, 2021 It claims priority based on Application No. 2021-198807, and the entire contents of Japanese Patent Application No. 2021-134966 and Japanese Patent Application No. 2021-198807 are incorporated by reference into this international application. .
 本開示は、無機材料と有機材料を含む複合材料に関する。 The present disclosure relates to composite materials containing inorganic materials and organic materials.
 無機材料と有機材料の長所、短所を複合化補完し新しい機能の発現を目的として、無機材料と有機材料との複合材料の研究開発が活発に行われている。例えば、無機材料である金属化合物は、剛性が高く耐熱・耐環境性に優れる。一方で、一般に無機材料は柔軟性に劣り、また製造・加工に高温プロセスが必要で省エネ性に欠ける。有機材料の例として、炭化水素化合物(メタン系、エチレン系、アセチレン系、ハロゲン系、オレフィン系等)やフッ素系化合物が挙げられる。これらは、例えばメラミン樹脂、尿素樹脂、アルキッド樹脂、ポリエステル樹脂、塩化ビニル樹脂、スチレン樹脂、アクリル樹脂、ポリエチレン樹脂、フッ素樹脂ケイ素樹脂等の合成樹脂材料として広く用いられている。一般に、有機材料の長所は柔軟で可撓性に富む点である一方で、有機材料は耐擦傷性、耐熱性、耐侯性(耐紫外光性)に欠ける短所がある。 Research and development of composite materials of inorganic and organic materials is actively carried out with the aim of combining and complementing the strengths and weaknesses of inorganic and organic materials and developing new functions. For example, metal compounds, which are inorganic materials, have high rigidity and are excellent in heat resistance and environmental resistance. On the other hand, inorganic materials are generally inferior in flexibility, and require high-temperature processes for manufacturing and processing, lacking in energy efficiency. Examples of organic materials include hydrocarbon compounds (methane-based, ethylene-based, acetylene-based, halogen-based, olefin-based, etc.) and fluorine-based compounds. These are widely used as synthetic resin materials such as melamine resins, urea resins, alkyd resins, polyester resins, vinyl chloride resins, styrene resins, acrylic resins, polyethylene resins, and fluororesin silicon resins. In general, the advantage of organic materials is that they are flexible and flexible, but the disadvantages of organic materials are that they lack scratch resistance, heat resistance, and weather resistance (ultraviolet light resistance).
 また、上記無機材料と有機材料から成る複合材料(以下、単に「複合材料」とも記載する)の課題の1つとして、有機材料の耐熱性により律速される低温合成プロセスがある。事実、最も耐熱性に優れた有機材料であるフッ素樹脂のポリテトラフルオロエチレン(PTFE)においてもその耐熱性は300℃程度である。こうした低温プロセスによる複合材料の製造においては、加圧成型時に形態を保持すべく接着・接合目的で、通常、アクリル等の有機バインダーを用いている。しかし、300℃程度の低温焼結による複合材料には、機械的強度不足に起因する割れや破損が生じやすく、また、有機バインダーの複合材料内の残存による影響も懸念される。 In addition, one of the problems with composite materials (hereinafter also simply referred to as "composite materials") composed of inorganic and organic materials is a low-temperature synthesis process that is rate-determined by the heat resistance of the organic materials. In fact, the heat resistance of polytetrafluoroethylene (PTFE), which is an organic material having the highest heat resistance, is about 300°C. In the production of composite materials by such a low-temperature process, an organic binder such as acrylic is usually used for the purpose of bonding and joining to maintain the shape during pressure molding. However, composite materials sintered at a low temperature of about 300° C. are likely to crack or break due to insufficient mechanical strength, and there is concern about the effects of organic binder remaining in the composite material.
 無機材料、有機材料等の複合化は、バルク材のみならず薄膜の分野においても強いニーズがある。事実、無機基板又は有機基板上に無機又は有機薄膜を形成し新しい機能を付与する表面処理が研究開発されている。また、軽量化や変形性の観点から従来の重くて硬い無機基板に代わり軽くて形状柔軟性のある樹脂フィルムが用いられ始めている。こうした樹脂基体や基板の表面処理には低温成膜が可能なスパッタリングが広く用いられている。また、処理面積の大面積化に伴い使用する有機無機複合材料から成るスパッタリングターゲットの大型化により、複合材料の一層高い機械的強度が求められている。  There is a strong need not only for bulk materials but also for thin films to combine inorganic and organic materials. In fact, research and development have been conducted on surface treatments in which inorganic or organic thin films are formed on inorganic or organic substrates to impart new functions. In addition, from the viewpoint of weight reduction and deformability, light and shape-flexible resin films have begun to be used in place of conventional heavy and hard inorganic substrates. Sputtering, which enables low-temperature film formation, is widely used for the surface treatment of such resin substrates and substrates. In addition, as the processing area increases, the size of the sputtering target made of an organic-inorganic composite material is increased, so that the composite material is required to have higher mechanical strength.
 さらに、薄膜の研究開発においてもこれまでの無機化合物に加えより高い機能を求め有機物との複合化合物膜の作製と評価が研究されている。ところが、無機物と有機物の混合物ターゲットの焼結温度は有機物の蒸発温度に律速されて低温焼結で作製されることからその機械的強度は、例えば特許文献1や特許文献2に開示される高温焼結ターゲットに比べ低く、十分な機械的強度が得られなかった。 Furthermore, in the research and development of thin films, in addition to conventional inorganic compounds, the preparation and evaluation of composite compound films with organic substances are being studied in pursuit of higher functionality. However, since the sintering temperature of the inorganic-organic mixture target is rate-determined by the vaporization temperature of the organic matter and is produced by low-temperature sintering, its mechanical strength is limited by the high-temperature sintering disclosed in Patent Document 1 and Patent Document 2, for example. It was lower than that of the bonded target, and sufficient mechanical strength was not obtained.
特開2012-162755号公報JP 2012-162755 A 特開2019-137875号公報JP 2019-137875 A
 本開示の目的は、上述した問題に鑑みてなされたものであり、すなわち、機械的強度の高い複合材料及びその製造方法を提案することである。 The object of the present disclosure was made in view of the above problems, that is, to propose a composite material with high mechanical strength and a method for producing the same.
 本開示の一態様は、複合材料であって、マトリックスと、フッ素樹脂と、金属材料と、を含む。マトリックスは、金属酸化物である。金属材料は、In,Sn,Biを含む群から選択される1種以上である。このような複合材料は、高い機械的強度を有する。 One aspect of the present disclosure is a composite material that includes a matrix, a fluororesin, and a metal material. The matrix is a metal oxide. The metal material is one or more selected from the group including In, Sn, and Bi. Such composite materials have high mechanical strength.
 上述した複合材料において、金属酸化物は、金属元素としてCe,Y,Al,Si,Nbを含む群から選択される1種以上を含んでもよい。また上述した複合材料において、フッ素樹脂は、ポリテトラフルオロエチレン、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン・エチレン共重合体及びポリフッ化ビニリデンを含む群から選択される少なくとも1種以上を含んでもよい。 In the composite material described above, the metal oxide may contain one or more selected from the group containing Ce, Y, Al, Si, and Nb as metal elements. In the composite material described above, the fluororesin includes polytetrafluoroethylene, tetrafluoroethylene/hexafluoropropylene copolymer, tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene/ethylene copolymer and polyfluoride. It may contain at least one or more selected from the group containing vinylidene.
 また上述した複合材料は、金属酸化物と、フッ素樹脂と、の混成重量比は20:1~1:1の範囲であってもよい。また、金属酸化物、フッ素樹脂、及び金属材料の総重量を100%としたときに、金属材料が0.1重量%以上50重量%以下であってもよい。このような混成重量比であれば、複合材料はより高い機械的強度を有することができる。 Further, in the composite material described above, the mixed weight ratio of the metal oxide and the fluororesin may be in the range of 20:1 to 1:1. Further, the metal material may be 0.1% by weight or more and 50% by weight or less when the total weight of the metal oxide, the fluororesin, and the metal material is 100%. With such a mixture weight ratio, the composite material can have higher mechanical strength.
 また上述した複合材料は、金属酸化物とフッ素樹脂との間、及び、金属材料とフッ素樹脂との間で、金属フッ化物又はフッ化炭素の複合化合物相を形成していてもよい。このような複合材料であれば、より高い機械的強度を有することができる。 In addition, the composite material described above may form a composite compound phase of metal fluoride or fluorocarbon between the metal oxide and the fluororesin and between the metal material and the fluororesin. Such a composite material can have higher mechanical strength.
 本開示の一態様は、スパッタリングターゲットであって、上述した複合材料により構成される。このようなスパッタリングターゲットであれば、機械的強度が高く、例えば大型化しても破損が生じにくい。 One aspect of the present disclosure is a sputtering target, which is composed of the composite material described above. Such a sputtering target has high mechanical strength and is less likely to be damaged even if it is enlarged, for example.
 本開示の一態様は、薄膜被覆部材であって、ワークと、薄膜と、を備える。薄膜は、ワークの表面にスパッタリングにより形成される。また、薄膜は、マトリックスと、フッ素樹脂と、金属材料と、を含む。マトリックスは、金属酸化物である。金属材料は、In,Sn,Biを含む群から選択される1種以上である。このような薄膜被覆部材であれば、薄膜の機械的強度が高いため、薄膜の破損が抑制される。 One aspect of the present disclosure is a thin film coated member comprising a workpiece and a thin film. A thin film is formed on the surface of the workpiece by sputtering. Also, the thin film includes a matrix, a fluororesin, and a metal material. The matrix is a metal oxide. The metal material is one or more selected from the group including In, Sn, and Bi. With such a thin film coated member, the mechanical strength of the thin film is high, so damage to the thin film is suppressed.
 本開示の一態様は、複合材料の製造方法であって、金属酸化物粉末と、フッ素樹脂粉末と、金属材料粉末と、を含む材料粉末を混合して混合物を得ることと、混合物を圧縮成形して成形加工物を得ることと、成形加工物を100℃以上350℃以下で焼成して焼結体を得ることと、を含む。金属材料粉末は、In,Sn,Biを含む群から選択される1種以上の金属材料を含む。このような製造方法であれば、フッ素樹脂の機能を維持しつつ、高い機械的強度を有する複合材料を製造することができる。 One aspect of the present disclosure is a method for producing a composite material, comprising: mixing material powders containing metal oxide powder, fluororesin powder, and metal material powder to obtain a mixture; and obtaining a sintered body by firing the molded product at 100° C. or higher and 350° C. or lower. The metal material powder contains one or more metal materials selected from the group including In, Sn, and Bi. With such a production method, a composite material having high mechanical strength can be produced while maintaining the functions of the fluororesin.
 本開示の一態様は、薄膜被覆部材の製造方法であって、金属酸化物粉末と、フッ素樹脂粉末と、金属材料粉末と、を含む材料粉末を混合して混合物を得ることと、混合物を圧縮成形して成形加工物を得ることと、成形加工物を100℃以上350℃以下で焼成して焼結体を得ることと、焼結体をスパッタリングターゲットとして用いて、スパッタリングにより所定のワークに薄膜を形成することと、を含む。金属材料粉末は、In,Sn,Biを含む群から選択される1種以上の金属材料を含む。このような製造方法であれば、薄膜におけるフッ素樹脂の機能を維持しつつ、薄膜が高い機械的強度を有する薄膜被覆部材を製造することができる。 One aspect of the present disclosure is a method for manufacturing a thin-film coated member, comprising: obtaining a mixture by mixing material powders containing metal oxide powder, fluororesin powder, and metal material powder; obtain a molded product by molding; obtain a sintered body by firing the molded product at 100° C. or higher and 350° C. or lower; and use the sintered body as a sputtering target to form a thin film on a predetermined work by sputtering. and forming. The metal material powder contains one or more metal materials selected from the group including In, Sn, and Bi. With such a manufacturing method, it is possible to manufacture a thin-film coated member in which the thin film has high mechanical strength while maintaining the function of the fluororesin in the thin film.
曲げ強度評価試験を行う装置を示す図である。It is a figure which shows the apparatus which performs a bending-strength evaluation test. 複合材料スパッタリングターゲットを用いて作製したCeO-PTFE-In膜の分光特性を示すグラフである。4 is a graph showing spectral properties of a CeO 2 -PTFE-In film fabricated using a composite sputtering target. 複合材料スパッタリングターゲットを用いて作製したCeO-PTFE-In膜のナノインデンター硬度を示すグラフである。1 is a graph showing the nanoindenter hardness of CeO 2 -PTFE-In films fabricated using composite sputtering targets. 複合材料スパッタリングターゲットを用いて作製したCeO-PTFE-In膜の水接触角を示すグラフである。1 is a graph showing the water contact angle of a CeO 2 -PTFE-In film fabricated using a composite sputtering target.
11…試料固定冶具、12…荷重印加冶具、13…試料 11... sample fixing jig, 12... load applying jig, 13... sample
 以下に本開示の実施形態を図面と共に説明する。 The embodiments of the present disclosure will be described below together with the drawings.
 [1.複合材料の構成]
 本開示の複合材料は、金属酸化物,フッ素樹脂,及び金属材料を含む。本開示の複合材料には、例えば本開示で説明する製品の優れた特性を失わない範囲で他の材料が含まれていてもよい。
[1. Composition of Composite Material]
Composite materials of the present disclosure include metal oxides, fluororesins, and metal materials. Composites of the present disclosure may include other materials, for example, as long as they do not detract from the superior properties of the products described in the present disclosure.
 [1-1.金属酸化物]
 金属酸化物は、複合材料のマトリックス(母材)であり、複合材料に比較的大きな割合で含まれる。金属酸化物の具体的な元素の種類や配合比率は特に限定されない。金属元素としてCe,Y,Al,Si,Nbを含む群から選択される1種以上を含むと好適である。
[1-1. metal oxide]
Metal oxides are the matrix of the composite material and are contained in a relatively large proportion of the composite material. There are no particular restrictions on the specific types and blending ratios of the elements in the metal oxide. It is preferable that one or more selected from the group including Ce, Y, Al, Si and Nb be included as metal elements.
 (i)セリウム酸化物
 本実施形態に係る複合材料で用いるセリウム酸化物としては、三酸化セリウム(Ce)、及び二酸化セリウム(CeO)が好ましく、二酸化セリウムがより好ましい。複合材料に用いるセリウム酸化物としては、これらセリウム酸化物の1種又は2種以上の混合物を用いてもよい。
(i) Cerium Oxide As the cerium oxide used in the composite material according to the present embodiment, cerium trioxide (Ce 2 O 3 ) and cerium dioxide (CeO 2 ) are preferable, and cerium dioxide is more preferable. As the cerium oxide used in the composite material, one or a mixture of two or more of these cerium oxides may be used.
 (ii)アルミニウム酸化物
 本実施形態に係る複合材料で用いることができるアルミニウム酸化物として、酸化アルミニウム(Al)が例示される。
(ii) Aluminum Oxide Aluminum oxide (Al 2 O 3 ) is exemplified as an aluminum oxide that can be used in the composite material according to this embodiment.
 (iii)ケイ素酸化物
 本実施形態に係る複合材料で用いることができるケイ素酸化物としては、酸化ケイ素(SiO)が例示される。
(iii) Silicon Oxide Silicon oxide (SiO 2 ) is exemplified as a silicon oxide that can be used in the composite material according to the present embodiment.
 (iv)イットリウム酸化物
 本実施形態に係る複合材料で用いることができるイットリウム酸化物としては、酸化イットリウム(Y)が例示される。
(iv) Yttrium Oxide Yttrium oxide (Y 2 O 3 ) is exemplified as yttrium oxide that can be used in the composite material according to the present embodiment.
 (v)ニオブ酸化物
 本実施形態に係る複合材料で用いることができるニオブ酸化物としては、酸化ニオブ(Nb)が例示される。
(v) Niobium Oxide Niobium oxide (Nb 2 O 5 ) is exemplified as a niobium oxide that can be used in the composite material according to the present embodiment.
 <粒子径について>
 本実施形態の複合材料を製造する際に用いる金属酸化物の粒子(粉末)の平均粒子径は、複合材料が製造可能であれば特に限定されるものではない。なお、金属酸化物の粒子径は、0.5μm~50μm、好ましくは2μm~20μm、より好ましくは3μm~10μmであるとよい。
<Regarding particle size>
The average particle size of the metal oxide particles (powder) used to produce the composite material of the present embodiment is not particularly limited as long as the composite material can be produced. The particle size of the metal oxide should be 0.5 μm to 50 μm, preferably 2 μm to 20 μm, more preferably 3 μm to 10 μm.
 [1-2.フッ素樹脂]
 フッ素樹脂は、フッ素-炭素結合を有する化合物であり、典型的には炭化水素などの有機化合物の1つ又は2つ以上の水素原子がフッ素原子に置換された構造を有する化合物である。
[1-2. Fluororesin]
A fluororesin is a compound having a fluorine-carbon bond, typically a compound having a structure in which one or more hydrogen atoms of an organic compound such as a hydrocarbon are substituted with fluorine atoms.
 本実施形態の複合材料の製造方法に用いるフッ素樹脂としては、例えば、α-オレフィンの1つ又は2つ以上の水素原子がフッ素原子に置換された構造を有するモノマーに由来する構成単位を含む、好ましくは主要な構成単位の1つとして含むものを例示することができる。ここでいう主要な構成単位とは、全構成モノマーに由来する構成単位の総和を100モル%として、上記の構造が20モル%以上のものを指す。なお、好ましくは上記の構造が40モル%以上、より好ましくは60モル%以上、更に好ましくは80モル%以上、最も好ましくは90モル%以上含むものであってもよい。 The fluororesin used in the method for producing a composite material of the present embodiment includes, for example, a structural unit derived from a monomer having a structure in which one or more hydrogen atoms of an α-olefin are substituted with fluorine atoms. Preferably, those containing as one of the main structural units can be exemplified. The term "main structural unit" as used herein refers to one having the above structure in an amount of 20 mol% or more based on the total of 100 mol% of the structural units derived from all constituent monomers. The above structure may preferably contain 40 mol % or more, more preferably 60 mol % or more, still more preferably 80 mol % or more, and most preferably 90 mol % or more.
 上記α-オレフィンの1つ又は2つ以上の水素原子がフッ素原子に置換された構造を有するモノマーとしては、例えば、テトラフルオロエチレン、トリフルオロエチレン、フッ化ビニリデン、フッ化ビニル、ヘキサフルオロプロピレン、ペンタフルオロプロピレン、テトラフルオロプロピレン、トリフルオロプロピレン、及びクロロトリフルオロエチレンなどをあげることができる。上記α-オレフィンの1つ又は2つ以上の水素原子がフッ素原子に置換された構造を有するモノマーとしては、これらの1種又は2種以上の混合物を用いてもよい。 Examples of monomers having a structure in which one or more hydrogen atoms of the α-olefin are substituted with fluorine atoms include tetrafluoroethylene, trifluoroethylene, vinylidene fluoride, vinyl fluoride, hexafluoropropylene, Examples include pentafluoropropylene, tetrafluoropropylene, trifluoropropylene, and chlorotrifluoroethylene. As the monomer having a structure in which one or more hydrogen atoms of the α-olefin are substituted with fluorine atoms, one or a mixture of two or more thereof may be used.
 上述したモノマーを構成単位として含むフッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリヘキサフルオロプロピレン(PHFP)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・エチレン共重合体(ETFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、クロロトリフルオロエチレン・エチレン共重合体(ECTFE)、及びポリクロロトリフルオロエチレン(PCTFE)などをあげることができる。フッ素樹脂として、これらの1種又は2種以上の混合物を用いてもよい。 Examples of fluororesins containing the above monomers as structural units include polytetrafluoroethylene (PTFE), polyhexafluoropropylene (PHFP), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVA), tetrafluoroethylene-hexa Fluoropropylene copolymer (FEP), tetrafluoroethylene/ethylene copolymer (ETFE), tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer (PFA), chlorotrifluoroethylene/ethylene copolymer (ECTFE), and Polychlorotrifluoroethylene (PCTFE) and the like can be mentioned. One or a mixture of two or more of these may be used as the fluororesin.
 これらの中で、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・エチレン共重合体(ETFE)及びポリフッ化ビニリデン(PVDF)を含む群から選択される少なくとも1種以上を用いることが好ましい。 Among these, polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-ethylene copolymer It is preferable to use at least one selected from the group including (ETFE) and polyvinylidene fluoride (PVDF).
 <酸素プラズマ処理>
 本実施形態の複合材料を製造する際に用いるフッ素樹脂の粒子(粉末)の表面をプラズマ処理すると好適である。具体的には、フッ素樹脂の粒子(粉末)の表面を酸素プラズマ処理することで、C-F結合、C-C、C-Hに加えて、C-F、C-F、CO、C=O、C-H結合等がフッ素樹脂粒子の表面に新たに出現する。これらの新たな表面結合基は、反応性に富み金属酸化物との焼結に有効である。
<Oxygen plasma treatment>
It is preferable to plasma-treat the surface of the fluororesin particles (powder) used in manufacturing the composite material of the present embodiment. Specifically, by treating the surface of fluororesin particles (powder) with oxygen plasma, in addition to C—F 2 bonds, C—C, and C—H, C—F, C—F 3 , and CO 2 , C═O, and C—H bonds newly appear on the surface of the fluororesin particles. These new surface bonding groups are highly reactive and effective for sintering with metal oxides.
 <粒子径について>
 本実施形態の複合材料を製造する際に用いるフッ素樹脂の粒子(粉末)の平均粒子径は、複合材料を製造可能であれば特に限定されるものではない。なお、フッ素樹脂の平均粒子径は、0.1μm~20μm、好ましくは0.2μm~10μm、より好ましくは0.3μm~5μmであるとよい。
<Regarding particle size>
The average particle size of the fluororesin particles (powder) used in producing the composite material of the present embodiment is not particularly limited as long as the composite material can be produced. The average particle size of the fluororesin is preferably 0.1 μm to 20 μm, preferably 0.2 μm to 10 μm, more preferably 0.3 μm to 5 μm.
 [1-3.金属材料]
 金属成分は、400℃以下の融点を持つ金属材料である。本実施形態の複合材料の製造方法に用いる金属材料としては、In,Sn,Biを含む群から選択される1種以上が好ましい。
[1-3. Metal material]
The metal component is a metal material having a melting point of 400° C. or less. As the metal material used in the method for producing the composite material of the present embodiment, one or more selected from the group including In, Sn, and Bi are preferable.
 <粒子径について>
 本実施形態の複合材料を製造する際に用いる金属材料の粒子(金属材料粉末)の平均粒子径は、特に限定されるものではないが、0.1μm~50μm、好ましくは0.2μm~10μmであるとよい。
<Regarding particle size>
The average particle size of the metal material particles (metal material powder) used in producing the composite material of the present embodiment is not particularly limited, but is 0.1 μm to 50 μm, preferably 0.2 μm to 10 μm. Good to have.
 [1-4.各成分の配合]
 金属酸化物、フッ素樹脂、及び金属材料の混成重量比(混合割合)について説明する。複合材料を製造する際に用いる金属酸化物粒子(粉末)とフッ素樹脂粒子(粉末)の混合割合は、金属酸化物とフッ素樹脂との混成重量比が、20:1~1:1の範囲としてもよい。なお、10:1よりもフッ素樹脂の比率が大きいと好ましい。また、5:1よりもフッ素樹脂の比率が小さいと好ましい。金属材料は、金属酸化物、フッ素樹脂、及び金属材料の総重量重を100%としたときに、0.1重量%以上50重量%以下としてもよい。なお、金属材料が0.5重量%以上であると好ましく、5重量%以上であるとさらに好ましい。また、金属材料が25重量%以下であると好適である。
[1-4. Composition of each component]
The mixing weight ratio (mixing ratio) of the metal oxide, the fluororesin, and the metal material will be described. The mixing ratio of the metal oxide particles (powder) and the fluororesin particles (powder) used when producing the composite material is such that the mixed weight ratio of the metal oxide and the fluororesin is in the range of 20:1 to 1:1. good too. In addition, it is preferable that the ratio of the fluororesin is larger than 10:1. Also, it is preferable that the ratio of the fluororesin is smaller than 5:1. The content of the metal material may be 0.1% by weight or more and 50% by weight or less when the total weight of the metal oxide, the fluororesin, and the metal material is taken as 100%. The metal material is preferably 0.5% by weight or more, more preferably 5% by weight or more. Moreover, it is preferable that the metal material is 25% by weight or less.
 [1-5.複合材料の物性値及び化学結合状態]
 <密度>
 本実施形態の複合材料の密度は特に限定されないが、測定した重量/体積によって算出した場合に、3.0g/cm以上8.0g/cm以下、好ましくは3.2g/cm以上8.0g/cm以下、より好ましくは3.5g/cm以上5.3g/cm以下である。
[1-5. Physical properties and chemical bonding state of composite materials]
<Density>
Although the density of the composite material of the present embodiment is not particularly limited, it is 3.0 g/cm 3 or more and 8.0 g/cm 3 or less, preferably 3.2 g/cm 3 or more and 8.0 g/cm 3 or more when calculated based on the measured weight/volume. 0 g/cm 3 or less, more preferably 3.5 g/cm 3 or more and 5.3 g/cm 3 or less.
 <破壊強度>
 本実施形態の複合材料の破壊強度は、JIS R 1601に規定されるファインセラミックスの曲げ強さ試験方法に則り測定し、これを破壊強度とする場合に、0.2MPa好ましくは0.5MPa以上、より好ましくは1MPa以上である。
<Breaking strength>
The breaking strength of the composite material of the present embodiment is measured according to the bending strength test method for fine ceramics specified in JIS R 1601, and when this is taken as the breaking strength, it is 0.2 MPa, preferably 0.5 MPa or more, More preferably, it is 1 MPa or more.
 測定は、曲げ強度評価試験装置(JTトーシ製 lSC-2/100)と評価用冶具を用いた。図1に示されるように、試料固定冶具11にて試料13を固定し、荷重印加冶具12にて荷重を印加した。 For the measurement, a bending strength evaluation test device (JT Toshi lSC-2/100) and an evaluation jig were used. As shown in FIG. 1 , a sample 13 was fixed by a sample fixing jig 11 and a load was applied by a load applying jig 12 .
 <化学結合状態について>
 本実施形態の複合材料では、金属酸化物成分とフッ素樹脂成分及び金属に起因する化合物の形態が金属酸化物マトリックス中に含有されている。このとき、金属酸化物成分とフッ素樹脂と金属成分との間で、すなわち、金属酸化物とフッ素樹脂との間、及び、金属材料とフッ素樹脂との間で、金属フッ化物又はフッ化炭素の複合化合物相を形成していると好適である。
<About chemical bonding state>
In the composite material of the present embodiment, the metal oxide matrix contains the metal oxide component, the fluororesin component, and the compound derived from the metal. At this time, between the metal oxide component, the fluororesin, and the metal component, that is, between the metal oxide and the fluororesin, and between the metal material and the fluororesin, the metal fluoride or fluorocarbon Forming a complex compound phase is preferable.
 本実施形態の複合材料及び複合材料において、各元素がどのような化合物を形成しているかは、エックス線光電子分光法(以下、「XPS分析」と略すことがある。)により確認することができる。XPS分析は、例えば、アルバック・ファイ社のESCA5400型XPS分析装置を使用し、エックス線としてMg kα線(例えば、電力400W、電圧15kVの条件で発生させたビーム直径1.1mmのMg kα線)を使用して測定することができる。 In the composite material and the composite material of this embodiment, what kind of compound each element forms can be confirmed by X-ray photoelectron spectroscopy (hereinafter sometimes abbreviated as "XPS analysis"). For XPS analysis, for example, an ESCA5400 type XPS analyzer manufactured by ULVAC-Phi is used, and Mg kα rays (for example, Mg kα rays with a beam diameter of 1.1 mm generated under the conditions of a power of 400 W and a voltage of 15 kV) are used as X-rays. can be measured using
 [2.複合材料の製造方法]
 複合材料の製造方法は、混合工程、成形工程、及び、焼結工程を含む第1の製造方法と、混合工程、及び、加熱成形工程を含む第2の製造方法と、が例示される。
[2. Composite material manufacturing method]
Examples of the method of manufacturing the composite material include a first manufacturing method including a mixing step, a molding step, and a sintering step, and a second manufacturing method including a mixing step and a hot molding step.
 <第1の製造方法>
 混合工程では、フッ素樹脂粉末と、金属酸化物粉末と、金属材料粉末とを含む材料粉末を混合して混合物を得る。材料粉末には、他の材料が含まれていてもよい。この混合工程において、金属酸化物粒子(粉末)とフッ素樹脂粒子(粉末)の混合割合は、金属酸化物、フッ素樹脂の混成重量比を20:1~1:1の範囲としてもよい。また、金属酸化物、フッ素樹脂、金属材料の総重量重を100%としたときに、金属材料が0.1%以上50重量%以下であると好適である。本実施形態の複合材料の製造方法に用いる金属成分としては、In,Sn,Biを含む群から選択される1種以上であり、金属酸化物成分(Ce,Y,Al,Si,Nb)から成る化合物相を含有すると好適である。
<First manufacturing method>
In the mixing step, material powders containing fluororesin powder, metal oxide powder, and metal material powder are mixed to obtain a mixture. The material powder may contain other materials. In this mixing step, the mixing ratio of the metal oxide particles (powder) and the fluororesin particles (powder) may be in the range of 20:1 to 1:1. Moreover, when the total weight of the metal oxide, the fluororesin, and the metal material is taken as 100%, it is preferable that the metal material is 0.1% or more and 50% or less by weight. The metal component used in the method for producing a composite material of the present embodiment is one or more selected from the group containing In, Sn, and Bi, and from metal oxide components (Ce, Y, Al, Si, Nb) It is preferred to contain a compound phase consisting of
 続く成形工程では、混合工程で得た混合物を圧縮成形して成形加工物を得る。ここでは、一例として常温加圧(コールドプレス法、Cold Press,CP)により成形加工物を成形する。加圧力は、例えば、1~1.5t/cmとすることができるが、これ以外でもよい。なお、加圧成形時の形状維持を目的として、混合物に樹脂バインダー(アクリル等)を数%混合してもよい。 In the subsequent molding step, the mixture obtained in the mixing step is compression-molded to obtain a molded product. Here, as an example, the molded product is molded by normal temperature pressurization (Cold Press, CP). The applied pressure can be, for example, 1 to 1.5 t/cm 2 , but may be other than this. For the purpose of maintaining the shape during pressure molding, the mixture may be mixed with a resin binder (acrylic, etc.) by several percent.
 続く焼結工程では、成形工程で得た成形加工物を100℃以上350℃以下、好ましくは200℃以上、また好ましくは300℃以下で焼成して焼結体を得る。得られた焼結体が複合材料である。 In the subsequent sintering step, the molded product obtained in the molding step is fired at 100°C or higher and 350°C or lower, preferably 200°C or higher, and preferably 300°C or lower to obtain a sintered body. The resulting sintered body is the composite material.
 <第2の製造方法>
 第1の製造方法では、混合物を圧縮成形して成形加工物を得ることと、成形加工物を100℃以上350℃以下で焼成して焼結体を得ることと、を異なる工程で行った。第2の製造方法では、これらを1つの工程で行う点で第1の製造方法と相違する。第2の製造方法は、混合工程と、加熱成形工程と、を含む。
<Second manufacturing method>
In the first production method, compression molding of the mixture to obtain a molded product and firing of the molded product at a temperature of 100° C. to 350° C. to obtain a sintered body were performed in different steps. The second manufacturing method differs from the first manufacturing method in that these are performed in one step. A second manufacturing method includes a mixing step and a thermoforming step.
 混合工程は、第1の製造方法における混合工程と同様である。なお、加圧成形時の形状維持を目的として、混合物に樹脂バインダー(アクリル等)を数%混合してもよい。加熱成形工程では、混合工程の後に、混合工程で得た混合物を100℃~350℃で昇温圧縮成形(ホットプレス法、Hot press,HP)して成形加工された焼結体を得る。得られた焼結体が複合材料である。 The mixing step is the same as the mixing step in the first manufacturing method. For the purpose of maintaining the shape during pressure molding, the mixture may be mixed with a resin binder (acrylic, etc.) by several percent. In the hot molding step, after the mixing step, the mixture obtained in the mixing step is subjected to temperature-rising compression molding (hot press method, HP) at 100° C. to 350° C. to obtain a molded sintered body. The resulting sintered body is the composite material.
 [3.実施例]
 実施例1-48では、複合材料を作製した。実施例49では、実施例5の複合材料をスパッタリングターゲットとして利用して基板に成膜し、薄膜被覆部材を作製した。
[3. Example]
In Examples 1-48, composite materials were made. In Example 49, the composite material of Example 5 was used as a sputtering target to form a film on a substrate to produce a thin-film coated member.
 <実施例1-12及び比較例1>
 以下の材料により成形加工物を形成した。
金属酸化物:CeO粉末(ニッキ株式会社製 平均粒径5μm)
フッ素樹脂:PTFE粉末(株式会社セイシン企業製 平均粒径3μm)
金属材料:In粉末(三津和化学薬品株式会社製 平均粒径40μm)
 酸化セリウム粉末は共沈法により作製した。酸化セリウム粉末(平均粒子径5μm)とPTFE粉末(平均粒子径3μm)を、重量比率10:1(実施例3,6,9,12)、7:1(実施例2,5,8,11)、5:1(実施例1,4,7,10)で混合し、さらに金属材料としてInを、金属酸化物、フッ素樹脂、金属材料の総重量重を100%としたときに、金属材料が0.1%以上50重量%以下の範囲において混合した。
<Examples 1-12 and Comparative Example 1>
Molded workpieces were formed from the following materials.
Metal oxide: CeO2 powder (manufactured by Nikki Co., Ltd., average particle size 5 μm)
Fluorine resin: PTFE powder (manufactured by Seishin Enterprise Co., Ltd., average particle size 3 μm)
Metal material: In powder (manufactured by Mitsuwa Chemicals Co., Ltd., average particle size 40 μm)
A cerium oxide powder was prepared by a coprecipitation method. Cerium oxide powder (average particle size 5 μm) and PTFE powder (average particle size 3 μm) were mixed at a weight ratio of 10: 1 (Examples 3, 6, 9, 12), 7: 1 (Examples 2, 5, 8, 11). ), 5:1 (Examples 1, 4, 7, and 10), and further, when the total weight of In as the metal material, the metal oxide, the fluororesin, and the metal material is 100%, the metal material was mixed in the range of 0.1% to 50% by weight.
 その後、混合物を成形圧1トン/cmで加圧し、直径3インチ、厚さ5mmに成形した。 The mixture was then pressed at a molding pressure of 1 ton/cm 2 and molded to a diameter of 3 inches and a thickness of 5 mm.
 形成した成形加工物を、常圧、200℃の加熱条件で3時間焼結し、焼結体である複合材料を得た。また得られた複合材料の機械的曲げ強度を測定した。実施例1-12の配合割合(混成重量比)と曲げ強度の測定結果を表1に示す。表1において、金属材料の混成重量比の横の値は、総重量重を100%としたときの金属材料の重量%である。 The molded product thus formed was sintered under normal pressure and heating conditions of 200°C for 3 hours to obtain a composite material as a sintered body. Also, the mechanical bending strength of the obtained composite material was measured. Table 1 shows the blending ratio (mixed weight ratio) and bending strength measurement results of Examples 1-12. In Table 1, the value next to the mixed weight ratio of metal materials is the weight percent of the metal materials when the total weight is taken as 100%.
Figure JPOXMLDOC01-appb-T000001
 
 また、金属酸化物として酸化セリウム粉末(平均粒子径5μm)とフッ素樹脂としてPTFE粉末(平均粒子径3μm)を、重量比率7:1で混合し、さらに、金属酸化物、フッ素樹脂、樹脂バインダーの総重量重を100%としたときに、樹脂バインダーとしてのアクリル樹脂が5重量%含まれる混合物を常温加圧成形し、その後に100℃の焼結により作製した複合材料を、比較例として表1に付記した。
Figure JPOXMLDOC01-appb-T000001

In addition, cerium oxide powder (average particle size 5 μm) as a metal oxide and PTFE powder (average particle size 3 μm) as a fluororesin were mixed at a weight ratio of 7:1, and further, a metal oxide, a fluororesin, and a resin binder were mixed. When the total weight is 100%, a mixture containing 5% by weight of an acrylic resin as a resin binder is pressure-molded at room temperature and then sintered at 100°C. added to
 <実施例13-15>
 実施例4-6と比較して、金属材料をInからSnに変更した以外は、同様の条件で複合材料を作製した。
金属酸化物:CeO粉末(ニッキ株式会社製 平均粒径5μm)
フッ素樹脂:PTFE粉末(株式会社セイシン企業製 平均粒径3μm)
金属材料:Sn粉末(福田金属箔粉工業製 SN-AT-350 D50:27μm)
 実施例13-15の配合割合(混成重量比)と曲げ強度の測定結果を表2に示す。
<Examples 13-15>
A composite material was produced under the same conditions as in Example 4-6, except that the metal material was changed from In to Sn.
Metal oxide: CeO2 powder (manufactured by Nikki Co., Ltd., average particle size 5 μm)
Fluorine resin: PTFE powder (manufactured by Seishin Enterprise Co., Ltd., average particle size 3 μm)
Metal material: Sn powder (SN-AT-350 D50: 27 μm, manufactured by Fukuda Metal Foil & Powder Co., Ltd.)
Table 2 shows the mixing ratio (mixed weight ratio) and bending strength measurement results of Examples 13 and 15.
Figure JPOXMLDOC01-appb-T000002
 
 <実施例16-18>
 実施例4-6と比較して、金属材料をInからIn-5%Sn粉末に変更した以外は、同様の条件で複合材料を作製した。
金属酸化物:CeO粉末(ニッキ株式会社製 平均粒径5μm)
フッ素樹脂:PTFE粉末(株式会社セイシン企業製 平均粒径3μm)
金属材料:In-5%Sn粉末(三菱マテリアル電子化成製 粒径0.03μm)
 実施例16-18の配合割合(混成重量比)と曲げ強度の測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000002

<Examples 16-18>
A composite material was produced under the same conditions as in Example 4-6, except that the metal material was changed from In to In-5% Sn powder.
Metal oxide: CeO2 powder (manufactured by Nikki Co., Ltd., average particle size 5 μm)
Fluorine resin: PTFE powder (manufactured by Seishin Enterprise Co., Ltd., average particle size 3 μm)
Metal material: In-5% Sn powder (Mitsubishi Materials Electronic Chemicals, particle size 0.03 μm)
Table 3 shows the mixing ratio (mixed weight ratio) and bending strength measurement results of Examples 16 and 18.
Figure JPOXMLDOC01-appb-T000003
 
 <実施例19-21>
 実施例4-6と比較して、金属材料をInからBiに変更した以外は、同様の条件で複合材料を作製した。
金属酸化物:CeO粉末(ニッキ株式会社製 平均粒径5μm)
フッ素樹脂:PTFE粉末(株式会社セイシン企業製 平均粒径3μm)
金属材料:Bi粉末(株式会社ニラコ製 粒径74μm)
 実施例19-21の配合割合(混成重量比)と曲げ強度の測定結果を表4に示す。
Figure JPOXMLDOC01-appb-T000003

<Examples 19-21>
A composite material was produced under the same conditions as in Example 4-6, except that the metal material was changed from In to Bi.
Metal oxide: CeO2 powder (manufactured by Nikki Co., Ltd., average particle size 5 μm)
Fluorine resin: PTFE powder (manufactured by Seishin Enterprise Co., Ltd., average particle size 3 μm)
Metal material: Bi powder (manufactured by Nilaco Co., Ltd., particle size 74 μm)
Table 4 shows the mixing ratio (mixed weight ratio) and bending strength measurement results of Examples 19 to 21.
Figure JPOXMLDOC01-appb-T000004
 
 <実施例22-24>
 実施例4-6と比較して、金属酸化物をCeOからSiOに変更した以外は、同様の条件で複合材料を作製した。
金属酸化物:SiO粉末(信越化学工業株式会社製 粒径0.2μm)
フッ素樹脂:PTFE粉末(株式会社セイシン企業製 平均粒径3μm)
金属材料:In粉末(三津和化学薬品株式会社製 平均粒径40μm)
 実施例22-24の配合割合(混成重量比)と曲げ強度の測定結果を表5に示す。
Figure JPOXMLDOC01-appb-T000004

<Examples 22-24>
A composite material was produced under the same conditions as in Examples 4-6, except that the metal oxide was changed from CeO 2 to SiO 2 .
Metal oxide: SiO2 powder (Shin-Etsu Chemical Co., Ltd., particle size 0.2 μm)
Fluorine resin: PTFE powder (manufactured by Seishin Enterprise Co., Ltd., average particle size 3 μm)
Metal material: In powder (manufactured by Mitsuwa Chemicals Co., Ltd., average particle size 40 μm)
Table 5 shows the mixing ratio (mixed weight ratio) and bending strength measurement results of Examples 22-24.
Figure JPOXMLDOC01-appb-T000005
 
 <実施例25-27>
 実施例4-6と比較して、金属酸化物をCeOからAlに変更した以外は、同様の条件で複合材料を作製した。
金属酸化物:Al粉末(EM Japan製 粒径1μm)
フッ素樹脂:PTFE粉末(株式会社セイシン企業製 平均粒径3μm)
金属材料:In粉末(三津和化学薬品株式会社製 平均粒径40μm)
 実施例25-27の配合割合(混成重量比)と曲げ強度の測定結果を表6に示す。
Figure JPOXMLDOC01-appb-T000005

<Examples 25-27>
A composite material was produced under the same conditions as in Examples 4-6, except that the metal oxide was changed from CeO 2 to Al 2 O 3 .
Metal oxide: Al 2 O 3 powder (manufactured by EM Japan, particle size 1 μm)
Fluorine resin: PTFE powder (manufactured by Seishin Enterprise Co., Ltd., average particle size 3 μm)
Metal material: In powder (manufactured by Mitsuwa Chemicals Co., Ltd., average particle size 40 μm)
Table 6 shows the mixing ratio (mixed weight ratio) and bending strength measurement results of Examples 25 and 27.
Figure JPOXMLDOC01-appb-T000006
 
 <実施例28-30>
 実施例4-6と比較して、金属酸化物をCeOからYに変更した以外は、同様の条件で複合材料を作製した。
金属酸化物:Y粉末(岩谷産業株式会社製 粒径 1μm)
フッ素樹脂:PTFE粉末(株式会社セイシン企業製 平均粒径3μm)
金属材料:In粉末(三津和化学薬品株式会社製 平均粒径40μm)
 実施例28-30の配合割合(混成重量比)と曲げ強度の測定結果を表7に示す。
Figure JPOXMLDOC01-appb-T000006

<Examples 28-30>
A composite material was produced under the same conditions as in Example 4-6, except that the metal oxide was changed from CeO 2 to Y 2 O 3 .
Metal oxide: Y 2 O 3 powder (made by Iwatani Corporation, particle size 1 μm)
Fluorine resin: PTFE powder (manufactured by Seishin Enterprise Co., Ltd., average particle size 3 μm)
Metal material: In powder (manufactured by Mitsuwa Chemicals Co., Ltd., average particle size 40 μm)
Table 7 shows the blending ratio (mixed weight ratio) and bending strength measurement results of Examples 28-30.
Figure JPOXMLDOC01-appb-T000007
 
 <実施例31-33>
 実施例4-6と比較して、金属酸化物をCeOからNbに変更した以外は、同様の条件で複合材料を作製した。
金属酸化物:Nb粉末(タニオビスジャパン製 3N D50:0.3μm)
フッ素樹脂:PTFE粉末(株式会社セイシン企業製 平均粒径3μm)
金属材料:In粉末(三津和化学薬品株式会社製 平均粒径40μm)
 実施例31-33の配合割合(混成重量比)と曲げ強度の測定結果を表8に示す。
Figure JPOXMLDOC01-appb-T000007

<Examples 31-33>
A composite material was produced under the same conditions as in Example 4-6, except that the metal oxide was changed from CeO 2 to Nb 2 O 5 .
Metal oxide: Nb 2 O 5 powder (3N D50 manufactured by Taniobis Japan: 0.3 μm)
Fluorine resin: PTFE powder (manufactured by Seishin Enterprise Co., Ltd., average particle size 3 μm)
Metal material: In powder (manufactured by Mitsuwa Chemicals Co., Ltd., average particle size 40 μm)
Table 8 shows the mixing ratio (mixed weight ratio) and bending strength measurement results of Examples 31 and 33.
Figure JPOXMLDOC01-appb-T000008
 
 <実施例34-36>
 実施例4-6と比較して、金属酸化物をCeOからNbに変更し、かつ、金属材料をInからSnに変更した以外は、同様の条件で複合材料を作製した。
金属酸化物:Nb粉末(タニオビスジャパン製 3N D50:0.3μm)
フッ素樹脂:PTFE粉末(株式会社セイシン企業製 平均粒径3μm)
金属材料:Sn粉末(福田金属箔粉工業製 SN-AT-350 D50:27μm)
 実施例34-36の配合割合(混成重量比)と曲げ強度の測定結果を表9に示す。
Figure JPOXMLDOC01-appb-T000008

<Examples 34-36>
A composite material was produced under the same conditions as in Example 4-6, except that the metal oxide was changed from CeO 2 to Nb 2 O 5 and the metal material was changed from In to Sn.
Metal oxide: Nb 2 O 5 powder (3N D50 manufactured by Taniobis Japan: 0.3 μm)
Fluorine resin: PTFE powder (manufactured by Seishin Enterprise Co., Ltd., average particle size 3 μm)
Metal material: Sn powder (SN-AT-350 D50: 27 μm, manufactured by Fukuda Metal Foil & Powder Co., Ltd.)
Table 9 shows the blending ratio (mixed weight ratio) and bending strength measurement results of Examples 34 and 36.
Figure JPOXMLDOC01-appb-T000009
 
 <実施例37-39>
 実施例37-39では、実施例1-12と同様にCeO、PTFE、Inを原料としたが、CeOの粒径を変化させた。混成重量比は、CeO:PTFE:In=70:10:8.8である。CeOの粉末の平均粒径は、0.8μm、5μm、45μmのいずれかとした。
Figure JPOXMLDOC01-appb-T000009

<Examples 37-39>
In Examples 37-39, CeO 2 , PTFE, and In were used as raw materials in the same manner as in Examples 1-12, but the grain size of CeO 2 was changed. The mixed weight ratio is CeO 2 :PTFE:In=70:10:8.8. The CeO 2 powder had an average particle size of 0.8 μm, 5 μm, or 45 μm.
 形成した成形加工物を、常圧、200℃の加熱条件で3時間焼結し、焼結体である複合材料を得た。また得られた複合材料の機械的曲げ強度を測定した。実施例37-39の各成分の平均粒径と曲げ強度の測定結果を表10に示す。 The molded product thus formed was sintered under normal pressure and heating conditions of 200°C for 3 hours to obtain a composite material as a sintered body. Also, the mechanical bending strength of the obtained composite material was measured. Table 10 shows the measurement results of the average particle size and bending strength of each component in Examples 37-39.
Figure JPOXMLDOC01-appb-T000010
 
 <実施例40-42>
 実施例40-42では、実施例1-12と同様にCeO、PTFE、Inを原料としたが、PTFEの粒径を変化させた。混成重量比は、CeO:PTFE:In=70:10:8.8である。PTFEの粉末の平均粒径は、3μm、10μm、30μmのいずれかとした。
Figure JPOXMLDOC01-appb-T000010

<Examples 40-42>
In Examples 40-42, CeO 2 , PTFE, and In were used as raw materials in the same manner as in Examples 1-12, but the particle size of PTFE was changed. The mixed weight ratio is CeO 2 :PTFE:In=70:10:8.8. The PTFE powder had an average particle size of 3 μm, 10 μm, or 30 μm.
 形成した成形加工物を、常圧、200℃の加熱条件で3時間焼結し、焼結体である複合材料を得た。また得られた複合材料の機械的曲げ強度を測定した。実施例40-42の各成分の平均粒径と曲げ強度の測定結果を表11に示す。 The molded product thus formed was sintered under normal pressure and heating conditions of 200°C for 3 hours to obtain a composite material as a sintered body. Also, the mechanical bending strength of the obtained composite material was measured. Table 11 shows the measurement results of the average particle size and bending strength of each component in Examples 40-42.
Figure JPOXMLDOC01-appb-T000011
 
 <実施例43-45>
 実施例43は、実施例37と同じ材料及び混成割合で常温にて成形加工物を形成し、その後、100℃で1時間焼結を行い、焼結体である複合材料を得た。
Figure JPOXMLDOC01-appb-T000011

<Examples 43-45>
In Example 43, the same materials and mixture ratio as in Example 37 were used to form a molded product at room temperature, followed by sintering at 100° C. for 1 hour to obtain a composite material as a sintered body.
 実施例44は、実施例38と同じ材料及び混成割合で常温にて成形加工物を形成し、その後、200℃で1時間焼結を行い、焼結体である複合材料を得た。 In Example 44, a molded product was formed at room temperature using the same materials and mixture ratio as in Example 38, and then sintered at 200°C for 1 hour to obtain a composite material as a sintered body.
 実施例45は、実施例39と同じ材料及び混成割合で常温にて成形加工物を形成し、その後、300℃で1時間焼結を行い、焼結体である複合材料を得た。 In Example 45, a molded product was formed at room temperature using the same materials and mixture ratio as in Example 39, and then sintered at 300°C for 1 hour to obtain a composite material as a sintered body.
 実施例43-45の配合割合(混成重量比)、試験条件、及び曲げ強度の測定結果を表12に示す。 Table 12 shows the compounding ratio (mixed weight ratio), test conditions, and bending strength measurement results of Examples 43-45.
Figure JPOXMLDOC01-appb-T000012
 
 <実施例46-48>
 実施例46-48は、第2の製造方法にて製造を行った。すなわち、混合物を昇温圧縮成形することで複合材料を作製した。
Figure JPOXMLDOC01-appb-T000012

<Examples 46-48>
Examples 46-48 were manufactured by the second manufacturing method. That is, a composite material was produced by subjecting the mixture to temperature-rising compression molding.
 実施例46は、実施例37と同じ材料及び混成割合であるが、加圧力1.5t/cm、100℃で2時間の昇温圧縮成形を行い、焼結体である複合材料を得た。 In Example 46, although the same materials and mixture ratio as in Example 37 were used, temperature-rising compression molding was performed at a pressure of 1.5 t/cm 2 at 100° C. for 2 hours to obtain a composite material that is a sintered body. .
 実施例47は、実施例38と同じ材料及び混成割合であるが、加圧力1.5t/cm、200℃で2時間の昇温圧縮成形を行い、焼結体である複合材料を得た。 In Example 47, although the same materials and mixture ratio as in Example 38 were used, temperature-rising compression molding was performed at a pressure of 1.5 t/cm 2 at 200° C. for 2 hours to obtain a composite material that is a sintered body. .
 実施例48は、実施例39と同じ材料及び混成割合であるが、加圧力1.5t/cm、300℃で2時間の昇温圧縮成形を行い、焼結体である複合材料を得た。 In Example 48, although the same materials and mixture ratio as in Example 39 were used, temperature-rising compression molding was performed at a pressure of 1.5 t/cm 2 at 300° C. for 2 hours to obtain a composite material that is a sintered body. .
 実施例46-48の配合割合(混成重量比)、試験条件、及び曲げ強度の測定結果を表13に示す。 Table 13 shows the compounding ratio (mixed weight ratio), test conditions, and bending strength measurement results of Examples 46-48.
Figure JPOXMLDOC01-appb-T000013
 
 <実施例49>
 実施例49では、実施例5の複合材料をスパッタリングターゲットとして利用し、ホウケイ酸ガラス製の基板に成膜を行い、薄膜被覆部材を作製した。ターゲット規格は、直径3インチ厚さ5mmとした。複合材料を銅製バッキングプレートに接着剤で張り付け、スパッタ成膜に使用した。
Figure JPOXMLDOC01-appb-T000013

<Example 49>
In Example 49, the composite material of Example 5 was used as a sputtering target, and a film was formed on a substrate made of borosilicate glass to prepare a thin-film coated member. The target standard was 3 inches in diameter and 5 mm in thickness. The composite was adhesively attached to a copper backing plate and used for sputter deposition.
 スパッタ成膜条件:RFマグネトロンスパッタ法、スパッタガス圧1Pa、スパッタ電力4.4W/cm、ターゲット基板間距離8cm
 評価は、ターゲットの強度(スパッタ時の割れや破損の有無で確認)、膜組成・状態評価(XPS)、膜特性評価(分光特性)により行った。
Sputtering film formation conditions: RF magnetron sputtering method, sputtering gas pressure of 1 Pa, sputtering power of 4.4 W/cm 2 , target-substrate distance of 8 cm
The evaluation was performed based on target strength (confirmed by the presence or absence of cracks or breakage during sputtering), film composition/state evaluation (XPS), and film characteristics evaluation (spectral characteristics).
 ターゲットの強度については、スパッタ時の割れや破損が生じなかったため、十分な強度であることが確認された。 Regarding the strength of the target, it was confirmed that it had sufficient strength because it did not crack or break during sputtering.
 図2に、製造した薄膜被覆部材のCeO-PTFE-In膜の分光特性を示す。CeO-PTFE-In複合材をターゲットとしてスパッタ法により作製した約100nmの薄膜は、コーニング製ガラスと比較して、紫外光(<380nm)の高い光遮蔽率を示した。また、103.6nmのCeO-PTFE-In膜は、視感度の最も高い500nm付近で85%以上の高透過率を示した。CeO-PTFE-In膜の厚膜化(122.2nm)により基板コーニングガラスとの干渉が現れる。近赤外~赤外域での光吸収は小さい。 FIG. 2 shows the spectral characteristics of the CeO 2 -PTFE-In film of the manufactured thin-film-coated member. A thin film of about 100 nm formed by sputtering using a CeO 2 -PTFE-In composite material as a target exhibited a high light shielding rate for ultraviolet light (<380 nm) compared to Corning glass. Also, the CeO 2 -PTFE-In film of 103.6 nm showed a high transmittance of 85% or more around 500 nm, which has the highest visibility. As the CeO 2 -PTFE-In film is thickened (122.2 nm), interference with the substrate Corning glass appears. Light absorption in the near-infrared to infrared region is small.
 図3に、製造した薄膜被覆部材のCeO-PTFE-In膜のナノインデンター硬度を示す。当該膜は、ガラスにCeO膜を成形した場合と比較すれば硬度が低いものの、PTFE膜やガラス自体と比較すれば十分に高い硬度となった。具体的には、スパッタCeO膜のナノインデンター硬度は、基板コーニングガラス(ホウ素ケイ酸ガラス)の約2倍であった。紫外光を遮蔽するCeO-PTFE-In膜のナノインデンター硬度は約8MPaであり、基板ホウケイ酸ガラスより高い。スパッタ成膜したPTFE膜のナノインデンター硬度は約1GPaでバルクPTFE板の3倍である。 FIG. 3 shows the nanoindenter hardness of the CeO 2 -PTFE-In film of the manufactured thin-film coated member. Although the hardness of the film is low compared to the case where a CeO 2 film is formed on glass, the hardness is sufficiently high compared to the PTFE film or the glass itself. Specifically, the nanoindenter hardness of the sputtered CeO 2 film was about twice that of the substrate Corning glass (borosilicate glass). The nanoindenter hardness of the CeO 2 -PTFE-In film that shields ultraviolet light is about 8 MPa, which is higher than that of the substrate borosilicate glass. The nanoindenter hardness of the sputter-deposited PTFE film is about 1 GPa, which is three times that of the bulk PTFE plate.
 図4に、製造した薄膜被覆部材のCeO-PTFE-In膜の水接触角を示す。別途行った飛行時間型質量分析でPTFEはスパッタによりC,F,CF,CF,CFに分解し蒸発することを確認している。図4に示されるように、ガラス基板と比較して、CeO,CeO-PTFE,PTFEの各膜は、いずれも高い水接触角を示す。高接触角は撥水性の指標となりCeO-PTFE-In膜が水をはじく撥水機能を有することを示す。 FIG. 4 shows the water contact angle of the CeO 2 -PTFE-In film of the manufactured thin film coated member. Time-of-flight mass spectrometry performed separately confirmed that PTFE decomposes into C, F, CF, CF 2 and CF 3 by sputtering and evaporates. As shown in FIG. 4, the CeO 2 , CeO 2 -PTFE and PTFE films all exhibit higher water contact angles than the glass substrate. A high contact angle is an indicator of water repellency, and indicates that the CeO 2 -PTFE-In film has a water-repellent function of repelling water.
 なお、上述した薄膜被覆部材は、ガラスであるワークと、ワークの表面にスパッタリングにより形成された薄膜と、を備えるものであり、薄膜は、金属酸化物のマトリックスと、フッ素樹脂と、In,Sn,Biを含む群から選択される1種以上である金属材料と、を含むものである。 In addition, the thin film coated member described above includes a glass workpiece and a thin film formed on the surface of the workpiece by sputtering. , and Bi.
 そして、薄膜被覆部材の製造方法は、金属酸化物粉末と、フッ素樹脂粉末と、金属材料粉末と、を混合して混合物を得ることと、上記混合物を圧縮成形して成形加工物を得ることと、上記成形加工物を100℃以上350℃以下で焼成して焼結体を得ることと、上記焼結体をスパッタリングターゲットとして用いて、スパッタリングにより所定のワークに薄膜を形成することと、を含む。 The method of manufacturing the thin-film coated member includes mixing metal oxide powder, fluororesin powder, and metal material powder to obtain a mixture, and compression-molding the mixture to obtain a molded product. , firing the molded product at a temperature of 100° C. or higher and 350° C. or lower to obtain a sintered body; and using the sintered body as a sputtering target to form a thin film on a predetermined work by sputtering. .
 [4.効果]
 以上詳述した本開示の複合材料によれば、以下の効果が得られる。
[4. effect]
According to the composite material of the present disclosure detailed above, the following effects are obtained.
 (4a)本開示の複合材料、及び複合材料の製造方法によれば、有機材料の耐熱性不足のために行われる低温焼結に起因する機械的強度不足を解消することができる。耐熱性に優れたフッ素樹であるポリテトラフルオロエチレン(PTFE)においてもその耐熱性は300℃程度であるため、高温での焼結は困難であり、従来の複合材料では機械的強度が低かった。しかしながら本開示の複合材料は低温焼結であっても高い機械的強度を得ることができる。 (4a) According to the composite material and the method for manufacturing the composite material of the present disclosure, the lack of mechanical strength due to low-temperature sintering performed due to the lack of heat resistance of the organic material can be resolved. Even polytetrafluoroethylene (PTFE), which is a fluorine resin with excellent heat resistance, has a heat resistance of about 300 ° C, so it is difficult to sinter at high temperatures, and conventional composite materials have low mechanical strength. . However, the composite material of the present disclosure can obtain high mechanical strength even with low temperature sintering.
 (4b)実施例の複合材料は、アクリル等の有機バインダーを含まない。そのため、バインダー複合材料に影響を与えることが抑制される。 (4b) The composite material of the example does not contain an organic binder such as acrylic. Therefore, it is suppressed to affect the binder composite material.
 [5.産業上の利用可能性]
 大型のフラットパネル表示を用いるデジタルサイネージデバイスや自動車、ビル・住宅用窓ガラスの表面処理にはスパッタリング法が広く用いられている。一方、スパッタリングターゲットとしては古くから金属、酸化物、窒化物、炭化物、硫化物等の無機物及びそれらの複合無機化合物やフッ素樹脂等の有機化合物が用いられている。
[5. Industrial Applicability]
The sputtering method is widely used for surface treatment of digital signage devices using large flat panel displays, automobiles, and windows of buildings and houses. On the other hand, inorganic substances such as metals, oxides, nitrides, carbides and sulfides, composite inorganic compounds thereof, and organic compounds such as fluororesins have been used as sputtering targets for a long time.
 近年、無機材料及び有機材料の両方のメリットを併せ持つ有機・無機ハイブリッド膜が研究開発され始めている。こうしたハイブリッド膜をスパッタリング法により作製する方法には、(i)無機ターゲットと有機ターゲットを同時に成膜する方法がある。しかしながらこの方法は、至近距離に配置された異なるターゲット上の放電の相互干渉等により放電が不安定となることがあり、生産技術としては好ましくない。 In recent years, research and development has begun on organic-inorganic hybrid films that combine the advantages of both inorganic and organic materials. Methods of producing such a hybrid film by sputtering include (i) a method of forming an inorganic target and an organic target simultaneously. However, this method is not preferable as a production technique because the discharge may become unstable due to mutual interference of discharges on different targets arranged at close range.
 別の方法としては、(ii)有機と無機の複合ターゲット(有機・無機複合ターゲット)を用いる方法がある。この方法では、通常異なる無機化合物粉末と有機化合物粉末同士の混合物を1~1.5t/cmで常温加圧成形し(コールドプレス法)、100℃~350℃程度で焼結する方法、又は100℃~350℃程の昇温成形焼結するホットプレス法により行われる。 Another method is (ii) a method of using an organic-inorganic composite target (organic-inorganic composite target). In this method, a mixture of different inorganic compound powders and organic compound powders is normally pressed at 1 to 1.5 t/cm 2 at room temperature (cold press method) and sintered at about 100 ° C. to 350 ° C., or It is performed by a hot press method in which temperature-rising molding and sintering are performed at a temperature of about 100°C to 350°C.
 しかし、無機材料と有機材料(フッ素樹脂等)とを含む混合粉末物の低温焼結複合材の機械的強度は著しく脆弱で量産時の割れ破壊等により実使用に大きな課題が有った。また、コールドプレス法では複合粉末の常温成形時からに100℃~350℃(好ましくは~300℃)の焼結まで複合材の形状を保持する必要が有る。この成型時の形状維持を目的に、一般的には、成型時に樹脂バインダー(アクリル等)を数%混合し成形体を作製する。この樹脂バインダーは無機材料だけの場合その後の高温焼結(1000℃以上)により飛散し焼結体内には残存しない。しかし、有機・無機複合材においては焼結温度が300℃以下と低く有機バインダーが複合材中に残存しその複合材への影響が懸念される。本開示ではアクリルの代わりに低融点金属を用いることで、当該金属材料が焼結温度で粒子間に溶け広がりバインダー効果を発現する。また例えばInバインダーでは300℃以下での焼結が可能で、焼きしまりによるターゲットの高密度化と高強度化が実現できる。したがって、本開示の技術であれば、有機バインダーの使用量を低減し、又は使用せずに高い強度の複合材料を作製できるので、上述した問題を解消することができる。なお、本開示は有機バインダーの含有量を低下させることが可能であるが、必要に応じて、又は目的に応じて、バインダーとして機能する有機材料を含めることを妨げるものではない。 However, the mechanical strength of the low-temperature sintered composite material, which is a mixed powder containing inorganic materials and organic materials (fluororesin, etc.), is extremely weak, and there were major problems in actual use due to cracks and fractures during mass production. Also, in the cold press method, it is necessary to maintain the shape of the composite material from the time of molding the composite powder at room temperature to sintering at 100° C. to 350° C. (preferably up to 300° C.). For the purpose of maintaining the shape at the time of molding, generally, several percent of a resin binder (acrylic, etc.) is mixed at the time of molding to produce a molded body. If only the inorganic material is used, the resin binder is scattered during the subsequent high-temperature sintering (1000° C. or higher) and does not remain in the sintered body. However, since the sintering temperature of the organic-inorganic composite is as low as 300° C. or less, there is concern that the organic binder may remain in the composite and affect the composite. In the present disclosure, by using a low-melting-point metal instead of acrylic, the metal material melts and spreads between particles at the sintering temperature to exhibit a binder effect. In addition, for example, the In binder can be sintered at 300° C. or lower, and the target can be densified and strengthened by sintering. Therefore, according to the technique of the present disclosure, a composite material with high strength can be produced with a reduced amount of organic binder or without using it, and the above-described problems can be solved. It should be noted that although the present disclosure allows the content of the organic binder to be reduced, it does not preclude the inclusion of an organic material that functions as a binder, if necessary or according to purpose.
 [6.その他の実施形態]
 以上本開示の実施形態について説明したが、本開示は、上記実施形態に何ら限定されることはなく、本開示の技術的範囲に属する限り種々の形態をとり得ることはいうまでもない。
[6. Other embodiments]
Although the embodiments of the present disclosure have been described above, the present disclosure is by no means limited to the above-described embodiments, and needless to say, can take various forms as long as they fall within the technical scope of the present disclosure.
 (6A)本開示の複合材料は、実施例として記載した元素や化合物の組み合わせに限定されることなく、本開示の技術的範囲に属する様々な組み合わせが可能である。すなわち、金属材料はIn,Sn,Biを含む群から選択される1種以上が少なくとも含まれていればよい。また、組み合わされる金属酸化物はCe,Y,Al,Si,Nbを含む群から選択される1種以上を含むものであってもよいし、他の金属であってもよい。また、組み合わされるフッ素樹脂は、実施形態にて具体的に例示した樹脂に限られない。 (6A) The composite material of the present disclosure is not limited to combinations of elements and compounds described as examples, and various combinations within the technical scope of the present disclosure are possible. That is, the metal material should at least contain one or more selected from the group including In, Sn, and Bi. Moreover, the metal oxide to be combined may include one or more selected from the group including Ce, Y, Al, Si and Nb, or may be other metals. Moreover, the fluororesin to be combined is not limited to the resins specifically exemplified in the embodiments.
 (6B)複合材料は、スパッタリングターゲットとして利用可能であるが、当然ながら、それ以外の用途に利用されてもよい。また、薄膜被覆部材は、成膜がなされるワークとしてガラス基板を例示したが、これ以外の材料に成膜がなされてもよい。 (6B) The composite material can be used as a sputtering target, but it may of course be used for other purposes. In addition, although the glass substrate is exemplified as the workpiece on which the film is formed, the thin film covering member may be formed on other materials.

Claims (9)

  1.  金属酸化物のマトリックスと、
     フッ素樹脂と、
     In,Sn,Biを含む群から選択される1種以上である金属材料と、
    を含む、複合材料。
    a matrix of metal oxides;
    fluororesin;
    one or more metal materials selected from the group containing In, Sn, and Bi;
    Composite materials, including
  2.  請求項1に記載の複合材料であって、
     前記金属酸化物は、金属元素としてCe,Y,Al,Si,Nbを含む群から選択される1種以上を含む、複合材料。
    A composite material according to claim 1,
    The composite material, wherein the metal oxide contains one or more metal elements selected from the group containing Ce, Y, Al, Si, and Nb.
  3.  請求項1又は請求項2に記載の複合材料であって、
     前記金属酸化物と、前記フッ素樹脂と、の混成重量比は20:1~1:1の範囲であり、
     前記金属酸化物、前記フッ素樹脂、及び前記金属材料の総重量を100%としたときに、前記金属材料が0.1重量%以上50重量%以下である複合材料。
    A composite material according to claim 1 or claim 2,
    The mixed weight ratio of the metal oxide and the fluororesin is in the range of 20:1 to 1:1,
    A composite material in which the metal material is 0.1% by weight or more and 50% by weight or less when the total weight of the metal oxide, the fluororesin, and the metal material is 100%.
  4.  請求項3に記載の複合材料であって、
     前記金属酸化物と前記フッ素樹脂との間、及び、前記金属材料と前記フッ素樹脂との間で、金属フッ化物又はフッ化炭素の複合化合物相を形成している、複合材料。
    A composite material according to claim 3,
    A composite material in which a composite compound phase of a metal fluoride or a fluorocarbon is formed between the metal oxide and the fluororesin and between the metal material and the fluororesin.
  5.  請求項1から請求項4のいずれか1項に記載の複合材料であって、
     前記フッ素樹脂は、ポリテトラフルオロエチレン、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン・エチレン共重合体及びポリフッ化ビニリデンを含む群から選択される少なくとも1種以上を含む、複合材料。
    A composite material according to any one of claims 1 to 4,
    The fluororesin is selected from the group including polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-ethylene copolymer and polyvinylidene fluoride. Composite material comprising at least one or more
  6.  請求項1から請求項5のいずれか1項に記載の複合材料により構成される、スパッタリングターゲット。 A sputtering target composed of the composite material according to any one of claims 1 to 5.
  7.  ワークと、
     前記ワークの表面にスパッタリングにより形成された薄膜と、を備え、
     前記薄膜は、金属酸化物のマトリックスと、フッ素樹脂と、In,Sn,Biを含む群から選択される1種以上である金属材料と、を含む、薄膜被覆部材。
    Work and
    a thin film formed by sputtering on the surface of the work,
    The thin film-coated member, wherein the thin film includes a metal oxide matrix, a fluororesin, and at least one metal material selected from the group including In, Sn, and Bi.
  8.  複合材料の製造方法であって、
     金属酸化物粉末と、フッ素樹脂粉末と、金属材料粉末と、を含む材料粉末を混合して混合物を得ることと、
     前記混合物を圧縮成形して成形加工物を得ることと、
     前記成形加工物を100℃以上350℃以下で焼成して焼結体を得ることと、
    を含み、
     前記金属材料粉末は、In,Sn,Biを含む群から選択される1種以上の金属材料を含む、複合材料の製造方法。
    A method of manufacturing a composite material, comprising:
    obtaining a mixture by mixing a material powder containing a metal oxide powder, a fluororesin powder, and a metal material powder;
    compression molding the mixture to obtain a molded product;
    obtaining a sintered body by sintering the molded product at 100° C. or higher and 350° C. or lower;
    including
    The method for producing a composite material, wherein the metal material powder contains one or more metal materials selected from the group containing In, Sn, and Bi.
  9.  金属酸化物粉末と、フッ素樹脂粉末と、金属材料粉末と、を含む材料粉末を混合して混合物を得ることと、
     前記混合物を圧縮成形して成形加工物を得ることと、
     前記成形加工物を100℃以上350℃以下で焼成して焼結体を得ることと、
     前記焼結体をスパッタリングターゲットとして用いて、スパッタリングにより所定のワークに薄膜を形成することと、を含み、
     前記金属材料粉末は、In,Sn,Biを含む群から選択される1種以上の金属材料を含む、薄膜被覆部材の製造方法。
    obtaining a mixture by mixing a material powder containing a metal oxide powder, a fluororesin powder, and a metal material powder;
    compression molding the mixture to obtain a molded product;
    obtaining a sintered body by sintering the molded product at 100° C. or higher and 350° C. or lower;
    forming a thin film on a predetermined workpiece by sputtering using the sintered body as a sputtering target;
    The method for producing a thin-film coated member, wherein the metal material powder contains one or more metal materials selected from the group containing In, Sn, and Bi.
PCT/JP2022/031445 2021-08-20 2022-08-19 Composite material, sputtering target, thin-film coating member, and manufacturing method therefor WO2023022236A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021134966 2021-08-20
JP2021-134966 2021-08-20
JP2021198807A JP2023029170A (en) 2021-08-20 2021-12-07 Composite material, sputtering target, thin film coating member and manufacturing method
JP2021-198807 2021-12-07

Publications (1)

Publication Number Publication Date
WO2023022236A1 true WO2023022236A1 (en) 2023-02-23

Family

ID=85239816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031445 WO2023022236A1 (en) 2021-08-20 2022-08-19 Composite material, sputtering target, thin-film coating member, and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2023022236A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321184A (en) * 2006-05-31 2007-12-13 Dept Corp Sputtering target, its production method, organic pigment-dispersed type thin film and its production method
JP2018507323A (en) * 2015-01-28 2018-03-15 コリア リサーチ インスティテュート オブ ケミカル テクノロジー Fluorine polymer composite target for sputtering

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321184A (en) * 2006-05-31 2007-12-13 Dept Corp Sputtering target, its production method, organic pigment-dispersed type thin film and its production method
JP2018507323A (en) * 2015-01-28 2018-03-15 コリア リサーチ インスティテュート オブ ケミカル テクノロジー Fluorine polymer composite target for sputtering

Similar Documents

Publication Publication Date Title
KR100669064B1 (en) Transparent conductive laminate, its manufacturing method, and display comprising transparent conductive laminate
Zhou et al. CuO/Mg/fluorocarbon sandwich-structure superhydrophobic nanoenergetic composite with anti-humidity property
JP5884549B2 (en) Transparent oxide film and method for producing the same
EP0828696A1 (en) Mixed oxide high index optical coating material and method
KR102020319B1 (en) Fluoropolymer composite target for deposition
WO2001038599A1 (en) Sputtering target, transparent conductive oxide, and method for preparing sputtering target
KR102192713B1 (en) Composition for Sputtering Target for Thin Film and Method for Making Sputtering Target
JP7324442B2 (en) Organic-inorganic hybrid membrane
CN101349769A (en) Method for preparing ALON protection film for optical element
KR102315765B1 (en) Oxide thin film, and oxide sintered body for sputtering target for producing oxide thin film
US20200299825A1 (en) Cesium tungsten oxide film and method for manufacturing same
WO2004074541A1 (en) A method of manufacturing a sputter target
WO2023022236A1 (en) Composite material, sputtering target, thin-film coating member, and manufacturing method therefor
JP2023029170A (en) Composite material, sputtering target, thin film coating member and manufacturing method
KR101583124B1 (en) Sintered compact of conductive oxide and method for manufacturing the same
CN107207356B (en) Oxide sintered body, oxide sputtering target, and oxide thin film
JP2009226918A (en) Laminate
JP2011037255A (en) Laminate
JP6776454B2 (en) Laminated film and manufacturing method of laminated film
KR101748017B1 (en) Oxide sintered compact, oxide sputtering target, conductive oxide thin film having high refractive index, and method for producing the oxide sintered compact
RU2537515C1 (en) Multi-layered coating of thin-walled envelope from polymer composite material of space antenna reflector
JP4167023B2 (en) Transparent conductive laminate for touch panel
JP2007284296A (en) Sintered compact, method of producing the same, transparent oxide film obtained by using the sintered compact and method of forming the same
JP4316868B2 (en) Transparent conductive laminate
WO1997001853A1 (en) Transparent conductive laminate and touch panel made by using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858551

Country of ref document: EP

Kind code of ref document: A1