WO2023022232A1 - Manufacturing method for core of rotating electric machine, core manufacturing device, and core - Google Patents

Manufacturing method for core of rotating electric machine, core manufacturing device, and core Download PDF

Info

Publication number
WO2023022232A1
WO2023022232A1 PCT/JP2022/031419 JP2022031419W WO2023022232A1 WO 2023022232 A1 WO2023022232 A1 WO 2023022232A1 JP 2022031419 W JP2022031419 W JP 2022031419W WO 2023022232 A1 WO2023022232 A1 WO 2023022232A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
core
core body
manufacturing
layer
Prior art date
Application number
PCT/JP2022/031419
Other languages
French (fr)
Japanese (ja)
Inventor
愼太郎 馬場
巧 矢野
誠司 宮本
啓太 園田
Original Assignee
株式会社三井ハイテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三井ハイテック filed Critical 株式会社三井ハイテック
Publication of WO2023022232A1 publication Critical patent/WO2023022232A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present disclosure relates to a manufacturing method and manufacturing apparatus for a core portion in a rotor or stator of a rotating electric machine. Furthermore, the present disclosure also relates to a core portion in a rotor or stator of a rotating electric machine.
  • laminated iron cores are generally used as cores in which coils and permanent magnets are arranged.
  • various ideas have been made in arranging coils and permanent magnets in the core of the laminated core.
  • Patent Document 1 in the case of a rotor core, particularly in the case of a rotor core of an IPM motor, a structure in which magnets are inserted and fixed into magnet insertion holes of a laminated iron core has been adopted.
  • a thermosetting resin or the like in a melted and fluid state is placed in the gap between the inner wall surface of the magnet insertion hole and the permanent magnet. of resin is injected to fill the gap, and then the resin is solidified to fix the permanent magnet.
  • Patent Document 1 Conventional cores for rotating electric machines are manufactured by the method shown in Patent Document 1.
  • resin injection device that injects resin into the magnet storage holes of the rotor core sandwiched and pressed between the upper and lower dies, resin was efficiently injected into the magnet storage holes, and the core and the magnets could be integrated.
  • An object of the present disclosure is to provide a core part manufacturing method, a core part manufacturing apparatus, and a core part with good manufacturing efficiency.
  • a core body formed by laminating a plurality of thin plates made of a magnetic metal material is positioned between a pair of molds, and a plurality of spaces in the core body are filled with resin.
  • the resin held in the resin holding portion located on one mold side of the pair of molds is At least a feeding step of feeding into a space portion of the core body and a solidification step of solidifying the molten resin in the space portion while sandwiching the core body between the pair of molds, In the feeding step, the fed resin is melted in the space, or the melted resin is fed into the space, and the melted resin is positioned in the space.
  • the solidification of the resin consists of a plurality of types and includes at least one resin that solidifies at a predetermined solidification speed faster than the other resins from a molten state, and in the feeding step, the one resin and the other resin The resins are fed in a predetermined order, and in the solidification step, the one resin is interposed between the mold and the other resin to proceed with solidification for the mold through which the space is communicated. , to solidify the at least one resin.
  • one resin having a high solidification rate is fed so as to be interposed between the mold and the other resin positioned in the space. Therefore, even when the other resins are not yet solidified, if one resin is solidified, the core body can be taken out from between the molds without affecting the filled state of the other resins. Compared to the case where only other resins are sent into the space and solidified, the time for restraining the core body between the molds can be shortened by the difference in the solidification time between one resin and the other resin, so the manufacturing efficiency of the core part is improved. improves.
  • FIG. 1 is an explanatory diagram of a resin material holding state of a core portion manufacturing apparatus to which the core portion manufacturing method according to the first embodiment is applied.
  • FIG. 2 is a vertical cross-sectional view of the iron core body used in the core manufacturing method according to the first embodiment in a state of being supported by a jig.
  • FIG. 3 is an explanatory diagram of a state of molten resin feeding in a feeding step in the method for manufacturing the core portion according to the first embodiment.
  • FIG. 4 is an explanatory view of the separated state of the core body and the auxiliary plate from the upper die of the core part manufacturing apparatus in the core part manufacturing method according to the first embodiment.
  • FIG. 5A is a plan view of the core body after being filled with resin by the core manufacturing method according to the first embodiment.
  • FIG. 5B is a cross-sectional view taken along line BB of FIG. 5A.
  • FIG. 6 is an explanatory diagram of a molten resin feeding state without interposition of an auxiliary plate in another core manufacturing apparatus to which the core manufacturing method according to the first embodiment is applied.
  • FIG. 7 is an explanatory diagram of a resin material holding state in another core manufacturing apparatus to which the core manufacturing method according to the first embodiment is applied.
  • FIG. 8 is an explanatory diagram of a molten resin feeding state in another core manufacturing apparatus to which the core manufacturing method according to the first embodiment is applied.
  • FIG. 6 is an explanatory diagram of a molten resin feeding state without interposition of an auxiliary plate in another core manufacturing apparatus to which the core manufacturing method according to the first embodiment is applied.
  • FIG. 7 is an explanatory diagram of a resin material holding state in another core manufacturing apparatus to which the core manufacturing method according to the first embodiment is applied.
  • FIG. 8 is an explanatory diagram of a molten resin feeding state in another core manufacturing
  • FIG. 9 is an explanatory view of the removal state of the iron core body after resin filling from the jig corresponding to early removal from the jig in the method of manufacturing the core portion according to the first embodiment.
  • FIG. 10 is an explanatory view of a resin material holding state of a core manufacturing apparatus to which the core manufacturing method according to the second embodiment is applied.
  • FIG. 11 is an explanatory diagram of the molten resin injection state in the feeding step in the method for manufacturing the core portion according to the second embodiment.
  • 12A and 12B are diagrams for explaining the separation state of the core body, the auxiliary plate and the jig from the upper and lower molds of the core part manufacturing apparatus in the core part manufacturing method according to the second embodiment.
  • FIG. 13 is an explanatory diagram of a state of resin material holding in another core manufacturing apparatus to which the core manufacturing method according to the second embodiment is applied.
  • FIG. 14 is an explanatory diagram of a molten resin feeding state in another core manufacturing apparatus to which the core manufacturing method according to the second embodiment is applied.
  • FIG. 15 is an explanatory diagram of the separated state of the core body, the auxiliary plate and the jig from the upper and lower dies of another core part manufacturing apparatus to which the core part manufacturing method according to the second embodiment is applied.
  • the method of manufacturing the core part according to the present embodiment is such that the resin held by the resin holding part 24 positioned on the upper die 21 side of the upper die 21 and the lower die 22 forming a pair is placed in the space of the core body 11 . and a solidification step of solidifying the molten resin in the space while holding the core body 11 between the upper mold 21 and the lower mold 22 .
  • the melted resin is fed into the space in the feeding step, and after the melted resin is positioned in the space, solidification of the resin proceeds in the solidification step.
  • first resin will set at a predetermined set rate that is faster than the second resin.
  • the first resin and the second resin are fed in a predetermined order.
  • the solidification step when the first resin is interposed between the mold and the second resin, at least the first resin is solidified.
  • the core part manufacturing apparatus 1 to which the core part manufacturing method according to the present embodiment is applied fills a plurality of spaces to be filled with resin in a core body 11 having a laminated structure with molten resin, solidifies it, and rotates a rotating electric machine.
  • a child core portion 10 is manufactured.
  • the core part manufacturing apparatus 1 includes an upper mold 21 and a lower mold 22 as filling mechanism units that sandwich the core body 11 from both sides in the lamination direction, and a space part of the core body 11 that is positioned on the upper mold 21 side and holds the resin. and a resin holding portion 24 capable of feeding resin into.
  • the core portion 10 manufactured by the core portion manufacturing method according to the present embodiment includes a core body 11 formed by laminating a plurality of thin plates 11a made of a magnetic metal material, and a plurality of space portions provided in the core body 11. It includes permanent magnets 12 inserted into the magnet insertion holes 11b and resin fillers 13 (see FIGS. 5A and 5B) filled in the magnet insertion holes 11b.
  • the core portion 10 has a known structure as a rotor of a rotary electric machine (motor or generator), and detailed description thereof will be omitted.
  • the core body 11 is a laminated core formed by laminating a plurality of thin plates 11a made of a magnetic metal material.
  • the thin plate 11a forming the core body 11 is formed by punching a thin plate material made of electromagnetic steel, amorphous alloy, or the like.
  • the core body 11 is provided with a plurality of magnet insertion holes 11b as spaces into which the permanent magnets 12 can be inserted.
  • the magnet insertion holes 11b are holes that penetrate the core body 11 in the stacking direction of the thin plates 11a, and are provided in a predetermined arrangement along the circular outer periphery of the core body 11 .
  • the position, shape, and number of the magnet insertion holes 11b can be appropriately set according to the application of the rotating electric machine, required performance, and the like.
  • a shaft hole 11c is provided that penetrates the core body 11 in the stacking direction of the thin plates 11a.
  • the rotating shaft is fixed to the core body 11 by inserting the rotating shaft (shaft) of the rotor through the shaft hole 11c.
  • the iron core body 11 is integrated with the jig 30 by being supported by the jig 30 before and after the resin feeding process by the core manufacturing apparatus 1 .
  • a plate-shaped auxiliary plate 40 is attached to the end face of the core body 11 opposite to the side facing the jig 30 to assist the insertion of the resin into the magnet insertion hole 11b as the space.
  • the permanent magnets 12 are inserted into the magnet insertion holes 11b of the iron core body 11 for use in the rotor field system.
  • the permanent magnet 12 is formed slightly smaller than the magnet insertion hole 11 b of the core body 11 . Accordingly, when the permanent magnets 12 are inserted into the respective magnet insertion holes 11b, gaps are created between the permanent magnets 12 and the core body 11. As shown in FIG. That is, the magnet insertion holes 11b into which the permanent magnets 12 are inserted are left partially empty.
  • the filler 13 is filled in the remaining portion of the magnet insertion hole 11b except for the permanent magnet 12. As shown in FIG.
  • the filler 13 is a resin that is injected in a molten state into the magnet insertion hole 11b, more specifically, into the remaining portion of the magnet insertion hole 11b after the permanent magnet 12 is inserted, and solidifies after filling.
  • the resin forming the filler 13 is, for example, a thermosetting resin such as an epoxy resin, a thermoplastic resin, or the like.
  • the filler 13 is obtained by melting a resin material supplied as a resin tablet, powdered resin, or the like, and then solidifying the material. It should be noted that the resin constituting the filler 13 can be made of a plurality of types, and in that case, a plurality of types of base resin materials are also used.
  • the filling material 13 fixes the permanent magnets 12 in the magnet insertion holes 11b and also contributes to strengthening the connection between the laminated and adjacent thin plates 11a.
  • the upper die 21 and the lower die 22 sandwich and press the core body 11 placed on the jig 30 from both sides in the stacking direction. As a result, a predetermined load is applied to the core body 11 from the height direction, and the magnet insertion hole 11 b of the core body 11 can be closed by the plate portion 31 of the jig 30 .
  • the core part manufacturing apparatus 1 injects the resin held by the resin holding part 24 positioned on the upper mold 21 side of the pair of molds into the magnet insertion hole 11b as the space in the core body 11 from above. can be sent.
  • the feeding by the resin holding portion 24 is to inject the molten resin into the magnet insertion hole 11b and position the molten resin in the magnet insertion hole 11b.
  • the resin fed into the resin holding unit 24 includes a plurality of types of resin that solidify from a molten state with different solidification speeds. Specifically, it includes a first resin that has the fastest solidification rate and a second resin that generally has a slower solidification rate than the first resin.
  • the resin holding portion 24 holds the first resin in the upper layer and the second resin in the lower layer in a laminated state.
  • the resin holding unit 24 feeds the first resin and the second resin in the order of the second resin and the first resin in the feeding step. As a result, the resins can be solidified in a layered state in which the melted first resin layer is positioned above the melted second resin layer.
  • the upper die 21 is positioned above the core body 11 placed on the lower die 22 and sandwiches the core body 11 , the auxiliary plate 40 and the jig 30 together with the lower die 22 .
  • the upper die 21 is, for example, a rectangular plate-shaped die, and is provided with a plurality of accommodation holes 21a capable of accommodating and holding resin. Further, the upper die 21 has an accommodating hole 21a into which a resin material such as a tablet-like or powdery first resin and a second resin can be inserted from above, and a resin can be extruded into the magnet insertion hole 11b of the core body 11. and an extrusion portion 23 having the following.
  • the housing hole 21a and the extrusion portion 23 in the upper die 21 form a resin holding portion 24. As shown in FIG. That is, the resin holding portion 24 is integrated with the upper mold 21 .
  • the receiving holes 21a as part of the resin holding portion 24 are positioned at locations corresponding to the magnet insertion holes 11b of the core body 11 when the core body 11 is sandwiched between the upper die 21 and the lower die 22. , are arranged side by side at predetermined intervals.
  • Each accommodation hole 21a can accommodate a resin material supplied in the form of a resin tablet, powder, or the like.
  • the resin material two types of resin material 81, which is the first resin, and resin material 82, which is the second resin, are used.
  • Each accommodation hole 21a holds a laminated state in which the resin material 81 is the upper layer and the resin material 82 is the lower layer.
  • the upper die 21 also has a mechanism for heating and melting the resin materials 81 and 82 to obtain molten resins 84 and 85 as a function of the resin holding portion 24 .
  • the upper die 21 is provided with heaters (not shown) capable of heating the resin materials 81 and 82 contained in the respective containing holes 21a. When the resin materials 81 and 82 are heated, they are melted in the accommodation holes 21 a to become molten resins 84 and 85 .
  • the extruding portion 23 can extrude the molten resins 84 and 85 into the magnet insertion holes 11b of the core body 11.
  • the pushing part 23 is, for example, a plurality of plungers that can be vertically moved by being driven by a predetermined driving source.
  • Each extruding part 23 may be driven by a corresponding drive source for each extruding part and can move up and down, and a plurality of extruding parts can be driven together by one drive source and can move up and down as a unit. may be
  • the molten resins 84 and 85 held in the accommodation hole 21 a are extruded from the accommodation hole 21 a of the upper die 21 by the extruding portion 23 in the feeding process, and arranged between the upper die 21 and the upper end surface of the core body 11 .
  • the resin passes through the resin passage 41 of the auxiliary plate 40 and flows into each magnet insertion hole 11 b of the core body 11 .
  • the lower molten resin is fed first, that is, the lower molten resin 85 that is the second resin and the upper molten resin 84 that is the first resin are fed in this order.
  • the lower mold 22 holds the core body 11 and the jig 30 together with the upper mold 21 while supporting the core body 11 and the jig 30 thereon.
  • the lower mold 22 is, for example, a mold formed in the shape of a rectangular plate, and is fitted with projections or recesses provided on the lower surface of the jig 30 as necessary to prevent unnecessary movement of the jig. of recesses or protrusions.
  • the jig 30 includes a plate portion 31 on which the core body 11 can be placed, and a post portion 32 projecting upward from a substantially central portion of the plate portion 31 (see FIG. 2).
  • the plate portion 31 is, for example, a rectangular plate-like pedestal member, and supports the core body 11 from below in a state where the core body 11 is placed and abuts against the lower end surface of the core body 11 .
  • the post part 32 is formed in a columnar shape and is arranged so as to protrude upward from substantially the center of the upper surface of the plate part 31 .
  • the post portion 32 has a columnar shape with a size corresponding to the shaft hole 11 c of the core body 11 and can be inserted through the shaft hole 11 c of the core body 11 .
  • the auxiliary plate 40 is a plate-like member formed with resin passages 41 (for example, runners, gate holes) that guide resin to the magnet insertion holes 11b.
  • the auxiliary plate 40 is attached as a so-called cull plate to the end face of the core body 11 on the side not in contact with the jig 30, and the core body 11 is sandwiched between the upper mold 21 and the lower mold 22 of the feeding mechanism section 20. , between the upper die 21 and the core body 11 .
  • the auxiliary plate 40 By attaching the auxiliary plate 40 to the core body 11 , after the molten resin 84 injected and filled into the core body 11 is solidified, the solidified resin remaining above the core body 11 (cull) is removed from the auxiliary plate 40 . It can be removed by detachment, and unnecessary resin can be removed more easily.
  • the bottom surface of the auxiliary plate 40 directly below the accommodation hole 21a may be sloped.
  • the slope may be linear or gently curved.
  • the core body 11 is obtained in advance by stacking a plurality of thin plates 11a punched from a thin plate material by a known manufacturing method.
  • the permanent magnet 12 is inserted into the magnet insertion hole 11b, and the iron core body 11 is preheated to an appropriate temperature. transported to
  • the auxiliary plate 40 may be attached to the core body 11 before preheating, and the auxiliary plate 40 may be preheated together with the core body 11 .
  • a separate preheated auxiliary plate 40 may be attached to the preheated core body 11 .
  • the iron core body 11 is transferred toward the core manufacturing apparatus 1 together with the attached auxiliary plate 40 .
  • Two types of resin materials 81 and 82 as materials for molten resins 84 and 85 are automatically supplied to the upper mold 21 of the core part manufacturing apparatus 1 into the accommodation holes 21 a of the upper mold 21 .
  • the resin materials 81 and 82 are heated and melted by the upper mold 21 before the resin materials 81 and 82 are injected into the magnet insertion holes 11b.
  • the core body 11 to which the auxiliary plate 40 is attached and the jig 30 on which the core body 11 is placed are transferred toward the core part manufacturing apparatus 1 by the operation of the transfer mechanism.
  • the core body 11 reaches the core manufacturing apparatus 1 the core body 11 , the auxiliary plate 40 and the jig 30 pass through the core body carrying-in/out opening of the core manufacturing apparatus 1 . It is carried in between 21 and lower mold 22 .
  • the jig 30 with the core body 11 placed thereon is placed on the lower die 22 by the transfer mechanism, the carrying-in of the core body 11, the auxiliary plate 40 and the jig 30 into the core manufacturing apparatus 1 is completed.
  • two types of resin materials 81 and 82 are supplied to the upper mold 21 of the core part manufacturing apparatus 1, and are accommodated in a laminated state in which the resin material 81 is the upper layer and the resin material 82 is the lower layer in each accommodation hole 21a. retained (see FIG. 1).
  • the resin materials 81 and 82 held in the accommodation holes 21a are heated at appropriate timings and melted in the lamination state in the accommodation holes 21a to form molten resins 84 and 85, respectively.
  • the auxiliary plate 40 and the jig 30 between the upper die 21 and the lower die 22 After carrying the core body 11, the auxiliary plate 40 and the jig 30 between the upper die 21 and the lower die 22, the upper die 21 is lowered or the lower die 22 on which the core body 11 is mounted is lifted. The core body 11 is sandwiched and pressed between the upper die 21 and the lower die 22 via the plate 40 and the jig 30 .
  • the auxiliary plate 40 and the jig 30 are brought into contact with both end surfaces of the core body 11 in the stacking direction and pressed, so that the magnet insertion holes 11b are formed at the ends of the core body 11 in the stacking direction. blocked.
  • each extrusion part 23 is driven and inserted into the accommodation hole 21a of the upper mold 21, respectively.
  • the molten resins 84, 85 are extruded downward from the accommodation hole 21a in the order of the lower layer molten resin 85 and the upper layer molten resin 84 (see FIG. 3).
  • the extruded resin is injected and filled into the magnet insertion holes 11 b of the core body 11 through the resin passages 41 of the auxiliary plate 40 in order from the lower layer molten resin 85 .
  • the molten resins 84 and 85 existing in the resin passage 41 and the magnet insertion hole 11b of the auxiliary plate 40 are placed above the layer of the molten resin 85, which is the second resin. It is in a laminated state in which a layer of molten resin 84 is positioned.
  • the boundary between the layer of the molten resin 85 and the layer of the molten resin 84 located on the side of the upper die 21, that is, on the upper side of the molten resin 85 is the core body on the side of the upper die 21 in the magnet insertion hole 11b as a space. 11, and both the molten resin 84 and the molten resin 85 are filled in the magnet insertion hole 11b. That is, the molten resin 84, which is the first resin, is provided at the upper end portion of the core body 11 in the stacking direction.
  • the molten resins 84 and 85 located in the resin passage 41 of the auxiliary plate 40 and the magnet insertion holes 11b are melted while maintaining the state of sandwiching and pressing the core body 11 between the upper mold 21 and the lower mold 22. Allow solidification to proceed.
  • the molten resins 84 and 85 when the molten resin 84, which is the first resin having the fastest solidification speed, solidifies and becomes a solidified resin 87, the extruding part 23 is pulled up from the upper die 21 to return to its original state, The upper die 21 is raised or the lower die 22 is lowered to separate the upper die 21 and the auxiliary plate 40, and the clamping and pressing of the core body 11 by the upper die 21 and the lower die 22 is finished. Thereby, the core body 11, the auxiliary plate 40, and the jig 30 can be carried out from between the upper die 21 and the lower die 22 (see FIG. 4).
  • the solidified resin 87 is positioned above the molten resin 85 in the magnet insertion hole 11b and melts with the upper mold 21. It is located between the resin 85 .
  • the solidified resin 87 can be held even if the molten resin 85 is subjected to expansion stress as the solidification of the molten resin 85 progresses. The force can suppress the influence of expansion of the molten resin 85 due to stress.
  • the molten resin 85 is less likely to be affected by relative movement of the upper die 21 with respect to the core body 11 .
  • the molten resin 85 can be solidified while properly positioned in the magnet insertion hole 11b of the core body 11, and the filler 13 can be obtained without any problem.
  • the solidified resin obtained by solidifying the molten resin 85, which is the second resin, is an example of the second resin portion.
  • the core body 11, the auxiliary plate 40, and the jig 30 are carried out of the core part manufacturing apparatus 1 from between the upper mold 21 and the lower mold 22 by the transfer mechanism.
  • the iron core body 11, the auxiliary plate 40, and the jig 30 carried out from the core part manufacturing apparatus 1 are transferred to the next step by the operation of the transfer mechanism.
  • the molten resin 84 has become the solidified resin 87
  • the core body 11, the auxiliary plate 40, and the jig 30 are transferred to the upper mold 21 and the lower mold 22 by the transfer mechanism without waiting for the molten resin 85 to solidify.
  • the molten resin 85 is solidified by residual heat of the core body 11 while the core body 11, the auxiliary plate 40, and the jig 30 are transferred from the core manufacturing apparatus 1 to the next step.
  • the upper die 21 is separated from the core body 11, and the molten resin 84, which is the first resin having a high solidification speed, is placed in the upper die 21 and the second resin positioned in the magnet insertion hole 11b. Feeding is performed so that it is positioned between a certain molten resin 85, and solidification of the resin proceeds in a state where the molten resin 85 with a slow solidification speed does not contact the upper mold 21, and the molten resin 84 with a fast solidification speed solidifies. do.
  • the core body 11 can be released and taken out from between the upper die 21 and the lower die 22 . Even if the molten resin 85 is not solidified, if the molten resin 84 is solidified to form a solidified resin 87, the core body 11 can be moved between the upper mold 21 and the lower mold 21 without affecting the filling state of the molten resin 85. It can be removed from between the molds 22 .
  • the time during which the core body 11 is restrained between the upper die 21 and the lower die 22 is equal to the difference between the solidification times of the molten resins 84 and 85. can be shortened, the manufacturing efficiency of the core portion 10 is improved.
  • one resin is defined as the first resin
  • the other resin is defined as the second resin. type is used.
  • the first resin which is one of these resins, solidifies from a molten state at a predetermined solidification speed faster than that of the second resin.
  • one resin and another resin may be composed of a plurality of types of resin. For example, even if a third resin is included in addition to the second resin as other resins other than the first resin, which is one resin, the first resin is the second resin and the third resin.
  • the third resin may be lower in cost than the second resin as long as there is no problem with the quality at the time of delivery or after solidification. In this case, the cost of the core portion can be reduced, and if the solidification speed of the third resin is faster than that of the second resin, the manufacturing efficiency of the core portion can be improved.
  • the second resin can be considered to have better properties such as fluidity than the low-cost third resin, the second resin is arranged in a lower layer than the third resin in the resin holding part, and the second resin is It is desirable to feed the resin before the third resin so as to position it in the deep part of the space.
  • the layers of the molten resin 85 and the layers of the molten resin 84 are formed.
  • the boundary is located near the upper end of the core body 11 in the magnet insertion hole 11b as a space, and the molten resin 84, which is the first resin, is arranged above the magnet insertion hole 11b.
  • the boundary between the layer of the molten resin 85 that is the second resin and the layer of the molten resin 84 that is the first resin is positioned in the resin passage 41 and is not limited to the example of this embodiment, and the magnet insertion hole 11b is formed. can be filled with only the molten resin 85.
  • the filler 13 since the boundary of the molten resin layer is not positioned within the magnet insertion hole 11b, only one type of resin can be used as the filler 13 within the core body 11 after the molten resin is solidified. Since the filler 13 is composed of a homogeneous single resin, the filler 13 is superior in terms of strength.
  • the molten resins 84 and 85 are fed into the magnet insertion hole 11b from the housing hole 21a of the upper die 21 with the auxiliary plate 40 attached to the upper side of the core body 11. be done. Without being limited to this, as shown in FIG. It is also possible to adopt a configuration in which the resin is fed into the magnet insertion hole 11 b of the core body 11 from the resin holding portion 21 .
  • the resin materials 81 and 82 are held in a layered state in which the resin material 81 is the upper layer and the resin material 82 is the lower layer in each accommodation hole 21a forming the resin holding portion in the upper die 21, and these resin materials are held at appropriate timings. to obtain molten resins 84 and 85.
  • the lower layer molten resin 85 that is the second resin and the upper layer molten resin 84 that is the first resin are fed in this order.
  • a layer of molten resin 84, which is the first resin, is positioned on the upper side of the layer of molten resin 85, which is the second resin. do.
  • the solidified resin 87 is positioned on the upper end side of the molten resin 85 in the magnet insertion hole 11b, and the upper die 21 and the molten resin 85 are positioned. It will be interposed like a lid between them. As a result, even if the upper die 21 and the upper end surface of the core body 11 are separated from each other at a stage where the molten resin 85 is not yet solidified, the solidified resin 87 interposed between the upper die 21 and the molten resin 85 is not solidified. , the influence of the relative movement of the upper die 21 with respect to the core body 11 on the molten resin 85 can be suppressed.
  • the molten resin 85 can form the filler 13 together with the solidified resin 87 without any problem by being solidified while being properly positioned in the magnet insertion hole 11b of the core body 11 .
  • the molten resins 84 and 85 are fed into the magnet insertion hole 11b in a predetermined order, so that the molten resin 85, which is the second resin, is A layer of molten resin 84, which is the first resin, is positioned above the layers.
  • the solidification process proceeds with the molten resin 84 interposed between the upper mold 21 and the molten resin 85 .
  • an unmelted tablet-like, granular, or powdery resin material is fed into the magnet insertion hole 11b, and then the permanent magnet is inserted into the magnet insertion hole 11b. 12 may be inserted and the resin material may be melted so that the melted resin is properly positioned in each part of the magnet insertion hole 11b and then solidified.
  • resin materials such as tablets, granules, powders, etc.
  • they are composed of two types, for example, a first resin with a fast solidification speed and a second resin with a slower solidification speed. It is desirable that the resin materials are fed in the order of the second resin and the first resin.
  • the layer of the molten resin 84 which is the first resin, is positioned above the layer of the molten resin 85, which is the second resin. That is, in the solidification step, solidification progresses in a state in which the molten resin 84 is interposed between the upper mold 21 and the molten resin 85 through which the magnet insertion holes 11b are communicated.
  • the molten resin 84 that solidifies quickly is provided between the upper mold 21 and the molten resin 85, so that regardless of whether the solidification of the molten resin 85 is complete or incomplete,
  • the molten resin 84 is solidified, the upper die 21 and the core body 11 are separated from each other.
  • the completion of solidification of the molten resin 85 which is the second resin, when the core body 11 needs to be separated from the jig 30 below it at an early stage and the core body 11 needs to be transferred.
  • the molten resin may be fed such that the molten resin of the first resin is also positioned below the layer of molten resin made of the second resin.
  • the resin material 81 which is the first resin
  • the resin material 82 which is the second resin
  • the resin materials 81 and 82 are held in a stacked state (see FIG. 7).
  • the molten resin 84, 85 melted from the resin material is melted in the order of the molten resin 84 of the lower layer, the molten resin 85 of the intermediate layer, and the molten resin 84 of the upper layer while maintaining the laminated state.
  • Resins 84, 85 are fed.
  • a layer of molten resin 84 which is the first resin
  • the second resin respectively (see FIG. 8).
  • the solidified resin 87 is positioned at the upper and lower ends of the molten resin 85 within the magnet insertion hole 11b (see FIG. 9). That is, the solidified resin 87 is provided between the upper mold 21 and the molten resin 85 and between the jig 30 and the molten resin 85 . As a result, even if the upper die 21 and the core body 11 are separated from each other or the core body 11 and the jig 30 are further separated at a stage where the molten resin 85 is not yet solidified, the upper die 21 and the molten resin 85 do not melt.
  • the solidified resin 87 interposed between the resin 85 and between the jig 30 and the molten resin 85 suppresses the influence of the relative movement of the upper die 21 and the jig 30 with respect to the core body 11 on the molten resin 85. be able to. Since the molten resin 85 is solidified while being properly positioned in the magnet insertion hole 11b of the core body 11, the filler 13 can be formed together with the solidified resin 87 without any problem.
  • the accommodation hole 21a and the extrusion part 23 in the upper die 21 constitute the resin holding part 24, and the resin holding part 24 is integrally incorporated into the upper die 21.
  • the resin holding portion that holds and feeds the resin may be independent of the upper mold or the lower mold.
  • it may be configured such that the resin holding portion positioned above the core body feeds the resin from above into the core body before it is positioned between the upper die and the lower die.
  • the resin holding portion is positioned above the core body and below the upper mold with respect to the core body positioned between the upper and lower molds but before being sandwiched between the upper and lower molds, and feeds the resin into the core body. After that, the resin holding portion can be retracted from the upper side of the core body so that the core body can be sandwiched between the upper mold and the lower mold.
  • a resin holder independent of the upper and lower molds continuously feeds the molten resin to the core body side. It may also have a mechanism that allows it to be inserted.
  • a resin that is excellent in continuous supply such as a thermoplastic or thermosetting hot-melt adhesive, may be used.
  • the resin fed into the magnet insertion hole 11b as the space portion is mainly a thermosetting resin, but not limited to this, a thermoplastic resin may also be used. good too. If a predetermined thermoplastic resin with a higher melting point or glass transition point than the thermoplastic resins used as the other resins is used as one resin with a fast solidification speed, it can be adjusted to the temperature drop in the solidification process after feeding. Since one of the resins is completely solidified first, it is possible to suppress external influences such as molds on other resins that have not yet been completely solidified.
  • the one resin and the other resin have substantially the same fluidity.
  • the greater the difference in fluidity between one resin and the other resin the more the one resin will overtake the other resin and the resin will flow in, making it easier for the one resin and the other resin to mix.
  • the resin can be flowed into the magnet insertion hole 11b in a state where the order of the other resin and the first resin is not disturbed.
  • the resin is injected into the core body 11 from the upper die 21 side of the core part manufacturing apparatus 1.
  • the present invention is not limited to this and the second embodiment.
  • the core manufacturing apparatus 2 is constructed such that resin is injected from the lower die 27 side of the core manufacturing apparatus 2 in the feeding step.
  • the method for manufacturing the core part according to the present embodiment has the feeding step and the solidifying step, as in the first embodiment, and in the feeding step, the resin holding part 29 located on the lower mold 27 side is The retained resin is fed into the space of the core body 11 from below.
  • the core part manufacturing apparatus 2 to which the core part manufacturing method according to the present embodiment is applied includes an upper die 26 and a lower die 27 as a filling mechanism part, while the lower die 27 is the core body. 11 is provided with a resin holding portion 29 for holding the resin so as to be able to be fed thereinto.
  • An upper mold 26 and a lower mold 27 forming a filling mechanism part of the core part manufacturing apparatus 2 hold the core body 11 in a molten state in the magnet insertion hole 11b as a space part, as in the first embodiment.
  • a certain resin is pressurized and the solidification of the resin is advanced.
  • the iron core body 11 is supported by the jig 35 before and after the resin feeding step by the core manufacturing apparatus 2, and is handled integrally with the jig 35.
  • An auxiliary plate 45 is attached to the end face opposite to the side facing 35 .
  • the shapes of the tool 35 and the auxiliary plate 45 also correspond to resin feeding from the lower die 27 side.
  • the resin is injected into the magnet insertion hole 11 b through the jig 35 from the side of the lower end surface of the iron core body 11 that contacts the jig 35 .
  • the upper die 26 is positioned above the lower die 27 and sandwiches the core body 11, the auxiliary plate 45 and the jig 35 together with the lower die 27, as in the first embodiment.
  • the upper mold 26 has the same configuration as that of the first embodiment, except that no holes (receiving holes 21a, extruding portions 23) passing through the upper mold 26 are provided. omitted.
  • the lower die 27 supports the core body 11 and the jig 35 to which the auxiliary plate 45 is attached, as in the first embodiment.
  • the lower mold 27 is provided with a plurality of accommodation holes 27a capable of accommodating and holding resin.
  • the lower die 27 has an accommodation hole 27a into which a resin material such as a tablet-like or powdery first resin and a second resin can be inserted, and a resin can be extruded into the magnet insertion hole 11b of the core body 11. and an extrusion portion 28 .
  • the accommodation hole 27a and the extrusion portion 28 in the lower die 27 form the resin holding portion 29. As shown in FIG. That is, the resin holding portion 29 is integrated with the lower mold 27 .
  • the housing holes 27a as part of the resin holding portion 29 are positioned at locations corresponding to the magnet insertion holes 11b of the core body 11 in a state in which the core body 11 is sandwiched between the upper die 26 and the lower die 27. , are arranged side by side at predetermined intervals.
  • Each accommodation hole 27a can accommodate a resin material supplied in the form of a resin tablet, powder, or the like. As in the first embodiment, two types of resin materials are used: a resin material 81 that is a first resin and a resin material 82 that is a second resin. Each accommodation hole 27a holds a laminated state in which the resin material 81 is the lower layer and the resin material 82 is the upper layer.
  • the lower die 27 also has a mechanism for heating and melting the resin materials 81 and 82 to obtain molten resins 84 and 85 as a function of the resin holding portion 29 .
  • the lower mold 27 is provided with heaters (not shown) capable of heating the resin materials 81 and 82 accommodated in the accommodation holes 27a. When the resin materials 81 and 82 are heated, they are melted in the accommodation holes 27a and become molten resins 84 and 85. As shown in FIG.
  • the extruding portion 28 can extrude the molten resins 84 and 85 into the magnet insertion hole 11b of the core body 11.
  • the pushing part 28 is, for example, a plurality of plungers that can be vertically moved by being driven by a predetermined driving source.
  • Each extruding part 28 may be driven by a corresponding drive source for each extruding part and can move up and down, or a plurality of extruding parts can be driven together by one drive source and can move up and down as a unit. may be
  • the molten resins 84 and 85 held in the accommodation hole 27a are pushed out from the accommodation hole 27a of the lower mold 27 by the extrusion part 28 in the feeding process, and arranged between the lower mold 27 and the lower end surface of the core body 11.
  • the resin passes through the resin passage 36 a in the plate portion 36 of the jig 35 and flows into each magnet insertion hole 11 b of the core body 11 .
  • the upper molten resin is fed first, that is, the upper molten resin 85 that is the second resin and the lower molten resin 84 that is the first resin are fed in this order.
  • the jig 35 includes a plate portion 36 and a post portion 37 as in the first embodiment. It is The plurality of resin passages 36a of the plate portion 36 are holes that are continuous in the height direction of the plate portion 36, and are arranged at positions corresponding to the plurality of magnet insertion holes 11b of the core body 11 and the accommodation holes 27a of the lower die 27. be done.
  • the auxiliary plate 45 is a plate-like member and is attached to the end surface of the core body 11 on the side not in contact with the jig 35. However, the difference is that resin is inserted into the auxiliary plate 45 for each magnet. A resin passage for leading to the hole 11b is not provided.
  • the core body 11 is obtained by laminating a plurality of thin plates 11a in advance.
  • the iron core body 11 is preheated to an appropriate temperature by inserting the permanent magnets 12 into the magnet insertion holes 11b. It is transferred toward the core part manufacturing apparatus 2 by .
  • Two types of resin materials 81 and 82 are supplied to the lower die 27 of the core manufacturing apparatus 2 between loading and unloading of the core body 11 to and from the core manufacturing apparatus 2 .
  • the resin materials 81 and 82 are accommodated and held in the accommodation hole 27a of the lower mold 27 in a laminated state in which the resin material 81 is the lower layer and the resin material 82 is the upper layer.
  • the resin materials 81 and 82 held in the accommodation holes 27a are heated at appropriate timings and melted in the accommodation holes 27a to form molten resins 84 and 85, respectively.
  • the core main body 11 and the jig 35 on which the core main body 11 is placed are transferred toward the core manufacturing apparatus 2 by the operation of the transfer mechanism, and when they reach the core manufacturing apparatus 2, the core main body 11 and the jig 35 are transferred. is carried in between the upper mold 26 and the lower mold 27 of the core manufacturing apparatus 2 through an opening for carrying in and out of the core manufacturing apparatus 2 .
  • the jig 35 with the core body 11 placed thereon is placed on the lower die 27 by the transfer mechanism, the loading of the core body 11 and the jig 35 into the core manufacturing apparatus 2 is completed.
  • the upper die 26 is lowered or the lower die 27 on which the core body 11 is placed is raised, so that the upper die 26 and the lower die 27
  • the iron core body 11 is sandwiched and pressed (see FIG. 10).
  • the auxiliary plate 45 and the jig 35 are brought into contact with both end surfaces of the core body 11 in the stacking direction and pressed, so that the magnet insertion holes 11b are formed at the ends of the core body 11 in the stacking direction. blocked.
  • each extrusion part 28 is driven and inserted into each accommodation hole 27a of the lower mold 27 from below.
  • the molten resins 84, 85 are extruded upward in the order of the upper molten resin 85 and the lower molten resin 84 from the accommodation hole 27a.
  • the extruded resin is injected and filled into the magnet insertion holes 11b of the upper core body 11 through the resin passages 36a of the plate portion 36 of the jig 35 in order from the upper molten resin 85 (see FIG. 11).
  • the molten resins 84 and 85 existing in the resin passage 36a and the magnet insertion hole 11b of the plate portion 36 are spread under the layer of the molten resin 85, which is the second resin, with the first resin. It is in a laminated state in which a layer of a certain molten resin 84 is positioned.
  • the boundary between the layer of molten resin 85 and the layer of molten resin 84 located on the lower die 27 side, that is, below the molten resin 85 is below the core body 11 in the magnet insertion hole 11b as a space.
  • Both the molten resin 85 and the molten resin 84 are filled in the magnet insertion hole 11b positioned near the side end. That is, the molten resin 84, which is the first resin, is provided at the lower end portion of the core body 11 in the stacking direction.
  • the molten resin 84 which is the first resin that solidifies faster, solidifies to become a solidified resin 87 (an example of the first resin portion). It is located on the lower end side of the molten resin 85 in the hole 11 b and is located between the molten resin 85 and the jig 35 .
  • the extruding part 28 is lowered with respect to the lower mold 27 to return to the original state, and the upper mold 26 is raised or the lower mold 27 is lowered. , the upper die 26 and the core body 11 are separated, and the clamping and pressing of the core body 11 by the upper die 26 and the lower die 27 are completed.
  • the core body 11 and the jig 35 can be moved from above the lower die 27 and can be unloaded from the core manufacturing apparatus 2 (see FIG. 12).
  • the solidified resin 87 is positioned below the molten resin 85 in the magnet insertion hole 11b, and is between the lower mold 27 and the molten resin 85. positioned.
  • the molten resin 85 is less likely to be affected by relative movement of the lower die 27 with respect to the core body 11 .
  • the molten resin 85 can be solidified while properly positioned in the magnet insertion hole 11b of the core body 11, and the filler 13 can be obtained without any problem.
  • the solidified resin obtained by solidifying the molten resin 85, which is the second resin, is an example of the second resin portion.
  • the iron core body 11 and the jig 35 are transported out of the core part manufacturing apparatus 2 by the transport mechanism and further transported to the next step, as in the first embodiment.
  • the molten resin 84 has become the solidified resin 87
  • the iron core body 11 and the like are transported out of the core manufacturing apparatus 2 by the transfer mechanism without waiting for the molten resin 85 to solidify.
  • the molten resin 85 is solidified by residual heat of the core body 11 while the core body 11, the auxiliary plate 45, and the jig 35 are transferred from the core manufacturing apparatus 2 to the next step. Thereby, the time for restraining the core body 11 between the upper mold 26 and the lower mold 27 can be further shortened.
  • the core body 11 and the jig 35 below it may be separated early and the core body 11 may be transferred. If the molten resin 84 is solidified to become a solidified resin 87, the solidified resin 87 is provided between the molten resin 85 and the jig 35, so the core body 11 and the jig 35 are separated from each other. Even so, the solidified resin 87 can suppress the influence of the relative movement of the jig 35 with respect to the core body 11 on the molten resin 85 . As a result, the molten resin 85 is solidified while being properly positioned in the magnet insertion hole 11b of the core body 11, so that the filler 13 can be formed together with the solidified resin 87 without any problem.
  • the molten resin 84 which is the first resin having a high solidification speed, is placed in the lower mold 27 and the second resin positioned in the magnet insertion hole 11b, while the lower mold 27 is separated from the core body 11 after the resin is solidified.
  • the solidification of the resin progresses in a state where the molten resin 85 with a slow solidification speed does not come into contact with the lower mold 27, and the molten resin 84 with a fast solidification speed is solidify.
  • the core body 11 can be released and taken out from between the upper die 26 and the lower die 27 . Even if the molten resin 85 is not solidified, if the molten resin 84 is solidified and becomes a solidified resin 87, the core body 11 can be moved between the upper mold 26 and the lower mold 26 without affecting the filling state of the molten resin 85. It can be taken out from between the molds 27 .
  • the time during which the core body 11 is constrained between the upper mold 26 and the lower mold 27 is equal to the difference between the solidification times of the molten resins 84 and 85. can be shortened, the manufacturing efficiency of the core portion 10 is improved.
  • the auxiliary plate 45 is arranged on the upper side of the core body 11 in the core part manufacturing apparatus 2, so that the resin filled in the magnet insertion hole 11b does not come into contact with the upper mold 26.
  • the auxiliary plate is not arranged on the upper side of the core body 11, and in the core part manufacturing apparatus 2, the upper die 21 and the upper end surface of the core body 11 are in direct contact, and the resin of the lower die 27 Resin may be fed into the magnet insertion hole 11b of the core body 11 from the holding portion.
  • the resin material 81 which is the first resin
  • the resin material 82 which is the second resin
  • the resin materials 81 and 82 may be held in a stacked state (see FIG. 13).
  • the molten resin 84 is melted from the resin material, and the melted resin 84 and the melted resin 85 are melted in the order of the upper layer melted resin 84, the intermediate layer melted resin 85, and the lower layer melted resin 84 while maintaining the laminated state. , 85 are input.
  • a layer of molten resin 84 which is the first resin
  • the layer of molten resin 85 which is the second resin, respectively (see FIG. 14).
  • the solidified resin 87 is positioned on the upper and lower end sides of the molten resin 85 within the magnet insertion hole 11b (see FIG. 15). That is, the solidified resin 87 is provided between the upper mold 21 and the molten resin 85 and between the lower mold 27 and the molten resin 85 .
  • the boundary between the layers is located near the lower end of the core body 11 in the magnet insertion hole 11b as a space, and the molten resin 84, which is the first resin, is arranged in the lower part of the magnet insertion hole 11b.
  • the boundary between the layer of the molten resin 85 and the layer of the molten resin 84 is positioned within the resin passage 36a of the plate portion 36, and the magnet insertion hole 11b is filled only with the molten resin 85, not limited to the example of this embodiment. You can also make it so that
  • the filler 13 is superior in terms of strength.

Abstract

The present invention includes a delivery step in which resin is delivered to a space in a core body (11) positioned between molds. In the delivery step, a first resin having a fast solidifying speed is delivered so as to be interposed between the molds and a second resin located in the space, and the first resin is solidified first in a state in which the second resin having a slow solidification speed does not come in contact with the molds.

Description

回転電機のコア部製造方法、コア部製造装置、及び、コア部CORE PORTION MANUFACTURING METHOD, CORE PORTION MANUFACTURING APPARATUS, AND CORE PORTION
 本開示は、回転電機の回転子又は固定子におけるコア部の製造方法及び製造装置に関する。さらに、本開示は、回転電機の回転子又は固定子におけるコア部にも関する。 The present disclosure relates to a manufacturing method and manufacturing apparatus for a core portion in a rotor or stator of a rotating electric machine. Furthermore, the present disclosure also relates to a core portion in a rotor or stator of a rotating electric machine.
 電動機や発電機といった回転電機の固定子又は回転子において、コイルや永久磁石を配設されるコアには、積層鉄心が一般に用いられる。
 積層鉄心のコアへの、コイルや永久磁石の配設にあたっては、従来から様々な工夫がなされてきた。
2. Description of the Related Art In stators or rotors of rotary electric machines such as electric motors and generators, laminated iron cores are generally used as cores in which coils and permanent magnets are arranged.
Conventionally, various ideas have been made in arranging coils and permanent magnets in the core of the laminated core.
 例えば特許文献1のように、回転子のコアの場合、特に、IPMモータの回転子コアの場合、積層鉄心の磁石挿入孔に磁石を挿入固定する構造が採用されていた。こうした構造では、永久磁石を固定する際、磁石挿入孔への永久磁石の挿入後、磁石挿入孔の内壁面と永久磁石との隙間に、溶融し流動性のある状態とした熱硬化性樹脂等の樹脂を注入して、隙間を埋めた後、樹脂を固化させることで、永久磁石を固定するようにしていた。 For example, as in Patent Document 1, in the case of a rotor core, particularly in the case of a rotor core of an IPM motor, a structure in which magnets are inserted and fixed into magnet insertion holes of a laminated iron core has been adopted. In such a structure, when fixing the permanent magnet, after the permanent magnet is inserted into the magnet insertion hole, a thermosetting resin or the like in a melted and fluid state is placed in the gap between the inner wall surface of the magnet insertion hole and the permanent magnet. of resin is injected to fill the gap, and then the resin is solidified to fix the permanent magnet.
日本国特開2009-100634号公報Japanese Patent Application Laid-Open No. 2009-100634
 従来の回転電機のコアの製造は、特許文献1に示される方法でなされている。上下の型で挟持押圧したロータコアの磁石収納孔に樹脂を注入する樹脂注入装置を用いることで、効率よく磁石収納孔に樹脂を注入して、コアと磁石を一体化することができた。  Conventional cores for rotating electric machines are manufactured by the method shown in Patent Document 1. By using a resin injection device that injects resin into the magnet storage holes of the rotor core sandwiched and pressed between the upper and lower dies, resin was efficiently injected into the magnet storage holes, and the core and the magnets could be integrated.
 コアへの磁石固定のための樹脂注入においては、コアを樹脂注入用の装置の上下の型間に直接又は治具を介して挟持押圧状態として、樹脂注入を行うのが一般的であった。ただし、このようなコアへの樹脂注入の工程の後、樹脂が完全に固化するまで待つ必要があり、仮に固化しないままで型とコアとを離隔させると、固化していない樹脂がこれと接する型の移動の影響を受けて、本来あるべき位置からずれる事態が生じ、磁石周囲に樹脂を正しく配置できなくなるという課題を有していた。 In the resin injection for fixing the magnet to the core, it was common to press the core between the upper and lower molds of the resin injection device directly or via a jig while injecting the resin. However, after such a process of injecting the resin into the core, it is necessary to wait until the resin is completely solidified. There was a problem that the resin could not be arranged correctly around the magnet due to the influence of the movement of the mold.
 本開示は製造効率のよいコア部製造方法、コア部製造装置、及びコア部を提供することを目的とする。 An object of the present disclosure is to provide a core part manufacturing method, a core part manufacturing apparatus, and a core part with good manufacturing efficiency.
 本開示の開示に係るコア部製造方法は、磁性金属材料製の薄板が複数積層されて形成された鉄心本体を一対の型の間に位置させ、鉄心本体における複数の空間部に樹脂を充填し、回転電機の回転子又は固定子の一部をなすコア部を製造する、コア部製造方法において、前記一対の型のうち一方の型側に位置する樹脂保持部に保持された樹脂を、前記鉄心本体の空間部に送入する送入工程と、前記一対の型により前記鉄心本体を挟持しつつ、前記空間部で溶融状態にある樹脂の固化を進行させる固化工程とを少なくとも有し、前記送入工程で、送入した樹脂を前記空間部で溶融させて、又は、溶融した樹脂を空間部に送入して、空間部に溶融した樹脂を位置させてから、前記固化工程での樹脂の固化を進行させ、前記樹脂が、複数種類からなり、溶融状態から他の樹脂より速い所定の固化速度で固化する一の樹脂を少なくとも含み、前記送入工程では、前記一の樹脂と他の樹脂を所定の順序で送入し、前記固化工程で、前記空間部が通じた型に対しては、当該型と前記他の樹脂との間に前記一の樹脂を介在させて固化を進行させ、少なくとも一の樹脂を固化させる。 In the method for manufacturing a core according to the present disclosure, a core body formed by laminating a plurality of thin plates made of a magnetic metal material is positioned between a pair of molds, and a plurality of spaces in the core body are filled with resin. 1. In a method for manufacturing a core portion forming a part of a rotor or stator of a rotating electric machine, the resin held in the resin holding portion located on one mold side of the pair of molds is At least a feeding step of feeding into a space portion of the core body and a solidification step of solidifying the molten resin in the space portion while sandwiching the core body between the pair of molds, In the feeding step, the fed resin is melted in the space, or the melted resin is fed into the space, and the melted resin is positioned in the space. The solidification of the resin consists of a plurality of types and includes at least one resin that solidifies at a predetermined solidification speed faster than the other resins from a molten state, and in the feeding step, the one resin and the other resin The resins are fed in a predetermined order, and in the solidification step, the one resin is interposed between the mold and the other resin to proceed with solidification for the mold through which the space is communicated. , to solidify the at least one resin.
 本開示の開示によれば、固化速度の速い一の樹脂が型と空間部に位置する他の樹脂との間に介在するように送入される。このため、他の樹脂が固化していない時点でも、一の樹脂が固化していれば、他の樹脂の充填状態に影響を与えることなく鉄心本体を型間から取り出すことができる。空間部に他の樹脂のみ送入し固化させる場合に比べ、一の樹脂と他の樹脂の固化時間の差だけ、鉄心本体を型間に拘束する時間を短縮できるので、コア部の製造効率が向上する。 According to the disclosure of the present disclosure, one resin having a high solidification rate is fed so as to be interposed between the mold and the other resin positioned in the space. Therefore, even when the other resins are not yet solidified, if one resin is solidified, the core body can be taken out from between the molds without affecting the filled state of the other resins. Compared to the case where only other resins are sent into the space and solidified, the time for restraining the core body between the molds can be shortened by the difference in the solidification time between one resin and the other resin, so the manufacturing efficiency of the core part is improved. improves.
図1は、第1の実施形態に係るコア部製造方法を適用するコア部製造装置の樹脂材料保持状態説明図である。FIG. 1 is an explanatory diagram of a resin material holding state of a core portion manufacturing apparatus to which the core portion manufacturing method according to the first embodiment is applied. 図2は、第1の実施形態に係るコア部製造方法に用いる鉄心本体の治具による支持状態における縦断面図である。FIG. 2 is a vertical cross-sectional view of the iron core body used in the core manufacturing method according to the first embodiment in a state of being supported by a jig. 図3は、第1の実施形態に係るコア部製造方法における送入工程での溶融樹脂送入状態説明図である。FIG. 3 is an explanatory diagram of a state of molten resin feeding in a feeding step in the method for manufacturing the core portion according to the first embodiment. 図4は、第1の実施形態に係るコア部製造方法における鉄心本体及び補助プレートのコア部製造装置上型からの離隔状態説明図である。FIG. 4 is an explanatory view of the separated state of the core body and the auxiliary plate from the upper die of the core part manufacturing apparatus in the core part manufacturing method according to the first embodiment. 図5Aは、第1の実施形態に係るコア部製造方法による樹脂充填後の鉄心本体の平面図である。FIG. 5A is a plan view of the core body after being filled with resin by the core manufacturing method according to the first embodiment. 図5Bは、図5AのB-B断面図である。FIG. 5B is a cross-sectional view taken along line BB of FIG. 5A. 図6は、第1の実施形態に係るコア部製造方法を適用する他のコア部製造装置における補助プレートを介在させない溶融樹脂送入状態説明図である。FIG. 6 is an explanatory diagram of a molten resin feeding state without interposition of an auxiliary plate in another core manufacturing apparatus to which the core manufacturing method according to the first embodiment is applied. 図7は、第1の実施形態に係るコア部製造方法を適用する他のコア部製造装置における樹脂材料保持状態説明図である。FIG. 7 is an explanatory diagram of a resin material holding state in another core manufacturing apparatus to which the core manufacturing method according to the first embodiment is applied. 図8は、第1の実施形態に係るコア部製造方法を適用する他のコア部製造装置における溶融樹脂送入状態説明図である。FIG. 8 is an explanatory diagram of a molten resin feeding state in another core manufacturing apparatus to which the core manufacturing method according to the first embodiment is applied. 図9は、第1の実施形態に係るコア部製造方法における治具からの早期取り外しに対応した樹脂充填後の鉄心本体の治具からの取り外し状態説明図である。FIG. 9 is an explanatory view of the removal state of the iron core body after resin filling from the jig corresponding to early removal from the jig in the method of manufacturing the core portion according to the first embodiment. 図10は、第2の実施形態に係るコア部製造方法を適用するコア部製造装置の樹脂材料保持状態説明図である。FIG. 10 is an explanatory view of a resin material holding state of a core manufacturing apparatus to which the core manufacturing method according to the second embodiment is applied. 図11は、第2の実施形態に係るコア部製造方法における送入工程での溶融樹脂注入状態説明図である。FIG. 11 is an explanatory diagram of the molten resin injection state in the feeding step in the method for manufacturing the core portion according to the second embodiment. 図12は、第2の実施形態に係るコア部製造方法における鉄心本体、補助プレート及び治具のコア部製造装置上下型からの離隔状態説明図である。12A and 12B are diagrams for explaining the separation state of the core body, the auxiliary plate and the jig from the upper and lower molds of the core part manufacturing apparatus in the core part manufacturing method according to the second embodiment. 図13は、第2の実施形態に係るコア部製造方法を適用する他のコア部製造装置における樹脂材料保持状態説明図である。FIG. 13 is an explanatory diagram of a state of resin material holding in another core manufacturing apparatus to which the core manufacturing method according to the second embodiment is applied. 図14は、第2の実施形態に係るコア部製造方法を適用する他のコア部製造装置における溶融樹脂送入状態説明図である。FIG. 14 is an explanatory diagram of a molten resin feeding state in another core manufacturing apparatus to which the core manufacturing method according to the second embodiment is applied. 図15は、第2の実施形態に係るコア部製造方法を適用する他のコア部製造装置上下型からの鉄心本体、補助プレート及び治具の離隔状態説明図である。FIG. 15 is an explanatory diagram of the separated state of the core body, the auxiliary plate and the jig from the upper and lower dies of another core part manufacturing apparatus to which the core part manufacturing method according to the second embodiment is applied.
(本開示の第1の実施形態)
 以下、本開示の第1の実施形態に係る回転電機のコア部製造装置を図1~図5Bに基づいて説明する。
 各図において本実施形態に係るコア部製造方法は、対をなす上型21及び下型22のうち上型21側に位置する樹脂保持部24に保持された樹脂を、鉄心本体11の空間部に送入する送入工程と、上型21及び下型22により鉄心本体11を挟持しつつ、空間部で溶融状態にある樹脂の固化を進行させる固化工程とを少なくとも有している。本実施形態に係るコア部製造方法において、送入工程で溶融した樹脂を空間部に送入し、空間部に溶融した樹脂を位置させてから、固化工程での樹脂の固化を進行させる。
(First embodiment of the present disclosure)
A rotating electric machine core manufacturing apparatus according to a first embodiment of the present disclosure will be described below with reference to FIGS. 1 to 5B.
In each figure, the method of manufacturing the core part according to the present embodiment is such that the resin held by the resin holding part 24 positioned on the upper die 21 side of the upper die 21 and the lower die 22 forming a pair is placed in the space of the core body 11 . and a solidification step of solidifying the molten resin in the space while holding the core body 11 between the upper mold 21 and the lower mold 22 . In the method for manufacturing the core part according to the present embodiment, the melted resin is fed into the space in the feeding step, and after the melted resin is positioned in the space, solidification of the resin proceeds in the solidification step.
 このコア部製造方法において、第一の樹脂と第二の樹脂との二種類の樹脂が用いられる。第一の樹脂は、第二の樹脂より速い所定の固化速度で固化する。送入工程では、第一の樹脂と第二の樹脂を所定の順序で送入する。また、固化工程では、空間部が通じた型に対して、この型と第二の樹脂との間に第一の樹脂を介在させて固化を進行させると、少なくとも第一の樹脂は固化する。 In this method of manufacturing the core portion, two kinds of resins, a first resin and a second resin, are used. The first resin will set at a predetermined set rate that is faster than the second resin. In the feeding step, the first resin and the second resin are fed in a predetermined order. In the solidification step, when the first resin is interposed between the mold and the second resin, at least the first resin is solidified.
 本実施形態に係るコア部製造方法を適用するコア部製造装置1は、積層構造の鉄心本体11における樹脂充填対象の複数の空間部に、溶融した樹脂を充填し固化させて、回転電機の回転子をなすコア部10を製造するものである。コア部製造装置1は、鉄心本体11をその積層方向両側から挟み込む充填機構部としての上型21及び下型22と、上型21側に位置して樹脂を保持すると共に鉄心本体11の空間部に樹脂を送入可能とされる樹脂保持部24とを備える。 The core part manufacturing apparatus 1 to which the core part manufacturing method according to the present embodiment is applied fills a plurality of spaces to be filled with resin in a core body 11 having a laminated structure with molten resin, solidifies it, and rotates a rotating electric machine. A child core portion 10 is manufactured. The core part manufacturing apparatus 1 includes an upper mold 21 and a lower mold 22 as filling mechanism units that sandwich the core body 11 from both sides in the lamination direction, and a space part of the core body 11 that is positioned on the upper mold 21 side and holds the resin. and a resin holding portion 24 capable of feeding resin into.
 本実施形態に係るコア部製造方法により製造されるコア部10は、磁性金属材料製の薄板11aを複数積層して形成される鉄心本体11と、鉄心本体11に複数設けられる空間部としての各磁石挿入孔11bに挿入配設される永久磁石12と、各磁石挿入孔11bに充填される樹脂製の充填材13(図5A及び図5B参照)とを備える。コア部10は、回転電機(電動機や発電機)の回転子としての公知の構造を有するものであり、詳細な説明を省略する。 The core portion 10 manufactured by the core portion manufacturing method according to the present embodiment includes a core body 11 formed by laminating a plurality of thin plates 11a made of a magnetic metal material, and a plurality of space portions provided in the core body 11. It includes permanent magnets 12 inserted into the magnet insertion holes 11b and resin fillers 13 (see FIGS. 5A and 5B) filled in the magnet insertion holes 11b. The core portion 10 has a known structure as a rotor of a rotary electric machine (motor or generator), and detailed description thereof will be omitted.
 鉄心本体11は、磁性金属材料製の薄板11aを複数積層して形成される積層鉄心である。鉄心本体11をなす薄板11aは、電磁鋼やアモルファス合金等からなる薄板材から打抜かれて形成される。 The core body 11 is a laminated core formed by laminating a plurality of thin plates 11a made of a magnetic metal material. The thin plate 11a forming the core body 11 is formed by punching a thin plate material made of electromagnetic steel, amorphous alloy, or the like.
 鉄心本体11には、空間部として永久磁石12を挿入可能な磁石挿入孔11bが複数設けられる。磁石挿入孔11bは、薄板11aの積層方向に鉄心本体11を貫通する孔であり、鉄心本体11の円形の外周に沿う所定の配置で設けられる。磁石挿入孔11bの位置、形状及び数は、回転電機の用途、要求される性能などに応じて適宜設定することができる。 The core body 11 is provided with a plurality of magnet insertion holes 11b as spaces into which the permanent magnets 12 can be inserted. The magnet insertion holes 11b are holes that penetrate the core body 11 in the stacking direction of the thin plates 11a, and are provided in a predetermined arrangement along the circular outer periphery of the core body 11 . The position, shape, and number of the magnet insertion holes 11b can be appropriately set according to the application of the rotating electric machine, required performance, and the like.
 鉄心本体11の中央には、薄板11aの積層方向に鉄心本体11を貫通する軸孔11cが設けられる。、軸孔11cに回転子の回転軸(シャフト)が挿通されることで、回転軸が鉄心本体11に固定される。 At the center of the core body 11, a shaft hole 11c is provided that penetrates the core body 11 in the stacking direction of the thin plates 11a. , the rotating shaft is fixed to the core body 11 by inserting the rotating shaft (shaft) of the rotor through the shaft hole 11c.
 鉄心本体11は、コア部製造装置1による樹脂の送入工程やその前後で治具30に支持されることで、治具30と一体化される。鉄心本体11の治具30に面する側とは反対側となる端面には、空間部としての磁石挿入孔11bへの樹脂挿入を補助する、板状の補助プレート40が取り付けられる。 The iron core body 11 is integrated with the jig 30 by being supported by the jig 30 before and after the resin feeding process by the core manufacturing apparatus 1 . A plate-shaped auxiliary plate 40 is attached to the end face of the core body 11 opposite to the side facing the jig 30 to assist the insertion of the resin into the magnet insertion hole 11b as the space.
 永久磁石12は、回転子の界磁用として、鉄心本体11の各磁石挿入孔11bに挿入される。永久磁石12は、鉄心本体11の磁石挿入孔11bより若干小さく形成されている。これにより、永久磁石12が各磁石挿入孔11bに挿入されると、永久磁石12と鉄心本体11との間には隙間が生じる。すなわち、永久磁石12を挿入された各磁石挿入孔11bは、その一部が空間のまま残る状態となる。このような磁石挿入孔11bにおける永久磁石12を除く残余部分に、充填材13が充填されることとなる。 The permanent magnets 12 are inserted into the magnet insertion holes 11b of the iron core body 11 for use in the rotor field system. The permanent magnet 12 is formed slightly smaller than the magnet insertion hole 11 b of the core body 11 . Accordingly, when the permanent magnets 12 are inserted into the respective magnet insertion holes 11b, gaps are created between the permanent magnets 12 and the core body 11. As shown in FIG. That is, the magnet insertion holes 11b into which the permanent magnets 12 are inserted are left partially empty. The filler 13 is filled in the remaining portion of the magnet insertion hole 11b except for the permanent magnet 12. As shown in FIG.
 充填材13は、磁石挿入孔11bに、より詳細には、永久磁石12挿入後の磁石挿入孔11b残余部分に、溶融状態で注入され充填された樹脂が、充填後に固化したものである。充填材13を構成する樹脂は、例えば、エポキシ樹脂等の熱硬化性樹脂や、熱可塑性樹脂などである。充填材13は、樹脂タブレット又は粉末状の樹脂等として供給された樹脂材料を溶融させた後、固化させることで得られる。なお、充填材13を構成する樹脂を、複数種類からなるものとすることもでき、その場合、基になる樹脂材料も複数種類用いられる。
 充填材13は、永久磁石12を磁石挿入孔11b内に固定すると共に、積層されて隣り合う薄板11a同士の連結を強化することにも寄与する。
The filler 13 is a resin that is injected in a molten state into the magnet insertion hole 11b, more specifically, into the remaining portion of the magnet insertion hole 11b after the permanent magnet 12 is inserted, and solidifies after filling. The resin forming the filler 13 is, for example, a thermosetting resin such as an epoxy resin, a thermoplastic resin, or the like. The filler 13 is obtained by melting a resin material supplied as a resin tablet, powdered resin, or the like, and then solidifying the material. It should be noted that the resin constituting the filler 13 can be made of a plurality of types, and in that case, a plurality of types of base resin materials are also used.
The filling material 13 fixes the permanent magnets 12 in the magnet insertion holes 11b and also contributes to strengthening the connection between the laminated and adjacent thin plates 11a.
 コア部製造装置1の充填機構部をなす上型21及び下型22は、鉄心本体11を挟持して上下型間に位置させつつ、空間部としての磁石挿入孔11b内で溶融状態にある樹脂を加圧すると共に、樹脂の固化を進行させる。 The upper mold 21 and the lower mold 22, which constitute the filling mechanism of the core manufacturing apparatus 1, sandwich the core body 11 and position it between the upper and lower molds, while filling the molten resin in the magnet insertion hole 11b as the space. is pressurized, and solidification of the resin proceeds.
 上型21及び下型22は、治具30に載せた鉄心本体11を、積層方向両側から挟持押圧する。これにより、鉄心本体11には高さ方向から所定の荷重が付与され、鉄心本体11における磁石挿入孔11bを治具30のプレート部31で閉塞できる。 The upper die 21 and the lower die 22 sandwich and press the core body 11 placed on the jig 30 from both sides in the stacking direction. As a result, a predetermined load is applied to the core body 11 from the height direction, and the magnet insertion hole 11 b of the core body 11 can be closed by the plate portion 31 of the jig 30 .
 コア部製造装置1は、送入工程として、一対の型のうち上型21側に位置する樹脂保持部24に保持された樹脂を、鉄心本体11における空間部としての磁石挿入孔11bに上から送入できる。樹脂保持部24による送入は、具体的には、溶融した樹脂を磁石挿入孔11bに注入して、磁石挿入孔11bに溶融した樹脂を位置させることである。 In the feeding process, the core part manufacturing apparatus 1 injects the resin held by the resin holding part 24 positioned on the upper mold 21 side of the pair of molds into the magnet insertion hole 11b as the space in the core body 11 from above. can be sent. Specifically, the feeding by the resin holding portion 24 is to inject the molten resin into the magnet insertion hole 11b and position the molten resin in the magnet insertion hole 11b.
 樹脂保持部24で送入される樹脂は、溶融状態から固化する固化速度の異なる複数種類を含む。詳細には、最も固化速度の速い第一の樹脂と、この第一の樹脂より遅い一般的な固化速度である第二の樹脂とを含む。樹脂保持部24は、第一の樹脂を上層、第二の樹脂を下層とする積層状態で保持する。樹脂保持部24は、第一の樹脂と第二の樹脂とを、送入工程において、第二の樹脂、第一の樹脂の順で送入する。これにより、溶融した第一の樹脂の層が溶融した第二の樹脂の層の上側に位置する積層状態でそれぞれ樹脂が固化できる。 The resin fed into the resin holding unit 24 includes a plurality of types of resin that solidify from a molten state with different solidification speeds. Specifically, it includes a first resin that has the fastest solidification rate and a second resin that generally has a slower solidification rate than the first resin. The resin holding portion 24 holds the first resin in the upper layer and the second resin in the lower layer in a laminated state. The resin holding unit 24 feeds the first resin and the second resin in the order of the second resin and the first resin in the feeding step. As a result, the resins can be solidified in a layered state in which the melted first resin layer is positioned above the melted second resin layer.
 上型21は、下型22上に載置された鉄心本体11の上方に位置して、下型22と共に鉄心本体11、補助プレート40及び治具30を挟持する。上型21は、例えば矩形板状に形成される金型であり、樹脂を収容保持可能な複数の収容孔21aが設けられている。また、上型21は、上方からタブレット状または粉末状の第一の樹脂及び第二の樹脂等の樹脂材料を挿入可能な収容孔21aと、樹脂を鉄心本体11の磁石挿入孔11bへ押出可能とする押出部23と、を備える。
 上型21における収容孔21aと押出部23とが、樹脂保持部24をなす。すなわち、樹脂保持部24は、上型21に一体に組み込まれている。
The upper die 21 is positioned above the core body 11 placed on the lower die 22 and sandwiches the core body 11 , the auxiliary plate 40 and the jig 30 together with the lower die 22 . The upper die 21 is, for example, a rectangular plate-shaped die, and is provided with a plurality of accommodation holes 21a capable of accommodating and holding resin. Further, the upper die 21 has an accommodating hole 21a into which a resin material such as a tablet-like or powdery first resin and a second resin can be inserted from above, and a resin can be extruded into the magnet insertion hole 11b of the core body 11. and an extrusion portion 23 having the following.
The housing hole 21a and the extrusion portion 23 in the upper die 21 form a resin holding portion 24. As shown in FIG. That is, the resin holding portion 24 is integrated with the upper mold 21 .
 樹脂保持部24の一部としての収容孔21aは、上型21と下型22とで鉄心本体11が挟持された状態において、鉄心本体11の各磁石挿入孔11bに対応する箇所に位置するように、所定間隔で並べて複数設けられる。 The receiving holes 21a as part of the resin holding portion 24 are positioned at locations corresponding to the magnet insertion holes 11b of the core body 11 when the core body 11 is sandwiched between the upper die 21 and the lower die 22. , are arranged side by side at predetermined intervals.
 各収容孔21aは、樹脂タブレットや粉末状等の形態で供給される樹脂材料を収容可能とされる。樹脂材料としては、第一の樹脂である樹脂材料81と、第二の樹脂である樹脂材料82との二種類が用いられる。各収容孔21aは、樹脂材料81を上層、樹脂材料82を下層とする積層状態で保持する。 Each accommodation hole 21a can accommodate a resin material supplied in the form of a resin tablet, powder, or the like. As the resin material, two types of resin material 81, which is the first resin, and resin material 82, which is the second resin, are used. Each accommodation hole 21a holds a laminated state in which the resin material 81 is the upper layer and the resin material 82 is the lower layer.
 また、上型21は、樹脂保持部24の機能として、樹脂材料81、82を加熱して溶融させ、溶融樹脂84、85を得る仕組みも有する。上型21には、各収容孔21aに収容されている樹脂材料81、82を加熱可能なヒータ(図示を省略)が設けられる。樹脂材料81、82が加熱されると、収容孔21aで溶融し、溶融樹脂84、85となる。 The upper die 21 also has a mechanism for heating and melting the resin materials 81 and 82 to obtain molten resins 84 and 85 as a function of the resin holding portion 24 . The upper die 21 is provided with heaters (not shown) capable of heating the resin materials 81 and 82 contained in the respective containing holes 21a. When the resin materials 81 and 82 are heated, they are melted in the accommodation holes 21 a to become molten resins 84 and 85 .
 押出部23は、溶融樹脂84、85を鉄心本体11の磁石挿入孔11bへ押出すことができる。押出部23は、例えば、所定の駆動源による駆動で上下動可能とされる複数のプランジャである。 The extruding portion 23 can extrude the molten resins 84 and 85 into the magnet insertion holes 11b of the core body 11. The pushing part 23 is, for example, a plurality of plungers that can be vertically moved by being driven by a predetermined driving source.
 各押出部23は、押出部ごとに対応する駆動源でそれぞれ駆動されて上下に移動可能であってもよく、複数の押出部を一つの駆動源でまとめて駆動して一体に上下に移動可能であってもよい。 Each extruding part 23 may be driven by a corresponding drive source for each extruding part and can move up and down, and a plurality of extruding parts can be driven together by one drive source and can move up and down as a unit. may be
 収容孔21aで保持される溶融樹脂84、85は、送入工程で、押出部23により上型21の収容孔21aから押し出され、上型21と鉄心本体11の上端面との間に配置される補助プレート40の樹脂通路41を通り、鉄心本体11の各磁石挿入孔11bに流れ込む。送入工程では、下にある溶融樹脂から先に、すなわち、第二の樹脂である下層の溶融樹脂85、第一の樹脂である上層の溶融樹脂84、の順で送入が実行される。 The molten resins 84 and 85 held in the accommodation hole 21 a are extruded from the accommodation hole 21 a of the upper die 21 by the extruding portion 23 in the feeding process, and arranged between the upper die 21 and the upper end surface of the core body 11 . The resin passes through the resin passage 41 of the auxiliary plate 40 and flows into each magnet insertion hole 11 b of the core body 11 . In the feeding step, the lower molten resin is fed first, that is, the lower molten resin 85 that is the second resin and the upper molten resin 84 that is the first resin are fed in this order.
 下型22は、鉄心本体11及び治具30を載せられてこれらを支持しつつ、上型21と共に鉄心本体11及び治具30を挟持する。下型22は、例えば矩形板状に形成される金型であり、必要に応じて、治具30下面に設けられた凸部又は凹部と嵌合して治具の不要な動きを防止するための凹部又は凸部を備える。 The lower mold 22 holds the core body 11 and the jig 30 together with the upper mold 21 while supporting the core body 11 and the jig 30 thereon. The lower mold 22 is, for example, a mold formed in the shape of a rectangular plate, and is fitted with projections or recesses provided on the lower surface of the jig 30 as necessary to prevent unnecessary movement of the jig. of recesses or protrusions.
 治具30は、鉄心本体11を載置可能なプレート部31と、プレート部31の略中央部から上方へ突出するポスト部32とを備える(図2参照)。
 プレート部31は、例えば矩形板状の台状部材であり、鉄心本体11が載置されて鉄心本体11の下端面に当接する状態で、鉄心本体11を下から支持する。
The jig 30 includes a plate portion 31 on which the core body 11 can be placed, and a post portion 32 projecting upward from a substantially central portion of the plate portion 31 (see FIG. 2).
The plate portion 31 is, for example, a rectangular plate-like pedestal member, and supports the core body 11 from below in a state where the core body 11 is placed and abuts against the lower end surface of the core body 11 .
 ポスト部32は、円柱状に形成されてプレート部31の上面略中央部に上方へ向けて突出するように配設される。ポスト部32は、鉄心本体11の軸孔11cに対応する大きさの円柱状であり、鉄心本体11の軸孔11cに挿通可能である。 The post part 32 is formed in a columnar shape and is arranged so as to protrude upward from substantially the center of the upper surface of the plate part 31 . The post portion 32 has a columnar shape with a size corresponding to the shaft hole 11 c of the core body 11 and can be inserted through the shaft hole 11 c of the core body 11 .
 補助プレート40は、樹脂を各磁石挿入孔11bに導く樹脂通路41(例えば、ランナー、ゲート孔)が形成される板状部材である。補助プレート40は、いわゆるカルプレートとして鉄心本体11の治具30に接しない側の端面に取り付けられ、鉄心本体11が送入機構部20の上型21と下型22とで挟持された状態で、上型21と鉄心本体11との間に位置する。 The auxiliary plate 40 is a plate-like member formed with resin passages 41 (for example, runners, gate holes) that guide resin to the magnet insertion holes 11b. The auxiliary plate 40 is attached as a so-called cull plate to the end face of the core body 11 on the side not in contact with the jig 30, and the core body 11 is sandwiched between the upper mold 21 and the lower mold 22 of the feeding mechanism section 20. , between the upper die 21 and the core body 11 .
 補助プレート40を鉄心本体11に取り付けることで、鉄心本体11に注入充填した溶融樹脂84が固化した後、固化した樹脂のうち鉄心本体11の上部に残ったもの(カル)を、補助プレート40の取り外しにより除去でき、不要な樹脂の除去をより容易に行うことができる。 By attaching the auxiliary plate 40 to the core body 11 , after the molten resin 84 injected and filled into the core body 11 is solidified, the solidified resin remaining above the core body 11 (cull) is removed from the auxiliary plate 40 . It can be removed by detachment, and unnecessary resin can be removed more easily.
 なお、収容孔21a直下の補助プレート40の底面の形状を斜面にしてもよい。斜面は直線状でも、なだらかな曲線状でも良い。このような構成にすることで、補助プレート40の底面が平坦であったときと比較して、収容孔21a直下における樹脂の対流を抑制できる。これにより、第一の樹脂、第二の樹脂が混ざり合う事を抑制でき、第一の樹脂、第二の樹脂の順番を崩さずに磁石孔に樹脂を流入させることができる。 It should be noted that the bottom surface of the auxiliary plate 40 directly below the accommodation hole 21a may be sloped. The slope may be linear or gently curved. By adopting such a configuration, it is possible to suppress convection of the resin directly below the accommodation hole 21a compared to when the bottom surface of the auxiliary plate 40 is flat. As a result, mixing of the first resin and the second resin can be suppressed, and the resin can flow into the magnet hole without disturbing the order of the first resin and the second resin.
 次に、本実施形態に係るコア部製造方法に基づくコア部の製造過程について説明する。
 前提として、あらかじめ、公知の製法により、薄板材から打抜いた複数の薄板11aを積層した鉄心本体11が得られている。そして、鉄心本体11は、磁石挿入孔11bに永久磁石12を挿入され、適切な温度に予熱された状態で、鉄心本体11を載せた治具30と共に、所定の移送機構によりコア部製造装置1に向けて移送される。
Next, the manufacturing process of the core portion based on the core portion manufacturing method according to the present embodiment will be described.
As a premise, the core body 11 is obtained in advance by stacking a plurality of thin plates 11a punched from a thin plate material by a known manufacturing method. The permanent magnet 12 is inserted into the magnet insertion hole 11b, and the iron core body 11 is preheated to an appropriate temperature. transported to
 鉄心本体11に対し補助プレート40が予熱前に取り付けられ、補助プレート40が鉄心本体11と共に予熱されてもよい。また、予熱後の鉄心本体11に対し別途予熱された補助プレート40が取り付けられてもよい。鉄心本体11は取り付けられた補助プレート40と共にコア部製造装置1に向けて移送される。 The auxiliary plate 40 may be attached to the core body 11 before preheating, and the auxiliary plate 40 may be preheated together with the core body 11 . Alternatively, a separate preheated auxiliary plate 40 may be attached to the preheated core body 11 . The iron core body 11 is transferred toward the core manufacturing apparatus 1 together with the attached auxiliary plate 40 .
 コア部製造装置1の上型21には、溶融樹脂84、85の材料としての二種類の樹脂材料81、82が、上型21の収容孔21aに自動供給される。各磁石挿入孔11bへの樹脂材料81、82の注入前に、上型21で樹脂材料81、82は加熱され溶融させられる。 Two types of resin materials 81 and 82 as materials for molten resins 84 and 85 are automatically supplied to the upper mold 21 of the core part manufacturing apparatus 1 into the accommodation holes 21 a of the upper mold 21 . The resin materials 81 and 82 are heated and melted by the upper mold 21 before the resin materials 81 and 82 are injected into the magnet insertion holes 11b.
 補助プレート40が取り付けられた鉄心本体11と、鉄心本体11を載せた治具30は、移送機構の作動によりコア部製造装置1に向けて移送される。鉄心本体11がコア部製造装置1に達すると、鉄心本体11、補助プレート40及び治具30は、コア部製造装置1の鉄心本体搬入出用の開口部分を通じて、コア部製造装置1の上型21及び下型22の間に搬入される。
 移送機構により、鉄心本体11の載った治具30が下型22上に載置されると、鉄心本体11、補助プレート40及び治具30のコア部製造装置1への搬入は完了となる。
The core body 11 to which the auxiliary plate 40 is attached and the jig 30 on which the core body 11 is placed are transferred toward the core part manufacturing apparatus 1 by the operation of the transfer mechanism. When the core body 11 reaches the core manufacturing apparatus 1 , the core body 11 , the auxiliary plate 40 and the jig 30 pass through the core body carrying-in/out opening of the core manufacturing apparatus 1 . It is carried in between 21 and lower mold 22 .
When the jig 30 with the core body 11 placed thereon is placed on the lower die 22 by the transfer mechanism, the carrying-in of the core body 11, the auxiliary plate 40 and the jig 30 into the core manufacturing apparatus 1 is completed.
 一方、コア部製造装置1の上型21には、二種類の樹脂材料81、82が供給されており、各収容孔21aに樹脂材料81が上層、樹脂材料82が下層となる積層状態で収容保持される(図1参照)。各収容孔21aに保持された樹脂材料81、82が適切なタイミングで加熱され、各収容孔21aで積層状態のまま溶融し、溶融樹脂84、85となる。 On the other hand, two types of resin materials 81 and 82 are supplied to the upper mold 21 of the core part manufacturing apparatus 1, and are accommodated in a laminated state in which the resin material 81 is the upper layer and the resin material 82 is the lower layer in each accommodation hole 21a. retained (see FIG. 1). The resin materials 81 and 82 held in the accommodation holes 21a are heated at appropriate timings and melted in the lamination state in the accommodation holes 21a to form molten resins 84 and 85, respectively.
 鉄心本体11、補助プレート40及び治具30を上型21と下型22の間に搬入した後、上型21を下降させるか、鉄心本体11が載った下型22を上昇させることで、補助プレート40及び治具30を介して上型21と下型22とにより鉄心本体11が挟持され押圧される。 After carrying the core body 11, the auxiliary plate 40 and the jig 30 between the upper die 21 and the lower die 22, the upper die 21 is lowered or the lower die 22 on which the core body 11 is mounted is lifted. The core body 11 is sandwiched and pressed between the upper die 21 and the lower die 22 via the plate 40 and the jig 30 .
 この状態で、鉄心本体11の積層方向の両端面に、補助プレート40と治具30とをそれぞれ当接させて押圧することで、鉄心本体11の積層方向の端部において、磁石挿入孔11bが閉塞される。 In this state, the auxiliary plate 40 and the jig 30 are brought into contact with both end surfaces of the core body 11 in the stacking direction and pressed, so that the magnet insertion holes 11b are formed at the ends of the core body 11 in the stacking direction. blocked.
 上型21及び下型22の挟持による閉塞で鉄心本体11の各磁石挿入孔11bを外部から隔離した状態とした後、樹脂の送入工程が実行される。
 送入工程では、各押出部23が駆動されて、それぞれ上型21の収容孔21aに挿入される。この押出部23の挿入により、溶融樹脂84、85は、収容孔21aから下層の溶融樹脂85、上層の溶融樹脂84の順で下方へ押出される(図3参照)。押し出された樹脂は、下層の溶融樹脂85から順に、補助プレート40の樹脂通路41を通じて、鉄心本体11の磁石挿入孔11bへ注入、充填される。
After the magnet insertion holes 11b of the core body 11 are isolated from the outside by closing the upper mold 21 and the lower mold 22, the resin feeding step is performed.
In the feeding process, each extrusion part 23 is driven and inserted into the accommodation hole 21a of the upper mold 21, respectively. By inserting the extruding portion 23, the molten resins 84, 85 are extruded downward from the accommodation hole 21a in the order of the lower layer molten resin 85 and the upper layer molten resin 84 (see FIG. 3). The extruded resin is injected and filled into the magnet insertion holes 11 b of the core body 11 through the resin passages 41 of the auxiliary plate 40 in order from the lower layer molten resin 85 .
 樹脂注入後、補助プレート40の樹脂通路41と磁石挿入孔11bとに存在している溶融樹脂84、85は、第二の樹脂である溶融樹脂85の層の上側に、第一の樹脂である溶融樹脂84の層が位置する積層状態となっている。そして、溶融樹脂85の層と溶融樹脂85よりも上型21の側、すなわち上側に位置する溶融樹脂84の層との境界は、空間部としての磁石挿入孔11bにおける上型21側の鉄心本体11の端部近傍に位置しており、磁石挿入孔11bには溶融樹脂84と溶融樹脂85とが共に充填されている。つまり、鉄心本体11の積層方向における上側端部には、第一の樹脂である溶融樹脂84が設けられている。 After injecting the resin, the molten resins 84 and 85 existing in the resin passage 41 and the magnet insertion hole 11b of the auxiliary plate 40 are placed above the layer of the molten resin 85, which is the second resin. It is in a laminated state in which a layer of molten resin 84 is positioned. The boundary between the layer of the molten resin 85 and the layer of the molten resin 84 located on the side of the upper die 21, that is, on the upper side of the molten resin 85 is the core body on the side of the upper die 21 in the magnet insertion hole 11b as a space. 11, and both the molten resin 84 and the molten resin 85 are filled in the magnet insertion hole 11b. That is, the molten resin 84, which is the first resin, is provided at the upper end portion of the core body 11 in the stacking direction.
 その後、固化工程として、上型21と下型22とで鉄心本体11を挟持押圧する状態を維持しつつ、補助プレート40の樹脂通路41や各磁石挿入孔11bに位置する溶融樹脂84、85の固化を進行させる。 After that, as a solidification step, the molten resins 84 and 85 located in the resin passage 41 of the auxiliary plate 40 and the magnet insertion holes 11b are melted while maintaining the state of sandwiching and pressing the core body 11 between the upper mold 21 and the lower mold 22. Allow solidification to proceed.
 溶融樹脂84、85のうち、固化速度の速い第一の樹脂である溶融樹脂84が固化して固化済み樹脂87になると、上型21に対し押出部23を引き上げて元の状態に戻すと共に、上型21を上昇させるか、下型22を下降させて、上型21と補助プレート40とを離隔させ、上型21と下型22による鉄心本体11の挟持押圧を終了させる。これにより、鉄心本体11、補助プレート40、及び治具30は上型21及び下型22の間から搬出されることができる(図4参照)。 Among the molten resins 84 and 85, when the molten resin 84, which is the first resin having the fastest solidification speed, solidifies and becomes a solidified resin 87, the extruding part 23 is pulled up from the upper die 21 to return to its original state, The upper die 21 is raised or the lower die 22 is lowered to separate the upper die 21 and the auxiliary plate 40, and the clamping and pressing of the core body 11 by the upper die 21 and the lower die 22 is finished. Thereby, the core body 11, the auxiliary plate 40, and the jig 30 can be carried out from between the upper die 21 and the lower die 22 (see FIG. 4).
 溶融樹脂84が固化して固化済み樹脂87(第一樹脂部分の一例)となった状態では、固化済み樹脂87が磁石挿入孔11bで溶融樹脂85より上側に位置して、上型21と溶融樹脂85との間に位置している。これにより、上型21と補助プレート40とが離隔している状況において、溶融樹脂85において、溶融樹脂85の固化の進行に伴い膨張しようとする応力が発生しても、固化済み樹脂87の保持力で応力による溶融樹脂85の膨張の影響を抑え込むことができる。すなわち、仮に溶融樹脂85が固化していない場合でも、鉄心本体11に対する上型21の相対移動により溶融樹脂85が影響を受けにくくなる。これにより、溶融樹脂85を鉄心本体11の磁石挿入孔11bに適切に位置させた状態で固化させて、問題なく充填材13とすることができる。なお、第二の樹脂である溶融樹脂85が固化してなる固化済み樹脂は、第二樹脂部分の一例である。 In a state in which the molten resin 84 is solidified to become a solidified resin 87 (an example of the first resin portion), the solidified resin 87 is positioned above the molten resin 85 in the magnet insertion hole 11b and melts with the upper mold 21. It is located between the resin 85 . As a result, when the upper die 21 and the auxiliary plate 40 are separated from each other, the solidified resin 87 can be held even if the molten resin 85 is subjected to expansion stress as the solidification of the molten resin 85 progresses. The force can suppress the influence of expansion of the molten resin 85 due to stress. That is, even if the molten resin 85 is not solidified, the molten resin 85 is less likely to be affected by relative movement of the upper die 21 with respect to the core body 11 . As a result, the molten resin 85 can be solidified while properly positioned in the magnet insertion hole 11b of the core body 11, and the filler 13 can be obtained without any problem. The solidified resin obtained by solidifying the molten resin 85, which is the second resin, is an example of the second resin portion.
 溶融樹脂85も固化したら、移送機構により鉄心本体11、補助プレート40、及び治具30が上型21と下型22との間からコア部製造装置1の外に搬出される。コア部製造装置1から搬出した鉄心本体11、補助プレート40、及び治具30は、移送機構の作動により次の工程に移送される。 When the molten resin 85 is also solidified, the core body 11, the auxiliary plate 40, and the jig 30 are carried out of the core part manufacturing apparatus 1 from between the upper mold 21 and the lower mold 22 by the transfer mechanism. The iron core body 11, the auxiliary plate 40, and the jig 30 carried out from the core part manufacturing apparatus 1 are transferred to the next step by the operation of the transfer mechanism.
 なお、溶融樹脂84が固化済み樹脂87となった状況では、溶融樹脂85の固化を待たずに、移送機構で鉄心本体11、補助プレート40、及び治具30が上型21と下型22との間からコア部製造装置1の外に搬出されてもよい。この場合は、鉄心本体11、補助プレート40、及び治具30を、コア部製造装置1から次の工程に移送する間に、鉄心本体11の余熱によって溶融樹脂85が固化される。 In addition, in a situation where the molten resin 84 has become the solidified resin 87, the core body 11, the auxiliary plate 40, and the jig 30 are transferred to the upper mold 21 and the lower mold 22 by the transfer mechanism without waiting for the molten resin 85 to solidify. You may be carried out to the outside of the core part manufacturing apparatus 1 from between. In this case, the molten resin 85 is solidified by residual heat of the core body 11 while the core body 11, the auxiliary plate 40, and the jig 30 are transferred from the core manufacturing apparatus 1 to the next step.
 このように、本実施形態に係るコア部製造方法においては、上型21と下型22間に位置する鉄心本体11の空間部としての磁石挿入孔11bに樹脂を送入する送入工程で、樹脂を固化させた後は鉄心本体11から離隔させる上型21に対し、固化速度の速い第一の樹脂である溶融樹脂84が、上型21と磁石挿入孔11bに位置する第二の樹脂である溶融樹脂85との間に位置するように送入を実行し、固化速度の遅い溶融樹脂85が上型21に接触しない状態で樹脂の固化が進行し、固化速度の速い溶融樹脂84が固化する。これにより、溶融樹脂84が固化した段階では、上型21と鉄心本体11とを離しても、溶融樹脂84の固化した後の固化済み樹脂87に上型21との分離に伴う問題は生じず、上型21及び下型22の間から鉄心本体11を解放して取り出すことができる。仮に溶融樹脂85が固化していない場合でも、溶融樹脂84が固化して固化済み樹脂87となっていれば、溶融樹脂85の充填状態に影響を与えることなく鉄心本体11を上型21及び下型22の間から取り出すことができる。磁石挿入孔11bに溶融樹脂85のみが送入され固化される場合に比べ、溶融樹脂84、85の固化時間の差だけ、鉄心本体11が上型21及び下型22の間に拘束される時間を短縮できるので、コア部10の製造効率が向上する。 As described above, in the method of manufacturing the core portion according to the present embodiment, in the feeding step of feeding the resin into the magnet insertion hole 11b as the space portion of the core body 11 located between the upper die 21 and the lower die 22, After solidifying the resin, the upper die 21 is separated from the core body 11, and the molten resin 84, which is the first resin having a high solidification speed, is placed in the upper die 21 and the second resin positioned in the magnet insertion hole 11b. Feeding is performed so that it is positioned between a certain molten resin 85, and solidification of the resin proceeds in a state where the molten resin 85 with a slow solidification speed does not contact the upper mold 21, and the molten resin 84 with a fast solidification speed solidifies. do. As a result, when the molten resin 84 is solidified, even if the upper die 21 and the core body 11 are separated from each other, the solidified resin 87 after the molten resin 84 is solidified is not separated from the upper die 21. , the core body 11 can be released and taken out from between the upper die 21 and the lower die 22 . Even if the molten resin 85 is not solidified, if the molten resin 84 is solidified to form a solidified resin 87, the core body 11 can be moved between the upper mold 21 and the lower mold 21 without affecting the filling state of the molten resin 85. It can be removed from between the molds 22 . Compared to the case where only the molten resin 85 is fed into the magnet insertion hole 11b and solidified, the time during which the core body 11 is restrained between the upper die 21 and the lower die 22 is equal to the difference between the solidification times of the molten resins 84 and 85. can be shortened, the manufacturing efficiency of the core portion 10 is improved.
 なお、本実施形態に係るコア部製造方法において、送入工程で鉄心本体11に送入する樹脂のうち、一の樹脂を第一の樹脂、他の樹脂を第二の樹脂として、樹脂を二種類用いている。このうち一の樹脂である第一の樹脂は、溶融状態から第二の樹脂より速い所定の固化速度で固化する。ここで一の樹脂及び他の樹脂は、複数種類の樹脂で構成されてもよい。例えば、一の樹脂である第一の樹脂以外の他の樹脂として、第二の樹脂に加えて第三の樹脂が含まれるものであっても、第一の樹脂が第二の樹脂及び第三の樹脂よりも速い固化速度を有する限りかまわない。三種類の樹脂を使用する場合、第三の樹脂を、送入時や固化後の品質に問題がない範囲で、第二の樹脂に対し低コストとなるものとしてもよい。この場合、コア部のコストダウンが図れ、さらに、第三の樹脂を第二の樹脂に対し固化速度の速いものとすれば、コア部の製造効率を向上させられる。ただし、第二の樹脂が低コストである第三の樹脂より流動性等の特性が優れると見なせることから、樹脂保持部において第二の樹脂を第三の樹脂より下層に配置し、第二の樹脂を第三の樹脂よりも先に送入して空間部の深奥部に位置させるようにすることが望ましい。 In the core portion manufacturing method according to the present embodiment, among the resins fed into the core body 11 in the feeding step, one resin is defined as the first resin, and the other resin is defined as the second resin. type is used. The first resin, which is one of these resins, solidifies from a molten state at a predetermined solidification speed faster than that of the second resin. Here, one resin and another resin may be composed of a plurality of types of resin. For example, even if a third resin is included in addition to the second resin as other resins other than the first resin, which is one resin, the first resin is the second resin and the third resin. It does not matter as long as it has a faster solidification speed than the resin of When three kinds of resins are used, the third resin may be lower in cost than the second resin as long as there is no problem with the quality at the time of delivery or after solidification. In this case, the cost of the core portion can be reduced, and if the solidification speed of the third resin is faster than that of the second resin, the manufacturing efficiency of the core portion can be improved. However, since the second resin can be considered to have better properties such as fluidity than the low-cost third resin, the second resin is arranged in a lower layer than the third resin in the resin holding part, and the second resin is It is desirable to feed the resin before the third resin so as to position it in the deep part of the space.
 また、本実施形態に係るコア部製造方法において、鉄心本体11の磁石挿入孔11bに溶融樹脂84、85が注入、充填された状態において、溶融樹脂85の層と、溶融樹脂84の層との境界は、空間部としての磁石挿入孔11bにおける鉄心本体11の上側の端部近傍に位置し、磁石挿入孔11bの上部に第一の樹脂である溶融樹脂84が配置されている。本実施形態の例に限らず、第二の樹脂である溶融樹脂85の層と、第一の樹脂である溶融樹脂84の層との境界を、樹脂通路41内に位置させ、磁石挿入孔11bに溶融樹脂85のみが充填されるようにすることもできる。 Further, in the method of manufacturing the core portion according to the present embodiment, when the molten resins 84 and 85 are injected and filled into the magnet insertion holes 11b of the core body 11, the layers of the molten resin 85 and the layers of the molten resin 84 are formed. The boundary is located near the upper end of the core body 11 in the magnet insertion hole 11b as a space, and the molten resin 84, which is the first resin, is arranged above the magnet insertion hole 11b. The boundary between the layer of the molten resin 85 that is the second resin and the layer of the molten resin 84 that is the first resin is positioned in the resin passage 41 and is not limited to the example of this embodiment, and the magnet insertion hole 11b is formed. can be filled with only the molten resin 85.
 この場合、溶融樹脂の層の境界が磁石挿入孔11b内に位置しないことで、溶融樹脂の固化後、鉄心本体11内で充填材13をなす樹脂を一種類のみにできる。充填材13が均質な単一の樹脂で構成されるので、充填材13は強度面でより優れている。 In this case, since the boundary of the molten resin layer is not positioned within the magnet insertion hole 11b, only one type of resin can be used as the filler 13 within the core body 11 after the molten resin is solidified. Since the filler 13 is composed of a homogeneous single resin, the filler 13 is superior in terms of strength.
 また、本実施形態に係るコア部製造方法において、鉄心本体11の上側に補助プレート40が取り付けられた状態で、上型21の収容孔21aから磁石挿入孔11bに溶融樹脂84、85が送入される。これに限らず、図6に示すように、鉄心本体11に補助プレートを取り付けず、コア部製造装置1で、上型21と鉄心本体11上端面とを直接当接させた状態で、上型21の樹脂保持部から鉄心本体11の磁石挿入孔11bに樹脂が送入される構成とすることもできる。 Further, in the method for manufacturing the core portion according to the present embodiment, the molten resins 84 and 85 are fed into the magnet insertion hole 11b from the housing hole 21a of the upper die 21 with the auxiliary plate 40 attached to the upper side of the core body 11. be done. Without being limited to this, as shown in FIG. It is also possible to adopt a configuration in which the resin is fed into the magnet insertion hole 11 b of the core body 11 from the resin holding portion 21 .
 この場合、上型21において樹脂保持部をなす各収容孔21aで、樹脂材料81を上層、樹脂材料82を下層とする積層状態で樹脂材料81、82が保持され、これら樹脂材料を適切なタイミングで加熱して溶融樹脂84、85が得られる。送入工程において、第二の樹脂である下層の溶融樹脂85、第一の樹脂である上層の溶融樹脂84、の順で送入が実行される。第二の樹脂である溶融樹脂85の層の上側に、第一の樹脂である溶融樹脂84の層が位置する積層状態が生じ、上型21と溶融樹脂85との間に溶融樹脂84が位置する。 In this case, the resin materials 81 and 82 are held in a layered state in which the resin material 81 is the upper layer and the resin material 82 is the lower layer in each accommodation hole 21a forming the resin holding portion in the upper die 21, and these resin materials are held at appropriate timings. to obtain molten resins 84 and 85. In the feeding process, the lower layer molten resin 85 that is the second resin and the upper layer molten resin 84 that is the first resin are fed in this order. A layer of molten resin 84, which is the first resin, is positioned on the upper side of the layer of molten resin 85, which is the second resin. do.
 溶融樹脂84が固化して固化済み樹脂87となった状態では、固化済み樹脂87が磁石挿入孔11b内で溶融樹脂85より上側の端部側に位置し、上型21と溶融樹脂85との間に蓋状に介在することとなる。これにより、仮に溶融樹脂85が固化していない段階で、上型21と鉄心本体11の上端面とを離隔させても、上型21と溶融樹脂85との間に介在する固化済み樹脂87が、鉄心本体11に対する上型21の相対移動による溶融樹脂85への影響を抑えることができる。溶融樹脂85は、鉄心本体11の磁石挿入孔11bに適切に位置させた状態で固化されることで、固化済み樹脂87と共に問題なく充填材13を構成できる。 In the state where the molten resin 84 is solidified to become the solidified resin 87, the solidified resin 87 is positioned on the upper end side of the molten resin 85 in the magnet insertion hole 11b, and the upper die 21 and the molten resin 85 are positioned. It will be interposed like a lid between them. As a result, even if the upper die 21 and the upper end surface of the core body 11 are separated from each other at a stage where the molten resin 85 is not yet solidified, the solidified resin 87 interposed between the upper die 21 and the molten resin 85 is not solidified. , the influence of the relative movement of the upper die 21 with respect to the core body 11 on the molten resin 85 can be suppressed. The molten resin 85 can form the filler 13 together with the solidified resin 87 without any problem by being solidified while being properly positioned in the magnet insertion hole 11b of the core body 11 .
 また、本実施形態に係るコア部製造方法において、送入工程で、溶融樹脂84、85を磁石挿入孔11bに所定の順序で送入されることで、第二の樹脂である溶融樹脂85の層の上側に第一の樹脂である溶融樹脂84の層が位置する。このとき、上型21と溶融樹脂85との間に溶融樹脂84が介在する状態で、固化工程に進む。本実施形態の例に限られるものではなく、磁石挿入孔11bに対し、永久磁石12の挿入前に未溶融状態のタブレット状や粒状、粉状等の樹脂材料が送入され、その後、永久磁石12が挿入されると共に樹脂材料を溶融させることで、溶融した樹脂が磁石挿入孔11b各部に適切に位置した後、固化されてもよい。 Further, in the method of manufacturing the core portion according to the present embodiment, in the feeding step, the molten resins 84 and 85 are fed into the magnet insertion hole 11b in a predetermined order, so that the molten resin 85, which is the second resin, is A layer of molten resin 84, which is the first resin, is positioned above the layers. At this time, the solidification process proceeds with the molten resin 84 interposed between the upper mold 21 and the molten resin 85 . Before inserting the permanent magnet 12, an unmelted tablet-like, granular, or powdery resin material is fed into the magnet insertion hole 11b, and then the permanent magnet is inserted into the magnet insertion hole 11b. 12 may be inserted and the resin material may be melted so that the melted resin is properly positioned in each part of the magnet insertion hole 11b and then solidified.
 この場合も、タブレット状や粒状、粉状等の樹脂材料が送入される際には、例えば固化速度の速い第一の樹脂とこれより固化速度の遅い第二の樹脂との二種類からなる樹脂材料が、第二の樹脂、第一の樹脂の順序で送入されることが望ましい。磁石挿入孔11bにおいて、第二の樹脂である溶融樹脂85の層の上側に、第一の樹脂である溶融樹脂84の層が位置する。つまり、固化工程では、磁石挿入孔11bの通じた上型21と溶融樹脂85との間に溶融樹脂84が介在する状態で固化が進む。 In this case also, when resin materials such as tablets, granules, powders, etc. are fed, they are composed of two types, for example, a first resin with a fast solidification speed and a second resin with a slower solidification speed. It is desirable that the resin materials are fed in the order of the second resin and the first resin. In the magnet insertion hole 11b, the layer of the molten resin 84, which is the first resin, is positioned above the layer of the molten resin 85, which is the second resin. That is, in the solidification step, solidification progresses in a state in which the molten resin 84 is interposed between the upper mold 21 and the molten resin 85 through which the magnet insertion holes 11b are communicated.
 また、本実施形態に係るコア部製造方法においては、上型21と溶融樹脂85との間に固化の速い溶融樹脂84が設けられることで、溶融樹脂85の固化の完了、未完に依らず、溶融樹脂84が固化した段階で上型21と鉄心本体11とを離隔させられる。この他、第二の樹脂である溶融樹脂85の固化完了より前に、鉄心本体11とその下側の治具30を早期に離隔させて鉄心本体11を移送する必要がある場合や、鉄心本体11の下側の治具や下型に溶融樹脂を加圧する機構が設けられて、溶融樹脂の一部が治具側に設けられた穴や溝状の加圧用の空間に流入する場合には、第二の樹脂からなる溶融樹脂の層の下側にも第一の樹脂の溶融樹脂が位置するように、溶融樹脂が送入されてもよい。 In addition, in the method for manufacturing the core part according to the present embodiment, the molten resin 84 that solidifies quickly is provided between the upper mold 21 and the molten resin 85, so that regardless of whether the solidification of the molten resin 85 is complete or incomplete, When the molten resin 84 is solidified, the upper die 21 and the core body 11 are separated from each other. In addition, before the completion of solidification of the molten resin 85, which is the second resin, when the core body 11 needs to be separated from the jig 30 below it at an early stage and the core body 11 needs to be transferred. When a mechanism for pressurizing the molten resin is provided in the lower jig or lower mold of 11 and part of the molten resin flows into the hole or groove-shaped pressurizing space provided on the jig side The molten resin may be fed such that the molten resin of the first resin is also positioned below the layer of molten resin made of the second resin.
 この場合、樹脂保持部をなす上型21の収容孔21aには、第一の樹脂である樹脂材料81が上層と下層とを構成し、第二の樹脂である樹脂材料82が中間層を構成する積層状態で樹脂材料81,82が保持される(図7参照)。そして、送入工程では、樹脂材料から溶融状態となった溶融樹脂84、85の積層状態を保ったまま、下層の溶融樹脂84、中間層の溶融樹脂85、上層の溶融樹脂84の順で溶融樹脂84、85が送入される。これにより、第一の樹脂である溶融樹脂84の層が第二の樹脂である溶融樹脂85の層の上側と下側にそれぞれ位置する積層状態が生じる(図8参照)。 In this case, in the accommodation hole 21a of the upper mold 21 forming the resin holding portion, the resin material 81, which is the first resin, constitutes the upper and lower layers, and the resin material 82, which is the second resin, constitutes the intermediate layer. The resin materials 81 and 82 are held in a stacked state (see FIG. 7). In the feeding step, the molten resin 84, 85 melted from the resin material is melted in the order of the molten resin 84 of the lower layer, the molten resin 85 of the intermediate layer, and the molten resin 84 of the upper layer while maintaining the laminated state. Resins 84, 85 are fed. As a result, a layer of molten resin 84, which is the first resin, is positioned above and below the layer of molten resin 85, which is the second resin, respectively (see FIG. 8).
 溶融樹脂84が固化して固化済み樹脂87となると、固化済み樹脂87が磁石挿入孔11b内で溶融樹脂85の上下の端部側に位置する(図9参照)。つまり、上型21と溶融樹脂85との間、及び、治具30と溶融樹脂85との間に固化済み樹脂87が設けられる。これにより、仮に溶融樹脂85が固化していない段階で、上型21と鉄心本体11とを離隔させたり、さらに鉄心本体11と治具30とを離隔させたりしても、上型21と溶融樹脂85との間、及び、治具30と溶融樹脂85との間に介在する固化済み樹脂87が、鉄心本体11に対する上型21や治具30の相対移動による溶融樹脂85への影響を抑えることができる。溶融樹脂85は、鉄心本体11の磁石挿入孔11bに適切に位置した状態で固化されるので、固化済み樹脂87と共に問題なく充填材13を構成することができる。 When the molten resin 84 is solidified to become a solidified resin 87, the solidified resin 87 is positioned at the upper and lower ends of the molten resin 85 within the magnet insertion hole 11b (see FIG. 9). That is, the solidified resin 87 is provided between the upper mold 21 and the molten resin 85 and between the jig 30 and the molten resin 85 . As a result, even if the upper die 21 and the core body 11 are separated from each other or the core body 11 and the jig 30 are further separated at a stage where the molten resin 85 is not yet solidified, the upper die 21 and the molten resin 85 do not melt. The solidified resin 87 interposed between the resin 85 and between the jig 30 and the molten resin 85 suppresses the influence of the relative movement of the upper die 21 and the jig 30 with respect to the core body 11 on the molten resin 85. be able to. Since the molten resin 85 is solidified while being properly positioned in the magnet insertion hole 11b of the core body 11, the filler 13 can be formed together with the solidified resin 87 without any problem.
 また、本実施形態に係るコア部製造装置においては、上型21における収容孔21aと押出部23が樹脂保持部24をなし、樹脂保持部24が上型21に一体に組み込まれる構成としている。これに限られるものではなく、樹脂を保持し送入する樹脂保持部を上型又は下型とは独立していてもよい。例えば、上型及び下型の間に位置させる前の鉄心本体に対し、鉄心本体の上側に位置させた樹脂保持部が上から樹脂を送入するようにする構成としてもよい。また、上下型間に位置するが上下型で挟持される前の鉄心本体に対し、樹脂保持部が鉄心本体の上側で且つ上型の下側に位置して、鉄心本体に対し樹脂を送入した後、樹脂保持部を鉄心本体の上側から退避させて上型及び下型による鉄心本体の挟持を可能とする構成とすることができる。 In addition, in the core part manufacturing apparatus according to the present embodiment, the accommodation hole 21a and the extrusion part 23 in the upper die 21 constitute the resin holding part 24, and the resin holding part 24 is integrally incorporated into the upper die 21. The present invention is not limited to this, and the resin holding portion that holds and feeds the resin may be independent of the upper mold or the lower mold. For example, it may be configured such that the resin holding portion positioned above the core body feeds the resin from above into the core body before it is positioned between the upper die and the lower die. In addition, the resin holding portion is positioned above the core body and below the upper mold with respect to the core body positioned between the upper and lower molds but before being sandwiched between the upper and lower molds, and feeds the resin into the core body. After that, the resin holding portion can be retracted from the upper side of the core body so that the core body can be sandwiched between the upper mold and the lower mold.
 この他、溶融樹脂の送入が、タブレット等として供給される樹脂材料の大きさに制限されないよう、上型や下型と独立した樹脂保持部が、連続的に溶融樹脂を鉄心本体側に送り込める仕組みを有してもよい。この場合、樹脂として連続供給性に優れたもの、例えば、熱可塑性又は熱硬化性のホットメルト接着剤を用いるようにしてもよい。 In addition, in order to prevent the feeding of molten resin from being restricted by the size of the resin material supplied as a tablet, etc., a resin holder independent of the upper and lower molds continuously feeds the molten resin to the core body side. It may also have a mechanism that allows it to be inserted. In this case, a resin that is excellent in continuous supply, such as a thermoplastic or thermosetting hot-melt adhesive, may be used.
 また、本実施形態に係るコア部製造方法において、空間部としての磁石挿入孔11bに送入する樹脂は、主に熱硬化性樹脂であるが、これに限らず、熱可塑性樹脂が用いられてもよい。固化速度の速い一の樹脂として、他の樹脂として用いる熱可塑性樹脂と比較して融点又はガラス転移点がより高い所定の熱可塑性樹脂を用いれば、送入後の固化工程としての温度低下に合わせて一の樹脂が先に固化完了となるので、固化の完了していない他の樹脂への型など外部からの影響を抑制できる。 In addition, in the method of manufacturing the core portion according to the present embodiment, the resin fed into the magnet insertion hole 11b as the space portion is mainly a thermosetting resin, but not limited to this, a thermoplastic resin may also be used. good too. If a predetermined thermoplastic resin with a higher melting point or glass transition point than the thermoplastic resins used as the other resins is used as one resin with a fast solidification speed, it can be adjusted to the temperature drop in the solidification process after feeding. Since one of the resins is completely solidified first, it is possible to suppress external influences such as molds on other resins that have not yet been completely solidified.
 なお、一の樹脂と他の樹脂とにおいて流動性が略同一な樹脂であることが望ましい。一の樹脂と他の樹脂とにおいて流動性に差があればあるほど、一の樹脂が他の樹脂を追い越して樹脂が流入してしまい、一の樹脂と他の樹脂が混ざりやすくなる。一の樹脂と他の樹脂の流動性が略同一である場合、他の樹脂、一の樹脂の順番が崩れない状態で磁石挿入孔11bに樹脂を流入させることができる。 It should be noted that it is desirable that the one resin and the other resin have substantially the same fluidity. The greater the difference in fluidity between one resin and the other resin, the more the one resin will overtake the other resin and the resin will flow in, making it easier for the one resin and the other resin to mix. When the one resin and the other resin have substantially the same fluidity, the resin can be flowed into the magnet insertion hole 11b in a state where the order of the other resin and the first resin is not disturbed.
(本開示の第2の実施形態)
 第1の実施形態に係るコア部製造方法においては、コア部製造装置1の上型21側から鉄心本体11に対し樹脂注入を行うようにしているが、これに限らず、第2の実施形態のコア部製造装置2は、図10から図12に示すように、送入工程で、コア部製造装置2の下型27側から樹脂注入を行うように構成されている。
(Second embodiment of the present disclosure)
In the core part manufacturing method according to the first embodiment, the resin is injected into the core body 11 from the upper die 21 side of the core part manufacturing apparatus 1. However, the present invention is not limited to this and the second embodiment. As shown in FIGS. 10 to 12, the core manufacturing apparatus 2 is constructed such that resin is injected from the lower die 27 side of the core manufacturing apparatus 2 in the feeding step.
 この場合、本実施形態に係るコア部製造方法は、第1の実施形態同様、送入工程と、固化工程とを有する一方、送入工程で、下型27側に位置する樹脂保持部29に保持された樹脂は、鉄心本体11の空間部に下から送入される。 In this case, the method for manufacturing the core part according to the present embodiment has the feeding step and the solidifying step, as in the first embodiment, and in the feeding step, the resin holding part 29 located on the lower mold 27 side is The retained resin is fed into the space of the core body 11 from below.
 そして、本実施形態に係るコア部製造方法を適用するコア部製造装置2は、第1の実施形態同様、充填機構部としての上型26及び下型27を備える一方、下型27が鉄心本体11の空間部に樹脂を送入可能に保持する樹脂保持部29を備える点が異なっている。 As in the first embodiment, the core part manufacturing apparatus 2 to which the core part manufacturing method according to the present embodiment is applied includes an upper die 26 and a lower die 27 as a filling mechanism part, while the lower die 27 is the core body. 11 is provided with a resin holding portion 29 for holding the resin so as to be able to be fed thereinto.
 コア部製造装置2の充填機構部をなす上型26及び下型27は、第1の実施形態と同様に、鉄心本体11を挟持しつつ、空間部としての磁石挿入孔11b内で溶融状態にある樹脂を加圧すると共に、樹脂の固化を進行させる。 An upper mold 26 and a lower mold 27 forming a filling mechanism part of the core part manufacturing apparatus 2 hold the core body 11 in a molten state in the magnet insertion hole 11b as a space part, as in the first embodiment. A certain resin is pressurized and the solidification of the resin is advanced.
 なお、第1の実施形態と同様、鉄心本体11は、コア部製造装置2による樹脂の送入工程やその前後で治具35に支持されて、治具35と一体に取り扱われると共に、治具35に面する側とは反対側となる端面に補助プレート45を取り付けられる。ただし、コア部製造装置2における樹脂保持部29に保持された樹脂が、鉄心本体11における空間部としての磁石挿入孔11bに下型27の側から送入可能とされる構成に合わせて、治具35及び補助プレート45の形状も、下型27側からの樹脂送入に対応している。
 そして、コア部製造装置2では、樹脂は、治具35を通じて、鉄心本体11における治具35と当接する下端面の側から、磁石挿入孔11bに注入される。
As in the first embodiment, the iron core body 11 is supported by the jig 35 before and after the resin feeding step by the core manufacturing apparatus 2, and is handled integrally with the jig 35. An auxiliary plate 45 is attached to the end face opposite to the side facing 35 . However, according to the configuration in which the resin held by the resin holding portion 29 in the core portion manufacturing apparatus 2 can be fed from the lower die 27 side into the magnet insertion hole 11b as the space portion in the core body 11, The shapes of the tool 35 and the auxiliary plate 45 also correspond to resin feeding from the lower die 27 side.
In the core manufacturing apparatus 2 , the resin is injected into the magnet insertion hole 11 b through the jig 35 from the side of the lower end surface of the iron core body 11 that contacts the jig 35 .
 上型26は、第1の実施形態と同様、下型27の上方に位置して、下型27と共に鉄心本体11、補助プレート45及び治具35を挟持する。上型26は、上型26を貫通する孔等(収容孔21a、押出部23)が設けられていない点を除いて、第1の実施形態と同様の構成を有するものであり、詳細な説明を省略する。 The upper die 26 is positioned above the lower die 27 and sandwiches the core body 11, the auxiliary plate 45 and the jig 35 together with the lower die 27, as in the first embodiment. The upper mold 26 has the same configuration as that of the first embodiment, except that no holes (receiving holes 21a, extruding portions 23) passing through the upper mold 26 are provided. omitted.
 下型27は、第1の実施形態と同様、補助プレート45が取り付けられた鉄心本体11及び治具35を支持する。一方、異なる点として、下型27には、樹脂を収容保持可能な複数の収容孔27aが設けられる。 The lower die 27 supports the core body 11 and the jig 35 to which the auxiliary plate 45 is attached, as in the first embodiment. On the other hand, a different point is that the lower mold 27 is provided with a plurality of accommodation holes 27a capable of accommodating and holding resin.
 また、下型27は、タブレット状または粉末状の第一の樹脂及び第二の樹脂等の樹脂材料を挿入可能な収容孔27aと、樹脂を鉄心本体11の磁石挿入孔11bへ押出可能とする押出部28と、を備える。
 下型27における収容孔27aと押出部28とが、樹脂保持部29をなすこととなる。すなわち、樹脂保持部29は、下型27に一体に組み込まれている。
Further, the lower die 27 has an accommodation hole 27a into which a resin material such as a tablet-like or powdery first resin and a second resin can be inserted, and a resin can be extruded into the magnet insertion hole 11b of the core body 11. and an extrusion portion 28 .
The accommodation hole 27a and the extrusion portion 28 in the lower die 27 form the resin holding portion 29. As shown in FIG. That is, the resin holding portion 29 is integrated with the lower mold 27 .
 樹脂保持部29の一部としての収容孔27aは、上型26と下型27とで鉄心本体11が挟持された状態において、鉄心本体11の各磁石挿入孔11bに対応する箇所に位置するように、所定間隔で並べて複数設けられる。 The housing holes 27a as part of the resin holding portion 29 are positioned at locations corresponding to the magnet insertion holes 11b of the core body 11 in a state in which the core body 11 is sandwiched between the upper die 26 and the lower die 27. , are arranged side by side at predetermined intervals.
 各収容孔27aは、樹脂タブレットや粉末状等の形態で供給される樹脂材料を収容可能とされる。前記第1の実施形態と同様に、樹脂材料としては、第一の樹脂である樹脂材料81と、第二の樹脂である樹脂材料82との二種類が用いられる。各収容孔27aは、樹脂材料81を下層、樹脂材料82を上層とする積層状態で保持する。 Each accommodation hole 27a can accommodate a resin material supplied in the form of a resin tablet, powder, or the like. As in the first embodiment, two types of resin materials are used: a resin material 81 that is a first resin and a resin material 82 that is a second resin. Each accommodation hole 27a holds a laminated state in which the resin material 81 is the lower layer and the resin material 82 is the upper layer.
 また、下型27は、樹脂保持部29の機能として、樹脂材料81、82を加熱して溶融させ、溶融樹脂84、85を得る仕組みも有する。下型27には、各収容孔27aに収容されている樹脂材料81、82を加熱可能なヒータ(図示を省略)が設けられる。樹脂材料81、82が加熱されると、収容孔27aで溶融し、溶融樹脂84、85となる。 The lower die 27 also has a mechanism for heating and melting the resin materials 81 and 82 to obtain molten resins 84 and 85 as a function of the resin holding portion 29 . The lower mold 27 is provided with heaters (not shown) capable of heating the resin materials 81 and 82 accommodated in the accommodation holes 27a. When the resin materials 81 and 82 are heated, they are melted in the accommodation holes 27a and become molten resins 84 and 85. As shown in FIG.
 押出部28は、溶融樹脂84、85を鉄心本体11の磁石挿入孔11bへ押出すことができる。押出部28は、例えば、所定の駆動源による駆動で上下動可能とされる複数のプランジャである。各押出部28は、押出部ごとに対応する駆動源でそれぞれ駆動されて上下に移動可能であってもよく、複数の押出部を一つの駆動源でまとめて駆動して一体に上下に移動可能であってもよい。 The extruding portion 28 can extrude the molten resins 84 and 85 into the magnet insertion hole 11b of the core body 11. The pushing part 28 is, for example, a plurality of plungers that can be vertically moved by being driven by a predetermined driving source. Each extruding part 28 may be driven by a corresponding drive source for each extruding part and can move up and down, or a plurality of extruding parts can be driven together by one drive source and can move up and down as a unit. may be
 収容孔27aで保持される溶融樹脂84、85は、送入工程で、押出部28により下型27の収容孔27aから押し出され、下型27と鉄心本体11の下端面との間に配置される治具35のプレート部36における樹脂通路36aを通り、鉄心本体11の各磁石挿入孔11bに流れ込む。送入工程では、上にある溶融樹脂から先に、すなわち、第二の樹脂である上層の溶融樹脂85、第一の樹脂である下層の溶融樹脂84、の順で送入が実行される。 The molten resins 84 and 85 held in the accommodation hole 27a are pushed out from the accommodation hole 27a of the lower mold 27 by the extrusion part 28 in the feeding process, and arranged between the lower mold 27 and the lower end surface of the core body 11. The resin passes through the resin passage 36 a in the plate portion 36 of the jig 35 and flows into each magnet insertion hole 11 b of the core body 11 . In the feeding step, the upper molten resin is fed first, that is, the upper molten resin 85 that is the second resin and the lower molten resin 84 that is the first resin are fed in this order.
 治具35は、第1の実施形態同様、プレート部36と、ポスト部37とを備える一方、異なる点として、プレート部36に、プレート部36を貫通する孔である複数の樹脂通路36aが設けられている。プレート部36の複数の樹脂通路36aは、プレート部36の高さ方向に連続する孔であり、鉄心本体11の複数の磁石挿入孔11b及び下型27の各収容孔27aに対応する位置に配置される。 The jig 35 includes a plate portion 36 and a post portion 37 as in the first embodiment. It is The plurality of resin passages 36a of the plate portion 36 are holes that are continuous in the height direction of the plate portion 36, and are arranged at positions corresponding to the plurality of magnet insertion holes 11b of the core body 11 and the accommodation holes 27a of the lower die 27. be done.
 補助プレート45は、第1の実施形態同様、板状部材であり、鉄心本体11の治具35に接しない側の端面に取り付けられる一方、異なる点として、補助プレート45には樹脂を各磁石挿入孔11bに導くための樹脂通路が設けられない。 As in the first embodiment, the auxiliary plate 45 is a plate-like member and is attached to the end surface of the core body 11 on the side not in contact with the jig 35. However, the difference is that resin is inserted into the auxiliary plate 45 for each magnet. A resin passage for leading to the hole 11b is not provided.
 次に、本実施形態に係るコア部製造方法に基づくコア部の製造過程について説明する。
 前提として、第1の実施形態同様、あらかじめ複数の薄板11aを積層した鉄心本体11が得られている。鉄心本体11が、磁石挿入孔11bに永久磁石12を挿入され、適切な温度に予熱された状態で、鉄心本体11を載せた治具35及び鉄心本体に取り付けられた補助プレート45と共に、移送機構によりコア部製造装置2に向けて移送される。
Next, the manufacturing process of the core portion based on the core portion manufacturing method according to the present embodiment will be described.
As a premise, as in the first embodiment, the core body 11 is obtained by laminating a plurality of thin plates 11a in advance. The iron core body 11 is preheated to an appropriate temperature by inserting the permanent magnets 12 into the magnet insertion holes 11b. It is transferred toward the core part manufacturing apparatus 2 by .
 コア部製造装置2の下型27には、二種類の樹脂材料81、82が、コア部製造装置2への鉄心本体11の搬入出の合間に供給される。樹脂材料81、82は、樹脂材料81を下層、樹脂材料82を上層とする積層状態で下型27の収容孔27aに収容保持される。各収容孔27aに保持された樹脂材料81、82は、適切なタイミングで加熱され、各収容孔27aで溶融し、溶融樹脂84、85となる。 Two types of resin materials 81 and 82 are supplied to the lower die 27 of the core manufacturing apparatus 2 between loading and unloading of the core body 11 to and from the core manufacturing apparatus 2 . The resin materials 81 and 82 are accommodated and held in the accommodation hole 27a of the lower mold 27 in a laminated state in which the resin material 81 is the lower layer and the resin material 82 is the upper layer. The resin materials 81 and 82 held in the accommodation holes 27a are heated at appropriate timings and melted in the accommodation holes 27a to form molten resins 84 and 85, respectively.
 一方、鉄心本体11と、鉄心本体11を載せた治具35は、移送機構の作動によりコア部製造装置2に向けて移送され、コア部製造装置2に達すると、鉄心本体11及び治具35は、コア部製造装置2の鉄心本体搬入出用の開口部分を通じて、コア部製造装置2の上型26及び下型27の間に搬入される。
 移送機構により、鉄心本体11の載った治具35が下型27上に載置されると、コア部製造装置2への鉄心本体11及び治具35の搬入は完了となる。
On the other hand, the core main body 11 and the jig 35 on which the core main body 11 is placed are transferred toward the core manufacturing apparatus 2 by the operation of the transfer mechanism, and when they reach the core manufacturing apparatus 2, the core main body 11 and the jig 35 are transferred. is carried in between the upper mold 26 and the lower mold 27 of the core manufacturing apparatus 2 through an opening for carrying in and out of the core manufacturing apparatus 2 .
When the jig 35 with the core body 11 placed thereon is placed on the lower die 27 by the transfer mechanism, the loading of the core body 11 and the jig 35 into the core manufacturing apparatus 2 is completed.
 鉄心本体11及び治具35が下型27に載置された後、上型26を下降させるか、鉄心本体11が載った下型27を上昇させることで、上型26と下型27とにより鉄心本体11を挟持され押圧される(図10参照)。 After the core body 11 and the jig 35 are placed on the lower die 27, the upper die 26 is lowered or the lower die 27 on which the core body 11 is placed is raised, so that the upper die 26 and the lower die 27 The iron core body 11 is sandwiched and pressed (see FIG. 10).
 この状態で、鉄心本体11の積層方向の両端面に、補助プレート45と治具35とをそれぞれ当接させて押圧することで、鉄心本体11の積層方向の端部において、磁石挿入孔11bが閉塞される。 In this state, the auxiliary plate 45 and the jig 35 are brought into contact with both end surfaces of the core body 11 in the stacking direction and pressed, so that the magnet insertion holes 11b are formed at the ends of the core body 11 in the stacking direction. blocked.
 これら上型26及び下型27の挟持による閉塞で、鉄心本体11の各磁石挿入孔11bを外部から隔離した状態とした後、溶融樹脂84、85の送入工程が実行される。
 送入工程では、各押出部28が駆動されて、それぞれ下方から下型27の各収容孔27aに挿入される。この押出部28の挿入により、溶融樹脂84、85は、収容孔27aから上層の溶融樹脂85、下層の溶融樹脂84の順で上方へ押出される。押し出された樹脂は、上層の溶融樹脂85から順に、治具35におけるプレート部36の樹脂通路36aを通じて、上方の鉄心本体11の磁石挿入孔11bへ注入、充填される(図11参照)。
After the magnet insertion holes 11b of the core body 11 are isolated from the outside by closing the upper mold 26 and the lower mold 27, the step of feeding the molten resins 84 and 85 is performed.
In the feeding process, each extrusion part 28 is driven and inserted into each accommodation hole 27a of the lower mold 27 from below. By inserting the extruding portion 28, the molten resins 84, 85 are extruded upward in the order of the upper molten resin 85 and the lower molten resin 84 from the accommodation hole 27a. The extruded resin is injected and filled into the magnet insertion holes 11b of the upper core body 11 through the resin passages 36a of the plate portion 36 of the jig 35 in order from the upper molten resin 85 (see FIG. 11).
 樹脂注入後、プレート部36の樹脂通路36aと磁石挿入孔11bとに存在している溶融樹脂84、85は、第二の樹脂である溶融樹脂85の層の下側に、第一の樹脂である溶融樹脂84の層が位置する積層状態となっている。そして、溶融樹脂85の層と、溶融樹脂85よりも下型27側、すなわち下側に位置する、溶融樹脂84の層との境界は、空間部としての磁石挿入孔11bにおける鉄心本体11の下側の端部近傍に位置して、磁石挿入孔11bには溶融樹脂85と溶融樹脂84とが共に充填されている。つまり、鉄心本体11の積層方向における下側端部には、第一の樹脂である溶融樹脂84が設けられている。 After injecting the resin, the molten resins 84 and 85 existing in the resin passage 36a and the magnet insertion hole 11b of the plate portion 36 are spread under the layer of the molten resin 85, which is the second resin, with the first resin. It is in a laminated state in which a layer of a certain molten resin 84 is positioned. The boundary between the layer of molten resin 85 and the layer of molten resin 84 located on the lower die 27 side, that is, below the molten resin 85 is below the core body 11 in the magnet insertion hole 11b as a space. Both the molten resin 85 and the molten resin 84 are filled in the magnet insertion hole 11b positioned near the side end. That is, the molten resin 84, which is the first resin, is provided at the lower end portion of the core body 11 in the stacking direction.
 その後、固化工程として、上型26と下型27とで鉄心本体11を挟持押圧する状態を維持しつつ、プレート部36の樹脂通路36aや各磁石挿入孔11bに位置する溶融樹脂84、85の固化を進行させる。 After that, as a solidification step, while maintaining the state of clamping and pressing the core body 11 between the upper mold 26 and the lower mold 27, the molten resins 84 and 85 located in the resin passage 36a of the plate portion 36 and the magnet insertion holes 11b are solidified. Allow solidification to proceed.
 溶融樹脂84、85のうち、固化速度の速い第一の樹脂である溶融樹脂84が固化して固化済み樹脂87(第一樹脂部分の一例)となった状態では、固化済み樹脂87が磁石挿入孔11b内で溶融樹脂85より下側の端部側に位置し、溶融樹脂85と治具35との間に位置している。
 溶融樹脂84が固化して固化済み樹脂87になった後、下型27に対し押出部28を下げて元の状態に戻すと共に、上型26を上昇させるか、下型27を下降させることで、上型26と鉄心本体11とが離隔し、上型26と下型27による鉄心本体11の挟持及び押圧が終了する。これにより、鉄心本体11及び治具35は、下型27上から移動することができ、コア部製造装置2から搬出可能な状態となる(図12参照)。
Among the molten resins 84 and 85, the molten resin 84, which is the first resin that solidifies faster, solidifies to become a solidified resin 87 (an example of the first resin portion). It is located on the lower end side of the molten resin 85 in the hole 11 b and is located between the molten resin 85 and the jig 35 .
After the molten resin 84 solidifies and becomes a solidified resin 87, the extruding part 28 is lowered with respect to the lower mold 27 to return to the original state, and the upper mold 26 is raised or the lower mold 27 is lowered. , the upper die 26 and the core body 11 are separated, and the clamping and pressing of the core body 11 by the upper die 26 and the lower die 27 are completed. As a result, the core body 11 and the jig 35 can be moved from above the lower die 27 and can be unloaded from the core manufacturing apparatus 2 (see FIG. 12).
 溶融樹脂84が固化して固化済み樹脂87になった状態では、固化済み樹脂87が磁石挿入孔11bで溶融樹脂85より下側に位置しており、下型27と溶融樹脂85との間に位置している。これにより、下型27と治具35のプレート部36とが離隔したとき、溶融樹脂85が固化の進行に伴い膨張しようとする応力が発生しても、固化済み樹脂87の保持力で応力による溶融樹脂85の膨張の影響を抑え込むことができる。すなわち、仮に溶融樹脂85が固化していない場合でも、鉄心本体11に対する下型27の相対移動により溶融樹脂85が影響を受けにくくなる。これにより、溶融樹脂85を鉄心本体11の磁石挿入孔11bに適切に位置させた状態で固化させて、問題なく充填材13とすることができる。なお、第二の樹脂である溶融樹脂85が固化してなる固化済み樹脂は、第二の樹脂部分の一例である。 In the state where the molten resin 84 is solidified to become the solidified resin 87, the solidified resin 87 is positioned below the molten resin 85 in the magnet insertion hole 11b, and is between the lower mold 27 and the molten resin 85. positioned. As a result, when the lower die 27 and the plate portion 36 of the jig 35 are separated from each other, even if the molten resin 85 expands with the progress of solidification, even if the stress is generated, the holding force of the solidified resin 87 will cause the stress to occur. The influence of expansion of the molten resin 85 can be suppressed. That is, even if the molten resin 85 is not solidified, the molten resin 85 is less likely to be affected by relative movement of the lower die 27 with respect to the core body 11 . As a result, the molten resin 85 can be solidified while properly positioned in the magnet insertion hole 11b of the core body 11, and the filler 13 can be obtained without any problem. The solidified resin obtained by solidifying the molten resin 85, which is the second resin, is an example of the second resin portion.
 溶融樹脂85も固化したら、鉄心本体11及び治具35は、第1の実施形態同様、移送機構でコア部製造装置2の外に搬出され、さらに次の工程に移送される。なお、第1の実施形態同様、溶融樹脂84が固化済み樹脂87となった状況では、溶融樹脂85の固化を待たずに、移送機構で鉄心本体11等がコア部製造装置2の外に搬出されてもよい。この場合は、鉄心本体11、補助プレート45、及び治具35を、コア部製造装置2から次の工程に移送する間に、鉄心本体11の余熱によって溶融樹脂85が固化される。これにより、鉄心本体11を上型26及び下型27の間に拘束する時間をさらに短縮することができる。 When the molten resin 85 is also solidified, the iron core body 11 and the jig 35 are transported out of the core part manufacturing apparatus 2 by the transport mechanism and further transported to the next step, as in the first embodiment. As in the first embodiment, when the molten resin 84 has become the solidified resin 87, the iron core body 11 and the like are transported out of the core manufacturing apparatus 2 by the transfer mechanism without waiting for the molten resin 85 to solidify. may be In this case, the molten resin 85 is solidified by residual heat of the core body 11 while the core body 11, the auxiliary plate 45, and the jig 35 are transferred from the core manufacturing apparatus 2 to the next step. Thereby, the time for restraining the core body 11 between the upper mold 26 and the lower mold 27 can be further shortened.
 第二の樹脂である溶融樹脂85の固化完了より前に、鉄心本体11とその下側の治具35は早期に離隔させて鉄心本体11を移送してもよい。溶融樹脂84が固化して固化済み樹脂87となっていれば、固化済み樹脂87が溶融樹脂85と治具35との間に設けられているので、鉄心本体11と治具35とを離隔させても、固化済み樹脂87が鉄心本体11に対する治具35の相対移動による溶融樹脂85への影響を抑制できる。これにより、溶融樹脂85は鉄心本体11の磁石挿入孔11bに適切に位置した状態で固化するので、固化済み樹脂87と共に問題なく充填材13を構成できる。 Before the molten resin 85, which is the second resin, is completely solidified, the core body 11 and the jig 35 below it may be separated early and the core body 11 may be transferred. If the molten resin 84 is solidified to become a solidified resin 87, the solidified resin 87 is provided between the molten resin 85 and the jig 35, so the core body 11 and the jig 35 are separated from each other. Even so, the solidified resin 87 can suppress the influence of the relative movement of the jig 35 with respect to the core body 11 on the molten resin 85 . As a result, the molten resin 85 is solidified while being properly positioned in the magnet insertion hole 11b of the core body 11, so that the filler 13 can be formed together with the solidified resin 87 without any problem.
 このように、本実施形態に係るコア部製造方法においては、上型26及び下型27の間に位置する鉄心本体11の空間部としての磁石挿入孔11bに樹脂を送入する送入工程で、樹脂を固化させた後は鉄心本体11から離隔させる下型27に対し、固化速度の速い第一の樹脂である溶融樹脂84が、下型27と磁石挿入孔11bに位置する第二の樹脂である溶融樹脂85との間に位置するように送入を実行し、固化速度の遅い溶融樹脂85が下型27に接触しない状態で樹脂の固化が進行し、固化速度の速い溶融樹脂84が固化する。これにより、溶融樹脂84が固化した段階では、下型27と鉄心本体11とを離しても、溶融樹脂84の固化した後の固化済み樹脂87に下型27との分離に伴う問題は生じず、上型26及び下型27の間から鉄心本体11を解放して取り出すことができる。仮に溶融樹脂85が固化していない場合でも、溶融樹脂84が固化して固化済み樹脂87となっていれば、溶融樹脂85の充填状態に影響を与えることなく鉄心本体11を上型26及び下型27の間から取り出すことができる。磁石挿入孔11bに溶融樹脂85のみが送入され固化される場合に比べ、溶融樹脂84、85の固化時間の差だけ、鉄心本体11が上型26及び下型27の間に拘束される時間を短縮できるので、コア部10の製造効率が向上する。 As described above, in the method of manufacturing the core portion according to the present embodiment, in the feeding step of feeding the resin into the magnet insertion hole 11b as the space portion of the core body 11 located between the upper die 26 and the lower die 27, The molten resin 84, which is the first resin having a high solidification speed, is placed in the lower mold 27 and the second resin positioned in the magnet insertion hole 11b, while the lower mold 27 is separated from the core body 11 after the resin is solidified. The solidification of the resin progresses in a state where the molten resin 85 with a slow solidification speed does not come into contact with the lower mold 27, and the molten resin 84 with a fast solidification speed is solidify. As a result, when the molten resin 84 is solidified, even if the lower mold 27 and the core body 11 are separated, the solidified resin 87 after the molten resin 84 is solidified does not have a problem associated with separation from the lower mold 27. , the core body 11 can be released and taken out from between the upper die 26 and the lower die 27 . Even if the molten resin 85 is not solidified, if the molten resin 84 is solidified and becomes a solidified resin 87, the core body 11 can be moved between the upper mold 26 and the lower mold 26 without affecting the filling state of the molten resin 85. It can be taken out from between the molds 27 . Compared to the case where only the molten resin 85 is fed into the magnet insertion hole 11b and solidified, the time during which the core body 11 is constrained between the upper mold 26 and the lower mold 27 is equal to the difference between the solidification times of the molten resins 84 and 85. can be shortened, the manufacturing efficiency of the core portion 10 is improved.
 なお、実施形態に係るコア部製造方法において、コア部製造装置2において、鉄心本体11の上側に補助プレート45が配置されていて、磁石挿入孔11bに充填された樹脂は上型26に接触しないが、これに限らず、鉄心本体11の上側に補助プレートが配置されず、コア部製造装置2において、上型21と鉄心本体11上端面とが直接当接した状態で、下型27の樹脂保持部から鉄心本体11の磁石挿入孔11bに樹脂が送入されてもよい。 In the core part manufacturing method according to the embodiment, the auxiliary plate 45 is arranged on the upper side of the core body 11 in the core part manufacturing apparatus 2, so that the resin filled in the magnet insertion hole 11b does not come into contact with the upper mold 26. However, without being limited to this, the auxiliary plate is not arranged on the upper side of the core body 11, and in the core part manufacturing apparatus 2, the upper die 21 and the upper end surface of the core body 11 are in direct contact, and the resin of the lower die 27 Resin may be fed into the magnet insertion hole 11b of the core body 11 from the holding portion.
 また、第二実施形態と異なり、樹脂保持部をなす下型27の収容孔27aにおいて、第一の樹脂である樹脂材料81を上層と下層、第二の樹脂である樹脂材料82を中間層とする積層状態で樹脂材料81、82が保持されてもよい(図13参照)。送入工程では、樹脂材料から溶融状態となった溶融樹脂84、85の積層状態を保ったまま、上層の溶融樹脂84、中間層の溶融樹脂85、下層の溶融樹脂84の順で溶融樹脂84、85が送入される。これにより、第一の樹脂である溶融樹脂84の層が第二の樹脂である溶融樹脂85の層の上側と下側にそれぞれ位置する積層状態が生じる(図14参照)。 Further, unlike the second embodiment, in the accommodation hole 27a of the lower mold 27 forming the resin holding portion, the resin material 81, which is the first resin, is used as the upper and lower layers, and the resin material 82, which is the second resin, is used as the intermediate layer. The resin materials 81 and 82 may be held in a stacked state (see FIG. 13). In the feeding process, the molten resin 84 is melted from the resin material, and the melted resin 84 and the melted resin 85 are melted in the order of the upper layer melted resin 84, the intermediate layer melted resin 85, and the lower layer melted resin 84 while maintaining the laminated state. , 85 are input. As a result, a layer of molten resin 84, which is the first resin, is positioned above and below the layer of molten resin 85, which is the second resin, respectively (see FIG. 14).
 溶融樹脂84が固化して固化済み樹脂87となると、固化済み樹脂87が磁石挿入孔11b内で溶融樹脂85の上下の端部側に位置する(図15参照)。つまり、上型21と溶融樹脂85との間、及び、下型27と溶融樹脂85との間に固化済み樹脂87が設けられる。これにより、仮に溶融樹脂85が固化していない段階で、上型21と鉄心本体11とを離隔させたり、さらに鉄心本体11及び治具35と下型27とを離隔させたりしても、上型21と溶融樹脂85との間、及び、溶融樹脂85と下型27の間に介在する固化済み樹脂87が、鉄心本体11に対する上型21や下型27の相対移動による溶融樹脂85への影響を抑えることができる。溶融樹脂85は、鉄心本体11の磁石挿入孔11bに適切に位置した状態で固化されるので、固化済み樹脂87と共に問題なく充填材13を構成することができる。 When the molten resin 84 is solidified to become a solidified resin 87, the solidified resin 87 is positioned on the upper and lower end sides of the molten resin 85 within the magnet insertion hole 11b (see FIG. 15). That is, the solidified resin 87 is provided between the upper mold 21 and the molten resin 85 and between the lower mold 27 and the molten resin 85 . As a result, even if the upper die 21 and the core body 11 are separated from each other, or the core body 11 and the jig 35 are separated from the lower die 27, even if the molten resin 85 is not yet solidified, The solidified resin 87 interposed between the mold 21 and the molten resin 85 and between the molten resin 85 and the lower mold 27 is transferred to the molten resin 85 by the relative movement of the upper mold 21 and the lower mold 27 with respect to the core body 11. You can limit the impact. Since the molten resin 85 is solidified while being properly positioned in the magnet insertion hole 11b of the core body 11, the filler 13 can be formed together with the solidified resin 87 without any problem.
 また、本実施形態に係るコア部製造方法においては、送入工程で、溶融樹脂85の層と、この溶融樹脂85の層に対し下型27側、すなわち下側に位置する、溶融樹脂84の層との境界は、空間部としての磁石挿入孔11bにおける鉄心本体11の下側の端部近傍に位置し、磁石挿入孔11bの下部に第一の樹脂である溶融樹脂84が配置されている。本実施形態の例に限らず、溶融樹脂85の層と溶融樹脂84の層との境界を、プレート部36の樹脂通路36a内に位置させて、磁石挿入孔11bには溶融樹脂85のみが充填されるようにすることもできる。 In addition, in the method of manufacturing the core part according to the present embodiment, in the feeding step, the layer of the molten resin 85 and the molten resin 84 positioned on the lower mold 27 side, that is, on the lower side of the layer of the molten resin 85 The boundary between the layers is located near the lower end of the core body 11 in the magnet insertion hole 11b as a space, and the molten resin 84, which is the first resin, is arranged in the lower part of the magnet insertion hole 11b. . The boundary between the layer of the molten resin 85 and the layer of the molten resin 84 is positioned within the resin passage 36a of the plate portion 36, and the magnet insertion hole 11b is filled only with the molten resin 85, not limited to the example of this embodiment. You can also make it so that
 この場合、溶融樹脂85の層と溶融樹脂84の層との境界が磁石挿入孔11b内に位置しないことで、溶融樹脂85の固化後、鉄心本体11内で充填材13をなす樹脂を一種類のみにできる。充填材13が均質な単一の樹脂で構成されるので充填材13は強度面でより優れている。 In this case, since the boundary between the layer of the molten resin 85 and the layer of the molten resin 84 is not positioned within the magnet insertion hole 11b, after the molten resin 85 is solidified, only one type of resin is used to form the filler 13 within the core body 11. can only be Since the filler 13 is composed of a homogeneous single resin, the filler 13 is superior in terms of strength.
 本出願は、2021年8月20日に出願された日本国特許出願(特願2021-134762号)に開示された内容を適宜援用する。 This application appropriately incorporates the content disclosed in the Japanese patent application (Japanese Patent Application No. 2021-134762) filed on August 20, 2021.
 1、2      コア部製造装置
 10       コア部
 11       鉄心本体
 11a      薄板
 11b      磁石挿入孔
 11c      軸孔
 12       永久磁石
 13       充填材
 21、26    上型
 21a      収容孔
 22、27    下型
 23、28    押出部
 24、29    樹脂保持部
 27a      収容孔
 30、35    治具
 31、36    プレート部
 32、37    ポスト部
 36a      樹脂通路
 40、45    補助プレート
 41       樹脂通路
 81、82    樹脂材料
 84、85    溶融樹脂
 87       固化済み樹脂
Reference Signs List 1, 2 core portion manufacturing apparatus 10 core portion 11 core body 11a thin plate 11b magnet insertion hole 11c shaft hole 12 permanent magnet 13 filler 21, 26 upper mold 21a accommodation hole 22, 27 lower mold 23, 28 extruded portion 24, 29 resin Holding portion 27a Accommodating hole 30, 35 Jig 31, 36 Plate portion 32, 37 Post portion 36a Resin passage 40, 45 Auxiliary plate 41 Resin passage 81, 82 Resin material 84, 85 Molten resin 87 Solidified resin

Claims (13)

  1.  磁性金属材料製の薄板が複数積層されて形成された鉄心本体を一対の型の間に位置させ、鉄心本体における複数の空間部に樹脂を充填し、回転電機の回転子又は固定子の一部をなすコア部を製造する、コア部製造方法において、
     前記一対の型のうち一方の型側に位置する樹脂保持部に保持された樹脂を、前記鉄心本体の空間部に送入する送入工程と、
     前記一対の型により前記鉄心本体を挟持しつつ、前記空間部で溶融状態にある樹脂の固化を進行させる固化工程とを少なくとも有し、
     前記送入工程で、送入した樹脂を前記空間部で溶融させて、又は、溶融した樹脂を前記空間部に送入して、前記空間部に溶融した樹脂を位置させてから、前記固化工程での樹脂の固化を進行させ、
     前記樹脂が、複数種類からなり、溶融状態から他の樹脂より速い所定の固化速度で固化する一の樹脂を少なくとも含み、
     前記送入工程では、前記一の樹脂と他の樹脂を所定の順序で送入し、
     前記固化工程で、前記空間部が通じた型に対しては、当該型と前記他の樹脂との間に前記一の樹脂を介在させて固化を進行させ、少なくとも前記一の樹脂を固化させる、コア部製造方法。
    A core body formed by laminating a plurality of thin plates made of a magnetic metal material is positioned between a pair of molds, a plurality of spaces in the core body are filled with resin, and a part of a rotor or stator of a rotating electrical machine is manufactured. In the core portion manufacturing method for manufacturing the core portion forming
    a feeding step of feeding the resin held by the resin holding portion positioned on one mold side of the pair of molds into the space portion of the core body;
    and at least a solidification step of solidifying the molten resin in the space while sandwiching the core body between the pair of molds,
    In the feeding step, the fed resin is melted in the space, or the melted resin is fed into the space, and the melted resin is positioned in the space, and then the solidification step Let the solidification of the resin proceed at
    The resin is composed of a plurality of types and includes at least one resin that solidifies from a molten state at a predetermined solidification speed faster than other resins,
    In the feeding step, the one resin and the other resin are fed in a predetermined order,
    In the solidification step, for the mold through which the space communicates, the one resin is interposed between the mold and the other resin to proceed with solidification, and at least the one resin is solidified. Core manufacturing method.
  2.  前記請求項1に記載のコア部製造方法において、
     前記鉄心本体が、上下一対の型間に位置し、
     前記樹脂保持部が、上下一対の型のうち上型側に位置して、樹脂を前記空間部に上から送入可能とし、前記一の樹脂を上層、前記他の樹脂を下層とする積層状態で保持し、
     前記送入工程では、前記樹脂保持部で保持される樹脂を、前記他の樹脂、前記一の樹脂の順で送入し、
     前記固化工程の直前には、溶融した前記他の樹脂の層の上側に、溶融した前記一の樹脂の層が位置している、コア部製造方法。
    In the core part manufacturing method according to claim 1,
    The core body is positioned between a pair of upper and lower molds,
    The resin holding part is positioned on the upper mold side of the pair of upper and lower molds so that the resin can be fed into the space from above, and a laminated state in which the one resin is the upper layer and the other resin is the lower layer. hold with
    In the feeding step, the resin held by the resin holding portion is fed in the order of the other resin and the first resin,
    The method for manufacturing a core part, wherein the melted layer of the first resin is positioned on the upper side of the melted layer of the other resin immediately before the solidifying step.
  3.  前記請求項1に記載のコア部製造方法において、
     前記鉄心本体が、上下一対の型間に位置し、
     前記樹脂保持部が、上下一対の型のうち上型側に位置して、樹脂を前記空間部に上から送入可能とし、前記一の樹脂を上層と下層、前記他の樹脂を中間層とする積層状態で保持し、
     前記送入工程では、前記樹脂保持部で保持される樹脂を、前記一の樹脂、前記他の樹脂、一の樹脂の順で送入し、
     前記固化工程の直前には、溶融した前記他の樹脂の層の上側と下側に、溶融した前記一の樹脂の層がそれぞれ位置している、コア部製造方法。
    In the core part manufacturing method according to claim 1,
    The core body is positioned between a pair of upper and lower molds,
    The resin holding part is positioned on the upper mold side of the pair of upper and lower molds so that the resin can be fed into the space from above, and the one resin is used as an upper layer and a lower layer, and the other resin is used as an intermediate layer. Holds in a stacked state to
    In the feeding step, the resin held by the resin holding portion is fed in the order of the first resin, the other resin, and the first resin,
    The method for manufacturing a core part, wherein immediately before the solidifying step, the melted one resin layer is positioned above and below the melted other resin layer.
  4.  前記請求項2又は3に記載のコア部製造方法において、
     前記鉄心本体における上端面と前記上型との間に補助プレートが配置され、
     前記送入工程では、前記補助プレートの樹脂通路を通じて、樹脂を前記空間部に送入可能とされ、
     前記固化工程の直前における、溶融した前記他の樹脂の層と、当該層の上側の溶融した前記一の樹脂の層との境界を、前記補助プレートの樹脂通路に位置させる、コア部製造方法。
    In the core part manufacturing method according to claim 2 or 3,
    An auxiliary plate is arranged between the upper end surface of the core body and the upper die,
    In the feeding step, the resin can be fed into the space through the resin passage of the auxiliary plate,
    A method of manufacturing a core portion, wherein a boundary between the melted layer of the other resin and the melted layer of the first resin above the layer is located in the resin passage of the auxiliary plate immediately before the solidification step.
  5.  前記請求項1に記載のコア部製造方法において、
     前記鉄心本体が、上下一対の型間に位置し、
     前記樹脂保持部が、上下一対の型のうち下型側に位置して、樹脂を前記空間部に下から送入可能とし、前記一の樹脂を下層、前記他の樹脂を上層とする積層状態で保持し、
     前記送入工程では、前記樹脂保持部で保持される樹脂を、前記他の樹脂、前記一の樹脂の順で送入し、
     前記固化工程の直前には、溶融した前記他の樹脂の層の下側に、溶融した前記一の樹脂の層が位置している、コア部製造方法。
    In the core part manufacturing method according to claim 1,
    The core body is positioned between a pair of upper and lower molds,
    The resin holding part is positioned on the lower mold side of the pair of upper and lower molds, and allows the resin to be fed into the space from below, and a laminated state in which the one resin is the lower layer and the other resin is the upper layer. hold with
    In the feeding step, the resin held by the resin holding portion is fed in the order of the other resin and the first resin,
    The method for manufacturing a core part, wherein the melted layer of the first resin is positioned below the melted layer of the other resin immediately before the solidifying step.
  6.  前記請求項1に記載のコア部製造方法において、
     前記鉄心本体が、上下一対の型間に位置し、
     前記樹脂保持部が、上下一対の型のうち下型側に位置して、樹脂を前記空間部に下から送入可能とし、前記一の樹脂を上層と下層、前記他の樹脂を中間層とする積層状態で保持し、
     前記送入工程では、前記樹脂保持部で保持される樹脂を、前記一の樹脂、前記他の樹脂、前記一の樹脂の順で送入し、
     前記固化工程の直前には、溶融した前記他の樹脂の層の上側と下側に、溶融した前記一の樹脂の層がそれぞれ位置している、コア部製造方法。
    In the core part manufacturing method according to claim 1,
    The core body is positioned between a pair of upper and lower molds,
    The resin holding part is positioned on the lower mold side of the pair of upper and lower molds so that the resin can be fed into the space from below. Holds in a stacked state to
    In the feeding step, the resin held by the resin holding portion is fed in the order of the one resin, the other resin, and the one resin,
    The method for manufacturing a core part, wherein immediately before the solidifying step, the melted one resin layer is positioned above and below the melted other resin layer.
  7.  前記請求項1から3、5、及び6のいずれかに記載のコア部製造方法において、
     前記固化工程の直前における、溶融した前記他の樹脂の層と、当該層に対し前記一方の型側に位置する、溶融した前記一の樹脂の層との境界を、前記一方の型側の前記鉄心本体の端部近傍における前記空間部に位置させる、コア部製造方法。
    In the core part manufacturing method according to any one of claims 1 to 3, 5 and 6,
    Immediately before the solidification step, the boundary between the melted other resin layer and the melted one resin layer located on the one mold side with respect to the layer is moved to the one mold side. A method for manufacturing a core portion, wherein the core portion is positioned in the space portion near the end portion of the core body.
  8.  前記請求項1から7のいずれかに記載のコア部製造方法において、
     前記送入工程で、前記樹脂保持部で溶融された樹脂を、永久磁石挿入済の前記空間部へ向けて注入するコア部製造方法。
    In the core part manufacturing method according to any one of claims 1 to 7,
    The method of manufacturing a core part, wherein in the feeding step, the resin melted in the resin holding part is injected toward the space part into which the permanent magnet has been inserted.
  9.  前記請求項1から7のいずれかに記載のコア部製造方法において、
     前記送入工程で、前記樹脂保持部で保持される未溶融状態の樹脂を送入してから、前記空間部に永久磁石を挿入すると共に、送入した樹脂を前記空間部で溶融させる、コア部製造方法。
    In the core part manufacturing method according to any one of claims 1 to 7,
    In the feeding step, after feeding unmelted resin held by the resin holding portion, a permanent magnet is inserted into the space, and the fed resin is melted in the space. part manufacturing method.
  10.  磁性金属材料製の薄板が複数積層されて形成された鉄心本体を一対の型の間に位置させ、鉄心本体における複数の空間部に樹脂を充填し、回転電機の回転子又は固定子の一部をなすコア部を製造する、コア部製造装置において、
     前記一対の型のうち一方の型側に位置して、樹脂を保持すると共に前記鉄心本体の空間部に樹脂を送入可能とされる樹脂保持部と、
     前記一対の型により前記鉄心本体を挟持しつつ、前記空間部で溶融状態にある樹脂を加圧すると共に樹脂の固化を進行させる充填機構部とを備え、
     前記樹脂が、複数種類からなり、溶融状態から他の樹脂より速い所定の固化速度で固化する一の樹脂を少なくとも含み、
     前記樹脂保持部が、前記一の樹脂と他の樹脂を所定の順序で送入し、
     前記充填機構部が、前記空間部が通じた型に対し、当該型と前記他の樹脂との間に前記一の樹脂を介在させつつ、少なくとも前記一の樹脂を固化させる、コア部製造装置。
    A core body formed by laminating a plurality of thin plates made of a magnetic metal material is positioned between a pair of molds, a plurality of spaces in the core body are filled with resin, and a part of a rotor or stator of a rotating electrical machine is manufactured. In a core part manufacturing device that manufactures a core part that forms
    a resin holding part positioned on one mold side of the pair of molds, holding a resin and capable of feeding the resin into the space of the core body;
    a filling mechanism unit that pressurizes the molten resin in the space and advances the solidification of the resin while holding the core body between the pair of molds;
    The resin is composed of a plurality of types and includes at least one resin that solidifies from a molten state at a predetermined solidification speed faster than other resins,
    The resin holding unit feeds the one resin and the other resin in a predetermined order,
    The core part manufacturing apparatus, wherein the filling mechanism part solidifies at least the one resin while interposing the one resin between the mold and the other resin with respect to the mold through which the space communicates.
  11.  磁性金属材料製の薄板が複数積層されて形成された鉄心本体における複数の空間部に磁石が設けられている、回転電機の回転子又は固定子の一部をなすコア部であって、
     前記空間部において一の樹脂を固化させてなる第一樹脂部分と当該一の樹脂よりも固化速度が遅い他の樹脂を固化させてなる第二樹脂部分とが、前記磁石と前記鉄心本体との隙間を埋めており、
     前記鉄心本体の積層方向における前記空間部の少なくとも一方の端面には、前記一の樹脂が設けられている、コア部。
    A core portion forming a part of a rotor or stator of a rotating electric machine, in which magnets are provided in a plurality of spaces in an iron core body formed by laminating a plurality of thin plates made of a magnetic metal material,
    A first resin portion formed by solidifying one resin in the space portion and a second resin portion formed by solidifying another resin whose solidifying speed is slower than that of the one resin are formed between the magnet and the core body. fills the gap,
    The core portion, wherein the one resin is provided on at least one end face of the space portion in the stacking direction of the core body.
  12.  前記鉄心本体の積層方向における前記空間部の両方の端面には、前記一の樹脂が設けられている、請求項11に記載のコア部。 12. The core part according to claim 11, wherein the one resin is provided on both end faces of the space part in the stacking direction of the core body.
  13.  前記一の樹脂と前記他の樹脂とは流動性が略同一な樹脂である、請求項11のコア部。 The core part of claim 11, wherein said one resin and said other resin are resins having substantially the same fluidity.
PCT/JP2022/031419 2021-08-20 2022-08-19 Manufacturing method for core of rotating electric machine, core manufacturing device, and core WO2023022232A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021134762A JP2023028833A (en) 2021-08-20 2021-08-20 Core part producing method and core part producing device for rotary electric machines
JP2021-134762 2021-08-20

Publications (1)

Publication Number Publication Date
WO2023022232A1 true WO2023022232A1 (en) 2023-02-23

Family

ID=85240631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031419 WO2023022232A1 (en) 2021-08-20 2022-08-19 Manufacturing method for core of rotating electric machine, core manufacturing device, and core

Country Status (2)

Country Link
JP (1) JP2023028833A (en)
WO (1) WO2023022232A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016171648A (en) * 2015-03-12 2016-09-23 トヨタ自動車株式会社 Resin molding method and resin molding device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016171648A (en) * 2015-03-12 2016-09-23 トヨタ自動車株式会社 Resin molding method and resin molding device

Also Published As

Publication number Publication date
JP2023028833A (en) 2023-03-03

Similar Documents

Publication Publication Date Title
CN109075669B (en) Resin sealing device and resin sealing method for magnet-embedded iron core
US11201527B2 (en) Device, method, and jig for manufacturing magnet embedded core
KR101030482B1 (en) Method of resin sealing permanent magnets in laminated rotor core
JP2000152570A (en) Manufacture of magnet core
JP2012223024A (en) Laminate iron core manufacturing method
EP3603926B1 (en) Method and apparatus for injection moulding an iron core product
JP6434254B2 (en) Manufacturing method of laminated core and manufacturing apparatus of laminated core
CN113632348A (en) Method for manufacturing motor iron core
WO2023022232A1 (en) Manufacturing method for core of rotating electric machine, core manufacturing device, and core
CN107919770B (en) Rotor manufacturing method
US20220247289A1 (en) Core part manufacturing method and core part manufacturing apparatus of rotary electric machine
JP7414666B2 (en) Core manufacturing equipment
JP2015023597A (en) Resin filling device and resin filling method for rotor for rotary electric machine
WO2021176658A1 (en) Method for producing iron core product and apparatus for producing iron core product
JP2023119467A (en) Method and device for manufacturing core unit of rotary electric machine
CN111162645A (en) Method for manufacturing rotor core and rotor core
JP4210839B2 (en) Method for manufacturing motor stator piece
WO2022114153A1 (en) Rotor core and method for manufacturing rotor core
JP2024024954A (en) Rotor for rotating electric machines
JP2024024956A (en) Rotor manufacturing equipment for rotating electric machines and rotor manufacturing equipment for rotating electric machines
KR20230135915A (en) Manufacturing method for laminated core

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE