WO2023022014A1 - Quantum information processing method, classical computer, hybrid system, and quantum information processing program - Google Patents

Quantum information processing method, classical computer, hybrid system, and quantum information processing program Download PDF

Info

Publication number
WO2023022014A1
WO2023022014A1 PCT/JP2022/030012 JP2022030012W WO2023022014A1 WO 2023022014 A1 WO2023022014 A1 WO 2023022014A1 JP 2022030012 W JP2022030012 W JP 2022030012W WO 2023022014 A1 WO2023022014 A1 WO 2023022014A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum
computer
measured values
classical
bases
Prior art date
Application number
PCT/JP2022/030012
Other languages
French (fr)
Japanese (ja)
Inventor
昌也 甲田
良輔 今井
恵太 菅野
裕也 中川
Original Assignee
株式会社QunaSys
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社QunaSys filed Critical 株式会社QunaSys
Publication of WO2023022014A1 publication Critical patent/WO2023022014A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena

Definitions

  • the disclosed technology relates to quantum information processing methods, classical computers, hybrid systems, and quantum information processing programs.
  • the state is measured after the state is generated by the quantum computer. Then, the expected value of the observable is calculated based on the measurement result of the state by the quantum computer. Note that a series of processes including generation of a single state by a quantum computer and measurement of the corresponding state is also referred to as a “shot”.
  • Reference 3 (Gonthier, J. F., Radin, M. D., Buda, C., Doskocil, E. J., Abuan, C. M., and Romero, J. “Identifying challenges toward practical quantum advantage through resource estimation: the measurement roadblock in the variational quantum eigensolver”.) considers the quantum chemical calculation problem to obtain the energy of the actual molecule, and aims to reduce the statistical fluctuations beyond the accuracy of the energy required in the field of quantum chemistry. requires a huge number of shots, and it takes several days just to obtain the expected energy value once. For this reason, for example, Reference 4 (Rubin, N. C., Babbush, R., and McClean J., “Application of fermionic marginal constraints to hybrid quantum algorithms”. New J. Phys. 20, 053020 (2018).) attempts to reduce the total number of shots by simultaneously measuring multiple Pauli operators.
  • the disclosed technology has been made in view of the above circumstances, and provides a quantum information processing method, a classical computer, a hybrid system, and quantum information that can efficiently obtain the expected value of an observable using a quantum computer. It aims at providing a processing program.
  • a quantum information processing method is a quantum information processing method executed by a classical computer in a hybrid system including a classical computer and a quantum computer, comprising: When the state
  • z r > (r 1 , .
  • FIG. 1 is a schematic block diagram of a computer functioning as classical computer 110, controller 121, and user terminal 130.
  • FIG. It is a figure which shows an example of the sequence which the hybrid system 100 of this embodiment performs. It is a figure which shows an example of the sequence which the hybrid system 100 of this embodiment performs.
  • FIG. 1 shows a hybrid system 100 according to an embodiment.
  • the hybrid system 100 of this embodiment includes a classical computer 110, a quantum computer 120, and a user terminal 130.
  • the classical computer 110, the quantum computer 120, and the user terminal 130 are connected via a computer network, such as an Internet Protocol (IP) network as an example, as shown in FIG.
  • IP Internet Protocol
  • the quantum computer 120 performs a predetermined quantum calculation in response to a request from the classical computer 110 and outputs the calculation result of the quantum calculation to the classical computer 110.
  • the classical computer 110 outputs calculation results according to quantum calculation to the user terminal 130 .
  • the hybrid system 100 as a whole performs predetermined calculation processing.
  • the classical computer 110 includes a communication unit 111 such as a communication interface, a processing unit 112 such as a processor and a CPU (Central processing unit), and an information storage unit 113 including a storage device or storage medium such as a memory and a hard disk. It is configured by executing a program for processing.
  • classical computer 110 may include one or more devices or servers.
  • the program may include one or more programs, and may be recorded on a computer-readable storage medium to be a non-transitory program product.
  • the quantum computer 120 generates electromagnetic waves for irradiating at least one quantum bit in the quantum bit group 123 based on information transmitted from the classical computer 110 .
  • the quantum computer 120 executes a quantum circuit by irradiating at least one of the quantum bits in the quantum bit group 123 with the generated electromagnetic wave.
  • the quantum computer 120 includes a controller 121 that communicates with the classical computer 110, an electromagnetic wave generator 122 that generates electromagnetic waves in response to a request from the controller 121, and an electromagnetic wave generator 122 that emits electromagnetic waves. and a qubit group 123 that receives
  • the electromagnetic wave generator 122 and the quantum bit group 123 in the quantum computer 120 are also QPUs (Quantum Processing Units).
  • QPUs Quantum Processing Units
  • the term "quantum computer” does not mean that it does not perform computations using classical bits, but refers to computers that include computations using quantum bits.
  • the control device 121 is a classical computer that operates with classical bits, and alternatively performs some or all of the processing described herein as being performed in the classical computer 110 .
  • the control device 121 stores or determines a quantum circuit in advance, and executes the quantum circuit U( ⁇ ) in the quantum bit group 123 in response to receiving the parameter ⁇ of the quantum circuit U( ⁇ ). of quantum gate information may be generated.
  • the user terminal 130 is a classical computer that performs operations using classical bits.
  • the user terminal 130 receives information input by the user and executes processing according to the information.
  • the classical computer 110, the control device 121, and the user terminal 130 can be realized, for example, by the computer 50 shown in FIG.
  • Computer 50 is central processing A unit (CPU) 51, a memory 52 as a temporary storage area, and a non-volatile storage unit 53 are provided.
  • the computer 50 also has an input/output interface (I/F) 54 to which an external device, an output device, etc. are connected, and a read/write (R/W) section 55 that controls reading and writing of data to and from a recording medium.
  • the computer 50 also has a network I/F 56 connected to a network such as the Internet.
  • the CPU 51 , memory 52 , storage unit 53 , input/output I/F 54 , R/W unit 55 and network I/F 56 are connected to each other via a bus 57 .
  • the hybrid system 100 of the embodiment efficiently calculates the expected value ⁇
  • ⁇ > is a vertical vector having 2 N components.
  • ⁇ > U
  • 0> represents the state of the initialized N qubits.
  • the quantum information processing method executed by the hybrid system 100 of this embodiment is a method for efficiently measuring the expected value of the observable O shown in the following equation (1) on a quantum computer.
  • the conventional method for measuring the expected value of observable O consists of the following steps.
  • Equation (2) Observable O is represented by a linear combination of Pauli operators P i as shown in Equation (2) below.
  • ⁇ > on the right side of the above equation (3) is measured by a quantum computer.
  • ⁇ > is the expected value of the Pauli operator.
  • ⁇ > are obtained by standard measurement operations in quantum computers. Specifically, when the state
  • the average of l i measurement results obtained by generating the state l i times is used as the expected value ⁇
  • ⁇ > has statistical fluctuations. This statistical fluctuation is reduced by 1/ ⁇ l i for the number of trials l i to obtain +1 or -1.
  • a series of processes of generating states and performing measurements is also called a "shot”. For this reason, l i is also simply referred to as the “shot number” below.
  • the NISQ device cannot directly measure the expected value ⁇
  • ⁇ > is represented as a linear combination of basis vectors belonging to the complete system. Although there are various possibilities as candidates for the complete system, in order to advance the discussion concretely, the calculation basis
  • n> (n 0, 1 , . use.
  • ⁇ > is expanded by the calculation basis
  • the expansion coefficient ⁇ n is a complex number calculated by the inner product of the state
  • ⁇ n in the above equation (6) is also called probability amplitude, and
  • 2 which is the square of its absolute value, represents probability. Therefore, when a state
  • ⁇ >, n 0, 1, . . . , 2 N ⁇ Any value of 1 is obtained stochastically.
  • 2 represents the probability that the measurement result will be a certain value n.
  • the frequency distribution of the measurement result n can be obtained by repeating the operation of preparing the state
  • the above equation (7) is obtained by adding ⁇ m
  • n> can be efficiently computed by classical computers.
  • ⁇ m ⁇ n * can be measured using a quantum computer. Therefore, by combining
  • m> is the Pauli operator of the observable O given by the above equation (2).
  • Decomposition by P i expands as follows.
  • n> in the above equation can be efficiently calculated by a classical computer.
  • being able to be efficiently calculated by a classical computer means being able to be calculated in linear time with respect to the number of quantum bits. Then, the transition matrix elements ⁇ m
  • a m,n and B m,n are represented by the following equations.
  • a m,n and B m,n can be estimated using a quantum computer by projection measurement.
  • a m,n , B m,n with the separately measured weights
  • expectation calculations are often performed on eigenstates of the Hamiltonian, such as the ground state or low-energy excited states. are known to be major and other components to be relatively small.
  • the eigenstate has a finite amplitude only in a limited portion of the entire basis due to the existence of conserved quantities in the target system (for example, the conservation of the number of electrons and the conservation of the spin). know.
  • 2 has a significant value only for certain elements with respect to n, and is zero or a value so small as to be statistically negligible in estimating the expected value in a quantum computer for other elements. Therefore, such a basis can be ignored from the beginning when summing over m and n. Therefore, it follows that the transition matrix element ⁇ m
  • ⁇ > is represented by the following equation.
  • the measurement on the quantum computer is as follows.
  • the overall flow of the algorithm executed by the hybrid system 100 of this embodiment is as follows.
  • Quantum computer 120 generates N qubit states
  • n> L times to obtain a series of measured values ⁇ x ⁇ x (1) , x (2) , . . . , x (L) is obtained.
  • the weighting factor f r is also an approximate value of the weight
  • Classical computer 110 computes the transition matrix elements ⁇ z r
  • Quantum computer 120 calculates the projection operator
  • ⁇ A,r > is represented by the following equation. Also, L' measurements are taken for each r.
  • Quantum computer 120 calculates the projection operator
  • ⁇ B,r > is represented by the following equation. Also, L'' measurements are taken for each r.
  • interference weight gr is also expressed by the following equation.
  • Classical computer 110 calculates the other component of the interference weight ⁇ zr ⁇ zr' * according to the following equation derived from equation (11) above.
  • Classical computer 110 computes the following based on ⁇ z1 ⁇ zr * corresponding to the interference weight g r , the other component ⁇ zr ⁇ zr' * of the interference weight, and ⁇ z r
  • ⁇ > of the observable O is approximately calculated according to the equation (14).
  • P is a projection operator over a state
  • ⁇ > when P
  • ⁇ > is represented by the following equation (15).
  • a quantum circuit U is prepared for transforming the state
  • ⁇ > of N qubits is represented by the following equation (16) using a calculation basis
  • k> (k 0, 1, . . . , 2 N ⁇ 1).
  • Such a quantum circuit U can exist. If the state
  • n>, there is no need for conversion, and a circuit (U I) that does nothing can be considered.
  • the following equation (18) is obtained by combining the above equation (15) and the above equation (17), which are the definitions of the probability p.
  • ⁇ > qubit in the Z basis is the probability of obtaining the measurement result n when
  • the hybrid system 100 approximates the expected value ⁇
  • ⁇ > of the N qubits has a plurality of expansion coefficients ⁇ n and a plurality of calculation bases
  • n> (n 0, 1, . . . , 2 N ⁇ 1) according to the following equation (A3). and are represented by Specifically, the state
  • step S100 the user terminal 130 transmits, to the classical computer 110, calculation target information, which is information about the calculation target, and calculation method information, which is information about the calculation method, input by the user.
  • the calculation target information includes, for example, information related to the observable O corresponding to the physical quantity to be calculated.
  • the calculation method information includes, for example, information on the quantum circuit, information on the number of measurement shots, and the like.
  • the information about the quantum circuit includes information about the structure of the quantum circuit Uf that generates the state
  • the information on the number of measurement shots includes L representing the number of measurements of the calculation basis
  • step S ⁇ b>102 the classical computer 110 receives the calculation target information and the calculation method information transmitted from the user terminal 130 . Then, in step S102, the classical computer 110 determines the structure of the quantum circuit Uf based on the information regarding the structure of the quantum circuit Uf in the calculation method information. Also, in step S102, the classical computer 110 determines the number of measurement shots based on L representing the number of measurements of the calculation basis
  • step S ⁇ b>104 the classical computer 110 transmits various information necessary for quantum computation to the quantum computer 120 . Specifically, the classical computer 110 transmits to the quantum computer 120 the structure of the quantum circuit Uf and the number of measurement shots determined in step S102, and the calculation method information and calculation target information received in step S102.
  • control device 121 receives various information transmitted from the classical computer 110 at step S104.
  • step S108 the control device 121 causes the quantum computer 120 to perform quantum computation according to the various information received in step S106.
  • the quantum computer 120 repeats the measurement of the calculation basis
  • n> ⁇ x ⁇ x ( 1) Get , x (2) , . . . , x (L) .
  • the quantum computer 120 generates electromagnetic waves for irradiating at least one of the quantum bits in the quantum bit group 123 under the control of the control device 121 . Then, the quantum computer 120 irradiates at least one of the quantum bits in the quantum bit group 123 with the generated electromagnetic wave, and executes a quantum circuit U f that generates the state
  • step S110 the control device 121 transmits the measurement results obtained in step S108 to the classical computer 110.
  • the classical computer 110 receives the measurement results sent from the controller 121 at step S110.
  • the classical computer 110 calculates the measured value of the series ⁇ x ⁇ , R measured values with a large number of appearances or R measured values with a number of appearances greater than or equal to a predetermined value are selected.
  • the classical computer 110 calculates a weighting factor f r that is an approximation of
  • step S114 classical computer 110 generates a plurality of Compute the transition matrix elements ⁇ z r
  • step S116 the classical computer 110 determines the structure of the quantum circuit Ug based on the information regarding the structure of the quantum circuit Ug in the calculation method information. Also, in step S116, the classical computer 110 determines the number of measurement shots based on L' and L'' representing the number of measurements for calculating the expected value of the projection operator in the calculation method information.
  • the classical computer 110 transmits various information necessary for quantum computation to the quantum computer 120.
  • FIG. Specifically, the classical computer 110 calculates the structure of the quantum circuit U g determined in step S116, the number of measurement shots, and the projection operator
  • Note that the quantum circuit U g is a quantum circuit for obtaining the expected value of the projection operator
  • A requires a quantum circuit for every r
  • and B requires a quantum circuit for every r. Therefore, 2(R-1) types of quantum circuits are required.
  • control device 121 receives various information transmitted from the classical computer 110 at step S118.
  • step S122 the control device 121 causes the quantum computer 120 to perform quantum computation according to the various information received in step S120.
  • Quantum computer 120 repeats the measurement of projection operator
  • the quantum computer 120 repeats the measurement of the projection operator
  • the quantum computer 120 generates electromagnetic waves for irradiating at least one of the quantum bits in the quantum bit group 123 under the control of the control device 121 . Then, the quantum computer 120 irradiates at least one of the quantum bits in the quantum bit group 123 with the generated electromagnetic wave, and executes the quantum circuit Ug . The gate operation of each quantum gate included in the quantum circuit Ug is converted into a corresponding electromagnetic wave waveform, and the electromagnetic wave generator 122 irradiates the quantum bit group 123 with the generated electromagnetic wave. The quantum computer 120 then outputs the measurement result obtained by the measurement.
  • step S124 the control device 121 transmits the measurement results obtained in step S122 to the classical computer 110.
  • the classical computer 110 receives the measurement results sent from the controller 121 at step S124. Next, the classical computer 110 computes the expected value A r of the projection operator
  • step S1208 the classical computer 110 performs the above-described An interference weight g r corresponding to ⁇ z1 ⁇ zr * in Equation (A2) is approximately calculated.
  • the classical computer 110 based on the weighting factor f1 calculated at step S112 and the interference weight gr calculated at step S128, according to the following equation (A6), the other component of the interference weight Approximate ⁇ zr ⁇ zr' * .
  • the classical computer 110 calculates ⁇ z1 ⁇ zr * corresponding to the interference weight g r calculated at step S128, ⁇ zr ⁇ zr′ * calculated at step S130, and ⁇ Based on z r
  • step S134 the classical computer 110 transmits to the user terminal 130 the expected value ⁇
  • step S136 the user terminal 130 receives the calculation results sent from the classical computer 110.
  • the classical computer of the hybrid system of the embodiment performs a plurality of calculations measured by the quantum computer when the state
  • z r >(r 1, . . . , R) according to the number of occurrences. Then , the classical computer calculates the expected value of the observable O ⁇
  • the expected value of the observable O can be efficiently obtained by appropriate division of roles between the classical computer and the quantum computer.
  • R is the number of significant calculation bases included in the sum of the above formula (14) of this method. Specifically, the minimum natural number R that satisfies the following inequality (21) is calculated numerically.
  • the expected energy value (E IS ) obtained by this method is the exact value (E FCI ) obtained by the FCI method, and the precision required in quantum chemistry ( It was confirmed that the difference between the two was reproduced at 10 -3 Hartree or less).
  • N is the number of qubits and M is the total number of Pauli operators contained in the Hamiltonian.
  • R is the number of significant computational bases included in equation (14) above for the sum of our approach.
  • E IS ⁇ E FCI is the difference (in Hartree) between the expected energy value (E IS ) obtained by this method and the exact value (E FCI ) obtained by the FCI method.
  • the quantum chemistry calculation software PySCF was used to determine the EFCI .
  • the known STO-3G basis functions were used in performing this calculation.
  • the measurements required in this method are L projection measurements of
  • the error propagation formula derives the statistical error of the expected value ⁇
  • ln is an actually observed value, and the corresponding random variable is denoted by Ln . Its expected value and variance are expressed by the following equations.
  • a r can be estimated by repeating the projective measurement on a basis (and a set of basis orthonormal to it) of the state
  • ⁇ > is represented by the following equation.
  • the statistical error ⁇ ⁇ O> of ⁇ O> can be estimated as follows.
  • information may be transmitted and received between the classical computer 110 and the quantum computer 120 in any way.
  • the transmission and reception of quantum circuit parameters and the transmission and reception of measurement results between the classical computer 110 and the quantum computer 120 may be performed sequentially each time a predetermined calculation is completed, or all calculations may be performed. Sending and receiving may occur after completion.
  • calculation target information is transmitted from the user terminal 130 to the classical computer 110, and the classical computer 110 executes calculation according to the calculation target information. isn't it.
  • the user terminal 130 may transmit the calculation target information to the classical computer 110 or a storage medium or storage device accessible by the classical computer 110 via a computer network such as an IP network, but the information may not be stored in the storage medium or storage device.
  • the quantum circuit is executed by irradiation of electromagnetic waves
  • the invention is not limited to this, and the quantum circuit may be executed by a different method.
  • quantum computer 120 executes quantum computation
  • quantum computation may be performed by a classical computer that mimics the behavior of a quantum computer.
  • the classical computer 110 may execute the processing executed by the quantum computer 120 .
  • the quantum computer 120 may execute the processing that the classical computer 110 executes.
  • the classical computer 110 generates a plurality of transition matrix elements ⁇ z r
  • the classical computer 110 and the quantum computer 120 are managed by different organizations, but the classical computer 110 and the quantum computer 120 may be managed together by the same organization.
  • transmission of quantum computation information from the classical computer 110 to the quantum computer 120 and transmission of measurement results from the quantum computer 120 to the classical computer 110 are unnecessary.
  • the controller 121 of the quantum computer 120 plays the role of the classical computer 110 in the above description.
  • the processing executed by the CPU reading the software (program) in the above embodiment may be executed by various processors other than the CPU.
  • the processor is PLD (Programmable Logic Device) whose circuit configuration can be changed after manufacturing such as FPGA (Field-Programmable Gate Array), and ASIC (Application Specific Integrated Circuit) to execute specific processing.
  • a dedicated electric circuit or the like which is a processor having a specially designed circuit configuration, is exemplified.
  • each process may be executed by one of these various processors, or a combination of two or more processors of the same or different type (for example, a plurality of FPGAs, a combination of a CPU and an FPGA, etc.). ) can be run.
  • the hardware structure of these various processors is an electric circuit in which circuit elements such as semiconductor elements are combined.
  • the program is pre-installed
  • a computer-readable recording medium such as CD-ROM (Compact Disk Read Only Memory), DVD-ROM (Digital Versatile Disk Read Only Memory), and USB (Universal Serial Bus) memory.
  • CD-ROM Compact Disk Read Only Memory
  • DVD-ROM Digital Versatile Disk Read Only Memory
  • USB Universal Serial Bus
  • each component of the hybrid system of this embodiment does not have to be implemented by a single computer or server, but may be implemented by being distributed among multiple computers connected by a network.
  • the processing executed by the classical computers of the above embodiments may be distributed and processed by a plurality of classical computers connected by a network.
  • the processing executed by the quantum computers of the above embodiments may be distributed and processed by a plurality of quantum computers connected by a network.
  • at least one or more classical computers and at least one or more quantum computers constitute a hybrid system.
  • a hybrid system is configured by a plurality of classical computers and a plurality of quantum computers, and the state
  • one of the plurality of quantum computers One or more quantum computers obtain measurements of a plurality of computational bases by measuring each of the plurality of computational bases. Then, one or more classical computers among the plurality of classical computers acquire the measurement values of the plurality of calculation bases measured by the quantum computer.
  • one or more classical computers out of the plurality of classical computers based on the measured values of each of the plurality of calculation bases, R measured values having a large number of occurrences from the plurality of measured values or the number of occurrences is a predetermined value R number of measured values are selected, and based on the number of occurrences of the selected R number of measured values, R number of calculation bases
  • z r >(r 1, . . . R) to calculate the weighting factor f r .
  • one or more classical computers among the plurality of classical computers or one or more quantum computers among the plurality of quantum computers are provided for each combination of the calculation basis
  • one or more classical computers among the plurality of classical computers have a plurality of transition matrix elements ⁇ z r
  • ⁇ > of the observable O is approximated by the weighted sum.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computing Systems (AREA)
  • Computational Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

A classical computer according to the present invention obtains measurement values of a plurality of computational bases which have been measured by a quantum computer, when a state |ψ> of N quantum bits is expressed by a linear combination of the plurality of computational bases. On the basis of the measurement values of the plurality of computational bases, the classical computer selects, from among the measurement values, R measurement values of which the number of appearances is high or R measurement values of which the number of appearances is equal to or higher than a given value. The classical computer calculates, on the basis of the number of appearances of the selected R measurement values, a weighting factor fr for R computational bases |zr> (r=1, ..., R) in accordance with the number of appearances, and then approximates an expected value <ψ|O|ψ> of an observable O by the weighted sum of a plurality of transition matrix elements <zr|O|zr'> where the weight is a combination of the weighting factor fr and a weighting factor fr'.

Description

量子情報処理方法、古典コンピュータ、ハイブリッドシステム、及び量子情報処理プログラムQuantum information processing method, classical computer, hybrid system, and quantum information processing program
 開示の技術は、量子情報処理方法、古典コンピュータ、ハイブリッドシステム、及び量子情報処理プログラムに関する。 The disclosed technology relates to quantum information processing methods, classical computers, hybrid systems, and quantum information processing programs.
 Noisy Intermediate-Scale Quantum(NISQ)デバイスを用いて量子計算を実行するための変分量子アルゴリズムが知られている(例えば、文献1(Peruzzo, A., McClean, J., Shadbolt, P. et al. “A variational eigenvalue solver on a photonic quantum processor”. Nat Commun 5, 4213 (2014).),文献2(“Hybrid Quantum-Classical Algorithms and Quantum Error Mitigation”, Suguru Endo, Zhenyu Cai, Simon C. Benjamin, Xiao Yuan, Journal of the Physical Society of Japan, 90, 032001 (2021))を参照)。変分量子アルゴリズムを実行するためには、観測対象の物理量(以下、単に「オブザーバブル」とも称する。)の期待値を量子コンピュータで計算する必要がある。 Variational quantum algorithms for performing quantum computations using Noisy Intermediate-Scale Quantum (NISQ) devices are known (e.g. Peruzzo, A., McClean, J., Shadbolt, P. et al. "A variational eigenvalue solver on a photonic quantum processor". Nat Commun 5, 4213 (2014).), Reference 2 ("Hybrid Quantum-Classical Algorithms and Quantum Error Mitigation", Suguru Endo, Zhenyu Cai, Simon C. Benjamin, Xiao Yuan, Journal of the Physical Society of Japan, 90, 032001 (2021)). In order to execute the variational quantum algorithm, it is necessary to calculate the expected value of the physical quantity to be observed (hereinafter also simply referred to as "observable") with a quantum computer.
 量子コンピュータを用いてオブザーバブルの期待値を計算する際には、量子コンピュータによって状態が生成された後にその状態が測定される。そして、量子コンピュータによる状態の測定結果に基づきオブザーバブルの期待値が計算される。なお、量子コンピュータによる1回の状態の生成とそれに対する状態の測定とから構成される一連の処理は「ショット」とも称される。  When calculating the expected value of an observable using a quantum computer, the state is measured after the state is generated by the quantum computer. Then, the expected value of the observable is calculated based on the measurement result of the state by the quantum computer. Note that a series of processes including generation of a single state by a quantum computer and measurement of the corresponding state is also referred to as a “shot”.
 変分量子アルゴリズムを量子化学計算に適用する場合、状態の測定の統計揺らぎを十分小さくするために必要なショット数が過大となる場合がある。例えば、文献3(Gonthier, J. F., Radin, M. D., Buda, C., Doskocil, E. J., Abuan, C. M., and Romero, J. “Identifying challenges towards practical quantum advantage through resource estimation: the measurement roadblock in the variational quantum eigensolver”.)は、実際の分子のエネルギーを求める量子化学計算問題を考察し、量子化学分野で要求されるエネルギーの精度よりも統計揺らぎを小さくするためには膨大なショット数が必要であり、エネルギーの期待値を一回取得するだけで数日かかってしまうという結果を示している。このため、例えば、文献4(Rubin, N. C., Babbush, R., and McClean J., “Application of fermionic marginal constraints to hybrid quantum algorithms”. New J. Phys. 20, 053020 (2018).)では、複数のパウリ演算子を同時に測定するなどして、全体でのショット数を減らすための試みがなされている。 When applying variational quantum algorithms to quantum chemical calculations, the number of shots required to sufficiently reduce statistical fluctuations in state measurements may be excessive. For example, Reference 3 (Gonthier, J. F., Radin, M. D., Buda, C., Doskocil, E. J., Abuan, C. M., and Romero, J. “Identifying challenges toward practical quantum advantage through resource estimation: the measurement roadblock in the variational quantum eigensolver”.) considers the quantum chemical calculation problem to obtain the energy of the actual molecule, and aims to reduce the statistical fluctuations beyond the accuracy of the energy required in the field of quantum chemistry. requires a huge number of shots, and it takes several days just to obtain the expected energy value once. For this reason, for example, Reference 4 (Rubin, N. C., Babbush, R., and McClean J., “Application of fermionic marginal constraints to hybrid quantum algorithms”. New J. Phys. 20, 053020 (2018).) attempts to reduce the total number of shots by simultaneously measuring multiple Pauli operators.
 開示の技術は、上記の事情を鑑みてなされたものであり、量子コンピュータを用いてオブザーバブルの期待値を効率的に得ることができる、量子情報処理方法、古典コンピュータ、ハイブリッドシステム、及び量子情報処理プログラムを提供することを目的とする。 The disclosed technology has been made in view of the above circumstances, and provides a quantum information processing method, a classical computer, a hybrid system, and quantum information that can efficiently obtain the expected value of an observable using a quantum computer. It aims at providing a processing program.
 上記の目的を達成するために本開示の一態様の量子情報処理方法は、古典コンピュータと量子コンピュータとを含むハイブリッドシステムのうちの古典コンピュータが実行する量子情報処理方法であって、複数の計算基底の線形結合によってN量子ビットの状態|ψ>が表現される場合に、量子コンピュータによって測定された複数の計算基底の各々の測定値を取得し、複数の計算基底の各々の測定値に基づいて、複数の測定値から出現回数が多いR個の測定値又は出現回数が所定値以上であるR個の測定値を選択し、選択されたR個の測定値の出現回数に基づいて、出現回数に応じたR個の計算基底|z>(r=1,・・・,R)に対する重み係数fを計算し、重み係数fと重み係数fr’との組み合わせを重みとする、複数の遷移行列要素<z|O|zr’>の重み付け和によって、オブザーバブルOの期待値<ψ|O|ψ>を近似計算する、処理を古典コンピュータが実行する量子情報処理方法である。 In order to achieve the above object, a quantum information processing method according to one aspect of the present disclosure is a quantum information processing method executed by a classical computer in a hybrid system including a classical computer and a quantum computer, comprising: When the state |ψ> of the N qubits is represented by a linear combination of , the measured value of each of the plurality of computational bases measured by the quantum computer is obtained, and based on the measured value of each of the plurality of computational bases , from a plurality of measured values, select R measured values with a large number of occurrences or R measured values with a number of occurrences equal to or greater than a predetermined value, and based on the number of occurrences of the selected R measured values, the number of occurrences Calculate weighting factors f r for R calculation bases |z r > (r=1 , . . . , R ) according to A quantum information processing method in which a classical computer executes a process of approximating an expected value <ψ|O|ψ> of an observable O by a weighted sum of a plurality of transition matrix elements <z r |O|z r′ > be.
 開示の技術によれば、量子コンピュータを用いてオブザーバブルの期待値を効率的に得ることができる、という効果が得られる。 According to the disclosed technology, it is possible to obtain the expected value of observables efficiently using a quantum computer.
本実施形態のハイブリッドシステム100の概略構成の一例を示す図である。It is a figure showing an example of a schematic structure of hybrid system 100 of this embodiment. 古典コンピュータ110、制御装置121、及びユーザ端末130として機能するコンピュータの概略ブロック図である。1 is a schematic block diagram of a computer functioning as classical computer 110, controller 121, and user terminal 130. FIG. 本実施形態のハイブリッドシステム100が実行するシーケンスの一例を示す図である。It is a figure which shows an example of the sequence which the hybrid system 100 of this embodiment performs. 本実施形態のハイブリッドシステム100が実行するシーケンスの一例を示す図である。It is a figure which shows an example of the sequence which the hybrid system 100 of this embodiment performs.
 以下、図面を参照して開示の技術の実施形態を詳細に説明する。 Hereinafter, embodiments of the disclosed technology will be described in detail with reference to the drawings.
<実施形態に係るハイブリッドシステム100> <Hybrid system 100 according to the embodiment>
 図1に、実施形態に係るハイブリッドシステム100を示す。本実施形態のハイブリッドシステム100は、古典コンピュータ110と量子コンピュータ120とユーザ端末130とを備える。古典コンピュータ110と量子コンピュータ120とユーザ端末130とは、図1に示されるように、一例としてInternet Protocol(IP)ネットワークなど
のコンピュータネットワークを介して接続されている。
FIG. 1 shows a hybrid system 100 according to an embodiment. The hybrid system 100 of this embodiment includes a classical computer 110, a quantum computer 120, and a user terminal 130. The classical computer 110, the quantum computer 120, and the user terminal 130 are connected via a computer network, such as an Internet Protocol (IP) network as an example, as shown in FIG.
 本実施形態のハイブリッドシステム100においては、量子コンピュータ120が古典コンピュータ110からの要求に応じて所定の量子計算を行い、当該量子計算の計算結果を古典コンピュータ110へ出力する。古典コンピュータ110はユーザ端末130へ量子計算に応じた計算結果を出力する。これにより、ハイブリッドシステム100全体として所定の計算処理が実行される。 In the hybrid system 100 of this embodiment, the quantum computer 120 performs a predetermined quantum calculation in response to a request from the classical computer 110 and outputs the calculation result of the quantum calculation to the classical computer 110. The classical computer 110 outputs calculation results according to quantum calculation to the user terminal 130 . As a result, the hybrid system 100 as a whole performs predetermined calculation processing.
 古典コンピュータ110は、通信インターフェース等の通信部111と、プロセッサ、CPU(Central processing unit)等の処理部112と、メモリ、ハードディスク等の
記憶装置又は記憶媒体を含む情報記憶部113とを備え、各処理を行うためのプログラムを実行することによって構成されている。なお、古典コンピュータ110は1又は複数の装置ないしサーバを含むことがある。また、当該プログラムは1又は複数のプログラムを含むことがあり、また、コンピュータ読み取り可能な記憶媒体に記録して非一過性のプロ
グラムプロダクトとすることできる。
The classical computer 110 includes a communication unit 111 such as a communication interface, a processing unit 112 such as a processor and a CPU (Central processing unit), and an information storage unit 113 including a storage device or storage medium such as a memory and a hard disk. It is configured by executing a program for processing. Note that classical computer 110 may include one or more devices or servers. Also, the program may include one or more programs, and may be recorded on a computer-readable storage medium to be a non-transitory program product.
 量子コンピュータ120は、一例として、古典コンピュータ110から送信される情報に基づいて量子ビット群123のうちの少なくとも何れかの量子ビットへ照射するための電磁波を生成する。そして、量子コンピュータ120は、生成された電磁波を、量子ビット群123のうちの少なくとも何れかの量子ビットへ照射することにより、量子回路を実行する。 As an example, the quantum computer 120 generates electromagnetic waves for irradiating at least one quantum bit in the quantum bit group 123 based on information transmitted from the classical computer 110 . The quantum computer 120 executes a quantum circuit by irradiating at least one of the quantum bits in the quantum bit group 123 with the generated electromagnetic wave.
 図1の例では、量子コンピュータ120は、古典コンピュータ110と通信を行う制御装置121と、制御装置121からの要求に応じて電磁波を生成する電磁波生成装置122と、電磁波生成装置122からの電磁波照射を受ける量子ビット群123とを備える。量子コンピュータ120のうちの電磁波生成装置122及び量子ビット群123は、QPU(Quantum processing unit)でもある。なお、本実施形態において「量子コンピュー
タ」とは、古典ビットによる演算を一切行わないことを意味するものではなく、量子ビットによる演算を含むコンピュータをいう。
In the example of FIG. 1, the quantum computer 120 includes a controller 121 that communicates with the classical computer 110, an electromagnetic wave generator 122 that generates electromagnetic waves in response to a request from the controller 121, and an electromagnetic wave generator 122 that emits electromagnetic waves. and a qubit group 123 that receives The electromagnetic wave generator 122 and the quantum bit group 123 in the quantum computer 120 are also QPUs (Quantum Processing Units). In this embodiment, the term "quantum computer" does not mean that it does not perform computations using classical bits, but refers to computers that include computations using quantum bits.
 制御装置121は、古典ビットにより演算を行う古典コンピュータであり、古典コンピュータ110において行うものとして本明細書にて説明する処理の一部又は全部を代替的に行う。例えば、制御装置121は、量子回路を予め記憶又は決定しておき、量子回路U(θ)のパラメータθを受信したことに応じて、量子ビット群123において量子回路U(θ)を実行するための量子ゲート情報を生成してもよい。 The control device 121 is a classical computer that operates with classical bits, and alternatively performs some or all of the processing described herein as being performed in the classical computer 110 . For example, the control device 121 stores or determines a quantum circuit in advance, and executes the quantum circuit U(θ) in the quantum bit group 123 in response to receiving the parameter θ of the quantum circuit U(θ). of quantum gate information may be generated.
 ユーザ端末130は、古典ビットにより演算を行う古典コンピュータである。ユーザ端末130は、ユーザから入力された情報を受け付け、当該情報に応じた処理を実行する。 The user terminal 130 is a classical computer that performs operations using classical bits. The user terminal 130 receives information input by the user and executes processing according to the information.
 古典コンピュータ110、制御装置121、及びユーザ端末130は、例えば、図2に示すコンピュータ50で実現することができる。コンピュータ50はCentral processing
unit(CPU)51、一時記憶領域としてのメモリ52、及び不揮発性の記憶部53を
備える。また、コンピュータ50は、外部装置及び出力装置等が接続される入出力interface(I/F)54、及び記録媒体に対するデータの読み込み及び書き込みを制御するread/write(R/W)部55を備える。また、コンピュータ50は、インターネット等のネ
ットワークに接続されるネットワークI/F56を備える。CPU51、メモリ52、記憶部53、入出力I/F54、R/W部55、及びネットワークI/F56は、バス57を介して互いに接続される。
The classical computer 110, the control device 121, and the user terminal 130 can be realized, for example, by the computer 50 shown in FIG. Computer 50 is central processing
A unit (CPU) 51, a memory 52 as a temporary storage area, and a non-volatile storage unit 53 are provided. The computer 50 also has an input/output interface (I/F) 54 to which an external device, an output device, etc. are connected, and a read/write (R/W) section 55 that controls reading and writing of data to and from a recording medium. . The computer 50 also has a network I/F 56 connected to a network such as the Internet. The CPU 51 , memory 52 , storage unit 53 , input/output I/F 54 , R/W unit 55 and network I/F 56 are connected to each other via a bus 57 .
 実施形態のハイブリッドシステム100は、オブザーバブルOの期待値<ψ|O|ψ>を効率的に計算する。以下、実施形態のハイブリッドシステム100が実行する処理の前提事項について説明する。 The hybrid system 100 of the embodiment efficiently calculates the expected value <ψ|O|ψ> of the observable O. Prerequisites for the processing executed by the hybrid system 100 of the embodiment will be described below.
[1.問題設定と背景] [1. Problem setting and background]
 量子コンピュータ上に生成されたN量子ビットの状態|ψ>を考える。なお、状態|ψ>は2のN乗個の成分を持つ縦ベクトルである。本実施形態では、特定の量子回路Uを用いて|ψ>=U|0>と表すことが可能であり、量子コンピュータ上において状態|ψ>を繰り返し生成することが可能であるものとする。なお、|0>は初期化されたN量子ビットの状態を表す。 Consider the state |ψ> of N qubits generated on a quantum computer. The state |ψ> is a vertical vector having 2 N components. In this embodiment, it is possible to express |ψ>=U|0> using a specific quantum circuit U, and it is possible to repeatedly generate the state |ψ> on a quantum computer. |0> represents the state of the initialized N qubits.
 本実施形態のハイブリッドシステム100が実行する量子情報処理方法は、以下の式(1)に示される、オブザーバブルOの期待値を量子コンピュータ上で効率的に測定するための方法である。 The quantum information processing method executed by the hybrid system 100 of this embodiment is a method for efficiently measuring the expected value of the observable O shown in the following equation (1) on a quantum computer.
Figure JPOXMLDOC01-appb-M000009

                              (1)
Figure JPOXMLDOC01-appb-M000009

(1)
[2.従来の期待値の測定方法と課題] [2. Conventional expected value measurement methods and issues]
 オブザーバブルOの期待値の従来の測定方法は、以下のステップにより構成される。 The conventional method for measuring the expected value of observable O consists of the following steps.
(1)オブザーバブルOのパウリ演算子への分解
 N量子ビット上のオブザーバブルOは、以下のパウリ演算子の線形結合により表現される。
(1) Decomposition of Observable O into Pauli Operators Observable O on N qubits is represented by a linear combination of the following Pauli operators.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 オブザーバブルOは、以下の式(2)に示されるように、パウリ演算子Pの線形結合によって表現される。 Observable O is represented by a linear combination of Pauli operators P i as shown in Equation (2) below.
Figure JPOXMLDOC01-appb-M000011

                              (2)
Figure JPOXMLDOC01-appb-M000011

(2)
 ここで、I,X,Y,Zは恒等演算子と1量子ビットのパウリ行列である。また、上記式(2)におけるcは展開係数であり、Mはパウリ演算子の総数である。上記式(2)に基づくと、演算子であるオブザーバブルOの期待値<ψ|O|ψ>は、以下の式(3)によって表される。 where I, X, Y, Z are the identity operator and the Pauli matrix of one qubit. Also, c i in the above equation (2) is the expansion coefficient, and M is the total number of Pauli operators. Based on the above equation (2), the expected value <ψ|O|ψ> of the observable O which is the operator is represented by the following equation (3).
Figure JPOXMLDOC01-appb-M000012

                              (3)
Figure JPOXMLDOC01-appb-M000012

(3)
(2)パウリ演算子の期待値の測定
 次に、量子コンピュータによって上記式(3)の右辺の各項<ψ|P|ψ>が測定さ
れる。<ψ|P|ψ>はパウリ演算子の期待値である。パウリ演算子の期待値<ψ|P|ψ>は、量子コンピュータにおける標準的な測定操作によって得られる。具体的には、状態|ψ>を量子コンピュータ上に1回生成し、パウリ演算子Pに応じた測定操作が行われると、+1及び-1の何れかの結果が確率的に得られる。なお、その確率は|ψ>とPとの組み合わせによって決定される。
(2) Measurement of Expected Value of Pauli Operator Next, each term <ψ|P i |ψ> on the right side of the above equation (3) is measured by a quantum computer. <ψ|P i |ψ> is the expected value of the Pauli operator. The expectations of the Pauli operators <ψ|P i |ψ> are obtained by standard measurement operations in quantum computers. Specifically, when the state |ψ> is generated once on a quantum computer and a measurement operation is performed according to the Pauli operator P i , either +1 or −1 results are obtained stochastically. The probability is determined by the combination of |ψ> and P i .
 状態をl回生成して得られたl個の測定結果の平均が、期待値<ψ|P|ψ>として利用される。なお、l個の測定結果の各々は+1及び-1の何れかの値である。 The average of l i measurement results obtained by generating the state l i times is used as the expected value <ψ|P i |ψ>. Note that each of the l i measurement results is either +1 or -1.
 例えば、状態が100回生成され、+1が30回得られ、-1が70回得られた場合には、その期待値は(30-70)/100=-0.4と推定される。 For example, if a state is generated 100 times, +1 is obtained 30 times, and -1 is obtained 70 times, its expected value is estimated to be (30-70)/100=-0.4.
 なお、測定結果は確率的であるため、推定された期待値<ψ|P|ψ>には統計揺らぎが存在する。この統計揺らぎは、+1又は-1を得るための試行回数lに対して1/√lで小さくなる。なお、上述したように、量子コンピュータの分野では、状態を生成して測定を行うという一連の処理は「ショット」とも称される。このため、以下では、lを単に「ショット数」とも称する。 Since the measurement result is probabilistic, the estimated expected value <ψ|P i |ψ> has statistical fluctuations. This statistical fluctuation is reduced by 1/√l i for the number of trials l i to obtain +1 or -1. As described above, in the field of quantum computers, a series of processes of generating states and performing measurements is also called a "shot". For this reason, l i is also simply referred to as the “shot number” below.
(3)パウリ演算子の期待値の加算処理
 次に、上記(2)で得られた期待値<ψ|P|ψ>の値に基づいて、上記式(3)が計算されることにより、オブザーバブルOの期待値<ψ|O|ψ>が計算される。
(3) Addition processing of the expected value of the Pauli operator Next, the above equation (3) is calculated based on the value of the expected value <ψ|P i |ψ> obtained in the above (2). , the expected value <ψ|O|ψ> of the observable O is computed.
 このように、NISQデバイスはオブザーバブルOの期待値<ψ|O|ψ>を直接測定することはできないものの、パウリ演算子の期待値<ψ|P|ψ>は容易に測定可能であるため、パウリ演算子の期待値<ψ|P|ψ>に基づきオブザーバブルOの期待値<ψ|O|ψ>が計算される。 Thus, the NISQ device cannot directly measure the expected value <ψ|O|ψ> of the observable O, but the expected value of the Pauli operator <ψ|P i |ψ> can be easily measured. Therefore, the expected value <ψ|O|ψ> of the observable O is calculated based on the expected value <ψ|P i |ψ> of the Pauli operator.
[3.課題]
 NISQデバイスを用いて量子化学計算を実行する際に変分量子アルゴリズムを用いる場合、測定の統計揺らぎを十分小さくするのに必要なショット数の総和l+・・・+lが過大となる場合が多い。この場合には、現実的な時間内に量子化学計算が終了しない、という場合がある。特に、量子ビット数Nが大きな系では、非常に多く(M=O(N)個)のパウリ演算子の期待値を測定する必要がある。そこで、本実施形態では、オブザーバブルOの期待値を効率的に計算する方法を提案する。
[3. Theme]
When the variational quantum algorithm is used when performing quantum chemical calculations using the NISQ device, the total number of shots l 1 + . There are many. In this case, the quantum chemical calculation may not be completed within a realistic time. In particular, in a system with a large number of qubits N, it is necessary to measure the expected values of a very large number (M=O(N 4 )) of Pauli operators. Therefore, in this embodiment, a method for efficiently calculating the expected value of the observable O is proposed.
[4.本実施形態の期待値の測定方法]
 オブザーバブルOの状態|ψ>による期待値は、以下の式(4)によって表される。
[4. Method of measuring expected value in the present embodiment]
The expected value based on the state |ψ> of the observable O is represented by the following equation (4).
Figure JPOXMLDOC01-appb-M000013

                              (4)
Figure JPOXMLDOC01-appb-M000013

(4)
 一般に、状態|ψ>は完全系に属する基底ベクトルの線形結合として表される。完全系の候補としては様々な可能性があるが、以下では、議論を具体的に進めるために完全系として計算基底|n>(n=0,1,・・・,2-1)を用いる。状態|ψ>は、計算基底|n>により以下の式(5)のように展開される。 In general, the state |ψ> is represented as a linear combination of basis vectors belonging to the complete system. Although there are various possibilities as candidates for the complete system, in order to advance the discussion concretely, the calculation basis |n> (n=0, 1 , . use. The state |ψ> is expanded by the calculation basis |n> as shown in the following equation (5).
Figure JPOXMLDOC01-appb-M000014

                              (5)
Figure JPOXMLDOC01-appb-M000014

(5)
 ここで、展開係数αは、状態|ψ>と計算基底|n>との内積により計算される複素数である。 Here, the expansion coefficient α n is a complex number calculated by the inner product of the state |ψ> and the calculation basis |n>.
Figure JPOXMLDOC01-appb-M000015

                              (6)
Figure JPOXMLDOC01-appb-M000015

(6)
 上記式(6)におけるαは確率振幅とも称され、その絶対値の2乗である|αは確率を表す。このため、状態|ψ>が量子コンピュータ上に用意され、その状態|ψ>に対して標準的な測定操作が行われた場合、測定結果としてn=0,1,・・・,2-1の何れかの値が確率的に得られる。そして|αは測定結果がある特定の値nとなる確率を表す。 α n in the above equation (6) is also called probability amplitude, and |α n | 2 , which is the square of its absolute value, represents probability. Therefore, when a state |ψ> is prepared on a quantum computer and a standard measurement operation is performed on the state |ψ>, n=0, 1, . . . , 2 N − Any value of 1 is obtained stochastically. |α n | 2 represents the probability that the measurement result will be a certain value n.
 なお、逆に、量子コンピュータ上に状態|ψ>を用意して計算基底|n>へ射影測定する、というような操作を繰り返すことにより測定結果nの頻度分布が得られ、その頻度分布から真の確率である|αの値を推定することが可能となる。 Conversely, the frequency distribution of the measurement result n can be obtained by repeating the operation of preparing the state |ψ> on the quantum computer and projecting it onto the calculation basis |n>, and from that frequency distribution the true It becomes possible to estimate the value of |α n | 2 , which is the probability of .
 ここで、状態|ψ>に付随する量である確率振幅αを用いて、期待値<ψ|O|ψ>を書き直すことができる。計算基底|n>(n=0,1,・・・,2-1)が完全系を成すことを表す次式を用いた場合、以下の式(7)が導出される。 We can now rewrite the expected value <ψ|O|ψ> using the probability amplitude α n , which is a quantity associated with the state |ψ>. When the following expression representing that the calculation basis |n> (n=0, 1, . . . , 2 N −1) forms a complete system, the following expression (7) is derived.
Figure JPOXMLDOC01-appb-M000016

 
Figure JPOXMLDOC01-appb-I000017

 
                              (7)
Figure JPOXMLDOC01-appb-M000016


Figure JPOXMLDOC01-appb-I000017


(7)
 なお、上記式(7)の最終行においては、α=0又はα=0となる項は含まれないものとする。上記式(7)は、|α|αを重みとして、<m|O|n>/(αα )を足し上げることにより、オブザーバブルOの状態|ψ>での期待値が得られることを意味する。以下で説明するように、<m|O|n>は古典コンピュータによって効率的に計算することが可能である。また、αα は量子コンピュータを用いて測定することが可能である。このため、量子コンピュータを用いて測定された|α及びαα と、古典コンピュータを用いて計算された<m|O|n>とを組み合わせることにより、オブザーバブルOの期待値<ψ|O|ψ>が得られる。 It should be noted that the last line of the above equation (7) does not include a term that satisfies α n =0 or α m =0. The above equation (7) is obtained by adding < m |O|n>/( αmαn * ) with |αm| 2 | αn | 2 as a weight, to obtain the state |ψ> This means that the expected value at is obtained. As will be explained below, <m|O|n> can be efficiently computed by classical computers. Also, α m α n * can be measured using a quantum computer. Therefore, by combining |α n | 2 and α m α n * measured using quantum computers with <m|O|n> calculated using classical computers, the expectation The value <ψ|O|ψ> is obtained.
 具体的には、計算基底|n>と計算基底|m>との組み合わせに対応する遷移行列要素<m|O|n>は、上記式(2)で与えられたオブザーバブルOのパウリ演算子Pによる分解により、次式のように展開される。 Specifically, the transition matrix element <m|O|n> corresponding to the combination of the calculation basis |n> and the calculation basis |m> is the Pauli operator of the observable O given by the above equation (2). Decomposition by P i expands as follows.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 上記式における<m|P|n>は古典コンピュータによって効率良く計算可能である。なお、古典コンピュータによって効率良く計算可能とは、量子ビット数に対して線形時間で計算可能であることを意味する。そして、遷移行列要素<m|O|n>は、古典コンピュータにより計算された<m|P|n>を足し合わせることにより得られる。 <m|P i |n> in the above equation can be efficiently calculated by a classical computer. In addition, being able to be efficiently calculated by a classical computer means being able to be calculated in linear time with respect to the number of quantum bits. Then, the transition matrix elements <m|O|n> are obtained by summing <m|P i |n> calculated by the classical computer.
 次に、αα について説明する。m=nの場合、αα =|αとなるため、前述したように|ψ>の計算基底|n>でのサンプリングによって量子コンピュータを用いて測定することが可能となる。一方、m≠nの場合には、量子コンピュータ上での別の測定操作が必要となる。この点について説明するためには、以下の変換が必要となる。 Next, α m α n * will be described. In the case of m=n, α m α n * = |α n | 2. Therefore, as described above, it is possible to measure |ψ> using a quantum computer by sampling with the calculation basis |n>. . On the other hand, if m≠n, another measurement operation is required on the quantum computer. To explain this point, the following transformations are required.
Figure JPOXMLDOC01-appb-M000019

 
Figure JPOXMLDOC01-appb-I000020

 
                              (8)
Figure JPOXMLDOC01-appb-M000019


Figure JPOXMLDOC01-appb-I000020


(8)
 ここで、Am,n,Bm,nは次式によって表される。 Here, A m,n and B m,n are represented by the following equations.
Figure JPOXMLDOC01-appb-M000021

 
                              (9)
Figure JPOXMLDOC01-appb-M000021


(9)
 なお、Am,n,Bm,nは、射影測定によって量子コンピュータを用いて推定することが可能である。このため、Am,n,Bm,nと別に測定された重み|αとを組み合わせることにより、αα の値を計算することが可能となる。 Note that A m,n and B m,n can be estimated using a quantum computer by projection measurement. Thus, by combining A m,n , B m,n with the separately measured weights |α n | 2 , it is possible to calculate the value of α m α n * .
 一般には、αα が複素位相を持つため、上記式(7)の和において、異なる項が打ち消し合ったり強め合ったりする。このため、以下では、αα を「干渉重み」と称する。 In general, since α m α n * has a complex phase, different terms cancel each other out and construct each other in the sum of the above equation (7). For this reason, α m α n * is hereinafter referred to as an “interference weight”.
 上述のようにして得られた、|α、Am,n,Bm,n、及び<m|O|n>の値を組み合わせることにより、以下の式(10)に従って期待値<ψ|O|ψ>が計算される。 By combining the values of |α n | 2 , A m,n , B m,n , and <m|O|n> obtained as described above, the expected value <ψ|O|ψ> is calculated.
Figure JPOXMLDOC01-appb-M000022

 
                             (10)
Figure JPOXMLDOC01-appb-M000022


(10)
 なお、2×2個の指数的に大きな数の項を足し上げることになるため、計算コスト上の困難が生じるようにも思われる。しかしながら、量子化学計算等の解きたい問題の種
類によっては、経験的に足し上げるべき項の数は大きく減少することがわかる。
In addition, since 2 N ×2 N exponentially large number of terms are to be added, it seems that a difficulty in terms of computational cost arises. However, empirically, it can be seen that the number of terms to be added is greatly reduced depending on the type of problem to be solved, such as quantum chemical calculation.
 例えば、量子化学の問題では、基底状態又は低エネルギー励起状態等のようなハミルトニアンの固有状態での期待値計算を行う場合が多く、そういった状態は多くの系においてHartree-Fock状態に相当する確率振幅が主要であり、他の成分が相対的に小さいことが知られている。 For example, in quantum chemistry problems, expectation calculations are often performed on eigenstates of the Hamiltonian, such as the ground state or low-energy excited states. are known to be major and other components to be relatively small.
 また、対象とする系における保存量の存在(例えば、電子数の保存及びスピンの保存等)等から固有状態は基底全体のうち限られた部分にしか有限の振幅を持たないことが数理的にわかっている。このため、重み|αはnに関して特定の要素でのみ有意な値を持ち、その他の要素では零又は量子コンピュータでの期待値の推定において統計的に無視できるほど小さい値である。そのため、m,nについての和を取る際には、はじめからそのような基底は無視することができる。したがって、無視できない重みを与えるような、ある特定の計算基底のペア(m,n)に対してのみ、遷移行列要素<m|O|n>を評価すれば良いことになる。 In addition, it is mathematically possible that the eigenstate has a finite amplitude only in a limited portion of the entire basis due to the existence of conserved quantities in the target system (for example, the conservation of the number of electrons and the conservation of the spin). know. For this reason, the weight |α n | 2 has a significant value only for certain elements with respect to n, and is zero or a value so small as to be statistically negligible in estimating the expected value in a quantum computer for other elements. Therefore, such a basis can be ignored from the beginning when summing over m and n. Therefore, it follows that the transition matrix element <m|O|n> needs to be evaluated only for certain computation basis pairs (m,n) that give non-negligible weights.
 また、そのようなペア(m,n)に対して干渉重みαα を求める際、さらにその一部の(m,n)に対してのAm,n,Bm,nを測定すれば十分であることがわかる。 In addition, when determining the interference weight α m α n * for such a pair (m, n), A m, n and B m, n for a part of (m, n) are measured. It turns out that it is enough.
 このことを確認するために、任意のl(ただし、α≠0)に対して成り立つ以下の恒等式(11)を考える。 To see this, consider the following identity (11), which holds for any l, where α l ≠0.
Figure JPOXMLDOC01-appb-M000023

 
                             (11)
Figure JPOXMLDOC01-appb-M000023


(11)
 上記式(11)において、例えばl=0とすると、干渉重みαα 及び重み|αの値が既知であれば、他の全ての干渉重みαα の値を上記式(11)から得ることができる。したがって、αα の値を上記式(8)により求めるために、A0,n,B0,nの測定さえしておけば、それ以外のAm,n,Bm,nについての測定は不要であることがわかる。 In the above equation (11), if l = 0 , for example, if the values of the interference weight α 0 α n * and the weight |α 0 | It can be obtained from the above formula (11). Therefore, in order to obtain the value of α 0 α n * by the above equation (8), if only A 0,n and B 0,n are measured, the other A m,n and B m,n It turns out that the measurement of is unnecessary.
 上述した点を纏めると、本実施形態では、状態|ψ>の確率振幅α(n=0,1,・・・,2-1)を用いて、オブザーバブルOの期待値<ψ|O|ψ>を次式によって表す。 To summarize the above points, in this embodiment, the expected value of the observable O < ψ | O|ψ> is represented by the following equation.
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
 そして、本実施形態では、量子コンピュータによって測定された重み|α及び干渉重みαα と、古典コンピュータによって計算された<m|O|n>とを組み合わせることにより、オブザーバブルOの期待値<ψ|O|ψ>を近似計算する。 Then, in this embodiment, by combining the weights |α n | 2 and the interference weights α m α n * measured by the quantum computer with <m|O|n> calculated by the classical computer, the observable Approximate the expected value of O <ψ|O|ψ>.
 なお、その際には、本方法の重要な応用対象である量子化学の問題においては、多くの興味ある場合において状態|ψ>が計算基底|n>に関して偏りを持つため、重み|αがある限られたnについてのみゼロではない有意な値を取るという洞察を行い、上記式(10)の和で足し上げるべき項の数が大きく減少することを特定した。 In that case, in the problem of quantum chemistry, which is an important application target of this method, in many interesting cases, the state |ψ> has a bias with respect to the calculation basis |n>, so the weight |α n | We have made the insight that 2 only takes non-zero significant values for some limited number of n, and have identified that the sum of equation (10) above greatly reduces the number of terms to add.
[提案方法の従来方法に対する優位性] [Superiority of proposed method over conventional method]
 本実施形態では、オブザーバブルOの期待値<ψ|O|ψ>を測定する際に、オブザーバブルOをパウリ演算子Pで展開して測定することに代えて、状態|ψ>の計算基底|n>(n=0,1,・・・,2-1)での展開を行い、「多数のパウリ演算子の測定」の問題を回避した。これにより、本実施形態ではA0,n,B0,n等の測定が必要となるものの、量子化学計算でしばしば現れる偏った状態|ψ>に対しては、重み|αが有意な値を取るようなある特定(以下R個とする)の計算基底|n>だけを考慮すれば良いため、測定すべき量の数が比較的少数で済む。 In this embodiment, when measuring the expected value <ψ|O|ψ> of the observable O, instead of expanding the observable O by the Pauli operator P i and measuring it, the state |ψ> is calculated Expansions on the basis |n>(n=0, 1 , . As a result, although it is necessary to measure A 0,n , B 0,n, etc. in this embodiment, the weight |α n | Since it is sufficient to consider only certain specific (hereinafter referred to as R number of) calculation bases |n> that take a value of , the number of quantities to be measured can be relatively small.
 このため、本実施形態の方法を用いる場合、量子コンピュータ上での測定は以下のようになる。 Therefore, when using the method of this embodiment, the measurement on the quantum computer is as follows.
(1)状態|ψ>の計算基底|n>でのサンプリングを繰り返すことにより、重み|αを測定する。
(2)ある特定のnに対してA0,nを測定する。nに応じてR-1種類の測定が必要となる。
(3)ある特定のnに対してB0,nを測定する。nに応じてR-1種類の測定が必要となる。
(1) Measure the weights |α n |
(2) Measure A 0,n for a particular n. Depending on n, R-1 measurements are required.
(3) Measure B 0,n for a particular n. Depending on n, R-1 measurements are required.
 このため、本実施形態の方法によれば、合計で1+2(R-1)種類の測定が必要となる。これに対し、従来手法では、オブザーバブルOの展開において出現するパウリ演算子の個数に対応してM種類の測定が必要である。量子化学のハミルトニアンを考えるとパウリ演算子の数がM=O(N)と非常に大きいのに対して、本実施形態の方法ではRがこれよりもはるかに小さいことが経験的にわかっているため、必要な測定の種類も大きく減少することになる。したがって、ハミルトニアンHの期待値<ψ|H|ψ>を測定する際には、統計揺らぎを十分小さくするために必要なショット数の総和も大きく減少させることができる。 Therefore, according to the method of this embodiment, a total of 1+2(R−1) types of measurements are required. On the other hand, in the conventional method, M types of measurements are required corresponding to the number of Pauli operators appearing in the expansion of the observable O. Considering the Hamiltonian of quantum chemistry, the number of Pauli operators is as large as M=O(N 4 ). Therefore, the number of types of measurements required is also greatly reduced. Therefore, when measuring the expected value <ψ|H|ψ> of the Hamiltonian H, it is possible to greatly reduce the total number of shots required to sufficiently reduce statistical fluctuations.
[本方法に対応するアルゴリズムの説明] [Explanation of algorithm corresponding to this method]
 本実施形態のハイブリッドシステム100が実行するアルゴリズムの全体の流れは以下の通りである。 The overall flow of the algorithm executed by the hybrid system 100 of this embodiment is as follows.
1.量子コンピュータ120が、N量子ビットの状態|ψ>を生成する。そして、量子コンピュータ120が、状態|ψ>を計算基底|n>でサンプリングをし、その測定値として0,1,・・・,の何れかの値を得る。量子コンピュータ120は、状態|ψ>の生成と計算基底|n>の測定とをL回繰り返すことにより、測定値の系列{x}=x(1),x(2),・・・,x(L)を得る。 1. Quantum computer 120 generates N qubit states |ψ>. Then, the quantum computer 120 samples the state |ψ> with the calculation basis |n>, and obtains any value of 0, 1, . The quantum computer 120 repeats the generation of the state |ψ> and the measurement of the calculation basis |n> L times to obtain a series of measured values {x}=x (1) , x (2) , . . . , x (L) is obtained.
2.古典コンピュータ110が、測定値の系列{x}から出現頻度の高いR個の測定値を
選択する。なお、古典コンピュータ110は、測定値の系列{x}から出現頻度が所定値以上であるR個の測定値を選択するようにしてもよい。次に、古典コンピュータ110が、選択したR個の測定値の各々に基づいて、出現頻度が高い順に並べた値の系列{z}=z(1),z(2),・・・,z(R)を設定する。次に、古典コンピュータ110が、{z}に含まれるR個の測定値の出現回数T(r=1,・・・,R)を計算する。そして、古典コンピュータ110が、以下の式(12)に従って、重み係数fを計算する。
2. The classical computer 110 selects R measurements with high frequency of occurrence from the series {x} of measurements. Note that the classical computer 110 may select R measured values whose frequency of appearance is equal to or higher than a predetermined value from the sequence {x} of measured values. Next, the classical computer 110 generates a sequence of values {z}=z (1) , z (2) , . . . , z (R) is set. Next, the classical computer 110 calculates the number of occurrences T r (r=1, . . . , R) of the R measurements contained in {z}. Classical computer 110 then calculates the weighting factor f r according to Equation (12) below.
Figure JPOXMLDOC01-appb-M000025

 
                            (12)
Figure JPOXMLDOC01-appb-M000025


(12)
 なお、以下の式に示されるように、重み係数fは、上記式(10)に現れる重み|αの近似値でもある。 Note that, as shown in the following equation, the weighting factor f r is also an approximate value of the weight |α n | 2 appearing in the above equation (10).
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
3.古典コンピュータ110が、{z}に基づいて、遷移行列要素<z|O|zr’>(r=1,・・・,R;r’=1,・・・,R)を計算する。 3. Classical computer 110 computes the transition matrix elements <z r |O|z r′ >(r=1, . . . , R; r′=1, . . . , R) based on {z} .
4.量子コンピュータ120が、N量子ビットの状態|φA,r>に対する射影演算子|φA,r><φA,r|を測定することにより、射影演算子|φA,r><φA,r|の測定結果を取得する。古典コンピュータ110が、射影演算子|φA,r><φA,r|の測定結果に基づいて、射影演算子|φA,r><φA,r|の期待値A(r=2,・・・,R)を計算する。なお、状態|φA,r>は次式によって表される。また、各rについてL’回の測定が行われる。 4. Quantum computer 120 calculates the projection operator |φ A,r ><φ A by measuring the projection operator |φ A,r >A,r | , r | Classical computer 110 computes the expected value A r ( r= 2, . . . , R). The state |φ A,r > is represented by the following equation. Also, L' measurements are taken for each r.
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
5.量子コンピュータ120が、N量子ビットの状態|φB,r>に対する射影演算子|φB,r><φB,r|を測定することにより、射影演算子|φB,r><φB,r|の測定結果を取得する。古典コンピュータ110が、射影演算子|φB,r><φB,r|の測定結果に基づいて、射影演算子|φB,r><φB,r|の期待値B(r=2,・・・,R)を計算する。なお、状態|φB,r>は次式によって表される。また、各rについてL’’回の測定が行われる。 5. Quantum computer 120 calculates the projection operator |φ B,r ><φ B by measuring the projection operator |φ B,r >B ,r | , r | Classical computer 110 computes the expected value B r ( r = 2, . . . , R). The state |φ B,r > is represented by the following equation. Also, L'' measurements are taken for each r.
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000028
6.古典コンピュータ110が、重み係数f(r=1,・・・,R)と、期待値A(r=2,・・・,R)と、期待値B(r=2,・・・,R)とを組み合わせることにより、以下の式(13)に従って、干渉重みgを近似計算する。 6. The classical computer 110 calculates the weight coefficient f r (r=1, . . . , R), the expected value A r ( r =2, . , R), the interference weight gr is approximated according to the following equation (13).
Figure JPOXMLDOC01-appb-M000029

 
                            (13)
Figure JPOXMLDOC01-appb-M000029


(13)
 なお、干渉重みgは次式によっても表される。 Note that the interference weight gr is also expressed by the following equation.
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000030
 古典コンピュータ110が、上記式(11)から得られる次式に従って、干渉重みの他の成分αzrαzr’ を計算する。 Classical computer 110 calculates the other component of the interference weight α zr α zr' * according to the following equation derived from equation (11) above.
Figure JPOXMLDOC01-appb-M000031

 
Figure JPOXMLDOC01-appb-I000032
Figure JPOXMLDOC01-appb-M000031

 
Figure JPOXMLDOC01-appb-I000032
7.古典コンピュータ110が、干渉重みgに相当するαz1αzr と、干渉重みの他の成分αzrαzr’ と、<z|O|zr’>とに基づいて、以下の式(14)に従って、オブザーバブルOの期待値<ψ|O|ψ>を近似計算する。 7. Classical computer 110 computes the following based on α z1 α zr * corresponding to the interference weight g r , the other component α zr α zr' * of the interference weight, and <z r |O|z r' > The expected value <ψ|O|ψ> of the observable O is approximately calculated according to the equation (14).
Figure JPOXMLDOC01-appb-M000033

 
                            (14)
Figure JPOXMLDOC01-appb-M000033


(14)
[量子コンピュータを用いて射影演算子の期待値を推定する方法] [Method of estimating expected value of projection operator using quantum computer]
 次に、量子コンピュータを用いて射影演算子の期待値を推定する方法について説明する。射影演算子とは、P=Pを満たすような線形演算子である。特に、PがP=|φ><φ|であるとき、Pを状態|φ>に対する射影演算子であるという。射影演算子Pの状態|ψ>での期待値は、以下の式(15)によって表される。 Next, a method of estimating the expected value of the projection operator using a quantum computer will be described. A projection operator is a linear operator that satisfies P= P2 . In particular, we say that P is a projection operator over a state |φ> when P=|φ><φ|. The expected value of the projection operator P in the state |ψ> is represented by the following equation (15).
Figure JPOXMLDOC01-appb-M000034

 
                            (15)
Figure JPOXMLDOC01-appb-M000034


(15)
 以下では、上記式(15)における確率pを推定する方法を説明する。
 まず、状態|φ>を計算基底の単一成分で表される状態|n>へ変換する量子回路Uを用意する。なお、N量子ビットの任意の量子状態|Φ>は計算基底|k>(k=0,1,・・・,2-1)を用いて、以下の式(16)によって表される。
A method for estimating the probability p in the above equation (15) will be described below.
First, a quantum circuit U is prepared for transforming the state |φ> into the state |n> represented by a single component of the calculation basis. An arbitrary quantum state |Φ> of N qubits is represented by the following equation (16) using a calculation basis |k> (k=0, 1, . . . , 2 N −1).
Figure JPOXMLDOC01-appb-M000035

 
                            (16)
Figure JPOXMLDOC01-appb-M000035


(16)
 ここで、|φ>が計算基底の単一の成分のみで表せるとは、上記式(16)におけるα,α,・・・のうち1つだけが1であり、他は全て0という意味である。状態|φ>と状態|n>と量子回路Uとは、以下の式(17)によって表される。 Here, |φ> can be represented by only a single component of the calculation basis if only one of α 0 , α 1 , . . . Meaning. The state |φ>, the state |n>, and the quantum circuit U are represented by the following equation (17).
Figure JPOXMLDOC01-appb-M000036

 
                            (17)
Figure JPOXMLDOC01-appb-M000036


(17)
 このような量子回路Uは存在し得る。仮に状態|φ>がはじめから|n>のように計算基底の単一成分で表されている場合には変換の必要が無く、何もしない回路(U=I)を考えればよい。確率pの定義である上記式(15)と上記式(17)とを組み合わせることにより、以下の式(18)が得られる。 Such a quantum circuit U can exist. If the state |φ> is initially represented by a single component of the calculation basis such as |n>, there is no need for conversion, and a circuit (U=I) that does nothing can be considered. The following equation (18) is obtained by combining the above equation (15) and the above equation (17), which are the definitions of the probability p.
Figure JPOXMLDOC01-appb-M000037

 
                            (18)
Figure JPOXMLDOC01-appb-M000037


(18)
 計算基底が量子ビットごとのZ演算子の同時固有状態であることと、量子論の原理(例えば、Bornの規則)とにより、確率pは状態U|ψ>上で量子ビットをZ基底で測定したとき測定結果nとなる確率であることがわかる。 Due to the fact that the computational basis is the simultaneous eigenstate of the Z operator per qubit, and the principles of quantum theory (e.g., Born's rule), the probability p is measured on the state U|ψ> qubit in the Z basis is the probability of obtaining the measurement result n when
 この確率の推定は次のように行われる。まず、状態|ψ>が生成される。そして、その
状態に量子回路Uを作用させる。最後に、Z基底よる測定が行われ測定結果が得られる。ここまでを一連の処理とし、この処理をl回繰り返すことにより測定結果が収集される。そして、l個の測定のうち結果nを得た回数l’が求められ、その比l’/lがpの推定値とされる。なお、計算基底の2成分のみで表される状態|φ>は、以下の式(19)によって表される。
Estimation of this probability is performed as follows. First, the state |ψ> is generated. Then, the quantum circuit U is caused to act on that state. Finally, a Z-basis measurement is performed to obtain the measurement result. The process up to this point is regarded as a series of processes, and the measurement results are collected by repeating this process l times. Then, the number l′ of the l measurements that yielded the result n is obtained, and the ratio l′/l is taken as the estimated value of p. Note that the state |φ> represented by only two components of the calculation basis is represented by the following equation (19).
Figure JPOXMLDOC01-appb-M000038

 
                            (19)
Figure JPOXMLDOC01-appb-M000038


(19)
 本実施形態の方法においては、上記式(19)における状態|φ>に対する射影演算子の期待値を推定する場面が多い。そのような場合には、以下の式(20)で表される量子回路Uを用意するのが好ましい。 In the method of the present embodiment, there are many cases where the expected value of the projection operator for the state |φ> in the above equation (19) is estimated. In such a case, it is preferable to prepare a quantum circuit U represented by the following equation (20).
Figure JPOXMLDOC01-appb-M000039

 
                            (20)
Figure JPOXMLDOC01-appb-M000039


(20)
 上記式(20)が表すような作用をする量子回路の構成法は一意ではないが、様々な手法によって構成することが可能である。 Although the configuration method of the quantum circuit that acts as represented by the above formula (20) is not unique, it can be configured by various methods.
[実施形態のハイブリッドシステム100の動作] [Operation of Hybrid System 100 of Embodiment]
 次に、実施形態のハイブリッドシステム100の具体的な動作について説明する。ハイブリッドシステム100の各装置において、図3及び図4に示される各処理が実行される。 Next, specific operations of the hybrid system 100 of the embodiment will be described. In each device of hybrid system 100, each process shown in FIGS. 3 and 4 is executed.
 ハイブリッドシステム100は、以下の式(A1)によって表されるオブザーバブルOの期待値<ψ|O|ψ>を、以下の式(A2)を用いて近似計算する。 The hybrid system 100 approximates the expected value <ψ|O|ψ> of the observable O represented by the following equation (A1) using the following equation (A2).
Figure JPOXMLDOC01-appb-M000040

 
                            (A1)
Figure JPOXMLDOC01-appb-I000041

                            (A2)
Figure JPOXMLDOC01-appb-M000040


(A1)
Figure JPOXMLDOC01-appb-I000041

(A2)
 なお、N量子ビットの状態|ψ>は、以下の式(A3)に従って、複数の展開係数αと複数の計算基底|n>(n=0,1,・・・,2-1)とによって表現される。具体的には、複数の計算基底|n>の線形結合によってN量子ビットの状態|ψ>が表現される。 The state |ψ> of the N qubits has a plurality of expansion coefficients α n and a plurality of calculation bases |n> (n=0, 1, . . . , 2 N −1) according to the following equation (A3). and are represented by Specifically, the state |ψ> of N qubits is represented by a linear combination of a plurality of calculation bases |n>.
Figure JPOXMLDOC01-appb-M000042

 
                            (A3)
Figure JPOXMLDOC01-appb-M000042


(A3)
 まず、ステップS100において、ユーザ端末130は、ユーザから入力された、計算対象に関する情報である計算対象情報と、計算方法に関する情報である計算方法情報とを、古典コンピュータ110へ送信する。 First, in step S100, the user terminal 130 transmits, to the classical computer 110, calculation target information, which is information about the calculation target, and calculation method information, which is information about the calculation method, input by the user.
 計算対象情報には、例えば、計算対象の物理量に対応するオブザーバブルOに関する情報等が含まれている。計算方法情報には、例えば、量子回路に関する情報、及び測定ショット数に関する情報等が含まれている。なお、量子回路に関する情報には、後述する重み係数fを計算するために用いられる、状態|ψ>を生成する量子回路Uの構造に関する情報、後述する干渉重み係数gを計算するために用いられる量子回路Uの構造に関する情報等が含まれている。また、測定ショット数に関する情報には、後述する計算基底|n>の測定回数を表すLと、後述する射影演算子の期待値を計算するための測定回数を表すL’及びL’’とが含まれている。 The calculation target information includes, for example, information related to the observable O corresponding to the physical quantity to be calculated. The calculation method information includes, for example, information on the quantum circuit, information on the number of measurement shots, and the like. Note that the information about the quantum circuit includes information about the structure of the quantum circuit Uf that generates the state |ψ>, which is used to calculate the weighting factor fr , which will be described later, and It contains information about the structure of the quantum circuit Ug used for . Further, the information on the number of measurement shots includes L representing the number of measurements of the calculation basis |n> described later, and L′ and L″ representing the number of measurements for calculating the expected value of the projection operator described later. include.
 次に、ステップS102において、古典コンピュータ110は、ユーザ端末130から送信された計算対象情報及び計算方法情報を受信する。そして、ステップS102において、古典コンピュータ110は、計算方法情報のうちの量子回路Uの構造に関する情報に基づいて、量子回路Uの構造を決定する。また、ステップS102において、古典コンピュータ110は、計算方法情報のうちの計算基底|n>の測定回数を表すLに基づいて、測定ショット数を決定する。 Next, in step S<b>102 , the classical computer 110 receives the calculation target information and the calculation method information transmitted from the user terminal 130 . Then, in step S102, the classical computer 110 determines the structure of the quantum circuit Uf based on the information regarding the structure of the quantum circuit Uf in the calculation method information. Also, in step S102, the classical computer 110 determines the number of measurement shots based on L representing the number of measurements of the calculation basis |n> in the calculation method information.
 ステップS104において、古典コンピュータ110は、量子計算に必要な各種情報を量子コンピュータ120へ送信する。具体的には、古典コンピュータ110は、ステップS102で決定された量子回路Uの構造及び測定ショット数と、ステップS102で受信した計算方法情報及び計算対象情報とを、量子コンピュータ120へ送信する。 In step S<b>104 , the classical computer 110 transmits various information necessary for quantum computation to the quantum computer 120 . Specifically, the classical computer 110 transmits to the quantum computer 120 the structure of the quantum circuit Uf and the number of measurement shots determined in step S102, and the calculation method information and calculation target information received in step S102.
 ステップS106において、制御装置121は、ステップS104で古典コンピュータ110から送信された各種情報を受信する。 At step S106, the control device 121 receives various information transmitted from the classical computer 110 at step S104.
 ステップS108において、制御装置121は、ステップS106で受信した各種情報に応じた量子計算を量子コンピュータ120に実行させる。量子コンピュータ120は、制御装置121による制御に応じて、上記式(A3)の計算基底|n>の測定をL回繰り返すことにより、計算基底|n>の測定値の系列{x}=x(1),x(2),・・・,x(L)を取得する。 In step S108, the control device 121 causes the quantum computer 120 to perform quantum computation according to the various information received in step S106. The quantum computer 120 repeats the measurement of the calculation basis |n> of the above formula (A3) L times according to the control by the control device 121, thereby obtaining a series of measured values of the calculation basis |n> {x}=x ( 1) Get , x (2) , . . . , x (L) .
 具体的には、量子コンピュータ120は、制御装置121の制御に応じて、量子ビット群123のうちの少なくとも何れかの量子ビットへ照射するための電磁波を生成する。そして、量子コンピュータ120は、生成された電磁波を、量子ビット群123のうちの少なくとも何れかの量子ビットへ照射し、状態|ψ>を生成する量子回路Uを実行する。量子回路Uに含まれる各量子ゲートのゲート操作は対応する電磁波波形へと変換され、生成された電磁波が電磁波生成装置122によって量子ビット群123に照射される。そして、量子コンピュータ120は、測定により得られた測定結果を出力する。 Specifically, the quantum computer 120 generates electromagnetic waves for irradiating at least one of the quantum bits in the quantum bit group 123 under the control of the control device 121 . Then, the quantum computer 120 irradiates at least one of the quantum bits in the quantum bit group 123 with the generated electromagnetic wave, and executes a quantum circuit U f that generates the state |ψ>. The gate operation of each quantum gate included in the quantum circuit Uf is converted into a corresponding electromagnetic wave waveform, and the generated electromagnetic wave is applied to the quantum bit group 123 by the electromagnetic wave generator 122 . The quantum computer 120 then outputs the measurement result obtained by the measurement.
 ステップS110において、制御装置121は、ステップS108で得られた測定結果を、古典コンピュータ110へ送信する。 In step S110, the control device 121 transmits the measurement results obtained in step S108 to the classical computer 110.
 ステップS112において、古典コンピュータ110は、ステップS110で制御装置121から送信された測定結果を受信する。次に、古典コンピュータ110は、測定結果である計算基底|n>の測定値の系列{x}=x(1),x(2),・・・,x(L)に基づいて、測定値の系列{x}のうちの、出現回数が多いR個の測定値又は出現回数が所定値以上であるR個の測定値を選択する。 At step S112, the classical computer 110 receives the measurement results sent from the controller 121 at step S110. Next , the classical computer 110 calculates the measured value of the series {x}, R measured values with a large number of appearances or R measured values with a number of appearances greater than or equal to a predetermined value are selected.
 また、ステップS112において、古典コンピュータ110は、R個の測定値の各々を高い順に並べた値{z}=z(1),z(2),・・・,z(R)を設定する。次に、古典コンピュータ110は、{z}に含まれるR個の測定値の出現回数T(r=1,・・・,R)を計算する。そして、古典コンピュータ110は、以下の式(A4)に従って、上記式(A1)の|αzrを近似した値である重み係数fを計算する。 Also, in step S112, the classical computer 110 sets values {z}=z (1) , z (2 ) , . Next, the classical computer 110 calculates the number of occurrences T r (r=1, . . . , R) of the R measurements contained in {z}. Then, the classical computer 110 calculates a weighting factor f r that is an approximation of |α zr | 2 in the above formula (A1) according to the following formula (A4).
Figure JPOXMLDOC01-appb-M000043

 
                            (A4)
Figure JPOXMLDOC01-appb-M000043


(A4)
 ステップS114において、古典コンピュータ110は、ステップS112で設定された{z}に基づいて、上記式(A2)の、計算基底|z>と計算基底|zr’>との組み合わせ毎の複数の遷移行列要素<z|O|zr’>(r=1,・・・,R;r’=1,・・・,R)を計算する。 In step S114, classical computer 110 generates a plurality of Compute the transition matrix elements <z r |O|z r′ >(r=1, . . . , R; r′=1, .
 ステップS116において、古典コンピュータ110は、計算方法情報のうちの量子回路Uの構造に関する情報に基づいて、量子回路Uの構造を決定する。また、ステップS116において、古典コンピュータ110は、計算方法情報のうちの射影演算子の期待値を計算するための測定回数を表すL’及びL’’に基づいて、測定ショット数を決定する。 In step S116, the classical computer 110 determines the structure of the quantum circuit Ug based on the information regarding the structure of the quantum circuit Ug in the calculation method information. Also, in step S116, the classical computer 110 determines the number of measurement shots based on L' and L'' representing the number of measurements for calculating the expected value of the projection operator in the calculation method information.
 図4に示すステップS118において、古典コンピュータ110は、量子計算に必要な各種情報を量子コンピュータ120へ送信する。具体的には、古典コンピュータ110は、ステップS116で決定された量子回路Uの構造及び測定ショット数と、N量子ビットの状態|φA,r>に対する射影演算子|φA,r><φA,r|に関する情報、及びN量子ビットの状態|φB,r>に対する射影演算子|φB,r><φB,r|に関する情報とを、量子コンピュータ120へ送信する。なお、量子回路Uは、射影演算子|φA,r><φA,r|の期待値と射影演算子|φB,r><φB,r|の期待値を得るための量子回路である。なお、これらの量子回路に関しては、Aに関してr毎に量子回路が
必要であり、Bに関してr毎に量子回路が必要である。このため、2(R-1)種類の量子回路が必要となる。
In step S118 shown in FIG. 4, the classical computer 110 transmits various information necessary for quantum computation to the quantum computer 120. FIG. Specifically, the classical computer 110 calculates the structure of the quantum circuit U g determined in step S116, the number of measurement shots, and the projection operator |φ A,r >< for the state |φ A,r > of the N qubits. Information about φ A,r | and information about the projection operator |φ B, r ><φ B,r | Note that the quantum circuit U g is a quantum circuit for obtaining the expected value of the projection operator |φ A,r >A ,r | circuit. Regarding these quantum circuits, A requires a quantum circuit for every r, and B requires a quantum circuit for every r. Therefore, 2(R-1) types of quantum circuits are required.
 ステップS120において、制御装置121は、ステップS118で古典コンピュータ110から送信された各種情報を受信する。 At step S120, the control device 121 receives various information transmitted from the classical computer 110 at step S118.
 ステップS122において、制御装置121は、ステップS120で受信した各種情報に応じた量子計算を量子コンピュータ120に実行させる。量子コンピュータ120は、制御装置121による制御に応じて、射影演算子|φA,r><φA,r|の測定をL’回繰り返すことにより、射影演算子|φA,r><φA,r|の測定結果を取得する。また、量子コンピュータ120は、制御装置121による制御に応じて、射影演算子|φB,r><φB,r|の測定をL’’回繰り返すことにより、射影演算子|φB,r><φB,r|の測定結果を取得する。 In step S122, the control device 121 causes the quantum computer 120 to perform quantum computation according to the various information received in step S120. Quantum computer 120 repeats the measurement of projection operator |φ A,r ><φ A,r | L′ times under the control of control device 121 to obtain projection operator |φ A,r ><φ Obtain the measurement result of A,r |. In addition, the quantum computer 120 repeats the measurement of the projection operator |φ B,r ><φ B,r | L″ times in accordance with the control by the control device 121 so that the projection operator |φ B,r ><obtain the measurement result of φ B,r |.
 具体的には、量子コンピュータ120は、制御装置121の制御に応じて、量子ビット群123のうちの少なくとも何れかの量子ビットへ照射するための電磁波を生成する。そして、量子コンピュータ120は、生成された電磁波を、量子ビット群123のうちの少なくとも何れかの量子ビットへ照射し、量子回路Uを実行する。量子回路Uに含まれる各量子ゲートのゲート操作は対応する電磁波波形へと変換され、生成された電磁波が電磁波生成装置122によって量子ビット群123に照射される。そして、量子コンピュータ120は、測定により得られた測定結果を出力する。 Specifically, the quantum computer 120 generates electromagnetic waves for irradiating at least one of the quantum bits in the quantum bit group 123 under the control of the control device 121 . Then, the quantum computer 120 irradiates at least one of the quantum bits in the quantum bit group 123 with the generated electromagnetic wave, and executes the quantum circuit Ug . The gate operation of each quantum gate included in the quantum circuit Ug is converted into a corresponding electromagnetic wave waveform, and the electromagnetic wave generator 122 irradiates the quantum bit group 123 with the generated electromagnetic wave. The quantum computer 120 then outputs the measurement result obtained by the measurement.
 ステップS124において、制御装置121は、ステップS122で得られた測定結果を、古典コンピュータ110へ送信する。 In step S124, the control device 121 transmits the measurement results obtained in step S122 to the classical computer 110.
 ステップS126において、古典コンピュータ110は、ステップS124で制御装置121から送信された測定結果を受信する。次に、古典コンピュータ110は、射影演算子|φA,r><φA,r|の測定結果に基づいて、射影演算子|φA,r><φA,r|の期待値Aを計算する。また、古典コンピュータ110は、射影演算子|φB,r><φB,r|の測定結果に基づいて、射影演算子|φB,r><φB,r|の期待値Bを計算する。 At step S126, the classical computer 110 receives the measurement results sent from the controller 121 at step S124. Next, the classical computer 110 computes the expected value A r of the projection operator |φ A,r >A ,r | to calculate Further, the classical computer 110 calculates the expected value B r of the projection operator |φ B,r ><φ B,r | based on the measurement result of the projection operator |φ B,r ><φ B,r | calculate.
 ステップS128において、古典コンピュータ110は、ステップS112で計算された重み係数fと、ステップS126で計算された期待値A及び期待値Bとに基づいて、以下の式(A5)に従って、上記式(A2)のαz1αzr に相当する干渉重みgを近似計算する。 In step S128, the classical computer 110 performs the above-described An interference weight g r corresponding to α z1 α zr * in Equation (A2) is approximately calculated.
Figure JPOXMLDOC01-appb-M000044

 
                            (A5)
Figure JPOXMLDOC01-appb-M000044


(A5)
 ステップS130において、古典コンピュータ110は、ステップS112で計算された重み係数fと、ステップS128で計算された干渉重みgとに基づいて、以下の式(A6)に従って、干渉重みの他の成分αzrαzr’ を近似計算する。 At step S130, the classical computer 110, based on the weighting factor f1 calculated at step S112 and the interference weight gr calculated at step S128, according to the following equation (A6), the other component of the interference weight Approximate α zr α zr' * .
Figure JPOXMLDOC01-appb-M000045

 
Figure JPOXMLDOC01-appb-I000046

 
                            (A6)
Figure JPOXMLDOC01-appb-M000045


Figure JPOXMLDOC01-appb-I000046


(A6)
 ステップS132において、古典コンピュータ110は、ステップS128で計算された干渉重みgに相当するαz1αzr と、ステップS130で計算されたαzrαzr’ と、ステップS114で計算された<z|O|zr’>とに基づいて、上記式(A2)に従って、オブザーバブルOの期待値<ψ|O|ψ>を近似計算する。 At step S132, the classical computer 110 calculates α z1 α zr * corresponding to the interference weight g r calculated at step S128, α zr α zr′ * calculated at step S130, and < Based on z r |O|z r′ >, the expected value <ψ|O|ψ> of the observable O is approximately calculated according to the above equation (A2).
 ステップS134において、古典コンピュータ110は、ステップS132で得られた計算結果であるオブザーバブルOの期待値<ψ|O|ψ>をユーザ端末130へ送信する。 In step S134, the classical computer 110 transmits to the user terminal 130 the expected value <ψ|O|ψ> of the observable O, which is the calculation result obtained in step S132.
 ステップS136において、ユーザ端末130は、古典コンピュータ110から送信された計算結果を受信する。 In step S136, the user terminal 130 receives the calculation results sent from the classical computer 110.
 以上説明したように、実施形態のハイブリッドシステムのうちの古典コンピュータは、複数の計算基底の線形結合によってN量子ビットの状態|ψ>が表現される場合に、量子コンピュータによって測定された複数の計算基底の各々の測定値を取得する。そして、古典コンピュータは、複数の計算基底の各々の測定値に基づいて、複数の測定値から出現回数が多いR個の測定値又は出現回数が所定値以上であるR個の測定値を選択し、選択されたR個の測定値の出現回数に基づいて、出現回数に応じたR個の計算基底|z>(r=1,・・・,R)に対する重み係数fを計算する。そして、古典コンピュータは、重み係数fと重み係数fr’との組み合わせを重みとする、複数の遷移行列要素<z|O|zr’>の重み付け和によって、オブザーバブルOの期待値<ψ|O|ψ>を近似計算する。これにより、量子コンピュータを用いてオブザーバブルOの期待値を効率的に得ることができる。 As described above, the classical computer of the hybrid system of the embodiment performs a plurality of calculations measured by the quantum computer when the state |ψ> of N qubits is represented by a linear combination of a plurality of calculation bases. Obtain a measurement of each of the bases. Then, the classical computer selects R measured values having a large number of occurrences or R measured values having a predetermined number of occurrences or more from the plurality of measured values based on the measured values of each of the plurality of calculation bases. , based on the number of occurrences of the R selected measurements, calculate the weighting factors f r for the R calculation bases |z r >(r=1, . . . , R) according to the number of occurrences. Then , the classical computer calculates the expected value of the observable O <ψ|O|ψ> is approximated. Thereby, the expected value of the observable O can be obtained efficiently using a quantum computer.
 また、古典コンピュータと量子コンピュータとの間の適切な役割分担により、オブザーバブルOの期待値を効率的に得ることができる。 In addition, the expected value of the observable O can be efficiently obtained by appropriate division of roles between the classical computer and the quantum computer.
 次に、実施例について説明する。本実施例では、量子化学計算の問題を例に取り、本実施形態の手法と従来手法の数値的な比較結果を示す。具体的には、様々な分子のハミルトニアンHとその基底状態|ψ>を用いて、期待値<ψ|H|ψ>の測定における統計揺らぎの大きさを理論的に評価し(後述する手法を参照)、統計揺らぎを量子化学で要求される精度(10-3Hartree)以下にするために必要なショット数の総和を、二つの手法に
対して求めた。その結果を以下の表1に示す。量子ビット数の小さなHに対しては総ショット数をわずかに削減するが、LiHやHOにおいては、本手法により総ショット数が大幅に削減されることが分かる。
Next, examples will be described. In this example, taking the problem of quantum chemical calculation as an example, the results of numerical comparison between the method of this embodiment and the conventional method will be shown. Specifically, using the Hamiltonian H of various molecules and their ground state |ψ>, the magnitude of statistical fluctuations in the measurement of the expected value <ψ|H|ψ> is theoretically evaluated (using the method described later See), the total number of shots required to reduce the statistical fluctuations to the accuracy (10 −3 Hartree) or less required in quantum chemistry was obtained for the two methods. The results are shown in Table 1 below. It can be seen that the total number of shots is slightly reduced for H 2 with a small number of qubits, but for LiH and H 2 O, the total number of shots is significantly reduced by this method.
 なお、Rは、本手法の上記式(14)の和において含まれる有意な計算基底の数であるが、具体的には、以下の不等式(21)を満たすような最小の自然数Rの値として数値的に求めた。 Note that R is the number of significant calculation bases included in the sum of the above formula (14) of this method. Specifically, the minimum natural number R that satisfies the following inequality (21) is calculated numerically.
Figure JPOXMLDOC01-appb-M000047

 
                            (21)
Figure JPOXMLDOC01-appb-M000047


(21)
 上記式(21)に示されるようなRを用いると、本手法で求められたエネルギー期待値(EIS)は、FCI法により求められる厳密値(EFCI)を量子化学で要求される精度(両者のズレが10-3 Hartree 以下)で再現されることを確かめた。 Using R as shown in the above formula (21), the expected energy value (E IS ) obtained by this method is the exact value (E FCI ) obtained by the FCI method, and the precision required in quantum chemistry ( It was confirmed that the difference between the two was reproduced at 10 -3 Hartree or less).
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
 上記表には、様々な分子のハミルトニアンHの基底状態|ψ>での期待値<ψ|H|ψ>の測定における統計揺らぎの大きさを10-3Hartree以下にするために必要なショッ
ト数の総和が示されている。各分子に対して、Nは量子ビット数、Mはハミルトニアンに含まれるパウリ演算子の総数である。Rは、本手法の和の上記式(14)で含めた有意な計算基底の数である。
The above table shows the number of shots required to reduce the size of the statistical fluctuations to 10 −3 Hartree or less in the measurement of the expected value <ψ|H|ψ> at the ground state |ψ> of the Hamiltonian H of various molecules. is shown. For each numerator, N is the number of qubits and M is the total number of Pauli operators contained in the Hamiltonian. R is the number of significant computational bases included in equation (14) above for the sum of our approach.
 EIS-EFCIは本手法で求めたエネルギー期待値(EIS)とFCI法で求めた厳密な値(EFCI)との差(単位はHartree)である。EFCIを求めるのに量子化学計
算ソフトウェアのPySCFを使用した。この計算を実施する際には既知のSTO―3G基底関数を使用した。
E IS −E FCI is the difference (in Hartree) between the expected energy value (E IS ) obtained by this method and the exact value (E FCI ) obtained by the FCI method. The quantum chemistry calculation software PySCF was used to determine the EFCI . The known STO-3G basis functions were used in performing this calculation.
[オブザーバブルOの期待値<ψ|O|ψ>の測定における統計誤差の見積もり]
 オブザーバブルOの期待値<ψ|O|ψ>の測定値には、統計的な揺らぎが生じる。ここでは、ショット数に対する揺らぎの大きさの理論的な見積もりについて説明する。
[Estimation of statistical error in the measurement of the expected value <ψ|O|ψ> of the observable O]
Statistical fluctuations occur in the measured value of the expected value <ψ|O|ψ> of the observable O. Here, a theoretical estimation of the magnitude of fluctuation with respect to the number of shots will be described.
 本方式において必要となる測定は、|ψ>の|n>への射影測定L回、A(r=2,・・・,R)を得るためのそれぞれL’回の測定、B(r=2,・・・,R)を得るためのそれぞれL’’回の測定である。各々の測定由来の統計誤差を定量化した後、誤差伝播公式により期待値<ψ|O|ψ>の統計誤差を導出する。 The measurements required in this method are L projection measurements of |ψ> onto |n>, L′ measurements to obtain A r (r=2, . . . , R), and B r ( L″ measurements each to obtain r=2, . . . , R). After quantifying the statistical error from each measurement, the error propagation formula derives the statistical error of the expected value <ψ|O|ψ>.
[|ψ>の|n>への射影測定]
|ψ>を|n>(n=0,1,...,2-1)でL回射影測定したとする。このとき、|n>がl回出現したとする。一度の測定において|n>が出現する確率は、p=|<n|ψ>|である。各nの出現回数l,l,...,ln_max(n_max=2-1)を確率変数とみなすと、その確率分布は以下の多項分布で与えられる。
[Projective measurement of |ψ> onto |n>]
Suppose |ψ> is projected L times with |n> (n=0, 1, . . . , 2 N −1). At this time, suppose that |n> appears ln times. The probability that |n> appears in one measurement is p n =|<n|ψ>| 2 . The number of occurrences l 0 , l 1 , . . . , l n_max (n_max=2 N −1) are regarded as random variables, their probability distributions are given by the following multinomial distributions.
Figure JPOXMLDOC01-appb-M000049
Figure JPOXMLDOC01-appb-M000049
 lは実際に観測される値であるが、これに対応する確率変数をLと表すことにする。その期待値と分散は次式によって表される。 ln is an actually observed value, and the corresponding random variable is denoted by Ln . Its expected value and variance are expressed by the following equations.
Figure JPOXMLDOC01-appb-M000050
Figure JPOXMLDOC01-appb-M000050
 なお、Lに関しては以下の制限がある。 Note that Ln has the following restrictions.
Figure JPOXMLDOC01-appb-M000051
Figure JPOXMLDOC01-appb-M000051
 このため、LとL(n≠m)の共分散がノンゼロになる。 Therefore, the covariance of L n and L m (n≠m) is nonzero.
Figure JPOXMLDOC01-appb-M000052
Figure JPOXMLDOC01-appb-M000052
 なお、p=|<n|ψ>|の推定量を次式とすると、その分散と共分散は以下の式で与えられる。 If the estimator of p n =|<n|ψ> |
Figure JPOXMLDOC01-appb-M000053

 
Figure JPOXMLDOC01-appb-I000054
Figure JPOXMLDOC01-appb-M000053

 
Figure JPOXMLDOC01-appb-I000054
 観測された|n>の出現回数lを用いることにより、pの推定値としてp=l/Lが得られるが、その標準偏差は以下で与えられる。 Using the observed number of |n> occurrences l n gives an estimate of p n = l n /L, whose standard deviation is given by:
Figure JPOXMLDOC01-appb-M000055
Figure JPOXMLDOC01-appb-M000055
 上述したように、以下の式を導入したが、これは以下のpの近似を与える。 As mentioned above, we have introduced the following equation, which gives the following approximation of pn .
Figure JPOXMLDOC01-appb-M000056

 
Figure JPOXMLDOC01-appb-I000057
Figure JPOXMLDOC01-appb-M000056

 
Figure JPOXMLDOC01-appb-I000057
 したがって、fの統計誤差を以下で近似することができる。 Therefore, the statistical error of f r can be approximated by:
Figure JPOXMLDOC01-appb-M000058

 
                            (22)
Figure JPOXMLDOC01-appb-M000058


(22)
 また、共分散についても同様に、以下で近似することができる。 Similarly, the covariance can be approximated as follows.
Figure JPOXMLDOC01-appb-M000059

 
                            (23)
Figure JPOXMLDOC01-appb-M000059


(23)
(AとBの測定)
 まず、以下の測定について考える。
(Measurement of A r and B r )
First, consider the following measurements.
Figure JPOXMLDOC01-appb-M000060
Figure JPOXMLDOC01-appb-M000060
 各rについて、状態|ψ>のとある基底(およびこれと正規直交な基底のセット)での射影測定を繰り返すことによりAを推定することができる。なお、状態|ψ>のとある基底というのは、次式によって表される。 For each r, A r can be estimated by repeating the projective measurement on a basis (and a set of basis orthonormal to it) of the state |ψ>. A certain basis of the state |ψ> is represented by the following equation.
Figure JPOXMLDOC01-appb-M000061
Figure JPOXMLDOC01-appb-M000061
 各々の測定結果は、上記基底が出るかそれ以外かの二択であるため、上記基底が出現する回数は二項分布により記述される。L’回の測定が行われ、上記基底がl’回出現したとすると、Aの推定値はA=l’/L’で与えられる。また、その標準偏差は、次式によって表される。 Since each measurement result is a binary choice of whether the basis appears or not, the number of times the basis appears is described by the binomial distribution. Assuming L′ measurements are made and the above basis occurs l′ times, an estimate of A r is given by A r =l′/L′. Moreover, the standard deviation is represented by the following equation.
Figure JPOXMLDOC01-appb-M000062

 
                            (24)
Figure JPOXMLDOC01-appb-M000062


(24)
 各rについて独立な測定を行う必要があるため、共分散はゼロである。次式によって表されるBに対しても同様に測定および推定を行うことができる。 The covariance is zero because we need to make independent measurements for each r. Br expressed by the following equation can be similarly measured and estimated.
Figure JPOXMLDOC01-appb-M000063
Figure JPOXMLDOC01-appb-M000063
 各rについてL’’回測定を行ったとすると、Bの標準偏差は次式によって表される。 Assuming L'' measurements for each r, the standard deviation of Br is given by the following equation.
Figure JPOXMLDOC01-appb-M000064

 
                            (25)
Figure JPOXMLDOC01-appb-M000064


(25)
[<O>の統計誤差]
 上記式(14)により以下の期待値<O>の推定量を構成したが、この量は測定量fr(r=1,...,R)、A、B(r=2,...,R)の関数とみなすこともできる。
[Statistical error of <O>]
We have constructed an estimator of the following expected value <O> according to equation (14) above, which is the measured quantity fr (r=1, . . . , R), A r , B r (r=2, . , R).
Figure JPOXMLDOC01-appb-M000065
Figure JPOXMLDOC01-appb-M000065
 したがって、誤差伝搬の公式を適用することにより、<O>の統計誤差σ<O>を以下のように見積もることができる。 Therefore, by applying the error propagation formula, the statistical error σ <O> of <O> can be estimated as follows.
Figure JPOXMLDOC01-appb-M000066
Figure JPOXMLDOC01-appb-M000066
 なお、本開示の技術は、上述した実施形態に限定されるものではなく、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。 It should be noted that the technology of the present disclosure is not limited to the above-described embodiments, and various modifications and applications are possible without departing from the gist of the present invention.
 例えば、上記実施形態において、古典コンピュータ110と量子コンピュータ120との間の情報の送受信はどのようになされてもよい。例えば、古典コンピュータ110と量子コンピュータ120との間における、量子回路のパラメータの送受信及び測定結果の送受信等は、所定の計算が完了する毎に逐次送受信が行われてもよいし、全ての計算が完了した後に送受信が行われてもよい。 For example, in the above embodiment, information may be transmitted and received between the classical computer 110 and the quantum computer 120 in any way. For example, the transmission and reception of quantum circuit parameters and the transmission and reception of measurement results between the classical computer 110 and the quantum computer 120 may be performed sequentially each time a predetermined calculation is completed, or all calculations may be performed. Sending and receiving may occur after completion.
 また、上記実施形態では、ユーザ端末130から古典コンピュータ110へ計算対象情報が送信され、古典コンピュータ110が計算対象情報に応じた計算を実行する場合を例に説明したが、これに限定されるものではない。ユーザ端末130は、IPネットワークなどのコンピュータネットワークを介して古典コンピュータ110又は古典コンピュータ110がアクセス可能な記憶媒体又は記憶装置に計算対象情報を送信してもよいが、記憶媒体又は記憶装置に記憶して古典コンピュータ110の運営者に渡し、当該運営者が古典コンピュータ110に当該記憶媒体又は記憶装置を用いて計算対象情報を入力するようにしてもよい。 Further, in the above-described embodiment, an example is described in which calculation target information is transmitted from the user terminal 130 to the classical computer 110, and the classical computer 110 executes calculation according to the calculation target information. isn't it. The user terminal 130 may transmit the calculation target information to the classical computer 110 or a storage medium or storage device accessible by the classical computer 110 via a computer network such as an IP network, but the information may not be stored in the storage medium or storage device. may be passed to the operator of the classical computer 110, and the operator may input the calculation target information to the classical computer 110 using the storage medium or storage device.
 また、上記実施形態では、電磁波の照射によって量子回路が実行される場合を例に説明したが、これに限定されるものではなく、異なる方式によって量子回路が実行されてもよい。 Also, in the above embodiment, the case where the quantum circuit is executed by irradiation of electromagnetic waves has been described as an example, but the invention is not limited to this, and the quantum circuit may be executed by a different method.
 また、上記実施形態では、量子コンピュータ120が量子計算を実行する場合を例に説明したが、これに限定されるものではない。例えば、量子コンピュータの挙動を模擬する古典コンピュータによって量子計算が実行されてもよい。 Also, in the above embodiment, the case where the quantum computer 120 executes quantum computation has been described as an example, but the present invention is not limited to this. For example, quantum computation may be performed by a classical computer that mimics the behavior of a quantum computer.
 また、上記実施形態において、量子コンピュータ120が実行する処理を古典コンピュータ110が実行するようにしてもよい。または、上記実施形態において、古典コンピュータ110が実行する処理を量子コンピュータ120が実行するようにしてもよい。例えば、上記実施形態においては、古典コンピュータ110が、計算基底|z>と計算基底|zr’>との組み合わせ毎に複数の遷移行列要素<z|O|zr’>(r=1,・・
・,R;r’=1,・・・,R)を計算する場合を例に説明したが、これに限定されるものではない。例えば、量子コンピュータ120が複数の遷移行列要素<z|O|zr’>(r=1,・・・,R;r’=1,・・・,R)を計算するようにしてもよい。
Further, in the above embodiment, the classical computer 110 may execute the processing executed by the quantum computer 120 . Alternatively, in the above embodiment, the quantum computer 120 may execute the processing that the classical computer 110 executes. For example, in the above embodiment, the classical computer 110 generates a plurality of transition matrix elements <z r | O|z r′ > (r= 1,...
·, R; r′=1, . . . , R) has been described as an example; For example, even if quantum computer 120 calculates a plurality of transition matrix elements <z r |O|z r′ > (r=1, . . . , R; r′=1, . good.
 また、上記実施形態では、異なる組織によって古典コンピュータ110及び量子コンピュータ120が管理されている場合を想定しているが、古典コンピュータ110及び量子コンピュータ120は同一の組織によって一体として管理されていてもよい。この場合には、量子計算情報の古典コンピュータ110から量子コンピュータ120への送信及び量子コンピュータ120から古典コンピュータ110への測定結果の送信は不要となる。また、この場合には、量子コンピュータ120の制御装置121において上述の説明における古典コンピュータ110の役割を担うことが考えられる。 Also, in the above embodiment, it is assumed that the classical computer 110 and the quantum computer 120 are managed by different organizations, but the classical computer 110 and the quantum computer 120 may be managed together by the same organization. . In this case, transmission of quantum computation information from the classical computer 110 to the quantum computer 120 and transmission of measurement results from the quantum computer 120 to the classical computer 110 are unnecessary. Also, in this case, it is conceivable that the controller 121 of the quantum computer 120 plays the role of the classical computer 110 in the above description.
 なお、上記実施形態においては、「××のみに基づいて」、「××のみに応じて」、「××のみの場合」というように「のみ」との記載がなければ、本明細書においては、付加的な情報も考慮し得ることが想定されていることに留意されたい。一例として、「aの場合にbする」という記載は、明示した場合を除き、「aの場合に常にbする」ことを必ずしも意味しない。 It should be noted that, in the above embodiment, if there is no description of "only" such as "based only on XX", "only in response to XX", or "only in the case of XX", in this specification Note that it is assumed that , may also consider additional information. As an example, the statement "when a, do b" does not necessarily mean "when a, do b", unless explicitly stated.
 また、上記実施形態において、「最適化する」又は「最適化されたパラメータ」等の表現が用いられている場合には、これら「最適化」の表現は、最適な状態に近づけることを意味することに留意されたい。このため、ある関数が最小となるようなパラメータを得ようとする場合、当該関数を最適化して得られたパラメータは、当該関数が最小となるような大局解ではなく、局所解である場合も想定されることに留意されたい。 In addition, in the above embodiments, when expressions such as "optimize" or "optimized parameters" are used, these expressions of "optimization" mean approaching an optimal state. Please note that Therefore, when trying to obtain parameters that minimize a certain function, the parameters obtained by optimizing the function may not be the global solution that minimizes the function, but the local solution. Note that it is assumed
 また、何らかの方法、プログラム、端末、装置、サーバ又はシステム(以下「方法等」)において、本明細書で記述された動作と異なる動作を行う側面があるとしても、開示の技術の各態様は、本明細書で記述された動作のいずれかと同一の動作を対象とするものであり、本明細書で記述された動作と異なる動作が存在することは、当該方法等を本開示の技術の各態様の範囲外とするものではない。 In addition, even if there is an aspect in which some method, program, terminal, device, server, or system (hereinafter "method, etc.") performs operations different from those described in this specification, each aspect of the disclosed technology is The existence of operations that are the same as any of the operations described herein and that differ from the operations described herein indicate that the methods, etc. is not outside the scope of
 なお、上記実施形態でCPUがソフトウェア(プログラム)を読み込んで実行した処理を、CPU以外の各種のプロセッサが実行してもよい。この場合のプロセッサとしては、FPGA(Field-Programmable Gate Array)等の製造後に回路構成を変更可能なPLD(Programmable Logic Device)、及びASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が例示される。また、各処理を、これらの各種のプロセッサのうちの1つで実行してもよいし、同種又は異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGA、及びCPUとFPGAとの組み合わせ等)で実行してもよい。また、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子等の回路素子を組み合わせた電気回路である。 It should be noted that the processing executed by the CPU reading the software (program) in the above embodiment may be executed by various processors other than the CPU. In this case, the processor is PLD (Programmable Logic Device) whose circuit configuration can be changed after manufacturing such as FPGA (Field-Programmable Gate Array), and ASIC (Application Specific Integrated Circuit) to execute specific processing. A dedicated electric circuit or the like, which is a processor having a specially designed circuit configuration, is exemplified. Also, each process may be executed by one of these various processors, or a combination of two or more processors of the same or different type (for example, a plurality of FPGAs, a combination of a CPU and an FPGA, etc.). ) can be run. More specifically, the hardware structure of these various processors is an electric circuit in which circuit elements such as semiconductor elements are combined.
 また、本願明細書中において、プログラムが予めインストールされている実施形態として説明したが、当該プログラムを、コンピュータ読み取り可能な記録媒体に格納して提供することも可能である。具体的には、上記各実施形態では、プログラムがストレージに予め記憶(インストール)されている態様を説明したが、これに限定されない。プログラムは、CD-ROM(Compact Disk Read Only Memory)、DVD-ROM(Digital Versatile Disk Read Only Memory)、及びUSB(Universal Serial Bus)メモリ等の非一時的(non-transitory)記憶媒体に記憶された形態で提供されてもよい。また、プログラムは、ネットワークを介して外部装置からダウンロードされる形態としてもよい。 Also, in the specification of the present application, an embodiment in which the program is pre-installed has been described, but it is also possible to store the program in a computer-readable recording medium and provide it. Specifically, in each of the above-described embodiments, the program has been pre-stored (installed) in the storage, but the present invention is not limited to this. Programs are stored on non-transitory storage media such as CD-ROM (Compact Disk Read Only Memory), DVD-ROM (Digital Versatile Disk Read Only Memory), and USB (Universal Serial Bus) memory. may be provided in the form Also, the program may be downloaded from an external device via a network.
 また、本実施形態のハイブリッドシステムの各構成要素は、単一のコンピュータ又はサーバによって実現しなければならないものではなく、ネットワークによって接続された複数のコンピュータに分散して実現されてもよい。 Also, each component of the hybrid system of this embodiment does not have to be implemented by a single computer or server, but may be implemented by being distributed among multiple computers connected by a network.
 例えば、上記実施形態の古典コンピュータが実行する処理は、ネットワークによって接続された複数の古典コンピュータが分散して処理するようにしてもよい。または、例えば、上記各実施形態の量子コンピュータが実行する処理は、ネットワークによって接続された複数の量子コンピュータが分散して処理するようにしてもよい。この場合には、少なくとも1以上の古典コンピュータと少なくとも1以上の量子コンピュータとによってハイブリッドシステムが構成される。 For example, the processing executed by the classical computers of the above embodiments may be distributed and processed by a plurality of classical computers connected by a network. Alternatively, for example, the processing executed by the quantum computers of the above embodiments may be distributed and processed by a plurality of quantum computers connected by a network. In this case, at least one or more classical computers and at least one or more quantum computers constitute a hybrid system.
 例えば、複数の古典コンピュータと複数の量子コンピュータとによってハイブリッドシステムが構成され、複数の計算基底の線形結合によってN量子ビットの状態|ψ>が表現される場合には、複数の量子コンピュータのうちの1以上の量子コンピュータが、複数の計算基底の各々を測定することにより、複数の計算基底の測定値を取得する。そして、複数の古典コンピュータのうちの1以上の古典コンピュータが、量子コンピュータによって
測定された複数の計算基底の測定値を取得する。次に、複数の古典コンピュータのうちの1以上の古典コンピュータが、複数の計算基底の各々の測定値に基づいて、複数の測定値から出現回数が多いR個の測定値又は出現回数が所定値以上であるR個の測定値を選択し、選択されたR個の測定値の出現回数に基づいて、出現回数に応じたR個の計算基底|z>(r=1,・・・,R)に対する重み係数fを計算する。次に、複数の古典コンピュータのうちの1以上の古典コンピュータ又は複数の量子コンピュータのうちの1以上の量子コンピュータが、計算基底|z>と計算基底|zr’>との組み合わせ毎に複数の遷移行列要素<z|O|zr’>を計算する。そして、複数の古典コンピュータのうちの1以上の古典コンピュータが、重み係数fと重み係数fr’との組み合わせを重みとする、複数の遷移行列要素<z|O|zr’>の重み付け和によって、オブザーバブルOの期待値<ψ|O|ψ>を近似計算する。
For example, when a hybrid system is configured by a plurality of classical computers and a plurality of quantum computers, and the state |ψ> of N qubits is represented by a linear combination of a plurality of calculation bases, one of the plurality of quantum computers One or more quantum computers obtain measurements of a plurality of computational bases by measuring each of the plurality of computational bases. Then, one or more classical computers among the plurality of classical computers acquire the measurement values of the plurality of calculation bases measured by the quantum computer. Next, one or more classical computers out of the plurality of classical computers, based on the measured values of each of the plurality of calculation bases, R measured values having a large number of occurrences from the plurality of measured values or the number of occurrences is a predetermined value R number of measured values are selected, and based on the number of occurrences of the selected R number of measured values, R number of calculation bases |z r >(r=1, . . . R) to calculate the weighting factor f r . Next, one or more classical computers among the plurality of classical computers or one or more quantum computers among the plurality of quantum computers are provided for each combination of the calculation basis |z r > and the calculation basis |z r′ > Compute the transition matrix elements <z r |O|z r′ > of . Then, one or more classical computers among the plurality of classical computers have a plurality of transition matrix elements <z r |O|z r′ > weighted by a combination of the weighting factor f r and the weighting factor f r′. The expected value <ψ|O|ψ> of the observable O is approximated by the weighted sum.
 2021年8月18日に出願された日本国特許出願2021-133701号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The disclosure of Japanese Patent Application No. 2021-133701 filed on August 18, 2021 is incorporated herein by reference in its entirety. All publications, patent applications and technical standards mentioned herein are to the same extent as if each individual publication, patent application and technical standard were specifically and individually noted to be incorporated by reference. incorporated herein by reference.

Claims (8)

  1.  古典コンピュータと量子コンピュータとを含むハイブリッドシステムのうちの古典コンピュータが実行する量子情報処理方法であって、
     複数の計算基底の線形結合によってN量子ビットの状態|ψ>が表現される場合に、
     量子コンピュータによって測定された複数の計算基底の各々の測定値を取得し、
     複数の計算基底の各々の測定値に基づいて、複数の測定値から出現回数が多いR個の測定値又は出現回数が所定値以上であるR個の測定値を選択し、選択されたR個の測定値の出現回数に基づいて、出現回数に応じたR個の計算基底|z>(r=1,・・・,R)に対する重み係数fを計算し、
     重み係数fと重み係数fr’との組み合わせを重みとする、複数の遷移行列要素<z|O|zr’>の重み付け和によって、オブザーバブルOの期待値<ψ|O|ψ>を近似計算する、
     処理を古典コンピュータが実行する量子情報処理方法。
    A quantum information processing method executed by a classical computer in a hybrid system including a classical computer and a quantum computer,
    When the state |ψ> of N qubits is represented by a linear combination of multiple computational bases,
    Acquiring a measurement value of each of a plurality of calculation bases measured by a quantum computer,
    Based on the measured values of each of the plurality of calculation bases, R measured values with a large number of appearances or R measured values with a number of appearances greater than or equal to a predetermined value are selected from the plurality of measured values, and R selected based on the number of occurrences of the measured values of, calculate a weighting factor f r for R calculation bases |z r >(r=1, . . . , R) according to the number of occurrences;
    The expected value of observable O <ψ|O | ψ approximating >,
    A quantum information processing method in which processing is performed by a classical computer.
  2.  前記N量子ビットの状態|ψ>は、複数の計算基底と複数の計算基底の各々に対する展開係数α(n=0,1,・・・,2-1)とに基づき、複数の展開係数αを重みとする計算基底の線形結合によって表現され、
     前記期待値<ψ|O|ψ>を近似計算する際に、R個の計算基底|z>(r=1,・・・,R)に対する重み係数fと、計算基底|z>に対する展開係数αzr及び計算基底|zr’>に対する展開係数αzr’に基づき計算されるαzrα zr’と、複数の遷移行列要素<z|O|zr’>とに基づいて、以下の式(A1)に従って、オブザーバブルOの期待値<ψ|O|ψ>を近似計算する、
     請求項1に記載の量子情報処理方法。
    Figure JPOXMLDOC01-appb-M000001

     
                              (A1)
    The state |ψ> of the N qubits has a plurality of expansions based on a plurality of calculation bases and expansion coefficients α n (n=0, 1, . . . , 2 N −1) for each of the plurality of calculation bases. is represented by a linear combination of calculation bases weighted by the coefficients α n ,
    When approximating the expected value <ψ|O|ψ>, a weighting factor f r for R calculation bases |z r > (r=1, . . . , R) and a calculation base |z r > α zr α * zr′ calculated based on the expansion coefficient α zr for and the expansion coefficient α zr′ for the calculation basis |z r′ > and the plurality of transition matrix elements <z r |O|z r′ > based on and approximately calculate the expected value <ψ|O|ψ> of the observable O according to the following formula (A1),
    The quantum information processing method according to claim 1.
    Figure JPOXMLDOC01-appb-M000001


    (A1)
  3.  古典コンピュータと量子コンピュータとを含むハイブリッドシステムが実行する量子情報処理方法であって、
     複数の計算基底の線形結合によってN量子ビットの状態|ψ>が表現される場合に、
     量子コンピュータが、複数の計算基底の各々を測定することにより、複数の計算基底の測定値を取得し、
     古典コンピュータが、量子コンピュータによって測定された複数の計算基底の測定値を取得し、
     古典コンピュータが、複数の計算基底の各々の測定値に基づいて、複数の測定値から出現回数が多いR個の測定値又は出現回数が所定値以上であるR個の測定値を選択し、選択されたR個の測定値の出現回数に基づいて、出現回数に応じたR個の計算基底|z>(r=1,・・・,R)に対する重み係数fを計算し、
     古典コンピュータ又は量子コンピュータが、計算基底|z>と計算基底|zr’>との組み合わせ毎に複数の遷移行列要素<z|O|zr’>を計算し、
     古典コンピュータが、重み係数fと重み係数fr’との組み合わせを重みとする、複数の遷移行列要素<z|O|zr’>の重み付け和によって、オブザーバブルOの期待値<ψ|O|ψ>を近似計算する、
     量子情報処理方法。
    A quantum information processing method executed by a hybrid system including a classical computer and a quantum computer,
    When the state |ψ> of N qubits is represented by a linear combination of multiple computational bases,
    A quantum computer obtains measurements of a plurality of calculation bases by measuring each of the plurality of calculation bases,
    A classical computer obtains measurements of multiple computational bases measured by a quantum computer,
    A classical computer, based on the measured values of each of the plurality of calculation bases, selects R measured values having a large number of occurrences or R measured values having a number of occurrences equal to or greater than a predetermined value from the plurality of measured values, and selects Based on the number of occurrences of the R measured values obtained, calculate a weighting factor f r for the R calculation bases |z r >(r=1, . . . , R) according to the number of occurrences;
    A classical computer or a quantum computer calculates a plurality of transition matrix elements <z r |O|z r' > for each combination of computation basis |z r > and computation basis |z r' >;
    A classical computer computes the expected value of observable O < ψ approximating |O|ψ>,
    Quantum information processing method.
  4.  以下の式(A2)によって表されるオブザーバブルOの期待値<ψ|O|ψ>を、以下の式(A1)を用いて近似計算する際に、
     量子コンピュータが、N量子ビットの状態|ψ>を、以下の式(A3)に従って複数の展開係数αと複数の計算基底|n>(n=0,1,・・・,2-1)とによって表現する際の前記計算基底|n>の測定をL回繰り返すことにより、前記計算基底|n>の測定値の系列{x}=x(1),x(2),・・・,x(L)を取得し、
     古典コンピュータが、前記測定値の系列{x}に基づいて、前記測定値の系列{x}のうちの、出現回数が多いR個の前記測定値又は出現回数が所定値以上であるR個の前記測定値を選択し、R個の前記測定値の各々を高い順に並べた値{z}=z(1),z(2),・・・,z(R)を設定し、{z}に含まれる前記R個の測定値の出現回数T(r=1,・・・,R)を計算し、以下の式(A4)に従って、|αzrの近似値である重み係数fを計算し、
     古典コンピュータ又は量子コンピュータが、前記{z}に基づいて、以下の式(A1)の遷移行列要素<z|O|zr’>(r=1,・・・,R;r’=1,・・・,R)を計算し、
     量子コンピュータが、N量子ビットの状態|φA,r>に対する射影演算子|φA,r><φA,r|を測定することにより、前記射影演算子|φA,r><φA,r|の測定結果を取得し、N量子ビットの状態|φB,r>に対する射影演算子|φB,r><φB,r|を測定することにより、前記射影演算子|φB,r><φB,r|の測定結果を取得し、
     古典コンピュータが、前記射影演算子|φA,r><φA,r|の測定結果に基づいて、前記射影演算子|φA,r><φA,r|の期待値Aを計算し、前記射影演算子|φB,r><φB,r|の測定結果に基づいて、前記射影演算子|φB,r><φB,r|の期待値Bを計算し、
     古典コンピュータが、前記重み係数fと、前記期待値Aと、前記期待値Bとに基づいて、以下の式(A5)に従って、αz1αzr に相当する干渉重みgを近似計算し、前記重み係数fと、前記干渉重みgとに基づいて、以下の式(A6)に従って、αzrαzr’ を近似計算し、前記干渉重みgに相当する前記αz1αzr と、前記αzrαzr’ と、前記遷移行列要素<z|O|zr’>とに基づいて、以下の式(A1)に従って、前記期待値<ψ|O|ψ>を近似計算する、
     請求項3に記載の量子情報処理方法。
    Figure JPOXMLDOC01-appb-M000002

     
                              (A1)
    Figure JPOXMLDOC01-appb-I000003

     
                              (A2)
    Figure JPOXMLDOC01-appb-I000004

     
                              (A3)
    Figure JPOXMLDOC01-appb-I000005

     
                              (A4)
    Figure JPOXMLDOC01-appb-I000006

     
                              (A5)
    Figure JPOXMLDOC01-appb-I000007

     
    Figure JPOXMLDOC01-appb-I000008

     
                              (A6)
    When the expected value <ψ|O|ψ> of the observable O represented by the following equation (A2) is approximated using the following equation (A1),
    A quantum computer converts the state |ψ> of N qubits into a plurality of expansion coefficients α n and a plurality of calculation bases |n> (n=0, 1, . . . , 2 N −1 according to the following equation (A3) ) and by repeating the measurement of the calculation basis |n> L times, the series {x}=x (1) , x (2) , . , x (L) , and
    A classical computer, based on the series {x} of the measured values, selects the R measured values having a large number of occurrences or the R measured values having a number of occurrences equal to or greater than a predetermined value in the series {x} of the measured values. select the measured value, set {z}=z (1) , z ( 2 ) , . , and calculate the number of occurrences T r (r=1, . calculate r ,
    A classical computer or a quantum computer performs transition matrix element <z r |O|z r′ > (r=1, . . . , R; r′=1 , ..., R),
    A quantum computer measures the projection operator |φ A , r ><φ A,r | , r | and measuring the projection operator | φ B, r ><φ B,r | ,r ><φ B,r |
    A classical computer calculates the expected value A r of the projection operator |φ A,r ><φ A,r | based on the measurement result of the projection operator |φ A,r ><φ A,r | and calculating the expected value B r of the projection operator |φ B,r ><φ B,r | based on the measurement result of the projection operator |φ B,r ><φ B,r |
    A classical computer approximates an interference weight g r corresponding to α z1 α zr * according to the following equation (A5) based on the weighting factor f r , the expected value Ar , and the expected value B r Based on the weighting factor f r and the interference weight g r , α zr α zr′ * is approximated according to the following equation (A6), and the α z1 corresponding to the interference weight gr The expected value < ψ | O | ψ approximating >,
    The quantum information processing method according to claim 3.
    Figure JPOXMLDOC01-appb-M000002


    (A1)
    Figure JPOXMLDOC01-appb-I000003


    (A2)
    Figure JPOXMLDOC01-appb-I000004


    (A3)
    Figure JPOXMLDOC01-appb-I000005


    (A4)
    Figure JPOXMLDOC01-appb-I000006


    (A5)
    Figure JPOXMLDOC01-appb-I000007


    Figure JPOXMLDOC01-appb-I000008


    (A6)
  5.  古典コンピュータと量子コンピュータとを含むハイブリッドシステムのうちの古典コンピュータに実行させるための量子情報処理プログラムであって、
     複数の計算基底の線形結合によってN量子ビットの状態|ψ>が表現される場合に、
     量子コンピュータによって測定された複数の計算基底の各々の測定値を取得し、
     複数の計算基底の各々の測定値に基づいて、複数の測定値から出現回数が多いR個の測定値又は出現回数が所定値以上であるR個の測定値を選択し、選択されたR個の測定値の出現回数に基づいて、出現回数に応じたR個の計算基底|z>(r=1,・・・,R)に対する重み係数fを計算し、
     重み係数fと重み係数fr’との組み合わせを重みとする、複数の遷移行列要素<z|O|zr’>の重み付け和によって、オブザーバブルOの期待値<ψ|O|ψ>を近似計算する、
     処理を古典コンピュータに実行させるための量子情報処理プログラム。
    A quantum information processing program to be executed by a classical computer of a hybrid system including a classical computer and a quantum computer,
    When the state |ψ> of N qubits is represented by a linear combination of multiple computational bases,
    Acquiring a measurement value of each of a plurality of calculation bases measured by a quantum computer,
    Based on the measured values of each of the plurality of calculation bases, R measured values with a large number of appearances or R measured values with a number of appearances greater than or equal to a predetermined value are selected from the plurality of measured values, and R selected based on the number of occurrences of the measured values of, calculate a weighting factor f r for R calculation bases |z r >(r=1, . . . , R) according to the number of occurrences;
    The expected value of observable O <ψ|O | ψ approximating >,
    A quantum information processing program for making a classical computer perform processing.
  6.  古典コンピュータと量子コンピュータとを含むハイブリッドシステムのうちの古典コンピュータであって、
     複数の計算基底の線形結合によってN量子ビットの状態|ψ>が表現される場合に、
     量子コンピュータによって測定された複数の計算基底の各々の測定値を取得し、
     複数の計算基底の各々の測定値に基づいて、複数の測定値から出現回数が多いR個の測定値又は出現回数が所定値以上であるR個の測定値を選択し、選択されたR個の測定値の出現回数に基づいて、出現回数に応じたR個の計算基底|z>(r=1,・・・,R)に対する重み係数fを計算し、
     重み係数fと重み係数fr’との組み合わせを重みとする、複数の遷移行列要素<z|O|zr’>の重み付け和によって、オブザーバブルOの期待値<ψ|O|ψ>を近似計算する、
     古典コンピュータ。
    A classical computer of a hybrid system comprising a classical computer and a quantum computer,
    When the state |ψ> of N qubits is represented by a linear combination of multiple computational bases,
    Acquiring a measurement value of each of a plurality of calculation bases measured by a quantum computer,
    Based on the measured values of each of the plurality of calculation bases, R measured values with a large number of appearances or R measured values with a number of appearances greater than or equal to a predetermined value are selected from the plurality of measured values, and R selected based on the number of occurrences of the measured values of, calculate a weighting factor f r for R calculation bases |z r >(r=1, . . . , R) according to the number of occurrences;
    The expected value of observable O <ψ| O | ψ approximating >,
    classical computer.
  7.  古典コンピュータと量子コンピュータとを含むハイブリッドシステムであって、
     複数の計算基底の線形結合によってN量子ビットの状態|ψ>が表現される場合に、
     量子コンピュータが、複数の計算基底の各々を測定することにより、複数の計算基底の測定値を取得し、
     古典コンピュータが、量子コンピュータによって測定された複数の計算基底の測定値を取得し、
     古典コンピュータが、複数の計算基底の各々の測定値に基づいて、複数の測定値から出現回数が多いR個の測定値又は出現回数が所定値以上であるR個の測定値を選択し、選択されたR個の測定値の出現回数に基づいて、出現回数に応じたR個の計算基底|z>(r=1,・・・,R)に対する重み係数fを計算し、
     古典コンピュータ又は量子コンピュータが、計算基底|z>と計算基底|zr’>との組み合わせ毎に複数の遷移行列要素<z|O|zr’>を計算し、
     古典コンピュータが、重み係数fと重み係数fr’との組み合わせを重みとする、複数の遷移行列要素<z|O|zr’>の重み付け和によって、オブザーバブルOの期待値<ψ|O|ψ>を近似計算する、
     ハイブリッドシステム。
    A hybrid system comprising a classical computer and a quantum computer,
    When the state |ψ> of N qubits is represented by a linear combination of multiple computational bases,
    A quantum computer obtains measurements of a plurality of calculation bases by measuring each of the plurality of calculation bases,
    A classical computer obtains measurements of multiple computational bases measured by a quantum computer,
    A classical computer, based on the measured values of each of the plurality of calculation bases, selects R measured values having a large number of occurrences or R measured values having a number of occurrences equal to or greater than a predetermined value from the plurality of measured values, and selects Based on the number of occurrences of the R measured values obtained, calculate a weighting factor f r for the R calculation bases |z r >(r=1, . . . , R) according to the number of occurrences;
    A classical computer or a quantum computer calculates a plurality of transition matrix elements <z r |O|z r' > for each combination of computation basis |z r > and computation basis |z r' >;
    A classical computer computes the expected value of observable O < ψ approximating |O|ψ>,
    hybrid system.
  8.  複数の古典コンピュータと複数の量子コンピュータとを含むハイブリッドシステムであって、
     複数の計算基底の線形結合によってN量子ビットの状態|ψ>が表現される場合に、
     複数の量子コンピュータのうちの1以上の量子コンピュータが、複数の計算基底の各々を測定することにより、複数の計算基底の測定値を取得し、
     複数の古典コンピュータのうちの1以上の古典コンピュータが、量子コンピュータによって測定された複数の計算基底の測定値を取得し、
     複数の古典コンピュータのうちの1以上の古典コンピュータが、複数の計算基底の各々の測定値に基づいて、複数の測定値から出現回数が多いR個の測定値又は出現回数が所定値以上であるR個の測定値を選択し、選択されたR個の測定値の出現回数に基づいて、出現回数に応じたR個の計算基底|z>(r=1,・・・,R)に対する重み係数fを計算し、
     複数の古典コンピュータのうちの1以上の古典コンピュータ又は複数の量子コンピュータのうちの1以上の量子コンピュータが、計算基底|z>と計算基底|zr’>との組み合わせ毎に複数の遷移行列要素<z|O|zr’>を計算し、
     数の古典コンピュータのうちの1以上の古典コンピュータが、重み係数fと重み係数fr’との組み合わせを重みとする、複数の遷移行列要素<z|O|zr’>の重み付け和によって、オブザーバブルOの期待値<ψ|O|ψ>を近似計算する、
     ハイブリッドシステム。
    A hybrid system comprising a plurality of classical computers and a plurality of quantum computers,
    When the state |ψ> of N qubits is represented by a linear combination of multiple computational bases,
    One or more quantum computers of the plurality of quantum computers obtain measurements of the plurality of calculation bases by measuring each of the plurality of calculation bases,
    One or more classical computers of the plurality of classical computers obtain measurements of a plurality of computational bases measured by a quantum computer;
    One or more classical computers out of the plurality of classical computers, based on the measured values of each of the plurality of calculation bases, R measured values having a large number of occurrences from the plurality of measured values, or the number of occurrences is a predetermined value or more Select R measurements, and based on the number of occurrences of the R selected measurements, for R computational bases |z r >(r=1, . Calculate the weighting factor f r ,
    One or more classical computers among the plurality of classical computers or one or more quantum computers among the plurality of quantum computers have a plurality of transition matrices for each combination of the calculation basis |z r > and the calculation basis |z r′ > Compute the element <z r |O|z r' >,
    weighted sum of a plurality of transition matrix elements <z r |O|z r' > where one or more classical computers among the number of classical computers weight a combination of weighting factor f r and weighting factor f r' Approximate the expected value <ψ|O|ψ> of the observable O by
    hybrid system.
PCT/JP2022/030012 2021-08-18 2022-08-04 Quantum information processing method, classical computer, hybrid system, and quantum information processing program WO2023022014A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-133701 2021-08-18
JP2021133701A JP2023028166A (en) 2021-08-18 2021-08-18 Quantum information processing method, classic computer, hybrid system, and quantum information processing program

Publications (1)

Publication Number Publication Date
WO2023022014A1 true WO2023022014A1 (en) 2023-02-23

Family

ID=85239539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030012 WO2023022014A1 (en) 2021-08-18 2022-08-04 Quantum information processing method, classical computer, hybrid system, and quantum information processing program

Country Status (2)

Country Link
JP (1) JP2023028166A (en)
WO (1) WO2023022014A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020520026A (en) * 2017-05-15 2020-07-02 グーグル エルエルシー Operator averaging in quantum computing systems
JP2020144400A (en) * 2019-01-24 2020-09-10 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Grouping of pauli strings using entangled measurements

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020520026A (en) * 2017-05-15 2020-07-02 グーグル エルエルシー Operator averaging in quantum computing systems
JP2020144400A (en) * 2019-01-24 2020-09-10 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Grouping of pauli strings using entangled measurements

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASAYA KOHDA; RYOSUKE IMAI; KEITA KANNO; KOSUKE MITARAI; WATARU MIZUKAMI; YUYA O. NAKAGAWA: "Quantum expectation value estimation by computational basis sampling", ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 201 OLIN LIBRARY CORNELL UNIVERSITY ITHACA, NY 14853, 14 December 2021 (2021-12-14), 201 Olin Library Cornell University Ithaca, NY 14853, XP091120741 *

Also Published As

Publication number Publication date
JP2023028166A (en) 2023-03-03

Similar Documents

Publication Publication Date Title
JP7301156B2 (en) Quantum variational method, apparatus and storage medium for simulating quantum systems
Van Den Berg et al. Model-free readout-error mitigation for quantum expectation values
JP7149504B2 (en) Systems, methods, quantum computing devices and computer programs for implementing high hardware efficiency variational quantum eigenvalue solvers for quantum computing machines
Soares et al. Simple and fast convex relaxation method for cooperative localization in sensor networks using range measurements
WO2020230794A1 (en) Quantum information processing method, classical computer, quantum computer, hybrid system, quantum information processing program, and data structure for calculation of energy differential
Sergeevich et al. Characterization of a qubit Hamiltonian using adaptive measurements in a fixed basis
Anderson et al. Efficient and stochastic multireference perturbation theory for large active spaces within a full configuration interaction quantum Monte Carlo framework
JP2022126618A (en) Method and unit for removing noise of quantum device, electronic apparatus, computer readable storage medium, and computer program
Babbush et al. Exponential quantum speedup in simulating coupled classical oscillators
Coopmans et al. Predicting gibbs-state expectation values with pure thermal shadows
JP7499540B2 (en) Quantum information processing method for open quantum systems, classical computer, quantum computer, quantum information processing program, and data structure
Friedman et al. Locality and error correction in quantum dynamics with measurement
Tan et al. Variational quantum algorithms to estimate rank, quantum entropies, fidelity, and Fisher information via purity minimization
Hou et al. Determining system hamiltonian from eigenstate measurements without correlation functions
Zhu et al. Cross-platform comparison of arbitrary quantum computations
Shao et al. Simulating quantum mean values in noisy variational quantum algorithms: A polynomial-scale approach
WO2023022014A1 (en) Quantum information processing method, classical computer, hybrid system, and quantum information processing program
US11010450B2 (en) Using random walks for iterative phase estimation
WO2021195783A1 (en) Method of simulating a quantum computation, system for simulating a quantum computation, method for issuing a computational key, system for issuing a computational key
Cruz et al. Superresolution of Green's functions on noisy quantum computers
US11188842B2 (en) Methods for obtaining solutions to multiproduct formulas
JP2019121256A (en) Learning system and learning method
Ali et al. Properties of quantum coherence and correlations in quasi-entangled coherent states
Corte et al. Parameterizing density operators with arbitrary symmetries to gain advantage in quantum state estimation
JP6286182B2 (en) Estimation method and estimation apparatus using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE