WO2023021547A1 - Transfer system, transfer method, and transfer program - Google Patents

Transfer system, transfer method, and transfer program Download PDF

Info

Publication number
WO2023021547A1
WO2023021547A1 PCT/JP2021/029891 JP2021029891W WO2023021547A1 WO 2023021547 A1 WO2023021547 A1 WO 2023021547A1 JP 2021029891 W JP2021029891 W JP 2021029891W WO 2023021547 A1 WO2023021547 A1 WO 2023021547A1
Authority
WO
WIPO (PCT)
Prior art keywords
packets
video
transmission
stream
low
Prior art date
Application number
PCT/JP2021/029891
Other languages
French (fr)
Japanese (ja)
Inventor
拓郎 山口
康弘 持田
大介 白井
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/029891 priority Critical patent/WO2023021547A1/en
Priority to JP2023542037A priority patent/JPWO2023021547A1/ja
Publication of WO2023021547A1 publication Critical patent/WO2023021547A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/442Monitoring of processes or resources, e.g. detecting the failure of a recording device, monitoring the downstream bandwidth, the number of times a movie has been viewed, the storage space available from the internal hard disk
    • H04N21/4425Monitoring of client processing errors or hardware failure

Definitions

  • the present invention relates to transmission systems, transmission methods, and transmission programs.
  • SMPTE ST2110 is a method for transmitting uncompressed video and audio over networks.
  • SMPTE ST2110-20 describes a method for storing and transmitting a video essence in the payload of an RTP (Real-time Transport Protocol) packet (Non-Patent Document 1).
  • RTP Real-time Transport Protocol
  • Non-Patent Document 1 the number of packets per frame is constant as long as the video parameters and the method of mapping pixels to RTP packets are unchanged.
  • the payload part of the RTP packet contains the pixel values of the pixels that make up the video and the RTP payload header required for reconstruction on the receiving side.
  • the receiving side reconstructs the pixel values by arranging the pixel values accordingly.
  • Uncompressed video can now be transmitted over the network, and it is expected that more streams will be transmitted within the network than ever before. Furthermore, in order to use technologies such as redundant transmission, it became necessary to change the construction of network paths in real time. When making such a configuration change, it is essential not to adversely affect the current stream transmission, and for that, it is necessary to know which stream is flowing on which path. In addition, if the system does not operate correctly after the route construction is changed, it is desirable to know how far the stream is flowing correctly on the route after the change.
  • next-generation transmission where high-resolution video is expected to be sent without compression, extremely high processing performance is required to acquire all stream information in the operating network as it is and process it in real time. can only be realized in a limited environment or device.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to reduce the load on the network while making it possible to grasp the stream flowing through the network.
  • one aspect of the present invention is a transmission system comprising: a duplicating unit for duplicating a plurality of packets obtained by packetizing an uncompressed video stream; and a generator for generating a low-resolution image from packets sampled due to packet loss occurring in the narrowband path.
  • One aspect of the present invention is a transmission method performed by a transmission system, comprising the steps of: duplicating a plurality of packets obtained by packetizing an uncompressed video stream; and transmitting the duplicated packets via a narrowband path. and generating a low-resolution image from packets sampled due to packet loss occurring in the narrowband path.
  • One aspect of the present invention is a transmission program that causes a computer to function as the transmission system.
  • FIG. 1 is a diagram illustrating a configuration example of a transmission system according to a first embodiment
  • FIG. 4 is a flowchart showing transmission processing
  • FIG. 10 is a diagram illustrating a configuration example of a transmission system according to a second embodiment
  • FIG. 11 is a diagram illustrating a configuration example of a transmission system according to a third embodiment
  • FIG. It is a hardware configuration example.
  • FIG. 1 is a system configuration diagram showing a configuration example of a transmission system according to the first embodiment.
  • the transmission system of this embodiment includes at least one relay device 2 arranged on the network and a management device 1 that aggregates information.
  • the management device 1 and relay device 2 are connected by a wireless or wired narrowband path 3 (communication path).
  • the relay device 2 is connected to the network devices 4 and 5 by wire or wirelessly.
  • the network devices 4 and 5 include, for example, transmitting/receiving devices.
  • Relay device 2 relays a stream transmitted from at least one network device 4 to at least one network device 5 .
  • a relay device 2 relays a plurality of streams transmitted from a plurality of network devices 4 to corresponding network devices 5, respectively.
  • the stream of this embodiment is an uncompressed image and holds pixel value data and coordinate information, like RTP packets packetized according to SMPTE ST 2110.
  • video stream an uncompressed video stream
  • video stream an uncompressed video stream
  • it may be an uncompressed video/audio stream.
  • the illustrated interconnecting device 2 has at least one reception port 21 , a duplicator 22 , at least one first transmission port 23 and a second transmission port 24 .
  • Each reception port 21 receives uncompressed video packets (hereinafter referred to as "video packets"), which are packetized video streams, from the network device 4.
  • video packets uncompressed video packets
  • the duplication unit 22 duplicates (mirrors) the video packets received at each reception port 21 and sends them to the second transmission port 24 .
  • the duplicator 22 duplicates video packets of multiple video streams.
  • the duplicator 22 outputs the received video packet to the corresponding first transmission port 23 .
  • the first transmission port 23 transmits the video packets to the next network device 5 .
  • RTP packets are used as video packets in this embodiment, they are not limited to RTP packets, and packets other than RTP packets may be used.
  • the second transmission port 24 transmits the video packets duplicated by the duplicator 22 to the management device 1 via the narrowband path 3 .
  • the video packets output from the second transmission port 24 are transmitted to the management device 1 while causing packet loss by passing through the narrowband path 3 .
  • video packets are discarded when the amount of video packets exceeds the amount of video packets that can be transmitted.
  • the second transmission port 24 discards video packets that do not fit within the bandwidth (transmission capacity) of the narrowband path 3 and outputs video packets that fit within the bandwidth to the narrowband path 3 .
  • packet loss occurs in the narrowband path 3 .
  • the narrowband path 3 may be a path with a transmission capacity smaller than the transmission capacity of the video stream input to the relay device 2 .
  • the HD size video stream conforming to SMPTE2110 is about 1.3 Gbps. be.
  • 1 GbE (Gigabit Ethernet) with a transmission capacity smaller than 1.3 Gbps may be used as narrowband path 3 connecting relay device 2 and management device 1 .
  • narrowband path 3 may be a path with a transmission capacity smaller than n ⁇ 1.3 Gbps.
  • the transmission capacity of the narrowband path 3 may be determined according to the processing performance of the management device 1. For example, the amount of processing for generating a low-resolution image is determined by the number of known points (the number of remaining packets after packet loss), the resolution (reduction ratio) of the output low-resolution image, and the like. Therefore, if the processing performance of the management device 1 is low, it is better to reduce the transmission capacity of the narrowband path 3 .
  • the transmission capacity of the narrowband path 3 may be determined not only by the processing performance of the management device 1 but also by considering the resolution of target video streams, the number of streams, and the resolution of low-resolution images to be output.
  • a path with a relatively large transmission capacity such as 10 GbE is used as the narrowband path 3, and packet loss occurs when the number of video streams or bit rate input to the relay device 2 exceeds a predetermined threshold.
  • the low-resolution image generation processing performed by the management device 1 may be stopped.
  • the management device 1 can acquire an image without any loss, so it does not generate a low-resolution image and displays a high-quality video stream as it is, or displays a low-load image. Any method may be used to generate and display an image of sufficient quality.
  • the management device 1 when a packet loss occurs, an image cannot be displayed unless a low-resolution image is generated, so the management device 1 generates and displays a low-resolution image. In this manner, the management device 1 may switch whether to generate a low-resolution image depending on the presence or absence of packet loss.
  • the relay device 2 connects to the management device 1 through a plurality of narrowband paths 3 having different transmission capacities, and switches the narrowband path 3 to be used according to the number of video streams and bit rate to change the packet loss rate. good too.
  • the relay device 2 is provided with a second transmission port 24 for each narrowband path 3 .
  • the interconnecting device 2 has at least one reception port 21 and at least one first transmission port 23 .
  • the route is set depending on whether to output from. Therefore, the route selection unit (not shown) of the interconnecting device 2 acquires the number of packets flowing into each reception port 21, bit rate information, etc., and selects the first transmission port 23 as a route. In addition, the route selection unit uses the number of packets flowing into each receiving port 21, bit rate information, etc. to determine to which of the plurality of second transmitting ports 24 the duplicated packet group is to be allocated. Narrowband path 3 is switched by determining. The route selector is connected to the reception port 21, the first transmission port 23 and the second transmission port 24. FIG.
  • Remaining packets sampled due to packet loss on narrowband path 3 are sent to management device 1 .
  • the illustrated relay device 2 may be a device that relays a video stream transmitted from one network device 4 to one network device 5 .
  • the interconnecting device 2 has one reception port 21 , a duplicator 22 , one first transmission port 23 and a second transmission port 24 .
  • Video packets transmitted from one or more relay devices 2 via the narrowband path 3 are input to the management device 1 .
  • the management device 1 has a reception port 11, a processing section 12, and a display section 13.
  • the processing unit 12 includes a packet storage unit 121 and a generation unit 122 .
  • the management device 1 may have a display device (display) outside the management device 1 without the display unit 13 .
  • the reception port 11 receives video packets from the relay device 2 and sends them to the packet storage section 121 of the processing section 12 .
  • the video packets are accumulated in the packet accumulation unit 121 .
  • the packet accumulating unit 121 classifies and accumulates video packets for each stream using information such as the transmission source address of the video packets, and stores the accumulated video at regular time intervals or when a certain amount of packets is collected for each stream.
  • the packet is sent to the generator 12 . That is, the packet storage unit 121 sends the video packets to the generation unit 122 at the timing when the amount of packets necessary for generating low-resolution images such as thumbnail images is accumulated for each stream.
  • the generation unit 122 generates a low-resolution image from the video packets sampled due to the packet loss that occurs on the narrowband path 3 and outputs it to the display unit 13 .
  • the generator 122 generates a low-resolution image for each video stream.
  • the generation unit 122 acquires the pixel value data of the uncompressed video and the coordinates (position information) of the pixel value data from the video packet, and uses these to generate a low-resolution image.
  • the low-resolution image provides an overview of the video stream and serves, for example, as a thumbnail image.
  • the generation unit 122 acquires the coordinates of the pixel value data held in the media payload from the payload header of the RTP packet (video packet) defined by SMPTE2110.
  • An RTP packet has an RTP header, a payload header containing information (such as coordinates) about pixel value data, and a media payload containing pixel value data.
  • the generation unit 122 may perform image reduction using a classical resampling method (resolution conversion method) such as Bilinear or Bicubic on the acquired coordinates.
  • a classical resampling method such as Bilinear or Bicubic
  • the generation unit 122 When performing processing from pixel value data in multiple frames, the generation unit 122 considers object movement between frames, and does not treat frames equally, but processes a certain frame as main information. Techniques such as selecting frames or increasing the reduction ratio to reduce the effect of a small amount of movement may be adopted.
  • the generation unit 122 may utilize machine learning (learning model).
  • the generation unit 122 may generate a low-resolution image using a learning model that has undergone machine learning using the pixel value data and coordinates of the RTP packet, or the output image obtained by the above-described resampling method as input. .
  • the generation unit 122 may reconstruct an incomplete image in which only the known pixels of the acquired pixel value data are arranged based on the coordinates, and solve the regression problem of generating a low-resolution image therefrom.
  • the generation unit 122 may be notified in advance of important part coordinates representing the outline of the video as sub information, and the generation unit 122 may adopt trimming or seam carving including them to reduce the image size.
  • the generation unit 122 may switch the generation method based on the required resolution of the display unit 13, the amount of parallel-processed streams, etc., instead of using a single method.
  • the generation unit 122 may use a resampling method when displaying multiple streams side by side, and may utilize machine learning when a request to confirm an overview of one of the streams is input.
  • the display unit 13 displays low-resolution images such as thumbnail images.
  • the low-resolution image generated by the generation unit 122 is displayed on the display unit 13 of the management device 1 or on a display device installed outside via the network.
  • the video stream on the network is visualized and displayed in a user-visible manner.
  • the display unit 13 may use low-resolution images to display information indicating what kind of video stream is flowing between which devices on the network. That is, the display unit 13 may display the low-resolution image as a video stream flowing between the network devices 4 and 5. FIG. For example, the display unit 13 may display a line representing the connection between devices and a low-resolution image superimposed on the line.
  • the video packet contains the source address and the destination address assigned to each port of the network devices 4 and 5, it is possible to analyze the video packet to determine which network device 4 to which network device 5 the video packet is sent from. It is possible to determine whether the video stream is a
  • a line representing a connection between devices may be displayed by obtaining a route in advance by confirming that the management device 1 or the relay device 2 can actually communicate by ping or the like.
  • the line representing the connection between devices indicates that when transmission is actually performed, the management device 1 acquires the route by acquiring information from the NMOS (which manages information on terminals existing on the network), which will be described later. may be displayed as Further, the generation unit 122 may acquire the transmission source address and the destination address included in the video packet, and acquire the line representing the connection between the devices.
  • a display device outside the management device 1 may display a thumbnail image or the like superimposed on the fiber.
  • the thumbnail image of the video stream flowing through the fiber can be displayed on the fiber. is displayed overlaid on the
  • FIG. 2 is a flowchart showing the transmission processing of this embodiment.
  • the relay device 2 receives video packets (RTP packets) in which an uncompressed video stream is packetized from each network device 4, and duplicates the received video packets (S11). Also, the relay device 2 transmits the received video packet to the corresponding network device 5 .
  • RTP packets video packets
  • S11 received video packets
  • the relay device 2 transmits the duplicated video packet to the management device 1 via the narrowband path 3 (S12).
  • the management device 1 receives the video packets sampled through the narrowband path 3, and uses the video packets to generate low-resolution images such as thumbnail images (S13).
  • the management device 1 displays the low resolution image (S14).
  • FIG. 3 is a system configuration diagram showing a configuration example of a transmission system according to the second embodiment.
  • the transmission system of this embodiment includes management equipment 1A.
  • the management device 1A acquires network device information and stream information from an NMOS (Networked Media Open Specifications) RDS (Registration & Discovery System) server 8, and acquires the multicast address of a desired multicast terminal 9 from the device information. Then, the management device 1A uses the multicast address to send join to the multicast terminal 9 and participates in the multicast. As a result, the management device 1A can acquire the same video stream (video packet) as the video stream (video packet) flowing from the multicast terminal 9 to the network device 5.
  • NMOS Networked Media Open Specifications
  • RDS Registration & Discovery System
  • the illustrated multicast terminal 9 includes a transmission source terminal that transmits a video stream and a multicast network.
  • the multicast terminal 9 and the reception port 11 of the management device 1A are connected by the narrowband path 3.
  • FIG. 1 is a diagrammatic representation of the management device 1A.
  • the illustrated management device 1A has a reception port 11, a processing unit 12, a display unit 13, another reception port 14, and a transmission port 15.
  • the managed device 1A differs from the managed device 1 of the first embodiment shown in FIG.
  • the reception port 11 and the transmission port 15 may be a single port having both transmission and reception functions.
  • the other receiving port 14 acquires network device information (NMOS information) and stream information from the RDS server 8 .
  • the RDS server 8 is a server that detects and registers devices within the network.
  • the other receiving port 14 acquires the multicast address of the multicast terminal 9 that distributes the desired stream from the device information and the stream information, and sends the multicast address to the transmitting port 15 .
  • the sending port 15 sends a join to the multicast terminal 9 using the multicast address.
  • the multicast terminal 9 transmits the same video stream (video packet) as the video stream (video packet) transmitted to the network device 5 or the like to the management device 1A via the narrowband path 3 .
  • the narrowband path 3 of the embodiment is, like the narrowband path 3 of the first embodiment, a path with a transmission capacity smaller than the transmission capacity of the video packets of the video stream distributed by the multicast terminal 9 .
  • the video packets output from the multicast terminal 9 pass through the narrowband path 3 and are transmitted to the management device 1A while packet loss occurs.
  • the receiving port 11 of the management device 1A receives video packets sampled due to packet loss on the narrowband path 3, and outputs the received packets to the processing unit 12.
  • the processing unit 12 generates a low-resolution image such as a thumbnail image from the sampled video packets, as in the first embodiment.
  • the display unit 13 displays the generated low-resolution image.
  • FIG. 4 is a system configuration diagram showing a configuration example of a transmission system according to the third embodiment.
  • the transmission system of this embodiment includes a management device 1B.
  • the management device 1B is different from the management device 1A of the second embodiment in that it acquires video packets of a plurality of video streams from the multicast network 7, and otherwise is the same as the management device 1A.
  • a plurality of source terminals 6 are connected to the multicast network 7 .
  • the source terminal 6 multicasts (transmits) video packets of a video stream (multicast source) via the multicast network 7 .
  • the multicast network 7 and the reception port 11 of the management device 1B are connected by the narrowband path 3.
  • other receiving ports 14 acquire network device information (NMOS information) and stream information from the RDS server 8, and acquire multiple multicast addresses of desired video streams from these information. and sends the multicast address to the transmission port 15 .
  • NMOS information network device information
  • stream information from the RDS server 8
  • the sending port 15 sends a join to the multicast network 7 using multiple multicast addresses.
  • the multicast network 7 transmits a plurality of video streams identical to the video stream (video packet) transmitted to the network device 5 and the like to the management device 1B via the narrowband path 3.
  • the narrowband path 3 of the embodiment is a path with a transmission capacity smaller than the total transmission capacity of video packets of a plurality of video streams distributed by the multicast network 7 to the management device 1 .
  • the video packets output from the multicast network 7 are transmitted to the management device 1B while passing through the narrowband path 3, causing packet loss.
  • the reception port 11 of the management device 1B receives video packets sampled due to packet loss on the narrowband path 3, and outputs the received packets to the processing unit 12.
  • the processing unit 12 generates a low-resolution image for each video stream from the sampled video packets.
  • the display unit 13 displays the generated low-resolution image.
  • the transmission system includes a duplicating unit 22 that duplicates a plurality of packets obtained by packetizing an uncompressed video stream, and transmits the duplicated packets via the narrowband path 3. and a generation unit 122 for generating a low-resolution image from packets sampled due to packet loss occurring in the narrowband path 3 .
  • the replicator may replicate packets using multicast joins.
  • a low-resolution image showing an outline of a video stream is generated from packet sampling by simply preparing the environment by preparing the narrowband path 3 and remaining packets after sampling.
  • the video packet passing through the narrowband path 3 intentionally causes packet loss.
  • the number of video packets to be transmitted is reduced without providing a special device or function, and a low-resolution image is generated from the reduced video packets and transmitted to the management device 1 (maintenance base). Therefore, in a wide range of usage environments, visualization of video streams can be realized in parallel and in real time.
  • processing costs can be reduced by reducing the number of video packets due to packet loss on the narrowband path 3 and generating low-resolution images from limited information, and multiple video streams can be visualized in parallel in real time. .
  • the present embodiment suppresses an increase in the processing load due to an increase in network size and an increase in the amount of video streams flowing through the network without preparing a special device, and enables video streams that can be widely used in networks in the future. Visualization can be achieved.
  • a general-purpose computer system as shown in FIG. 5 can be used.
  • the illustrated computer system includes a CPU (Central Processing Unit, processor) 901, a memory 902, a storage 903 (HDD: Hard Disk Drive, SSD: Solid State Drive), a communication device 904, an input device 905, and an output device. 906.
  • Memory 902 and storage 903 are storage devices.
  • CPU 901 executes a predetermined program loaded on memory 902 to realize each function of each device.
  • each function of the management devices 1, 1A, 1B and relay device 2 is executed by the CPU of the management device in the case of the program for the management device, and by the CPU of the relay device in the case of the program for the relay device. It is realized by
  • management device and the relay device may be implemented by one computer or may be implemented by multiple computers. Also, the management device and the relay device may be virtual machines implemented in computers. Programs for management devices and programs for relay devices can also be stored on computer-readable recording media such as HDDs, SSDs, USB (Universal Serial Bus) memories, CDs (Compact Discs), and DVDs (Digital Versatile Discs). , can also be distributed over a network.
  • computer-readable recording media such as HDDs, SSDs, USB (Universal Serial Bus) memories, CDs (Compact Discs), and DVDs (Digital Versatile Discs).
  • a plurality of management devices 1 shown in FIG. 1 may be provided, and the plurality of management devices 1 may be connected to a central management server via a network. This allows the central management server to grasp video streams flowing through a large-scale network. The same applies to the management devices 1A and 1B in FIGS. 3 and 4.
  • FIG. 1 a plurality of management devices 1 shown in FIG. 1 may be provided, and the plurality of management devices 1 may be connected to a central management server via a network. This allows the central management server to grasp video streams flowing through a large-scale network. The same applies to the management devices 1A and 1B in FIGS. 3 and 4.

Abstract

This transfer system comprises: a copy unit 22 that copies a plurality of packets formed by packetizing a stream of a non-compressed video; a transmission unit 24 that transmits the copied packets through a narrow band path 3; and a generation unit 122 that generates a low-resolution image from packets sampled through packet-loss occurring in the narrow band path 3.

Description

伝送システム、伝送方法、および、伝送プログラムTRANSMISSION SYSTEM, TRANSMISSION METHOD, AND TRANSMISSION PROGRAM
 本発明は、伝送システム、伝送方法、および、伝送プログラムに関する。 The present invention relates to transmission systems, transmission methods, and transmission programs.
 SMPTE ST2110は、ネットワークを通して非圧縮映像・音声を伝送する方式である。SMPTE ST2110-20には、映像エッセンスをRTP(Real-time Transport Protocol)パケットのペイロードに格納して伝送する方法が記載されている(非特許文献1)。非圧縮映像伝送においては、映像パラメータおよびRTPパケットへの画素マッピング方法が変わらない限り、1フレーム当たりのパケット数は一定である。 SMPTE ST2110 is a method for transmitting uncompressed video and audio over networks. SMPTE ST2110-20 describes a method for storing and transmitting a video essence in the payload of an RTP (Real-time Transport Protocol) packet (Non-Patent Document 1). In uncompressed video transmission, the number of packets per frame is constant as long as the video parameters and the method of mapping pixels to RTP packets are unchanged.
 RTPパケットのペイロード部分には映像を構成するピクセルの画素値と、受信側での再構成に必要なRTPペイロードヘッダが存在する。特にRTPペイロードヘッダにはパケットが保有する先頭ピクセルの座標が存在するため、それに従ってピクセルの画素値を配置することにより受信側で再構成される。 The payload part of the RTP packet contains the pixel values of the pixels that make up the video and the RTP payload header required for reconstruction on the receiving side. In particular, since the RTP payload header contains the coordinates of the leading pixel in the packet, the receiving side reconstructs the pixel values by arranging the pixel values accordingly.
 ネットワークを介して非圧縮映像が伝送できるようになり、ネットワーク内をこれまでより多くのストリームが伝送されることが予想される。さらに冗長伝送などの技術を利用するため、リアルタイムにネットワークの経路の構築変更を加える必要性が生まれた。そのような構築変更を行う場合、現在のストリーム伝送に悪影響を及ぼさないことが不可欠であり、そのためにはどの経路にどのストリームが流れているかを把握する必要がある。また、経路の構築変更後に正しく動作しない場合、変更後の経路でストリームがどこまで正しく流れているかがわかることが望ましい。 Uncompressed video can now be transmitted over the network, and it is expected that more streams will be transmitted within the network than ever before. Furthermore, in order to use technologies such as redundant transmission, it became necessary to change the construction of network paths in real time. When making such a configuration change, it is essential not to adversely affect the current stream transmission, and for that, it is necessary to know which stream is flowing on which path. In addition, if the system does not operate correctly after the route construction is changed, it is desirable to know how far the stream is flowing correctly on the route after the change.
 しかし、高解像度映像を非圧縮で送ることが想定される次世代伝送において、運用するネットワーク内におけるすべてのストリーム情報をそのまま取得し、リアルタイムに処理するためにはきわめて高い処理性能が必要となり、非常に限られた環境または装置でしか実現することができない。 However, in next-generation transmission, where high-resolution video is expected to be sent without compression, extremely high processing performance is required to acquire all stream information in the operating network as it is and process it in real time. can only be realized in a limited environment or device.
 本発明は、上記事情に鑑みてなされたものであり、本発明の目的は、ネットワークの負荷を軽減しつつ、ネットワークを流れるストリームの把握を可能とすることにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to reduce the load on the network while making it possible to grasp the stream flowing through the network.
 上記目的を達成するため、本発明の一態様は伝送システムであって、非圧縮映像のストリームをパケット化した複数のパケットを複製する複製部と、複製した前記パケットを、狭帯域経路を介して送信する送信部と、前記狭帯域経路で発生するパケット欠損によりサンプリングされたパケットから低解像度画像を生成する生成部と、を備える。 In order to achieve the above object, one aspect of the present invention is a transmission system comprising: a duplicating unit for duplicating a plurality of packets obtained by packetizing an uncompressed video stream; and a generator for generating a low-resolution image from packets sampled due to packet loss occurring in the narrowband path.
 本発明の一態様は、 伝送システムが行う伝送方法であって、非圧縮映像のストリームをパケット化した複数のパケットを複製するステップと、複製した前記パケットを、狭帯域経路を介して送信するステップと、前記狭帯域経路で発生するパケット欠損によりサンプリングされたパケットから低解像度画像を生成するステップと、を行う。 One aspect of the present invention is a transmission method performed by a transmission system, comprising the steps of: duplicating a plurality of packets obtained by packetizing an uncompressed video stream; and transmitting the duplicated packets via a narrowband path. and generating a low-resolution image from packets sampled due to packet loss occurring in the narrowband path.
 本発明の一態様は、上記伝送システムとしてコンピュータを機能させる伝送プログラムである。 One aspect of the present invention is a transmission program that causes a computer to function as the transmission system.
 本発明によれば、ネットワークの負荷を軽減しつつ、ネットワークを流れるストリームの把握することができる。 According to the present invention, it is possible to understand the stream flowing through the network while reducing the load on the network.
第1の実施形態の伝送システムの構成例を示す図である。1 is a diagram illustrating a configuration example of a transmission system according to a first embodiment; FIG. 伝送処理を示すフローチャートである。4 is a flowchart showing transmission processing; 第2の実施形態の伝送システムの構成例を示す図である。FIG. 10 is a diagram illustrating a configuration example of a transmission system according to a second embodiment; FIG. 第3の実施形態の伝送システムの構成例を示す図である。FIG. 11 is a diagram illustrating a configuration example of a transmission system according to a third embodiment; FIG. ハードウェア構成例である。It is a hardware configuration example.
 以下、本発明の実施の形態について、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 <第1の実施形態>
 図1は、第1の実施形態の伝送システムの構成例を示すシステム構成図である。
<First embodiment>
FIG. 1 is a system configuration diagram showing a configuration example of a transmission system according to the first embodiment.
 本実施形態の伝送システムは、ネットワーク上に配置された少なくとも1つの中継機器2と、情報を集約させる管理機器1とを備える。管理機器1および中継機器2は、無線または有線の狭帯域経路3(通信経路)で接続されている。 The transmission system of this embodiment includes at least one relay device 2 arranged on the network and a management device 1 that aggregates information. The management device 1 and relay device 2 are connected by a wireless or wired narrowband path 3 (communication path).
 中継機器2は、ネットワーク機器4、5と、有線または無線で接続される。ネットワーク機器4、5には、例えば、送受信機器などが含まれる。中継機器2は、少なくとも1つのネットワーク機器4から送信されたストリームを、少なくとも1つのネットワーク機器5に中継する。図示する例では、中継機器2は、複数のネットワーク機器4から送信された複数のストリームを、対応するネットワーク機器5にそれぞれ中継する場合を示す。 The relay device 2 is connected to the network devices 4 and 5 by wire or wirelessly. The network devices 4 and 5 include, for example, transmitting/receiving devices. Relay device 2 relays a stream transmitted from at least one network device 4 to at least one network device 5 . In the illustrated example, a relay device 2 relays a plurality of streams transmitted from a plurality of network devices 4 to corresponding network devices 5, respectively.
 本実施形態のストリームは、SMPTE ST 2110に従ってパケット化されたRTPパケットのように、非圧縮映像で画素値データと座標情報とを保有するものとする。 It is assumed that the stream of this embodiment is an uncompressed image and holds pixel value data and coordinate information, like RTP packets packetized according to SMPTE ST 2110.
 本実施形態の伝送システムは、非圧縮映像ストリームの経路変更あるいは機器の追加もしくは削除に際して、現在のネットワークにおける各ストリームの経路の把握、変更後の系が想定通りに動作しているかの確認など、管理および運用を容易化するものである。 In the transmission system of this embodiment, when changing the route of an uncompressed video stream or adding or deleting equipment, it is possible to grasp the route of each stream in the current network, check whether the system after the change is operating as expected, etc. It facilitates management and operation.
 また、本実施形態のストリームは、非圧縮映像ストリーム(以下、「映像ストリーム」という)を例として以下に説明するが、非圧縮映像・音声のストリームであってもよい。 Also, the stream of this embodiment will be described below as an example of an uncompressed video stream (hereinafter referred to as "video stream"), but it may be an uncompressed video/audio stream.
 図示する中継機器2は、少なくとも1つの受信ポート21と、複製部22と、少なくとも1つの第1の送信ポート23と、第2の送信ポート24とを有する。 The illustrated interconnecting device 2 has at least one reception port 21 , a duplicator 22 , at least one first transmission port 23 and a second transmission port 24 .
 各受信ポート21は、ネットワーク機器4から、映像ストリームがパケット化された非圧縮映像パケット(以下、「映像パケット」という)を受信する。 Each reception port 21 receives uncompressed video packets (hereinafter referred to as "video packets"), which are packetized video streams, from the network device 4.
 複製部22は、各受信ポート21で受信された映像パケットを複製(ミラーリング)し、第2の送信ポート24に送出する。図示する例では、複製部22は、複数の映像ストリームの映像パケットを複製する。また、複製部22は、受信した映像パケットを、対応する第1の送信ポート23に出力する。第1の送信ポート23は、映像パケットを次のネットワーク機器5に送信する。 The duplication unit 22 duplicates (mirrors) the video packets received at each reception port 21 and sends them to the second transmission port 24 . In the illustrated example, the duplicator 22 duplicates video packets of multiple video streams. Also, the duplicator 22 outputs the received video packet to the corresponding first transmission port 23 . The first transmission port 23 transmits the video packets to the next network device 5 .
 なお、本実施形態では、映像パケットにRTPパケットを用いるが、RTPパケットに限定されるものではなく、RTPパケット以外のパケットを用いてもよい。 Although RTP packets are used as video packets in this embodiment, they are not limited to RTP packets, and packets other than RTP packets may be used.
 第2の送信ポート24は、複製部22で複製された映像パケットを、狭帯域経路3を介して管理機器1に送信する。 The second transmission port 24 transmits the video packets duplicated by the duplicator 22 to the management device 1 via the narrowband path 3 .
 第2の送信ポート24から出力される映像パケットは、狭帯域経路3を通過させることでパケット欠損(packet loss)を発生しながら管理機器1に伝送される。狭帯域経路3では、伝送可能な映像パケットの量を超える場合に、映像パケットが破棄される。具体的には、第2の送信ポート24は、狭帯域経路3の帯域(伝送容量)に収まらない映像パケットを破棄し、帯域に収まる量の映像パケットを狭帯域経路3に出力する。本実施形態では、中継機器2と管理機器1との間の通信経路として、狭帯域経路3を用いることで、狭帯域経路3でパケット欠損を発生させる。 The video packets output from the second transmission port 24 are transmitted to the management device 1 while causing packet loss by passing through the narrowband path 3 . In the narrowband path 3, video packets are discarded when the amount of video packets exceeds the amount of video packets that can be transmitted. Specifically, the second transmission port 24 discards video packets that do not fit within the bandwidth (transmission capacity) of the narrowband path 3 and outputs video packets that fit within the bandwidth to the narrowband path 3 . In this embodiment, by using the narrowband path 3 as the communication path between the relay device 2 and the management device 1 , packet loss occurs in the narrowband path 3 .
 狭帯域経路3は、中継装置2に入力される映像ストリームの伝送容量より小さい伝送容量の経路であってもよい。図1に示す例では、中継機器2に入力されるn個(n=3)の映像ストリームの映像パケット群の合計伝送容量よりも小さい伝送容量(キャパシティ)の経路であってもよい。 The narrowband path 3 may be a path with a transmission capacity smaller than the transmission capacity of the video stream input to the relay device 2 . In the example shown in FIG. 1, the path may have a transmission capacity smaller than the total transmission capacity of video packets of n (n=3) video streams input to the relay device 2 .
 例えば画像サイズがHD(1280×720)で、フレームレートが60fpsの非圧縮の映像ストリームが1つのネットワーク機器4から中継機器2に流れる場合、SMPTE2110に則るHDサイズの映像ストリームが約1.3Gbpsである。この場合、中継機器2と管理機器1とを接続する狭帯域経路3として、1.3Gbpsより小さい伝送容量の1GbE(Gigabit Ethernet)を用いてもよい。この場合、1つの映像ストリームであっても、約0.3Gbpsの伝送容量が不足し、パケット欠損が発生する。また、図示するように、n個のネットワーク機器4から映像ストリームが中継機器2に流れる場合、狭帯域経路3は、n×1.3Gbpsより小さい伝送容量の経路としてもよい。 For example, when an uncompressed video stream with an image size of HD (1280×720) and a frame rate of 60 fps flows from one network device 4 to the relay device 2, the HD size video stream conforming to SMPTE2110 is about 1.3 Gbps. be. In this case, 1 GbE (Gigabit Ethernet) with a transmission capacity smaller than 1.3 Gbps may be used as narrowband path 3 connecting relay device 2 and management device 1 . In this case, even one video stream lacks a transmission capacity of about 0.3 Gbps, and packet loss occurs. Also, as shown in the figure, when video streams flow from n network devices 4 to relay device 2, narrowband path 3 may be a path with a transmission capacity smaller than n×1.3 Gbps.
 狭帯域経路3の伝送容量については、管理機器1の処理性能に応じて決定してもよい。例えば、低解像度画像を生成する処理量は既知点数(パケット欠損後の残存パケット数)、出力される低解像度画像の解像度(縮小率)等により決まる。したがって管理機器1の処理性能が小さい場合は、狭帯域経路3の伝送容量を小さくする方がよい。 The transmission capacity of the narrowband path 3 may be determined according to the processing performance of the management device 1. For example, the amount of processing for generating a low-resolution image is determined by the number of known points (the number of remaining packets after packet loss), the resolution (reduction ratio) of the output low-resolution image, and the like. Therefore, if the processing performance of the management device 1 is low, it is better to reduce the transmission capacity of the narrowband path 3 .
 一方、残存パケット数が減りすぎると低解像度画像の質が低下しやすく、また同じ伝送容量の狭帯域経路3でも映像ストリームの解像度が大きいほどパケット欠損量は大きくなり、低解像度画像の画質がより低下する。そのため、狭帯域経路3の伝送容量は、管理機器1の処理性能のみではなく、対象とする映像ストリームの解像度、ストリーム数、出力する低解像度画像の解像度との兼ね合いで決定してもよい。 On the other hand, if the number of remaining packets decreases too much, the quality of low-resolution images tends to deteriorate. descend. Therefore, the transmission capacity of the narrowband path 3 may be determined not only by the processing performance of the management device 1 but also by considering the resolution of target video streams, the number of streams, and the resolution of low-resolution images to be output.
 なお、ネットワーク(ネットワーク機器4、中継機器2、ネットワーク機器5)を流れる映像ストリームの数nは変化するため、nがある程度大きくなった場合にパケット欠損が発生するような伝送容量の狭帯域経路3としてもよい。例えばHDサイズの映像ストリーム群に対し、狭帯域経路3を2Gbpsにするとn=2からパケット欠損が発生する。 Since the number n of video streams flowing through the network (network device 4, relay device 2, network device 5) changes, the narrow band path 3 with a transmission capacity that causes packet loss when n increases to some extent may be For example, for an HD size video stream group, if the narrowband path 3 is set to 2 Gbps, packet loss occurs from n=2.
 あるいは、狭帯域経路3として10GbEなどの比較的大きな伝送容量の経路を用い、中継機器2に入力される映像ストリーム数またはビットレートが所定の閾値を超えた場合にパケット欠損が発生するとし、パケット欠損の有無で、管理機器1が行う低解像度画像の生成処理を停止してもよい。 Alternatively, a path with a relatively large transmission capacity such as 10 GbE is used as the narrowband path 3, and packet loss occurs when the number of video streams or bit rate input to the relay device 2 exceeds a predetermined threshold. Depending on the presence or absence of loss, the low-resolution image generation processing performed by the management device 1 may be stopped.
 具体的には、パケット欠損が発生しない場合、管理機器1は、画像として欠損がないものが取得できるため、低解像度画像の生成を行わず、高品質な映像ストリームをそのまま表示する、あるいは低負荷な方法で十分な品質の画像を生成し表示してもよい。一方、パケット欠損が発生する場合、低解像度画像を生成しないと画像を表示できないため、管理機器1は、低解像度画像を生成し表示する。このように、管理機器1は、パケット欠損の有無で、低解像度画像を生成するか否かを切り替えてもよい。 Specifically, when packet loss does not occur, the management device 1 can acquire an image without any loss, so it does not generate a low-resolution image and displays a high-quality video stream as it is, or displays a low-load image. Any method may be used to generate and display an image of sufficient quality. On the other hand, when a packet loss occurs, an image cannot be displayed unless a low-resolution image is generated, so the management device 1 generates and displays a low-resolution image. In this manner, the management device 1 may switch whether to generate a low-resolution image depending on the presence or absence of packet loss.
 あるいは、中継機器2は、異なる伝送容量を持つ複数の狭帯域経路3で管理機器1と接続し、映像ストリーム数およびビットレートに応じて利用する狭帯域経路3を切り替えてパケット欠損率を変えてもよい。この場合、中継機器2は、狭帯域経路3毎に第2の送信ポート24を備える。 Alternatively, the relay device 2 connects to the management device 1 through a plurality of narrowband paths 3 having different transmission capacities, and switches the narrowband path 3 to be used according to the number of video streams and bit rate to change the packet loss rate. good too. In this case, the relay device 2 is provided with a second transmission port 24 for each narrowband path 3 .
 具体的には、中継機器2は、少なくとも1つの受信ポート21と、少なくとも1つの第1の送信ポート23とを備えており、どの受信ポート21に届いた映像パケットをどの第1の送信ポート23から出力するかにより経路が設定される。そのため中継機器2の図示しない経路選択部は、各受信ポート21に流れ込むパケット数、ビットレート情報などを取得して経路となる第1の送信ポート23を選択する。また、経路選択部は、各受信ポート21に流れ込むパケット数、ビットレート情報などを用いて、複製されたパケット群を複数の第2の送信ポート24のどの第2の送信ポート24に割り振るかを決定することで狭帯域経路3を切り替える。なお、経路選択部は、受信ポート21、第1の送信ポート23および第2の送信ポート24に接続される。 Specifically, the interconnecting device 2 has at least one reception port 21 and at least one first transmission port 23 . The route is set depending on whether to output from. Therefore, the route selection unit (not shown) of the interconnecting device 2 acquires the number of packets flowing into each reception port 21, bit rate information, etc., and selects the first transmission port 23 as a route. In addition, the route selection unit uses the number of packets flowing into each receiving port 21, bit rate information, etc. to determine to which of the plurality of second transmitting ports 24 the duplicated packet group is to be allocated. Narrowband path 3 is switched by determining. The route selector is connected to the reception port 21, the first transmission port 23 and the second transmission port 24. FIG.
 狭帯域経路3のパケット欠損によってサンプリングされた残存パケットは、管理機器1に送信される。 Remaining packets sampled due to packet loss on narrowband path 3 are sent to management device 1 .
 なお、図示する中継機器2は、1つのネットワーク機器4から送信された映像ストリームを、1つのネットワーク機器5に中継する装置であってもよい。この場合、中継機器2は、1つの受信ポート21と、複製部22と、1つの第1の送信ポート23と、第2の送信ポート24とを有する。 Note that the illustrated relay device 2 may be a device that relays a video stream transmitted from one network device 4 to one network device 5 . In this case, the interconnecting device 2 has one reception port 21 , a duplicator 22 , one first transmission port 23 and a second transmission port 24 .
 管理機器1には、1つまたは複数の中継機器2から狭帯域経路3を介して送信される、映像パケットが入力される。 Video packets transmitted from one or more relay devices 2 via the narrowband path 3 are input to the management device 1 .
 管理機器1は、受信ポート11と、処理部12と、表示部13とを有する。処理部12は、パケット蓄積部121と、生成部122とを備える。なお、管理機器1は表示部13を備えず、管理機器1の外部に表示装置(ディスプレイ)を有してもよい。 The management device 1 has a reception port 11, a processing section 12, and a display section 13. The processing unit 12 includes a packet storage unit 121 and a generation unit 122 . Note that the management device 1 may have a display device (display) outside the management device 1 without the display unit 13 .
 受信ポート11は、中継機器2から、映像パケットを受信し、処理部12のパケット蓄積部121に送出する。 The reception port 11 receives video packets from the relay device 2 and sends them to the packet storage section 121 of the processing section 12 .
 パケット蓄積部121には、映像パケットが蓄積される。パケット蓄積部121は、映像パケットの送信元アドレスの情報などを用いて映像パケットをストリームごとに分類して蓄積し、ストリームごとに一定に時間間隔あるいは一定のパケット量が集まった時点で蓄積した映像パケットを生成部12に送出する。すなわち、パケット蓄積部121は、ストリームごとに、サムネイル画像などの低解像度画像の生成に必要なパケット量が蓄積されたタイミングで、それらの映像パケットを、生成部122に送出する。 The video packets are accumulated in the packet accumulation unit 121 . The packet accumulating unit 121 classifies and accumulates video packets for each stream using information such as the transmission source address of the video packets, and stores the accumulated video at regular time intervals or when a certain amount of packets is collected for each stream. The packet is sent to the generator 12 . That is, the packet storage unit 121 sends the video packets to the generation unit 122 at the timing when the amount of packets necessary for generating low-resolution images such as thumbnail images is accumulated for each stream.
 生成部122は、狭帯域経路3で発生するパケット欠損によりサンプリングされた映像パケットから低解像度画像を生成し、表示部13に出力する。生成部122は、低解像度画像を映像ストリーム毎に生成する。生成部122は映像パケットから非圧縮映像の画素値データと、前記画素値データの座標(位置情報)とを取得し、これらを用いて低解像度画像を生成する。低解像度画像は、映像ストリームの概要を示すものであって、例えばサムネイル画像としての役割を果たす。 The generation unit 122 generates a low-resolution image from the video packets sampled due to the packet loss that occurs on the narrowband path 3 and outputs it to the display unit 13 . The generator 122 generates a low-resolution image for each video stream. The generation unit 122 acquires the pixel value data of the uncompressed video and the coordinates (position information) of the pixel value data from the video packet, and uses these to generate a low-resolution image. The low-resolution image provides an overview of the video stream and serves, for example, as a thumbnail image.
 具体的には、生成部122は、SMPTE2110に規定されるRTPパケット(映像パケット)のペイロードヘッダから、メディアペイロードに保持される画素値データの座標を取得する。RTPパケットは、RTPヘッダと、画素値データに関する情報(座標など)が含まれるペイロードヘッダと、画素値データが含まれるメディアペイロードとを有する。 Specifically, the generation unit 122 acquires the coordinates of the pixel value data held in the media payload from the payload header of the RTP packet (video packet) defined by SMPTE2110. An RTP packet has an RTP header, a payload header containing information (such as coordinates) about pixel value data, and a media payload containing pixel value data.
 サムネイル画像などの低解像度画像の作成方法として、生成部122は、取得した座標に、Bilinear、Bicubicなどの古典的なリサンプリング手法(解像度変換手法)を用いた画像縮小を実施してもよい。 As a method for creating a low-resolution image such as a thumbnail image, the generation unit 122 may perform image reduction using a classical resampling method (resolution conversion method) such as Bilinear or Bicubic on the acquired coordinates.
 複数フレームにおける画素値データから処理を行う場合、生成部122は、フレーム間での物体移動を考慮し、扱うフレームを均等に扱うのではなく、あるフレームを主情報として処理する、局所領域ごとにフレームを選別する、縮小率を大きくすることで小さい移動量の影響を減らす、などの手法を採用してもよい。 When performing processing from pixel value data in multiple frames, the generation unit 122 considers object movement between frames, and does not treat frames equally, but processes a certain frame as main information. Techniques such as selecting frames or increasing the reduction ratio to reduce the effect of a small amount of movement may be adopted.
 他の縮小方法として、生成部122は、機械学習(学習モデル)を活用してもよい。この場合、生成部122は、RTPパケットの画素値データと座標とを、あるいは前述のリサンプリング手法による出力画像を入力として機械学習させた学習モデルを用いて、低解像度画像を生成してもよい。 As another reduction method, the generation unit 122 may utilize machine learning (learning model). In this case, the generation unit 122 may generate a low-resolution image using a learning model that has undergone machine learning using the pixel value data and coordinates of the RTP packet, or the output image obtained by the above-described resampling method as input. .
 また、生成部122は、取得した画素値データの既知画素のみを座標に基づいて配置した不完全な画像を再構成し、そこから低解像度画像を生成する回帰問題を解かせてもよい。 In addition, the generation unit 122 may reconstruct an incomplete image in which only the known pixels of the acquired pixel value data are arranged based on the coordinates, and solve the regression problem of generating a low-resolution image therefrom.
 また、映像の概要を表す重要部座標などを副情報として生成部122あらかじめ通知しておき、生成部122は、それらを含むトリミング、あるいはシームカービングを採用して画像サイズを減らしてもよい。 In addition, the generation unit 122 may be notified in advance of important part coordinates representing the outline of the video as sub information, and the generation unit 122 may adopt trimming or seam carving including them to reduce the image size.
 また、生成部122は、単一の方法ではなく、表示部13における必要解像度、並列処理されるストリーム量などを踏まえて、生成方法を切り替えてもよい。例えば、生成部122は、複数ストリームを並べて表示する際は、リサンプリング手法を用い、そのうちの一枚の概要を確認する要求が入力された場合、機械学習を活用するなどしてもよい。 In addition, the generation unit 122 may switch the generation method based on the required resolution of the display unit 13, the amount of parallel-processed streams, etc., instead of using a single method. For example, the generation unit 122 may use a resampling method when displaying multiple streams side by side, and may utilize machine learning when a request to confirm an overview of one of the streams is input.
 表示部13は、サムネイル画像などの低解像度画像を表示する。これにより、生成部122が生成した低解像度画像が、管理機器1の表示部13に、あるいはネットワークを介して外部に設置された表示装置に表示される。したがって、ネットワーク上での映像ストリームが、可視化され、ユーザが見える形で表示される。 The display unit 13 displays low-resolution images such as thumbnail images. As a result, the low-resolution image generated by the generation unit 122 is displayed on the display unit 13 of the management device 1 or on a display device installed outside via the network. Thus, the video stream on the network is visualized and displayed in a user-visible manner.
 表示部13は、ネットワーク上のどの機器間にどのような映像ストリームが流れているか示す情報を低解像度画像を用いて表示してもよい。すなわち、表示部13は、低解像度画像を、ネットワーク機器4、5間を流れる映像ストリームとして表示してもよい。例えば、表示部13は、機器同士のつながりを表す線と、当該線上に低解像度画像を重ねて表示してもよい。 The display unit 13 may use low-resolution images to display information indicating what kind of video stream is flowing between which devices on the network. That is, the display unit 13 may display the low-resolution image as a video stream flowing between the network devices 4 and 5. FIG. For example, the display unit 13 may display a line representing the connection between devices and a low-resolution image superimposed on the line.
 なお、映像パケットには、ネットワーク機器4、5のポートごとに割り当てられた送り元アドレスおよび送り先アドレスが含まれているため、映像パケットを解析することでどのネットワーク機器4からどのネットワーク機器5へ送られている映像ストリームなのかを判定することができる。 Since the video packet contains the source address and the destination address assigned to each port of the network devices 4 and 5, it is possible to analyze the video packet to determine which network device 4 to which network device 5 the video packet is sent from. It is possible to determine whether the video stream is a
 表示部13では、例えばGUIによるブロック図のような簡易的な表示が想定される。機器同士のつながりを表す線は、管理機器1または中継機器2が、pingなどにより実際に通信できることを確認することであらかじめ経路を取得し、表示してもよい。また、機器同士のつながりを表す線は、実際に伝送を行っている場合に、管理機器1が、後述するNMOS(ネットワーク上に存在する端末の情報を管理する)からの情報取得により経路を取得して表示してもよい。また、生成部122は、映像パケットに含まれる送信元アドレスおよび宛先アドレスを取得して、機器同士のつながりを表す線を取得してもよい。 In the display unit 13, for example, a simple display such as a block diagram using a GUI is assumed. A line representing a connection between devices may be displayed by obtaining a route in advance by confirming that the management device 1 or the relay device 2 can actually communicate by ping or the like. In addition, the line representing the connection between devices indicates that when transmission is actually performed, the management device 1 acquires the route by acquiring information from the NMOS (which manages information on terminals existing on the network), which will be described later. may be displayed as Further, the generation unit 122 may acquire the transmission source address and the destination address included in the video packet, and acquire the line representing the connection between the devices.
 また、管理機器1外の表示装置、例えばヘッドマウントディスプレイで、映像ストリームが流れるファイバ(伝送路)をユーザが視認した際に、当該ファイバに重ねてサムネイル画像等を表示する形式でもよい。具体的には、ユーザが、ARメガネのような透過するディスプレイ越しに実際に接続されている実世界のファイバを視認あるいは注視することで、当該ファイバを流れる映像ストリームのサムネイル画像等が、当該ファイバに重ねて表示される。 Alternatively, when a user views a fiber (transmission path) through which a video stream flows, a display device outside the management device 1, such as a head-mounted display, may display a thumbnail image or the like superimposed on the fiber. Specifically, when the user visually recognizes or gazes at the fiber actually connected in the real world through a transparent display such as AR glasses, the thumbnail image of the video stream flowing through the fiber can be displayed on the fiber. is displayed overlaid on the
 図2は、本実施形態の伝送処理を示すフローチャートである。 FIG. 2 is a flowchart showing the transmission processing of this embodiment.
 中継機器2は、各ネットワーク機器4から、非圧縮の映像ストリームがパケット化された映像パケット(RTPパケット)を受信し、受信した映像パケットを複製する(S11)。また、中継機器2は、受信した映像パケットを対応するネットワーク機器5に送信する。 The relay device 2 receives video packets (RTP packets) in which an uncompressed video stream is packetized from each network device 4, and duplicates the received video packets (S11). Also, the relay device 2 transmits the received video packet to the corresponding network device 5 .
 中継機器2は、複製した映像パケットを、狭帯域経路3を介して管理機器1に送信する(S12)。管理機器1は、狭帯域経路3によりサンプリングされた映像パケットを受信し、当該映像パケットを用いてサムネイル画像などの低解像度画像を生成する(S13)。管理機器1は、低解像度画像を表示する(S14)。 The relay device 2 transmits the duplicated video packet to the management device 1 via the narrowband path 3 (S12). The management device 1 receives the video packets sampled through the narrowband path 3, and uses the video packets to generate low-resolution images such as thumbnail images (S13). The management device 1 displays the low resolution image (S14).
 <第2の実施形態>
 図3は、第2の実施形態の伝送システムの構成例を示すシステム構成図である。
<Second embodiment>
FIG. 3 is a system configuration diagram showing a configuration example of a transmission system according to the second embodiment.
 本実施形態の伝送システムは、管理機器1Aを備える。管理機器1Aは、NMOS(Networked Media Open Specifications)のRDS(Registration & Discovery System)サーバ8からネットワークの機器情報およびストリーム情報を取得し、当該機器情報から所望のマルチキャスト端末9のマルチキャストアドレスを取得する。そして、管理機器1Aは、マルチキャストアドレスを用いて、マルチキャスト端末9にjoinを送信し、マルチキャストに参加する。これにより、管理機器1Aは、マルチキャスト端末9からネットワーク機器5に流れる映像ストリーム(映像パケット)と同一の映像ストリームを取得することができる。 The transmission system of this embodiment includes management equipment 1A. The management device 1A acquires network device information and stream information from an NMOS (Networked Media Open Specifications) RDS (Registration & Discovery System) server 8, and acquires the multicast address of a desired multicast terminal 9 from the device information. Then, the management device 1A uses the multicast address to send join to the multicast terminal 9 and participates in the multicast. As a result, the management device 1A can acquire the same video stream (video packet) as the video stream (video packet) flowing from the multicast terminal 9 to the network device 5. FIG.
 なお、図示するマルチキャスト端末9には、映像ストリームを送信する送信元端末と、マルチキャスト網とが含まれる。マルチキャスト端末9と、管理機器1Aの受信ポート11とは、狭帯域経路3で接続されている。 The illustrated multicast terminal 9 includes a transmission source terminal that transmits a video stream and a multicast network. The multicast terminal 9 and the reception port 11 of the management device 1A are connected by the narrowband path 3. FIG.
 図示する管理機器1Aは、受信ポート11と、処理部12と、表示部13と、他の受信ポート14と、送信ポート15とを有する。管理機器1Aは、他の受信ポート14と、送信ポート15とを備える点において、図1に示す第1の実施形態の管理機器1と異なる。ただし受信ポート11と送信ポート15は送受信両方の機能を持つ単一のポートとしてもよい。 The illustrated management device 1A has a reception port 11, a processing unit 12, a display unit 13, another reception port 14, and a transmission port 15. The managed device 1A differs from the managed device 1 of the first embodiment shown in FIG. However, the reception port 11 and the transmission port 15 may be a single port having both transmission and reception functions.
 他の受信ポート14は、RDSサーバ8からネットワークの機器情報(NMOS情報)およびストリーム情報を取得する。RDSサーバ8は、ネットワーク内の機器を検出および登録するサーバである。他の受信ポート14は、機器情報およびストリーム情報から、所望のストリームを配信するマルチキャスト端末9のマルチキャストアドレスを取得し、当該マルチキャストアドレスを送信ポート15に送出する。 The other receiving port 14 acquires network device information (NMOS information) and stream information from the RDS server 8 . The RDS server 8 is a server that detects and registers devices within the network. The other receiving port 14 acquires the multicast address of the multicast terminal 9 that distributes the desired stream from the device information and the stream information, and sends the multicast address to the transmitting port 15 .
 送信ポート15は、マルチキャストアドレスを用いて、マルチキャスト端末9にjoinを送信する。これにより、マルチキャスト端末9は、ネットワーク機器5等に送信する映像ストリーム(映像パケット)と同一の映像ストリームを、狭帯域経路3を介して管理機器1Aに送信する。実施形態の狭帯域経路3は、第1の実施形態の狭帯域経路3と同様に、マルチキャスト端末9が配信する映像ストリームの映像パケットの伝送容量よりも小さい伝送容量の経路とする。これにより、マルチキャスト端末9から出力される映像パケットは、狭帯域経路3を通過させることでパケット欠損を発生しながら管理機器1Aに伝送される。 The sending port 15 sends a join to the multicast terminal 9 using the multicast address. Thereby, the multicast terminal 9 transmits the same video stream (video packet) as the video stream (video packet) transmitted to the network device 5 or the like to the management device 1A via the narrowband path 3 . The narrowband path 3 of the embodiment is, like the narrowband path 3 of the first embodiment, a path with a transmission capacity smaller than the transmission capacity of the video packets of the video stream distributed by the multicast terminal 9 . As a result, the video packets output from the multicast terminal 9 pass through the narrowband path 3 and are transmitted to the management device 1A while packet loss occurs.
 管理機器1Aの受信ポート11は、狭帯域経路3のパケット欠損によってサンプリングされた映像パケットを受信し、受信したパケットを処理部12に出力する。処理部12は、第1の実施形態と同様に、サンプリングされた映像パケットからサムネイル画像などの低解像度画像を生成する。表示部13は、生成された低解像度画像を表示する。 The receiving port 11 of the management device 1A receives video packets sampled due to packet loss on the narrowband path 3, and outputs the received packets to the processing unit 12. The processing unit 12 generates a low-resolution image such as a thumbnail image from the sampled video packets, as in the first embodiment. The display unit 13 displays the generated low-resolution image.
 <第3の実施形態>
 図4は、第3の実施形態の伝送システムの構成例を示すシステム構成図である。
<Third Embodiment>
FIG. 4 is a system configuration diagram showing a configuration example of a transmission system according to the third embodiment.
 本実施形態の伝送システムは、管理機器1Bを備える。管理機器1Bは、マルチキャスト網7から複数の映像ストリームの映像パケットを取得する点において、第2の実施形態の管理機器1Aと異なり、その他は管理機器1Aと同様である。 The transmission system of this embodiment includes a management device 1B. The management device 1B is different from the management device 1A of the second embodiment in that it acquires video packets of a plurality of video streams from the multicast network 7, and otherwise is the same as the management device 1A.
 マルチキャスト網7には複数の送信元端末6が接続される。送信元端末6は、マルチキャスト網7を介して映像ストリーム(マルチキャストソース)の映像パケットをマルチキャスト(送信)する。マルチキャスト網7と、管理機器1Bの受信ポート11とは、狭帯域経路3で接続されている。 A plurality of source terminals 6 are connected to the multicast network 7 . The source terminal 6 multicasts (transmits) video packets of a video stream (multicast source) via the multicast network 7 . The multicast network 7 and the reception port 11 of the management device 1B are connected by the narrowband path 3. FIG.
 第2の実施形態と同様に、他の受信ポート14は、RDSサーバ8からネットワークの機器情報(NMOS情報)およびストリーム情報を取得し、これらの情報から、所望の映像ストリームのマルチキャストアドレスを複数取得し、当該マルチキャストアドレスを送信ポート15に送出する。 As in the second embodiment, other receiving ports 14 acquire network device information (NMOS information) and stream information from the RDS server 8, and acquire multiple multicast addresses of desired video streams from these information. and sends the multicast address to the transmission port 15 .
 送信ポート15は、複数のマルチキャストアドレスを用いて、マルチキャスト網7にjoinを送信する。これにより、マルチキャスト網7は、ネットワーク機器5等に送信する映像ストリーム(映像パケット)と同一の複数の映像ストリームを、狭帯域経路3を介して管理機器1Bに送信する。 The sending port 15 sends a join to the multicast network 7 using multiple multicast addresses. As a result, the multicast network 7 transmits a plurality of video streams identical to the video stream (video packet) transmitted to the network device 5 and the like to the management device 1B via the narrowband path 3. FIG.
 実施形態の狭帯域経路3は、マルチキャスト網7が管理機器1に配信する複数の映像ストリームの映像パケットの合計伝送容量よりも小さい伝送容量の経路とする。これにより、マルチキャスト網7から出力される映像パケットは、狭帯域経路3を通過させることでパケット欠損を発生しながら管理機器1Bに伝送される。 The narrowband path 3 of the embodiment is a path with a transmission capacity smaller than the total transmission capacity of video packets of a plurality of video streams distributed by the multicast network 7 to the management device 1 . As a result, the video packets output from the multicast network 7 are transmitted to the management device 1B while passing through the narrowband path 3, causing packet loss.
 管理機器1Bの受信ポート11は、狭帯域経路3のパケット欠損によってサンプリングされた映像パケットを受信し、受信したパケットを処理部12に出力する。処理部12は、第1の実施形態と同様に、サンプリングされた映像パケットから、映像ストリームごとに低解像度画像を生成する。表示部13は、生成された低解像度画像を表示する。 The reception port 11 of the management device 1B receives video packets sampled due to packet loss on the narrowband path 3, and outputs the received packets to the processing unit 12. As in the first embodiment, the processing unit 12 generates a low-resolution image for each video stream from the sampled video packets. The display unit 13 displays the generated low-resolution image.
 <実施形態の効果>
 以上説明した第1から第3の実施形態の伝送システムは、非圧縮映像のストリームをパケット化した複数のパケットを複製する複製部22と、複製した前記パケットを、狭帯域経路3を介して送信する送信部24と、前記狭帯域経路3で発生するパケット欠損によりサンプリングされたパケットから低解像度画像を生成する生成部122と、を備える。複製部は、マルチキャスト参加を用いてパケットを複製してもよい。
<Effects of Embodiment>
The transmission system according to the first to third embodiments described above includes a duplicating unit 22 that duplicates a plurality of packets obtained by packetizing an uncompressed video stream, and transmits the duplicated packets via the narrowband path 3. and a generation unit 122 for generating a low-resolution image from packets sampled due to packet loss occurring in the narrowband path 3 . The replicator may replicate packets using multicast joins.
 このように本実施形態では、狭帯域経路3を用意するという単純な環境整備によるパケットサンプリングと、サンプリングされた後の残存パケットから、映像ストリームの概要を示す低解像度画像を生成する。 As described above, in this embodiment, a low-resolution image showing an outline of a video stream is generated from packet sampling by simply preparing the environment by preparing the narrowband path 3 and remaining packets after sampling.
 これにより、本実施形態では、ネットワークの負荷を軽減しつつ、ネットワークを流れるストリームの把握することができる。具体的には、映像パケットが狭帯域経路3を通過することでパケット欠損をあえて発生させる。これにより、本実施形態では、特別な装置および機能を備えることなく伝送される映像パケット数を削減し、削減した映像パケットから低解像度画像を生成して管理機器1(保守拠点)に送信する。したがって、幅広い利用環境において、映像ストリームの可視化を並列かつリアルタイムに実現することができる。 As a result, in this embodiment, it is possible to understand the stream flowing through the network while reducing the load on the network. Specifically, the video packet passing through the narrowband path 3 intentionally causes packet loss. As a result, in this embodiment, the number of video packets to be transmitted is reduced without providing a special device or function, and a low-resolution image is generated from the reduced video packets and transmitted to the management device 1 (maintenance base). Therefore, in a wide range of usage environments, visualization of video streams can be realized in parallel and in real time.
 また、狭帯域経路3のパケット欠損による映像パケット数の低減と、限られた情報からの低解像度画像の生成とにより処理コストを低減し、複数の映像ストリームをリアルタイムで並列に可視化することができる。 In addition, processing costs can be reduced by reducing the number of video packets due to packet loss on the narrowband path 3 and generating low-resolution images from limited information, and multiple video streams can be visualized in parallel in real time. .
 このように本実施形態は、特別な装置を用意することなく、ネットワーク規模の増大およびネットワークに流れる映像ストリーム量の肥大化による処理負荷の増加を抑制し、将来ネットワークにおいて広く利用可能な映像ストリームの可視化を実現することができる。 In this way, the present embodiment suppresses an increase in the processing load due to an increase in network size and an increase in the amount of video streams flowing through the network without preparing a special device, and enables video streams that can be widely used in networks in the future. Visualization can be achieved.
 <ハードウェア構成>
 上記説明した管理機器1、1A、1Bおよび中継機器2は、例えば、図5に示すような汎用的なコンピュータシステムを用いることができる。図示するコンピュータシステムは、CPU(Central Processing Unit、プロセッサ)901と、メモリ902と、ストレージ903(HDD:Hard Disk Drive、SSD:Solid State Drive)と、通信装置904と、入力装置905と、出力装置906とを備える。メモリ902およびストレージ903は、記憶装置である。このコンピュータシステムにおいて、CPU901がメモリ902上にロードされた所定のプログラムを実行することにより、各装置の各機能が実現される。例えば、管理機器1、1A、1Bおよび中継機器2の各機能は、管理機器用のプログラムの場合は管理機器のCPUが、中継機器用のプログラムの場合は中継機器のCPUが、それぞれ実行することにより実現される。
<Hardware configuration>
For the management devices 1, 1A, 1B and relay device 2 described above, for example, a general-purpose computer system as shown in FIG. 5 can be used. The illustrated computer system includes a CPU (Central Processing Unit, processor) 901, a memory 902, a storage 903 (HDD: Hard Disk Drive, SSD: Solid State Drive), a communication device 904, an input device 905, and an output device. 906. Memory 902 and storage 903 are storage devices. In this computer system, CPU 901 executes a predetermined program loaded on memory 902 to realize each function of each device. For example, each function of the management devices 1, 1A, 1B and relay device 2 is executed by the CPU of the management device in the case of the program for the management device, and by the CPU of the relay device in the case of the program for the relay device. It is realized by
 また、管理機器および中継機器は、1つのコンピュータで実装されてもよく、あるいは複数のコンピュータで実装されても良い。また、管理機器および中継機器は、コンピュータに実装される仮想マシンであっても良い。管理機器用のプログラムおよび中継機器用のプログラムは、HDD、SSD、USB(Universal Serial Bus)メモリ、CD (Compact Disc)、DVD (Digital Versatile Disc)などのコンピュータ読取り可能な記録媒体に記憶することも、ネットワークを介して配信することもできる。 Also, the management device and the relay device may be implemented by one computer or may be implemented by multiple computers. Also, the management device and the relay device may be virtual machines implemented in computers. Programs for management devices and programs for relay devices can also be stored on computer-readable recording media such as HDDs, SSDs, USB (Universal Serial Bus) memories, CDs (Compact Discs), and DVDs (Digital Versatile Discs). , can also be distributed over a network.
 なお、本発明は上記実施形態に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。例えば図1に示す管理機器1を複数備え、複数の管理機器1がネットワークを介して中央管理サーバに接続されてもよい。これにより、中央管理サーバは、大規模なネットワークを流れる映像ストリームを把握することができる。図3および図4の管理機器1A、1Bについても同様である。 It should be noted that the present invention is not limited to the above embodiments, and many modifications are possible within the scope of the gist. For example, a plurality of management devices 1 shown in FIG. 1 may be provided, and the plurality of management devices 1 may be connected to a central management server via a network. This allows the central management server to grasp video streams flowing through a large-scale network. The same applies to the management devices 1A and 1B in FIGS. 3 and 4. FIG.
 1、1A、1B:管理機器
 11、14:受信ポート
 12:処理部
 121:パケット蓄積部
 122:生成部
 13:表示部
 15:送信ポート
 2:中継機器
 21:受信ポート
 22:複製部
 23、24:送信ポート
 4、5:ネットワーク機器
 6 :送信元端末
 7 :マルチキャスト網
 8 :RDSサーバ
 9 :マルチキャスト端末
1, 1A, 1B: management device 11, 14: reception port 12: processing unit 121: packet storage unit 122: generation unit 13: display unit 15: transmission port 2: relay device 21: reception port 22: duplication unit 23, 24 : Transmission port 4, 5: Network device 6: Source terminal 7: Multicast network 8: RDS server 9: Multicast terminal

Claims (7)

  1.  非圧縮映像のストリームをパケット化した複数のパケットを複製する複製部と、
     複製した前記パケットを、狭帯域経路を介して送信する送信部と、
     前記狭帯域経路で発生するパケット欠損によりサンプリングされたパケットから低解像度画像を生成する生成部と、を備える
     伝送システム。
    a duplicating unit that duplicates a plurality of packets obtained by packetizing an uncompressed video stream;
    a transmitter that transmits the duplicated packet through a narrowband path;
    a generator that generates a low-resolution image from packets sampled due to packet loss that occurs on the narrowband path.
  2.  前記生成部は、前記パケットから前記非圧縮映像の画素値データと、前記画素値データの位置情報とを取得し、前記低解像度画像を生成する
     請求項1に記載の伝送システム。
    2. The transmission system according to claim 1, wherein the generation unit acquires pixel value data of the uncompressed video and position information of the pixel value data from the packet, and generates the low-resolution image.
  3.  前記低解像度画像を、ネットワーク機器間を流れる前記ストリームとして表示する表示部を備える
     請求項1または2に記載の伝送システム。
    3. The transmission system according to claim 1, further comprising a display unit that displays the low-resolution image as the stream flowing between network devices.
  4.  前記狭帯域経路は、前記非圧縮映像のストリームの伝送容量より小さい伝送容量の経路である
     請求項1から3のいずれか1項に記載の伝送システム。
    4. The transmission system according to any one of claims 1 to 3, wherein the narrowband path has a transmission capacity smaller than that of the uncompressed video stream.
  5.  前記複製部は、複数の非圧縮映像のストリームのパケットを複製し、
     前記生成部は、前記低解像度画像を前記ストリームごとに生成する
     請求項1から3のいずれか1項に記載の伝送システム。
    The duplicating unit duplicates packets of a plurality of streams of uncompressed video,
    The transmission system according to any one of claims 1 to 3, wherein the generator generates the low-resolution image for each stream.
  6.  伝送システムが行う伝送方法であって、
     非圧縮映像のストリームをパケット化した複数のパケットを複製するステップと、
     複製した前記パケットを、狭帯域経路を介して送信するステップと、
     前記狭帯域経路で発生するパケット欠損によりサンプリングされたパケットから低解像度画像を生成するステップと、を行う
     伝送方法。
    A transmission method performed by a transmission system,
    replicating a plurality of packetized packets of a stream of uncompressed video;
    transmitting the duplicated packet over a narrowband path;
    generating a low-resolution image from packets sampled due to packet loss occurring on the narrowband path.
  7.  請求項1から5のいずれか1項に記載の伝送システムとしてコンピュータを機能させる伝送プログラム。 A transmission program that causes a computer to function as the transmission system according to any one of claims 1 to 5.
PCT/JP2021/029891 2021-08-16 2021-08-16 Transfer system, transfer method, and transfer program WO2023021547A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/029891 WO2023021547A1 (en) 2021-08-16 2021-08-16 Transfer system, transfer method, and transfer program
JP2023542037A JPWO2023021547A1 (en) 2021-08-16 2021-08-16

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/029891 WO2023021547A1 (en) 2021-08-16 2021-08-16 Transfer system, transfer method, and transfer program

Publications (1)

Publication Number Publication Date
WO2023021547A1 true WO2023021547A1 (en) 2023-02-23

Family

ID=85240186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029891 WO2023021547A1 (en) 2021-08-16 2021-08-16 Transfer system, transfer method, and transfer program

Country Status (2)

Country Link
JP (1) JPWO2023021547A1 (en)
WO (1) WO2023021547A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162713A1 (en) * 2013-04-05 2014-10-09 株式会社メディアグローバルリンクス Ip uncompressed video encoder and decoder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162713A1 (en) * 2013-04-05 2014-10-09 株式会社メディアグローバルリンクス Ip uncompressed video encoder and decoder

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "ST 2110-20:2017 - SMPTE Standard - Professional Media Over Managed IP Networks: Uncompressed Active Video", SMPTE, 27 November 2017 (2017-11-27), pages 1 - 22, XP055889455, ISBN: 978-1-68303-102-4, Retrieved from the Internet <URL:https://ieeexplore.ieee.org/servlet/opac?punumber=8167387> [retrieved on 20220209], DOI: 10.5594/SMPTE.ST2110-20.2017 *

Also Published As

Publication number Publication date
JPWO2023021547A1 (en) 2023-02-23

Similar Documents

Publication Publication Date Title
JP4525935B2 (en) Audio signal processing
WO2018196790A1 (en) Video playing method, device and system
US9571897B2 (en) Bit indexed explicit replication for professional media networks
CN1756369B (en) Media speed conversion over a bandwidth-limited network
US8014322B2 (en) Diagnostic tool for troubleshooting multimedia streaming applications
KR20070003983A (en) Method and apparatus for group communication with end-to-end reliability
US11431781B1 (en) User-defined quality of experience (QoE) prioritizations
JP5205289B2 (en) Terminal apparatus and packet transmission method
JP4882756B2 (en) Viewing situation monitoring method, viewing situation monitoring apparatus, viewing situation monitoring program, and viewing situation monitoring system
CN100384136C (en) Video/audio network
WO2023021547A1 (en) Transfer system, transfer method, and transfer program
JP7388073B2 (en) Information processing device, information processing method, and program
WO2022259419A1 (en) Transfer system, transfer method, and transfer program
JP2018107584A (en) Network device and control method of the same
JP4949448B2 (en) Network connector device
US11916770B2 (en) Pinpointing sources of jitter in network flows
CN101873263A (en) Cluster multicast method and system based on local network downloading
KR102268167B1 (en) System for Providing Images
JP2008131599A (en) Cast transmission apparatus and cast transmission method
JPH10136017A (en) Data transfer system
JP4859956B2 (en) Data distribution system
CN110602431A (en) Configuration parameter modification method and device
JP2001167007A (en) File sending method
JP2018201162A (en) Communication device, control method for communication device, and program
US20240121198A1 (en) Dual internet protocol (ip) network input reference validation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954122

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023542037

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE