WO2023021794A1 - 音信号処理方法、プログラム、及び、音信号処理装置 - Google Patents

音信号処理方法、プログラム、及び、音信号処理装置 Download PDF

Info

Publication number
WO2023021794A1
WO2023021794A1 PCT/JP2022/019710 JP2022019710W WO2023021794A1 WO 2023021794 A1 WO2023021794 A1 WO 2023021794A1 JP 2022019710 W JP2022019710 W JP 2022019710W WO 2023021794 A1 WO2023021794 A1 WO 2023021794A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
signal
sound signal
frequency band
specific frequency
Prior art date
Application number
PCT/JP2022/019710
Other languages
English (en)
French (fr)
Inventor
敦 坂口
忠義 奥田
愛 雨宮
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202280053702.9A priority Critical patent/CN118251252A/zh
Priority to JP2023542223A priority patent/JPWO2023021794A1/ja
Publication of WO2023021794A1 publication Critical patent/WO2023021794A1/ja
Priority to US18/437,540 priority patent/US20240187788A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M21/00Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H23/00Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms
    • A61H23/02Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms with electric or magnetic drive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M21/00Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
    • A61M21/02Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis for inducing sleep or relaxation, e.g. by direct nerve stimulation, hypnosis, analgesia
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K15/00Acoustics not otherwise provided for
    • G10K15/04Sound-producing devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response

Definitions

  • the present disclosure relates to a sound signal processing method, a program, and a sound signal processing device.
  • Patent Document 1 discloses a device for treating dementia or Alzheimer's disease by combining auditory stimulation and visual stimulation.
  • the present disclosure provides a sound signal processing method and the like that can suitably output sound in a specific frequency band to a target.
  • a sound signal processing method is a second sound signal corresponding to a second content according to a signal level of a specific frequency band in a first sound signal corresponding to the first content, A signal level of a second sound signal containing frequency band components is adjusted, and the first sound signal and the adjusted second sound signal are superimposed and output.
  • a sound signal processing method is a first content that includes a plurality of sound contents that are different from each other. Adjusting to raise the signal level, and for each of the plurality of adjusted first sound signals corresponding to the plurality of sound contents, the position of the specific frequency band in each of the plurality of adjusted first sound signals. Correction is performed so as to reduce the phase difference, and the corrected plurality of first sound signals are output.
  • a program according to one aspect of the present disclosure is a program that causes a computer to execute the sound signal processing method.
  • a sound signal processing device includes a processor and a memory, and the processor uses the memory to adjust the signal level of a specific frequency band in a first sound signal corresponding to first content. Accordingly, the signal level of the second sound signal corresponding to the second content and containing the component of the specific frequency band is adjusted, and the first sound signal and the adjusted second sound signal are adjusted. A sound signal and , are superimposed and output.
  • a sound signal processing device includes a processor and a memory, and the processor uses the memory to process a plurality of for each of the adjusted plurality of first sound signals corresponding to the plurality of sound contents, adjusting the signal level of each of the plurality of first sound signals corresponding to the plurality of sound contents to increase in a specific frequency band, and and performing correction so as to reduce the phase difference of the specific frequency band in each of the adjusted plurality of first sound signals, and outputting the plurality of corrected first sound signals.
  • sound in a specific frequency band can be preferably output to a target.
  • FIG. 1 is a block diagram showing the configuration of a sound signal processing device according to Embodiment 1.
  • FIG. 2 is a diagram showing a first sound signal and a sound signal obtained by superimposing a second sound signal on the first sound signal.
  • FIG. 3 is a flow chart showing the processing procedure of the sound signal processing device according to the first embodiment.
  • FIG. 4 is a diagram for explaining the calculation result of the envelope calculated from the first sound signal.
  • 5 is a flowchart showing a processing procedure of the sound signal processing device according to Modification 1 of Embodiment 1.
  • FIG. FIG. 6 is a flowchart showing a processing procedure of the sound signal processing device according to Modification 2 of Embodiment 1;
  • FIG. 7 is a diagram for explaining a signal obtained from a calculation result of FFT of the first sound signal.
  • FIG. 10 is a flowchart illustrating a processing procedure of the sound signal processing device according to Modification 4 of Embodiment 1.
  • FIG. 11 is a block diagram showing a configuration of a sound signal processing device according to Modification 5 of Embodiment 1.
  • FIG. 12 is a flowchart illustrating a processing procedure of the sound signal processing device according to Modification 5 of Embodiment 1.
  • FIG. 13 is a block diagram showing a configuration of a sound signal processing device according to Modification 6 of Embodiment 1.
  • FIG. 14 is a flowchart illustrating a processing procedure of the sound signal processing device according to Modification 6 of Embodiment 1.
  • FIG. 15 is a block diagram showing a configuration of a sound signal processing device according to Modification 7 of Embodiment 1.
  • FIG. 16 is a flowchart showing a processing procedure of the sound signal processing device according to Modification 7 of Embodiment 1.
  • FIG. 17 is a block diagram showing a configuration of a sound signal processing device according to Embodiment 2.
  • FIG. FIG. 18 is a flow chart showing a processing procedure of the sound signal processing device according to the second embodiment.
  • Alzheimer's disease dementia accumulate a protein called amyloid ⁇ generated in the brain without being excreted. Accumulated amyloid ⁇ destroys the brain cells responsible for memory. As a result, dementia patients tend to forget things.
  • Gamma waves are about 30Hz to 90Hz. Assuming that sound excites gamma waves in the brain, it is conceivable that the subject hears sound with a frequency of about 30 Hz to 90 Hz, for example. However, there is a problem that many people tend to feel uncomfortable with sounds having a frequency of about 30 Hz to 90 Hz.
  • the present inventors provide a sound signal processing method and the like that can suitably output sound in a specific frequency band to a target.
  • each figure is a schematic diagram and is not necessarily strictly illustrated. Moreover, in each figure, the same code
  • FIG. 1 is a block diagram showing the configuration of a sound signal processing device 100 according to Embodiment 1.
  • FIG. 1 is a block diagram showing the configuration of a sound signal processing device 100 according to Embodiment 1.
  • the sound signal processing device 100 is a device (reproduction system) that outputs (reproduces) sound signals based on sound content (sound information) such as music stored in the storage device 110 .
  • the sound signal processing device 100 is, for example, a portable type having an earphone type device, a stationary type audio device, or the like. Note that the sound signal processing device 100 may process a sound signal as described later and then output the processed sound signal.
  • the sound signal processing device 100 may have a configuration in which a speaker is externally attached without being provided with a speaker.
  • the sound signal processing device 100 may be configured to output the analog sound signal output from the amplifier 160 to the outside such as a speaker or an earphone.
  • the sound signal processing device 100 specifically includes a storage device 110, a DSP 120, a CPU 130, a memory 140, a DAC 150, an amplifier 160, and a speaker 170.
  • the storage device 110 is a storage that stores sound content such as music content.
  • the sound content stored in the storage device 110 is an example of the first content
  • the signal based on the sound content (sound source signal described later) is an example of the first sound signal.
  • the storage device 110 is implemented by, for example, an HDD (Hard Disk Drive), flash memory, or the like.
  • the DSP 120 is a processor (Digital Signal Processor) that executes various processes by executing the control program stored in the memory 140 . Specifically, the DSP 120 reads a sound signal (first sound signal) from the storage device 110 and performs signal processing on the read sound signal. More specifically, the DSP 120 performs processing to increase the level (signal level) of a component in a specific frequency band (hereinafter referred to as a specific frequency band) of the sound signal in order to increase the sound pressure of the component.
  • the specific frequency band is, for example, 10 Hz or more and 100 kHz or less.
  • the specific frequency band may be 40 Hz or more and 100 Hz or less. Alternatively, the specific frequency band may be 60 Hz or more and 100 Hz or less. Alternatively, the specific frequency band may be 40 Hz ⁇ 10 Hz (that is, 30 Hz to 50 Hz). Also, the specific frequency band may be a range such as 30 Hz to 50 Hz, or may be a specific frequency such as 40 Hz.
  • the CPU 130 is a processor (Central Processing Unit) that executes various processes by executing a control program stored in the memory 140 . For example, CPU 130 acquires additional information 200 from memory 140 .
  • CPU 130 Central Processing Unit
  • the memory 140 is a memory that stores additional information 200 .
  • the memory 140 is implemented by, for example, a semiconductor memory or the like.
  • the memory 140 may store control programs executed by the DSP 120 and the CPU 130 .
  • the memory 140 may store information (threshold information) indicating a threshold required for processing executed by the DSP 120 and the CPU 130 .
  • the additional information 200 is sound content including a specific frequency band.
  • the additional information 200 is sound content that includes only a specific frequency band.
  • the specific frequency band is a single-frequency signal such as 40 Hz
  • the sound signal based on the additional information 200 is a signal containing a sine wave of the single frequency.
  • the sound signal based on the additional information 200 is a signal with a specific frequency band such as 40 Hz ⁇ 10 Hz
  • a signal containing sine waves of a plurality of frequencies included in the range of the band is.
  • the additional information 200 is an example of the second content
  • the additional signal based on the additional information 200 is an example of the second sound signal.
  • the CPU 130 outputs a sound signal (second sound signal) based on the acquired additional information 200 to the DSP 120 .
  • the DSP 120 outputs to the DAC 150 a signal (superimposed signal) obtained by superimposing the first sound signal and the second sound signal.
  • FIG. 2 is a diagram showing a first sound signal and a sound signal obtained by superimposing a second sound signal on the first sound signal.
  • FIG. 2 shows a graph obtained by Fourier transforming the first sound signal (first power spectrum) and a graph obtained by Fourier transforming the sound signal obtained by superimposing the second sound signal on the first sound signal (second power spectrum). power spectrum).
  • the horizontal axis of the graph shown in FIG. 2 is frequency (unit: Hz), and the vertical axis is sound pressure (unit: dB).
  • the first power spectrum is indicated by a solid line
  • the second power spectrum is indicated by a broken line.
  • the DSP 120 superimposes the first sound signal and the second sound signal to generate a signal in which the signal in the specific frequency band is enhanced. Specifically, the DSP 120 generates a second sound signal corresponding to the second content, which includes a component of a specific frequency band, according to the signal level of the specific frequency band in the first sound signal corresponding to the first content. The signal level of the second sound signal is adjusted, and the first sound signal and the adjusted second sound signal are superimposed and output.
  • the second sound signal may be a signal containing components other than the components in the specific frequency band, or may be a signal containing only the components in the specific frequency band.
  • the second sound signal may be a signal that includes only components of a specific frequency band and harmonic overtone components of the specific frequency band, which will be described later.
  • the method by which the DSP 120 adjusts the signal level of the second sound signal is not particularly limited.
  • a method of calculating the envelope (envelope value) of the first sound signal and adjusting the signal of the second sound signal based on the calculated envelope is exemplified.
  • the first sound signal is Fourier transformed in a short predetermined time (that is, a short-time Fourier transform) to calculate the signal level in a specific frequency band in the first sound signal, and the calculated signal level
  • Examples include a method of adjusting the signal level of the second sound signal. A specific adjustment method will be described later.
  • the DAC 150 is a converter (Digital Analog Converter) that converts the signal obtained from the DSP 120 from a digital signal to an analog signal. DAC 150 outputs an analog signal to amplifier 160 .
  • Digital Analog Converter Digital Analog Converter
  • the amplifier 160 is an amplifier that amplifies analog signals. Amplifier 160 outputs the amplified analog signal to speaker 170 .
  • the speaker 170 outputs sound based on the analog signal acquired from the amplifier 160.
  • the speaker 170 may be a speaker that is worn in the ear canal, or may be a stationary speaker. Also, the speaker 170 may be a speaker that emits sound waves toward the eardrum, or may be a bone conduction speaker.
  • the processing of the DSP 120 and the processing of the CPU 130 may be executed by either the processing of the DSP 120 or the CPU 130.
  • DSP 120 and CPU 130 may be implemented by a single processor.
  • the DSP 120 and the CPU 130 may be realized by one microcontroller (microcomputer) or may be realized by a plurality of microcomputers.
  • the DSP 120, CPU 130, memory 140, and DAC 150 may be realized by one SoC (System-on-a-Chip), or may be realized by a plurality of SoCs.
  • DSP 120, CPU 130, memory 140, and DAC 150 may be realized by any combination of the configurations described above.
  • FIG. 3 is a flowchart showing the processing procedure of the sound signal processing device 100 according to Embodiment 1.
  • FIG. Specifically, FIG. 3 is a flowchart showing the processing procedure of the DSP 120. As shown in FIG.
  • the DSP 120 acquires from the CPU 130 an additional signal that is a sound signal based on the additional information 200 that the CPU 130 has acquired from the memory 140 (S101).
  • the DSP 120 acquires a sound source signal, which is a sound signal based on the sound content, by reading the sound content from the storage device 110 (S102).
  • the DSP 120 uses the Hilbert transform to calculate the envelope of the sound source signal (S103).
  • FIG. 4 is a diagram for explaining the calculation result of the envelope calculated from the first sound signal.
  • FIG. 4 is a graph showing temporal changes in the signal level of the first sound signal and an envelope calculated from the first sound signal.
  • the horizontal axis of the graph shown in FIG. 2 is time (unit: seconds), and the vertical axis is sound pressure (unit: dB).
  • the first sound signal is indicated by a solid line
  • the envelope is indicated by a one-dot chain line.
  • the envelope calculated from the first sound signal is a line (n-order function/n: natural number) provided so as to contact a plurality of maximum values of the first sound signal.
  • the envelope calculated from the first sound signal may be provided so as to contact all the local maxima of the first sound signal, or contact two or more arbitrary local maxima instead of all the local maxima. may be provided as follows.
  • the DSP 120 multiplies the calculated envelope and the additional signal (S104). Specifically, the DSP 120 generates a signal (multiplied signal) by multiplying the calculated envelope and the additional signal.
  • the additional signal is a signal whose signal level is m (m>0) in a specific frequency band and whose signal level is zero in frequency bands other than the specific frequency band.
  • the envelope in a specific frequency band (more specifically, the signal level of the envelope) is multiplied by m, and the envelope in other frequency bands becomes zero. . That is, in this case, in the multiplied signal, the signal level in the specific frequency band is m times the envelope, and the signal level in other frequency bands is zero.
  • the multiplied signal has a value corresponding to the signal level of the sound source signal because the envelope has a value corresponding to the signal level of the sound source signal.
  • the DSP 120 superimposes (adds) the generated multiplied signal and the sound source signal (S105). Specifically, the DSP 120 generates a signal (superimposed signal) by superimposing the generated multiplied signal and the excitation signal. As a result, the superimposed signal becomes a signal in which the signal level of the specific frequency band in the sound source signal is corrected according to the signal level of the sound source signal. In other words, the DSP 120 can add to the sound source signal a signal whose signal level corresponds to the signal level of the sound source signal.
  • the DSP 120 outputs (transmits) the generated signal (superimposed signal) to the DAC 150 (S106).
  • the superimposed signal is transmitted from the DAC 150 to the speaker 170 via the amplifier 160.
  • a sound based on the superimposed signal is output from the speaker 170 .
  • the sound signal processing device has the same configuration as the sound signal processing device 100 shown in FIG. 1, but the processing procedure is different. Specifically, the DSP 120 according to Modification 1 sets the signal level of the second sound signal to a predetermined level when the signal level of the first sound signal is equal to or lower than the threshold. As a result, even when the signal level of the first sound signal is too low, the second sound signal of the predetermined level is superimposed, so that the signal level of the specific frequency band can be prevented from dropping too much.
  • FIG. 5 is a flowchart showing a processing procedure of the sound signal processing device according to Modification 1 of Embodiment 1.
  • FIG. Specifically, FIG. 5 is a flowchart showing the processing procedure of the DSP 120 included in the sound signal processing device according to Modification 1. As shown in FIG.
  • the DSP 120 acquires from the CPU 130 an additional signal that is a sound signal based on the additional information 200 that the CPU 130 has acquired from the memory 140 (S101).
  • the DSP 120 acquires a sound source signal, which is a sound signal based on the sound content, by reading the sound content from the storage device 110 (S102).
  • the DSP 120 uses the Hilbert transform to calculate the envelope of the sound source signal (S103).
  • the DSP 120 determines whether the calculated envelope is greater than a threshold (first threshold) (S201).
  • the first threshold may be arbitrarily determined in advance and is not particularly limited.
  • First threshold information indicating the first threshold is pre-stored in the memory 140, for example.
  • the DSP 120 acquires from the CPU 130 the first threshold information acquired by the CPU 130 from the memory 140, for example.
  • the DSP 120 determines that the calculated envelope is equal to or less than the threshold (No in S201), it changes the envelope value to the threshold value (S202). Specifically, the DSP 120 changes each value constituting the envelope such that, among the values constituting the envelope, the values larger than the threshold are kept as they are, and the values equal to or less than the threshold are set as threshold values. do.
  • step S104 the DSP 120 multiplies the calculated envelope and the additional signal to generate a multiplied signal (S104).
  • the DSP 120 generates a signal (superimposed signal) by superimposing the generated multiplied signal and the sound source signal (S105).
  • the DSP 120 outputs the generated signal (superimposed signal) to the DAC 150 (S106).
  • the superimposed signal is transmitted from the DAC 150 to the speaker 170 via the amplifier 160.
  • a sound based on the superimposed signal is output from the speaker 170 .
  • the DSP 120 adjusts the signal level of the second sound signal, for example, when the signal level of the specific frequency band in the first sound signal is greater than the threshold, the specific frequency in the first sound signal
  • the signal level of the second sound signal is increased at a predetermined ratio with respect to the signal level of the band, and when the signal level of the first sound signal is equal to or lower than the threshold, the signal level of the second sound signal is set at the predetermined level.
  • the predetermined ratio and predetermined level may be arbitrarily determined in advance and are not particularly limited.
  • the predetermined ratio is determined by the envelope.
  • the envelope may be further multiplied and/or added by a predetermined value.
  • the sound signal processing device has the same configuration as the sound signal processing device 100 shown in FIG. 1, but the processing procedure is different. Specifically, the DSP 120 according to Modification 2 generates a multiplied signal by multiplying a signal (corresponding signal) obtained from the calculation result of FFT of the sound source signal instead of the envelope by the additional signal. This also allows a signal having a signal level corresponding to the sound source signal to be superimposed on the sound source signal, as in the case of using the envelope.
  • FIG. 6 is a flowchart showing the processing procedure of the sound signal processing device according to Modification 2 of Embodiment 1.
  • FIG. Specifically, FIG. 6 is a flowchart showing a processing procedure of the DSP 120 included in the sound signal processing device according to Modification 2. As shown in FIG.
  • the DSP 120 acquires from the CPU 130 an additional signal that is a sound signal based on the additional information 200 that the CPU 130 has acquired from the memory 140 (S101).
  • the DSP 120 acquires a sound source signal, which is a sound signal based on the sound content, by reading the sound content from the storage device 110 (S102).
  • the DSP 120 aggregates the signal levels of the specific frequency band (in other words, the frequency band corresponding to the additional signal) every predetermined time, and generates the corresponding signal based on the aggregated signal level (S301).
  • FIG. 7 is a diagram for explaining a signal (corresponding signal) obtained from a calculation result of FFT of the first sound signal.
  • FIG. 7 is a graph showing a temporal change in the signal level of the first sound signal and a signal obtained from the calculation result of the FFT of the first sound signal.
  • the horizontal axis of the graph shown in FIG. 7 is time (unit: seconds), and the vertical axis is sound pressure (unit: dB).
  • the solid line indicates the first sound signal
  • the two-dot chain line indicates the signal obtained from the FFT calculation result.
  • the DSP 120 performs FFT on the first sound signal for each predetermined time interval.
  • the DSP 120 determines the signal level of the specific frequency band in the calculation result of the FFT of the first sound signal as the signal level for each predetermined time interval.
  • the DSP 120 then generates a signal with the determined signal level for each predetermined time interval. Thereby, the DSP 120 generates a corresponding signal whose signal level is constant within a predetermined time interval, such as the signal indicated by the two-dot chain line in FIG.
  • the predetermined time may be arbitrarily determined in advance and is not particularly limited.
  • the predetermined time is, for example, on the order of several milliseconds. In the example shown in FIG. 7, the predetermined time is 2.5 milliseconds.
  • Time information indicating the predetermined time is pre-stored in the memory 140, for example.
  • the DSP 120 acquires from the CPU 130 the time information that the CPU 130 has acquired from the memory 140, for example.
  • the sound signal processing device may include a timer such as an RTC (Real Time Clock) for measuring time.
  • a timer such as an RTC (Real Time Clock) for measuring time.
  • step S301 the DSP 120 multiplies the generated corresponding signal and the additional signal to generate a multiplied signal (S302).
  • the DSP 120 generates a signal (superimposed signal) by superimposing the generated multiplied signal and the sound source signal (S105).
  • the DSP 120 outputs the generated signal (superimposed signal) to the DAC 150 (S106).
  • the superimposed signal is transmitted from the DAC 150 to the speaker 170 via the amplifier 160.
  • a sound based on the superimposed signal is output from the speaker 170 .
  • the sound signal processing device has the same configuration as the sound signal processing device 100 shown in FIG. 1, but the processing procedure is different. Specifically, the DSP 120 according to Modification 3 controls to increase the signal level of the frequency band of the overtone of the specific frequency band of the first sound signal. It is known that overtones in a specific frequency band are also effective in improving dementia, like sounds in a specific frequency band. Therefore, sound that is more effective in improving dementia or the like is output.
  • FIG. 8 is a flowchart showing a processing procedure of the sound signal processing device according to Modification 3 of Embodiment 1.
  • FIG. Specifically, FIG. 8 is a flowchart showing a processing procedure of the DSP 120 included in the sound signal processing device according to Modification 3. As shown in FIG.
  • the DSP 120 acquires from the CPU 130 an additional signal that is a sound signal based on the additional information 200 that the CPU 130 has acquired from the memory 140 (S101).
  • the DSP 120 acquires a sound source signal, which is a sound signal based on the sound content, by reading the sound content from the storage device 110 (S102).
  • the DSP 120 uses the Hilbert transform to calculate the envelope of the sound source signal (S103).
  • the DSP 120 generates a multiplied signal by multiplying the calculated envelope, the additional signal, and the overtone (overtone signal) of the additional signal (S401).
  • the DSP 120 generates a harmonic overtone signal of 80Hz ⁇ 20Hz.
  • the overtone of the specific frequency band may be not only a frequency twice as high as that of the specific frequency band but also a frequency p times (p: natural number).
  • the overtone signal may contain only one frequency signal, or may contain a plurality of frequency signals.
  • the overtone signal may include a signal with a frequency twice as high as the specific frequency band and a signal with a frequency three times as high as the specific frequency band.
  • Overtone information indicating overtone signals may be pre-stored in the memory 140 . In this case, the DSP 120 acquires from the CPU 130 the overtone information that the CPU 130 has acquired from the memory 140, for example.
  • the DSP 120 generates a signal (superimposed signal) by superimposing the generated multiplied signal and the sound source signal (S105).
  • the DSP 120 outputs the generated signal (superimposed signal) to the DAC 150 (S106).
  • the superimposed signal is transmitted from the DAC 150 to the speaker 170 via the amplifier 160.
  • a sound based on the superimposed signal is output from the speaker 170 .
  • the DSP 120 according to Modification 4 further controls (adjusts) to increase the signal level of the overtone frequency band of the specific frequency band, for example, when adjusting the signal level of the second sound signal.
  • Modification 4 the signal level of the additional signal is controlled based on the control information. According to this, for example, by receiving the control information from the user, it is possible to output the sound in the specific frequency band at the volume desired by the user.
  • FIG. 9 is a block diagram showing the configuration of the sound signal processing device 101 according to Modification 4 of Embodiment 1. As shown in FIG.
  • the sound signal processing device 101 includes a storage device 110, a DSP 120, a CPU 130, a memory 141, a DAC 150, an amplifier 160, a speaker 170, and a communication IF 180.
  • the memory 141 is a memory that stores additional information 200 and amplitude value information 201 .
  • the memory 141 is realized by, for example, a semiconductor memory or the like.
  • the amplitude value information 201 is an example of control information, and is information for determining the sound pressure of the additional information 200 (more specifically, the signal level of the additional signal based on the additional information 200).
  • the amplitude value information 201 is information indicating processing contents such as "ON”, “OFF”, “UP”, or "DOWN”.
  • the DSP 120 multiplies the signal level of the additional signal based on the additional information 200 by 1.0, adds it to the sound source signal stored in the storage device 110, and outputs it to the DAC 150. Output.
  • the DSP 120 multiplies the signal level of the additional signal based on the additional information 200 by 0, adds it to the sound source signal stored in the storage device 110, and outputs it to the DAC 150. Output. That is, in this case, for example, the DSP 120 outputs the additional signal based on the additional information 200 to the DAC 150 without adding it to the sound source signal.
  • the DSP 120 multiplies the signal level of the additional signal based on the additional information 200 by 1.1 and adds it to the sound source signal stored in the storage device 110. Output to DAC 150 .
  • the DSP 120 multiplies the signal level of the additional signal based on the additional information 200 by 0.9 and adds it to the sound source signal stored in the storage device 110. Output to DAC 150 .
  • the DSP 120 acquires control information indicating the signal level of a specific frequency band, and adjusts the signal level of the specific frequency band based on the control information in adjusting the signal level of the second sound signal. . Specifically, the DSP 120 switches ON/OFF of the additional signal (that is, whether or not to superimpose the additional signal on the sound source signal) or switches the signal level based on the amplitude value information 201, for example.
  • the amplitude value information 201 may be information indicating a numerical value.
  • the DSP 120 multiplies the signal level of the additional signal based on the additional information 200 by 1.0 and adds it to the sound source signal stored in the storage device 110. Output to DAC 150 .
  • the DSP 120 multiplies the signal level of the additional signal based on the additional information 200 by 0 and adds it to the sound source signal stored in the storage device 110. Output to DAC 150 . That is, in this case, for example, the DSP 120 outputs the additional signal based on the additional information 200 to the DAC 150 without adding it to the sound source signal.
  • the DSP 120 multiplies the signal level of the additional signal based on the additional information 200 by 1.1 and adds it to the sound source signal stored in the storage device 110. and output to the DAC 150.
  • the DSP 120 multiplies the signal level of the additional signal based on the additional information 200 by 0.9 and adds it to the sound source signal stored in the storage device 110. and output to the DAC 150.
  • the amplitude value information 201 may be information indicating how to set the signal level of the additional signal.
  • the amplitude value information 201 is acquired from the external terminal 300 via the communication IF 180, for example.
  • the communication IF 180 is a communication IF (Interface) for communication between the sound signal processing device 101 and the external terminal 300 .
  • the communication IF 180 is realized by an antenna and a wireless communication circuit.
  • the communication IF 180 is realized by a connector or the like to which a communication line is connected when the sound signal processing device 101 and the external terminal 300 are to communicate by wire, for example.
  • the communication standard adopted for communication may be a communication standard such as Bluetooth (registered trademark) or BLE (Bluetooth (registered trademark) Low Energy), or may be an original communication standard, and is not particularly limited.
  • the external terminal 300 is a communication terminal operated by a user.
  • the external terminal 300 is, for example, a terminal such as an operator console or a smart phone.
  • the user operates the external terminal 300 to transmit the amplitude value information 201 to the sound signal processing device 101 . Accordingly, the user can switch on/off the additional signal based on the additional information 200 or switch the signal level by operating the external terminal 300 .
  • the CPU 130 stores, for example, the amplitude value information 201 acquired from the external terminal 300 via the communication IF 180 in the memory 141 .
  • the CPU 130 updates the amplitude value information 201 stored in the memory 141 each time it acquires the amplitude value information 201 from the external terminal 300 via the communication IF 180 .
  • the memory 141 may store control programs executed by the DSP 120 and the CPU 130 .
  • the memory 141 may store information (threshold information) indicating a threshold required for processing executed by the DSP 120 and the CPU 130 .
  • FIG. 10 is a flow chart showing the processing procedure of the sound signal processing device 101 according to Modification 4 of Embodiment 1.
  • FIG. Specifically, FIG. 10 is a flowchart showing a processing procedure of the DSP 120 included in the sound signal processing device 101 according to Modification 4. As shown in FIG.
  • the DSP 120 acquires from the CPU 130 an additional signal that is a sound signal based on the additional information 200 that the CPU 130 has acquired from the memory 141 (S101). Further, for example, the DSP 120 acquires the amplitude value information 201 acquired by the CPU 130 from the memory 141 from the CPU 130 .
  • the DSP 120 acquires a sound source signal, which is a sound signal based on the sound content, by reading the sound content from the storage device 110 (S102).
  • the DSP 120 uses the Hilbert transform to calculate the envelope of the sound source signal (S103).
  • the DSP 120 generates a multiplication signal by multiplying the calculated envelope, the additional signal, and, for example, the numerical value indicated by the amplitude value information 201 (S501).
  • the DSP 120 generates a signal (superimposed signal) by superimposing the generated multiplied signal and the sound source signal (S105).
  • the DSP 120 outputs the generated signal (superimposed signal) to the DAC 150 (S106).
  • the superimposed signal is transmitted from the DAC 150 to the speaker 170 via the amplifier 160.
  • a sound based on the superimposed signal is output from the speaker 170 .
  • the DSP 120 acquires control information (for example, the amplitude value information 201) indicating the signal level of a specific frequency band, and adjusts (controls) the signal level of the second sound signal based on the control information. I do.
  • control information for example, the amplitude value information 201 indicating the signal level of a specific frequency band
  • Modification 5 the signal level of the additional signal is controlled based on the user's biological information. According to this, for example, it is possible to output sound in a specific frequency band at a volume according to the user's comfort.
  • FIG. 11 is a block diagram showing the configuration of a sound signal processing device 102 according to Modification 5 of Embodiment 1. As shown in FIG.
  • the sound signal processing device 102 includes a storage device 110, a DSP 120, a CPU 130, a memory 142, a DAC 150, an amplifier 160, a speaker 170, and a communication IF 180.
  • the memory 142 is a memory that stores additional information 200 and pNN information 202 .
  • the memory 142 is realized by, for example, a semiconductor memory or the like.
  • the pNN information 202 is information for determining the sound pressure of the additional information 200.
  • the pNN information 202 is an example of biometric information and is information indicating a pNN50 value.
  • the pNN50 value is the percentage of beats in which consecutive adjacent RR intervals differ by more than 50 ms.
  • the CPU 130 repeatedly acquires the pNN information 202 from the heart rate monitor 310 via the communication IF 180 and stores it in the memory 142 .
  • memory 142 stores pNN information 202 that indicates the time change of the user's pNN50 value.
  • the heartbeat meter 310 is a device that measures the user's heartbeat, calculates the pNN50 value, and repeatedly transmits pNN information 202 indicating the calculation result to the sound signal processing device 102 .
  • time interval at which the heart rate monitor 310 repeatedly transmits the pNN information 202 may be arbitrarily determined in advance and is not particularly limited.
  • the DSP 120 switches the signal level of the additional signal based on the pNN information 202. For example, DSP 120 reduces the signal level of the additional signal when the pNN50 value indicated by pNN information 202 decreases.
  • the pNN50 value reflects the user's comfort/discomfort (whether the user is comfortable or not). For example, when the pNN50 value decreases when some stimulus is given to the user, it is highly likely that the user feels uncomfortable. Therefore, the DSP 120 acquires the user's biometric information, for example, and controls (adjusts) the signal level of the specific frequency band based on the biometric information in adjusting the signal level of the second sound signal. Specifically, the DSP 120 reduces the signal level of the additional signal when, for example, the pNN50 value indicated by the pNN information 202 decreases.
  • the DSP 120 may increase the signal level of the additional signal when the pNN50 value indicated by the pNN information 202 increases.
  • the CPU 130 acquires information indicating the user's heartbeat, such as an electrocardiogram, from the heart rate monitor 310 via the communication IF 180, calculates the user's pNN50 value based on the obtained information, and obtains information indicating the calculation result.
  • information indicating the user's heartbeat such as an electrocardiogram
  • the CPU 130 acquires information indicating the user's heartbeat, such as an electrocardiogram, from the heart rate monitor 310 via the communication IF 180, calculates the user's pNN50 value based on the obtained information, and obtains information indicating the calculation result.
  • pNN information 202 may be stored in memory 142 as pNN information 202 .
  • FIG. 12 is a flowchart showing the processing procedure of the sound signal processing device 102 according to Modification 5 of Embodiment 1.
  • FIG. 12 is a flowchart showing a processing procedure of the DSP 120 included in the sound signal processing device 102 according to Modification 5. As shown in FIG.
  • the DSP 120 acquires from the CPU 130 an additional signal that is a sound signal based on the additional information 200 that the CPU 130 has acquired from the memory 142 (S101).
  • the DSP 120 acquires a sound source signal, which is a sound signal based on the sound content, by reading the sound content from the storage device 110 (S102).
  • the DSP 120 uses the Hilbert transform to calculate the envelope of the sound source signal (S103).
  • the DSP 120 acquires from the CPU 130 the pNN information 202 that the CPU 130 has acquired from the memory 142, and based on the acquired pNN information 202, determines whether the current pNN50 value is greater than or equal to the previous pNN50 value (S601). Specifically, the DSP 120 determines whether or not the latest pNN value is greater than or equal to the pNN50 value that is one before the pNN value.
  • the DSP 120 determines that the current pNN50 value is less than the previous pNN50 value (No in S601), it reduces the signal level of the additional signal based on the additional information 200 (S602).
  • the signal level that DSP 120 reduces may be arbitrarily predetermined. Also, the signal level that the DSP 120 reduces may be determined based on the difference between the previous pNN50 value and the current pNN50 value. For example, the DSP 120 may reduce the signal level of the additional signal more as the difference is greater.
  • step S601 If Yes in step S601 or after step S602, the DSP 120 generates a multiplied signal by multiplying the calculated envelope and the additional signal (S104).
  • the DSP 120 generates a signal (superimposed signal) by multiplying the generated multiplied signal and the sound source signal (S105).
  • the DSP 120 outputs the generated signal (superimposed signal) to the DAC 150 (S106).
  • the superimposed signal is transmitted from the DAC 150 to the speaker 170 via the amplifier 160.
  • a sound based on the superimposed signal is output from the speaker 170 .
  • processing for changing the signal level of the additional signal is performed.
  • Processing for changing the signal level of the additional signal may be performed based on other biometric information instead of the pNN information 202 .
  • Biometric information is information that indicates the degree to which the user feels comfortable.
  • the other biological information is, for example, information indicating the user's breathing rate, information indicating the user's body temperature, information indicating the user's perspiration amount, information indicating the user's electroencephalogram, or information indicating the user's facial expression (for example, image information).
  • the process of changing the signal level of the additional signal may be performed based on these biometric information of the user.
  • the DSP 120 reduces the level of the second sound signal, for example, when the biological information indicates that the user feels uncomfortable (specifically, indicates that the degree of comfort has decreased).
  • the CPU 130 may acquire the user's biometric information from a device that acquires the user's biometric information, such as a thermometer, an electroencephalograph, or a camera, via the communication IF 180 , and store it in the memory 142 .
  • the DSP 120 may adjust the signal level of the additional signal based on the time change of the user's biological information.
  • Modified Example 7 the sound output from the speaker 170 is collected, and the signal level of the second sound signal is adjusted based on the collected sound. According to this, it is possible to output a sound with an appropriate volume from the speaker 170 according to the installation environment of the speaker 170 or the like.
  • FIG. 13 is a block diagram showing the configuration of the sound signal processing device 103 according to Modification 6 of Embodiment 1. As shown in FIG. 13
  • the sound signal processing device 103 includes a DSP 120, a CPU 130, a memory 141, a DAC 150, an amplifier 160, a speaker 170, and a microphone 190.
  • the sound signal processing device 103 does not include the storage device 110 .
  • the sound signal processing device 103 acquires the sound source signal and the like from the storage device 320 of the communicably connected external device such as a server device.
  • the sound signal processing device 103 may have a communication IF for communicating with the server device or the like.
  • the sound signal processing device 103 can be realized without including a large-sized component such as the storage device 110. Therefore, for example, the sound signal processing device 103 can be miniaturized, and can be realized, for example, as an earphone. .
  • the microphone 190 is a microphone that picks up the sound output from the speaker 170 and outputs a sound signal (hereinafter also referred to as a microphone signal) based on the picked sound.
  • the microphone 190 is, for example, a condenser microphone, a dynamic microphone, or a MEMS (Micro Electro Mechanical Systems) microphone.
  • the microphone 190 is, for example, a so-called earphone microphone housed in a housing of the earphone when the sound signal processing device 103 is an earphone.
  • the microphone 190 outputs a microphone signal based on the collected sound to the CPU 130 .
  • the CPU 130 updates the amplitude value information 201, for example, based on the microphone signal. In other words, CPU 130 acquires from microphone 190 a microphone signal (output sound signal) based on the sound (output sound) output from speaker 170 detected by microphone 190 .
  • the DSP 120 adjusts the signal level of the second sound signal based on the amplitude value information 201. That is, the DSP 120 further controls (adjusts) the signal level of the specific frequency band in the second sound signal based on the output sound signal based on the output sound output from the speaker 170 .
  • FIG. 14 is a flowchart showing the processing procedure of the sound signal processing device 103 according to Modification 6 of Embodiment 1.
  • FIG. 14 is a flowchart showing a processing procedure for updating the amplitude value information 201 executed by the CPU 130 included in the sound signal processing device 103 according to the sixth modification.
  • the CPU 130 acquires a microphone signal (output sound signal) from the microphone 190 (S701).
  • the CPU 130 confirms the signal level of the band (specific frequency band) corresponding to the additional signal, and performs a short-time Fourier transform on the microphone signal (S702).
  • the Fourier transform time may be determined arbitrarily and is not particularly limited.
  • the CPU 130 determines whether the signal level of the specific frequency band in the microphone signal is lower than a predetermined threshold (second threshold) (S703).
  • the second threshold information indicating the second threshold may be stored in advance in the memory 141, for example, and is not particularly limited. Second threshold information indicating the second threshold is stored in advance in the memory 140, for example.
  • the DSP 120 acquires from the CPU 130 the second threshold information acquired by the CPU 130 from the memory 140, for example.
  • first threshold and second threshold may be the same value or different values.
  • the amplitude value information 201 (more specifically, the control amplitude indicated by the amplitude value information 201 value) is updated (S704).
  • the sound in the specific frequency band may not be output from the speaker 170 at the expected volume. Therefore, the sound actually output from the speaker 170 is collected by the microphone 190, and the microphone signal based on the collected sound is used to update the amplitude value information 201. That is, the sound pressure (volume ).
  • the DSP 120 uses the amplitude value information 201 updated as described above, for example, to perform the processing shown in FIG.
  • ⁇ Modification 7> When a subject listens to a sound with a frequency of about 30 Hz to 90 Hz from both ears using earphones, for example, the sound emitted from the speaker attached to the right ear and the sound emitted from the speaker attached to the left ear. If there is a phase difference between the two, there is a problem that it is difficult to obtain the effect of improving dementia. Therefore, in modification 7, a process of reducing the phase difference (more specifically, aligning the phases) of the two sound signals is performed. This makes it easier to obtain the effect of improving dementia and the like.
  • FIG. 15 is a block diagram showing the configuration of the sound signal processing device 104 according to Modification 7 of Embodiment 1. As shown in FIG.
  • the sound signal processing device 104 includes a DSP 120, a CPU 130, a memory 143, a DAC 150, an amplifier 160, a speaker 171, a speaker 172, and a communication IF 180.
  • the memory 143 is a memory that stores the emphasis information 203.
  • the memory 143 is realized by, for example, a semiconductor memory or the like.
  • the memory 143 may store control programs executed by the DSP 120 and the CPU 130 .
  • the memory 143 may also store information (threshold information) indicating a threshold or the like necessary for the processing executed by the DSP 120 and the CPU 130 .
  • the emphasis information 203 is information for increasing (enhancing) the signal level of a specific frequency band in the sound signal acquired by the DSP 120 .
  • the emphasis information 203 includes, for example, information indicating a specific frequency band and information indicating a predetermined signal level.
  • the DSP 120 for example, based on the enhancement information 203, performs processing for increasing the signal level of a specific frequency band in the environmental sound signal, which will be described later, to a predetermined level.
  • the speakers 171 and 172 each output sounds based on analog signals acquired from the amplifier 160 .
  • the speakers 171 and 172 are, for example, speakers shaped to be worn in ear holes (that is, earphone-type speakers).
  • the speaker 171 is an earphone worn on the left ear
  • the speaker 171 is an earphone worn on the right ear.
  • the storage device 320 stores sound content of a sound signal (hereinafter also referred to as Lch) output from the earphone worn on the left ear and a sound signal (hereinafter referred to as Rch) output from the earphone worn on the right ear. ) are stored.
  • Lch a sound signal
  • Rch a sound signal
  • the DSP 120 aligns the phases of the Lch and Rch in a specific frequency band (in other words, aligns the phases, eliminates the phase difference, or makes the phase difference zero), and outputs the Lch and Rch to the DAC 150. do.
  • the DSP 120 performs processing to reduce the phase difference between the Lch and Rch in a specific frequency band and outputs the Lch and Rch to the DAC 150 .
  • the DSP 120 performs a short-time Fourier transform (more specifically, a short-time FFT (Fast Fourier Transform)) on each of Lch and Rch, aligns the phases of Lch and Rch in a specific frequency band, and further By performing inverse Fourier transform (more specifically, inverse short-time FFT), the phases of Lch and Rch are aligned.
  • a short-time Fourier transform more specifically, a short-time FFT (Fast Fourier Transform)
  • inverse Fourier transform more specifically, inverse short-time FFT
  • the DSP 120 may change the phase of only the Lch, may change the phase of only the Rch, or may change the phase of both the Lch and Rch. You can change the phase.
  • phase difference means that it is substantially zero, and there may be a slight phase shift instead of being completely zero.
  • the DSP 120 detects a specific frequency in each of the plurality of first sound signals for each of the plurality of first sound signals corresponding to the plurality of sound contents. Correct to reduce the phase difference of the band.
  • the speakers 171 and 172 may be speakers that emit sound waves toward the eardrum, or may be bone conduction speakers.
  • the microphone 330 picks up the environmental sounds of the environment from which sounds are output by the speakers 171 and 172, and transmits a sound signal (hereinafter also referred to as an environmental sound signal) based on the picked-up environmental sounds to the CPU 130 via the communication IF 180. It is a microphone that outputs to
  • the CPU 130 acquires an environmental sound signal based on the environmental sound from the microphone 330 via the communication IF 180, and adds additional information (second content) so that the component of the specific frequency band in the environmental sound signal is used as the second sound signal. is generated and stored in the memory 143 .
  • the DSP 120 enhances the signal level of the specific frequency band in the environmental sound signal acquired from the microphone 330 via the communication IF 180, for example, based on the emphasis information 203.
  • the DSP 120 superimposes, for example, the enhanced environmental sound signal and the sound source signal acquired from the storage device 320 and outputs the result to the DAC 150 .
  • the environmental sound signal is an example of the second sound signal, and is used so as to be superimposed on the sound source signal in the same manner as the additional signal described above.
  • the microphone 330 is housed in the housing of the earphone.
  • FIG. 16 is a flow chart showing the processing procedure of the sound signal processing device 104 according to the seventh modification of the first embodiment. Specifically, FIG. 16 is a flow chart showing the processing procedure of the DSP 120 included in the sound signal processing device 104 according to the seventh modification.
  • the CPU 130 acquires an environmental sound signal from the microphone 330 (S801).
  • the CPU 130 generates additional information based on the environmental sound signal (S802).
  • the additional information may be, for example, information indicating an environmental sound signal, or information indicating a signal including only a specific frequency band of the environmental sound signal by applying a narrow band filter to the environmental sound signal. may be Here, it is assumed that CPU 130 generates additional information indicating an environmental sound signal and stores it in memory 143 .
  • the sound signal processing device 104 may include a filter circuit that functions as a narrowband filter.
  • the DSP 120 obtains from the CPU 130 the emphasis information 203 that the CPU 130 obtained from the memory 143 (S803).
  • the DSP 120 applies a narrowband filter to the environmental sound signal and enhances the signal level of the specific frequency band based on the enhancement information 203 (S804).
  • the sound signal processing device 104 may include a filter circuit that functions as a narrowband filter.
  • the DSP 120 reads the sound content from the storage device 320 to obtain a sound source signal, which is a sound signal based on the sound content (S102). For example, the DSP 120 acquires Lch and Rch as sound source signals.
  • the DSP 120 generates a signal (correction signal) by correcting at least one of the Lch and Rch so that the phases of the Lch and Rch in the specific frequency band are aligned (S805). Note that the DSP 120 may correct at least one of Lch and Rch so as to reduce the phase difference between Lch and Rch in a specific frequency band.
  • the DSP 120 generates a signal (superimposed signal) by superimposing the corrected signal (corrected signal) and the environmental sound signal (S806).
  • the DSP 120 outputs the generated signal (superimposed signal) to the DAC 150 (S106).
  • the superimposed signals corresponding to Lch and Rch are transmitted from DAC 150 to speakers 171 and 172 via amplifier 160 . Sounds based on the signals are output from the speakers 171 and 172 .
  • the sound signal processing method according to the signal level of the specific frequency band in the first sound signal (for example, sound source signal) corresponding to the first content,
  • the signal level of the corresponding second sound signal (for example, additional signal) that includes the component of the specific frequency band is adjusted (for example, steps S103 to S104), and the first sound signal and , and the adjusted second sound signal are superimposed (for example, step S105) and output (for example, step S106).
  • sound in a specific frequency band can be preferably output to a target (for example, a user who listens to the sound output by the sound signal processing method).
  • the signal level of the specific frequency band in the first sound signal when the signal level of the specific frequency band in the first sound signal is greater than the threshold (for example, Yes in step S201), the signal level of the specific frequency band in the first sound signal is set to a predetermined level. If the signal level of the second sound signal is increased by the ratio (for example, step S104) and the signal level of the first sound signal is less than the threshold (for example, No in step S201), the signal level of the second sound signal is increased to a predetermined level. signal level (for example, steps S202 and S104).
  • the DSP 120 calculates the envelope of the sound source signal (first sound signal), and if the calculated envelope is larger than the threshold value, the value of the envelope is directly multiplied by the second sound signal. , the signal level of the second sound signal is increased at a predetermined ratio. On the other hand, if the calculated envelope is equal to or less than the threshold, the DSP 120 multiplies the value of the envelope by the second sound signal as a value corresponding to the predetermined signal level, thereby reducing the signal level of the second sound signal to the predetermined signal level. level.
  • the signal level of the specific frequency band in the first sound signal is high to some extent, the signal level of the second sound signal also increases accordingly. It is possible to prevent the user from feeling discomfort due to the sound in the frequency band. Further, if the signal level of the specific frequency band in the first sound signal is high to some extent, by setting the signal level of the second sound signal to a predetermined level, the signal level of the second sound signal becomes too small. Loss of effect on dementia or the like can be suppressed.
  • the first content includes a plurality of sound contents different from each other, and in the sound signal processing method, for each of the plurality of first sound signals corresponding to the plurality of sound contents, each of the plurality of first sound signals Correction is performed to reduce the phase difference in the specific frequency band (eg, step S805).
  • the signal level of a specific frequency band can be brought closer.
  • the sound emitted from the speaker attached to the right ear and the sound emitted from the speaker attached to the left ear are different.
  • the speakers included in the sound signal processing device are implemented by earphones like the speakers 171 and 172, the sound emitted from the speaker 171 attached to the left ear and the sound emitted from the speaker 172 attached to the right ear
  • the phase difference with the emitted sound By reducing the phase difference with the emitted sound, a sound that is effective in improving dementia and the like is output.
  • the sound signal processing method further acquires an environmental sound signal based on the environmental sound (for example, step S801), and converts the component of the specific frequency band in the environmental sound signal into a second frequency band.
  • a second content is generated so as to be a sound signal (for example, step S802).
  • the additional information 200 can be generated using the environmental sound, and the second sound signal can be superimposed on the first sound signal and output.
  • the second sound signal is generated based on the environmental sound, even if the sound in the specific frequency band becomes louder, the sound is close to the environmental sound, so that discomfort due to being different from the environmental sound can be suppressed. , it is possible to prevent the user from feeling discomfort due to sounds in a specific frequency band.
  • processing is further performed to raise the signal level of the frequency band of the overtone of the specific frequency band (eg, step S401).
  • the signal level of the frequency band of overtones of the specific frequency band in the first sound signal may be adjusted to increase, or the signal level of the frequency band of overtones of the specific frequency band in the second sound signal may be adjusted to increase.
  • control information indicating the signal level of the specific frequency band (for example, the amplitude value information 201) is acquired, and in the adjustment described above, the control information is Based on this, the signal level of the specific frequency band is controlled (for example, step S501).
  • the user can hear the sound of the specific frequency band at the volume desired by the user.
  • the user's biological information (for example, pNN information 202) is further acquired, and in the adjustment described above, based on the biological information, a specific frequency band A signal level is controlled (for example, step S602).
  • the signal level of the second sound signal is adjusted based on the determination result, so that the user can adjust by himself/herself. You can listen to a comfortable sound easily without having to worry about it.
  • the output based on the output sound (more specifically, the sound output from the speakers 170, 171, and 172) output with the above output A sound signal is acquired (for example, step S701), and the signal level of a specific frequency band is controlled based on the output sound signal (for example, steps S702 to S704).
  • the sound of a specific frequency band at an assumed volume may be output from the speaker 170. may not be output from Therefore, as described above, for example, the sound actually output from the speaker 170 is collected by the microphone 190, and the signal level of the specific frequency band is adjusted using the microphone signal based on the collected sound. According to this, a suitable sound is output from the speaker 170 .
  • the program according to one aspect of the present disclosure is, for example, a program that causes a computer to execute the sound signal processing method according to one aspect of the present disclosure.
  • a sound signal processing device includes a processor and a memory, and the processor uses the memory to process signals of a specific frequency band in a first sound signal corresponding to first content. According to the level, the signal level of the second sound signal corresponding to the second content and containing the component of the specific frequency band is adjusted, and the first sound signal and the adjusted second sound signal are adjusted. , are superimposed and output.
  • the processor here is, for example, at least one of the DSP 120 and the CPU 130 , and may be realized by the DSP 120 alone, by the CPU 130 alone, or by the DSP 120 and the CPU 130 .
  • the memory referred to here is, for example, the memories 140, 141, 142, and 143, but may be implemented by the storage device 110, or may be implemented by the memories 140, 141, 142, 143 and the storage device 110. good too.
  • a memory for example, that the processor performs various processes using programs and information stored in the memory.
  • Embodiment 2 Next, a sound signal processing device according to Embodiment 2 will be described.
  • the description will focus on the differences from the above-described first embodiment and each modification, and substantially the same configurations will be given the same reference numerals, and the description will be partially simplified or omitted.
  • the sound signal processing device adjusts the signal level of the signal in the specific frequency band of the first sound signal instead of superimposing the second sound signal on the first sound signal.
  • correction is performed to reduce the phase difference between the plurality of first sound signals each having its signal level adjusted in the specific frequency band. According to this, since the phase difference of a plurality of sound signals is reduced, it is possible to easily obtain the effect of improving dementia and the like.
  • FIG. 17 is a block diagram showing the configuration of the sound signal processing device 105 according to the second embodiment.
  • the sound signal processing device 105 includes a storage device 110, a DSP 120, a CPU 130, a memory 143, a DAC 150, an amplifier 160, a speaker 171, and a speaker 172.
  • the DSP 120 for example, based on the emphasis information 203, performs processing to raise the signal level of the specific frequency band of the sound signal acquired from the storage device 110 by a predetermined level.
  • both the sound signal processing device 100 and the sound signal processing device 105 adjust (more specifically, raise) the signal level of a specific frequency band for the acquired sound signal (first sound signal). output.
  • the sound signal processing device 100 superimposes a signal (second sound signal) containing only a specific frequency band on the acquired sound signal (first sound signal), thereby adjusting the signal level of the specific frequency band in the output signal. to adjust.
  • the sound signal processing device 105 adjusts the signal level of the specific frequency band in the output signal by enhancing the signal of the specific frequency band with respect to the acquired sound signal (first sound signal).
  • the DSP 120 adjusts the signal level of each of the plurality of first sound signals corresponding to the plurality of sound contents in the first content including the plurality of sound contents different from each other to increase the signal level of the specific frequency band. Further, the DSP 120 corrects each of the plurality of adjusted first sound signals corresponding to the plurality of sound contents so as to reduce the phase difference of the specific frequency band in each of the plurality of adjusted first sound signals. The DSP 120 also outputs a plurality of corrected first sound signals.
  • FIG. 18 is a flow chart showing the processing procedure of the sound signal processing device 105 according to the second embodiment. Specifically, FIG. 18 is a flowchart showing the processing procedure of the DSP 120 included in the sound signal processing device 105. As shown in FIG.
  • the DSP 120 acquires from the CPU 130 the emphasis information 203 that the CPU 130 has acquired from the memory 143 (S801).
  • the DSP 120 acquires a sound source signal, which is a sound signal based on the sound content, by reading the sound content from the storage device 110 (S102). For example, the DSP 120 acquires Lch and Rch as sound source signals.
  • the DSP 120 applies a narrowband filter to the sound source signal and enhances the signal level of the specific frequency band based on the enhancement information 203 (S901). For example, the DSP 120 identifies specific frequency bands for each of the Lch and Rch, and raises the signal level for each of the Lch and Rch according to the predetermined signal level indicated by the emphasis information 203 .
  • the sound signal processing device 105 may include a filter circuit that functions as a narrowband filter.
  • the DSP 120 generates a signal (correction signal) by correcting at least one of the Lch and Rch so that the phases of the Lch and Rch in the specific frequency band are aligned (S805). Note that the DSP 120 may correct at least one of Lch and Rch so as to reduce the phase difference between Lch and Rch in a specific frequency band.
  • the DSP 120 outputs to the DAC 150 a signal (corrected signal) with the phase difference corrected to zero (S106).
  • the correction signal is transmitted from the DAC 150 to the speakers 171 and 172 via the amplifier 160. Sound based on the correction signal is output from the speakers 171 and 172 .
  • the sound signal processing method includes a plurality of first sound signals (for example, Lch and Rch) are adjusted to increase the signal level of each specific frequency band (for example, step S901), and for each of the adjusted plurality of first sound signals corresponding to the plurality of sound contents, the adjusted plurality of correction is performed so as to reduce the phase difference in the specific frequency band in each of the first sound signals (eg, step S804), and a plurality of corrected first sound signals are output (eg, step S106).
  • a plurality of first sound signals for example, Lch and Rch
  • the adjusted plurality of correction is performed so as to reduce the phase difference in the specific frequency band in each of the first sound signals (eg, step S804), and a plurality of corrected first sound signals are output (eg, step S106).
  • the sound in the specific frequency band can be preferably output to the target.
  • the program according to one aspect of the present disclosure may be a program that causes a computer to execute the sound signal processing method according to another aspect of the present disclosure.
  • a sound signal processing device includes a processor and a memory, and the processor uses the memory to process a plurality of adjustment is performed so as to increase the signal level of each of the plurality of first sound signals corresponding to the sound content in the specific frequency band, and for each of the plurality of adjusted first sound signals corresponding to the plurality of sound contents, the adjusted Correction is performed so as to reduce the phase difference in the specific frequency band in each of the plurality of first sound signals, and the corrected plurality of first sound signals are output.
  • the processor here is, for example, at least one of the DSP 120 and the CPU 130 , and may be realized by the DSP 120 alone, by the CPU 130 alone, or by the DSP 120 and the CPU 130 .
  • the memory here is, for example, the memory 143 , but may be realized by the storage device 110 or may be realized by the memory 143 and the storage device 110 .
  • the sound signal processing device according to the present disclosure may change the value of the corresponding signal to the value of the threshold if the corresponding signal is smaller than the threshold in the configuration (processing procedure) of Modification 2 described above. More specifically, in the processing procedure shown in FIG. 6, the sound signal processing device according to the present disclosure performs steps similar to steps S201 and S202 shown in FIG. 5 between steps S301 and S302 shown in FIG. You can add processing. Further, for example, the function of the sound signal processing device according to Modification 3 (for example, harmonic multiplication processing) is combined with the function of the sound signal processing device according to Embodiment 1 (for example, envelope multiplication processing).
  • Modification 3 for example, harmonic multiplication processing
  • Embodiment 1 for example, envelope multiplication processing
  • the functions of the sound signal processing device according to Modification 4 may be implemented in combination with the functions of other sound signal processing devices.
  • the functions of the sound signal processing device according to Modification 5 may be implemented in combination with the functions of other sound signal processing devices.
  • the signal level of the specific frequency band in the first sound signal may be adjusted, and the signal level of the specific frequency band in the second sound signal may be adjusted. good too. That is, the relative relationship between the signal levels of the first sound signal and the second sound signal in the specific frequency band may be adjusted based on at least one of the control information and the biological information. Alternatively, the signal level of a specific frequency band in the superimposed signal may be adjusted.
  • the signal level of the frequency band of the overtone of the specific frequency band in the first sound signal may be adjusted, or the overtone of the specific frequency band in the second sound signal. frequency bands may be adjusted. That is, the relative relationship between the signal levels of the first sound signal and the second sound signal in the frequency band of the overtone of the specific frequency band may be adjusted based on at least one of the control information and the biological information. Alternatively, the signal level of the frequency band of the overtone of the specific frequency band in the superimposed signal may be adjusted.
  • the second sound signal may or may not be superimposed.
  • the signal level of the specific frequency band in the first sound signal may or may not be increased.
  • the sound signal processing device may include components (not shown) such as a D/A converter or a filter.
  • first sound signals corresponding to a plurality of sound contents have been described by exemplifying two first sound signals as Lch and Rch, for example.
  • the number of first sound signals may be three or more.
  • the sound signal processing device may be implemented as a plurality of devices (that is, a system), or may be implemented as a single device.
  • the functional components included in the sound signal processing device may be distributed to the plurality of devices in any way.
  • the mobile terminal may include some or all of the functional components included in the sound signal processing device.
  • the communication method between devices in each of the above embodiments and modifications is not particularly limited.
  • a relay device (not shown) may be interposed between the two devices.
  • the order of processing described in each of the above embodiments and modifications is an example.
  • the order of multiple processes may be changed, and multiple processes may be executed in parallel.
  • a process executed by a specific processing unit may be executed by another processing unit.
  • part of the digital signal processing described in each of the above embodiments and modifications may be realized by analog signal processing.
  • each component may be realized by executing a software program suitable for each component.
  • Each component may be implemented by a program execution unit such as a CPU or processor reading and executing a software program recorded in a recording medium such as a hard disk or semiconductor memory.
  • each component may be realized by hardware.
  • each component may be a circuit (or integrated circuit). These circuits may form one circuit as a whole, or may be separate circuits. These circuits may be general-purpose circuits or dedicated circuits.
  • general or specific aspects of the present disclosure may be implemented in a system, apparatus, method, integrated circuit, computer program, or recording medium such as a computer-readable CD-ROM.
  • any combination of systems, devices, methods, integrated circuits, computer programs and recording media may be implemented.
  • the present disclosure may be implemented as a method executed by a computer such as a sound signal processing device or a mobile terminal, or may be implemented as a program for causing a computer to execute such a method.
  • the present disclosure may be implemented as a computer-readable non-temporary recording medium in which such a program is recorded.
  • the program here includes an application program for causing a general-purpose mobile terminal to function as the mobile terminal of each of the above-described embodiments and modifications.
  • the sound signal processing device of the present disclosure can be applied to devices that output sounds that can improve dementia and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Anesthesiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Psychology (AREA)
  • Hematology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Pain & Pain Management (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Epidemiology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

本開示の一態様に係る音信号処理方法は、第1コンテンツに対応する第1音信号(例えば、音源信号)における特定周波数帯域の信号レベルに応じて、第2コンテンツに対応する第2音信号(例えば、付加信号)であって、当該特定周波数帯域の成分のみを含む第2音信号の信号レベルの調整を行い(例えば、ステップS103~ステップS104)、第1音信号と、調整された第2音信号と、を重畳(例えば、ステップS105)して出力を行う(例えば、ステップS106)。

Description

音信号処理方法、プログラム、及び、音信号処理装置
 本開示は、音信号処理方法、プログラム、及び、音信号処理装置に関する。
 特許文献1には、聴覚刺激及び視覚刺激の組み合わせによって、認知症又はアルツハイマー病を治療するデバイスが開示されている。
特表2020-536653号公報
 本開示は、特定周波数帯域の音を好適に対象に出力できる音信号処理方法等を提供する。
 本開示の一態様に係る音信号処理方法は、第1コンテンツに対応する第1音信号における特定周波数帯域の信号レベルに応じて、第2コンテンツに対応する第2音信号であって、前記特定周波数帯域の成分を含む第2音信号の信号レベルの調整を行い、前記第1音信号と、調整された前記第2音信号と、を重畳して出力を行う。
 また、本開示の別の一態様に係る音信号処理方法は、互いに異なる複数の音コンテンツを含む第1コンテンツにおける、複数の前記音コンテンツに対応する複数の第1音信号それぞれの特定周波数帯域の信号レベルを上げるように調整を行い、複数の前記音コンテンツに対応する、調整された複数の前記第1音信号それぞれについて、調整された複数の前記第1音信号それぞれにおける前記特定周波数帯域の位相差を低減するように補正を行い、補正された複数の前記第1音信号の出力を行う。
 また、本開示の一態様に係るプログラムは、上記音信号処理方法をコンピュータに実行させるプログラムである。
 本開示の一態様に係る音信号処理装置は、プロセッサと、メモリと、を備え、前記プロセッサは、前記メモリを用いて、第1コンテンツに対応する第1音信号における特定周波数帯域の信号レベルに応じて、第2コンテンツに対応する第2音信号であって、前記特定周波数帯域の成分を含む第2音信号の信号レベルの調整を行い、前記第1音信号と、調整された前記第2音信号と、を重畳して出力を行う。
 また、本開示の別の一態様に係る音信号処理装置は、プロセッサと、メモリと、を備え、前記プロセッサは、前記メモリを用いて、互いに異なる複数の音コンテンツを含む第1コンテンツにおける、複数の前記音コンテンツに対応する複数の第1音信号それぞれの特定周波数帯域の信号レベルを上げるように調整を行い、複数の前記音コンテンツに対応する、調整された複数の前記第1音信号それぞれについて、調整された複数の前記第1音信号それぞれにおける前記特定周波数帯域の位相差を低減するように補正を行い、補正された複数の前記第1音信号の出力を行う。
 本開示の一態様に係る音信号処理方法等によれば、特定周波数帯域の音を好適に対象に出力できる。
図1は、実施の形態1に係る音信号処理装置の構成を示すブロック図である。 図2は、第1音信号と、当該第1音信号に第2音信号が重畳された音信号とを示す図である。 図3は、実施の形態1に係る音信号処理装置の処理手順を示すフローチャートである。 図4は、第1音信号から算出される包絡線の算出結果を説明するための図である。 図5は、実施の形態1の変形例1に係る音信号処理装置の処理手順を示すフローチャートである。 図6は、実施の形態1の変形例2に係る音信号処理装置の処理手順を示すフローチャートである。 図7は、第1音信号をFFTした算出結果から得られる信号を説明するための図である。 図8は、実施の形態1の変形例3に係る音信号処理装置の処理手順を示すフローチャートである。 図9は、実施の形態1の変形例4に係る音信号処理装置の構成を示すブロック図である。 図10は、実施の形態1の変形例4に係る音信号処理装置の処理手順を示すフローチャートである。 図11は、実施の形態1の変形例5に係る音信号処理装置の構成を示すブロック図である。 図12は、実施の形態1の変形例5に係る音信号処理装置の処理手順を示すフローチャートである。 図13は、実施の形態1の変形例6に係る音信号処理装置の構成を示すブロック図である。 図14は、実施の形態1の変形例6に係る音信号処理装置の処理手順を示すフローチャートである。 図15は、実施の形態1の変形例7に係る音信号処理装置の構成を示すブロック図である。 図16は、実施の形態1の変形例7に係る音信号処理装置の処理手順を示すフローチャートである。 図17は、実施の形態2に係る音信号処理装置の構成を示すブロック図である。 図18は、実施の形態2に係る音信号処理装置の処理手順を示すフローチャートである。
 (本開示に至った経緯)
 従来、アルツハイマー型の認知症の患者は、脳内に発生したアミロイドβというたんぱく質が排出されずに蓄積することが知られている。蓄積したアミロイドβは、記憶する主体となる脳細胞を破壊する。これにより、認知症の患者は、物忘れしやすくなる。
 ここで、光又は音等によってガンマ波を脳内に励起させることで、アミロイドβの生産量が低下し、且つ、ミクログリアがアミロイドβを取り込むようになるため、アミロイドβの蓄積量が低下することが知られている。上記した特許文献1には、このような効果を利用することによって、聴覚刺激及び視覚刺激を組み合わせて認知症又はアルツハイマー病(以下、単に認知症等ともいう)の治療、予防、又は、症状の緩和等(以下、改善ともいう)を行うデバイスが開示されている。
 ガンマ波は、30Hz~90Hz程度である。音によって脳内でガンマ波を励起させるとすると、例えば、30Hz~90Hz程度の周波数の音を対象者に聞かせることが考えられる。しかしながら、30Hz~90Hz程度の周波数の音は、多くの人にとって不快に感じやすい問題がある。
 そこで、本発明者らは、これらの問題を鑑み、特定周波数帯域の音を好適に対象に出力できる音信号処理方法等を提供する。
 以下、各実施の形態及び各変形例について、図面を参照しながら具体的に説明する。なお、以下で説明する各実施の形態及び各変形例は、いずれも包括的又は具体的な例を示すものである。以下の各実施の形態及び各変形例で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の各実施の形態及び各変形例における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 なお、各図は模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付し、重複する説明は省略又は簡略化される場合がある。
 (実施の形態1)
 [構成]
 まず、実施の形態1に係る音信号処理装置の構成について説明する。
 図1は、実施の形態1に係る音信号処理装置100の構成を示すブロック図である。
 音信号処理装置100は、記憶装置110に記憶された音楽等の音コンテンツ(音情報)に基づく音信号を出力(再生)する装置(再生システム)である。音信号処理装置100は、例えば、イヤホン型のデバイスを有するポータブル型、又は、据え置き型のオーディオ等である。なお、音信号処理装置100は、後述するように音信号を処理してから出力できればよく、例えば、それぞれスピーカを有する、パーソナルコンピュータ、スマートフォン、タブレット端末等でもよい。
 なお、音信号処理装置100は、スピーカを備えず、スピーカが外付けされる構成であってもよい。例えば、音信号処理装置100は、アンプ160から出力されるアナログの音信号をスピーカ又はイヤホン等の外部に出力する構成でもよい。
 音信号処理装置100は、具体的には、記憶装置110と、DSP120と、CPU130と、メモリ140と、DAC150と、アンプ160と、スピーカ170と、を備える。
 記憶装置110は、音楽コンテンツ等の音コンテンツを記憶するストレージである。具体的には、記憶装置110に記憶される音コンテンツは、第1コンテンツの一例であり、当該音コンテンツに基づく信号(後述する音源信号)は、第1音信号の一例である。記憶装置110は、例えば、HDD(Hard Disk Drive)、フラッシュメモリ等によって実現される。
 DSP120は、メモリ140に記憶された制御プログラムを実行することにより、各種処理を実行するプロセッサ(Digital Signal Processor)である。具体的には、DSP120は、記憶装置110から音信号(第1音信号)を読み出し、読み出した音信号に信号処理を行う。より具体的には、DSP120は、音信号の特定の周波数帯域(以下、特定周波数帯域と呼称する)の成分の音圧を上げるために、当該成分のレベル(信号レベル)を上げる処理を行う。特定周波数帯域は、例えば、10Hz以上100kHz以下である。特定周波数帯域は、40Hz以上100Hz以下であってもよい。或いは、特定周波数帯域は、60Hz以上100Hz以下であってもよい。或いは、特定周波数帯域は、40Hz±10Hz(つまり、30Hz以上50Hz以下)であってもよい。また、特定周波数帯域は、30Hz~50Hz等のように範囲であってもよいし、40Hz等のように特定の周波数であってもよい。
 CPU130は、メモリ140に記憶された制御プログラムを実行することにより、各種処理を実行するプロセッサ(Central Processing Unit)である。例えば、CPU130は、メモリ140から付加情報200を取得する。
 メモリ140は、付加情報200を記憶するメモリである。メモリ140は、例えば、半導体メモリ等によって実現される。
 なお、メモリ140は、DSP120及びCPU130が実行する制御プログラムを記憶していてもよい。また、メモリ140は、DSP120及びCPU130が実行する処理に必要な閾値等を示す情報(閾値情報)を記憶していてもよい。
 付加情報200は、特定周波数帯域を含む音コンテンツである。具体的には、付加情報200は、特定周波数帯域のみを含む音コンテンツである。例えば、付加情報200に基づく音信号は、特定周波数帯域が40Hz等のように単一周波数の信号であれば、当該単一周波数の正弦波を含む信号である。或いは、例えば、付加情報200に基づく音信号は、特定周波数帯域が40Hz±10Hz等のように帯域に幅がある信号であれば、当該帯域の範囲に含まれる複数の周波数の正弦波を含む信号である。なお、付加情報200は、第2コンテンツの一例であり、付加情報200に基づく付加信号は、第2音信号の一例である。
 CPU130は、取得した付加情報200に基づく音信号(第2音信号)をDSP120に出力する。
 DSP120は、第1音信号と第2音信号とを重畳した信号(重畳信号)をDAC150に出力する。
 図2は、第1音信号と、当該第1音信号に第2音信号が重畳された音信号とを示す図である。具体的には、図2は、第1音信号をフーリエ変換したグラフ(第1パワースペクトル)と、当該第1音信号に第2音信号が重畳された音信号をフーリエ変換したグラフ(第2パワースペクトル)とを示す図である。図2に示すグラフの横軸は周波数(単位:Hz)であり、縦軸は音圧(単位:dB)である。また、図2では、第1パワースペクトルを実線で示し、第2パワースペクトルを破線で示す。
 図2に破線で示すように、第2パワースペクトルでは、例えば、30Hz~50Hzの音圧、特に40Hzの音圧が上がっていることが分かる。このように、DSP120は、第1音信号と第2音信号とを重畳することで、特定周波数帯域の信号が増強された信号を生成する。具体的には、DSP120は、第1コンテンツに対応する第1音信号における特定周波数帯域の信号レベルに応じて、第2コンテンツに対応する第2音信号であって、特定周波数帯域の成分を含む第2音信号の信号レベルを調整し、第1音信号と、調整された第2音信号と、を重畳して出力する。例えば、第2音信号は、特定周波数帯域の成分以外の成分を含む信号であってもよいし、特定周波数帯域の成分のみを含む信号であってもよい。或いは、例えば、第2音信号は、特定周波数帯域の成分と、後述する当該特定周波数帯域の倍音の成分とのみを含む信号であってもよい。
 DSP120が第2音信号の信号レベルを調整する方法は、特に限定されない。例えば、第1音信号の包絡線(包絡線の値)を算出して、算出した包絡線に基づいて第2音信号の信号を調整する方法が例示される。また、例えば、第1音信号を、短い所定の時間でフーリエ変換(つまり、短時間フーリエ変換)することで第1音信号における特定周波数帯域における信号レベルを算出し、算出した信号レベルに応じて第2音信号の信号レベルを調整する方法等が例示される。具体的な調整方法については、後述する。
 DAC150は、DSP120から取得した信号をデジタル信号からアナログ信号に変換する変換器(Digital Analog Converter)である。DAC150は、アナログ信号をアンプ160に出力する。
 アンプ160は、アナログ信号を増幅する増幅器である。アンプ160は、増幅したアナログ信号をスピーカ170に出力する。
 スピーカ170は、アンプ160から取得したアナログ信号に基づく音を出力する。スピーカ170は、耳穴に装着される形状のスピーカでもよいし、据え置き型のスピーカでもよい。また、スピーカ170は、鼓膜に向けて音波を発するスピーカであってもよいし、骨伝導スピーカであってもよい。
 なお、DSP120の処理及びCPU130の処理は、DSP120の処理及びCPU130のいずれによって実行されてもよい。DSP120とCPU130とは、1つのプロセッサにより実現されてもよい。DSP120とCPU130とは、1つのマイクロコントローラ(マイコン)により実現されてもよいし、複数のマイコンにより実現されてもよい。DSP120とCPU130とメモリ140とDAC150とは、1つのSoC(System-on-a-Chip)により実現されてもよいし、複数のSoCにより実現されてもよい。DSP120とCPU130とメモリ140とDAC150とは、上記した構成の任意の組み合わせにより実現されてもよい。
 [処理手順]
 続いて、音信号処理装置100の処理手順について説明する。
 図3は、実施の形態1に係る音信号処理装置100の処理手順を示すフローチャートである。具体的には、図3は、DSP120の処理手順を示すフローチャートである。
 まず、DSP120は、CPU130から、CPU130がメモリ140から取得した付加情報200に基づく音信号である付加信号を取得する(S101)。
 次に、DSP120は、記憶装置110から音コンテンツを読み出すことで、当該音コンテンツに基づく音信号である音源信号を取得する(S102)。
 次に、DSP120は、ヒルベルト変換を用いて、音源信号の包絡線を算出する(S103)。
 図4は、第1音信号から算出される包絡線の算出結果を説明するための図である。具体的には、図4は、第1音信号の信号レベルの時間変化と、当該第1音信号から算出される包絡線とをグラフで示す図である。図2に示すグラフの横軸は時間(単位:秒)であり、縦軸は音圧(単位:dB)である。なお、図4では、第1音信号を実線で示し、包絡線を一点鎖線で示す。
 第1音信号から算出される包絡線とは、第1音信号の複数の極大値と接するように設けられた線(n次関数/n:自然数)である。なお、第1音信号から算出される包絡線は、第1音信号の全ての極大値と接するように設けられてもよいし、全ての極大値ではなく、任意の2以上の極大値と接するように設けられてもよい。
 再び図3を参照し、ステップS103の次に、DSP120は、算出した包絡線と付加信号とを乗算する(S104)。具体的には、DSP120は、算出した包絡線と付加信号とを乗算することで信号(乗算信号)を生成する。
 例えば、付加信号は、特定周波数帯域における信号レベルがm(m>0)であり、特定周波数帯域以外の他の周波数帯域における信号レベルがゼロである信号である。mは、任意に設定されてよく、特に限定されない。例えば、m=1である。このような付加信号と包絡線とを乗算すると、特定周波数帯域における包絡線(より具体的には、包絡線の信号レベル)は、m倍され、他の周波数帯域における包絡線は、ゼロとなる。つまり、この場合、乗算信号においては、特定周波数帯域における信号レベルが、包絡線のm倍となり、他の周波数帯域における信号レベルが、ゼロとなる。このように、乗算信号は、包絡線が音源信号の信号レベルに応じた値となるため、音源信号の信号レベルに応じた値となる。
 次に、DSP120は、生成した乗算信号と音源信号とを重畳(加算)させる(S105)。具体的には、DSP120は、生成した乗算信号と、音源信号とを重畳することで信号(重畳信号)を生成する。これにより、重畳信号は、音源信号における特定周波数帯域の信号レベルを、音源信号の信号レベルに応じて補正された信号となる。言い換えると、DSP120は、音源信号に、音源信号の信号レベルに応じた信号レベルの信号を加えることができる。
 次に、DSP120は、生成した信号(重畳信号)をDAC150に出力(伝送)する(S106)。
 重畳信号は、DAC150からアンプ160を介してスピーカ170に伝送される。スピーカ170からは、当該重畳信号に基づく音が出力される。
 [変形例]
 以下、各変形例について説明する。なお、以下では、上記した実施の形態1又は後述する各変形例との差異点を中心に説明する。
 <変形例1>
 変形例1に係る音信号処理装置は、構成については図1に示す音信号処理装置100と同様であるが、処理手順が異なる。具体的には、変形例1に係るDSP120は、第1音信号の信号レベルが閾値以下の場合、第2音信号の信号レベルを所定のレベルとする。これにより、第1音信号の信号レベルが低すぎるような場合においても、所定のレベルの第2音信号が重畳されるため、特定周波数帯域の信号レベルが下がりすぎることを抑制できる。
 図5は、実施の形態1の変形例1に係る音信号処理装置の処理手順を示すフローチャートである。具体的には、図5は、変形例1に係る音信号処理装置が備えるDSP120の処理手順を示すフローチャートである。
 まず、DSP120は、CPU130から、CPU130がメモリ140から取得した付加情報200に基づく音信号である付加信号を取得する(S101)。
 次に、DSP120は、記憶装置110から音コンテンツを読み出すことで、当該音コンテンツに基づく音信号である音源信号を取得する(S102)。
 次に、DSP120は、ヒルベルト変換を用いて、音源信号の包絡線を算出する(S103)。
 次に、DSP120は、算出した包絡線が閾値(第1閾値)より大きいか否かを判定する(S201)。第1閾値は、予め任意に定められてよく、特に限定されない。第1閾値を示す第1閾値情報は、例えば、メモリ140に予め記憶されている。DSP120は、例えば、CPU130がメモリ140から取得した第1閾値情報をCPU130から取得する。
 DSP120は、算出した包絡線が閾値以下であると判定した場合(S201でNo)、包絡線の値を閾値の値に変更する(S202)。具体的には、DSP120は、包絡線を構成する各値のうち、閾値より大きい値をそのままの値とし、閾値以下の値を閾値の値とするように、包絡線を構成する各値を変更する。
 これにより、包絡線の値が小さくなりすぎることを抑制する。
 ステップS201でYesの場合又はステップS202の次に、DSP120は、算出した包絡線と付加信号とを乗算することで乗算信号を生成する(S104)。
 次に、DSP120は、生成した乗算信号と、音源信号とを重畳することで信号(重畳信号)を生成する(S105)。
 次に、DSP120は、生成した信号(重畳信号)をDAC150に出力する(S106)。
 重畳信号は、DAC150からアンプ160を介してスピーカ170に伝送される。スピーカ170からは、当該重畳信号に基づく音が出力される。
 以上のように、変形例1に係るDSP120は、例えば、第2音信号の信号レベルの調整では、第1音信号における特定周波数帯域の信号レベルが閾値より大きい場合、第1音信号における特定周波数帯域の信号レベルに対して所定の比率で第2音信号の信号レベルを高くし、第1音信号の信号レベルが閾値以下の場合、第2音信号の信号レベルを所定のレベルとする。
 なお、所定の比率及び所定のレベルは、予め任意に定められてよく、特に限定されない。本例では、所定の比率は、包絡線により決定される。例えば、ステップS104では、包絡線に予め定められた所定の値がさらに乗算及び/又は加算されてもよい。
 <変形例2>
 変形例2に係る音信号処理装置は、構成については図1に示す音信号処理装置100と同様であるが、処理手順が異なる。具体的には、変形例2に係るDSP120は、包絡線の代わりに音源信号をFFTした算出結果から得られる信号(対応信号)と付加信号とを乗算することで乗算信号を生成する。これによってもまた、包絡線を用いた場合と同様に、音源信号に、音源信号に応じた信号レベルの信号を重畳することができる。
 図6は、実施の形態1の変形例2に係る音信号処理装置の処理手順を示すフローチャートである。具体的には、図6は、変形例2に係る音信号処理装置が備えるDSP120の処理手順を示すフローチャートである。
 まず、DSP120は、CPU130から、CPU130がメモリ140から取得した付加情報200に基づく音信号である付加信号を取得する(S101)。
 次に、DSP120は、記憶装置110から音コンテンツを読み出すことで、当該音コンテンツに基づく音信号である音源信号を取得する(S102)。
 次に、DSP120は、特定周波数帯域(言い換えると、付加信号に対応する周波数帯域)の信号レベルを所定の時間毎に集計し、集計した信号レベルに基づいて対応信号を生成する(S301)。
 図7は、図7は、第1音信号をFFTした算出結果から得られる信号(対応信号)を説明するための図である。具体的には、図7は、第1音信号の信号レベルの時間変化と、当該第1音信号をFFTした算出結果から得らえる信号とをグラフで示す図である。図7に示すグラフの横軸は時間(単位:秒)であり、縦軸は音圧(単位:dB)である。なお、図7では、第1音信号を実線で示し、FFTした算出結果から得られる信号を二点鎖線で示す。
 例えば、DSP120は、第1音信号を所定の時間区間ごとにFFTする。次に、DSP120は、第1音信号をFFTした算出結果における特定周波数帯域の信号レベルを、所定の時間区間ごとの信号レベルに決定する。次に、DSP120は、所定の時間区間ごとに決定した信号レベルの信号を生成する。これにより、DSP120は、図7に二点鎖線で示す信号のような、所定の時間区間内では信号レベルが一定となる対応信号を生成する。
 なお、所定の時間は、予め任意に定められてよく、特に限定されない。所定の時間は、例えば、数ミリ秒のオーダである。図7に示す例では、所定の時間は、2.5ミリ秒である。所定の時間を示す時間情報は、例えば、メモリ140に予め記憶されている。DSP120は、例えば、CPU130がメモリ140から取得した時間情報をCPU130から取得する。
 また、変形例2に係る音信号処理装置は、時間を測定するためにRTC(Real Time Clock)等の計時部を備えてもよい。
 再び図6を参照し、ステップS301の次に、DSP120は、生成した対応信号と付加信号とを乗算することで乗算信号を生成する(S302)。
 次に、DSP120は、生成した乗算信号と、音源信号とを重畳することで信号(重畳信号)を生成する(S105)。
 次に、DSP120は、生成した信号(重畳信号)をDAC150に出力する(S106)。
 重畳信号は、DAC150からアンプ160を介してスピーカ170に伝送される。スピーカ170からは、当該重畳信号に基づく音が出力される。
 <変形例3>
 変形例3に係る音信号処理装置は、構成については図1に示す音信号処理装置100と同様であるが、処理手順が異なる。具体的には、変形例3に係るDSP120は、第1音信号の特定周波数帯域の倍音の周波数帯域の信号レベルを上げるように制御する。特定周波数帯域の倍音もまた、特定周波数帯域の音と同様に、認知症等の改善に効果的であることが知られている。そのため、認知症等の改善にさらに効果的な音が出力される。
 図8は、実施の形態1の変形例3に係る音信号処理装置の処理手順を示すフローチャートである。具体的には、図8は、変形例3に係る音信号処理装置が備えるDSP120の処理手順を示すフローチャートである。
 まず、DSP120は、CPU130から、CPU130がメモリ140から取得した付加情報200に基づく音信号である付加信号を取得する(S101)。
 次に、DSP120は、記憶装置110から音コンテンツを読み出すことで、当該音コンテンツに基づく音信号である音源信号を取得する(S102)。
 次に、DSP120は、ヒルベルト変換を用いて、音源信号の包絡線を算出する(S103)。
 次に、DSP120は、算出した包絡線と付加信号と当該付加信号の倍音(倍音信号)とを乗算することで乗算信号を生成する(S401)。
 例えば、特定周波数帯域が40Hz±10Hzである場合、DSP120は、80Hz±20Hzの倍音信号を生成する。なお、特定周波数帯域の倍音は、特定周波数帯域の2倍の周波数だけでなく、p倍(p:自然数)の周波数であればよい。また、倍音信号には、1つの周波数の信号だけが含まれていてもよいし、複数の周波数の信号が含まれていてもよい。例えば、倍音信号には、特定周波数帯域の2倍の周波数の信号と、特定周波数帯域の3倍の周波数の信号とが含まれていてもよい。倍音信号を示す倍音情報が、メモリ140に予め記憶されていてもよい。この場合、DSP120は、例えば、CPU130がメモリ140から取得した倍音情報をCPU130から取得する。
 次に、DSP120は、生成した乗算信号と、音源信号とを重畳することで信号(重畳信号)を生成する(S105)。
 次に、DSP120は、生成した信号(重畳信号)をDAC150に出力する(S106)。
 重畳信号は、DAC150からアンプ160を介してスピーカ170に伝送される。スピーカ170からは、当該重畳信号に基づく音が出力される。
 以上のように、変形例4に係るDSP120は、例えば、第2音信号の信号レベルの調整では、さらに、特定周波数帯域の倍音の周波数帯域の信号レベルを上げるように制御(調整)する。
 <変形例4>
 変形例4では、制御情報に基づいて付加信号の信号レベルを制御する。これによれば、例えば、制御情報をユーザから受け付けることで、ユーザが所望する音量で特定周波数帯域の音を出力できる。
 図9は、実施の形態1の変形例4に係る音信号処理装置101の構成を示すブロック図である。
 音信号処理装置101は、記憶装置110と、DSP120と、CPU130と、メモリ141と、DAC150と、アンプ160と、スピーカ170と、通信IF180と、を備える。
 メモリ141は、付加情報200と、振幅値情報201とを記憶するメモリである。メモリ141は、例えば、半導体メモリ等によって実現される。
 振幅値情報201は、制御情報の一例であって、付加情報200の音圧(より具体的には、付加情報200に基づく付加信号の信号レベル)を決定するための情報である。振幅値情報201は、「ON」、「OFF」、「UP」、又は、「DOWN」等の処理内容を示す情報である。
 例えば、振幅値情報201が「ON」を示す場合、DSP120は、付加情報200に基づく付加信号の信号レベルを1.0倍して記憶装置110に記憶されている音源信号に加算してDAC150に出力する。
 或いは、例えば、振幅値情報201が「OFF」を示す場合、DSP120は、付加情報200に基づく付加信号の信号レベルを0倍して記憶装置110に記憶されている音源信号に加算してDAC150に出力する。つまり、この場合、例えば、DSP120は、付加情報200に基づく付加信号を音源信号に加算せずにDAC150に出力する。
 或いは、例えば、振幅値情報201が「UP」を示す場合、DSP120は、付加情報200に基づく付加信号の信号レベルを1.1倍して記憶装置110に記憶されている音源信号に加算してDAC150に出力する。
 或いは、例えば、振幅値情報201が「DOWN」を示す場合、DSP120は、付加情報200に基づく付加信号の信号レベルを0.9倍して記憶装置110に記憶されている音源信号に加算してDAC150に出力する。
 これらのように、DSP120は、例えば、特定周波数帯域の信号レベルを示す制御情報を取得し、第2音信号の信号レベルの調整では、制御情報に基づいて、特定周波数帯域の信号レベルを調整する。具体的には、DSP120は、例えば、振幅値情報201に基づいて、付加信号のオンオフ(つまり、付加信号を音源信号に重畳させるか否か)を切り替えたり信号レベルを切り替えたりする。
 なお、振幅値情報201は、数値を示す情報でもよい。
 例えば、振幅値情報201が「1.0」を示す場合、DSP120は、付加情報200に基づく付加信号の信号レベルを1.0倍して記憶装置110に記憶されている音源信号に加算してDAC150に出力する。
 或いは、例えば、振幅値情報201が「0.0」を示す場合、DSP120は、付加情報200に基づく付加信号の信号レベルを0倍して記憶装置110に記憶されている音源信号に加算してDAC150に出力する。つまり、この場合、例えば、DSP120は、付加情報200に基づく付加信号を音源信号に加算せずにDAC150に出力する。
 或いは、例えば、振幅値情報201が「1.1」を示す場合、DSP120は、付加情報200に基づく付加信号の信号レベルを1.1倍して記憶装置110に記憶されている音源信号に加算してDAC150に出力する。
 或いは、例えば、振幅値情報201が「0.9」を示す場合、DSP120は、付加情報200に基づく付加信号の信号レベルを0.9倍して記憶装置110に記憶されている音源信号に加算してDAC150に出力する。
 これらのように、振幅値情報201は、付加信号の信号レベルをどのように設定するかを示す情報であればよい。
 振幅値情報201は、例えば、通信IF180を介して外部端末300から取得される。
 通信IF180は、音信号処理装置101と外部端末300とが通信するための通信IF(Interface)である。通信IF180は、例えば、音信号処理装置101と外部端末300とが無線通信する場合、アンテナと無線通信回路とにより実現される。或いは、通信IF180は、例えば、音信号処理装置101と外部端末300とが有線通信する場合、通信線が接続されるコネクタ等により実現される。
 なお、通信に採用される通信規格は、Bluetooth(登録商標)又はBLE(Bluetooth(登録商標) Low Energy)等の通信規格でもよいし、独自の通信規格でもよく、特に限定されない。
 外部端末300は、ユーザが操作する通信端末である。外部端末300は、例えば、操作卓、スマートフォン等の端末である。ユーザは、外部端末300を操作することで、振幅値情報201を音信号処理装置101に送信する。これにより、ユーザは、外部端末300を操作することで、付加情報200に基づく付加信号のオンオフを切り替えたり信号レベルを切り替えたりできる。CPU130は、例えば、通信IF180を介して外部端末300から取得した振幅値情報201をメモリ141に記憶させる。CPU130は、例えば、通信IF180を介して外部端末300から振幅値情報201を取得する度に、メモリ141に記憶された振幅値情報201を更新する。
 なお、メモリ141は、DSP120及びCPU130が実行する制御プログラムを記憶していてもよい。また、メモリ141は、DSP120及びCPU130が実行する処理に必要な閾値等を示す情報(閾値情報)を記憶していてもよい。
 図10は、実施の形態1の変形例4に係る音信号処理装置101の処理手順を示すフローチャートである。具体的には、図10は、変形例4に係る音信号処理装置101が備えるDSP120の処理手順を示すフローチャートである。
 まず、DSP120は、CPU130から、CPU130がメモリ141から取得した付加情報200に基づく音信号である付加信号を取得する(S101)。また、例えば、DSP120は、CPU130から、CPU130がメモリ141から取得した振幅値情報201を取得する。
 次に、DSP120は、記憶装置110から音コンテンツを読み出すことで、当該音コンテンツに基づく音信号である音源信号を取得する(S102)。
 次に、DSP120は、ヒルベルト変換を用いて、音源信号の包絡線を算出する(S103)。
 次に、DSP120は、算出した包絡線、付加信号、及び、例えば振幅値情報201が示す数値を乗算することで乗算信号を生成する(S501)。
 次に、DSP120は、生成した乗算信号と音源信号とを重畳することで信号(重畳信号)を生成する(S105)。
 次に、DSP120は、生成した信号(重畳信号)をDAC150に出力する(S106)。
 重畳信号は、DAC150からアンプ160を介してスピーカ170に伝送される。スピーカ170からは、当該重畳信号に基づく音が出力される。
 以上のように、例えば、DSP120は、特定周波数帯域の信号レベルを示す制御情報(例えば、振幅値情報201)を取得し、制御情報に基づいて、第2音信号の信号レベルの調整(制御)を行う。
 <変形例5>
 変形例5では、ユーザの生体情報に基づいて付加信号の信号レベルを制御する。これによれば、例えば、ユーザの快適さに応じた音量で特定周波数帯域の音を出力できる。
 図11は、実施の形態1の変形例5に係る音信号処理装置102の構成を示すブロック図である。
 音信号処理装置102は、記憶装置110と、DSP120と、CPU130と、メモリ142と、DAC150と、アンプ160と、スピーカ170と、通信IF180と、を備える。
 メモリ142は、付加情報200と、pNN情報202とを記憶するメモリである。メモリ142は、例えば、半導体メモリ等によって実現される。
 pNN情報202は、付加情報200の音圧を決定するための情報である。具体的には、pNN情報202は、生体情報の一例であって、pNN50値を示す情報である。pNN50値とは、連続した隣接するRR間隔の差が50msを超える心拍の割合である。
 CPU130は、例えば、通信IF180を介して心拍計310からpNN情報202を繰り返し取得し、メモリ142に記憶される。これにより、メモリ142には、ユーザのpNN50値の時間変化を示すpNN情報202が記憶される。
 心拍計310は、ユーザの心拍を計測してpNN50値を算出し、算出結果を示すpNN情報202を繰り返し音信号処理装置102に送信する装置である。
 なお、心拍計310が繰り返しpNN情報202を送信する時間間隔は、予め任意に定められてよく、特に限定されない。
 DSP120は、pNN情報202に基づいて、付加信号の信号レベルを切り替える。例えば、DSP120は、pNN情報202が示すpNN50値が低下した場合、付加信号の信号レベルを低減させる。
 pNN50値は、ユーザの快/不快(ユーザが快適であるか否か)が反映された値となることが知られている。例えば、何らかの刺激をユーザに与えた場合にpNN50値が低下したとき、ユーザが不快に感じている可能性が高い。そこで、DSP120は、例えばユーザの生体情報を取得し、第2音信号の信号レベルの調整では、生体情報に基づいて、特定周波数帯域の信号レベルを制御(調整)する。具体的には、DSP120は、例えば、pNN情報202が示すpNN50値が低下した場合、付加信号の信号レベルを低減させる。
 なお、例えば、DSP120は、pNN情報202が示すpNN50値が上昇した場合、付加信号の信号レベルを上昇させてもよい。
 また、CPU130は、例えば、心電図のようなユーザの心拍を示す情報を、通信IF180を介して心拍計310から取得し、取得した情報に基づいてユーザのpNN50値を算出し、算出結果を示す情報をpNN情報202としてメモリ142に記憶させてもよい。
 図12は、実施の形態1の変形例5に係る音信号処理装置102の処理手順を示すフローチャートである。具体的には、図12は、変形例5に係る音信号処理装置102が備えるDSP120の処理手順を示すフローチャートである。
 まず、DSP120は、CPU130から、CPU130がメモリ142から取得した付加情報200に基づく音信号である付加信号を取得する(S101)。
 次に、DSP120は、記憶装置110から音コンテンツを読み出すことで、当該音コンテンツに基づく音信号である音源信号を取得する(S102)。
 次に、DSP120は、ヒルベルト変換を用いて、音源信号の包絡線を算出する(S103)。
 DSP120は、CPU130から、CPU130がメモリ142から取得したpNN情報202を取得し、取得したpNN情報202に基づいて、今回のpNN50値が前回のpNN50値以上である否かを判定する(S601)。具体的には、DSP120は、最新のpNN値が、当該pNN値より1つ前のpNN50値以上であるか否かを判定する。
 DSP120は、今回のpNN50値が前回のpNN50値未満であると判定した場合(S601でNo)、付加情報200に基づく付加信号の信号レベルを低減させる(S602)。DSP120が低減する信号レベルは、予め任意に定められてよい。また、DSP120が低減する信号レベルは、前回のpNN50値と今回のpNN50値との差分に基づいて決定されてもよい。例えば、DSP120は、当該差分が大きい程、付加信号の信号レベルを大きく低減させてもよい。
 ステップS601でYesの場合又はステップS602の次に、DSP120は、算出した包絡線と付加信号とを乗算することで乗算信号を生成する(S104)。
 次に、DSP120は、生成した乗算信号と音源信号とを乗算することで信号(重畳信号)を生成する(S105)。
 次に、DSP120は、生成した信号(重畳信号)をDAC150に出力する(S106)。
 重畳信号は、DAC150からアンプ160を介してスピーカ170に伝送される。スピーカ170からは、当該重畳信号に基づく音が出力される。
 なお、本例では、心拍計310から取得されるpNN情報202に基づいて、付加信号の信号レベルの変更の処理が行われる。付加信号の信号レベルの変更の処理は、pNN情報202ではなく、他の生体情報に基づいて行われてもよい。生体情報は、ユーザが快適に感じている程度を示す情報である。当該他の生体情報は、例えば、ユーザの呼吸数を示す情報、ユーザの体温を示す情報、ユーザの発汗量を示す情報、ユーザの脳波を示す情報、又は、ユーザの表情を示す情報(例えば、画像情報)であってもよい。付加信号の信号レベルの変更の処理は、ユーザのこれらの生体情報に基づいて行われてもよい。DSP120は、例えば、生体情報が、ユーザが不快に感じていることを示す(具体的には、快適に感じている度合いが低下したことを示す)場合、第2音信号のレベルを低減する。
 例えば、CPU130は、通信IF180を介して、体温計、脳波計、カメラ等のユーザの生体情報を取得する機器からユーザの生体情報を取得し、メモリ142に記憶させてもよい。DSP120は、ユーザの生体情報の時間変化に基づいて、付加信号の信号レベルを調整してもよい。
 <変形例6>
 変形例7では、スピーカ170から出力された音を収音し、収音した音に基づいて第2音信号の信号レベルを調整する。これによれば、スピーカ170の設置環境等に応じて適切な音量の音をスピーカ170から出力できる。
 図13は、実施の形態1の変形例6に係る音信号処理装置103の構成を示すブロック図である。
 音信号処理装置103は、DSP120と、CPU130と、メモリ141と、DAC150と、アンプ160と、スピーカ170と、マイク190と、を備える。
 このように、例えば、音信号処理装置103は、記憶装置110を備えない。このような場合、例えば、音信号処理装置103は、通信可能に接続されたサーバ装置等の外部機器が有する記憶装置320から音源信号等を取得する。もちろん、音信号処理装置103は、当該サーバ装置等と通信するための通信IFを備えてもよい。
 これによれば、記憶装置110のような大きいサイズの部品を有することなく音信号処理装置103が実現されるため、例えば、音信号処理装置103は、小型化でき、例えば、イヤホンとして実現され得る。
 マイク190は、スピーカ170から出力された音を収音し、収音した音に基づく音信号(以下、マイク信号ともいう)を出力するマイクである。マイク190は、例えば、コンデンサマイク、ダイナミックマイク、又は、MEMS(Micro Electro Mechanical Systems)マイク等のマイクロフォンである。マイク190は、例えば、音信号処理装置103がイヤホンである場合、当該イヤホンの筐体内に収容される、いわゆるイヤホンマイクである。
 マイク190は、収音した音に基づくマイク信号をCPU130に出力する。
 CPU130は、例えば、マイク信号に基づいて、振幅値情報201を更新する。言い換えると、CPU130は、マイク190により検出された、スピーカ170から出力された音(出力音)に基づくマイク信号(出力音信号)を、マイク190から取得する。
 DSP120は、振幅値情報201に基づいて、第2音信号の信号レベルを調整する。つまり、DSP120は、スピーカ170から出力された出力音に基づく出力音信号に基づいて、第2音信号における特定周波数帯域の信号レベルをさらに制御(調整)する。
 図14は、実施の形態1の変形例6に係る音信号処理装置103の処理手順を示すフローチャートである。具体的には、図14は、変形例6に係る音信号処理装置103が備えるCPU130が実行する、振幅値情報201の更新の処理手順を示すフローチャートである。
 まず、CPU130は、マイク190からマイク信号(出力音信号)を取得する(S701)。
 次に、CPU130は、付加信号に対応する帯域(特定周波数帯域)の信号レベルを確認し、マイク信号を短時間フーリエ変換する(S702)。フーリエ変換される時間は、任意に定められてよく、特に限定されない。
 CPU130は、マイク信号における特定周波数帯域の信号レベルが、予め定められた閾値(第2閾値)より低いか否かを判定する(S703)。第2閾値を示す第2閾値情報は、例えば、予めメモリ141に記憶されていてればよく、特に限定されない。第2閾値を示す第2閾値情報は、例えば、メモリ140に予め記憶されている。DSP120は、例えば、CPU130がメモリ140から取得した第2閾値情報をCPU130から取得する。
 なお、上記した第1閾値と第2閾値とは、同じ値でもよいし、異なる値でもよい。
 CPU130は、マイク信号における特定周波数帯域の信号レベルが、予め定められた閾値より低いと判定した場合(S703でYes)、振幅値情報201(より具体的には、振幅値情報201が示す制御振幅値)を更新する(S704)。
 スピーカ170の設置環境によっては、想定される音量で特定周波数帯域の音がスピーカ170から出力されていない場合がある。そこで、マイク190によって実際にスピーカ170から出力される音を収音し、収音された音に基づくマイク信号を用いて、振幅値情報201を更新する、つまり、特定周波数帯域の音圧(音量)を制御する。
 DSP120は、以上のように更新された振幅値情報201を用いて、例えば、図10に示す処理を行う。
 <変形例7>
 イヤホン等を用いて両耳から30Hz~90Hz程度の周波数の音を対象者に聞かせる場合に、例えば、右耳に装着されたスピーカから発せられる音と左耳に装着されたスピーカから発せられる音とで位相差があると認知症等の改善の効果が得られにくい問題がある。そこで、変形例7では、2つの音信号の位相差を低減する(より具体的には、位相を揃える)処理を行う。これにより、認知症等の改善の効果を得やすくできる。
 図15は、実施の形態1の変形例7に係る音信号処理装置104の構成を示すブロック図である。
 音信号処理装置104は、DSP120と、CPU130と、メモリ143と、DAC150と、アンプ160と、スピーカ171と、スピーカ172と、通信IF180と、を備える。
 メモリ143は、強調情報203を記憶するメモリである。メモリ143は、例えば、半導体メモリ等によって実現される。
 なお、メモリ143は、DSP120及びCPU130が実行する制御プログラムを記憶していてもよい。また、メモリ143は、DSP120及びCPU130が実行する処理に必要な閾値等を示す情報(閾値情報)を記憶していてもよい。
 強調情報203は、DSP120が取得する音信号における特定周波数帯域の信号レベルを上げる(増強する)ための情報である。強調情報203は、例えば、特定周波数帯域を示す情報と、所定の信号レベルを示す情報と、が含まれる。DSP120は、例えば、強調情報203に基づいて、後述する環境音信号における特定周波数帯域の信号レベルを所定のレベルまで上げる処理を行う。
 スピーカ171、172は、それぞれ、アンプ160から取得したアナログ信号に基づく音を出力する。スピーカ171、172は、例えば、耳穴に装着される形状のスピーカ(つまり、イヤホン型のスピーカ)である。例えば、スピーカ171は、左耳に装着されるイヤホンであり、スピーカ171は、右耳に装着されるイヤホンである。
 例えば、記憶装置320には、左耳に装着されるイヤホンから出力される音信号(以下、Lchともいう)の音コンテンツと、右耳に装着されるイヤホンから出力される音信号(以下、Rchともいう)の音コンテンツとが記憶される。
 DSP120は、特定周波数帯域におけるLchとRchとの位相を揃える(言い換えると、位相を合わせる、位相差をなくす、又は、位相差をゼロにする)処理をして、DAC150にLchとRchとを出力する。或いは、例えば、DSP120は、特定周波数帯域におけるLchとRchとの位相差を低減させる処理をして、DAC150にLchとRchとを出力する。例えば、DSP120は、LchとRchとのそれぞれに短時間フーリエ変換(より具体的には、短時間FFT(Fast Fourier Transform))を行い、特定周波数帯域におけるLchとRchとの位相を揃え、さらに、逆フーリエ変換(より具体的には、逆短時間FFT)を行うことで、LchとRchとの位相を揃える。
 なお、DSP120は、LchとRchとの位相を揃える(合わせる)処理では、Lchのみの位相を変更してもよいし、Rchのみの位相を変更してもよいし、LchとRchとの両方の位相を変更してもよい。
 また、位相差をゼロにするとは、実質的にゼロとすればよく、完全にゼロではなくわずかな位相のずれがあってもよい。
 このように、DSP120は、第1コンテンツが、互いに異なる複数の音コンテンツを含む場合、例えば、複数の音コンテンツに対応する複数の第1音信号それぞれについて、複数の第1音信号それぞれにおける特定周波数帯域の位相差を低減するように補正する。
 また、スピーカ171、172は、鼓膜に向けて音波を発するスピーカであってもよいし、骨伝導スピーカであってもよい。
 マイク330は、スピーカ171、172によって音が出力される環境の環境音を収音し、収音された環境音に基づく音信号(以下、環境音信号ともいう)を、通信IF180を介してCPU130に出力するマイクである。
 CPU130は、例えば、マイク330から通信IF180を介して環境音に基づく環境音信号の取得し、当該環境音信号における特定周波数帯域の成分を第2音信号とするように付加情報(第2コンテンツ)を生成し、メモリ143に記憶させる。
 DSP120は、例えば、通信IF180を介してマイク330から取得した環境音信号における特定周波数帯域の信号レベルを、強調情報203に基づいて増強する。
 また、DSP120は、例えば、増強した環境音信号と、記憶装置320から取得した音源信号とを重畳して、DAC150に出力する。つまり、環境音信号は、第2音信号の一例であって、上記した付加信号と同様に音源信号に重畳されるように用いられる。
 マイク330は、例えば、音信号処理装置104がイヤホンである場合、当該イヤホンの筐体に収容される。
 図16は、実施の形態1の変形例7に係る音信号処理装置104の処理手順を示すフローチャートである。具体的には、図16は、変形例7に係る音信号処理装置104が備えるDSP120の処理手順を示すフローチャートである。
 まず、CPU130は、マイク330から環境音信号を取得する(S801)。
 次に、CPU130は、環境音信号に基づいて付加情報を生成する(S802)。当該付加情報は、例えば、環境音信号を示す情報であってもよいし、環境音信号に狭帯域フィルタが適用されることで当該環境音信号のうちの特定周波数帯域のみを含む信号を示す情報であってもよい。ここでは、CPU130は、環境音信号を示す付加情報を生成し、メモリ143に記憶させたとして説明する。
 なお、音信号処理装置104は、狭帯域フィルタとして機能するフィルタ回路を備えてもよい。
 次に、DSP120は、CPU130から、CPU130がメモリ143から取得した強調情報203を取得する(S803)。
 次に、DSP120は、環境音信号に狭帯域フィルタを適用し、強調情報203に基づいて、特定周波数帯域の信号レベルを増強する(S804)。
 なお、音信号処理装置104は、狭帯域フィルタとして機能するフィルタ回路を備えてもよい。
 次に、DSP120は、記憶装置320から音コンテンツを読み出すことで、当該音コンテンツに基づく音信号である音源信号を取得する(S102)。例えば、DSP120は、音源信号として、LchとRchとを取得する。
 次に、DSP120は、特定周波数帯域におけるLchとRchとの位相を揃えるように、Lch及びRchの少なくとも一方を補正することで信号(補正信号)を生成する(S805)。なお、DSP120は、特定周波数帯域におけるLchとRchとの位相差を低減するように、Lch及びRchの少なくとも一方を補正してもよい。
 次に、DSP120は、補正した信号(補正信号)と環境音信号と重畳することで信号(重畳信号)を生成する(S806)。
 次に、DSP120は、生成した信号(重畳信号)をDAC150に出力する(S106)。
 Lch及びRchに対応する重畳信号は、DAC150からアンプ160を介してスピーカ171、172に伝送される。スピーカ171、172からは、当該信号に基づく音が出力される。
 [効果等]
 以上説明したように、本開示の一態様に係る音信号処理方法は、第1コンテンツに対応する第1音信号(例えば、音源信号)における特定周波数帯域の信号レベルに応じて、第2コンテンツに対応する第2音信号(例えば、付加信号)であって、当該特定周波数帯域の成分を含む第2音信号の信号レベルの調整を行い(例えば、ステップS103~ステップS104)、第1音信号と、調整された第2音信号と、を重畳(例えば、ステップS105)して出力を行う(例えば、ステップS106)。
 これによれば、音楽等の第1コンテンツに対応する第1音信号に基づく音とともに、認知症等の改善に効果的な特定周波数帯域の音を出力できる。そのため、ユーザには、音楽等とともに特定周波数帯域の音が聞こえるため、特定周波数帯域の音によってユーザが不快に感じることを抑制できる。つまり、本開示の一態様に係る音信号処理方法によれば、特定周波数帯域の音を好適に対象(例えば、当該音信号処理方法によって出力された音を聞くユーザ)に出力できる。
 また、例えば、上記した調整では、第1音信号における特定周波数帯域の信号レベルが閾値より大きい場合(例えば、ステップS201でYes)、第1音信号における特定周波数帯域の信号レベルに対して所定の比率で第2音信号の信号レベルを高くし(例えば、ステップS104)、第1音信号の信号レベルが閾値未満の場合(例えば、ステップS201でNo)、第2音信号の信号レベルを所定の信号レベルとする(例えば、ステップS202及びステップS104)。上記した変形例1では、DSP120は、音源信号(第1音信号)の包絡線を算出し、算出した包絡線が閾値より大きければそのまま包絡線の値と第2音信号とを乗算することで、所定の比率で第2音信号の信号レベルを高くしている。一方、DSP120は、算出した包絡線が閾値以下であれば包絡線の値を所定の信号レベルに対応する値として第2音信号と乗算することで、第2音信号の信号レベルを所定の信号レベルとしている。
 これによれば、第1音信号における特定周波数帯域の信号レベルがある程度大きければ、それに応じて第2音信号の信号レベルも大きくなるため、第2音信号の信号レベルを大きくしても、特定周波数帯域の音によってユーザが不快に感じることを抑制できる。また、第1音信号における特定周波数帯域の信号レベルがある程度大きければ、第2音信号の信号レベルを予め定められた所定のレベルとすることで、第2音信号の信号レベルが小さくなりすぎて認知症等に効果がなくなることを抑制できる。
 また、例えば、第1コンテンツは、互いに異なる複数の音コンテンツを含み、音信号処理方法では、さらに、複数の音コンテンツに対応する複数の第1音信号それぞれについて、複数の第1音信号それぞれにおける特定周波数帯域の位相差を低減するように補正を行う(例えば、ステップS805)。
 これによれば、複数の第1音信号(例えば、上記したRch及びLch)それぞれにおける特定周波数帯域の位相差を低減するように補正することで、それぞれに第2音信号を重畳させた場合に、特定周波数帯域の信号レベルを近づけることができる。ここで、例えば、イヤホン等を用いて両耳から特定周波数帯域の音をユーザに聞かせる際に、右耳に装着されたスピーカから発せられる音と左耳に装着されたスピーカから発せられる音とで位相差があると認知症等の改善の効果が得られにくい問題がある。そこで、例えば、音信号処理装置が備えるスピーカがスピーカ171、172のようにイヤホン等で実現される場合に、左耳に装着されたスピーカ171から発せられる音と右耳に装着されたスピーカ172から発せられる音との位相差を低減することで、認知症等の改善に効果的な音が出力される。
 また、例えば、本開示の一態様に係る音信号処理方法は、さらに、環境音に基づく環境音信号の取得を行い(例えば、ステップS801)、当該環境音信号における特定周波数帯域の成分を第2音信号とするように第2コンテンツの生成を行う(例えば、ステップS802)。
 これによれば、第1音信号に特定周波数帯域の信号が含まれていなくても、環境音を用いて付加情報200を生成し、第2音信号を第1音信号に重畳して出力できる。また、例えば、環境音に基づいて第2音信号が生成されるため、特定周波数帯域の音が大きくなっても、環境音に近い音であることから環境音と異なることによる違和感を抑制できるため、特定周波数帯域の音によってユーザが不快に感じることを抑制できる。
 また、例えば、上記した調整では、さらに、特定周波数帯域の倍音の周波数帯域の信号レベルを上げるように処理を行う(例えば、ステップS401)。
 特定周波数帯域の倍音もまた、特定周波数帯域の音と同様に、認知症等の改善に効果的であることが知られている。そのため、これによれば、認知症等の改善にさらに効果的な音が出力される。また、例えば、小型スピーカ等では、例えば40Hz程度の低周波数帯域である特定周波数帯域の音を出力できないときがある。このような場合であっても、倍音は出力される可能性が高いため、認知症等の改善の効果が期待できる。
 なお、第1音信号における特定周波数帯域の倍音の周波数帯域の信号レベルを上げるように調整されてもよいし、第2音信号における特定周波数帯域の倍音の周波数帯域の信号レベルを上げるように調整されてもよい。
 また、例えば、本開示の一態様に係る音信号処理方法では、さらに、特定周波数帯域の信号レベルを示す制御情報(例えば、振幅値情報201)の取得を行い、上記した調整では、制御情報に基づいて、特定周波数帯域の信号レベルの制御を行う(例えば、ステップS501)。
 これによれば、ユーザは、ユーザが所望の音量で特定周波数帯域の音を聞くことができる。
 また、例えば、本開示の一態様に係る音信号処理方法では、さらに、ユーザの生体情報(例えば、pNN情報202)の取得を行い、上記した調整では、生体情報に基づいて、特定周波数帯域の信号レベルの制御を行う(例えば、ステップS602)。
 これによれば、例えば、生体情報に基づいてユーザが快適であるか否かを判定し、判定結果に基づいて第2音信号の信号レベルが調整されることで、ユーザは、自身で調整することなく簡便に快適な音を聞くことができる。
 また、例えば、本開示の一態様に係る音信号処理方法では、さらに、上記した出力で出力される出力音(より具体的には、スピーカ170、171、172から出力される音)に基づく出力音信号の取得を行い(例えば、ステップS701)、当該出力音信号に基づいて、特定周波数帯域の信号レベルの制御を行う(例えば、ステップS702~ステップS704)。
 当該音信号処理方法によって出力される音を出力するスピーカ170の設置環境、例えば、イヤホンの場合、イヤホンのユーザへの装着のされ方によっては、想定される音量で特定周波数帯域の音がスピーカ170から出力されていない場合がある。そこで、上記した通り、例えば、マイク190によって実際にスピーカ170から出力される音を収音し、収音された音に基づくマイク信号を用いて、特定周波数帯域の信号レベルを調整する。これによれば、スピーカ170からは好適な音が出力される。
 また、本開示の一態様に係るプログラムは、例えば、本開示の一態様に係る音信号処理方法をコンピュータに実行させるプログラムである。
 また、本開示の一態様に係る音信号処理装置は、プロセッサと、メモリと、を備え、当該プロセッサは、当該メモリを用いて、第1コンテンツに対応する第1音信号における特定周波数帯域の信号レベルに応じて、第2コンテンツに対応する第2音信号であって、特定周波数帯域の成分を含む第2音信号の信号レベルを調整し、第1音信号と、調整された第2音信号と、を重畳して出力する。
 これによれば、本開示の一態様に係る音信号処理方法と同様の効果を奏する。
 なお、ここでいうプロセッサとは、例えば、DSP120及びCPU130の少なくとも一方であり、DSP120のみで実現されてもよいし、CPU130のみで実現されてもよいし、DSP120及びCPU130で実現されてもよい。また、ここでいうメモリとは、例えば、メモリ140、141、142、143であるが、記憶装置110で実現されてもよいし、メモリ140、141、142、143及び記憶装置110で実現されてもよい。また、メモリを用いるとは、例えば、プロセッサがメモリに記憶されたプログラム及び情報を用いて各種処理を行うことを意味する。
 (実施の形態2)
 続いて、実施の形態2に係る音信号処理装置について説明する。なお、以下では、上記した実施の形態1及び各変形例との差異点を中心に説明し、実質的に同様の構成については同様の符号を付し、説明を一部簡略化又は省略する場合がある。
 実施の形態2に係る音信号処理装置は、第1音信号に第2音信号を重畳する代わりに第1音信号の特定周波数帯域における信号の信号レベルを調整する。また、特定周波数帯域における信号の信号レベルがそれぞれ調整された複数の第1音信号の位相差を低減する補正を行う。これによれば、複数の音信号の位相差が低減されるために、認知症等の改善の効果を得やすくできる。
 [構成]
 まず、実施の形態2に係る音信号処理装置の構成について説明する。
 図17は、実施の形態2に係る音信号処理装置105の構成を示すブロック図である。
 音信号処理装置105は、記憶装置110と、DSP120と、CPU130と、メモリ143と、DAC150と、アンプ160と、スピーカ171と、スピーカ172と、を備える。
 DSP120は、例えば、強調情報203に基づいて、記憶装置110から取得した音信号の特定周波数帯域の信号レベルを所定のレベル上げる処理を行う。
 例えば、音信号処理装置100と音信号処理装置105とは、いずれも、取得した音信号(第1音信号)に対して、特定周波数帯域の信号レベルを調整(より具体的には、上げる)する処理を行い出力する。
 音信号処理装置100は、取得した音信号(第1音信号)に対して、特定周波数帯域のみを含む信号(第2音信号)を重畳することで、出力する信号における特定周波数帯域の信号レベルを調整する。
 一方、音信号処理装置105は、取得した音信号(第1音信号)に対して、特定周波数帯域の信号を増強することで、出力する信号における特定周波数帯域の信号レベルを調整する。
 具体的には、DSP120は、互いに異なる複数の音コンテンツを含む第1コンテンツにおける、複数の音コンテンツに対応する複数の第1音信号それぞれの特定周波数帯域の信号レベルを上げるように調整する。また、DSP120は、複数の音コンテンツに対応する、調整された複数の第1音信号それぞれについて、調整された複数の第1音信号それぞれにおける特定周波数帯域の位相差を低減するように補正する。また、DSP120は、補正された複数の第1音信号を出力する。
 <処理手順>
 続いて、音信号処理装置105の処理手順について説明する。
 図18は、実施の形態2に係る音信号処理装置105の処理手順を示すフローチャートである。具体的には、図18は、音信号処理装置105が備えるDSP120の処理手順を示すフローチャートである。
 まず、DSP120は、CPU130から、CPU130がメモリ143から取得した強調情報203を取得する(S801)。
 次に、DSP120は、記憶装置110から音コンテンツを読み出すことで、当該音コンテンツに基づく音信号である音源信号を取得する(S102)。例えば、DSP120は、音源信号として、LchとRchとを取得する。
 次に、DSP120は、音源信号に狭帯域フィルタを適用し、強調情報203に基づいて、特定周波数帯域の信号レベルを増強する(S901)。例えば、DSP120は、LchとRchとのそれぞれの特定周波数帯域を特定し、強調情報203が示す所定の信号レベルに応じて、LchとRchとのそれぞれの信号レベルを上げる。
 なお、音信号処理装置105は、狭帯域フィルタとして機能するフィルタ回路を備えてもよい。
 次に、DSP120は、特定周波数帯域におけるLchとRchとの位相を揃えるように、Lch及びRchの少なくとも一方を補正することで信号(補正信号)を生成する(S805)。なお、DSP120は、特定周波数帯域におけるLchとRchとの位相差を低減するように、Lch及びRchの少なくとも一方を補正してもよい。
 次に、DSP120は、位相差をゼロに補正した信号(補正信号)をDAC150に出力する(S106)。
 補正信号は、DAC150からアンプ160を介してスピーカ171、172に伝送される。スピーカ171、172からは、当該補正信号に基づく音が出力される。
 [効果等]
 以上説明したように、本開示の別の一態様に係る音信号処理方法は、互いに異なる複数の音コンテンツを含む第1コンテンツにおける、複数の音コンテンツに対応する複数の第1音信号(例えば、Lch及びRch)それぞれの特定周波数帯域の信号レベルを上げるように調整を行い(例えば、ステップS901)、複数の音コンテンツに対応する、調整された複数の第1音信号それぞれについて、調整された複数の第1音信号それぞれにおける特定周波数帯域の位相差を低減するように補正を行い(例えば、ステップS804)、補正された複数の第1音信号の出力を行う(例えば、ステップS106)。
 近年、例えばイヤホン等では、例えば音の臨場感を高める等の理由により、右耳に出力される音と、左耳に出力される音とでは、異なる音が出音されることがある。しかしながら、例えば、特定周波数帯域の音が、右耳に出力される場合と、左耳に出力される場合とで異なる場合、認知症等への効果が得られにくいことが知られている。そこで、複数の第1音信号(例えば、上記したRch及びLch)それぞれにおける特定周波数帯域の位相差を低減するように補正することで、特定周波数帯域の信号レベルの差を低減することができる。そのため、認知症等の改善に効果的な音が出力される。つまり、本開示の別の一態様に係る音信号処理方法によれば、特定周波数帯域の音を好適に対象に出力できる。
 また、本開示の一態様に係るプログラムは、上記本開示の別の一態様に係る音信号処理方法をコンピュータに実行させるプログラムでもよい。
 また、本開示の別の一態様に係る音信号処理装置は、プロセッサと、メモリと、を備え、当該プロセッサは、当該メモリを用いて、互いに異なる複数の音コンテンツを含む第1コンテンツにおける、複数の音コンテンツに対応する複数の第1音信号それぞれの特定周波数帯域の信号レベルを上げるように調整を行い、複数の音コンテンツに対応する、調整された複数の第1音信号それぞれについて、調整された複数の第1音信号それぞれにおける特定周波数帯域の位相差を低減するように補正を行い、補正された複数の第1音信号の出力を行う。
 これによれば、本開示の別の一態様に係る音信号処理方法と同様の効果を奏する。
 なお、ここでいうプロセッサとは、例えば、DSP120及びCPU130の少なくとも一方であり、DSP120のみで実現されてもよい、CPU130のみで実現されてもよいし、DSP120及びCPU130で実現されてもよい。また、ここでいうメモリとは、例えば、メモリ143であるが、記憶装置110で実現されてもよいし、メモリ143及び記憶装置110で実現されてもよい。
 (その他の実施の形態)
 以上、各実施の形態及び各変形例について説明したが、本開示は、上記各実施の形態及び各変形例に限定されるものではない。
 例えば、上記各実施の形態及び各変形例は、任意に組み合わされて実現されてもよい。例えば、本開示に係る音信号処理装置は、上記した変形例2の構成(処理手順)において、対応信号が閾値より小さければ対応信号の値を閾値の値に変更しもてよい。より具体的には、本開示に係る音信号処理装置は、図6に示す処理手順において、図6に示すステップS301とステップS302との間に、図5に示すステップS201及びステップS202と同様の処理を追加してもよい。また、例えば、上記した変形例3に係る音信号処理装置の機能(例えば、倍音の乗算処理)は、実施の形態1に係る音信号処理装置の機能(例えば、包絡線の乗算処理)と組み合わされて実現されてもよいし、他の音信号処理装置の機能と組み合わされて実現されてもよい。また、例えば、上記した変形例4に係る音信号処理装置の機能(例えば、制御情報に基づく信号レベルの調整処理)は、他の音信号処理装置の機能と組み合わされて実現されてもよい。また、例えば、上記した変形例5に係る音信号処理装置の機能(例えば、生体情報に基づく信号レベルの調整処理)は、他の音信号処理装置の機能と組み合わされて実現されてもよい。
 また、例えば、制御情報及び生体情報の少なくとも一方に基づいて、第1音信号における特定周波数帯域の信号レベルが調整されてもよいし、第2音信号における特定周波数帯域の信号レベルが調整されてもよい。つまり、制御情報及び生体情報の少なくとも一方に基づいて、特定周波数帯域における第1音信号及び第2音信号の信号レベルの相対的な関係が調整されてもよい。或いは、重畳信号における特定周波数帯域の信号レベルが調整されてもよい。
 また、例えば、制御情報及び生体情報の少なくとも一方に基づいて、第1音信号における特定周波数帯域の倍音の周波数帯域の信号レベルが調整されてもよいし、第2音信号における特定周波数帯域の倍音の周波数帯域の信号レベルが調整されてもよい。つまり、制御情報及び生体情報の少なくとも一方に基づいて、特定周波数帯域の倍音の周波数帯域における第1音信号及び第2音信号の信号レベルの相対的な関係が調整されてもよい。或いは、重畳信号における特定周波数帯域の倍音の周波数帯域の信号レベルが調整されてもよい。
 また、例えば、第1音信号の信号レベルがゼロ(つまり、無音)である場合、第2音信号を重畳してもよいし、しなくてもよい。また、例えば、第1音信号の信号レベルがゼロである場合、第1音信号における特定周波数帯域の信号レベルを上げてもよいし、上げなくてもよい。
 また、上記各実施の形態及び各変形例に係る音信号処理装置の構成は、一例である。例えば、音信号処理装置は、D/A変換器、又は、フィルタ等の図示されない構成要素を含んでもよい。
 また、上記各実施の形態では、複数の音コンテンツに対応する複数の第1音信号について、例えば、Lch及びRchとして2つの第1音信号を例示して説明した。しかしながら、複数の第1音信号は、3以上であってもよい。
 また、上記実施の形態において、音信号処理装置は、複数の装置(つまり、システム)として実現されてもよいし、単一の装置として実現されてもよい。音信号処理装置が複数の装置によって実現される場合、音信号処理装置が備える機能的な構成要素は、複数の装置にどのように振り分けられてもよい。例えば、音信号処理装置が備える機能的な構成要素の一部又は全部を携帯端末が備えてもよい。
 また、上記各実施の形態及び各変形例における装置間の通信方法については特に限定されるものではない。上記各実施の形態及び変形例において2つの装置が通信を行う場合、2つの装置間には図示されない中継装置が介在してもよい。
 また、上記各実施の形態及び各変形例で説明された処理の順序は、一例である。複数の処理の順序は変更されてもよいし、複数の処理は並行して実行されてもよい。また、特定の処理部が実行する処理を別の処理部が実行してもよい。また、上記各実施の形態及び各変形例で説明されたデジタル信号処理の一部がアナログ信号処理によって実現されてもよい。
 また、上記各実施の形態及び各変形例において、各構成要素は、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU又はプロセッサ等のプログラム実行部が、ハードディスク又は半導体メモリ等の記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。
 また、各構成要素は、ハードウェアによって実現されてもよい。例えば、各構成要素は、回路(又は集積回路)でもよい。これらの回路は、全体として1つの回路を構成してもよいし、それぞれ別々の回路でもよい。また、これらの回路は、それぞれ、汎用的な回路でもよいし、専用の回路でもよい。
 また、本開示の全般的又は具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム又はコンピュータ読み取り可能なCD-ROM等の記録媒体で実現されてもよい。また、システム、装置、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。例えば、本開示は、音信号処理装置又は携帯端末等のコンピュータが実行する方法として実行されてもよいし、このような方法をコンピュータに実行させるためのプログラムとして実現されてもよい。また、本開示は、このようなプログラムが記録されたコンピュータ読み取り可能な非一時的な記録媒体として実現されてもよい。なお、ここでのプログラムには、汎用の携帯端末を上記各実施の形態及び各変形例の携帯端末として機能させるためのアプリケーションプログラムが含まれる。
 その他、各実施の形態及び各変形例に対して当業者が思いつく各種変形を施して得られる形態、又は、本開示の趣旨を逸脱しない範囲で各実施の形態及び各変形例における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。
 本開示の音信号処理装置は、認知症等を改善できる音を出力する装置に適用できる。
 100、101、102、103、104、105 音信号処理装置
 110、320 記憶装置
 120 DSP
 130 CPU
 140、141、142、143 メモリ
 150 DAC
 160 アンプ
 170、171、172 スピーカ
 180 通信IF
 190、330 マイク
 200 付加情報
 201 振幅値情報
 202 pNN情報
 203 強調情報
 300 外部端末
 310 心拍計

Claims (12)

  1.  第1コンテンツに対応する第1音信号における特定周波数帯域の信号レベルに応じて、第2コンテンツに対応する第2音信号であって、前記特定周波数帯域の成分を含む第2音信号の信号レベルの調整を行い、
     前記第1音信号と、調整された前記第2音信号と、を重畳して出力を行う
     音信号処理方法。
  2.  前記調整では、
     前記第1音信号における前記特定周波数帯域の信号レベルが閾値より大きい場合、前記第1音信号における前記特定周波数帯域の信号レベルに対して所定の比率で前記第2音信号の信号レベルを高くし、
     前記第1音信号の信号レベルが閾値以下の場合、前記第2音信号の信号レベルを所定の信号レベルとする
     請求項1に記載の音信号処理方法。
  3.  前記第1コンテンツは、互いに異なる複数の音コンテンツを含み、
     前記音信号処理方法では、さらに、複数の前記音コンテンツに対応する複数の前記第1音信号それぞれについて、複数の前記第1音信号それぞれにおける前記特定周波数帯域の位相差を低減するように補正を行う
     請求項1又は2に記載の音信号処理方法。
  4.  さらに、
     環境音に基づく環境音信号の取得を行い、
     前記環境音信号における前記特定周波数帯域の成分を前記第2音信号とするように前記第2コンテンツの生成を行う
     請求項1~3のいずれか1項に記載の音信号処理方法。
  5.  互いに異なる複数の音コンテンツを含む第1コンテンツにおける、複数の前記音コンテンツに対応する複数の第1音信号それぞれの特定周波数帯域の信号レベルを上げるように調整を行い、
     複数の前記音コンテンツに対応する、調整された複数の前記第1音信号それぞれについて、調整された複数の前記第1音信号それぞれにおける前記特定周波数帯域の位相差を低減するように補正を行い、
     補正された複数の前記第1音信号の出力を行う
     音信号処理方法。
  6.  前記調整では、さらに、前記特定周波数帯域の倍音の周波数帯域の信号レベルを上げる制御を行う
     請求項1~5のいずれか1項に記載の音信号処理方法。
  7.  さらに、前記特定周波数帯域の信号レベルを示す制御情報の取得を行い、
     前記調整では、前記制御情報に基づいて、前記特定周波数帯域の信号レベルの制御を行う
     請求項1~6のいずれか1項に記載の音信号処理方法。
  8.  さらに、ユーザの生体情報の取得を行い、
     前記調整では、前記生体情報に基づいて、前記特定周波数帯域の信号レベルの制御を行う
     請求項1~7のいずれか1項に記載の音信号処理方法。
  9.  さらに、
     前記出力で出力される出力音に基づく出力音信号の取得を行い、
     前記出力音信号に基づいて、前記特定周波数帯域の信号レベルの制御を行う
     請求項1~8のいずれか1項に記載の音信号処理方法。
  10.  請求項1又は5に記載の音信号処理方法をコンピュータに実行させるための
     プログラム。
  11.  プロセッサと、
     メモリと、を備え、
     前記プロセッサは、前記メモリを用いて、
     第1コンテンツに対応する第1音信号における特定周波数帯域の信号レベルに応じて、第2コンテンツに対応する第2音信号であって、前記特定周波数帯域の成分を含む第2音信号の信号レベルの調整を行い、
     前記第1音信号と、調整された前記第2音信号と、を重畳して出力を行う
     音信号処理装置。
  12.  プロセッサと、
     メモリと、を備え、
     前記プロセッサは、前記メモリを用いて、
     互いに異なる複数の音コンテンツを含む第1コンテンツにおける、複数の前記音コンテンツに対応する複数の第1音信号それぞれの特定周波数帯域の信号レベルを上げるように調整を行い、
     複数の前記音コンテンツに対応する、調整された複数の前記第1音信号それぞれについて、調整された複数の前記第1音信号それぞれにおける前記特定周波数帯域の位相差を低減するように補正を行い、
     補正された複数の前記第1音信号の出力を行う
     音信号処理装置。
PCT/JP2022/019710 2021-08-20 2022-05-09 音信号処理方法、プログラム、及び、音信号処理装置 WO2023021794A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280053702.9A CN118251252A (zh) 2021-08-20 2022-05-09 声音信号处理方法、程序、以及声音信号处理装置
JP2023542223A JPWO2023021794A1 (ja) 2021-08-20 2022-05-09
US18/437,540 US20240187788A1 (en) 2021-08-20 2024-02-09 Sound signal processing method, recording medium, and sound signal processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021135001 2021-08-20
JP2021-135001 2021-08-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/437,540 Continuation US20240187788A1 (en) 2021-08-20 2024-02-09 Sound signal processing method, recording medium, and sound signal processing device

Publications (1)

Publication Number Publication Date
WO2023021794A1 true WO2023021794A1 (ja) 2023-02-23

Family

ID=85240398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019710 WO2023021794A1 (ja) 2021-08-20 2022-05-09 音信号処理方法、プログラム、及び、音信号処理装置

Country Status (4)

Country Link
US (1) US20240187788A1 (ja)
JP (1) JPWO2023021794A1 (ja)
CN (1) CN118251252A (ja)
WO (1) WO2023021794A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007336460A (ja) * 2006-06-19 2007-12-27 Tohoku Univ 聴音装置
US20120150545A1 (en) * 2009-06-15 2012-06-14 Adam Jay Simon Brain-computer interface test battery for the physiological assessment of nervous system health
JP2017050597A (ja) * 2015-08-31 2017-03-09 株式会社竹中工務店 音源処理装置、音響装置及び部屋
WO2020129433A1 (ja) * 2018-12-21 2020-06-25 国立大学法人東海国立大学機構 血流促進装置、椅子、ベッド

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007336460A (ja) * 2006-06-19 2007-12-27 Tohoku Univ 聴音装置
US20120150545A1 (en) * 2009-06-15 2012-06-14 Adam Jay Simon Brain-computer interface test battery for the physiological assessment of nervous system health
JP2017050597A (ja) * 2015-08-31 2017-03-09 株式会社竹中工務店 音源処理装置、音響装置及び部屋
WO2020129433A1 (ja) * 2018-12-21 2020-06-25 国立大学法人東海国立大学機構 血流促進装置、椅子、ベッド

Also Published As

Publication number Publication date
JPWO2023021794A1 (ja) 2023-02-23
CN118251252A (zh) 2024-06-25
US20240187788A1 (en) 2024-06-06

Similar Documents

Publication Publication Date Title
CN111447539B (zh) 一种用于听力耳机的验配方法和装置
US8043203B2 (en) Method and device for tinnitus therapy
KR101779641B1 (ko) 보청기를 가진 개인 통신 장치 및 이를 제공하기 위한 방법
US10701495B2 (en) External device leveraged hearing assistance and noise suppression device, method and systems
KR20150104626A (ko) 자율 관리 음향 개선을 위한 방법 및 시스템
US9313583B2 (en) Method of fitting a binaural hearing aid system
JP2014507889A (ja) バイノーラル補聴器システムおよびバイノーラル・ビート提供方法
KR20130045917A (ko) 자체 관리 소리 향상을 위한 방법 및 시스템
US20220201404A1 (en) Self-fit hearing instruments with self-reported measures of hearing loss and listening
US20180007479A1 (en) User interface control of multiple parameters for a hearing assistance device
JP7387614B2 (ja) Tens治療機能を有する骨伝導装置
Pisha et al. A wearable, extensible, open-source platform for hearing healthcare research
JPWO2011152056A1 (ja) 聴覚測定装置及びその方法
CN105376684A (zh) 包括植入部分的具有改善的信号处理的助听系统
US11184714B2 (en) Hearing device comprising a loop gain limiter
JP2023502788A (ja) 連続的な聴覚脳刺激
CN106331972B (zh) 用于将耳内式通信装置放在用户耳道中的方法和设备
JP4114392B2 (ja) 検査センター装置、端末装置、聴力補償方法、聴力補償方法プログラム記録媒体、聴力補償方法のプログラム
WO2023021794A1 (ja) 音信号処理方法、プログラム、及び、音信号処理装置
WO2011043819A1 (en) Method of deriving individualized gain compensation curves for hearing aid fitting
KR102440818B1 (ko) 이명 치료용 음향 콘텐츠 제공 방법
Patel et al. Compression Fitting of Hearing Aids and Implementation
CN114830692A (zh) 包括计算机程序、听力设备和压力评估设备的系统
JP2018164207A (ja) 音響機器、音響機器の最適化処理方法及びプログラム
US20180279922A1 (en) Automated assessment and adjustment of tinnitus-masker impact on speech intelligibility during use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858118

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280053702.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023542223

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22858118

Country of ref document: EP

Kind code of ref document: A1