WO2023022126A1 - Gas separation membrane - Google Patents

Gas separation membrane Download PDF

Info

Publication number
WO2023022126A1
WO2023022126A1 PCT/JP2022/030868 JP2022030868W WO2023022126A1 WO 2023022126 A1 WO2023022126 A1 WO 2023022126A1 JP 2022030868 W JP2022030868 W JP 2022030868W WO 2023022126 A1 WO2023022126 A1 WO 2023022126A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas separation
separation membrane
functional group
silica nanoparticles
chemical formula
Prior art date
Application number
PCT/JP2022/030868
Other languages
French (fr)
Japanese (ja)
Inventor
浩良 川上
正文 山登
しおり 東
拓夢 森田
Original Assignee
東京都公立大学法人
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京都公立大学法人 filed Critical 東京都公立大学法人
Priority to JP2023542396A priority Critical patent/JPWO2023022126A1/ja
Publication of WO2023022126A1 publication Critical patent/WO2023022126A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to gas separation membranes.
  • This application claims priority based on Japanese Patent Application No. 2021-134151 filed in Japan on August 19, 2021, the content of which is incorporated herein.
  • a method of separating gases using a gas separation membrane containing polymers and inorganic particles is known.
  • the gas separation method using a gas separation membrane (hereinafter referred to as "polymer gas separation membrane method”) can separate and recover gas without phase change of gas, compared to other gas separation methods
  • the operation is simple, the device can be made compact, and gas separation can be performed continuously, so it has the characteristic of having little environmental load.
  • such a polymer gas separation membrane method has attracted attention as a technique for separating and recovering greenhouse gases, producing oxygen-enriched air, and purifying natural gas, and is expected to be put into practical use.
  • further improvement is required in terms of gas separation performance and gas permeation characteristics such as gas permeation amount.
  • MMM Mated-Matrix Membrane
  • MMM is a polymer composite membrane in which nanoparticles having high gas separation performance and gas permeation function are contained in the polymer membrane.
  • gas separation membrane for example, surface hyperbranched modified silica nanoparticles obtained by adding a hyperbranched polymer to the surface of silica nanoparticles having a nano-order particle size, or dendrimer polymers added to the surface of the silica nanoparticles. and a matrix resin are known (see, for example, Patent Document 1).
  • Gas separation membranes are required to further improve their gas permeation properties.
  • the gas separation membrane of Patent Document 1 has a problem that sufficient gas permeation characteristics are not obtained in practical use.
  • the gas separation membrane is treated with methanol to temporarily improve the performance.
  • the gas permeation property of the gas separation membrane is improved by about 5 to 10 times by the methanol treatment, there is a problem that the gas permeation property is dramatically reduced after several hours to several days.
  • the present invention has been made in view of the above circumstances, and has excellent gas permeation characteristics, and even without methanol treatment, gas permeation characteristics comparable to or higher than those of conventional gas separation membranes subjected to methanol treatment.
  • An object of the present invention is to provide a gas separation membrane that provides
  • the present invention has the following aspects.
  • a gas separation membrane composed of a composite material containing silica nanoparticles and a polymer, wherein the silica nanoparticles are surface functional group-modified silica nanoparticles surface-modified with a functional group-containing silane coupling agent. and the functional group-containing silane coupling agent is at least one selected from the group consisting of a compound represented by the following chemical formula (1), the following chemical formula (2), and the following chemical formula (3) , gas separation membrane.
  • Y is a divalent organic group (where Y contains a single bond)
  • Z is a monovalent It is an organic group.
  • the functional group - containing silane coupling agent has the following chemical formula :
  • Z is —CH ⁇ CH 2 , —CCH 3 ⁇ CH 2 , —C ⁇
  • Z is a group represented by the following chemical formula (6)
  • the gas separation membrane according to [1] which is a glycidyloxyalkylsilane group represented by the chemical formula (7) of
  • the Z is —O—(C ⁇ O)—CH ⁇ CH 2
  • a gas separation membrane which is excellent in gas permeation characteristics and which can obtain gas permeation characteristics equal to or higher than those of conventional gas separation membranes treated with methanol without methanol treatment. can be done.
  • the gas separation membrane of this embodiment is composed of a composite material containing silica nanoparticles and a polymer.
  • Silica nanoparticles are surface functional group-modified silica nanoparticles that are surface-modified with a functional group-containing silane coupling agent described below.
  • the gas separation membrane of the present embodiment is formed by depositing a composite material containing silica nanoparticles and a polymer to an arbitrary thickness.
  • the content of silica nanoparticles is 20% by mass or more, preferably 30% by mass or more, more preferably more than 50% by mass, and 60% by mass or more and 85% by mass. More preferably: If the content of silica nanoparticles is less than 20% by mass, the effect of improving the gas permeation characteristics of the gas separation membrane cannot be obtained.
  • the gas separation membrane of the present embodiment has a silica nanoparticle content of 20% by mass or more, and therefore has a structure in which a polymer is contained in the silica nanoparticle matrix.
  • the thickness of the gas separation membrane is adjusted as appropriate according to the location where the gas separation membrane is installed and the use of the gas separation membrane.
  • Silica nanoparticles Silica nanoparticles have hydroxyl groups (—OH groups) on their surfaces.
  • the number of hydroxyl groups present on the surface of the silica nanoparticles is preferably 1 nm ⁇ 2 or more and 4 nm ⁇ 2 or less. When the number of hydroxyl groups is within the above range, a gas separation membrane made of the above composite material can be formed even if the content of silica nanoparticles exceeds 50% by mass.
  • the amount of methane generated by the reaction between the Grignard reagent (CH 3 MgI) and the hydroxyl groups present on the surface of the silica nanoparticles is quantified.
  • the particle size of silica nanoparticles is preferably 1 nm or more.
  • a gas separation membrane made of the composite material can be formed even if the content of the silica nanoparticles exceeds 50% by mass.
  • Examples of methods for measuring the particle size of silica nanoparticles include a method using a transmission electron microscope (TEM), a dynamic light scattering method, a differential electrical mobility measurement method, and the like.
  • TEM transmission electron microscope
  • dynamic light scattering method dynamic light scattering method
  • differential electrical mobility measurement method differential electrical mobility measurement method
  • the functional group-containing silane coupling agent is at least one selected from the group consisting of the compound represented by the following chemical formula (1), the following chemical formula (2) and the following chemical formula (3). That is, these functional group-containing silane coupling agents may be used singly or in combination of two or more.
  • Y is a divalent organic group (where Y contains a single bond)
  • Z is a monovalent It is an organic group.
  • Certain olefinylsilanes are preferred.
  • Z is a group represented by the following chemical formula (6)
  • Glycidyloxyalkylsilane which is the group represented by (7), is preferred.
  • -O-( Acryloyloxyalkylsilanes where C ⁇ O)—CCH 3 ⁇ CH 2 — are preferred.
  • R is an alkyl or aryl group having 0 to 4 carbon atoms.
  • functional group-containing silane coupling agents include vinyltrimethoxysilane represented by the following chemical formula (9), 3-methacryloxypropyltrimethoxysilane represented by the following chemical formula (10), N-phenyl-3-aminopropyltrimethoxysilane represented by the following chemical formula (11), phenyltrimethoxysilane represented by the following chemical formula (12), 3-glycides represented by the following chemical formula (13) xypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane represented by the following chemical formula (14), N-2-(aminoethyl)-3-aminopropyltrimethoxysilane represented by the following chemical formula (15) , 3-mercaptopropyltrimethoxysilane represented by the following chemical formula (16), 3-isocyanatotrimethoxysilane represented by the following chemical formula (17), 3-isocyanatotrimethoxysilane represented by the following chemical formula (18) Methoxys
  • the functional group-containing silane coupling agent modification ratio is expressed as a ratio to the hydroxyl groups present on the surface of the silica nanoparticles, and is preferably 0.5 or more and 8 or less.
  • the functional group-containing silane coupling agent modification rate is within the above range, even if the content of the functional group-containing silane coupling agent exceeds 50% by mass, a gas separation membrane made of the composite material can be formed. can be done.
  • silica nanoparticles examples include silica nanoparticles surface-modified with N-phenyl-3-aminopropyltrimethoxysilane represented by the following chemical formula (19) and represented by the above chemical formula (11), Silica nanoparticles surface-modified with vinyltrimethoxysilane represented by the following formula (20) and represented by the above chemical formula (9), represented by the following formula (21), and represented by the above chemical formula (10) Silica nanoparticles surface-modified with 3-methacryloxypropyltrimethoxysilane, silica nanoparticles surface-modified with phenyltrimethoxysilane represented by the following formula (22), the above chemical formula (12), etc. are mentioned.
  • the polymer is not particularly limited as long as it contains surface functional group-modified silica nanoparticles and can be formed into a thin film, and as long as it contains surface functional group-modified silica nanoparticles and can be formed into a thin film. It is not particularly limited.
  • Polymers include, for example, polyimide, polysulfone, polyether, polydimethylsiloxane, polysubstituted acetylene, poly-4-methylpentene, and natural rubber.
  • a glassy polymer or a rubbery polymer which will be described later, is preferable.
  • glassy polymers such as the compound (PIM-1) represented by the following chemical formula (23) and the compound (6FDA-3MPA) represented by the following chemical formula (24) are preferably used. be done.
  • the compound (PIM-1) represented by formula (23) above is an intrinsic microporous polymer.
  • An intrinsic microporous polymer is a polymer that has a rigid ladder-like structure and a bent skeleton and forms micropores inside the membrane.
  • the weight average molecular weight (Mw) of PIM-1 is preferably 1.0 ⁇ 10 5 or more and 5.0 ⁇ 10 5 or less.
  • the molecular weight distribution (Mw/Mn) of PIM-1 is preferably 1 or more and 20 or less.
  • the molecular weight distribution (Mw/Mn) is represented by the weight average molecular weight (Mw) relative to the number average molecular weight (Mn) of PIM-1.
  • the compound (6FDA-3MPA) represented by the above formula (24) is a fluorine-containing polyimide.
  • the weight average molecular weight (Mw) of 6FDA-3MPA is preferably 1.0 ⁇ 10 5 or more and 5.0 ⁇ 10 5 or less. Further, the molecular weight distribution (Mw/Mn) of 6FDA-3MPA is preferably 1 or more and 5 or less.
  • a rubber-like polymer represented by the following formula (25) is preferably used.
  • the gas separation membrane of the present embodiment is composed of a composite material containing silica nanoparticles and a polymer, and the silica nanoparticles are surface functional group-modified silica nanoparticles that are surface-modified with a functional group-containing silane coupling agent.
  • the functional group-containing silane coupling agent is at least one selected from the group consisting of the compound represented by the above chemical formula (1), the above chemical formula (2), and the above chemical formula (3).
  • the method for producing a gas separation membrane of the present embodiment includes a step of adding surface functional group-modified silica nanoparticles to a solution prepared by dissolving a polymer in a solvent, stirring and mixing to form a uniform solution, and a casting method. and the like to form a coating film made of the solution, and a step of drying the coating film.
  • the solvent for dissolving the polymer is not particularly limited as long as it can dissolve the polymer, and examples thereof include tetrahydrofuran (THF).
  • Example 2 Purification of intrinsic microporous polymer (PIM-1)"
  • PIM-1 intrinsic microporous polymer
  • Example 3 "Gel Permeation Chromatography (GPC) Measurement of Inherent Microporous Polymer (PIM-1)"
  • GPC GPC measurement of Inherent Microporous Polymer
  • the purified product had a high molecular weight with a wide molecular weight distribution (weight average molecular weight: 4.7 ⁇ 10 5 , polydispersity index: 10.5) to a relatively low molecular weight distribution with a narrow molecular weight distribution (weight average molecular weight: 1 up to .1 ⁇ 10 5 , polydispersity index 1.6).
  • Example 4 "Formation of organic-inorganic composite gas separation membrane using PIM-1 (molecular weight: weight average molecular weight 500,000) and surface functional group-modified silica nanoparticles (1)" After dissolving 0.15 g of an intrinsic microporous polymer, PIM-1 (see formula (23) below), in 6.7 mL of tetrahydrofuran (THF), the polymer solution has a content of 60% by weight relative to the polymer. As shown, the surface functional group-modified silica nanoparticles (1) were added and sonicated for 1 hour. As the surface functional group-modified silica nanoparticles (1), those represented by the above chemical formula (19) were used.
  • the polymer solution was stirred overnight at a stirring speed of 1200 rpm, and after stirring was again subjected to ultrasonic treatment for 1 hour. After that, this polymer solution was cast on a glass petri dish with a diameter of 6 cm. After that, the glass petri dish was placed in an oven set at 30° C., and the oven was evacuated for 6 hours to prepare a composite membrane. The produced composite membrane was heat-treated at 70° C. for 18 hours. The film thickness of the obtained film was 79 ⁇ m.
  • Example 5 "Gas Permeability of Composite Gas Separation Membrane of PIM-1 (Molecular Weight: Weight Average Molecular Weight 500,000) and Surface Functional Group-Modified Silica Nanoparticles (1)"
  • the gas permeability of the composite membrane obtained in Example 4 was measured.
  • K-315N-01C manufactured by Rika Seiki Kogyo Co., Ltd. was used for the gas permeability measurement. Oxygen and nitrogen were used as supply gases, and the measurement conditions were a temperature of 35° C. and a pressure difference of 76 cmHg. Table 1 shows the results.
  • the composite gas separation membrane of Example 4 had an oxygen permeability about four times that of the PIM-1 gas separation membrane of Comparative Example 1.
  • Example 6 "Formation of organic-inorganic composite gas separation membrane using PIM-1 (molecular weight: weight average molecular weight 500,000) and surface functional group-modified silica nanoparticles (2)" After dissolving 0.15 g of the intrinsic microporous polymer, PIM-1 (see formula (23) above), in 6.7 mL of tetrahydrofuran (THF), the polymer solution has a content of 20% by weight relative to the polymer. As shown, the surface functional group-modified silica nanoparticles (2) were added and sonicated for 1 hour. As the surface functional group-modified silica nanoparticles (2), those represented by the above formula (20) were used.
  • the polymer solution was stirred overnight at a stirring speed of 1200 rpm, and after stirring was again subjected to ultrasonic treatment for 1 hour. After that, this polymer solution was cast on a glass petri dish with a diameter of 6 cm. After that, the glass petri dish was placed in an oven set at 30° C., and the oven was evacuated for 6 hours to prepare a composite membrane. The produced composite membrane was heat-treated at 70° C. for 18 hours. The film thickness of the obtained film was 51 ⁇ m.
  • Example 7 "Gas Permeability of Composite Gas Separation Membrane of PIM-1 (Molecular Weight: Weight Average Molecular Weight 500,000) and Surface Functional Group-Modified Silica Nanoparticles (2)"
  • the gas permeability of the composite membrane obtained in Example 6 was measured.
  • K-315N-01C manufactured by Rika Seiki Kogyo Co., Ltd. was used for the gas permeability measurement. Oxygen and nitrogen were used as supply gases, and the measurement conditions were a temperature of 35° C. and a pressure difference of 76 cmHg. Table 2 shows the results.
  • Example 8 "Formation of organic-inorganic composite gas separation membrane using PIM-1 (molecular weight: weight average molecular weight 500,000) and surface functional group-modified silica nanoparticles (2)"
  • An organic-inorganic composite gas separation membrane was produced in the same manner as in Example 6, except that the amount of the surface functional group-modified silica nanoparticles (2) added was 40% by mass.
  • the gas permeability of the resulting composite membrane was measured in the same manner as in Example 7. Table 2 shows the results.
  • Example 9 "Formation of organic-inorganic composite gas separation membrane using PIM-1 (molecular weight: weight average molecular weight 500,000) and surface functional group-modified silica nanoparticles (2)"
  • An organic-inorganic composite gas separation membrane was produced in the same manner as in Example 6, except that the amount of the surface functional group-modified silica nanoparticles (2) added was 60% by mass.
  • the gas permeability of the resulting composite membrane was measured in the same manner as in Example 7. Table 2 shows the results.
  • Example 10 "Formation of organic-inorganic composite gas separation membrane using PIM-1 (molecular weight: weight average molecular weight 500,000) and surface functional group-modified silica nanoparticles (2)"
  • An organic-inorganic composite gas separation membrane was produced in the same manner as in Example 6, except that the amount of the surface functional group-modified silica nanoparticles (2) added was 70% by mass.
  • the gas permeability of the resulting composite membrane was measured in the same manner as in Example 7. Table 2 shows the results.
  • Example 6 had an oxygen permeability about 2.7 times that of Comparative Example 2.
  • Example 8 had an oxygen permeability about 5.3 times that of Comparative Example 2.
  • Example 9 had an oxygen permeability of about 9.8 times that of Comparative Example 2.
  • Example 10 had an oxygen permeability of about 10.8 times that of Comparative Example 2.
  • Example 11 "Formation of Organic-Inorganic Composite Gas Separation Membrane Using PIM-1 (Molecular Weight: Weight Average Molecular Weight 100,000) and Surface Functional Group-Modified Silica Nanoparticles (1)"
  • PIM-1 Molecular Weight Average Molecular Weight 100,000
  • SPF tetrahydrofuran
  • the polymer solution has a content of 50% by weight relative to the polymer.
  • the surface functional group-modified silica nanoparticles (1) were added and sonicated for 1 hour.
  • the surface functional group-modified silica nanoparticles (1) those represented by the above formula (1) were used.
  • the polymer solution was stirred overnight at a stirring speed of 1200 rpm, and after stirring was again subjected to ultrasonic treatment for 1 hour. After that, this polymer solution was cast on a glass petri dish with a diameter of 6 cm. After that, the glass petri dish was placed in an oven set at 30° C., and the oven was evacuated for 6 hours to prepare a composite membrane. The produced composite membrane was heat-treated at 70° C. for 18 hours. The film thickness of the obtained film was 67 ⁇ m.
  • Example 12 "Gas Permeability of Composite Gas Separation Membrane of PIM-1 (Molecular Weight: Weight Average Molecular Weight 100,000) and Surface Functional Group-Modified Silica Nanoparticles (1)"
  • the gas permeability of the composite membrane obtained in Example 11 was measured.
  • K-315N-01C manufactured by Rika Seiki Kogyo Co., Ltd. was used for the gas permeability measurement. Carbon dioxide, oxygen, nitrogen, and methane were used as supply gases, and the measurement conditions were a temperature of 35° C. and a pressure difference of 76 cmHg. Table 3 shows the results.
  • Example 13 "Formation of Organic-Inorganic Composite Gas Separation Membrane Using PIM-1 (Molecular Weight: Weight Average Molecular Weight 100,000) and Surface Functional Group-Modified Silica Nanoparticles (1)"
  • An organic-inorganic composite gas separation membrane was produced in the same manner as in Example 11, except that the amount of silica nanoparticles (1) added was 80% by mass.
  • the gas permeability of the resulting composite membrane was measured in the same manner as in Example 12. Table 3 shows the results.
  • Example 11 has an oxygen permeability of about 1.4 times, a carbon dioxide permeability of about 1.3 times, and a nitrogen permeability of about 1.5 times that of Comparative Example 3. , and the methane permeability was about 1.8 times.
  • Example 13 had an oxygen permeability of about 6.4 times and a nitrogen permeability of about 8.9 times that of Comparative Example 3.
  • Example 14 "Formation of Organic-Inorganic Composite Gas Separation Membrane Using PIM-1 (Molecular Weight: Weight Average Molecular Weight 100,000) and Surface Functional Group-Modified Silica Nanoparticles (2)" After dissolving 0.15 g of the intrinsic microporous polymer, PIM-1 (see formula (23) above), in 6.7 mL of tetrahydrofuran (THF), the polymer solution has a content of 60% by weight relative to the polymer. As shown, the surface functional group-modified silica nanoparticles (2) were added and sonicated for 1 hour. As the surface functional group-modified silica nanoparticles (2), those represented by the above chemical formula (20) were used.
  • the polymer solution was stirred overnight at a stirring speed of 1200 rpm, and after stirring was again subjected to ultrasonic treatment for 1 hour. After that, this polymer solution was cast on a glass petri dish with a diameter of 6 cm. After that, the glass petri dish was placed in an oven set at 30° C., and the oven was evacuated for 6 hours to prepare a composite membrane. The produced composite membrane was heat-treated at 70° C. for 18 hours. The film thickness of the obtained film was 94 ⁇ m.
  • Example 15 "Gas Permeability of Composite Gas Separation Membrane of PIM-1 (Molecular Weight: Weight Average Molecular Weight 100,000) and Surface Functional Group-Modified Silica Nanoparticles (2)"
  • the gas permeability of the composite membrane obtained in Example 14 was measured.
  • K-315N-01C manufactured by Rika Seiki Kogyo Co., Ltd. was used for the gas permeability measurement. Carbon dioxide, oxygen, nitrogen, and methane were used as supply gases, and the measurement conditions were a temperature of 35° C. and a pressure difference of 76 cmHg. Table 4 shows the results.
  • Example 16 "Formation of Organic-Inorganic Composite Gas Separation Membrane Using PIM-1 (Molecular Weight: Weight Average Molecular Weight 100,000) and Surface Functional Group-Modified Silica Nanoparticles (2)"
  • An organic-inorganic composite gas separation membrane was produced in the same manner as in Example 14, except that the amount of the surface functional group-modified silica nanoparticles (2) added was 85% by mass.
  • the gas permeability of the resulting composite membrane was measured in the same manner as in Example 15. Table 4 shows the results.
  • Example 14 had an oxygen permeability of about 5.5 times and a nitrogen permeability of about 7.9 times that of Comparative Example 4.
  • Example 16 has an oxygen permeability of about 14.6 times, a carbon dioxide permeability of about 13.9 times, a nitrogen permeability of about 22.2 times, and a methane permeability of about 22.2 times that of Comparative Example 4. It was about 30.6 times.
  • Example 17 Evaluation of Gas Permeation Stability of Organic-Inorganic Composite Gas Separation Membrane Using PIM-1 (Molecular Weight: Weight Average Molecular Weight 100,000) and Surface Functional Group-Modified Silica Nanoparticles (2)"
  • the composite gas separation membrane of Example 15 containing 60% by mass of the intrinsic microporous polymer synthesized in Example 1, PIM-1 (see chemical formula (23) above) and surface functional group-modified silica nanoparticles (2) at room temperature It was preserved in a desiccator containing silica gel for 14 days. After that, the gas permeability measurement of the composite membrane was performed.
  • K-315N-01C manufactured by Rika Seiki Kogyo Co., Ltd. was used. Oxygen and nitrogen were used as supply gases, and the measurement conditions were a temperature of 35° C. and a pressure difference of 76 cmHg. Table 5 shows the results.
  • Example 20 "Formation of Organic-Inorganic Composite Gas Separation Membrane Using 6FDA-3MPA and Surface Functional Group-Modified Silica Nanoparticles (1)" After dissolving 1.5 g of fluorine-containing polyimide, 6FDA-3MPA (see chemical formula (24) below) in 6.7 mL of tetrahydrofuran (THF), add The surface functional group-modified silica nanoparticles (1) were added to the solution and subjected to ultrasonic treatment for 1 hour. As the surface functional group-modified silica nanoparticles (1), those represented by the above chemical formula (19) were used.
  • This polymer solution was stirred overnight with a magnetic stirrer, and after stirring, was again subjected to ultrasonic treatment for 1 hour. After that, this polymer solution was cast on a glass petri dish with a diameter of 6 cm. After that, the glass petri dish was placed in an oven set at 30° C., and the oven was evacuated for 4 hours to prepare a composite membrane. The produced composite membrane was heat-treated at 150° C. for 15 hours. The film thickness of the obtained film was 35 ⁇ m.
  • Example 21 "Gas Permeability of Composite Gas Separation Membrane of 6FDA-3MPA and Surface Functional Group Modified Silica Nanoparticles (1)"
  • the gas permeability of the composite membrane obtained in Example 20 was measured.
  • K-315N-01C manufactured by Rika Seiki Kogyo Co., Ltd. was used for the gas permeability measurement. Oxygen and nitrogen were used as supply gases, and the measurement conditions were a temperature of 35° C. and a pressure difference of 76 cmHg. Table 6 shows the results.
  • Example 22 "Gas Permeability of Composite Gas Separation Membrane of 6FDA-3MPA and Surface Functional Group Modified Silica Nanoparticles (1)"
  • An organic-inorganic composite gas separation membrane was produced in the same manner as in Example 20, except that the amount of surface functional group-modified silica nanoparticles (1) added was 40% by mass.
  • the gas permeability of the obtained composite membrane was measured in the same manner as in Example 21. Table 6 shows the results.
  • Example 23 "Gas Permeability of Composite Gas Separation Membrane of 6FDA-3MPA and Surface Functional Group Modified Silica Nanoparticles (1)"
  • An organic-inorganic composite gas separation membrane was produced in the same manner as in Example 20, except that the amount of surface functional group-modified silica nanoparticles (1) added was 60% by mass.
  • the gas permeability of the obtained composite membrane was measured in the same manner as in Example 21. Table 6 shows the results.
  • Example 24 "Gas Permeability of Composite Gas Separation Membrane of 6FDA-3MPA and Surface Functional Group Modified Silica Nanoparticles (1)"
  • An organic-inorganic composite gas separation membrane was produced in the same manner as in Example 20, except that the amount of surface functional group-modified silica nanoparticles (1) added was 70% by mass.
  • the gas permeability of the obtained composite membrane was measured in the same manner as in Example 21. Table 6 shows the results.
  • Example 20 had an oxygen permeability approximately three times that of Comparative Example 6.
  • Example 24 had an oxygen permeability about 3.4 times that of Comparative Example 6.
  • Example 25 "Formation of organic-inorganic composite gas separation membrane using 6FDA-3MPA and surface functional group-modified silica nanoparticles (3)" After dissolving 1.5 g of fluorine-containing polyimide, 6FDA-3MPA (see chemical formula (24) above) in 6.7 mL of tetrahydrofuran (THF), add The surface functional group-modified silica nanoparticles (3) were added to the solution and subjected to ultrasonic treatment for 1 hour. As the surface functional group-modified silica nanoparticles (3), those represented by the above chemical formula (21) were used. This polymer solution was stirred overnight with a magnetic stirrer, and after stirring, was again subjected to ultrasonic treatment for 1 hour.
  • 6FDA-3MPA see chemical formula (24) above
  • THF tetrahydrofuran
  • this polymer solution was cast on a glass petri dish with a diameter of 6 cm. After that, the glass petri dish was placed in an oven set at 30° C., and the oven was evacuated for 4 hours to prepare a composite membrane. The produced composite membrane was heat-treated at 150° C. for 15 hours. The film thickness of the obtained film was 48 ⁇ m.
  • Example 26 "Gas Permeability of Composite Gas Separation Membrane of 6FDA-3MPA and Surface Functional Group Modified Silica Nanoparticles (3)"
  • the gas permeability of the composite membrane obtained in Example 25 was measured.
  • K-315N-01C manufactured by Rika Seiki Kogyo Co., Ltd. was used for the gas permeability measurement. Oxygen and nitrogen were used as supply gases, and the measurement conditions were a temperature of 35° C. and a pressure difference of 76 cmHg. Table 7 shows the results.
  • Example 27 "Gas Permeability of Composite Gas Separation Membrane of 6FDA-3MPA and Surface Functional Group Modified Silica Nanoparticles (3)"
  • An organic-inorganic composite gas separation membrane was produced in the same manner as in Example 25, except that the amount of the surface functional group-modified silica nanoparticles (3) added was 40% by mass.
  • the gas permeability measurement of the resulting composite membrane was performed in the same manner as in Example 26. Table 7 shows the results.
  • Example 28 "Gas Permeability of Composite Gas Separation Membrane of 6FDA-3MPA and Surface Functional Group Modified Silica Nanoparticles (3)"
  • An organic-inorganic composite gas separation membrane was produced in the same manner as in Example 25, except that the amount of the surface functional group-modified silica nanoparticles (3) added was 60% by mass.
  • the gas permeability measurement of the resulting composite membrane was performed in the same manner as in Example 26. Table 7 shows the results.
  • Example 29 "Gas Permeability of Composite Gas Separation Membrane of 6FDA-3MPA and Surface Functional Group Modified Silica Nanoparticles (3)"
  • An organic-inorganic composite gas separation membrane was produced in the same manner as in Example 25, except that the amount of the surface functional group-modified silica nanoparticles (3) added was 70% by mass.
  • the gas permeability measurement of the resulting composite membrane was performed in the same manner as in Example 26. Table 7 shows the results.
  • Example 25 had an oxygen permeability about 2.5 times that of Comparative Example 6.
  • Example 27 had an oxygen permeability about 4.6 times that of Comparative Example 6.
  • Example 30 "Formation of organic-inorganic composite gas separation membrane using 6FDA-3MPA and surface functional group-modified silica nanoparticles (4)" After dissolving 1.5 g of fluorine-containing polyimide, 6FDA-3MPA (see chemical formula (24) above) in 6.7 mL of tetrahydrofuran (THF), add The surface functional group-modified silica nanoparticles (4) were added to the solution and subjected to ultrasonic treatment for 1 hour. As the surface functional group-modified silica nanoparticles (4), those represented by the above chemical formula (22) were used.
  • This polymer solution was stirred overnight with a magnetic stirrer, and after stirring, was again subjected to ultrasonic treatment for 1 hour. After that, this polymer solution was cast on a glass petri dish with a diameter of 6 cm. After that, the glass petri dish was placed in an oven set at 30° C., and the oven was evacuated for 4 hours to prepare a composite membrane. The produced composite membrane was heat-treated at 150° C. for 15 hours. The film thickness of the obtained film was 51 ⁇ m.
  • Example 31 "Gas Permeability of Composite Gas Separation Membrane of 6FDA-3MPA and Surface Functional Group Modified Silica Nanoparticles (4)"
  • the gas permeability of the composite membrane obtained in Example 25 was measured.
  • K-315N-01C manufactured by Rika Seiki Kogyo Co., Ltd. was used for the gas permeability measurement. Carbon dioxide, oxygen, nitrogen, and methane were used as supply gases, and the measurement conditions were a temperature of 35° C. and a pressure difference of 76 cmHg. Table 7 shows the results.
  • Example 30 has an oxygen permeability of about 5.4 times, a carbon dioxide permeability of about 4.7 times, and a nitrogen permeability of about 6.5 times that of Comparative Example 6. , the permeability of methane was 9 times higher.
  • Example 32 "Formation of Organic-Inorganic Composite Gas Separation Membrane Using Silicone and Surface Functional Group-Modified Silica Nanoparticles (2)" 0.431 g of silicone (manufactured by Shin-Etsu Co., Ltd.: X-22-164A, functional group equivalent 860 gmol ⁇ 1 , density 0.98 gcm ⁇ 3 ) was weighed into a 10 mL vial.
  • PEMP pentaerythritol tetrakis(3-mercaptopropionate)
  • the resulting solution was cast on a Teflon (registered trademark) tray having a side of about 6 cm, and was irradiated with UV light (Chibi Light DX BOX-S1100, Chibi Light DX BOX-S1100, Peak wavelength: 380 nm) to prepare a composite membrane.
  • the film thickness of the obtained film was 135 ⁇ m.
  • Example 33 "Gas Permeability of Composite Gas Separation Membrane of Silicone and Surface Functional Group Modified Silica Nanoparticles (2)"
  • the gas permeability of the composite membrane obtained in Example 32 was measured.
  • K-315N-01C manufactured by Rika Seiki Kogyo Co., Ltd. was used for the gas permeability measurement. Carbon dioxide, oxygen, nitrogen, and methane were used as supply gases, and the measurement conditions were a temperature of 35° C. and a pressure difference of 76 cmHg. Table 9 shows the results.
  • Example 32 had an oxygen permeability of about 2.1 times and a nitrogen permeability of about 2.1 times that of Comparative Example 7.
  • Example 35 Purification of intrinsic microporous polymer (PIM-1)"
  • PIM-1 intrinsic microporous polymer
  • Example 36 "Gel Permeation Chromatography (GPC) Measurement of Inherent Microporous Polymer (PIM-1)"
  • GPC GPC measurement of Inherent Microporous Polymer
  • the purified product had a high molecular weight with a wide molecular weight distribution (weight average molecular weight: 5.4 ⁇ 10 5 , polydispersity index: 9.5) to a relatively low molecular weight distribution with a narrow molecular weight distribution (weight average molecular weight: 3 up to .7 ⁇ 10 5 with a polydispersity index of 4.3).
  • Example 37 "Formation of organic-inorganic composite gas separation membrane using PIM-1 (molecular weight: weight average molecular weight 370,000) and surface functional group-modified silica nanoparticles (2)" After dissolving 0.15 g of the intrinsic microporous polymer, PIM-1 (see formula (23) above), in 6.7 mL of tetrahydrofuran (THF), the polymer solution has a content of 85% by weight relative to the polymer. As shown, the surface functional group-modified silica nanoparticles (2) were added and sonicated for 1 hour. As the surface functional group-modified silica nanoparticles (2), those represented by the above chemical formula (20) were used.
  • the polymer solution was stirred overnight at a stirring speed of 1200 rpm, and after stirring was again subjected to ultrasonic treatment for 1 hour. After that, this polymer solution was cast on a glass petri dish with a diameter of 6 cm. After that, the glass petri dish was placed in an oven set at 30° C., and the oven was evacuated for 6 hours to prepare a composite membrane. The produced composite membrane was heat-treated at 70° C. for 18 hours. The film thickness of the obtained film was 115 ⁇ m.
  • Example 38 "Gas Permeability of Composite Gas Separation Membrane of PIM-1 (Molecular Weight: Weight Average Molecular Weight 370,000) and Surface Functional Group-Modified Silica Nanoparticles (2)"
  • the gas permeability of the composite membrane obtained in Example 37 was measured.
  • K-315N-01C manufactured by Rika Seiki Kogyo Co., Ltd. was used for the gas permeability measurement. Carbon dioxide, oxygen, nitrogen, and methane were used as supply gases, and the measurement conditions were a temperature of 35° C. and a pressure difference of 76 cmHg. Table 10 shows the results.
  • the gas separation membrane of the present invention is composed of a composite material containing silica nanoparticles and a polymer, and the silica nanoparticles are surface functional group-modified silica nanoparticles that are surface-modified with a functional group-containing silane coupling agent, Since the functional group-containing silane coupling agent is at least one selected from the group consisting of the compound represented by the above chemical formula (1), the above chemical formula (2) and the above chemical formula (3), gas permeation It has excellent characteristics, and even without methanol treatment, gas permeation characteristics equivalent to or higher than those of conventional gas separation membranes treated with methanol can be obtained. Therefore, the gas separation membrane of the present invention can be preferably used as a filter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

This gas separation membrane is composed of a composite material containing silica nanoparticles and a polymer, wherein: the silica nanoparticles are surface functional group-modified silica nanoparticles which have been surface-treated with a functional group-containing silane coupling agent; and the functional group-containing silane coupling agent is at least one selected from the group consisting of a compound represented by chemical formula (1), chemical formula (2), and chemical formula (3).

Description

気体分離膜gas separation membrane
 本発明は、気体分離膜に関する。
 本願は、2021年8月19日に日本に出願された特願2021-134151号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to gas separation membranes.
This application claims priority based on Japanese Patent Application No. 2021-134151 filed in Japan on August 19, 2021, the content of which is incorporated herein.
 高分子と無機粒子を含む気体分離膜を用いて気体を分離する方法が知られている。気体分離膜を用いた気体分離法(以下、「高分子気体分離膜法」と言う。)は、気体の相変化を伴わずに気体の分離・回収ができ、他の気体分離法に比べて操作が簡便で装置の小型化が可能であり、連続的に気体分離を行うことができるため、環境負荷が少ないという特性を有している。このような高分子気体分離膜法は、近年、特に温室効果ガスの分離・回収や酸素富化空気の作製、天然ガスの精製技術として注目を集め、実用化が期待されている。また、高分子気体分離膜法では、気体分離性能および気体透過量等の気体透過特性の点でさらなる改善が求められている。 A method of separating gases using a gas separation membrane containing polymers and inorganic particles is known. The gas separation method using a gas separation membrane (hereinafter referred to as "polymer gas separation membrane method") can separate and recover gas without phase change of gas, compared to other gas separation methods The operation is simple, the device can be made compact, and gas separation can be performed continuously, so it has the characteristic of having little environmental load. In recent years, such a polymer gas separation membrane method has attracted attention as a technique for separating and recovering greenhouse gases, producing oxygen-enriched air, and purifying natural gas, and is expected to be put into practical use. Further, in the polymer gas separation membrane method, further improvement is required in terms of gas separation performance and gas permeation characteristics such as gas permeation amount.
 近年、MMM(Mixed-Matrix Membrane)が盛んに研究されている。MMMとは、高い気体分離性能や気体透過機能を有するナノ粒子を高分子膜内に含有した高分子複合膜のことである。近年、様々なナノ粒子が合成されるようになった結果、ナノ粒子の新しい機能が見出されて、MMMの検討が非常に多く行われている。
 気体分離膜としては、例えば、ナノオーダーの粒子径を有するシリカナノ粒子の表面にハイパーブランチ高分子が付加されてなる表面ハイパーブランチ修飾シリカナノ粒子、または前記シリカナノ粒子の表面にデンドリマー高分子が付加されてなる表面デンドリマー修飾シリカナノ粒子と、マトリクス樹脂とを含有するものが知られている(例えば、特許文献1参照)。
In recent years, MMM (Mixed-Matrix Membrane) has been actively studied. MMM is a polymer composite membrane in which nanoparticles having high gas separation performance and gas permeation function are contained in the polymer membrane. In recent years, as a result of the synthesis of various nanoparticles, new functions of nanoparticles have been discovered, and MMMs have been extensively studied.
As the gas separation membrane, for example, surface hyperbranched modified silica nanoparticles obtained by adding a hyperbranched polymer to the surface of silica nanoparticles having a nano-order particle size, or dendrimer polymers added to the surface of the silica nanoparticles. and a matrix resin are known (see, for example, Patent Document 1).
特許第5626950号公報Japanese Patent No. 5626950
 気体分離膜では、さらなる気体透過特性の向上が求められている。しかしながら、特許文献1の気体分離膜では、実用する際に十分な気体透過特性が得られていないという課題があった。また、従来、気体分離膜の気体透過特性を評価する場合に、気体分離膜をメタノール処理して、一時的に性能を向上させていた。しかしながら、メタノール処理により気体分離膜の気体透過特性が5~10倍程度向上するものの、数時間~数日で気体透過特性が劇的に減少するという課題があった。 Gas separation membranes are required to further improve their gas permeation properties. However, the gas separation membrane of Patent Document 1 has a problem that sufficient gas permeation characteristics are not obtained in practical use. Conventionally, when evaluating the gas permeation characteristics of a gas separation membrane, the gas separation membrane is treated with methanol to temporarily improve the performance. However, although the gas permeation property of the gas separation membrane is improved by about 5 to 10 times by the methanol treatment, there is a problem that the gas permeation property is dramatically reduced after several hours to several days.
 本発明は、上記事情に鑑みてなされたものであって、気体透過特性に優れ、かつメタノール処理を行わなくとも、メタノール処理を行った従来の気体分離膜と同程度またはそれ以上の気体透過特性が得られる気体分離膜を提供することを目的とする。 The present invention has been made in view of the above circumstances, and has excellent gas permeation characteristics, and even without methanol treatment, gas permeation characteristics comparable to or higher than those of conventional gas separation membranes subjected to methanol treatment. An object of the present invention is to provide a gas separation membrane that provides
 本発明は以下の態様を有する。 The present invention has the following aspects.
[1]シリカナノ粒子と、高分子と、を含む複合体材料から構成される気体分離膜であって、前記シリカナノ粒子は、官能基含有シランカップリング剤で表面修飾された表面官能基修飾シリカナノ粒子であり、前記官能基含有シランカップリング剤は、下記の化学式(1)で表される化合物、下記の化学式(2)および下記の化学式(3)からなる群から選択される少なくとも1種である、気体分離膜。 [1] A gas separation membrane composed of a composite material containing silica nanoparticles and a polymer, wherein the silica nanoparticles are surface functional group-modified silica nanoparticles surface-modified with a functional group-containing silane coupling agent. and the functional group-containing silane coupling agent is at least one selected from the group consisting of a compound represented by the following chemical formula (1), the following chemical formula (2), and the following chemical formula (3) , gas separation membrane.
Figure JPOXMLDOC01-appb-C000009
(但し、m=1~3、Xは-Cl、-OC2n+1(n=1~3)、Yは2価の有機基(但し、Yは単結合を含む)、Zは1価の有機基である。)
Figure JPOXMLDOC01-appb-C000009
(where m = 1 to 3, X is -Cl, -OC n H 2n+1 (n = 1 to 3), Y is a divalent organic group (where Y contains a single bond), Z is a monovalent It is an organic group.)
Figure JPOXMLDOC01-appb-C000010
(但し、Xは-Cl、-OC2n+1(n=1~3)、Yは2価の有機基(但し、Yは単結合を含む)である。)
Figure JPOXMLDOC01-appb-C000010
(where X is —Cl, —OC n H 2n+1 (n=1 to 3), and Y is a divalent organic group (where Y includes a single bond).)
Figure JPOXMLDOC01-appb-C000011
(但し、Xは-Cl、-OC2n+1(n=1~3)、Yは3価の有機基(但し、Yは単結合を含む)である。)
Figure JPOXMLDOC01-appb-C000011
(where X is —Cl, —OC n H 2n+1 (n=1 to 3), and Y is a trivalent organic group (where Y includes a single bond).)
[2]前記官能基含有シランカップリング剤は、前記Yが-(CH-(n=0~17)、前記Zが-C2n+1(n=1~18)、下記の化学式(4)で表される基、下記の化学式(5)で表される基であるアルキルシランである、[1]に記載の気体分離膜。 [2] The functional group - containing silane coupling agent has the following chemical formula : The gas separation membrane according to [1], wherein the group represented by (4) is an alkylsilane group represented by the following chemical formula (5).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
[3]前記官能基含有シランカップリング剤は、前記Yが-(CH-(n=0~6)、前記Zが-CH=CH、-CCH=CH、-C≡CHであるオレフィニルシランである、[1]に記載の気体分離膜。 [3] In the functional group-containing silane coupling agent, Y is —(CH 2 ) n —(n=0 to 6), Z is —CH═CH 2 , —CCH 3 ═CH 2 , —C≡ The gas separation membrane according to [1], which is an olefinylsilane that is CH.
[4]前記官能基含有シランカップリング剤は、前記Yが-(CH-(n=0~6)、前記Zが-Ar、-OArであるアリールシランである、[1]に記載の気体分離膜。 [4] The functional group-containing silane coupling agent is an arylsilane in which the Y is -(CH 2 ) n - (n = 0 to 6) and the Z is -Ar or -OAr, according to [1] A gas separation membrane as described.
[5]前記官能基含有シランカップリング剤は、前記Yが-(CH-OCH-(n=1~6)、前記Zが下記の化学式(6)で表される基、下記の化学式(7)で表される基であるであるグリシジルオキシアルキルシランである、[1]に記載の気体分離膜。 [5] In the functional group-containing silane coupling agent, Y is -(CH 2 ) n -OCH 2 - (n = 1 to 6), Z is a group represented by the following chemical formula (6), The gas separation membrane according to [1], which is a glycidyloxyalkylsilane group represented by the chemical formula (7) of
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
[6]前記官能基含有シランカップリング剤は、前記Yが-(CH-(n=1~6)、前記Zが-O-(C=O)-CH=CH、-O-(C=O)-CCH=CH-であるアクロイルオキシアルキルシランである、[1]に記載の気体分離膜。 [6] In the functional group-containing silane coupling agent, the Y is —(CH 2 ) n —(n=1 to 6), the Z is —O—(C═O)—CH═CH 2 , —O The gas separation membrane according to [1], which is an acryloyloxyalkylsilane wherein -(C=O)-CCH 3 =CH 2 -.
[7]前記官能基含有シランカップリング剤は、前記Yが-(CH-(n=1~6)、前記Zが-NR(Rは炭素数0~4のアルキル基、アリール基)、-NH-(CH-NR(m=2~6、Rは炭素数0~4のアルキル基、アリール基)であるアミノアルキルシランである、[1]に記載の気体分離膜。 [7] In the functional group-containing silane coupling agent, the Y is —(CH 2 ) n —(n=1 to 6), the Z is —NR 2 (R is an alkyl group having 0 to 4 carbon atoms, an aryl group), -NH-(CH 2 ) m -NR 2 (m = 2 to 6, R is an alkyl group having 0 to 4 carbon atoms, an aryl group). Separation membrane.
[8]前記官能基含有シランカップリング剤は、前記Yが-(CH-(n=1~6)、前記Zが-C2n+1-(n=1~8)であるフルオロアルキルシランである、[1]に記載の気体分離膜。 [8] In the functional group-containing silane coupling agent, the Y is -(CH 2 ) n - (n = 1 to 6) and the Z is -C n F 2n+1 - (n = 1 to 8). The gas separation membrane according to [1], which is an alkylsilane.
[9]前記官能基含有シランカップリング剤は、前記Yが-(CH-(n=1~6)、-(CH-Ar-(CH-(m=1~6、n=1~6)、下記の化学式(8)で表される基、前記Zが-Cl、-Br、-I、-CN、-N、-NH(C=O)NH-、-SH、-N=C=Oである化合物である、[1]に記載の気体分離膜。 [9] In the functional group-containing silane coupling agent, the Y is -(CH 2 ) n -(n=1 to 6), -(CH 2 ) n -Ar-(CH 2 ) m -(m=1 ~ 6, n = 1 to 6), a group represented by the following chemical formula (8), wherein Z is -Cl, -Br, -I, -CN, -N 3 , -NH(C=O)NH 2 The gas separation membrane according to [1], which is a compound of -, -SH, -N=C=O.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
[10]前記シリカナノ粒子の含有量が20質量%以上である、[1]~[9]のいずれかに記載の気体分離膜。 [10] The gas separation membrane according to any one of [1] to [9], wherein the content of the silica nanoparticles is 20% by mass or more.
[11]前記高分子は、ガラス状高分子またはゴム状高分子である、[1]~[10]のいずれかに記載の気体分離膜。 [11] The gas separation membrane according to any one of [1] to [10], wherein the polymer is a glassy polymer or a rubbery polymer.
 本発明によれば、気体透過特性に優れ、かつメタノール処理を行わなくとも、メタノール処理を行った従来の気体分離膜と同程度またはそれ以上の気体透過特性が得られる気体分離膜を提供することができる。 According to the present invention, there is provided a gas separation membrane which is excellent in gas permeation characteristics and which can obtain gas permeation characteristics equal to or higher than those of conventional gas separation membranes treated with methanol without methanol treatment. can be done.
 本発明の一実施形態に係る気体分離膜の実施の形態について説明する。
 なお、本実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
An embodiment of a gas separation membrane according to one embodiment of the present invention will be described.
It should be noted that the present embodiment is specifically described for better understanding of the gist of the invention, and does not limit the invention unless otherwise specified.
[気体分離膜]
 本実施形態の気体分離膜は、シリカナノ粒子と、高分子と、を含む複合体材料から構成される。シリカナノ粒子は、後述する官能基含有シランカップリング剤で表面修飾された表面官能基修飾シリカナノ粒子である。本実施形態の気体分離膜は、シリカナノ粒子と、高分子と、を含む複合体材料を、任意の厚さとなるように成膜したものである。
[Gas separation membrane]
The gas separation membrane of this embodiment is composed of a composite material containing silica nanoparticles and a polymer. Silica nanoparticles are surface functional group-modified silica nanoparticles that are surface-modified with a functional group-containing silane coupling agent described below. The gas separation membrane of the present embodiment is formed by depositing a composite material containing silica nanoparticles and a polymer to an arbitrary thickness.
 本実施形態の気体分離膜では、シリカナノ粒子の含有量が20質量%以上であり、30質量%以上であることが好ましく、50質量%超であることがより好ましく、60質量%以上85質量%以下であることがさらに好ましい。シリカナノ粒子の含有量が20質量%未満では、気体分離膜の気体透過特性の向上という効果が得られない。 In the gas separation membrane of the present embodiment, the content of silica nanoparticles is 20% by mass or more, preferably 30% by mass or more, more preferably more than 50% by mass, and 60% by mass or more and 85% by mass. More preferably: If the content of silica nanoparticles is less than 20% by mass, the effect of improving the gas permeation characteristics of the gas separation membrane cannot be obtained.
 本実施形態の気体分離膜では、シリカナノ粒子の含有量が20質量%以上であるから、シリカナノ粒子のマトリクスに高分子が含まれる構造をなしている。 The gas separation membrane of the present embodiment has a silica nanoparticle content of 20% by mass or more, and therefore has a structure in which a polymer is contained in the silica nanoparticle matrix.
 気体分離膜の厚さは、気体分離膜を設置する場所や、気体分離膜の用途等に応じて適宜調整する。 The thickness of the gas separation membrane is adjusted as appropriate according to the location where the gas separation membrane is installed and the use of the gas separation membrane.
「シリカナノ粒子」
 シリカナノ粒子は、表面に水酸基(-OH基)を有する。シリカナノ粒子の表面に存在する水酸基の数は、1個nm-2以上4個nm-2以下であることが好ましい。水酸基の数が前記範囲内であると、シリカナノ粒子の含有量を50質量%超としても、前記の複合体材料からなる気体分離膜を成膜することができる。
"Silica nanoparticles"
Silica nanoparticles have hydroxyl groups (—OH groups) on their surfaces. The number of hydroxyl groups present on the surface of the silica nanoparticles is preferably 1 nm −2 or more and 4 nm −2 or less. When the number of hydroxyl groups is within the above range, a gas separation membrane made of the above composite material can be formed even if the content of silica nanoparticles exceeds 50% by mass.
 気体分離膜に含まれるシリカナノ粒子の表面に存在する水酸基の数の定量方法としては、例えば、Grignard試薬(CHMgI)とシリカナノ粒子の表面に存在する水酸基との反応により発生するメタン量を定量することにより算出する方法が挙げられる。 As a method for quantifying the number of hydroxyl groups present on the surface of the silica nanoparticles contained in the gas separation membrane, for example, the amount of methane generated by the reaction between the Grignard reagent (CH 3 MgI) and the hydroxyl groups present on the surface of the silica nanoparticles is quantified. A method of calculating by
 シリカナノ粒子の粒径は、1nm以上であることが好ましい。シリカナノ粒子の粒径が前記範囲内であると、シリカナノ粒子の含有量を50質量%超としても、前記の複合体材料からなる気体分離膜を成膜することができる。 The particle size of silica nanoparticles is preferably 1 nm or more. When the particle size of the silica nanoparticles is within the above range, a gas separation membrane made of the composite material can be formed even if the content of the silica nanoparticles exceeds 50% by mass.
 シリカナノ粒子の粒径の測定方法としては、例えば、透過型電子顕微鏡(TEM)を用いた方法、動的光散乱法、微分型電気移動度測定方法等が挙げられる。 Examples of methods for measuring the particle size of silica nanoparticles include a method using a transmission electron microscope (TEM), a dynamic light scattering method, a differential electrical mobility measurement method, and the like.
[官能基含有シランカップリング剤]
 官能基含有シランカップリング剤は、下記の化学式(1)で表される化合物、下記の化学式(2)および下記の化学式(3)からなる群から選択される少なくとも1種である。すなわち、これらの官能基含有シランカップリング剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
[Functional Group-Containing Silane Coupling Agent]
The functional group-containing silane coupling agent is at least one selected from the group consisting of the compound represented by the following chemical formula (1), the following chemical formula (2) and the following chemical formula (3). That is, these functional group-containing silane coupling agents may be used singly or in combination of two or more.
Figure JPOXMLDOC01-appb-C000017
(但し、m=1~3、Xは-Cl、-OC2n+1(n=1~3)、Yは2価の有機基(但し、Yは単結合を含む)、Zは1価の有機基である。)
Figure JPOXMLDOC01-appb-C000017
(where m = 1 to 3, X is -Cl, -OC n H 2n+1 (n = 1 to 3), Y is a divalent organic group (where Y contains a single bond), Z is a monovalent It is an organic group.)
Figure JPOXMLDOC01-appb-C000018
(但し、Xは-Cl、-OC2n+1(n=1~3)、Yは2価の有機基(但し、Yは単結合を含む)である。)
Figure JPOXMLDOC01-appb-C000018
(where X is —Cl, —OC n H 2n+1 (n=1 to 3), and Y is a divalent organic group (where Y includes a single bond).)
Figure JPOXMLDOC01-appb-C000019
(但し、Xは-Cl、-OC2n+1(n=1~3)、Yは3価の有機基(但し、Yは単結合を含む)である。)
Figure JPOXMLDOC01-appb-C000019
(where X is —Cl, —OC n H 2n+1 (n=1 to 3), and Y is a trivalent organic group (where Y includes a single bond).)
 官能基含有シランカップリング剤は、前記Yが-(CH-(n=0~17)、前記Zが-C2n+1(n=1~18)、下記の化学式(4)で表される基、下記の化学式(5)で表される基であるアルキルシランが好ましい。 In the functional group-containing silane coupling agent, the Y is -(CH 2 ) n - (n = 0 to 17), the Z is -C n H 2n+1 (n = 1 to 18), and the following chemical formula (4) Alkylsilane, which is a group represented by the following chemical formula (5), is preferred.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 また、官能基含有シランカップリング剤は、前記Yが-(CH-(n=0~6)、前記Zが-CH=CH、-CCH=CH、-C≡CHであるオレフィニルシランが好ましい。 In the functional group-containing silane coupling agent, the Y is -(CH 2 ) n - (n = 0 to 6), and the Z is -CH=CH 2 , -CCH 3 =CH 2 , -C≡CH. Certain olefinylsilanes are preferred.
 また、官能基含有シランカップリング剤は、前記Yが-(CH-(n=0~6)、前記Zが-Ar、-OArであるアリールシランが好ましい。 Further, the functional group-containing silane coupling agent is preferably an arylsilane in which Y is —(CH 2 ) n —(n=0 to 6) and Z is —Ar or —OAr.
 また、官能基含有シランカップリング剤は、前記Yが-(CH-OCH-(n=1~6)、前記Zが下記の化学式(6)で表される基、下記の化学式(7)で表される基であるグリシジルオキシアルキルシランが好ましい。 In the functional group-containing silane coupling agent, Y is -(CH 2 ) n -OCH 2 - (n = 1 to 6), Z is a group represented by the following chemical formula (6), Glycidyloxyalkylsilane, which is the group represented by (7), is preferred.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 また、官能基含有シランカップリング剤は、前記Yが-(CH-(n=1~6)、前記Zが-O-(C=O)-CH=CH、-O-(C=O)-CCH=CH-であるアクロイルオキシアルキルシランが好ましい。 In the functional group-containing silane coupling agent, the Y is -(CH 2 ) n -(n=1 to 6), the Z is -O-(C=O)-CH=CH 2 , -O-( Acryloyloxyalkylsilanes where C═O)—CCH 3 ═CH 2 — are preferred.
 また、官能基含有シランカップリング剤は、前記Yが-(CH-(n=1~6)、前記Zが-NR(Rは炭素数0~4のアルキル基、アリール基)、-NH-(CH-NR(m=2~6、Rは炭素数0~4のアルキル基、アリール基)であるアミノアルキルシランが好ましい。 In the functional group-containing silane coupling agent, Y is —(CH 2 ) n — (n=1 to 6) and Z is —NR 2 (R is an alkyl group having 0 to 4 carbon atoms or an aryl group). , —NH—(CH 2 ) m —NR 2 (m=2 to 6, R is an alkyl or aryl group having 0 to 4 carbon atoms).
 また、官能基含有シランカップリング剤は、前記Yが-(CH-(n=1~6)、前記Zが-C2n+1-(n=1~8)であるフルオロアルキルシランが好ましい。 In the functional group-containing silane coupling agent, the Y is -(CH 2 ) n -(n=1 to 6), and the Z is -C n F 2n+1 -(n=1 to 8). is preferred.
 また、官能基含有シランカップリング剤は、前記Yが-(CH-(n=1~6)、-(CH-Ar-(CH-(m=1~6、n=1~6)、下記の式(8)で表される基、前記Zが-Cl、-Br、-I、-CN、-N、-NH(C=O)NH-、-SH、-N=C=Oである化合物が好ましい。 In the functional group-containing silane coupling agent, Y is -(CH 2 ) n -(n=1 to 6), -(CH 2 ) n -Ar-(CH 2 ) m -(m=1 to 6) , n = 1 to 6), a group represented by the following formula (8), the Z is -Cl, -Br, -I, -CN, -N 3 , -NH(C=O)NH 2 -, Compounds in which -SH, -N=C=O are preferred.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 官能基含有シランカップリング剤の具体例としては、例えば、下記の化学式(9)で表されるビニルトリメトキシシラン、下記の化学式(10)で表される3-メタクリロキシプロピルトリメトキシシラン、下記の化学式(11)で表されるN-フェニル-3-アミノプロピルトリメトキシシラン、下記の化学式(12)で表されるフェニルトリメトキシシラン、下記の化学式(13)で表される3-グリシドキシプロピルトリメトキシシラン、下記の化学式(14)で表される3-アミノプロピルトリメトキシシラン、下記の化学式(15)で表されるN-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、下記の化学式(16)で表される3-メルカプトプロピルトリメトキシシラン、下記の化学式(17)で表される3-イソシアネートトリメトキシシラン、下記の化学式(18)で表される3-イソシアネートトリメトキシシラン等が挙げられる。 Specific examples of functional group-containing silane coupling agents include vinyltrimethoxysilane represented by the following chemical formula (9), 3-methacryloxypropyltrimethoxysilane represented by the following chemical formula (10), N-phenyl-3-aminopropyltrimethoxysilane represented by the following chemical formula (11), phenyltrimethoxysilane represented by the following chemical formula (12), 3-glycides represented by the following chemical formula (13) xypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane represented by the following chemical formula (14), N-2-(aminoethyl)-3-aminopropyltrimethoxysilane represented by the following chemical formula (15) , 3-mercaptopropyltrimethoxysilane represented by the following chemical formula (16), 3-isocyanatotrimethoxysilane represented by the following chemical formula (17), 3-isocyanatotrimethoxysilane represented by the following chemical formula (18) Methoxysilane and the like can be mentioned.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 表面官能基修飾シリカナノ粒子において、官能基含有シランカップリング剤修飾率は、シリカナノ粒子の表面に存在する水酸基に対する割合で表され、0.5以上8以下であることが好ましい。官能基含有シランカップリング剤修飾率が前記範囲内であると、官能基含有シランカップリング剤の含有量を50質量%超としても、前記の複合体材料からなる気体分離膜を成膜することができる。 In the surface functional group-modified silica nanoparticles, the functional group-containing silane coupling agent modification ratio is expressed as a ratio to the hydroxyl groups present on the surface of the silica nanoparticles, and is preferably 0.5 or more and 8 or less. When the functional group-containing silane coupling agent modification rate is within the above range, even if the content of the functional group-containing silane coupling agent exceeds 50% by mass, a gas separation membrane made of the composite material can be formed. can be done.
 表面官能基修飾シリカナノ粒子としては、例えば、下記の化学式(19)で表され、上記の化学式(11)で表されるN-フェニル-3-アミノプロピルトリメトキシシランで表面修飾されたシリカナノ粒子、下記の式(20)で表され、上記の化学式(9)で表されるビニルトリメトキシシランで表面修飾されたシリカナノ粒子、下記の式(21)で表され、上記の化学式(10)で表される3-メタクリロキシプロピルトリメトキシシランで表面修飾されたシリカナノ粒子、下記の式(22)で表され、上記の化学式(12)で表されるフェニルトリメトキシシランで表面修飾されたシリカナノ粒子等が挙げられる。 Examples of surface functional group-modified silica nanoparticles include silica nanoparticles surface-modified with N-phenyl-3-aminopropyltrimethoxysilane represented by the following chemical formula (19) and represented by the above chemical formula (11), Silica nanoparticles surface-modified with vinyltrimethoxysilane represented by the following formula (20) and represented by the above chemical formula (9), represented by the following formula (21), and represented by the above chemical formula (10) Silica nanoparticles surface-modified with 3-methacryloxypropyltrimethoxysilane, silica nanoparticles surface-modified with phenyltrimethoxysilane represented by the following formula (22), the above chemical formula (12), etc. are mentioned.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
「高分子」
 高分子としては、表面官能基修飾シリカナノ粒子を含有して、薄膜に成膜できるものであれば特に限定されず、表面官能基修飾シリカナノ粒子を含有して、薄膜に成膜できるものであれば特に限定されない。高分子としては、例えば、ポリイミド、ポリスルホン、ポリエーテル、ポリジメチルシロキサン、ポリ置換アセチレン、ポリ-4-メチルペンテン、天然ゴム等が挙げられる。高分子としては、後述するガラス状高分子またはゴム状高分子が好ましい。
"High molecular"
The polymer is not particularly limited as long as it contains surface functional group-modified silica nanoparticles and can be formed into a thin film, and as long as it contains surface functional group-modified silica nanoparticles and can be formed into a thin film. It is not particularly limited. Polymers include, for example, polyimide, polysulfone, polyether, polydimethylsiloxane, polysubstituted acetylene, poly-4-methylpentene, and natural rubber. As the polymer, a glassy polymer or a rubbery polymer, which will be described later, is preferable.
 高分子としては、例えば、下記の化学式(23)で表される化合物(PIM-1)、下記の化学式(24)で表される化合物(6FDA-3MPA)等のガラス状高分子が好適に用いられる。 As the polymer, for example, glassy polymers such as the compound (PIM-1) represented by the following chemical formula (23) and the compound (6FDA-3MPA) represented by the following chemical formula (24) are preferably used. be done.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 上記の式(23)で表される化合物(PIM-1)は、固有微細孔性高分子である。固有微細孔性高分子とは、剛直な梯子型構造および折れ曲がり骨格を有し、膜内部に微細孔を形成する高分子のことである。
 PIM-1の重量平均分子量(Mw)は、1.0×10以上5.0×10以下であることが好ましい。
 また、PIM-1の分子量分布(Mw/Mn)は、1以上20以下であることが好ましい。なお、分子量分布(Mw/Mn)は、PIM-1の数平均分子量(Mn)に対する重量平均分子量(Mw)で表される。
The compound (PIM-1) represented by formula (23) above is an intrinsic microporous polymer. An intrinsic microporous polymer is a polymer that has a rigid ladder-like structure and a bent skeleton and forms micropores inside the membrane.
The weight average molecular weight (Mw) of PIM-1 is preferably 1.0×10 5 or more and 5.0×10 5 or less.
Also, the molecular weight distribution (Mw/Mn) of PIM-1 is preferably 1 or more and 20 or less. The molecular weight distribution (Mw/Mn) is represented by the weight average molecular weight (Mw) relative to the number average molecular weight (Mn) of PIM-1.
 上記の式(24)で表される化合物(6FDA-3MPA)は、含フッ素ポリイミドである。
 6FDA-3MPAの重量平均分子量(Mw)は、1.0×10以上5.0×10以下であることが好ましい。
 また、6FDA-3MPAの分子量分布(Mw/Mn)は、1以上5以下であることが好ましい。
The compound (6FDA-3MPA) represented by the above formula (24) is a fluorine-containing polyimide.
The weight average molecular weight (Mw) of 6FDA-3MPA is preferably 1.0×10 5 or more and 5.0×10 5 or less.
Further, the molecular weight distribution (Mw/Mn) of 6FDA-3MPA is preferably 1 or more and 5 or less.
 高分子としては、例えば、下記の式(25)で表されるゴム状高分子(シリコーン)が好適に用いられる。 As the polymer, for example, a rubber-like polymer (silicone) represented by the following formula (25) is preferably used.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 本実施形態の気体分離膜によれば、シリカナノ粒子と、高分子と、を含む複合体材料から構成され、シリカナノ粒子は、官能基含有シランカップリング剤で表面修飾された表面官能基修飾シリカナノ粒子であり、官能基含有シランカップリング剤は、上記の化学式(1)で表される化合物、上記の化学式(2)および上記の化学式(3)からなる群から選択される少なくとも1種であるため、気体透過特性に優れ、かつメタノール処理を行わなくとも、メタノール処理を行った従来の気体分離膜と同程度またはそれ以上の気体透過特性が得られる気体分離膜を提供することができる。また、本実施形態の気体分離膜は、長期にわたって、気体透過特性が減少しにくい。 According to the gas separation membrane of the present embodiment, it is composed of a composite material containing silica nanoparticles and a polymer, and the silica nanoparticles are surface functional group-modified silica nanoparticles that are surface-modified with a functional group-containing silane coupling agent. and the functional group-containing silane coupling agent is at least one selected from the group consisting of the compound represented by the above chemical formula (1), the above chemical formula (2), and the above chemical formula (3). Thus, it is possible to provide a gas separation membrane which is excellent in gas permeation characteristics and which can obtain gas permeation characteristics comparable to or higher than those of conventional gas separation membranes treated with methanol without methanol treatment. In addition, the gas separation membrane of the present embodiment is less likely to decrease in gas permeation properties over a long period of time.
[気体分離膜の製造方法]
 本実施形態の気体分離膜の製造方法は、高分子を溶媒に溶解して調製した溶液に、表面官能基修飾シリカナノ粒子を投入し、攪拌、混合して均一な溶液とする工程と、キャスティング法等により、その溶液からなる塗工膜を形成する工程と、塗工膜を乾燥する工程と、を有する。
[Method for producing gas separation membrane]
The method for producing a gas separation membrane of the present embodiment includes a step of adding surface functional group-modified silica nanoparticles to a solution prepared by dissolving a polymer in a solvent, stirring and mixing to form a uniform solution, and a casting method. and the like to form a coating film made of the solution, and a step of drying the coating film.
 高分子を溶解する溶媒としては、上記高分子を溶解することができるものであれば特に限定されないが、例えば、テトラヒドロフラン(THF)等が挙げられる。 The solvent for dissolving the polymer is not particularly limited as long as it can dissolve the polymer, and examples thereof include tetrahydrofuran (THF).
 以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited to the following examples.
[実施例1]
「固有微細孔性高分子(PIM-1)の合成」
 あらかじめ窒素フローを行っていた1L三つ口フラスコに強制撹拌機を装着し、その三つ口フラスコ内に、5,5’,6,6’-tetrahydroxy-3,3,3’,3’-tetramethyl-1,1’-spirobiindanを16.395g(44.77mmol)と、2,3,5,6-tetrafluoroterephthalonitrileを8.958g(44.77mmol)を投入し、脱水N,Nジメチルホルムアミド(DMF)を300mL加え、室温、300rpmで30分間撹拌した。
 モノマーが溶解した後、モノマーに対し6モル等量の炭酸カリウム(KCO)を37.13g加えると溶液が黄色に変化した。
 その後、65℃、300rpmで72時間撹拌した。
 72時間による反応終了後、ADVANTEC社製の直径9cmの定量ろ紙No.3を用いて、粗生成物を吸引濾過により回収した。
 この粗生成物を、200mLのDMF、100mLのアセトン、400mLの水で順次洗浄した。
 炭酸カリウムを溶解除去するために、洗浄物を2Lビーカーに移し、2Lの水を注いで40℃にて熱水攪拌し、これを再び吸引濾過した。
 もう一度、熱水攪拌を行い、吸引濾過後の生成物を300mLの水、100mLのアセトンで洗浄した。加えて、300mLの1,4-ジオキサンを少しずつ加えながら洗浄し、その後50mLのアセトン、300mLの水でさらなる洗浄を行った。
 吸引瓶の中にpH試験紙を入れ、濾液が中性であることを確認し、濾過で得られた蛍光黄色の固体を回収して、真空オーブンで95℃、15時間の条件で乾燥を行い、黄色固体の生成物を得た。乾燥後のPIM-1の収量は18.89gであった。
 PIM-1の合成に関する反応式を、下記の化学反応式(26)に示す。
[Example 1]
"Synthesis of intrinsic microporous polymer (PIM-1)"
A 1 L three-necked flask that had been flowed with nitrogen in advance was equipped with a forced stirrer, and 5,5′,6,6′-tetrahydroxy-3,3,3′,3′- 16.395 g (44.77 mmol) of tetramethyl-1,1′-spirobiindan and 8.958 g (44.77 mmol) of 2,3,5,6-tetrafluoroterephthalonitrile were added, and dehydrated N,N dimethylformamide (DMF) was added. was added, and stirred at room temperature and 300 rpm for 30 minutes.
After the monomer was dissolved, 37.13 g of potassium carbonate (K 2 CO 3 ), which was 6 molar equivalents to the monomer, was added and the solution turned yellow.
After that, the mixture was stirred at 65° C. and 300 rpm for 72 hours.
After completion of the reaction for 72 hours, quantitative filter paper No. 9 cm in diameter manufactured by ADVANTEC. Using 3, the crude product was collected by suction filtration.
The crude product was washed sequentially with 200 mL DMF, 100 mL acetone and 400 mL water.
In order to dissolve and remove potassium carbonate, the washed material was transferred to a 2 L beaker, 2 L of water was poured into the beaker, hot water was stirred at 40° C., and suction filtration was performed again.
Hot water stirring was performed once again, and the product after suction filtration was washed with 300 mL of water and 100 mL of acetone. In addition, 300 mL of 1,4-dioxane was added in portions for washing, followed by further washing with 50 mL of acetone and 300 mL of water.
Put pH test paper in the suction bottle, confirm that the filtrate is neutral, collect the fluorescent yellow solid obtained by filtration, and dry it in a vacuum oven at 95°C for 15 hours. , to give the product as a yellow solid. The yield of PIM-1 after drying was 18.89 g.
A reaction formula for the synthesis of PIM-1 is shown in chemical reaction formula (26) below.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
[実施例2]
「固有微細孔性高分子(PIM-1)の精製」
 実施例1にて合成した生成物を、クロロホルムに溶解させ、貧溶媒のメタノールを少しずつ加えることでPIM-1を沈殿させた。
 任意の領域のポリマーを得るため、沈殿物は数回に分けて回収し、95℃、15時間真空乾燥した。
[Example 2]
"Purification of intrinsic microporous polymer (PIM-1)"
The product synthesized in Example 1 was dissolved in chloroform, and methanol as a poor solvent was added little by little to precipitate PIM-1.
In order to obtain a polymer in an arbitrary region, the precipitate was collected in several batches and vacuum-dried at 95° C. for 15 hours.
[実施例3]
「固有微細孔性高分子(PIM-1)のゲル透過クロマトグラフィー(GPC)測定」
 実施例2にて精製したPIM-1の分子量を測定するために、GPC測定を行った。
 PIM-1約4.0mgを量りとってサンプル管に入れ、テトラヒドロフラン(THF)を4.0mL加え、超音波洗浄機を用いて完全に溶解させた。
 孔径0.45μmのポリテトラフルオロエチレン(PTFE)シリンジフィルターを装着したシリンジで溶液を濾過し、GPC測定を行った。
 測定の結果、精製により高分子量で分子量分布が広いもの(重量平均分子量4.7×10、多分散指数10.5)から、比較的低分子量分布で分子量分布が狭いもの(重量平均分子量1.1×10、多分散指数1.6)まで得られた。
[Example 3]
"Gel Permeation Chromatography (GPC) Measurement of Inherent Microporous Polymer (PIM-1)"
In order to measure the molecular weight of PIM-1 purified in Example 2, GPC measurement was performed.
About 4.0 mg of PIM-1 was weighed and placed in a sample tube, 4.0 mL of tetrahydrofuran (THF) was added, and completely dissolved using an ultrasonic cleaner.
The solution was filtered with a syringe equipped with a polytetrafluoroethylene (PTFE) syringe filter with a pore size of 0.45 μm, and GPC measurement was performed.
As a result of the measurement, it was found that the purified product had a high molecular weight with a wide molecular weight distribution (weight average molecular weight: 4.7 × 10 5 , polydispersity index: 10.5) to a relatively low molecular weight distribution with a narrow molecular weight distribution (weight average molecular weight: 1 up to .1×10 5 , polydispersity index 1.6).
[実施例4]
「PIM-1(分子量:重量平均分子量50万)と表面官能基修飾シリカナノ粒子(1)を用いた有機-無機複合気体分離膜の製膜」
 0.15gの固有微細孔ポリマー、PIM-1(下記の化学式(23)参照)を6.7mLのテトラヒドロフラン(THF)に溶解した後、このポリマー溶液に、ポリマーに対する含有量が60質量%となるように、表面官能基修飾シリカナノ粒子(1)を添加し、1時間の超音波処理を行った。
 表面官能基修飾シリカナノ粒子(1)としては、上記の化学式(19)で表されるものを用いた。
 このポリマー溶液を攪拌速度1200rpmで一晩攪拌し、攪拌後、再び1時間の超音波処理を行った。
 その後、このポリマー溶液を直径6cmのガラスシャーレ上にキャストした。
 その後、30℃に設定したオーブン内にこのガラスシャーレを入れ、6時間かけて真空にして複合膜を作製した。
 作製した複合膜は、70℃、18時間の熱処理を行った。得られた膜の膜厚は79μmであった。
[Example 4]
"Formation of organic-inorganic composite gas separation membrane using PIM-1 (molecular weight: weight average molecular weight 500,000) and surface functional group-modified silica nanoparticles (1)"
After dissolving 0.15 g of an intrinsic microporous polymer, PIM-1 (see formula (23) below), in 6.7 mL of tetrahydrofuran (THF), the polymer solution has a content of 60% by weight relative to the polymer. As shown, the surface functional group-modified silica nanoparticles (1) were added and sonicated for 1 hour.
As the surface functional group-modified silica nanoparticles (1), those represented by the above chemical formula (19) were used.
The polymer solution was stirred overnight at a stirring speed of 1200 rpm, and after stirring was again subjected to ultrasonic treatment for 1 hour.
After that, this polymer solution was cast on a glass petri dish with a diameter of 6 cm.
After that, the glass petri dish was placed in an oven set at 30° C., and the oven was evacuated for 6 hours to prepare a composite membrane.
The produced composite membrane was heat-treated at 70° C. for 18 hours. The film thickness of the obtained film was 79 μm.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
[実施例5]
「PIM-1(分子量:重量平均分子量50万)と表面官能基修飾シリカナノ粒子(1)の複合気体分離膜の気体透過特性」
 実施例4で得られた複合膜の気体透過率測定を行った。
 気体透過率測定には、理科精機工業株式会社製:K-315N-01Cを使用した。供給気体として酸素、窒素を用い、測定条件は、温度35℃、圧力差76cmHgとした。結果を表1に示す。
[Example 5]
"Gas Permeability of Composite Gas Separation Membrane of PIM-1 (Molecular Weight: Weight Average Molecular Weight 500,000) and Surface Functional Group-Modified Silica Nanoparticles (1)"
The gas permeability of the composite membrane obtained in Example 4 was measured.
For the gas permeability measurement, K-315N-01C manufactured by Rika Seiki Kogyo Co., Ltd. was used. Oxygen and nitrogen were used as supply gases, and the measurement conditions were a temperature of 35° C. and a pressure difference of 76 cmHg. Table 1 shows the results.
[比較例1]
「PIM-1(分子量:重量平均分子量50万)気体分離膜の製膜」
 表面官能基修飾シリカナノ粒子(1)を添加しないこと以外は実施例4と同様にして、PIM-1気体分離膜を作製した。
 得られた膜の気体透過率測定を、実施例5と同様にして行った。結果を表1に示す。
[Comparative Example 1]
"PIM-1 (molecular weight: weight average molecular weight 500,000) gas separation membrane production"
A PIM-1 gas separation membrane was produced in the same manner as in Example 4, except that the surface functional group-modified silica nanoparticles (1) were not added.
The gas permeability of the resulting membrane was measured in the same manner as in Example 5. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
 表1に示す結果から、実施例4の複合気体分離膜は、比較例1のPIM-1気体分離膜よりも、酸素の透過率が約4倍であった。 From the results shown in Table 1, the composite gas separation membrane of Example 4 had an oxygen permeability about four times that of the PIM-1 gas separation membrane of Comparative Example 1.
[実施例6]
「PIM-1(分子量:重量平均分子量50万)と表面官能基修飾シリカナノ粒子(2)を用いた有機-無機複合気体分離膜の製膜」
 0.15gの固有微細孔ポリマー、PIM-1(上記の化学式(23)参照)を6.7mLのテトラヒドロフラン(THF)に溶解した後、このポリマー溶液に、ポリマーに対する含有量が20質量%となるように、表面官能基修飾シリカナノ粒子(2)を添加し、1時間の超音波処理を行った。
 表面官能基修飾シリカナノ粒子(2)としては、上記の式(20)で表されるものを用いた。
 このポリマー溶液を攪拌速度1200rpmで一晩攪拌し、攪拌後、再び1時間の超音波処理を行った。
 その後、このポリマー溶液を直径6cmのガラスシャーレ上にキャストした。
 その後、30℃に設定したオーブン内にこのガラスシャーレを入れ、6時間かけて真空にして複合膜を作製した。
 作製した複合膜は、70℃、18時間の熱処理を行った。得られた膜の膜厚は51μmであった。
[Example 6]
"Formation of organic-inorganic composite gas separation membrane using PIM-1 (molecular weight: weight average molecular weight 500,000) and surface functional group-modified silica nanoparticles (2)"
After dissolving 0.15 g of the intrinsic microporous polymer, PIM-1 (see formula (23) above), in 6.7 mL of tetrahydrofuran (THF), the polymer solution has a content of 20% by weight relative to the polymer. As shown, the surface functional group-modified silica nanoparticles (2) were added and sonicated for 1 hour.
As the surface functional group-modified silica nanoparticles (2), those represented by the above formula (20) were used.
The polymer solution was stirred overnight at a stirring speed of 1200 rpm, and after stirring was again subjected to ultrasonic treatment for 1 hour.
After that, this polymer solution was cast on a glass petri dish with a diameter of 6 cm.
After that, the glass petri dish was placed in an oven set at 30° C., and the oven was evacuated for 6 hours to prepare a composite membrane.
The produced composite membrane was heat-treated at 70° C. for 18 hours. The film thickness of the obtained film was 51 μm.
[実施例7]
「PIM-1(分子量:重量平均分子量50万)と表面官能基修飾シリカナノ粒子(2)の複合気体分離膜の気体透過特性」
 実施例6で得られた複合膜の気体透過率測定を行った。
 気体透過率測定には、理科精機工業株式会社製:K-315N-01Cを使用した。供給気体として酸素、窒素を用い、測定条件は、温度35℃、圧力差76cmHgとした。結果を表2に示す。
[Example 7]
"Gas Permeability of Composite Gas Separation Membrane of PIM-1 (Molecular Weight: Weight Average Molecular Weight 500,000) and Surface Functional Group-Modified Silica Nanoparticles (2)"
The gas permeability of the composite membrane obtained in Example 6 was measured.
For the gas permeability measurement, K-315N-01C manufactured by Rika Seiki Kogyo Co., Ltd. was used. Oxygen and nitrogen were used as supply gases, and the measurement conditions were a temperature of 35° C. and a pressure difference of 76 cmHg. Table 2 shows the results.
[実施例8]
「PIM-1(分子量:重量平均分子量50万)と表面官能基修飾シリカナノ粒子(2)を用いた有機-無機複合気体分離膜の製膜」
 表面官能基修飾シリカナノ粒子(2)の添加量を40質量%としたこと以外は実施例6と同様にして、有機-無機複合気体分離膜を作製した。
 得られた複合膜の気体透過率測定を、実施例7と同様にして行った。結果を表2に示す。
[Example 8]
"Formation of organic-inorganic composite gas separation membrane using PIM-1 (molecular weight: weight average molecular weight 500,000) and surface functional group-modified silica nanoparticles (2)"
An organic-inorganic composite gas separation membrane was produced in the same manner as in Example 6, except that the amount of the surface functional group-modified silica nanoparticles (2) added was 40% by mass.
The gas permeability of the resulting composite membrane was measured in the same manner as in Example 7. Table 2 shows the results.
[実施例9]
「PIM-1(分子量:重量平均分子量50万)と表面官能基修飾シリカナノ粒子(2)を用いた有機-無機複合気体分離膜の製膜」
 表面官能基修飾シリカナノ粒子(2)の添加量を60質量%としたこと以外は実施例6と同様にして、有機-無機複合気体分離膜を作製した。
 得られた複合膜の気体透過率測定を、実施例7と同様にして行った。結果を表2に示す。
[Example 9]
"Formation of organic-inorganic composite gas separation membrane using PIM-1 (molecular weight: weight average molecular weight 500,000) and surface functional group-modified silica nanoparticles (2)"
An organic-inorganic composite gas separation membrane was produced in the same manner as in Example 6, except that the amount of the surface functional group-modified silica nanoparticles (2) added was 60% by mass.
The gas permeability of the resulting composite membrane was measured in the same manner as in Example 7. Table 2 shows the results.
[実施例10]
「PIM-1(分子量:重量平均分子量50万)と表面官能基修飾シリカナノ粒子(2)を用いた有機-無機複合気体分離膜の製膜」
 表面官能基修飾シリカナノ粒子(2)の添加量を70質量%としたこと以外は実施例6と同様にして、有機-無機複合気体分離膜を作製した。
 得られた複合膜の気体透過率測定を、実施例7と同様にして行った。結果を表2に示す。
[Example 10]
"Formation of organic-inorganic composite gas separation membrane using PIM-1 (molecular weight: weight average molecular weight 500,000) and surface functional group-modified silica nanoparticles (2)"
An organic-inorganic composite gas separation membrane was produced in the same manner as in Example 6, except that the amount of the surface functional group-modified silica nanoparticles (2) added was 70% by mass.
The gas permeability of the resulting composite membrane was measured in the same manner as in Example 7. Table 2 shows the results.
[比較例2]
「PIM-1(分子量:重量平均分子量50万)気体分離膜の製膜」
 表面官能基修飾シリカナノ粒子(2)を添加しないこと以外は実施例6と同様にして、PIM-1気体分離膜を作製した。
 得られた気体分離膜の気体透過率測定を、実施例7と同様にして行った。結果を表2に示す。
[Comparative Example 2]
"PIM-1 (molecular weight: weight average molecular weight 500,000) gas separation membrane production"
A PIM-1 gas separation membrane was produced in the same manner as in Example 6, except that the surface functional group-modified silica nanoparticles (2) were not added.
The gas permeability of the obtained gas separation membrane was measured in the same manner as in Example 7. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
 表2に示す結果から、実施例6は、比較例2よりも、酸素の透過率が約2.7倍であった。実施例8は、比較例2よりも、酸素の透過率が約5.3倍であった。実施例9は、比較例2よりも、酸素の透過率が約9.8倍であった。実施例10は、比較例2よりも、酸素の透過率が約10.8倍であった。 From the results shown in Table 2, Example 6 had an oxygen permeability about 2.7 times that of Comparative Example 2. Example 8 had an oxygen permeability about 5.3 times that of Comparative Example 2. Example 9 had an oxygen permeability of about 9.8 times that of Comparative Example 2. Example 10 had an oxygen permeability of about 10.8 times that of Comparative Example 2.
[実施例11]
「PIM-1(分子量:重量平均分子量10万)と表面官能基修飾シリカナノ粒子(1)を用いた有機-無機複合気体分離膜の製膜」
 0.15gの固有微細孔ポリマー、PIM-1(上記の化学式(23)参照)を6.7mLのテトラヒドロフラン(THF)に溶解した後、このポリマー溶液に、ポリマーに対する含有量が50質量%となるように、表面官能基修飾シリカナノ粒子(1)を添加し、1時間の超音波処理を行った。
 表面官能基修飾シリカナノ粒子(1)としては、上記の式(1)で表されるものを用いた。
 このポリマー溶液を攪拌速度1200rpmで一晩攪拌し、攪拌後、再び1時間の超音波処理を行った。
 その後、このポリマー溶液を直径6cmのガラスシャーレ上にキャストした。
 その後、30℃に設定したオーブン内にこのガラスシャーレを入れ、6時間かけて真空にして複合膜を作製した。
 作製した複合膜は、70℃、18時間の熱処理を行った。得られた膜の膜厚は67μmであった。
[Example 11]
"Formation of Organic-Inorganic Composite Gas Separation Membrane Using PIM-1 (Molecular Weight: Weight Average Molecular Weight 100,000) and Surface Functional Group-Modified Silica Nanoparticles (1)"
After dissolving 0.15 g of the intrinsic microporous polymer, PIM-1 (see formula (23) above), in 6.7 mL of tetrahydrofuran (THF), the polymer solution has a content of 50% by weight relative to the polymer. As shown, the surface functional group-modified silica nanoparticles (1) were added and sonicated for 1 hour.
As the surface functional group-modified silica nanoparticles (1), those represented by the above formula (1) were used.
The polymer solution was stirred overnight at a stirring speed of 1200 rpm, and after stirring was again subjected to ultrasonic treatment for 1 hour.
After that, this polymer solution was cast on a glass petri dish with a diameter of 6 cm.
After that, the glass petri dish was placed in an oven set at 30° C., and the oven was evacuated for 6 hours to prepare a composite membrane.
The produced composite membrane was heat-treated at 70° C. for 18 hours. The film thickness of the obtained film was 67 μm.
[実施例12]
「PIM-1(分子量:重量平均分子量10万)と表面官能基修飾シリカナノ粒子(1)の複合気体分離膜の気体透過特性」
 実施例11で得られた複合膜の気体透過率測定を行った。
 気体透過率測定には、理科精機工業株式会社製:K-315N-01Cを使用した。供給気体として二酸化炭素、酸素、窒素、メタンを用い、測定条件は、温度35℃、圧力差76cmHgとした。結果を表3に示す。
[Example 12]
"Gas Permeability of Composite Gas Separation Membrane of PIM-1 (Molecular Weight: Weight Average Molecular Weight 100,000) and Surface Functional Group-Modified Silica Nanoparticles (1)"
The gas permeability of the composite membrane obtained in Example 11 was measured.
For the gas permeability measurement, K-315N-01C manufactured by Rika Seiki Kogyo Co., Ltd. was used. Carbon dioxide, oxygen, nitrogen, and methane were used as supply gases, and the measurement conditions were a temperature of 35° C. and a pressure difference of 76 cmHg. Table 3 shows the results.
[実施例13]
「PIM-1(分子量:重量平均分子量10万)と表面官能基修飾シリカナノ粒子(1)を用いた有機-無機複合気体分離膜の製膜」
 シリカナノ粒子(1)の添加量を80質量%としたこと以外は実施例11と同様にして、有機-無機複合気体分離膜を作製した。
 得られた複合膜の気体透過率測定を、実施例12と同様にして行った。結果を表3に示す。
[Example 13]
"Formation of Organic-Inorganic Composite Gas Separation Membrane Using PIM-1 (Molecular Weight: Weight Average Molecular Weight 100,000) and Surface Functional Group-Modified Silica Nanoparticles (1)"
An organic-inorganic composite gas separation membrane was produced in the same manner as in Example 11, except that the amount of silica nanoparticles (1) added was 80% by mass.
The gas permeability of the resulting composite membrane was measured in the same manner as in Example 12. Table 3 shows the results.
[比較例3]
「PIM-1(分子量:重量平均分子量10万)気体分離膜の製膜」
 表面官能基修飾シリカナノ粒子(1)を添加しないこと以外は実施例11と同様にして、PIM-1気体分離膜を作製した。
 得られた気体分離膜の気体透過率測定を、実施例12と同様にして行った。結果を表3に示す。
[Comparative Example 3]
"Preparation of PIM-1 (molecular weight: weight average molecular weight 100,000) gas separation membrane"
A PIM-1 gas separation membrane was produced in the same manner as in Example 11, except that the surface functional group-modified silica nanoparticles (1) were not added.
The gas permeability of the obtained gas separation membrane was measured in the same manner as in Example 12. Table 3 shows the results.
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
 表3に示す結果から、実施例11は、比較例3よりも、酸素の透過率が約1.4倍、二酸化炭素の透過率が約1.3倍、窒素の透過率が約1.5倍、メタンの透過率が約1.8倍であった。実施例13は、比較例3よりも、酸素の透過率が約6.4倍、窒素の透過率が約8.9倍であった。 From the results shown in Table 3, Example 11 has an oxygen permeability of about 1.4 times, a carbon dioxide permeability of about 1.3 times, and a nitrogen permeability of about 1.5 times that of Comparative Example 3. , and the methane permeability was about 1.8 times. Example 13 had an oxygen permeability of about 6.4 times and a nitrogen permeability of about 8.9 times that of Comparative Example 3.
[実施例14]
「PIM-1(分子量:重量平均分子量10万)と表面官能基修飾シリカナノ粒子(2)を用いた有機-無機複合気体分離膜の製膜」
 0.15gの固有微細孔ポリマー、PIM-1(上記の化学式(23)参照)を6.7mLのテトラヒドロフラン(THF)に溶解した後、このポリマー溶液に、ポリマーに対する含有量が60質量%となるように、表面官能基修飾シリカナノ粒子(2)を添加し、1時間の超音波処理を行った。
 表面官能基修飾シリカナノ粒子(2)としては、上記の化学式(20)で表されるものを用いた。
 このポリマー溶液を攪拌速度1200rpmで一晩攪拌し、攪拌後、再び1時間の超音波処理を行った。
 その後、このポリマー溶液を直径6cmのガラスシャーレ上にキャストした。
 その後、30℃に設定したオーブン内にこのガラスシャーレを入れ、6時間かけて真空にして複合膜を作製した。
 作製した複合膜は、70℃、18時間の熱処理を行った。得られた膜の膜厚は94μmであった。
[Example 14]
"Formation of Organic-Inorganic Composite Gas Separation Membrane Using PIM-1 (Molecular Weight: Weight Average Molecular Weight 100,000) and Surface Functional Group-Modified Silica Nanoparticles (2)"
After dissolving 0.15 g of the intrinsic microporous polymer, PIM-1 (see formula (23) above), in 6.7 mL of tetrahydrofuran (THF), the polymer solution has a content of 60% by weight relative to the polymer. As shown, the surface functional group-modified silica nanoparticles (2) were added and sonicated for 1 hour.
As the surface functional group-modified silica nanoparticles (2), those represented by the above chemical formula (20) were used.
The polymer solution was stirred overnight at a stirring speed of 1200 rpm, and after stirring was again subjected to ultrasonic treatment for 1 hour.
After that, this polymer solution was cast on a glass petri dish with a diameter of 6 cm.
After that, the glass petri dish was placed in an oven set at 30° C., and the oven was evacuated for 6 hours to prepare a composite membrane.
The produced composite membrane was heat-treated at 70° C. for 18 hours. The film thickness of the obtained film was 94 μm.
[実施例15]
「PIM-1(分子量:重量平均分子量10万)と表面官能基修飾シリカナノ粒子(2)の複合気体分離膜の気体透過特性」
 実施例14で得られた複合膜の気体透過率測定を行った。
 気体透過率測定には、理科精機工業株式会社製:K-315N-01Cを使用した。供給気体として二酸化炭素、酸素、窒素、メタンを用い、測定条件は、温度35℃、圧力差76cmHgとした。結果を表4に示す。
[Example 15]
"Gas Permeability of Composite Gas Separation Membrane of PIM-1 (Molecular Weight: Weight Average Molecular Weight 100,000) and Surface Functional Group-Modified Silica Nanoparticles (2)"
The gas permeability of the composite membrane obtained in Example 14 was measured.
For the gas permeability measurement, K-315N-01C manufactured by Rika Seiki Kogyo Co., Ltd. was used. Carbon dioxide, oxygen, nitrogen, and methane were used as supply gases, and the measurement conditions were a temperature of 35° C. and a pressure difference of 76 cmHg. Table 4 shows the results.
[実施例16]
「PIM-1(分子量:重量平均分子量10万)と表面官能基修飾シリカナノ粒子(2)を用いた有機-無機複合気体分離膜の製膜」
 表面官能基修飾シリカナノ粒子(2)の添加量を85質量%としたこと以外は実施例14と同様にして、有機-無機複合気体分離膜を作製した。
 得られた複合膜の気体透過率測定を、実施例15と同様にして行った。結果を表4に示す。
[Example 16]
"Formation of Organic-Inorganic Composite Gas Separation Membrane Using PIM-1 (Molecular Weight: Weight Average Molecular Weight 100,000) and Surface Functional Group-Modified Silica Nanoparticles (2)"
An organic-inorganic composite gas separation membrane was produced in the same manner as in Example 14, except that the amount of the surface functional group-modified silica nanoparticles (2) added was 85% by mass.
The gas permeability of the resulting composite membrane was measured in the same manner as in Example 15. Table 4 shows the results.
[比較例4]
「PIM-1(分子量:重量平均分子量10万)気体分離膜の製膜」
 表面官能基修飾シリカナノ粒子(2)を添加しないこと以外は実施例14と同様にして、PIM-1気体分離膜を作製した。
 得られた気体分離膜の気体透過率測定を、実施例15と同様にして行った。結果を表4に示す。
[Comparative Example 4]
"Preparation of PIM-1 (molecular weight: weight average molecular weight 100,000) gas separation membrane"
A PIM-1 gas separation membrane was produced in the same manner as in Example 14, except that the surface functional group-modified silica nanoparticles (2) were not added.
The gas permeability of the obtained gas separation membrane was measured in the same manner as in Example 15. Table 4 shows the results.
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
 表4に示す結果から、実施例14は、比較例4よりも、酸素の透過率が約5.5倍、窒素の透過率が約7.9倍であった。実施例16は、比較例4よりも、酸素の透過率が約14.6倍、二酸化炭素の透過率が約13.9倍、窒素の透過率が約22.2倍、メタンの透過率が約30.6倍であった。 From the results shown in Table 4, Example 14 had an oxygen permeability of about 5.5 times and a nitrogen permeability of about 7.9 times that of Comparative Example 4. Example 16 has an oxygen permeability of about 14.6 times, a carbon dioxide permeability of about 13.9 times, a nitrogen permeability of about 22.2 times, and a methane permeability of about 22.2 times that of Comparative Example 4. It was about 30.6 times.
[実施例17]
「PIM-1(分子量:重量平均分子量10万)と表面官能基修飾シリカナノ粒子(2)を用いた有機-無機複合気体分離膜の気体透過安定性の評価」
 実施例1で合成した固有微細孔ポリマー、PIM-1(上記の化学式(23)参照)と表面官能基修飾シリカナノ粒子(2)を60質量%含有した実施例15の複合気体分離膜を室温で14日間、シリカゲル入りのデシケーター内で保存した。
 その後、複合膜の気体透過率測定を行った。
 気体透過率測定には、理科精機工業株式会社製:K-315N-01Cを使用した。供給気体として酸素、窒素を用い、測定条件は、温度35℃、圧力差76cmHgとした。結果を表5に示す。
[Example 17]
"Evaluation of Gas Permeation Stability of Organic-Inorganic Composite Gas Separation Membrane Using PIM-1 (Molecular Weight: Weight Average Molecular Weight 100,000) and Surface Functional Group-Modified Silica Nanoparticles (2)"
The composite gas separation membrane of Example 15 containing 60% by mass of the intrinsic microporous polymer synthesized in Example 1, PIM-1 (see chemical formula (23) above) and surface functional group-modified silica nanoparticles (2) at room temperature It was preserved in a desiccator containing silica gel for 14 days.
After that, the gas permeability measurement of the composite membrane was performed.
For the gas permeability measurement, K-315N-01C manufactured by Rika Seiki Kogyo Co., Ltd. was used. Oxygen and nitrogen were used as supply gases, and the measurement conditions were a temperature of 35° C. and a pressure difference of 76 cmHg. Table 5 shows the results.
[比較例5]
「PIM-1(分子量:重量平均分子量10万)と表面官能基修飾シリカナノ粒子(2)の複合気体分離膜の気体透過特性」
 実施例17と同様にして作製した複合気体分離膜について、作製後すぐに、気体透過率測定を行った。
 気体透過率測定は、実施例17と同様とした。結果を表5に示す。
[Comparative Example 5]
"Gas Permeability of Composite Gas Separation Membrane of PIM-1 (Molecular Weight: Weight Average Molecular Weight 100,000) and Surface Functional Group-Modified Silica Nanoparticles (2)"
A composite gas separation membrane produced in the same manner as in Example 17 was measured for gas permeability immediately after production.
The gas permeability measurement was the same as in Example 17. Table 5 shows the results.
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
 表5に示す結果から、実施例17の複合膜は、エタノール処理を行っていないが、保存により酸素の透過率が減少しなかった。 From the results shown in Table 5, although the composite membrane of Example 17 was not treated with ethanol, the oxygen permeability did not decrease during storage.
[実施例18]
「含フッ素ポリイミド(6FDA-3MPA)の合成」
 昇華精製した2,2’-ビス(3,4’-ジヒドロジカルボキシフェニル)ヘキサフルオロプロペン(6FDA)および再結晶精製した2,4,6-トリメチル-1,3-フェニレンジアミン(3MPA)を有機溶媒中で縮重合し、ポリイミドを得た。反応は穏和な条件下で進行し、架橋反応等の副反応が生じにくい化学イミド化法を採用した。
 500mL三口フラスコに3MPAを6.98g(46.46mmol)、ジメチルアセトアミド(DMAc)を118mL加えて溶解させ、6FDAを20.64g(46.46mmol)、DMAcを63mL加えた。
 窒素雰囲気下、600rpmで1日間撹拌した後、無水酢酸を22.0mL(1滴/1秒)、トリエチルアミン(TEA)を32.4mL(1滴/2秒)滴下した。
 さらに、3日間撹拌した後、反応溶液を3Lのメタノール中へ滴下し、粒状の6FDA-3MPAを得た。
 メタノールを3回入れ替えてスラリーを洗浄し、未反応物を十分に取り除いた後、真空乾燥(150℃、15時間)した。
 6FDA-3MPAの合成に関する反応式を、下記の式(27)に示す。
[Example 18]
"Synthesis of fluorine-containing polyimide (6FDA-3MPA)"
Sublimation purified 2,2′-bis(3,4′-dihydrodicarboxyphenyl)hexafluoropropene (6FDA) and recrystallized purified 2,4,6-trimethyl-1,3-phenylenediamine (3MPA) were organically Polyimide was obtained by condensation polymerization in a solvent. A chemical imidization method was adopted in which the reaction proceeds under mild conditions and side reactions such as cross-linking are unlikely to occur.
6.98 g (46.46 mmol) of 3MPA and 118 mL of dimethylacetamide (DMAc) were added and dissolved in a 500 mL three-necked flask, and 20.64 g (46.46 mmol) of 6FDA and 63 mL of DMAc were added.
After stirring at 600 rpm for one day in a nitrogen atmosphere, 22.0 mL (1 drop/1 second) of acetic anhydride and 32.4 mL (1 drop/2 seconds) of triethylamine (TEA) were added dropwise.
Further, after stirring for 3 days, the reaction solution was dropped into 3 L of methanol to obtain granular 6FDA-3MPA.
The slurry was washed by changing the methanol three times to sufficiently remove unreacted substances, and then vacuum-dried (150° C., 15 hours).
A reaction formula for the synthesis of 6FDA-3MPA is shown in formula (27) below.
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
[実施例19]
「含フッ素ポリイミド(6FDA-3MPA)のゲル透過クロマトグラフィー(GPC)測定」
 実施例18にて合成した6FDA-3MPAの分子量を測定するために、GPC測定を行った。
 6FDA-3MPA約4.0mgを量りとってサンプル管にいれ、テトラヒドロフラン(THF)を4.0mL加え、超音波洗浄機を用いて完全に溶解させた。
 孔径0.45μmのポリテトラフルオロエチレン(PTFE)シリンジフィルターを装着したシリンジで溶液を濾過し、GPC測定を行った。
 測定の結果、重量平均分子量は1.3×10、多分散指数は4.0であった。
[Example 19]
"Gel permeation chromatography (GPC) measurement of fluorine-containing polyimide (6FDA-3MPA)"
In order to measure the molecular weight of 6FDA-3MPA synthesized in Example 18, GPC measurement was performed.
About 4.0 mg of 6FDA-3MPA was weighed out and placed in a sample tube, 4.0 mL of tetrahydrofuran (THF) was added, and completely dissolved using an ultrasonic cleaner.
The solution was filtered with a syringe equipped with a polytetrafluoroethylene (PTFE) syringe filter with a pore size of 0.45 μm, and GPC measurement was performed.
As a result of measurement, the weight average molecular weight was 1.3×10 5 and the polydispersity index was 4.0.
[実施例20]
「6FDA-3MPAと表面官能基修飾シリカナノ粒子(1)を用いた有機-無機複合気体分離膜の製膜」
 1.5gの含フッ素ポリイミド、6FDA-3MPA(下記の化学式(24)参照)を6.7mLのテトラヒドロフラン(THF)に溶解した後、このポリマー溶液に、ポリマーに対する含有量が30質量%となるように、表面官能基修飾シリカナノ粒子(1)を添加し、1時間の超音波処理を行った。
 表面官能基修飾シリカナノ粒子(1)としては、上記の化学式(19)で表されるものを用いた。
 このポリマー溶液をマグネチックスターラーにて一晩攪拌し、攪拌後、再び1時間の超音波処理を行った。
 その後、このポリマー溶液を直径6cmのガラスシャーレ上にキャストした。
 その後、30℃に設定したオーブン内にこのガラスシャーレを入れ、4時間かけて真空にして複合膜を作製した。
 作製した複合膜は、150℃、15時間の熱処理を行った。得られた膜の膜厚は35μmであった。
[Example 20]
"Formation of Organic-Inorganic Composite Gas Separation Membrane Using 6FDA-3MPA and Surface Functional Group-Modified Silica Nanoparticles (1)"
After dissolving 1.5 g of fluorine-containing polyimide, 6FDA-3MPA (see chemical formula (24) below) in 6.7 mL of tetrahydrofuran (THF), add The surface functional group-modified silica nanoparticles (1) were added to the solution and subjected to ultrasonic treatment for 1 hour.
As the surface functional group-modified silica nanoparticles (1), those represented by the above chemical formula (19) were used.
This polymer solution was stirred overnight with a magnetic stirrer, and after stirring, was again subjected to ultrasonic treatment for 1 hour.
After that, this polymer solution was cast on a glass petri dish with a diameter of 6 cm.
After that, the glass petri dish was placed in an oven set at 30° C., and the oven was evacuated for 4 hours to prepare a composite membrane.
The produced composite membrane was heat-treated at 150° C. for 15 hours. The film thickness of the obtained film was 35 μm.
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
[実施例21]
「6FDA-3MPAと表面官能基修飾シリカナノ粒子(1)の複合気体分離膜の気体透過特性」
 実施例20で得られた複合膜の気体透過率測定を行った。
 気体透過率測定には、理科精機工業株式会社製:K-315N-01Cを使用した。供給気体として酸素、窒素を用い、測定条件は、温度35℃、圧力差76cmHgとした。結果を表6に示す。
[Example 21]
"Gas Permeability of Composite Gas Separation Membrane of 6FDA-3MPA and Surface Functional Group Modified Silica Nanoparticles (1)"
The gas permeability of the composite membrane obtained in Example 20 was measured.
For the gas permeability measurement, K-315N-01C manufactured by Rika Seiki Kogyo Co., Ltd. was used. Oxygen and nitrogen were used as supply gases, and the measurement conditions were a temperature of 35° C. and a pressure difference of 76 cmHg. Table 6 shows the results.
[実施例22]
「6FDA-3MPAと表面官能基修飾シリカナノ粒子(1)の複合気体分離膜の気体透過特性」
 表面官能基修飾シリカナノ粒子(1)の添加量を40質量%としたこと以外は実施例20と同様にして、有機-無機複合気体分離膜を作製した。
 得られた複合膜の気体透過率測定を、実施例21と同様にして行った。結果を表6に示す。
[Example 22]
"Gas Permeability of Composite Gas Separation Membrane of 6FDA-3MPA and Surface Functional Group Modified Silica Nanoparticles (1)"
An organic-inorganic composite gas separation membrane was produced in the same manner as in Example 20, except that the amount of surface functional group-modified silica nanoparticles (1) added was 40% by mass.
The gas permeability of the obtained composite membrane was measured in the same manner as in Example 21. Table 6 shows the results.
[実施例23]
「6FDA-3MPAと表面官能基修飾シリカナノ粒子(1)の複合気体分離膜の気体透過特性」
 表面官能基修飾シリカナノ粒子(1)の添加量を60質量%としたこと以外は実施例20と同様にして、有機-無機複合気体分離膜を作製した。
 得られた複合膜の気体透過率測定を、実施例21と同様にして行った。結果を表6に示す。
[Example 23]
"Gas Permeability of Composite Gas Separation Membrane of 6FDA-3MPA and Surface Functional Group Modified Silica Nanoparticles (1)"
An organic-inorganic composite gas separation membrane was produced in the same manner as in Example 20, except that the amount of surface functional group-modified silica nanoparticles (1) added was 60% by mass.
The gas permeability of the obtained composite membrane was measured in the same manner as in Example 21. Table 6 shows the results.
[実施例24]
「6FDA-3MPAと表面官能基修飾シリカナノ粒子(1)の複合気体分離膜の気体透過特性」
 表面官能基修飾シリカナノ粒子(1)の添加量を70質量%としたこと以外は実施例20と同様にして、有機-無機複合気体分離膜を作製した。
 得られた複合膜の気体透過率測定を、実施例21と同様にして行った。結果を表6に示す。
[Example 24]
"Gas Permeability of Composite Gas Separation Membrane of 6FDA-3MPA and Surface Functional Group Modified Silica Nanoparticles (1)"
An organic-inorganic composite gas separation membrane was produced in the same manner as in Example 20, except that the amount of surface functional group-modified silica nanoparticles (1) added was 70% by mass.
The gas permeability of the obtained composite membrane was measured in the same manner as in Example 21. Table 6 shows the results.
[比較例6]
「6FDA-3MPA気体分離膜の製膜」
 表面官能基修飾シリカナノ粒子(1)を添加しないこと以外は実施例20と同様にして、6FDA-3MPA気体分離膜を作製した。
 得られた気体分離膜の気体透過率測定を、実施例21と同様にして行った。結果を表6に示す。
[Comparative Example 6]
"Preparation of 6FDA-3MPA Gas Separation Membrane"
A 6FDA-3MPA gas separation membrane was produced in the same manner as in Example 20, except that the surface functional group-modified silica nanoparticles (1) were not added.
The gas permeability of the obtained gas separation membrane was measured in the same manner as in Example 21. Table 6 shows the results.
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000051
 表6に示す結果から、実施例20は、比較例6よりも、酸素の透過率が約2.5倍であった。実施例22は、比較例6よりも、酸素の透過率が約3倍であった。実施例23は、比較例6よりも、酸素の透過率が約21.7倍(N=1)、約8.9倍(N=2)であった。実施例24は、比較例6よりも、酸素の透過率が約3.4倍であった。 From the results shown in Table 6, the oxygen permeability of Example 20 was about 2.5 times that of Comparative Example 6. Example 22 had an oxygen permeability approximately three times that of Comparative Example 6. In Example 23, the oxygen permeability was about 21.7 times (N=1) and about 8.9 times (N=2) as compared with Comparative Example 6. Example 24 had an oxygen permeability about 3.4 times that of Comparative Example 6.
[実施例25]
「6FDA-3MPAと表面官能基修飾シリカナノ粒子(3)を用いた有機-無機複合気体分離膜の製膜」
 1.5gの含フッ素ポリイミド、6FDA-3MPA(上記の化学式(24)参照)を6.7mLのテトラヒドロフラン(THF)に溶解した後、このポリマー溶液に、ポリマーに対する含有量が30質量%となるように、表面官能基修飾シリカナノ粒子(3)を添加し、1時間の超音波処理を行った。
 表面官能基修飾シリカナノ粒子(3)としては、上記の化学式(21)で表されるものを用いた。
 このポリマー溶液をマグネチックスターラーにて一晩攪拌し、攪拌後、再び1時間の超音波処理を行った。
 その後、このポリマー溶液を直径6cmのガラスシャーレ上にキャストした。
 その後、30℃に設定したオーブン内にこのガラスシャーレを入れ、4時間かけて真空にして複合膜を作製した。
 作製した複合膜は、150℃、15時間の熱処理を行った。得られた膜の膜厚は48μmであった。
[Example 25]
"Formation of organic-inorganic composite gas separation membrane using 6FDA-3MPA and surface functional group-modified silica nanoparticles (3)"
After dissolving 1.5 g of fluorine-containing polyimide, 6FDA-3MPA (see chemical formula (24) above) in 6.7 mL of tetrahydrofuran (THF), add The surface functional group-modified silica nanoparticles (3) were added to the solution and subjected to ultrasonic treatment for 1 hour.
As the surface functional group-modified silica nanoparticles (3), those represented by the above chemical formula (21) were used.
This polymer solution was stirred overnight with a magnetic stirrer, and after stirring, was again subjected to ultrasonic treatment for 1 hour.
After that, this polymer solution was cast on a glass petri dish with a diameter of 6 cm.
After that, the glass petri dish was placed in an oven set at 30° C., and the oven was evacuated for 4 hours to prepare a composite membrane.
The produced composite membrane was heat-treated at 150° C. for 15 hours. The film thickness of the obtained film was 48 μm.
[実施例26]
「6FDA-3MPAと表面官能基修飾シリカナノ粒子(3)の複合気体分離膜の気体透過特性」
 実施例25で得られた複合膜の気体透過率測定を行った。
 気体透過率測定には、理科精機工業株式会社製:K-315N-01Cを使用した。供給気体として酸素、窒素を用い、測定条件は、温度35℃、圧力差76cmHgとした。結果を表7に示す。
[Example 26]
"Gas Permeability of Composite Gas Separation Membrane of 6FDA-3MPA and Surface Functional Group Modified Silica Nanoparticles (3)"
The gas permeability of the composite membrane obtained in Example 25 was measured.
For the gas permeability measurement, K-315N-01C manufactured by Rika Seiki Kogyo Co., Ltd. was used. Oxygen and nitrogen were used as supply gases, and the measurement conditions were a temperature of 35° C. and a pressure difference of 76 cmHg. Table 7 shows the results.
[実施例27]
「6FDA-3MPAと表面官能基修飾シリカナノ粒子(3)の複合気体分離膜の気体透過特性」
 表面官能基修飾シリカナノ粒子(3)の添加量を40質量%としたこと以外は実施例25と同様にして、有機-無機複合気体分離膜を作製した。
 得られた複合膜の気体透過率測定を、実施例26と同様にして行った。結果を表7に示す。
[Example 27]
"Gas Permeability of Composite Gas Separation Membrane of 6FDA-3MPA and Surface Functional Group Modified Silica Nanoparticles (3)"
An organic-inorganic composite gas separation membrane was produced in the same manner as in Example 25, except that the amount of the surface functional group-modified silica nanoparticles (3) added was 40% by mass.
The gas permeability measurement of the resulting composite membrane was performed in the same manner as in Example 26. Table 7 shows the results.
[実施例28]
「6FDA-3MPAと表面官能基修飾シリカナノ粒子(3)の複合気体分離膜の気体透過特性」
 表面官能基修飾シリカナノ粒子(3)の添加量を60質量%としたこと以外は実施例25と同様にして、有機-無機複合気体分離膜を作製した。
 得られた複合膜の気体透過率測定を、実施例26と同様にして行った。結果を表7に示す。
[Example 28]
"Gas Permeability of Composite Gas Separation Membrane of 6FDA-3MPA and Surface Functional Group Modified Silica Nanoparticles (3)"
An organic-inorganic composite gas separation membrane was produced in the same manner as in Example 25, except that the amount of the surface functional group-modified silica nanoparticles (3) added was 60% by mass.
The gas permeability measurement of the resulting composite membrane was performed in the same manner as in Example 26. Table 7 shows the results.
[実施例29]
「6FDA-3MPAと表面官能基修飾シリカナノ粒子(3)の複合気体分離膜の気体透過特性」
 表面官能基修飾シリカナノ粒子(3)の添加量を70質量%としたこと以外は実施例25と同様にして、有機-無機複合気体分離膜を作製した。
 得られた複合膜の気体透過率測定を、実施例26と同様にして行った。結果を表7に示す。
[Example 29]
"Gas Permeability of Composite Gas Separation Membrane of 6FDA-3MPA and Surface Functional Group Modified Silica Nanoparticles (3)"
An organic-inorganic composite gas separation membrane was produced in the same manner as in Example 25, except that the amount of the surface functional group-modified silica nanoparticles (3) added was 70% by mass.
The gas permeability measurement of the resulting composite membrane was performed in the same manner as in Example 26. Table 7 shows the results.
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000052
 表7に示す結果から、実施例25は、比較例6よりも、酸素の透過率が約2.5倍であった。実施例27は、比較例6よりも、酸素の透過率が約4.6倍であった。実施例28は、比較例6よりも、酸素の透過率が約14.9倍(N=1)、約12.8倍(N=2)であった。実施例29は、比較例6よりも、酸素の透過率が約8倍(N=1)、約4倍(N=2)であった。 From the results shown in Table 7, Example 25 had an oxygen permeability about 2.5 times that of Comparative Example 6. Example 27 had an oxygen permeability about 4.6 times that of Comparative Example 6. In Example 28, the oxygen permeability was about 14.9 times (N=1) and about 12.8 times (N=2) as compared with Comparative Example 6. In Example 29, the oxygen permeability was about 8 times (N=1) and about 4 times (N=2) as compared with Comparative Example 6.
[実施例30]
「6FDA-3MPAと表面官能基修飾シリカナノ粒子(4)を用いた有機-無機複合気体分離膜の製膜」
 1.5gの含フッ素ポリイミド、6FDA-3MPA(上記の化学式(24)参照)を6.7mLのテトラヒドロフラン(THF)に溶解した後、このポリマー溶液に、ポリマーに対する含有量が60質量%となるように、表面官能基修飾シリカナノ粒子(4)を添加し、1時間の超音波処理を行った。
 表面官能基修飾シリカナノ粒子(4)としては、上記の化学式(22)で表されるものを用いた。
 このポリマー溶液をマグネチックスターラーにて一晩攪拌し、攪拌後、再び1時間の超音波処理を行った。
 その後、このポリマー溶液を直径6cmのガラスシャーレ上にキャストした。
 その後、30℃に設定したオーブン内にこのガラスシャーレを入れ、4時間かけて真空にして複合膜を作製した。
 作製した複合膜は、150℃、15時間の熱処理を行った。得られた膜の膜厚は51μmであった。
[Example 30]
"Formation of organic-inorganic composite gas separation membrane using 6FDA-3MPA and surface functional group-modified silica nanoparticles (4)"
After dissolving 1.5 g of fluorine-containing polyimide, 6FDA-3MPA (see chemical formula (24) above) in 6.7 mL of tetrahydrofuran (THF), add The surface functional group-modified silica nanoparticles (4) were added to the solution and subjected to ultrasonic treatment for 1 hour.
As the surface functional group-modified silica nanoparticles (4), those represented by the above chemical formula (22) were used.
This polymer solution was stirred overnight with a magnetic stirrer, and after stirring, was again subjected to ultrasonic treatment for 1 hour.
After that, this polymer solution was cast on a glass petri dish with a diameter of 6 cm.
After that, the glass petri dish was placed in an oven set at 30° C., and the oven was evacuated for 4 hours to prepare a composite membrane.
The produced composite membrane was heat-treated at 150° C. for 15 hours. The film thickness of the obtained film was 51 μm.
[実施例31]
「6FDA-3MPAと表面官能基修飾シリカナノ粒子(4)の複合気体分離膜の気体透過特性」
 実施例25で得られた複合膜の気体透過率測定を行った。
 気体透過率測定には、理科精機工業株式会社製:K-315N-01Cを使用した。供給気体として二酸化炭素、酸素、窒素、メタンを用い、測定条件は、温度35°C、圧力差76cmHgとした。結果を表7に示す。
[Example 31]
"Gas Permeability of Composite Gas Separation Membrane of 6FDA-3MPA and Surface Functional Group Modified Silica Nanoparticles (4)"
The gas permeability of the composite membrane obtained in Example 25 was measured.
For the gas permeability measurement, K-315N-01C manufactured by Rika Seiki Kogyo Co., Ltd. was used. Carbon dioxide, oxygen, nitrogen, and methane were used as supply gases, and the measurement conditions were a temperature of 35° C. and a pressure difference of 76 cmHg. Table 7 shows the results.
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000053
 表8に示す結果から、実施例30は、比較例6よりも、酸素の透過率が約5.4倍、二酸化炭素の透過率が約4.7倍、窒素の透過率が約6.5倍、メタンの透過率が9倍であった。 From the results shown in Table 8, Example 30 has an oxygen permeability of about 5.4 times, a carbon dioxide permeability of about 4.7 times, and a nitrogen permeability of about 6.5 times that of Comparative Example 6. , the permeability of methane was 9 times higher.
[実施例32]
「シリコーンと表面官能基修飾シリカナノ粒子(2)を用いた有機-無機複合気体分離膜の製膜」
 0.431gのシリコーン(信越工業株式会社製:X-22-164A、官能基当量860gmol-1、密度0.98gcm-3)を10mLのバイアル瓶に測りとった。測りとったシリコーンの反応官能基数(0.5mmol)に合わせて、架橋剤であるペンタエリトリトールテトラキス(3-メルカプトプロピオナート)(PEMP)(密度1.28gmL-1)0.25mmolを加えた。このシリコーンとPEMPの混合物に対する含有量が40質量%となるように、表面官能基修飾シリカナノ粒子(2)を添加した。
 その後、光重合開始剤である2,2’-ジメトキシ-2-フェニルアセトフェノン(DMPA)(0.015mmol)およびテトラヒドロフラン(THF)を加え、液全体が透明となるまで加え、その後、数分間の超音波処理を行った。
 得られた溶液を1辺がおよそ6cmのテフロン(登録商標)トレー上にキャストし、周囲を暗室に設定した環境下にて、1.5時間~2時間UV照射(ちびライトDX BOX-S1100,ピーク波長:380nm)することによって複合膜を作製した。
 得られた膜の膜厚は135μmであった。
[Example 32]
"Formation of Organic-Inorganic Composite Gas Separation Membrane Using Silicone and Surface Functional Group-Modified Silica Nanoparticles (2)"
0.431 g of silicone (manufactured by Shin-Etsu Co., Ltd.: X-22-164A, functional group equivalent 860 gmol −1 , density 0.98 gcm −3 ) was weighed into a 10 mL vial. 0.25 mmol of pentaerythritol tetrakis(3-mercaptopropionate) (PEMP) (density 1.28 g mL −1 ), which is a cross-linking agent, was added according to the measured number of reactive functional groups of the silicone (0.5 mmol). The surface functional group-modified silica nanoparticles (2) were added so that the content of the mixture of silicone and PEMP was 40% by mass.
After that, 2,2′-dimethoxy-2-phenylacetophenone (DMPA) (0.015 mmol) and tetrahydrofuran (THF), which are photoinitiators, are added until the whole liquid becomes clear, and then heated for several minutes. Sonication was performed.
The resulting solution was cast on a Teflon (registered trademark) tray having a side of about 6 cm, and was irradiated with UV light (Chibi Light DX BOX-S1100, Chibi Light DX BOX-S1100, Peak wavelength: 380 nm) to prepare a composite membrane.
The film thickness of the obtained film was 135 μm.
[実施例33]
「シリコーンと表面官能基修飾シリカナノ粒子(2)の複合気体分離膜の気体透過特性」
 実施例32で得られた複合膜の気体透過率測定を行った。
 気体透過率測定には、理科精機工業株式会社製:K-315N-01Cを使用した。供給気体として二酸化炭素、酸素、窒素、メタンを用い、測定条件は、温度35°C、圧力差76cmHgとした。結果を表9に示す。
[Example 33]
"Gas Permeability of Composite Gas Separation Membrane of Silicone and Surface Functional Group Modified Silica Nanoparticles (2)"
The gas permeability of the composite membrane obtained in Example 32 was measured.
For the gas permeability measurement, K-315N-01C manufactured by Rika Seiki Kogyo Co., Ltd. was used. Carbon dioxide, oxygen, nitrogen, and methane were used as supply gases, and the measurement conditions were a temperature of 35° C. and a pressure difference of 76 cmHg. Table 9 shows the results.
[比較例7]
「シリコーン気体分離膜の製膜」
 表面官能基修飾シリカナノ粒子(2)を添加しないこと以外は実施例32と同様にして、シリコーン気体分離膜を作製した。
 得られた気体分離膜の気体透過率測定を、実施例33と同様にして行った。結果を表9に示す。
[Comparative Example 7]
"Formation of Silicone Gas Separation Membrane"
A silicone gas separation membrane was produced in the same manner as in Example 32, except that the surface functional group-modified silica nanoparticles (2) were not added.
The gas permeability of the obtained gas separation membrane was measured in the same manner as in Example 33. Table 9 shows the results.
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000054
 表9に示す結果から、実施例32は、比較例7よりも、酸素の透過率が約2.1、窒素の透過率が約2.1倍であった。 From the results shown in Table 9, Example 32 had an oxygen permeability of about 2.1 times and a nitrogen permeability of about 2.1 times that of Comparative Example 7.
[実施例34]
「固有微細孔性高分子(PIM-1)の合成」
 あらかじめ窒素フローを行っていた1L三つ口フラスコに強制撹拌機を装着し、その三つ口フラスコ内に、5,5’,6,6’-tetrahydroxy-3,3,3’,3’-tetramethyl-1,1’-spirobiindanを14.801g(43.48mmol)と、2,3,5,6-tetrafluoroterephthalonitrileを8.700g(43.48mmol)を投入し、脱水N,Nジメチルホルムアミド(DMF)を300mL加え、室温、300rpmで30分間撹拌した。
 モノマーが溶解した後、モノマーに対し6モル等量の炭酸カリウム(KCO)を36.15g加えると溶液が黄色に変化した。
 その後、65℃、300rpmで72時間撹拌した。
 72時間による反応終了後、ADVANTEC社製の直径9cmの定量ろ紙No.3を用いて、粗生成物を吸引濾過により回収した。
 この粗生成物を、200mLのDMF、100mLのアセトン、400mLの水で順次洗浄した。
 炭酸カリウムを溶解除去するために、洗浄物を2Lビーカーに移し、2Lの水を注いで40℃にて熱水攪拌し、これを再び吸引濾過した。
 もう一度、熱水攪拌を行い、吸引濾過後の生成物を300mLの水、100mLのアセトンで洗浄した。加えて、300mLの1,4-ジオキサンを少しずつ加えながら洗浄し、その後50mLのアセトン、300mLの水でさらなる洗浄を行った。
 吸引瓶の中にpH試験紙を入れ、濾液が中性であることを確認し、濾過で得られた蛍光黄色の固体を回収して、真空オーブンで95℃、15時間の条件で乾燥を行い、黄色固体の生成物を得た。乾燥後のPIM-1の収量は17.80gであった。
[Example 34]
"Synthesis of intrinsic microporous polymer (PIM-1)"
A 1 L three-necked flask that had been flowed with nitrogen in advance was equipped with a forced stirrer, and 5,5′,6,6′-tetrahydroxy-3,3,3′,3′- 14.801 g (43.48 mmol) of tetramethyl-1,1′-spirobiindan and 8.700 g (43.48 mmol) of 2,3,5,6-tetrafluoroterephthalonitrile were added, and dehydrated N,N dimethylformamide (DMF) was added. was added, and stirred at room temperature and 300 rpm for 30 minutes.
After the monomers dissolved, 36.15 g of potassium carbonate (K 2 CO 3 ), which was 6 molar equivalents to the monomers, was added and the solution turned yellow.
After that, the mixture was stirred at 65° C. and 300 rpm for 72 hours.
After completion of the reaction for 72 hours, quantitative filter paper No. 9 cm in diameter manufactured by ADVANTEC. Using 3, the crude product was collected by suction filtration.
The crude product was washed sequentially with 200 mL DMF, 100 mL acetone and 400 mL water.
In order to dissolve and remove the potassium carbonate, the washed material was transferred to a 2 L beaker, 2 L of water was added, hot water was stirred at 40° C., and suction filtration was performed again.
Hot water stirring was performed once again, and the product after suction filtration was washed with 300 mL of water and 100 mL of acetone. In addition, 300 mL of 1,4-dioxane was added in portions for washing, followed by further washing with 50 mL of acetone and 300 mL of water.
Place pH test paper in the suction bottle, confirm that the filtrate is neutral, collect the fluorescent yellow solid obtained by filtration, and dry it in a vacuum oven at 95°C for 15 hours. , to give the product as a yellow solid. The yield of PIM-1 after drying was 17.80 g.
[実施例35]
「固有微細孔性高分子(PIM-1)の精製」
 実施例34にて合成した生成物を、クロロホルムに溶解させ、貧溶媒のメタノールを少しずつ加えることでPIM-1を沈殿させた。
 任意の領域のポリマーを得るため、沈殿物は数回に分けて回収し、95℃、15時間真空乾燥した。
[Example 35]
"Purification of intrinsic microporous polymer (PIM-1)"
The product synthesized in Example 34 was dissolved in chloroform, and methanol as a poor solvent was added little by little to precipitate PIM-1.
In order to obtain a polymer in an arbitrary region, the precipitate was collected in several batches and vacuum-dried at 95° C. for 15 hours.
[実施例36]
「固有微細孔性高分子(PIM-1)のゲル透過クロマトグラフィー(GPC)測定」
 実施例35にて精製したPIM-1の分子量を測定するために、GPC測定を行った。
 PIM-1約4.0mgを量りとってサンプル管に入れ、テトラヒドロフラン(THF)を4.0mL加え、超音波洗浄機を用いて完全に溶解させた。
 孔径0.45μmのポリテトラフルオロエチレン(PTFE)シリンジフィルターを装着したシリンジで溶液を濾過し、GPC測定を行った。
 測定の結果、精製により高分子量で分子量分布が広いもの(重量平均分子量5.4×10、多分散指数9.5)から、比較的低分子量分布で分子量分布が狭いもの(重量平均分子量3.7×10、多分散指数4.3)まで得られた。
[Example 36]
"Gel Permeation Chromatography (GPC) Measurement of Inherent Microporous Polymer (PIM-1)"
In order to measure the molecular weight of PIM-1 purified in Example 35, GPC measurement was performed.
About 4.0 mg of PIM-1 was weighed and placed in a sample tube, 4.0 mL of tetrahydrofuran (THF) was added, and completely dissolved using an ultrasonic cleaner.
The solution was filtered with a syringe equipped with a polytetrafluoroethylene (PTFE) syringe filter with a pore size of 0.45 μm, and GPC measurement was performed.
As a result of the measurement, it was found that the purified product had a high molecular weight with a wide molecular weight distribution (weight average molecular weight: 5.4 × 10 5 , polydispersity index: 9.5) to a relatively low molecular weight distribution with a narrow molecular weight distribution (weight average molecular weight: 3 up to .7×10 5 with a polydispersity index of 4.3).
[実施例37]
「PIM-1(分子量:重量平均分子量37万)と表面官能基修飾シリカナノ粒子(2)を用いた有機-無機複合気体分離膜の製膜」
 0.15gの固有微細孔ポリマー、PIM-1(上記の化学式(23)参照)を6.7mLのテトラヒドロフラン(THF)に溶解した後、このポリマー溶液に、ポリマーに対する含有量が85質量%となるように、表面官能基修飾シリカナノ粒子(2)を添加し、1時間の超音波処理を行った。
 表面官能基修飾シリカナノ粒子(2)としては、上記の化学式(20)で表されるものを用いた。
 このポリマー溶液を攪拌速度1200rpmで一晩攪拌し、攪拌後、再び1時間の超音波処理を行った。
 その後、このポリマー溶液を直径6cmのガラスシャーレ上にキャストした。
 その後、30℃に設定したオーブン内にこのガラスシャーレを入れ、6時間かけて真空にして複合膜を作製した。
 作製した複合膜は、70℃、18時間の熱処理を行った。得られた膜の膜厚は115μmであった。
[Example 37]
"Formation of organic-inorganic composite gas separation membrane using PIM-1 (molecular weight: weight average molecular weight 370,000) and surface functional group-modified silica nanoparticles (2)"
After dissolving 0.15 g of the intrinsic microporous polymer, PIM-1 (see formula (23) above), in 6.7 mL of tetrahydrofuran (THF), the polymer solution has a content of 85% by weight relative to the polymer. As shown, the surface functional group-modified silica nanoparticles (2) were added and sonicated for 1 hour.
As the surface functional group-modified silica nanoparticles (2), those represented by the above chemical formula (20) were used.
The polymer solution was stirred overnight at a stirring speed of 1200 rpm, and after stirring was again subjected to ultrasonic treatment for 1 hour.
After that, this polymer solution was cast on a glass petri dish with a diameter of 6 cm.
After that, the glass petri dish was placed in an oven set at 30° C., and the oven was evacuated for 6 hours to prepare a composite membrane.
The produced composite membrane was heat-treated at 70° C. for 18 hours. The film thickness of the obtained film was 115 μm.
[実施例38]
「PIM-1(分子量:重量平均分子量37万)と表面官能基修飾シリカナノ粒子(2)の複合気体分離膜の気体透過特性」
 実施例37で得られた複合膜の気体透過率測定を行った。
 気体透過率測定には、理科精機工業株式会社製:K-315N-01Cを使用した。供給気体として二酸化炭素、酸素、窒素、メタンを用い、測定条件は、温度35℃、圧力差76cmHgとした。結果を表10に示す。
[Example 38]
"Gas Permeability of Composite Gas Separation Membrane of PIM-1 (Molecular Weight: Weight Average Molecular Weight 370,000) and Surface Functional Group-Modified Silica Nanoparticles (2)"
The gas permeability of the composite membrane obtained in Example 37 was measured.
For the gas permeability measurement, K-315N-01C manufactured by Rika Seiki Kogyo Co., Ltd. was used. Carbon dioxide, oxygen, nitrogen, and methane were used as supply gases, and the measurement conditions were a temperature of 35° C. and a pressure difference of 76 cmHg. Table 10 shows the results.
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000055
 表10に示す結果から、実施例37の複合気体分離膜は、二酸化炭素、酸素、窒素、メタンの透過率が高いことが分かった。 From the results shown in Table 10, it was found that the composite gas separation membrane of Example 37 had high permeabilities of carbon dioxide, oxygen, nitrogen, and methane.
 本発明の気体分離膜は、シリカナノ粒子と、高分子と、を含む複合体材料から構成され、シリカナノ粒子は、官能基含有シランカップリング剤で表面修飾された表面官能基修飾シリカナノ粒子であり、官能基含有シランカップリング剤は、上記の化学式(1)で表される化合物、上記の化学式(2)および上記の化学式(3)からなる群から選択される少なくとも1種であるため、気体透過特性に優れ、かつメタノール処理を行わなくとも、メタノール処理を行った従来の気体分離膜と同程度またはそれ以上の気体透過特性が得られる。従って、本発明の気体分離膜は、フィルタとして好ましく使用することができる。 The gas separation membrane of the present invention is composed of a composite material containing silica nanoparticles and a polymer, and the silica nanoparticles are surface functional group-modified silica nanoparticles that are surface-modified with a functional group-containing silane coupling agent, Since the functional group-containing silane coupling agent is at least one selected from the group consisting of the compound represented by the above chemical formula (1), the above chemical formula (2) and the above chemical formula (3), gas permeation It has excellent characteristics, and even without methanol treatment, gas permeation characteristics equivalent to or higher than those of conventional gas separation membranes treated with methanol can be obtained. Therefore, the gas separation membrane of the present invention can be preferably used as a filter.

Claims (11)

  1.  シリカナノ粒子と、高分子と、を含む複合体材料から構成される気体分離膜であって、
     前記シリカナノ粒子は、官能基含有シランカップリング剤で表面修飾された表面官能基修飾シリカナノ粒子であり、
     前記官能基含有シランカップリング剤は、下記の化学式(1)で表される化合物、下記の化学式(2)および下記の化学式(3)からなる群から選択される少なくとも1種である、気体分離膜。
    Figure JPOXMLDOC01-appb-C000001
    (但し、m=1~3、Xは-Cl、-OC2n+1(n=1~3)、Yは2価の有機基(但し、Yは単結合を含む)、Zは1価の有機基である。)
    Figure JPOXMLDOC01-appb-C000002
    (但し、Xは-Cl、-OC2n+1(n=1~3)、Yは2価の有機基(但し、Yは単結合を含む)である。)
    Figure JPOXMLDOC01-appb-C000003
    (但し、Xは-Cl、-OC2n+1(n=1~3)、Yは3価の有機基(但し、Yは単結合を含む)である。)
    A gas separation membrane composed of a composite material containing silica nanoparticles and a polymer,
    The silica nanoparticles are surface functional group-modified silica nanoparticles surface-modified with a functional group-containing silane coupling agent,
    The functional group-containing silane coupling agent is at least one selected from the group consisting of a compound represented by the following chemical formula (1), the following chemical formula (2), and the following chemical formula (3), gas separation film.
    Figure JPOXMLDOC01-appb-C000001
    (where m = 1 to 3, X is -Cl, -OC n H 2n+1 (n = 1 to 3), Y is a divalent organic group (where Y contains a single bond), Z is a monovalent It is an organic group.)
    Figure JPOXMLDOC01-appb-C000002
    (where X is —Cl, —OC n H 2n+1 (n=1 to 3), and Y is a divalent organic group (where Y includes a single bond).)
    Figure JPOXMLDOC01-appb-C000003
    (where X is —Cl, —OC n H 2n+1 (n=1 to 3), and Y is a trivalent organic group (where Y includes a single bond).)
  2.  前記官能基含有シランカップリング剤は、前記Yが-(CH-(n=0~17)、前記Zが-C2n+1(n=1~18)、下記の化学式(4)で表される基、下記の化学式(5)で表される基であるアルキルシランである、請求項1に記載の気体分離膜。
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    In the functional group-containing silane coupling agent, the Y is -(CH 2 ) n - (n = 0 to 17), the Z is -C n H 2n+1 (n = 1 to 18), and the following chemical formula (4) The gas separation membrane according to claim 1, which is an alkylsilane group represented by the following chemical formula (5).
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
  3.  前記官能基含有シランカップリング剤は、前記Yが-(CH-(n=0~6)、前記Zが-CH=CH、-CCH=CH、-C≡CHであるオレフィニルシランである、請求項1に記載の気体分離膜。 In the functional group-containing silane coupling agent, Y is —(CH 2 ) n —(n=0 to 6), and Z is —CH═CH 2 , —CCH 3 ═CH 2 , —C≡CH. 2. The gas separation membrane of claim 1, which is an olefinylsilane.
  4.  前記官能基含有シランカップリング剤は、前記Yが-(CH-(n=0~6)、前記Zが-Ar、-OArであるアリールシランである、請求項1に記載の気体分離膜。 The gas according to claim 1, wherein the functional group-containing silane coupling agent is an arylsilane in which the Y is -(CH 2 ) n - (n = 0 to 6) and the Z is -Ar, -OAr. Separation membrane.
  5.  前記官能基含有シランカップリング剤は、前記Yが-(CH-OCH-(n=1~6)、前記Zが下記の化学式(6)で表される基、下記の化学式(7)で表される基であるであるグリシジルオキシアルキルシランである、請求項1に記載の気体分離膜。
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    In the functional group-containing silane coupling agent, Y is -(CH 2 ) n -OCH 2 - (n = 1 to 6), Z is a group represented by the following chemical formula (6), and the following chemical formula ( The gas separation membrane according to claim 1, wherein the group represented by 7) is a glycidyloxyalkylsilane.
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
  6.  前記官能基含有シランカップリング剤は、前記Yが-(CH-(n=1~6)、前記Zが-O-(C=O)-CH=CH、-O-(C=O)-CCH=CH-であるアクロイルオキシアルキルシランである、請求項1に記載の気体分離膜。 In the functional group-containing silane coupling agent, the Y is —(CH 2 ) n —(n=1 to 6), the Z is —O—(C═O)—CH═CH 2 , —O—(C The gas separation membrane of claim 1, wherein the acryloyloxyalkylsilane is ═O)—CCH 3 ═CH 2 —.
  7.  前記官能基含有シランカップリング剤は、前記Yが-(CH-(n=1~6)、前記Zが-NR(Rは炭素数0~4のアルキル基、アリール基)、-NH-(CH-NR(m=2~6、Rは炭素数0~4のアルキル基、アリール基)であるアミノアルキルシランである、請求項1に記載の気体分離膜。 In the functional group-containing silane coupling agent, the Y is -(CH 2 ) n - (n = 1 to 6), the Z is -NR 2 (R is an alkyl group having 0 to 4 carbon atoms, an aryl group), 2. The gas separation membrane according to claim 1, wherein the aminoalkylsilane is -NH-(CH 2 ) m -NR 2 (m=2 to 6, R is an alkyl group or an aryl group having 0 to 4 carbon atoms).
  8.  前記官能基含有シランカップリング剤は、前記Yが-(CH-(n=1~6)、前記Zが-C2n+1-(n=1~8)であるフルオロアルキルシランである、請求項1に記載の気体分離膜。 The functional group-containing silane coupling agent is a fluoroalkylsilane in which Y is —(CH 2 ) n — (n=1 to 6) and Z is —C n F 2n+1 — (n=1 to 8). The gas separation membrane of claim 1, wherein the gas separation membrane is
  9.  前記官能基含有シランカップリング剤は、前記Yが-(CH-(n=1~6)、-(CH-Ar-(CH-(m=1~6、n=1~6)、下記の化学式(8)で表される基、前記Zが-Cl、-Br、-I、-CN、-N、-NH(C=O)NH-、-SH、-N=C=Oである化合物である、請求項1に記載の気体分離膜。
    Figure JPOXMLDOC01-appb-C000008
    In the functional group-containing silane coupling agent, the Y is —(CH 2 ) n —(n=1 to 6), —(CH 2 ) n —Ar—(CH 2 ) m —(m=1 to 6, n=1 to 6), a group represented by the following chemical formula (8), the Z being —Cl, —Br, —I, —CN, —N 3 , —NH(C═O)NH 2 —, — The gas separation membrane of claim 1, wherein SH is a compound of -N=C=O.
    Figure JPOXMLDOC01-appb-C000008
  10.  前記シリカナノ粒子の含有量が20質量%以上である、請求項1に記載の気体分離膜。 The gas separation membrane according to claim 1, wherein the content of the silica nanoparticles is 20% by mass or more.
  11.  前記高分子は、ガラス状高分子またはゴム状高分子である、請求項1~10のいずれか1項に記載の気体分離膜。 The gas separation membrane according to any one of claims 1 to 10, wherein the polymer is a glassy polymer or a rubbery polymer.
PCT/JP2022/030868 2021-08-19 2022-08-15 Gas separation membrane WO2023022126A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023542396A JPWO2023022126A1 (en) 2021-08-19 2022-08-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-134151 2021-08-19
JP2021134151 2021-08-19

Publications (1)

Publication Number Publication Date
WO2023022126A1 true WO2023022126A1 (en) 2023-02-23

Family

ID=85240823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030868 WO2023022126A1 (en) 2021-08-19 2022-08-15 Gas separation membrane

Country Status (2)

Country Link
JP (1) JPWO2023022126A1 (en)
WO (1) WO2023022126A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117861466A (en) * 2024-03-12 2024-04-12 安徽先材科技有限公司 Functional composite membrane based on trimesic acid chloride and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013072065A (en) * 2011-09-29 2013-04-22 Toray Ind Inc Polymer-modified inorganic particles, coating composition containing polymer-modified inorganic particles, and method for manufacturing polymer-modified inorganic particles
JP2015222364A (en) * 2014-05-23 2015-12-10 大日本印刷株式会社 Hard coat film and manufacturing method thereof
WO2018038027A1 (en) * 2016-08-23 2018-03-01 日産化学工業株式会社 Gas separation membrane containing irregularly shaped silica nanoparticles
JP2020163375A (en) * 2019-03-26 2020-10-08 日東電工株式会社 Separation membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013072065A (en) * 2011-09-29 2013-04-22 Toray Ind Inc Polymer-modified inorganic particles, coating composition containing polymer-modified inorganic particles, and method for manufacturing polymer-modified inorganic particles
JP2015222364A (en) * 2014-05-23 2015-12-10 大日本印刷株式会社 Hard coat film and manufacturing method thereof
WO2018038027A1 (en) * 2016-08-23 2018-03-01 日産化学工業株式会社 Gas separation membrane containing irregularly shaped silica nanoparticles
JP2020163375A (en) * 2019-03-26 2020-10-08 日東電工株式会社 Separation membrane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117861466A (en) * 2024-03-12 2024-04-12 安徽先材科技有限公司 Functional composite membrane based on trimesic acid chloride and preparation method thereof
CN117861466B (en) * 2024-03-12 2024-05-17 安徽先材科技有限公司 Functional composite membrane based on trimesic acid chloride and preparation method thereof

Also Published As

Publication number Publication date
JPWO2023022126A1 (en) 2023-02-23

Similar Documents

Publication Publication Date Title
JP5626950B2 (en) Surface hyperbranched or dendrimer modified inorganic nanoparticles and gas separation membranes
Gomes et al. Membranes for gas separation based on poly (1-trimethylsilyl-1-propyne)–silica nanocomposites
EP0893482B1 (en) Dendrimer-based networks having lyophilic organosilicon and hydrophilic polyamidoamine nanoscopic domains
US20190321787A1 (en) Composite Membrane and Method of Separating Gas Using the Same
Yu et al. Grafting of hyperbranched aromatic polyamide onto silica nanoparticles
US9855532B2 (en) Gas separation membrane with ladder-structured polysilsesquioxane and method for fabricating the same
Hou et al. Polymer brushes on metal–organic frameworks by UV-induced photopolymerization
EP0928813A1 (en) Dendrimer-based nanoscopic sponges and metal composites
JP6967230B2 (en) Gas separation membrane containing irregularly shaped silica nanoparticles
TW201803808A (en) Method for manufacturing gas separation membrane
Zhang et al. Preparation, characterization, and properties of poly (aryl ether sulfone) systems with double‐decker silsesquioxane in the main chains by reactive blending
WO2023022126A1 (en) Gas separation membrane
EP2729508A1 (en) Oligosaccharide/silicon-containing block copolymers for lithography applications
KR20130125224A (en) Ladder-type thiol-based silsesquioxane polymer and method for preparing the same
EP0070730A1 (en) Selective gas-permeable films
Ahn et al. Nanocomposite membranes consisting of poly (vinyl chloride) graft copolymer and surface-modified silica nanoparticles
KR101086073B1 (en) Polyurea porous materials-polyimide composite membrane and method for fabricating the same
Ghaemy et al. Synthesis and characterization of heterocyclic functionalized polymers by click reaction: Preparation of magnetic nanocomposites and studies on their thermal, mechanical, photophysical and metal ions removal properties
JP2007056244A (en) Amphiphilic triblock copolymer composed of poly(2-vinyl pyridine) block and poly(alkyl isocyanate) block and polymerization process for the polymer
Gacal et al. Effect of azidation and UV cross-linking of poly (epichlorohydrin) and poly [(ethylene oxide)-ran-(epichlorohydrin)] on gas transport properties
JPS61252214A (en) Production of graft copolymer
CN112812302A (en) Novel water-soluble polymerizable POSS and preparation method thereof
Jennings et al. Synthesis of fluorinated silica nanoparticles containing latent reactive groups for post-synthetic modification and for tunable surface energy
KR101828825B1 (en) Cell-membrane mimicking brush polymers and a method for preparaing thereof
Reddy et al. Structure-gas transport property relationships of poly (dimethylsiloxane-urethane) nanocomposite membranes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858447

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2023542396

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE