WO2023021538A1 - Manipulator system, control device, and shape estimation method - Google Patents

Manipulator system, control device, and shape estimation method Download PDF

Info

Publication number
WO2023021538A1
WO2023021538A1 PCT/JP2021/029852 JP2021029852W WO2023021538A1 WO 2023021538 A1 WO2023021538 A1 WO 2023021538A1 JP 2021029852 W JP2021029852 W JP 2021029852W WO 2023021538 A1 WO2023021538 A1 WO 2023021538A1
Authority
WO
WIPO (PCT)
Prior art keywords
manipulator
timing
input value
shape
value
Prior art date
Application number
PCT/JP2021/029852
Other languages
French (fr)
Japanese (ja)
Inventor
晋平 宮原
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to PCT/JP2021/029852 priority Critical patent/WO2023021538A1/en
Publication of WO2023021538A1 publication Critical patent/WO2023021538A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor

Definitions

  • the present invention relates to a manipulator system, a control device, a shape estimation method, and the like.
  • manipulators and systems containing manipulators have been used in the medical and industrial fields.
  • a manipulator When a manipulator is used by being inserted into, for example, the body, the operator who operates the manipulator cannot directly see the tip of the insertion portion of the manipulator.
  • Japanese Patent Application Laid-Open No. 2002-200001 discloses a technique of sensing the amount of wire pulling of an endoscope, which is an example of a manipulator, and predicting the shape of a bending portion of the endoscope.
  • One aspect of the present disclosure is a manipulator, a first sensor that acquires movement of a tip of the manipulator, an operation unit that performs a bending operation on the manipulator, and a second sensor that acquires an operation input amount of the bending operation of the operation unit. and a control device for estimating a shape of the manipulator, wherein the control device receives an input from the first sensor, from the shape of the manipulator in a first state, a start timing at which the manipulator begins to bend.
  • a bending operation of the operation unit causes the state to shift from the first state It concerns a manipulator system that estimates the shape of said manipulator in a second state, which is a changed state.
  • Another aspect of the present disclosure is a control device for estimating a shape of a manipulator, which acquires a first input value, which is an input value from a first sensor that acquires movement of a tip of the manipulator, and bends the manipulator. Acquiring a second input value that is an input value from a second sensor that acquires an operation input amount based on a bending operation of the operating portion to be operated, and based on the first input value, from the shape of the manipulator in the first state.
  • Yet another aspect of the present disclosure is a shape estimation method for estimating a shape of a manipulator, comprising: acquiring a first input value that is an input value from a first sensor that acquires movement of a tip of the manipulator; acquiring a second input value that is an input value from a second sensor that acquires an operation input amount based on a bending operation of an operation unit that bends the manipulator; and obtaining a first state based on the first input value.
  • FIG. 2 is a block diagram for explaining a configuration example of a manipulator system
  • FIG. FIG. 4 is a diagram schematically explaining an example of a manipulator and an operation unit
  • FIG. 5 is a diagram for explaining start timing; The figure explaining the slack of a wire. Another figure explaining slack of a wire. Another figure explaining slack of a wire. The figure explaining a 1st state and a 2nd state.
  • FIG. 5 is a diagram for explaining a processing example of tip angle estimation processing
  • FIG. 4 is a diagram for explaining a first input value and a first input value excluding a disturbance value
  • FIG. 1 is a block diagram illustrating a configuration example of a manipulator system 10 of this embodiment.
  • Manipulator system 10 includes manipulator 100 , operation unit 200 , and control device 300 .
  • Manipulator 100 includes a first sensor 150 .
  • Operation unit 200 includes a second sensor 250 .
  • the configuration of the manipulator system 10 is not limited to that shown in FIG. 1, and various modifications such as adding other components are possible.
  • the manipulator 100 can be configured to include the operation unit 200 .
  • FIG. 2 is a diagram schematically illustrating the manipulator 100 and the operation unit 200 of this embodiment.
  • Manipulator 100 includes a curved portion 102 and a flexible portion 104 .
  • the bending portion 102 is positioned on the distal end side of the outer sheath 110 and includes a plurality of bending pieces 120 and a distal end portion 130 connected to the distal ends of the bending pieces 120 .
  • the bending portion 102 bends when the wire 160 is pulled based on the operation of the operation portion 200, which will be described later.
  • the flexible portion 104 is positioned on the proximal end side of the outer sheath 110, does not include the bending piece 120, and bends passively by an external force.
  • the flexible portion 104 may further include a flexible annular member as long as it is passively bent by an external force.
  • the bending piece 120 is a short cylindrical member made of metal, and the number thereof is not particularly limited.
  • the plurality of bending pieces 120 and the distal end portion 130 are each connected by a rotatable connecting portion 140 . That is, the manipulator 100 of this embodiment has an articulated structure.
  • the manipulator 100 is not limited to that shown in FIG. 2, and various modifications such as addition of other components are possible.
  • the distal end portion 130 may include a treatment tool, a lighting device, or an imaging device. Also, all or part of these may be included.
  • the lighting device and imaging device included in the distal end portion 130 can be controlled from the outside by passing an optical fiber connected to the lighting device and a cable connecting to the imaging device through a cavity (not shown) in the operation unit 200 and the bending piece 120.
  • the manipulator 100 of the present embodiment can be used as a medical manipulator such as a medical endoscope, a catheter, and a surgical support robot arm, or as an industrial manipulator such as an industrial endoscope and an industrial robot arm.
  • the specific structures of the bending piece 120, the distal end portion 130, the connecting portion 140, etc. are known, and detailed description thereof will be omitted.
  • bending operation of the bending portion 102 may be referred to as bending operation of the manipulator 100 . Further, in the following description, bending of the bending portion 102 may be referred to as bending of the manipulator 100 .
  • the A axis, the UD axis and the LR axis are shown as appropriate from FIG. 2 onward as the three mutually orthogonal axes.
  • the direction along the A-axis is called the A-axis direction, which is the direction along the longitudinal direction of the manipulator 100 .
  • the direction in which the distal end side of the manipulator 100 is inserted into a body cavity, for example, is direction A1
  • the direction in which the manipulator 100 is pulled out is direction A2.
  • the direction along the UD axis is called the UD axis direction
  • the direction along the LR axis is called the LR axis direction.
  • the LR axis, UD axis, and A axis can also be called the X axis, Y axis, and Z axis, respectively.
  • perpendicular includes not only intersecting at 90° but also intersecting at an angle slightly inclined from 90°.
  • the first sensor 150 acquires the movement of the tip of the manipulator 100.
  • the first sensor is, for example, a two-axis or three-axis acceleration sensor, and outputs detected acceleration data to the control device 300, which will be described later, through wireless communication or wired communication.
  • the first sensor 150 may integrate the detected acceleration data with an integrator (not shown) and output it to the control device 300 as velocity data.
  • the two axes here are the aforementioned X axis and Y axis
  • the three axes are the X axis, Y axis, and Z axis. The same applies to the rest.
  • the first sensor may be a two-axis or three-axis gyro sensor, and may output detected angular acceleration data or angular velocity data to the control device 300, which will be described later, via wireless or wired communication.
  • a gyro sensor may also be called an angular velocity sensor.
  • the first sensor may be a motion sensor including a biaxial or triaxial acceleration sensor and a biaxial or triaxial gyro sensor. Note that the motion sensor may refer to either one of an acceleration sensor and a gyro sensor.
  • the operation unit 200 bends the manipulator 100 .
  • the pair of wires 160 can be moved in opposite directions by a wire driving mechanism (not shown) based on an operation input of the operation section 200, and the bending section 102 can be bent in a desired direction.
  • the bending portion 102 is shown bent upward in the UD direction by the two wires 160, but it may be bent in the RL direction.
  • the manipulator 100 may be configured to include four wires 160 consisting of an upper bend wire 160u, a lower bend wire 160d, a left bend wire 160l, and a right bend wire 160r. .
  • the left bending wire 160l and the right bending wire 160r move in mutually opposite directions, and the predetermined bending piece 120 rotates. It is assumed that the bending portion 102 can be bent in a desired direction in the RL direction.
  • the angle knob 200B that is the operation unit 200
  • the upper bending wire 160u and the lower bending wire 160d move in opposite directions, and the specific bending piece 120 rotates, thereby bending the bending portion 102. can be bent in any desired direction in the UD direction.
  • the wire drive mechanism (not shown) can be realized by a known method, so detailed description thereof will be omitted.
  • the second sensor 250 acquires the operation input amount of the bending operation of the operation section 200 .
  • the operation unit 200 is the angle knobs 200A and 200B described above
  • the amount of rotation of the angle knobs 200A and 200B can be grasped as the operation input amount of the bending operation. can do.
  • a method of estimating the amount of pulling of the wire 160 based on the amount of rotation of the angle knobs 200A and 200B and estimating the curved shape of the manipulator 100 is known.
  • the second sensor 250 may be a sensor that directly detects the amount of movement of the wire 160 .
  • the control device 300 acquires a first input value input from the first sensor and a second input value input from the second sensor.
  • the first input value is the aforementioned acceleration data or angular acceleration data, or position change data or angle data obtained by integrating these data.
  • the second input value is data indicating the operation input amount of the operation unit 200 described above and data indicating the movement amount of the wire 160 .
  • the control device 300 is configured with the following hardware.
  • the hardware may include circuitry for processing digital signals and/or circuitry for processing analog signals.
  • the hardware may consist of one or more circuit devices or one or more circuit elements mounted on a circuit board.
  • the one or more circuit devices are, for example, ICs (Integrated Circuits), FPGAs (field-programmable gate arrays), or the like.
  • the one or more circuit elements are, for example, resistors, capacitors, and the like.
  • Controller 300 includes a memory that stores information and a processor that operates on the information stored in the memory.
  • the information is, for example, programs and various data.
  • a processor includes hardware.
  • Various processors such as a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and a DSP (Digital Signal Processor) can be used as the processor.
  • the memory may be a semiconductor memory such as SRAM (Static Random Access Memory) or DRAM (Dynamic Random Access Memory), a register, or a magnetic storage device such as HDD (Hard Disk Drive).
  • it may be an optical storage device such as an optical disc device.
  • the memory stores computer-readable instructions, and when the instructions are executed by the processor, some or all of the functions of the units of the control device 300 are realized as processes.
  • the instruction here may be an instruction set that constitutes a program, or an instruction that instructs a hardware circuit of a processor to perform an operation.
  • all or part of each unit of the control device 300 can be realized by cloud computing, and each process described later with reference to FIG. 10 and the like can be performed on the cloud computing.
  • control device 300 estimates the shape of the manipulator 100 .
  • a method of estimating the shape of the manipulator 100 using the amount of pulling of the wire 160 and the amount of operation input of the operation unit 200 is disclosed in Patent Document 1 and the like. Therefore, it is considered that the control device 300 can estimate the shape of the manipulator 100 by using these methods based on the second input value from the second sensor 250 described above.
  • the shape of the manipulator 100 cannot be accurately estimated only by applying the method disclosed in Patent Document 1 and the like. This is because the method disclosed in Patent Document 1 or the like assumes that uniform and constant tension always acts on the wire 160 .
  • wire 160 in flexible section 104 is slack.
  • the bending portion 102 starts bending at the start timing ts, which is the timing after the timing at which the operation of the operation portion 200 is started.
  • the start timing cannot be grasped from the second input value from the second sensor 250 .
  • FIG. 4 is a diagram for explaining the relationship between the time for operating the operation unit 200 and the first input value.
  • the bending pieces 120 and the like which are unnecessary for explanation, are omitted as appropriate.
  • the reference numerals of the outer sheath 110, the distal end portion 130, the wire 160, and the operating portion 200 are attached to only one portion as a representative, and the others are omitted.
  • the specific direction in which the manipulator 100 bends is not particularly limited. It is also assumed that the operator starts operating the operation unit 200 at the timing when the vertical axes intersect, and that the manipulator 100 as a whole is not curved at the time of starting the operation of the operation unit 200 .
  • the period indicated by B2 is a period in which the slackness of the wire 160 corresponding to the operation of the operation section 200 is eliminated. Part 130 begins to act. Then, when the operator continues to operate the operation section 200, the bending section 102 starts bending, for example, as indicated by B3 at the start timing ts.
  • the bending angle of the bending portion 102 can be accurately estimated.
  • the bending angle of the bending portion 102 can be accurately estimated by adding a certain offset value to the amount of operation input to the above-described conventional method after considering the start timing. It seems so.
  • the start timing ts is not a constant value, but a value that changes according to the shape of the flexible portion 104 .
  • 5, 6, and 7 are diagrams illustrating slackness of the wire 160.
  • FIG. 5 shows the state in which the flexible portion 104 is not curved
  • FIG. 6 shows the state in which the flexible portion 104 is curved by 90°
  • FIG. 7 is the state in which the flexible portion 104 is curved by 180°.
  • FIG. 1 is in a state of 5 to 7 show only the upward bending wire 160u and the downward bending wire 160d as examples of the wires 160, and show the case where the flexible portion 104 bends upward in the UD axis direction. is the same, and the same is true for the RL axis direction. Further, illustration of the bending portion 102 is omitted in FIG. The same applies to FIGS. 6 and 7.
  • FIG. 1 shows only the upward bending wire 160u and the downward bending wire 160d as examples of the wires 160, and show the case where the flexible portion 104 bends upward in the UD axis direction. is the same, and the same is true for the RL axis direction. Further, illustration of the bending portion 102 is omitted in FIG. The same applies to FIGS. 6 and 7.
  • FIG. 1 is in a state of 5 to 7 show only the upward bending wire 160u and the downward bending wire 160d as examples of the wires 160, and show the case where the flexible portion 104 bends upward in
  • the slackness of the upper bending wire 160u and the lower bending wire 160d is the same.
  • the same here includes substantially the same.
  • the slackness of wire 160 depends on the shape of flexible portion 104 of manipulator 100 .
  • the manipulator 100 is a medical manipulator such as an endoscope
  • the shape of the flexible portion 104 changes intricately over time. , and the start timing ts also changes accordingly. Therefore, it is difficult to easily estimate the shape of the manipulator 100 using the conventional method.
  • the control device 300 estimates the start timing ts based on the first input value from the shape of the manipulator 100 in the first state. For example, assume that the shape of the manipulator 100 before the start timing ts was in the first state. However, although FIG. 8 schematically illustrates a state where the manipulator 100 is not curved, the manipulator 100 may be curved. Then, the start timing ts is estimated by applying a method described later to the first input value input from the first sensor 150 .
  • the control device 300 estimates the shape of the manipulator 100 in the second state, which is the state changed from the first state by the bending operation of the operation unit 200, based on the second input value. .
  • the shape of the manipulator 100 can be determined at a predetermined timing after the start timing ts. can be estimated.
  • the control device 300 can estimate that the tip of the manipulator 100 is bent by 90° at the timing indicated by C1, and that the tip of the manipulator 100 is bent by 180° at the timing indicated by C2.
  • the predetermined method is the conventional method described above, the method described later with reference to FIG. 13, or the like.
  • the manipulator system 10 of the present embodiment includes the manipulator 100, the first sensor 150 that acquires the movement of the tip of the manipulator 100, the operation unit 200 that performs bending operation of the manipulator 100, and the operation unit 200 that performs bending operation. and a control device 300 for estimating the shape of the manipulator 100 .
  • controller 300 estimates the start timing ts at which manipulator 100 begins to bend, based on the first input value from first sensor 150 . Further, based on the second input value, which is the input value from the second sensor 250 after the estimated start timing ts, the control device 300 controls the second state, which is the state changed from the first state by the bending operation of the operation unit 200 . Estimate the shape of the state manipulator 100 .
  • the manipulator system 10 of this embodiment not only includes the second sensor 250 in the operation section 200, but also includes the first sensor 150 in the manipulator 100.
  • the control device 300 can use not only the second input value but also the first input value in estimating the shape of the manipulator 100 .
  • the start timing ts can be estimated using the first state before the manipulator 100 starts bending and the first input value. This makes it possible to update the estimation result of the start timing ts every time the shape of the manipulator 100 changes. As a result, the start timing ts can be accurately estimated, so the shape of the manipulator 100 can be accurately estimated by using the second input value from the second sensor. This allows the operator to operate the manipulator 100 easily and safely.
  • the method of the present embodiment may be implemented as the control device 300. That is, the control device 300 of the present embodiment is a control device 300 that estimates the shape of the manipulator 100, and acquires the first input value that is the input value from the first sensor 150 that acquires the movement of the tip of the manipulator 100. do.
  • the control device 300 also acquires a second input value, which is an input value from the second sensor 250 that acquires the amount of operation input based on the bending operation of the operation unit 200 that bends the manipulator 100 .
  • the control device 300 estimates the start timing ts at which the manipulator 100 begins to bend, and the second input after the estimated start timing ts. Based on the values, the shape of the manipulator 100 in the second state, which is the state changed from the first state by the bending operation of the operation unit 200, is estimated. By doing so, an effect similar to that described above can be obtained.
  • the method of the present embodiment may be implemented as a shape estimation method. That is, the shape estimation method of the present embodiment is a shape estimation method for estimating the shape of the manipulator 100, and acquires the first input value, which is the input value from the first sensor 150 that acquires the movement of the tip of the manipulator 100. and obtaining a second input value that is an input value from the second sensor 250 that obtains an operation input amount based on the bending operation of the operation unit 200 that bends the manipulator 100 .
  • the shape estimating method includes, based on the first input value, estimating the start timing ts at which the manipulator 100 is considered to start bending from the shape of the manipulator 100 in the first state, and It includes estimating the shape of the manipulator 100 in the second state, which is a state changed from the first state by the bending operation of the operation unit 200, based on the second input value.
  • FIG. 9 is a diagram for explaining the relationship between the angle change of the tip portion 130 of the manipulator 100, the behavior of the first input value, and the behavior of the second input value.
  • each graph in FIG. 9 shows either the component in the LR axis direction or the component in the UD axis direction, but the same applies to the other. The same applies to FIG. 13 to be described later.
  • the first sensor 150 is assumed to be an acceleration sensor in the following description, it may be the gyro sensor or motion sensor described above. That is, the first sensor 150 is an acceleration sensor provided at the tip of the manipulator 100, an angular velocity sensor, or both.
  • the operation unit 200 is rotated like the angle knobs 200A and 200B in FIG. 2, and the second sensor 250 is an angle sensor. That is, the operation unit 200 is rotated within a predetermined angle range, and the second sensor 250 is an angle sensor that measures the angle. That is, the change in the second input value shown in FIG. 9 is the change in the angle of the operation unit 200 .
  • the second sensor 250 may be a sensor that can directly acquire the amount of traction of the wire 160, and in this case there is no need to use the aforementioned angle sensor.
  • the manipulator 100 includes the wire 160 and the second sensor 250 is a sensor capable of acquiring the amount of pulling of the wire 160 .
  • the bending portion 102 is bent by an angle ⁇ 1.
  • the curved portion 102 at this time may not be curved, that is, the angle ⁇ 1 may be 0°.
  • the bending portion 102 starts bending at a first timing t1, and bends by an angle ⁇ 2 at a second timing t2. That is, the first timing t1 in FIG. 9 is timing corresponding to the start timing ts in FIG.
  • the first timing t1 at which the bending portion 102 begins to bend is the timing at which the operation input of the operation unit 200 is started. It does not match. That is, the operation input of the operation unit 200 is started at the third timing t3 which is the timing before the first timing t1, and the second sensor 250 acquires the second input value at the third timing t3. It will be.
  • the shape of the manipulator 100 does not change at the third timing t3 or at timings before the third timing t3, it corresponds to the first state in FIG. That is, the first state is the state of the shape of the manipulator 100 at the timing before the third timing t3, which is the timing at which the operation input to the operation unit 200 is performed, and the state of the shape of the manipulator 100 at the third timing t3. at least one of them.
  • the first input value starts rising after the third timing t3.
  • the timing at which the first input value exceeds the threshold value L is the first timing t1, and the bending portion 102 starts bending.
  • the timing when the first input value is divided by the threshold value L is the second timing t2, and the bending portion 102 stops bending at the aforementioned angle ⁇ 2.
  • the threshold value L here is a value that depends on the shape of the manipulator 100 at the third timing t3, and the details will be described later. Also, since the first input value acquired by the first sensor 150 includes a disturbance value, which will be described later, it is necessary to estimate the first timing t1 in consideration of the disturbance value, the method of which will be described later.
  • the shape of the manipulator 100 can be estimated at a timing after the first timing t1. That is, at a predetermined timing after the first timing t1, the shape of the manipulator 100 can be estimated based on the second input value.
  • the predetermined timing is the timing from the first timing t1 to the second timing t2.
  • the control device 300 estimates the threshold value L of the operation input amount at which the manipulator 100 is assumed to start bending from the shape of the manipulator 100 in the first state.
  • the first timing t1 which is the timing at which the operation input amount exceeds the threshold L
  • the second state The shape of the manipulator 100 is estimated.
  • the method of the present embodiment may be implemented as the control device 300. That is, the control device 300 of the present embodiment estimates the threshold value L of the amount of operation input at which the manipulator 100 is considered to start bending from the shape of the manipulator 100 in the first state, and calculates the amount of operation input based on the first input value. exceeds the threshold value L as the start timing ts, and the shape of the manipulator 100 in the second state is estimated based on the second input value at a predetermined timing after the first timing t1. . Thereby, an effect similar to that described above can be obtained.
  • the method of the present embodiment may be implemented as a shape estimation method.
  • the shape estimation method of the present embodiment includes estimating the threshold value L of the amount of operation input at which the manipulator 100 is assumed to start bending from the shape of the manipulator 100 in the first state. Further, the shape estimating method includes, based on the first input value, determining the first timing t1, which is the timing at which the operation input amount exceeds the threshold value L, as the start timing ts, estimating the shape of the manipulator 100 in the second state based on the second input value at the timing; Thereby, an effect similar to that described above can be obtained.
  • the control device 300 first acquires a first input value (step S100).
  • the process of step S100 is a loop process until YES in step S120, which will be described later, and is always performed at a constant cycle. In other words, the control device 300 continues to acquire the first input value as time-series data.
  • the control device 300 acquires a disturbance value (step S110).
  • the disturbance value is, among the first input values, a value that does not depend on the bending operation from the operation unit 200, and specifically is noise or the like. That is, in a situation where noise or the like occurs, the control device 300 obtains the first input value as a value to which the disturbance value is added. Therefore, when the control device 300 continues to acquire the first input value until the second timing t2, the actual waveform of the first input value becomes, for example, D1 in FIG.
  • the situation where noise or the like occurs is, for example, when the manipulator 100 is a medical endoscope, it is inserted into the patient's lumen.
  • the control device 300 acquires a disturbance value estimated by applying a predetermined time-series model to the time-series data of the first input value.
  • the predetermined time series model is, for example, an autoregressive model, but may be other time series models such as an autoregressive moving average model or an autoregressive integrated moving average model.
  • the autoregressive model can also be called an AR (autoregressive) model
  • the autoregressive moving average model can also be called an ARMA (autoregressive moving average) model
  • the autoregressive integrated moving average model can be called an ARIMA (autoregressive integrated moving average) model.
  • ARIMA autoregressive integrated moving average
  • control device 300 performs a process of determining whether or not a bending operation has been detected, and if a bending operation has not been detected (NO in step S120), the process returns to step S100.
  • a tip angle calculation process step S200, which will be described later, is performed, and then the process returns to step S100.
  • step S110 described above is repeatedly performed until the bending operation is detected.
  • the disturbance value is also determined. That is, the disturbance value is estimated based on the waveform portion indicated by E in the waveform indicated by D1 in FIG. 12 and the above-described predetermined time-series model. Then, as will be described later with reference to FIG. 11, the estimated disturbance value is used to estimate the first timing t1.
  • the control device 300 acquires the second input value at the third timing (step S210), and acquires the threshold value L of the amount of operation input (step S220). Specifically, control device 300 acquires threshold value L estimated according to a predetermined algorithm based on the second input value at the third timing.
  • the predetermined algorithm for example, assumes that the manipulator 100 is a multi-joint manipulator connected to i joints as shown in FIG. This is an algorithm that estimates the velocity and angular velocity of the point F connected to the terminal joint by distributing. Although each joint in the multi-joint manipulator in FIG.
  • a homogeneous transformation matrix from the origin O to the link coordinate system at the joint i-1 can be expressed by the following equation (1).
  • the model of the articulated manipulator in FIG. 13 can correspond to the illustrated manipulator 100 in FIG.
  • the operating portion 200 in FIG. 2 corresponds to the origin O in FIG. 13
  • the connecting portion 140 in FIG. 2 corresponds to the joint in FIG. 13
  • the tip portion 130 in FIG. 2 corresponds to the point F in FIG.
  • the displacement of the bending piece 120 and the change in the angle between the bending pieces 120 due to the pulling of the wire 160 by the operation input of the operation unit 200 in FIG. corresponds to changes in Therefore, if the second input value, which is the value obtained by operating the operation unit 200 in FIG. 2, corresponds to the velocity and angular velocity at the origin O in FIG.
  • the velocity and angular velocity of F are estimated.
  • the velocity and angular velocity of tip portion 130 of manipulator 100 can be estimated. Therefore, by setting the acceleration obtained by partially differentiating the estimated speed of the tip end portion 130 as the threshold value L, it can be compared with the first input value, which is the acceleration data. Accordingly, after the third timing t3, the first timing t1 at which the first input value input to the control device 300 exceeds the threshold value L is considered to match the start timing ts with high accuracy. It can be regarded as the start timing ts.
  • the estimated threshold value L is a value that depends on the shape of the manipulator 100 at the third timing t3. For example, when the manipulator 100 is not bent at all, and the manipulator 200 is quickly operated, that is, when the wire 160 is quickly pulled, the distal end portion 130 undergoes a large acceleration. Further, for example, even if the wire 160 is pulled at the same speed while the manipulator 100 is curved, the acceleration generated in the tip portion 130 is smaller than when the manipulator 100 is not curved at all. These events mean that the Jacobian matrix in the multi-joint manipulator model of FIG. 13 depends on the angle of each joint. Therefore, when the control device 300 calculates the threshold L based on the above model, estimation of the threshold L can be realized by storing Jacobian matrix data according to the angle in a storage unit (not shown). can be done.
  • a large estimated threshold value L means that the tip portion 130 of the manipulator 100 is difficult to move. I have something to say.
  • the operability of the manipulator 100 can be predicted from the shape of the manipulator 100 at the third timing t3, and the second input value at the third timing t3 is used to obtain the first timing t1.
  • a threshold L can be estimated.
  • the operability is the responsiveness of the first input value to the bending operation of the operating section 200, and the responsiveness is shown in the above equation (3). That is, in Equation (3), the velocity and angular velocity of each joint change according to the bending operation, and as a result, the angle and/or angular velocity of the tip portion 130 corresponding to the first input value responds.
  • the velocity or angular velocity input to the operation unit 200 is the same, if the Jacobian matrix is different, the angle or angular velocity of the tip portion 130 corresponding to the first input value will be different.
  • the bending operation amount differs according to the operability, so different threshold values L are estimated according to the operability. That is, the operability and the threshold L are estimated based on the Jacobian matrix of Equation (3).
  • the control device 300 converts the second input value at the third timing t3, which is the timing at which the operation input to the operation unit 200 is performed, to the Jacobian matrix in a predetermined algorithm.
  • a threshold value L is obtained based on the threshold value L, and the first timing t1 is obtained by comparing the threshold value L and the first input value. By doing so, the threshold value L can be determined such that the first timing t1 and the start timing ts match with high precision.
  • the method of the present embodiment may be implemented as the control device 300. That is, the control device 300 of the present embodiment obtains the threshold value L based on the second input value at the third timing t3, which is the timing at which the operation input to the operation unit 200 is performed, and the Jacobian matrix in a predetermined algorithm, A first timing t1 is obtained by comparing the threshold value L and the first input value. Thereby, an effect similar to that described above can be obtained.
  • the method of the present embodiment may be implemented as a shape estimation method. That is, the shape estimation method of the present embodiment obtains the threshold value L based on the second input value at the third timing t3, which is the timing at which the operation input to the operation unit 200 is performed, and the Jacobian matrix in a predetermined algorithm, and determining the first timing t1 by comparing the threshold value L and the first input value. Thereby, an effect similar to that described above can be obtained.
  • step S230 acquires the first input value (step S230).
  • the process of step S230 is the same as step S100 of FIG. 10, but step S100 is a process of acquiring the first input value before the third timing t3, whereas step S230 is a process of acquiring the first input value after the third timing t3. It differs in that it is a process of acquiring the first input value.
  • control device 300 determines whether or not the value obtained by subtracting the disturbance value obtained in step S110 from the first input value obtained in step S230 is greater than the threshold value L obtained in step S220. For example, when the disturbance value is subtracted from the first input value based on the waveform shown in D1 of FIG. 12, the waveform shown in D2, for example, is obtained.
  • step S230 When the value obtained by subtracting the disturbance value from the first input value is smaller than the threshold value L (NO in step S240), the control device 300 performs the process of step S230 again. That is, as long as the value obtained by subtracting the disturbance value from the first input value is smaller than the threshold value L, step S230 is looped. As described above, the first input value obtained in step S230 increases over time, and the timing at which the value obtained by subtracting the disturbance value from the first input value exceeds the threshold value L is the first timing t1, that is, the estimated start It is the timing ts.
  • the control device 300 uses the first input value in a predetermined period before the third timing t3, which is the timing at which the operation input to the operation unit 200 is performed, Among the first input values, a disturbance value that does not depend on the bending operation from the operation unit 200 is estimated. Then, the control device 300 estimates the start timing ts based on the disturbance value and the first input value.
  • the method of the present embodiment may be implemented as the control device 300. That is, the control device 300 of the present embodiment uses the first input value in a predetermined period before the third timing t3, which is the timing at which the operation input to the operation unit 200 is performed, to A disturbance value that does not depend on the bending operation from the operation unit 200 is estimated. Then, the control device 300 estimates the start timing ts based on the disturbance value and the first input value. Thereby, an effect similar to that described above can be obtained.
  • the method of this embodiment may be implemented as a shape estimation method. That is, the shape estimation method of the present embodiment uses the first input value in a predetermined period before the third timing t3, which is the timing at which the operation input to the operation unit 200 is performed, It includes estimating a disturbance value that does not depend on the bending operation from the operation unit 200 . The shape estimation method also includes estimating the start timing ts based on the disturbance value and the first input value. Thereby, an effect similar to that described above can be obtained.
  • the control device 300 integrates the second input value within a predetermined range (step S250).
  • the timing at which the first input value becomes greater than the threshold value L is the first timing t1 as described above, which is the timing at which the bending portion 102 is estimated to start bending. Therefore, as shown in FIG. 14, the control device 300 integrates the second input value in the section from the first timing t1 to the second timing, which is the timing at which the bending portion 102 finishes bending, so that the second timing t2 is estimated.
  • the higher the estimation accuracy the closer the estimated angle is to the angle ⁇ 2.
  • the angle information of the operation input of the operation unit 200 is obtained by integration. Based on this, the pulling amount of the wire 160 can be grasped. Thereby, the shape of the manipulator 100 can be estimated using the conventional technique described above.
  • the manipulator 100 is configured by a plurality of bending pieces 120 connected by the connecting portion 140, but the control device 300 estimates the bending angle assuming that the angles formed by the adjacent bending pieces 120 are equal. are doing.
  • the control device 300 integrates the second input value in the range from the first timing t1 to the second timing t2, which is the timing after the first timing t1.
  • the shape of the manipulator 100 at the second timing t2 is estimated.
  • the first timing t1 which is estimated to be the timing at which bending of the bending portion 102 is started, can be set as one end of the integration interval. can be estimated to
  • the method of the present embodiment may be implemented as the control device 300. That is, the control device 300 of the present embodiment integrates the second input value in the range from the first timing t1 to the second timing t2, which is the timing after the first timing t1, based on the second timing Estimate the shape of the manipulator 100 at t2. Thereby, an effect similar to that described above can be obtained.
  • the method of the present embodiment may be implemented as a shape estimation method. That is, the shape estimation method of the present embodiment calculates the second input value at the second timing based on the value obtained by integrating the second input value in the range from the first timing t1 to the second timing t2, which is the timing after the first timing t1. including estimating the shape of the manipulator 100 at t2. Thereby, an effect similar to that described above can be obtained.
  • the method of this embodiment is not limited to the above, and various modifications are possible.
  • the first input value is acceleration data input from the first sensor 150
  • the control device 300 may acquire velocity data from the first sensor 150 as the first input value.
  • the speed of the point F estimated in the above-described multi-joint manipulator model equation (3) can be used as the threshold value L and compared with the first input value. Even in this way, the first timing t1 can be obtained in the same manner, so that the same effect as when the first input value is acceleration data can be obtained.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manipulator (AREA)

Abstract

A manipulator system (10) comprises: a manipulator (100); a first sensor (150) which acquires the motion of a leading end of the manipulator; an operating unit (200) for performing a bending operation on the manipulator; a second sensor (250) which acquires an operation input amount of the bending operation performed through the operating unit; and a control device (300) which estimates the shape of the manipulator. The control device estimates, from the shape of the manipulator in a first state, a start timing (ts) at which the manipulator is deemed to have started bending, on the basis of a first input value that is a value inputted from the first sensor. In addition, on the basis of a second input value that is a value inputted from the second sensor at a time subsequent to the estimated start timing, the control device estimates the shape of the manipulator in a second state being a state that has changed from the first state as a result of the bending operation by the operating unit.

Description

マニピュレータシステム、制御装置及び形状推定方法Manipulator system, controller and shape estimation method
 本発明は、マニピュレータシステム、制御装置及び形状推定方法等に関する。 The present invention relates to a manipulator system, a control device, a shape estimation method, and the like.
 従来、マニピュレータやマニピュレータを含むシステムが、医療や工業の分野において用いられている。マニピュレータを例えば体内等に挿入して用いる場合、マニピュレータを操作する術者は、マニピュレータの挿入部の先端を直接視認することができない。マニピュレータを術者が容易に操作するために、マニピュレータの先端の湾曲形状を把握したいニーズが有る。特許文献1には、マニピュレータの一例である内視鏡のワイヤ牽引量をセンシングし、内視鏡の湾曲部形状を予測する技術が開示されている。 Conventionally, manipulators and systems containing manipulators have been used in the medical and industrial fields. When a manipulator is used by being inserted into, for example, the body, the operator who operates the manipulator cannot directly see the tip of the insertion portion of the manipulator. In order for the operator to easily operate the manipulator, there is a need to grasp the curved shape of the tip of the manipulator. Japanese Patent Application Laid-Open No. 2002-200001 discloses a technique of sensing the amount of wire pulling of an endoscope, which is an example of a manipulator, and predicting the shape of a bending portion of the endoscope.
特開2013-172905号公報JP 2013-172905 A
 しかし、マニピュレータに用いられるワイヤには弛みが有ることから、ワイヤ牽引量のみからマニピュレータの形状を推定すると、誤差が大きい。また、ワイヤの牽引を開始するタイミングや、当該タイミングにおけるマニピュレータの形状も考慮しないと、マニピュレータの形状を正確に予測することが困難である。特許文献1にはこのような事情までは考慮されていない。 However, since the wires used in the manipulator have slack, estimating the shape of the manipulator only from the amount of wire pulling results in a large error. Moreover, it is difficult to accurately predict the shape of the manipulator without considering the timing of starting to pull the wire and the shape of the manipulator at that timing. Patent document 1 does not consider such circumstances.
 本開示の一態様は、マニピュレータと、前記マニピュレータの先端の動きを取得する第1センサと、前記マニピュレータを湾曲操作する操作部と、前記操作部の湾曲操作の操作入力量を取得する第2センサと、前記マニピュレータの形状を推定する制御装置と、を含み、前記制御装置は、第1状態の前記マニピュレータの形状から、前記マニピュレータが湾曲し始めたとみなす開始タイミングを、前記第1センサからの入力値である第1入力値に基づいて推定し、推定した前記開始タイミング以降における前記第2センサからの入力値である第2入力値に基づいて、前記操作部の湾曲操作により前記第1状態から変化した状態である第2状態の前記マニピュレータの形状を推定するマニピュレータシステムに関係する。 One aspect of the present disclosure is a manipulator, a first sensor that acquires movement of a tip of the manipulator, an operation unit that performs a bending operation on the manipulator, and a second sensor that acquires an operation input amount of the bending operation of the operation unit. and a control device for estimating a shape of the manipulator, wherein the control device receives an input from the first sensor, from the shape of the manipulator in a first state, a start timing at which the manipulator begins to bend. based on a first input value that is a value, and based on a second input value that is an input value from the second sensor after the estimated start timing, a bending operation of the operation unit causes the state to shift from the first state It concerns a manipulator system that estimates the shape of said manipulator in a second state, which is a changed state.
 本開示の他の態様は、マニピュレータの形状を推定する制御装置であって、前記マニピュレータの先端の動きを取得する第1センサからの入力値である第1入力値を取得し、前記マニピュレータを湾曲操作する操作部の湾曲操作に基づく操作入力量を取得する第2センサからの入力値である第2入力値を取得し、前記第1入力値に基づいて、第1状態の前記マニピュレータの形状から、前記マニピュレータが湾曲し始めたとみなす開始タイミングを推定し、推定した前記開始タイミング以降における前記第2入力値に基づいて、前記操作部の湾曲操作により前記第1状態から変化した状態である第2状態の前記マニピュレータの形状を推定する制御装置に関係する。 Another aspect of the present disclosure is a control device for estimating a shape of a manipulator, which acquires a first input value, which is an input value from a first sensor that acquires movement of a tip of the manipulator, and bends the manipulator. Acquiring a second input value that is an input value from a second sensor that acquires an operation input amount based on a bending operation of the operating portion to be operated, and based on the first input value, from the shape of the manipulator in the first state. estimating a start timing at which it is assumed that the manipulator has begun to bend, and based on the second input value after the estimated start timing, a second state that is a state changed from the first state by a bending operation of the operation unit; It concerns a controller that estimates the shape of the manipulator in a state.
 本開示のさらに他の態様は、マニピュレータの形状を推定する形状推定方法であって、前記マニピュレータの先端の動きを取得する第1センサからの入力値である第1入力値を取得することと、前記マニピュレータを湾曲操作する操作部の湾曲操作に基づく操作入力量を取得する第2センサからの入力値である第2入力値を取得することと、前記第1入力値に基づいて、第1状態の前記マニピュレータの形状から、前記マニピュレータが湾曲し始めたとみなす開始タイミングを推定することと、推定した前記開始タイミング以降における前記第2入力値に基づいて、前記操作部の湾曲操作により前記第1状態から変化した状態である第2状態の前記マニピュレータの形状を推定することと、を含む形状推定方法に関係する。 Yet another aspect of the present disclosure is a shape estimation method for estimating a shape of a manipulator, comprising: acquiring a first input value that is an input value from a first sensor that acquires movement of a tip of the manipulator; acquiring a second input value that is an input value from a second sensor that acquires an operation input amount based on a bending operation of an operation unit that bends the manipulator; and obtaining a first state based on the first input value. estimating a start timing at which it is assumed that the manipulator begins to bend from the shape of the manipulator; estimating the shape of the manipulator in a second state, which is a state changed from .
マニピュレータシステムの構成例を説明するブロック図。FIG. 2 is a block diagram for explaining a configuration example of a manipulator system; FIG. マニピュレータと操作部の例を模式的に説明する図。FIG. 4 is a diagram schematically explaining an example of a manipulator and an operation unit; ワイヤの例を説明する図。The figure explaining the example of a wire. 開始タイミングについて説明する図。FIG. 5 is a diagram for explaining start timing; ワイヤの弛みについて説明する図。The figure explaining the slack of a wire. ワイヤの弛みについて説明する別の図。Another figure explaining slack of a wire. ワイヤの弛みについて説明する別の図。Another figure explaining slack of a wire. 第1状態と第2状態について説明する図。The figure explaining a 1st state and a 2nd state. マニピュレータ先端の角度変化と、第1入力値と、第2入力値の関係をタイミングごとに説明する図。FIG. 5 is a diagram for explaining the relationship between the angle change of the tip of the manipulator, the first input value, and the second input value for each timing; 本実施形態の処理例を説明する図。4A and 4B are diagrams for explaining a processing example of the embodiment; FIG. 先端角度推定処理の処理例を説明する図。FIG. 5 is a diagram for explaining a processing example of tip angle estimation processing; 第1入力値と、外乱値を除いた第1入力値を説明する図。FIG. 4 is a diagram for explaining a first input value and a first input value excluding a disturbance value; 多関節マニピュレータのモデルを説明する図。The figure explaining the model of an articulated manipulator. 第2入力値と、先端角度の関係を説明する図。The figure explaining the relationship between a 2nd input value and a tip angle.
 以下、本実施形態について説明する。なお、以下に説明する本実施形態は、請求の範囲に記載された内容を不当に限定するものではない。また本実施形態で説明される構成の全てが、本開示の必須構成要件であるとは限らない。 The present embodiment will be described below. In addition, this embodiment described below does not unduly limit the content described in the claims. Moreover, not all the configurations described in the present embodiment are essential constituent elements of the present disclosure.
 図1と図2と図3を用いて、本実施形態のマニピュレータシステム10の構成例を説明する。図1は、本実施形態のマニピュレータシステム10の構成例を説明するブロック図である。マニピュレータシステム10は、マニピュレータ100と、操作部200と、制御装置300を含む。マニピュレータ100は第1センサ150を含む。操作部200は、第2センサ250を含む。なお、マニピュレータシステム10の構成は図1に限定されず、他の構成要素を追加するなどの種々の変形実施が可能である。例えば、マニピュレータ100が操作部200を含む構成にすることもできる。 A configuration example of the manipulator system 10 of the present embodiment will be described using FIGS. 1, 2 and 3. FIG. FIG. 1 is a block diagram illustrating a configuration example of a manipulator system 10 of this embodiment. Manipulator system 10 includes manipulator 100 , operation unit 200 , and control device 300 . Manipulator 100 includes a first sensor 150 . Operation unit 200 includes a second sensor 250 . The configuration of the manipulator system 10 is not limited to that shown in FIG. 1, and various modifications such as adding other components are possible. For example, the manipulator 100 can be configured to include the operation unit 200 .
 図2は本実施形態のマニピュレータ100及び操作部200を模式的に例示する図である。マニピュレータ100は、湾曲部102と、軟性部104を含む。湾曲部102は、アウターシース110の先端側に位置し、複数の湾曲駒120と、湾曲駒120の先端に連結された先端部130と、を含む。湾曲部102は、後述する操作部200の操作に基づいてワイヤ160が牽引されることにより湾曲する。また、軟性部104は、アウターシース110の基端側に位置し、湾曲駒120を含まず、外力で受動的に湾曲する。なお、図示は省略するが、軟性部104は、外力で受動的に湾曲するのであれば、軟性の環状部材をさらに含んでいてもよい。湾曲駒120は、金属で形成された短筒状の部材であり、数は特に限定されない。複数の湾曲駒120と先端部130は、各々、回動可能な連結部140によって連結されている。つまり、本実施形態のマニピュレータ100は多関節構造を有している。マニピュレータ100は図2に示したものに限られず、他の構成要素を追加する等、種々の変形実施が可能である。例えば、図示は省略するが、先端部130は、処置具を含んでもよいし、照明装置を含んでもよく、撮像装置を含んでもよい。また、これらの全部または一部を含んでもよい。例えば照明装置と接続する光ファイバや撮像措置と接続するケーブルを、操作部200や湾曲駒120における不図示の空洞部に通すことで、先端部130に含まれる照明装置や撮像装置を外部から制御することが実現できる。このようにすることで、本実施形態のマニピュレータ100を、例えば医療用内視鏡、カテーテル及び手術支援ロボットアーム等の医療用マニピュレータの他、工業用内視鏡や工業用ロボットアーム等の工業用マニピュレータとして使用することができる。なお、湾曲駒120、先端部130、連結部140等の具体的な構造は公知につき詳細な説明は省略する。また、以降の説明において、湾曲部102を湾曲操作することを、マニピュレータ100を湾曲操作すると言うことがある。また、以降の説明において、湾曲部102が湾曲することを、マニピュレータ100が湾曲すると言うことがある。 FIG. 2 is a diagram schematically illustrating the manipulator 100 and the operation unit 200 of this embodiment. Manipulator 100 includes a curved portion 102 and a flexible portion 104 . The bending portion 102 is positioned on the distal end side of the outer sheath 110 and includes a plurality of bending pieces 120 and a distal end portion 130 connected to the distal ends of the bending pieces 120 . The bending portion 102 bends when the wire 160 is pulled based on the operation of the operation portion 200, which will be described later. Also, the flexible portion 104 is positioned on the proximal end side of the outer sheath 110, does not include the bending piece 120, and bends passively by an external force. Although illustration is omitted, the flexible portion 104 may further include a flexible annular member as long as it is passively bent by an external force. The bending piece 120 is a short cylindrical member made of metal, and the number thereof is not particularly limited. The plurality of bending pieces 120 and the distal end portion 130 are each connected by a rotatable connecting portion 140 . That is, the manipulator 100 of this embodiment has an articulated structure. The manipulator 100 is not limited to that shown in FIG. 2, and various modifications such as addition of other components are possible. For example, although illustration is omitted, the distal end portion 130 may include a treatment tool, a lighting device, or an imaging device. Also, all or part of these may be included. For example, the lighting device and imaging device included in the distal end portion 130 can be controlled from the outside by passing an optical fiber connected to the lighting device and a cable connecting to the imaging device through a cavity (not shown) in the operation unit 200 and the bending piece 120. can be realized. By doing so, the manipulator 100 of the present embodiment can be used as a medical manipulator such as a medical endoscope, a catheter, and a surgical support robot arm, or as an industrial manipulator such as an industrial endoscope and an industrial robot arm. Can be used as a manipulator. The specific structures of the bending piece 120, the distal end portion 130, the connecting portion 140, etc. are known, and detailed description thereof will be omitted. Further, in the following description, bending operation of the bending portion 102 may be referred to as bending operation of the manipulator 100 . Further, in the following description, bending of the bending portion 102 may be referred to as bending of the manipulator 100 .
 また、説明の便宜上、互いに直交する3つの軸として、A軸、UD軸及びLR軸を、図2以降、適宜図示している。A軸に沿った方向をA軸方向と言い、マニピュレータ100の長手方向に沿った方向である。また、マニピュレータ100の先端側が例えば体腔内に挿入される方向をA1方向とし、マニピュレータ100を引き抜く方向をA2方向とする。また、UD軸に沿った方向をUD軸方向と言い、LR軸に沿った方向をLR軸方向と言う。ここで、LR軸、UD軸、A軸を各々、X軸、Y軸、Z軸と言うこともできる。なお「直交」は、90°で交わっているものの他、90°から若干傾いた角度で交わっている場合も含むものとする。 Also, for convenience of explanation, the A axis, the UD axis and the LR axis are shown as appropriate from FIG. 2 onward as the three mutually orthogonal axes. The direction along the A-axis is called the A-axis direction, which is the direction along the longitudinal direction of the manipulator 100 . Further, the direction in which the distal end side of the manipulator 100 is inserted into a body cavity, for example, is direction A1, and the direction in which the manipulator 100 is pulled out is direction A2. Also, the direction along the UD axis is called the UD axis direction, and the direction along the LR axis is called the LR axis direction. Here, the LR axis, UD axis, and A axis can also be called the X axis, Y axis, and Z axis, respectively. Note that the term "perpendicular" includes not only intersecting at 90° but also intersecting at an angle slightly inclined from 90°.
 第1センサ150は、マニピュレータ100の先端の動きを取得する。第1センサは例えば2軸または3軸の加速度センサであり、無線通信又は有線通信によって、検出した加速度データを後述する制御装置300に出力する。なお、第1センサ150は、検出した加速度データを図示しない積分器により積分し、速度データとして、制御装置300に出力してもよい。なお、ここでの2軸とは前述のX軸、Y軸であり、3軸とはX軸、Y軸、Z軸である。以降も同様である。また、第1センサは2軸または3軸のジャイロセンサであってもよく、検出した角加速度データまたは角速度データを、無線通信又は有線通信により後述する制御装置300に出力してもよい。また、ジャイロセンサは角速度センサとも呼ぶことがある。また、第1センサは、2軸または3軸の加速度センサと、2軸または3軸のジャイロセンサを含むモーションセンサであってもよい。なお、モーションセンサは、加速度センサとジャイロセンサのうち一方を言う場合もある。第1センサ150によって検出されるデータを解析することで、マニピュレータ100の先端が動き始める開始タイミングtsを推測する情報を得ることができ、詳細は後述する。 The first sensor 150 acquires the movement of the tip of the manipulator 100. The first sensor is, for example, a two-axis or three-axis acceleration sensor, and outputs detected acceleration data to the control device 300, which will be described later, through wireless communication or wired communication. Note that the first sensor 150 may integrate the detected acceleration data with an integrator (not shown) and output it to the control device 300 as velocity data. Note that the two axes here are the aforementioned X axis and Y axis, and the three axes are the X axis, Y axis, and Z axis. The same applies to the rest. Also, the first sensor may be a two-axis or three-axis gyro sensor, and may output detected angular acceleration data or angular velocity data to the control device 300, which will be described later, via wireless or wired communication. A gyro sensor may also be called an angular velocity sensor. Also, the first sensor may be a motion sensor including a biaxial or triaxial acceleration sensor and a biaxial or triaxial gyro sensor. Note that the motion sensor may refer to either one of an acceleration sensor and a gyro sensor. By analyzing the data detected by the first sensor 150, it is possible to obtain information for estimating the start timing ts at which the tip of the manipulator 100 starts moving, the details of which will be described later.
 操作部200は、マニピュレータ100を湾曲操作する。例えば操作部200の操作入力に基づいて、不図示のワイヤ駆動機構によって一対のワイヤ160が互いに逆方向に移動し、湾曲部102を所望の方向に湾曲させることができる。なお、図2では2本のワイヤ160によって、湾曲部102はUD方向のうち上側に湾曲するように図示されているが、RL方向に湾曲できるようにしてもよい。例えば図3に示すように、マニピュレータ100は、上湾曲ワイヤ160uと、下湾曲ワイヤ160dと、左湾曲ワイヤ160lと、右湾曲ワイヤ160rからなる4本のワイヤ160を含むように構成してもよい。以降の実施形態では、操作部200であるアングルノブ200Aを術者が操作すると、左湾曲ワイヤ160lと、右湾曲ワイヤ160rが互いに逆方向に移動し、所定の湾曲駒120が回動することで湾曲部102はRL方向のうち所望の方向に湾曲させることができるものとする。同様に、操作部200であるアングルノブ200Bを術者が操作すると、上湾曲ワイヤ160uと、下湾曲ワイヤ160dが互いに逆方向に移動し、特定の湾曲駒120が回動することで湾曲部102はUD方向のうち所望の方向に湾曲させることができるものとする。なお、不図示のワイヤ駆動機構は公知の手法で実現できるので詳細な説明は省略する。 The operation unit 200 bends the manipulator 100 . For example, the pair of wires 160 can be moved in opposite directions by a wire driving mechanism (not shown) based on an operation input of the operation section 200, and the bending section 102 can be bent in a desired direction. In FIG. 2, the bending portion 102 is shown bent upward in the UD direction by the two wires 160, but it may be bent in the RL direction. For example, as shown in FIG. 3, the manipulator 100 may be configured to include four wires 160 consisting of an upper bend wire 160u, a lower bend wire 160d, a left bend wire 160l, and a right bend wire 160r. . In the following embodiments, when the operator operates the angle knob 200A that is the operation unit 200, the left bending wire 160l and the right bending wire 160r move in mutually opposite directions, and the predetermined bending piece 120 rotates. It is assumed that the bending portion 102 can be bent in a desired direction in the RL direction. Similarly, when the operator operates the angle knob 200B that is the operation unit 200, the upper bending wire 160u and the lower bending wire 160d move in opposite directions, and the specific bending piece 120 rotates, thereby bending the bending portion 102. can be bent in any desired direction in the UD direction. Note that the wire drive mechanism (not shown) can be realized by a known method, so detailed description thereof will be omitted.
 第2センサ250は、操作部200の湾曲操作の操作入力量を取得する。例えば操作部200が前述のアングルノブ200A,200Bの場合、操作部200の回転軸に角度センサやロータリーエンコーダーを取り付けることで、湾曲操作の操作入力量として、アングルノブ200A,200Bの回転量を把握することができる。アングルノブ200A,200Bの回転量に基づいてワイヤ160の牽引量を推測し、マニピュレータ100の湾曲形状を推測する手法が知られている。なお、第2センサ250はワイヤ160の移動量を直接検出するセンサであってもよい。 The second sensor 250 acquires the operation input amount of the bending operation of the operation section 200 . For example, when the operation unit 200 is the angle knobs 200A and 200B described above, by attaching an angle sensor or a rotary encoder to the rotation shaft of the operation unit 200, the amount of rotation of the angle knobs 200A and 200B can be grasped as the operation input amount of the bending operation. can do. A method of estimating the amount of pulling of the wire 160 based on the amount of rotation of the angle knobs 200A and 200B and estimating the curved shape of the manipulator 100 is known. Note that the second sensor 250 may be a sensor that directly detects the amount of movement of the wire 160 .
 制御装置300は、第1センサから入力される第1入力値と、第2センサから入力される第2入力値を取得する。第1入力値は、前述した加速度データや角加速度データ、またはこれらを積分した位置変化データや角度データである。第2入力値は前述した操作部200の操作入力量を示すデータや、ワイヤ160の移動量を示すデータである。 The control device 300 acquires a first input value input from the first sensor and a second input value input from the second sensor. The first input value is the aforementioned acceleration data or angular acceleration data, or position change data or angle data obtained by integrating these data. The second input value is data indicating the operation input amount of the operation unit 200 described above and data indicating the movement amount of the wire 160 .
 なお制御装置300は、下記のハードウェアにより構成される。ハードウェアは、デジタル信号を処理する回路及びアナログ信号を処理する回路の少なくとも一方を含むことができる。例えば、ハードウェアは、回路基板に実装された1又は複数の回路装置や、1又は複数の回路素子で構成することができる。1又は複数の回路装置は例えばIC(Integrated Circuit)、FPGA(field-programmable gate array)等である。1又は複数の回路素子は例えば抵抗、キャパシター等である。 The control device 300 is configured with the following hardware. The hardware may include circuitry for processing digital signals and/or circuitry for processing analog signals. For example, the hardware may consist of one or more circuit devices or one or more circuit elements mounted on a circuit board. The one or more circuit devices are, for example, ICs (Integrated Circuits), FPGAs (field-programmable gate arrays), or the like. The one or more circuit elements are, for example, resistors, capacitors, and the like.
 また、制御装置300は、下記のプロセッサにより実現されてもよい。制御装置300は、情報を記憶するメモリと、メモリに記憶された情報に基づいて動作するプロセッサと、を含む。情報は、例えばプログラムと各種のデータ等である。プロセッサは、ハードウェアを含む。プロセッサは、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、DSP(Digital Signal Processor)等、各種のプロセッサを用いることが可能である。メモリは、SRAM(Static Random Access Memory)、DRAM(Dynamic Random Access Memory)などの半導体メモリであってもよいし、レジスタであってもよいし、HDD(Hard Disk Drive)等の磁気記憶装置であってもよいし、光学ディスク装置等の光学式記憶装置であってもよい。例えば、メモリはコンピュータにより読み取り可能な命令を格納しており、当該命令がプロセッサにより実行されることで、制御装置300の各部のうち一部又は全部の機能が処理として実現されることになる。ここでの命令は、プログラムを構成する命令セットの命令でもよいし、プロセッサのハードウェア回路に対して動作を指示する命令であってもよい。さらに、制御装置300の各部の全部または一部をクラウドコンピューティングで実現し、図10等で後述する各処理をクラウドコンピューティング上で行うこともできる。 Also, the control device 300 may be realized by the following processor. Controller 300 includes a memory that stores information and a processor that operates on the information stored in the memory. The information is, for example, programs and various data. A processor includes hardware. Various processors such as a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and a DSP (Digital Signal Processor) can be used as the processor. The memory may be a semiconductor memory such as SRAM (Static Random Access Memory) or DRAM (Dynamic Random Access Memory), a register, or a magnetic storage device such as HDD (Hard Disk Drive). Alternatively, it may be an optical storage device such as an optical disc device. For example, the memory stores computer-readable instructions, and when the instructions are executed by the processor, some or all of the functions of the units of the control device 300 are realized as processes. The instruction here may be an instruction set that constitutes a program, or an instruction that instructs a hardware circuit of a processor to perform an operation. Furthermore, all or part of each unit of the control device 300 can be realized by cloud computing, and each process described later with reference to FIG. 10 and the like can be performed on the cloud computing.
 また、制御装置300は、マニピュレータ100の形状を推定する。ワイヤ160の牽引量や操作部200の操作入力量を用いてマニピュレータ100の形状を推定する手法が、特許文献1等に開示されている。そのため、制御装置300は、前述の第2センサ250からの第2入力値に基づき、これらの手法を用いることでマニピュレータ100の形状を推定することができると思われる。 Also, the control device 300 estimates the shape of the manipulator 100 . A method of estimating the shape of the manipulator 100 using the amount of pulling of the wire 160 and the amount of operation input of the operation unit 200 is disclosed in Patent Document 1 and the like. Therefore, it is considered that the control device 300 can estimate the shape of the manipulator 100 by using these methods based on the second input value from the second sensor 250 described above.
 しかし、特許文献1等に開示された手法を適用するだけでは、マニピュレータ100の形状を正確に推定することができない。特許文献1等に開示されている手法は、ワイヤ160に、均一かつ一定の張力が常に作用していることが前提だからである。実際は、軟性部104におけるワイヤ160は弛んでいる。これにより、後述するように、操作部200の操作を開始したタイミングより後のタイミングである開始タイミングtsで湾曲部102が湾曲し始める。従来の手法のように、第2センサ250からの第2入力値からは開始タイミングを把握することができない。 However, the shape of the manipulator 100 cannot be accurately estimated only by applying the method disclosed in Patent Document 1 and the like. This is because the method disclosed in Patent Document 1 or the like assumes that uniform and constant tension always acts on the wire 160 . In practice, wire 160 in flexible section 104 is slack. As a result, as will be described later, the bending portion 102 starts bending at the start timing ts, which is the timing after the timing at which the operation of the operation portion 200 is started. Unlike the conventional method, the start timing cannot be grasped from the second input value from the second sensor 250 .
 図4を用いて、具体的に説明する。図4は、操作部200を操作する時間と第1入力値の関係を説明する図である。なお、図4に示したマニピュレータ100の模式図には、説明に不要な湾曲駒120等の図示を適宜省略している。また、アウターシース110、先端部130、ワイヤ160、操作部200の符号は1箇所のみ代表として付し、他は省略している。また、図4においては、マニピュレータ100が湾曲する具体的な方向については特に問わないものとする。また、縦軸が交わるタイミングにおいて、術者が操作部200の操作を開始したものとし、操作部200の操作を開始した時点において、マニピュレータ100が全体として湾曲していない状態であるものとする。 A specific explanation will be given using FIG. FIG. 4 is a diagram for explaining the relationship between the time for operating the operation unit 200 and the first input value. In the schematic diagram of the manipulator 100 shown in FIG. 4, the bending pieces 120 and the like, which are unnecessary for explanation, are omitted as appropriate. In addition, the reference numerals of the outer sheath 110, the distal end portion 130, the wire 160, and the operating portion 200 are attached to only one portion as a representative, and the others are omitted. Moreover, in FIG. 4, the specific direction in which the manipulator 100 bends is not particularly limited. It is also assumed that the operator starts operating the operation unit 200 at the timing when the vertical axes intersect, and that the manipulator 100 as a whole is not curved at the time of starting the operation of the operation unit 200 .
 図4のB1に示す期間は、ワイヤ160は弛んでいるため、術者は操作部200を操作しても、操作部200の操作に対応するワイヤ160の弛みを解消することのみが行われ、先端部130にはワイヤ160からの力が作用しない。そのため、先端部130に取り付けられている第1センサ150が第1入力値を取得することはない。そして、B2に示す期間は、操作部200の操作に対応するワイヤ160の弛みが解消した期間であり、術者が操作部200を継続して操作入力することにより、ワイヤ160からの力が先端部130に作用し始める。そして、術者が操作部200をさらに継続して操作入力することにより、開始タイミングtsにおいて、湾曲部102が、例えばB3に示すように湾曲し始める。 Since the wire 160 is slack during the period indicated by B1 in FIG. No force from wire 160 acts on tip 130 . Therefore, the first sensor 150 attached to the distal end portion 130 never acquires the first input value. The period indicated by B2 is a period in which the slackness of the wire 160 corresponding to the operation of the operation section 200 is eliminated. Part 130 begins to act. Then, when the operator continues to operate the operation section 200, the bending section 102 starts bending, for example, as indicated by B3 at the start timing ts.
 このように、開始タイミングtsを推定する手法を確立することにより、湾曲部102の湾曲角度を精度よく推定することができる。例えば開始タイミングを考慮した上で、前述した従来の手法に、さらに操作入力量に一定のオフセット値を加える等の手法を追加することで、湾曲部102の湾曲角度を精度よく推定することができるように思われる。 By establishing a technique for estimating the start timing ts in this manner, the bending angle of the bending portion 102 can be accurately estimated. For example, the bending angle of the bending portion 102 can be accurately estimated by adding a certain offset value to the amount of operation input to the above-described conventional method after considering the start timing. It seems so.
 しかし、開始タイミングtsは一定値ではなく、軟性部104の形状に応じて変化する値である。ワイヤ160の弛みは、軟性部104の形状に依存するからである。図5、図6、図7は、ワイヤ160の弛みについて説明する図である。具体的には、図5は軟性部104が湾曲していない状態であり、図6は軟性部104が90°湾曲している状態であり、図7は、軟性部104が180°湾曲している状態である。なお、図5~図7において、ワイヤ160の例示として上湾曲ワイヤ160uと下湾曲ワイヤ160dのみを示し、軟性部104がUD軸方向の上向きに湾曲する場合について示すが、UD軸方向の下向きについても同様であり、さらにRL軸方向についても同様である。また、図5において湾曲部102の図示は省略している。図6、図7についても同様である。 However, the start timing ts is not a constant value, but a value that changes according to the shape of the flexible portion 104 . This is because the slackness of the wire 160 depends on the shape of the flexible portion 104 . 5, 6, and 7 are diagrams illustrating slackness of the wire 160. FIG. Specifically, FIG. 5 shows the state in which the flexible portion 104 is not curved, FIG. 6 shows the state in which the flexible portion 104 is curved by 90°, and FIG. 7 is the state in which the flexible portion 104 is curved by 180°. is in a state of 5 to 7 show only the upward bending wire 160u and the downward bending wire 160d as examples of the wires 160, and show the case where the flexible portion 104 bends upward in the UD axis direction. is the same, and the same is true for the RL axis direction. Further, illustration of the bending portion 102 is omitted in FIG. The same applies to FIGS. 6 and 7. FIG.
 図5においては、上湾曲ワイヤ160uと下湾曲ワイヤ160dの弛みは同一である。ここでの同一は略同一を含む。しかし、図6や図7においては、軟性部104が湾曲すると、上湾曲ワイヤ160uは突っ張る一方で下湾曲ワイヤ160dは弛む。また、図6と図7を比較すると、軟性部104の曲がり方が大きいほど、下湾曲ワイヤ160dの弛みは小さくなる。このように、ワイヤ160の弛みはマニピュレータ100の軟性部104の形状に依存している。そのため、例えばマニピュレータ100が内視鏡のような医療用マニピュレータである場合、腸のような複雑な形状をなす物にマニピュレータ100を挿通することから、軟性部104の形状は時間経過とともに複雑に変化し、それに対応して開始タイミングtsも変化する。したがって、従来の手法からではマニピュレータ100の形状を容易に推定することは困難である。 In FIG. 5, the slackness of the upper bending wire 160u and the lower bending wire 160d is the same. The same here includes substantially the same. However, in FIGS. 6 and 7, when the flexible portion 104 bends, the upper bending wire 160u stretches while the lower bending wire 160d loosens. 6 and 7, the greater the bending of the flexible portion 104, the smaller the slack of the downward bending wire 160d. Thus, the slackness of wire 160 depends on the shape of flexible portion 104 of manipulator 100 . Therefore, for example, when the manipulator 100 is a medical manipulator such as an endoscope, since the manipulator 100 is inserted through an object having a complicated shape such as an intestine, the shape of the flexible portion 104 changes intricately over time. , and the start timing ts also changes accordingly. Therefore, it is difficult to easily estimate the shape of the manipulator 100 using the conventional method.
 そこで、本実施形態において、制御装置300は、第1状態のマニピュレータ100の形状から、開始タイミングtsを第1入力値に基づいて推定する。例えば、開始タイミングtsより前のマニピュレータ100の形状が、第1状態であったとする。ただし、図8においては、マニピュレータ100は湾曲していない状態を模式的に図示しているが、マニピュレータ100は湾曲していてもよい。そして、第1センサ150から入力される第1入力値に、後述する手法を適用することで、開始タイミングtsを推測する。 Therefore, in this embodiment, the control device 300 estimates the start timing ts based on the first input value from the shape of the manipulator 100 in the first state. For example, assume that the shape of the manipulator 100 before the start timing ts was in the first state. However, although FIG. 8 schematically illustrates a state where the manipulator 100 is not curved, the manipulator 100 may be curved. Then, the start timing ts is estimated by applying a method described later to the first input value input from the first sensor 150 .
 さらに、制御装置300は、推定した開始タイミングts以降において、第2入力値に基づいて、操作部200の湾曲操作により第1状態から変化した状態である第2状態のマニピュレータ100の形状を推定する。例えば、開始タイミングts以降において、マニピュレータ100は湾曲し始めるので、第2センサ250から入力される第2入力値に所定の手法を適用することで、開始タイミングts以降の所定タイミングにおいてマニピュレータ100の形状を推定することができる。例えば、制御装置300は、C1に示すタイミングにおいて、マニピュレータ100の先端は90°湾曲し、C2に示すタイミングにおいて、マニピュレータ100の先端は180°湾曲していることを推定することができる。所定の手法は、前述した従来の手法や、図13で後述する手法等である。 Furthermore, after the estimated start timing ts, the control device 300 estimates the shape of the manipulator 100 in the second state, which is the state changed from the first state by the bending operation of the operation unit 200, based on the second input value. . For example, since the manipulator 100 begins to bend after the start timing ts, by applying a predetermined method to the second input value input from the second sensor 250, the shape of the manipulator 100 can be determined at a predetermined timing after the start timing ts. can be estimated. For example, the control device 300 can estimate that the tip of the manipulator 100 is bent by 90° at the timing indicated by C1, and that the tip of the manipulator 100 is bent by 180° at the timing indicated by C2. The predetermined method is the conventional method described above, the method described later with reference to FIG. 13, or the like.
 以上のように、本実施形態のマニピュレータシステム10は、マニピュレータ100と、マニピュレータ100の先端の動きを取得する第1センサ150と、マニピュレータ100を湾曲操作する操作部200と、操作部200の湾曲操作の操作入力量を取得する第2センサ250と、マニピュレータ100の形状を推定する制御装置300と、を含む。制御装置300は、第1状態のマニピュレータ100の形状から、マニピュレータ100が湾曲し始めたとみなす開始タイミングtsを、第1センサ150からの入力値である第1入力値に基づいて推定する。また、制御装置300は、推定した開始タイミングts以降における第2センサ250からの入力値である第2入力値に基づいて、操作部200の湾曲操作により第1状態から変化した状態である第2状態のマニピュレータ100の形状を推定する。 As described above, the manipulator system 10 of the present embodiment includes the manipulator 100, the first sensor 150 that acquires the movement of the tip of the manipulator 100, the operation unit 200 that performs bending operation of the manipulator 100, and the operation unit 200 that performs bending operation. and a control device 300 for estimating the shape of the manipulator 100 . Based on the shape of manipulator 100 in the first state, controller 300 estimates the start timing ts at which manipulator 100 begins to bend, based on the first input value from first sensor 150 . Further, based on the second input value, which is the input value from the second sensor 250 after the estimated start timing ts, the control device 300 controls the second state, which is the state changed from the first state by the bending operation of the operation unit 200 . Estimate the shape of the state manipulator 100 .
 このように、本実施形態のマニピュレータシステム10は、操作部200に第2センサ250を含むだけでなく、マニピュレータ100に第1センサ150を含む。このようにすることで、制御装置300は、マニピュレータ100の形状を推定するにあたり、第2入力値だけでなく、第1入力値も用いることができる。これにより、マニピュレータ100が湾曲し始める前の第1状態と、第1入力値を用いて、開始タイミングtsを推定することができる。これにより、マニピュレータ100の形状が変化する度に、開始タイミングtsの推定結果を都度更新することができる。これにより、開始タイミングtsが正確に推定できるので、第2センサからの第2入力値を用いることで、マニピュレータ100の形状を正確に推定することができる。これにより、術者はマニピュレータ100を容易かつ安全に操作することができる。 Thus, the manipulator system 10 of this embodiment not only includes the second sensor 250 in the operation section 200, but also includes the first sensor 150 in the manipulator 100. By doing so, the control device 300 can use not only the second input value but also the first input value in estimating the shape of the manipulator 100 . Thus, the start timing ts can be estimated using the first state before the manipulator 100 starts bending and the first input value. This makes it possible to update the estimation result of the start timing ts every time the shape of the manipulator 100 changes. As a result, the start timing ts can be accurately estimated, so the shape of the manipulator 100 can be accurately estimated by using the second input value from the second sensor. This allows the operator to operate the manipulator 100 easily and safely.
 また、本実施形態の手法は、制御装置300として実現してもよい。つまり、本実施形態の制御装置300は、マニピュレータ100の形状を推定する制御装置300であって、マニピュレータ100の先端の動きを取得する第1センサ150からの入力値である第1入力値を取得する。また、制御装置300は、マニピュレータ100を湾曲操作する操作部200の湾曲操作に基づく操作入力量を取得する第2センサ250からの入力値である第2入力値を取得する。そして、制御装置300は、第1入力値に基づいて、第1状態のマニピュレータ100の形状から、マニピュレータ100が湾曲し始めたとみなす開始タイミングtsを推定し、推定した開始タイミングts以降における第2入力値に基づいて、操作部200の湾曲操作により第1状態から変化した状態である第2状態のマニピュレータ100の形状を推定する。このようにすることで、上記と同様の効果を得ることができる。 Also, the method of the present embodiment may be implemented as the control device 300. That is, the control device 300 of the present embodiment is a control device 300 that estimates the shape of the manipulator 100, and acquires the first input value that is the input value from the first sensor 150 that acquires the movement of the tip of the manipulator 100. do. The control device 300 also acquires a second input value, which is an input value from the second sensor 250 that acquires the amount of operation input based on the bending operation of the operation unit 200 that bends the manipulator 100 . Based on the first input value and the shape of the manipulator 100 in the first state, the control device 300 estimates the start timing ts at which the manipulator 100 begins to bend, and the second input after the estimated start timing ts. Based on the values, the shape of the manipulator 100 in the second state, which is the state changed from the first state by the bending operation of the operation unit 200, is estimated. By doing so, an effect similar to that described above can be obtained.
 また、本実施形態の手法は、形状推定方法として実現してもよい。つまり、本実施形態の形状推定方法は、マニピュレータ100の形状を推定する形状推定方法であって、マニピュレータ100の先端の動きを取得する第1センサ150からの入力値である第1入力値を取得することと、マニピュレータ100を湾曲操作する操作部200の湾曲操作に基づく操作入力量を取得する第2センサ250からの入力値である第2入力値を取得することを含む。さらに、当該形状推定方法は、第1入力値に基づいて、第1状態のマニピュレータ100の形状から、マニピュレータ100が湾曲し始めたとみなす開始タイミングtsを推定することと、推定した開始タイミングts以降における第2入力値に基づいて、操作部200の湾曲操作により第1状態から変化した状態である第2状態のマニピュレータ100の形状を推定することを含む。このようにすることで、上記と同様の効果を得ることができる。 Also, the method of the present embodiment may be implemented as a shape estimation method. That is, the shape estimation method of the present embodiment is a shape estimation method for estimating the shape of the manipulator 100, and acquires the first input value, which is the input value from the first sensor 150 that acquires the movement of the tip of the manipulator 100. and obtaining a second input value that is an input value from the second sensor 250 that obtains an operation input amount based on the bending operation of the operation unit 200 that bends the manipulator 100 . Furthermore, the shape estimating method includes, based on the first input value, estimating the start timing ts at which the manipulator 100 is considered to start bending from the shape of the manipulator 100 in the first state, and It includes estimating the shape of the manipulator 100 in the second state, which is a state changed from the first state by the bending operation of the operation unit 200, based on the second input value. By doing so, an effect similar to that described above can be obtained.
 次に、開始タイミングtsを推定する具体的な手法について説明する。図9は、マニピュレータ100の先端部130の角度変化と、第1入力値の挙動と、第2入力値の挙動の関係について説明する図である。なお、説明の便宜上、図9のそれぞれのグラフはLR軸方向の成分またはUD軸方向の成分の一方について示すものとするが、他方についても同様である。後述する図13についても同様である。 Next, a specific method for estimating the start timing ts will be described. FIG. 9 is a diagram for explaining the relationship between the angle change of the tip portion 130 of the manipulator 100, the behavior of the first input value, and the behavior of the second input value. For convenience of explanation, each graph in FIG. 9 shows either the component in the LR axis direction or the component in the UD axis direction, but the same applies to the other. The same applies to FIG. 13 to be described later.
 なお、以降の説明において、第1センサ150は加速度センサであるものとするが、前述のジャイロセンサやモーションセンサであってもよい。つまり、第1センサ150は、マニピュレータ100の先端に設けられた加速度センサ、角速度センサまたはその両方である。 Although the first sensor 150 is assumed to be an acceleration sensor in the following description, it may be the gyro sensor or motion sensor described above. That is, the first sensor 150 is an acceleration sensor provided at the tip of the manipulator 100, an angular velocity sensor, or both.
 また、以降の説明において、操作部200は、図2のアングルノブ200A,200Bのように回転操作するものとし、第2センサ250は角度センサであるものとする。つまり、操作部200は、所定の角度の範囲で回転操作され、第2センサ250は、角度を計測する角度センサである。つまり、図9に示す第2入力値の変化は、操作部200の角度変化である。 Also, in the following description, it is assumed that the operation unit 200 is rotated like the angle knobs 200A and 200B in FIG. 2, and the second sensor 250 is an angle sensor. That is, the operation unit 200 is rotated within a predetermined angle range, and the second sensor 250 is an angle sensor that measures the angle. That is, the change in the second input value shown in FIG. 9 is the change in the angle of the operation unit 200 .
 また、第2センサ250は、ワイヤ160の牽引量を直接取得可能なセンサであってもよく、この場合は前述の角度センサを用いる必要は無い。つまり、マニピュレータ100は、ワイヤ160を含み、第2センサ250は、ワイヤ160の牽引量を取得可能なセンサである。 Also, the second sensor 250 may be a sensor that can directly acquire the amount of traction of the wire 160, and in this case there is no need to use the aforementioned angle sensor. In other words, the manipulator 100 includes the wire 160 and the second sensor 250 is a sensor capable of acquiring the amount of pulling of the wire 160 .
 湾曲部102が角度φ1だけ湾曲した状態であったものとする。なお、このときの湾曲部102は湾曲していなくてもよい、即ち角度φ1は0°であってもよい。そして、術者が操作部200を湾曲操作したところ、第1タイミングt1で湾曲部102が湾曲し始め、第2タイミングt2で湾曲部102が角度φ2だけ湾曲したものとする。つまり、図9の第1タイミングt1は、図8の開始タイミングtsに対応するタイミングである。前述したように、操作部200と先端部130を繋ぐワイヤ160には弛み等があるため、湾曲部102が湾曲し始めた第1タイミングt1は、操作部200の操作入力が開始されたタイミングと一致しない。つまり、操作部200の操作入力は、第1タイミングt1より前のタイミングである第3タイミングt3において開始され、当該第3タイミングt3において、第2センサ250は、第2入力値を取得していることになる。 Assume that the bending portion 102 is bent by an angle φ1. Note that the curved portion 102 at this time may not be curved, that is, the angle φ1 may be 0°. Then, when the operator bends the operation unit 200, the bending portion 102 starts bending at a first timing t1, and bends by an angle φ2 at a second timing t2. That is, the first timing t1 in FIG. 9 is timing corresponding to the start timing ts in FIG. As described above, since the wire 160 connecting the operation unit 200 and the distal end portion 130 has slack or the like, the first timing t1 at which the bending portion 102 begins to bend is the timing at which the operation input of the operation unit 200 is started. It does not match. That is, the operation input of the operation unit 200 is started at the third timing t3 which is the timing before the first timing t1, and the second sensor 250 acquires the second input value at the third timing t3. It will be.
 言い換えれば、第3タイミングt3や第3タイミングt3より前のタイミングにおいては、マニピュレータ100の形状は変化していないので、図8の第1状態に対応している。つまり、第1状態は、操作部200への操作入力が行われたタイミングである第3タイミングt3より前のタイミングにおけるマニピュレータ100の形状の状態、及び第3タイミングt3におけるマニピュレータ100の形状の状態のうち少なくとも一方である。 In other words, since the shape of the manipulator 100 does not change at the third timing t3 or at timings before the third timing t3, it corresponds to the first state in FIG. That is, the first state is the state of the shape of the manipulator 100 at the timing before the third timing t3, which is the timing at which the operation input to the operation unit 200 is performed, and the state of the shape of the manipulator 100 at the third timing t3. at least one of them.
 第1入力値は、第3タイミングt3以降、上昇を開始する。第1入力値が閾値Lを超えたタイミングが、第1タイミングt1であり、湾曲部102は湾曲を開始する。そして、第1入力値が閾値Lを割ったタイミングが第2タイミングt2であり、湾曲部102は前述の角度φ2で湾曲を停止する。ここでの閾値Lは、第3タイミングt3におけるマニピュレータ100の形状に依存する値であり、詳細は後述する。また、第1センサ150が取得する第1入力値は後述する外乱値を含むので、外乱値を考慮した上で第1タイミングt1を推定する必要があり、その手法は後述する。 The first input value starts rising after the third timing t3. The timing at which the first input value exceeds the threshold value L is the first timing t1, and the bending portion 102 starts bending. Then, the timing when the first input value is divided by the threshold value L is the second timing t2, and the bending portion 102 stops bending at the aforementioned angle φ2. The threshold value L here is a value that depends on the shape of the manipulator 100 at the third timing t3, and the details will be described later. Also, since the first input value acquired by the first sensor 150 includes a disturbance value, which will be described later, it is necessary to estimate the first timing t1 in consideration of the disturbance value, the method of which will be described later.
 また、図8と同様に、第1タイミングt1より後のタイミングにおいてマニピュレータ100の形状を推定することができる。つまり、第1タイミングt1より後の所定タイミングにおいて、第2入力値に基づいてマニピュレータ100の形状を推定することができる。図9の場合、所定タイミングは、第1タイミングt1から第2タイミングt2までのタイミングである。 Also, as in FIG. 8, the shape of the manipulator 100 can be estimated at a timing after the first timing t1. That is, at a predetermined timing after the first timing t1, the shape of the manipulator 100 can be estimated based on the second input value. In the case of FIG. 9, the predetermined timing is the timing from the first timing t1 to the second timing t2.
 このように、本実施形態のマニピュレータシステム10において、制御装置300は、第1状態のマニピュレータ100の形状から、マニピュレータ100が湾曲し始めたとみなす操作入力量の閾値Lを推定し、第1入力値に基づいて、操作入力量が閾値Lを超えたタイミングである第1タイミングt1を開始タイミングtsとして判定し、第1タイミングt1より後の所定タイミングにおける第2入力値に基づいて、第2状態におけるマニピュレータ100の形状を推定する。このように、マニピュレータ100の形状に依存する閾値Lを推定することにより、第1入力値が閾値Lを超えたタイミングである第1タイミングt1を、前述の開始タイミングtsに対応させることができる。これにより、マニピュレータ100の形状を正確に推定することができる。 As described above, in the manipulator system 10 of the present embodiment, the control device 300 estimates the threshold value L of the operation input amount at which the manipulator 100 is assumed to start bending from the shape of the manipulator 100 in the first state. , the first timing t1, which is the timing at which the operation input amount exceeds the threshold L, is determined as the start timing ts, and based on the second input value at a predetermined timing after the first timing t1, the second state The shape of the manipulator 100 is estimated. By estimating the threshold L that depends on the shape of the manipulator 100 in this manner, the first timing t1, which is the timing at which the first input value exceeds the threshold L, can be made to correspond to the aforementioned start timing ts. Thereby, the shape of the manipulator 100 can be accurately estimated.
 また、本実施形態の手法は、制御装置300として実現してもよい。つまり、本実施形態の制御装置300は、第1状態のマニピュレータ100の形状から、マニピュレータ100が湾曲し始めたとみなす操作入力量の閾値Lを推定し、第1入力値に基づいて、操作入力量が閾値Lを超えたタイミングである第1タイミングt1を開始タイミングtsとして判定し、第1タイミングt1より後の所定タイミングにおける第2入力値に基づいて、第2状態におけるマニピュレータ100の形状を推定する。これにより、上記と同様の効果を得ることができる。 Also, the method of the present embodiment may be implemented as the control device 300. That is, the control device 300 of the present embodiment estimates the threshold value L of the amount of operation input at which the manipulator 100 is considered to start bending from the shape of the manipulator 100 in the first state, and calculates the amount of operation input based on the first input value. exceeds the threshold value L as the start timing ts, and the shape of the manipulator 100 in the second state is estimated based on the second input value at a predetermined timing after the first timing t1. . Thereby, an effect similar to that described above can be obtained.
 また、本実施形態の手法は、形状推定方法として実現してもよい。つまり、本実施形態の形状推定方法は、第1状態のマニピュレータ100の形状から、マニピュレータ100が湾曲し始めたとみなす操作入力量の閾値Lを推定することを含む。また、当該形状推定方法は、第1入力値に基づいて、操作入力量が閾値Lを超えたタイミングである第1タイミングt1を開始タイミングtsとして判定することと、第1タイミングt1より後の所定タイミングにおける第2入力値に基づいて、第2状態におけるマニピュレータ100の形状を推定することを含む。これにより、上記と同様の効果を得ることができる。 Also, the method of the present embodiment may be implemented as a shape estimation method. In other words, the shape estimation method of the present embodiment includes estimating the threshold value L of the amount of operation input at which the manipulator 100 is assumed to start bending from the shape of the manipulator 100 in the first state. Further, the shape estimating method includes, based on the first input value, determining the first timing t1, which is the timing at which the operation input amount exceeds the threshold value L, as the start timing ts, estimating the shape of the manipulator 100 in the second state based on the second input value at the timing; Thereby, an effect similar to that described above can be obtained.
 次に、図10のフローチャートと図11のフローチャートを用いて、本実施形態の手法を実現する処理例について説明する。制御装置300は、先ず第1入力値を取得(ステップS100)する。ステップS100の処理は、後述するステップS120でYESになるまではループ処理であり、一定の周期で常に行われる。言い換えれば、制御装置300は、時系列データとしての第1入力値を取得し続ける。 Next, a processing example for realizing the method of this embodiment will be described using the flowcharts of FIGS. The control device 300 first acquires a first input value (step S100). The process of step S100 is a loop process until YES in step S120, which will be described later, and is always performed at a constant cycle. In other words, the control device 300 continues to acquire the first input value as time-series data.
 その後、制御装置300は、外乱値を取得(ステップS110)する。外乱値とは、第1入力値のうち、操作部200からの湾曲操作に依存しない値であり、具体的には、例えばノイズ等である。つまり、ノイズ等が生じる状況においては、制御装置300は外乱値が加算された値として第1入力値を取得する。そのため、制御装置300が第1入力値を第2タイミングt2まで取得し続けた場合、実際の第1入力値の波形は例えば図12のD1に示すようになる。なお、ノイズ等が生じる状況とは、例えばマニピュレータ100が医療用内視鏡の場合、患者の内腔に挿入している状況等である。 After that, the control device 300 acquires a disturbance value (step S110). The disturbance value is, among the first input values, a value that does not depend on the bending operation from the operation unit 200, and specifically is noise or the like. That is, in a situation where noise or the like occurs, the control device 300 obtains the first input value as a value to which the disturbance value is added. Therefore, when the control device 300 continues to acquire the first input value until the second timing t2, the actual waveform of the first input value becomes, for example, D1 in FIG. The situation where noise or the like occurs is, for example, when the manipulator 100 is a medical endoscope, it is inserted into the patient's lumen.
 具体的には、制御装置300は、第1入力値の時系列データに対して、所定の時系列モデルを当てはめることによって推定した外乱値を取得する。所定の時系列モデルとは、例えば自己回帰モデルであるが、他に自己回帰移動平均モデルや自己回帰和分移動平均モデル等、他の時系列モデルであってもよい。なお、自己回帰モデルはAR(autoregressive)モデルとも言うことができ、自己回帰移動平均モデルはARMA(autoregressive moving average)モデルとも言うことができ、自己回帰和分移動平均モデルはARIMA(autoregressive integrated moving average)モデルとも言うことができる。なお、これらの所定の時系列モデルの理論等は公知につき、説明は省略する。 Specifically, the control device 300 acquires a disturbance value estimated by applying a predetermined time-series model to the time-series data of the first input value. The predetermined time series model is, for example, an autoregressive model, but may be other time series models such as an autoregressive moving average model or an autoregressive integrated moving average model. The autoregressive model can also be called an AR (autoregressive) model, the autoregressive moving average model can also be called an ARMA (autoregressive moving average) model, and the autoregressive integrated moving average model can be called an ARIMA (autoregressive integrated moving average) model. ) can also be called a model. Note that the theory and the like of these predetermined time-series models are publicly known, and therefore the description thereof is omitted.
 そして、制御装置300は、湾曲操作を検知したか否かについて判断する処理を行い、湾曲操作を検知していない場合(ステップS120でNO)は、ステップS100の処理に戻る。一方、湾曲操作を検知した場合(ステップS120でYES)は、後述する先端角度算出処理(ステップS200)を行った後に、ステップS100の処理に戻る。 Then, the control device 300 performs a process of determining whether or not a bending operation has been detected, and if a bending operation has not been detected (NO in step S120), the process returns to step S100. On the other hand, if a bending operation has been detected (YES in step S120), a tip angle calculation process (step S200), which will be described later, is performed, and then the process returns to step S100.
 つまり、前述のステップS110は、湾曲操作が検知されるまで繰り返し行われる、言い換えれば、湾曲操作が検知された時点である第3タイミングt3で、前述の所定の時系列モデルは確定し、推定された外乱値も確定する。つまり、図12のD1で示した波形のうち、Eで示した波形部分と前述の所定の時系列モデルに基づいて外乱値が推定される。そして、図11で後述するが、推定された外乱値は、第1タイミングt1の推定に用いられる。 That is, step S110 described above is repeatedly performed until the bending operation is detected. The disturbance value is also determined. That is, the disturbance value is estimated based on the waveform portion indicated by E in the waveform indicated by D1 in FIG. 12 and the above-described predetermined time-series model. Then, as will be described later with reference to FIG. 11, the estimated disturbance value is used to estimate the first timing t1.
 次に、図11のフローチャートを用いて、先端角度算出処理(ステップS200)の処理例について説明する。制御装置300は、第3タイミングにおける第2入力値を取得(ステップS210)し、操作入力量の閾値Lを取得(ステップS220)する。具体的には、制御装置300は、第3タイミングにおける第2入力値に基づいて、所定のアルゴリズムに従って推測した閾値Lを取得する。所定のアルゴリズムとは、例えばマニピュレータ100を、図13に例示するような、i個の関節と繋がっている多関節マニピュレータをモデルとし、第2入力値に基づいて各々の関節に対して角度θiを分配することで、末端の関節と連結した点Fの速度や角速度を推測するアルゴリズムである。なお、図13の多関節マニピュレータにおけるそれぞれの関節は、XY平面に沿った方向のみを回転するように図示しているが、回転する方向を3次元に拡張したモデルにすることもできるし、それぞれの関節を繋ぐリンクの軸に対して回転する機構を追加したモデルにすることもできる。 Next, a processing example of the tip angle calculation processing (step S200) will be described using the flowchart of FIG. The control device 300 acquires the second input value at the third timing (step S210), and acquires the threshold value L of the amount of operation input (step S220). Specifically, control device 300 acquires threshold value L estimated according to a predetermined algorithm based on the second input value at the third timing. The predetermined algorithm, for example, assumes that the manipulator 100 is a multi-joint manipulator connected to i joints as shown in FIG. This is an algorithm that estimates the velocity and angular velocity of the point F connected to the terminal joint by distributing. Although each joint in the multi-joint manipulator in FIG. 13 is illustrated as rotating only in the direction along the XY plane, it is possible to make a model in which the rotating direction is extended to three dimensions, and each It is also possible to create a model in which a mechanism that rotates about the axis of the link that connects the joints is added.
 図13の多関節マニピュレータモデルにおいて、原点Oから関節i-1におけるリンク座標系までの同次変換行列は以下の式(1)のように表すことができる。
Figure JPOXMLDOC01-appb-M000001
In the multi-joint manipulator model of FIG. 13, a homogeneous transformation matrix from the origin O to the link coordinate system at the joint i-1 can be expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
 また、図13の多関節マニピュレータモデルにおいて、関節iだけが動いている場合、関節iより先にある点Fの速度と角速度は、上記式(1)に基づいて、以下の式(2)のように表すことができ、関節iにおけるヤコビ行列を導出することができる。
Figure JPOXMLDOC01-appb-M000002
Also, in the articulated manipulator model of FIG. 13, when only the joint i is moving, the velocity and angular velocity of the point F located ahead of the joint i are given by the following equation (2) based on the above equation (1). and the Jacobian matrix at joint i can be derived.
Figure JPOXMLDOC01-appb-M000002
 また、全ての関節(関節1、関節2、…、関節i-1、関節i)が動いている場合、隣接するリンク同士が拘束し合っているため、原点Oから順番に計算することができ、点Fの速度、加速度は以下の式(3)のように表すことができる。
Figure JPOXMLDOC01-appb-M000003
Also, when all the joints (joint 1, joint 2, . , the velocity and acceleration of the point F can be expressed by the following equation (3).
Figure JPOXMLDOC01-appb-M000003
 図13の多関節マニピュレータのモデルは、図2の図示したマニピュレータ100と対応させることができる。例えば図2の操作部200は図13の原点Oに対応し、図2の連結部140は図13の関節に対応し、図2の先端部130は図13の点Fにそれぞれ対応する。図2の操作部200の操作入力によってワイヤ160が牽引されることにより、湾曲駒120が変位することや湾曲駒120同士のなす角が変化することは、図13の各々の関節の位置や角度が変化することに対応する。したがって、図2で操作部200を操作入力した値である第2入力値を、図13の原点Oにおける速度や角速度に対応させると、前述の式(3)等に基づいて、図13の点Fの速度や角速度が推定される。そして、点Fにおける速度や角速度に基づいて、マニピュレータ100の先端部130の速度や角速度を推定することができる。したがって、推定した先端部130の速度を偏微分した加速度を閾値Lとすることにより、加速度データである第1入力値と比較することができる。これにより、第3タイミングt3以降において、制御装置300に入力された第1入力値が閾値Lを超えた第1タイミングt1は、開始タイミングtsと精度よく一致すると考えられるので、第1タイミングt1を開始タイミングtsとみなすことができる。 The model of the articulated manipulator in FIG. 13 can correspond to the illustrated manipulator 100 in FIG. For example, the operating portion 200 in FIG. 2 corresponds to the origin O in FIG. 13, the connecting portion 140 in FIG. 2 corresponds to the joint in FIG. 13, and the tip portion 130 in FIG. 2 corresponds to the point F in FIG. The displacement of the bending piece 120 and the change in the angle between the bending pieces 120 due to the pulling of the wire 160 by the operation input of the operation unit 200 in FIG. corresponds to changes in Therefore, if the second input value, which is the value obtained by operating the operation unit 200 in FIG. 2, corresponds to the velocity and angular velocity at the origin O in FIG. The velocity and angular velocity of F are estimated. Based on the velocity and angular velocity at point F, the velocity and angular velocity of tip portion 130 of manipulator 100 can be estimated. Therefore, by setting the acceleration obtained by partially differentiating the estimated speed of the tip end portion 130 as the threshold value L, it can be compared with the first input value, which is the acceleration data. Accordingly, after the third timing t3, the first timing t1 at which the first input value input to the control device 300 exceeds the threshold value L is considered to match the start timing ts with high accuracy. It can be regarded as the start timing ts.
 なお、推定される閾値Lは、第3タイミングt3におけるマニピュレータ100の形状に依存する値であることを前述したが、マニピュレータ100が多関節構造を有することから定性的に理解できる。例えばマニピュレータ100が全く湾曲していない状態で操作部200を速く操作入力する、即ちワイヤ160を速く牽引すると先端部130には大きな加速度が生じる。また、例えばマニピュレータ100が湾曲している状態で、同様の速さでワイヤ160を牽引しても、マニピュレータ100が全く湾曲していない場合と比べて、先端部130に生じる加速度は小さくなる。これらの事象は、図13の多関節マニピュレータのモデルにおいて、ヤコビ行列が各関節の角度に依存していることを意味する。したがって、制御装置300が上記モデルに基づいて閾値Lを算出する場合、不図示の記憶部に、角度に応じたヤコビ行列のデータをそれぞれ記憶させておくことで、閾値Lの推定を実現することができる。 As described above, the estimated threshold value L is a value that depends on the shape of the manipulator 100 at the third timing t3. For example, when the manipulator 100 is not bent at all, and the manipulator 200 is quickly operated, that is, when the wire 160 is quickly pulled, the distal end portion 130 undergoes a large acceleration. Further, for example, even if the wire 160 is pulled at the same speed while the manipulator 100 is curved, the acceleration generated in the tip portion 130 is smaller than when the manipulator 100 is not curved at all. These events mean that the Jacobian matrix in the multi-joint manipulator model of FIG. 13 depends on the angle of each joint. Therefore, when the control device 300 calculates the threshold L based on the above model, estimation of the threshold L can be realized by storing Jacobian matrix data according to the angle in a storage unit (not shown). can be done.
 また、推定される閾値Lが大きいということは、マニピュレータ100の先端部130が動きにくいことを意味するが、このように多関節マニピュレータのモデル等において先端の動きやすさを示す指標を可操作性と言うことがある。つまり、第3タイミングt3におけるマニピュレータ100の形状から、マニピュレータ100の可操作性を予測することができるとともに、さらに第3タイミングt3における第2入力値を用いることで、第1タイミングt1を求めるための閾値Lを推定することができる。言い換えれば、可操作性は、操作部200の湾曲操作に対する第1入力値の応答性であり、その応答性は前述の式(3)に示されている。つまり、式(3)では、湾曲操作に応じて各関節の速度や角速度が変化し、その結果、第1入力値に相当する先端部130の角度や角速度又はその両方が応答することになる。したがって、操作部200に入力された速度または角速度が同じであっても、ヤコビ行列が異なれば、第1入力値に相当する先端部130の角度や角速度は異なってくる。同様に、操作部200に入力した速度や角速度が同じでも、可操作性に応じて湾曲操作量が異なることから、可操作性に応じて異なる閾値Lが推定される。つまり、可操作性や閾値Lは、式(3)のヤコビ行列に基づいて推定される。 A large estimated threshold value L means that the tip portion 130 of the manipulator 100 is difficult to move. I have something to say. In other words, the operability of the manipulator 100 can be predicted from the shape of the manipulator 100 at the third timing t3, and the second input value at the third timing t3 is used to obtain the first timing t1. A threshold L can be estimated. In other words, the operability is the responsiveness of the first input value to the bending operation of the operating section 200, and the responsiveness is shown in the above equation (3). That is, in Equation (3), the velocity and angular velocity of each joint change according to the bending operation, and as a result, the angle and/or angular velocity of the tip portion 130 corresponding to the first input value responds. Therefore, even if the velocity or angular velocity input to the operation unit 200 is the same, if the Jacobian matrix is different, the angle or angular velocity of the tip portion 130 corresponding to the first input value will be different. Similarly, even if the velocity and angular velocity input to the operation unit 200 are the same, the bending operation amount differs according to the operability, so different threshold values L are estimated according to the operability. That is, the operability and the threshold L are estimated based on the Jacobian matrix of Equation (3).
 このように、本実施形態のマニピュレータシステム10において、制御装置300は、操作部200への操作入力が行われたタイミングである第3タイミングt3における第2入力値と、所定のアルゴリズムにおけるヤコビ行列に基づいて閾値Lを求め、閾値Lと第1入力値を比較することで第1タイミングt1を求める。このようにすることで、第1タイミングt1と開始タイミングtsが精度よく一致するように、閾値Lを決定することができる。 As described above, in the manipulator system 10 of the present embodiment, the control device 300 converts the second input value at the third timing t3, which is the timing at which the operation input to the operation unit 200 is performed, to the Jacobian matrix in a predetermined algorithm. A threshold value L is obtained based on the threshold value L, and the first timing t1 is obtained by comparing the threshold value L and the first input value. By doing so, the threshold value L can be determined such that the first timing t1 and the start timing ts match with high precision.
 また、本実施形態の手法は、制御装置300として実現してもよい。つまり、本実施形態の制御装置300は、操作部200への操作入力が行われたタイミングである第3タイミングt3における第2入力値と、所定のアルゴリズムにおけるヤコビ行列に基づいて閾値Lを求め、閾値Lと第1入力値を比較することで第1タイミングt1を求める。これにより、上記と同様の効果を得ることができる。 Also, the method of the present embodiment may be implemented as the control device 300. That is, the control device 300 of the present embodiment obtains the threshold value L based on the second input value at the third timing t3, which is the timing at which the operation input to the operation unit 200 is performed, and the Jacobian matrix in a predetermined algorithm, A first timing t1 is obtained by comparing the threshold value L and the first input value. Thereby, an effect similar to that described above can be obtained.
 また、本実施形態の手法は、形状推定方法として実現してもよい。つまり、本実施形態の形状推定方法は、操作部200への操作入力が行われたタイミングである第3タイミングt3における第2入力値と、所定のアルゴリズムにおけるヤコビ行列に基づいて閾値Lを求め、閾値Lと第1入力値を比較することで第1タイミングt1を求めることと、を含む。これにより、上記と同様の効果を得ることができる。 Also, the method of the present embodiment may be implemented as a shape estimation method. That is, the shape estimation method of the present embodiment obtains the threshold value L based on the second input value at the third timing t3, which is the timing at which the operation input to the operation unit 200 is performed, and the Jacobian matrix in a predetermined algorithm, and determining the first timing t1 by comparing the threshold value L and the first input value. Thereby, an effect similar to that described above can be obtained.
 その後、制御装置300は、第1入力値を取得(ステップS230)する。ステップS230の処理は、図10のステップS100と同様であるが、ステップS100は第3タイミングt3より前の第1入力値を取得する処理であるのに対し、ステップS230は、第3タイミングt3以降第1入力値を取得する処理である点で異なる。 After that, the control device 300 acquires the first input value (step S230). The process of step S230 is the same as step S100 of FIG. 10, but step S100 is a process of acquiring the first input value before the third timing t3, whereas step S230 is a process of acquiring the first input value after the third timing t3. It differs in that it is a process of acquiring the first input value.
 その後、制御装置300は、ステップS230で取得した第1入力値から、ステップS110で取得した外乱値を差し引いた値が、ステップS220で取得した閾値Lより大きいか否かについて判断する処理を行う。例えば図12のD1に示した波形に基づく第1入力値から外乱値を差し引くと、例えばD2に示すような波形となる。 After that, the control device 300 determines whether or not the value obtained by subtracting the disturbance value obtained in step S110 from the first input value obtained in step S230 is greater than the threshold value L obtained in step S220. For example, when the disturbance value is subtracted from the first input value based on the waveform shown in D1 of FIG. 12, the waveform shown in D2, for example, is obtained.
 第1入力値から外乱値を差し引いた値が閾値Lより小さい場合は(ステップS240でNO)、制御装置300は、再度ステップS230の処理を行う。つまり、第1入力値から外乱値を差し引いた値が閾値Lより小さい限り、ステップS230がループするため、第1入力値は取得され続けるが、先端の角度が算出されることはない。前述の通り、ステップS230で取得される第1入力値は時間経過とともに上昇し、第1入力値から外乱値を差し引いた値が閾値Lを超えたタイミングが第1タイミングt1、すなわち推定される開始タイミングtsである。 When the value obtained by subtracting the disturbance value from the first input value is smaller than the threshold value L (NO in step S240), the control device 300 performs the process of step S230 again. That is, as long as the value obtained by subtracting the disturbance value from the first input value is smaller than the threshold value L, step S230 is looped. As described above, the first input value obtained in step S230 increases over time, and the timing at which the value obtained by subtracting the disturbance value from the first input value exceeds the threshold value L is the first timing t1, that is, the estimated start It is the timing ts.
 このように、本実施形態のマニピュレータシステム10において、制御装置300は、操作部200への操作入力が行われたタイミングである第3タイミングt3より前の所定期間における第1入力値を用いて、第1入力値のうち、操作部200からの湾曲操作に依存しない外乱値を推定する。そして、制御装置300は、外乱値と、第1入力値に基づいて、開始タイミングtsを推定する。 As described above, in the manipulator system 10 of the present embodiment, the control device 300 uses the first input value in a predetermined period before the third timing t3, which is the timing at which the operation input to the operation unit 200 is performed, Among the first input values, a disturbance value that does not depend on the bending operation from the operation unit 200 is estimated. Then, the control device 300 estimates the start timing ts based on the disturbance value and the first input value.
 また、本実施形態の手法は、制御装置300として実現してもよい。つまり、本実施形態の制御装置300は、操作部200への操作入力が行われたタイミングである第3タイミングt3より前の所定期間における第1入力値を用いて、第1入力値のうち、操作部200からの湾曲操作に依存しない外乱値を推定する。そして、制御装置300は、外乱値と、第1入力値に基づいて、開始タイミングtsを推定する。これにより、上記と同様の効果を得ることができる。 Also, the method of the present embodiment may be implemented as the control device 300. That is, the control device 300 of the present embodiment uses the first input value in a predetermined period before the third timing t3, which is the timing at which the operation input to the operation unit 200 is performed, to A disturbance value that does not depend on the bending operation from the operation unit 200 is estimated. Then, the control device 300 estimates the start timing ts based on the disturbance value and the first input value. Thereby, an effect similar to that described above can be obtained.
 本実施形態の手法は、形状推定方法として実現してもよい。つまり、本実施形態の形状推定方法は、操作部200への操作入力が行われたタイミングである第3タイミングt3より前の所定期間における第1入力値を用いて、第1入力値のうち、操作部200からの湾曲操作に依存しない外乱値を推定することを含む。また、当該形状推定方法は、外乱値と、第1入力値に基づいて、開始タイミングtsを推定することを含む。これにより、上記と同様の効果を得ることができる。 The method of this embodiment may be implemented as a shape estimation method. That is, the shape estimation method of the present embodiment uses the first input value in a predetermined period before the third timing t3, which is the timing at which the operation input to the operation unit 200 is performed, It includes estimating a disturbance value that does not depend on the bending operation from the operation unit 200 . The shape estimation method also includes estimating the start timing ts based on the disturbance value and the first input value. Thereby, an effect similar to that described above can be obtained.
 そして、第1入力値から外乱値を差し引いた値が閾値Lより大きい場合(ステップS240でNO)、制御装置300は、第2入力値を所定範囲で積分(ステップS250)する。具体的には、第1入力値が閾値Lより大きくなるタイミングは前述の通り第1タイミングt1であり、湾曲部102が湾曲し始めたと推定されるタイミングである。そこで、図14に示すように制御装置300は、第1タイミングt1から、湾曲部102が湾曲し終わるタイミングある第2タイミングまでの区間において、第2入力値を積分することで、第2タイミングt2における湾曲部102の湾曲角度が推定される。図9の例で言えば、推定精度が高いほど、推定される角度は角度φ2に近づく。例えば第2入力値が角速度の次元となるように第2センサ250から第2入力値が入力される場合は、積分することによって操作部200の操作入力の角度情報が得られ、当該角度情報に基づいてワイヤ160の牽引量を把握することができる。これにより、前述した従来の手法を用いて、マニピュレータ100の形状を推定することができる。 Then, if the value obtained by subtracting the disturbance value from the first input value is greater than the threshold value L (NO in step S240), the control device 300 integrates the second input value within a predetermined range (step S250). Specifically, the timing at which the first input value becomes greater than the threshold value L is the first timing t1 as described above, which is the timing at which the bending portion 102 is estimated to start bending. Therefore, as shown in FIG. 14, the control device 300 integrates the second input value in the section from the first timing t1 to the second timing, which is the timing at which the bending portion 102 finishes bending, so that the second timing t2 is estimated. In the example of FIG. 9, the higher the estimation accuracy, the closer the estimated angle is to the angle φ2. For example, when the second input value is input from the second sensor 250 so that the second input value has the dimension of the angular velocity, the angle information of the operation input of the operation unit 200 is obtained by integration. Based on this, the pulling amount of the wire 160 can be grasped. Thereby, the shape of the manipulator 100 can be estimated using the conventional technique described above.
 なお、前述のように、マニピュレータ100は連結部140によって連結された複数の湾曲駒120によって構成されるが、制御装置300は、隣り合う湾曲駒120同士がなす角度は等しいものとして湾曲角度を推定している。 As described above, the manipulator 100 is configured by a plurality of bending pieces 120 connected by the connecting portion 140, but the control device 300 estimates the bending angle assuming that the angles formed by the adjacent bending pieces 120 are equal. are doing.
 このように、本実施形態のマニピュレータシステム10において、制御装置300は、第2入力値を、第1タイミングt1から第1タイミングt1より後のタイミングである第2タイミングt2までの範囲で積分した値に基づいて、第2タイミングt2のマニピュレータ100の形状を推定する。このようにすることで、湾曲部102の湾曲が開始されたタイミングと推定される第1タイミングt1を積分区間の一端とすることができるので、第2タイミングt2におけるマニピュレータ100の形状を、より正確に推定することができる。 As described above, in the manipulator system 10 of the present embodiment, the control device 300 integrates the second input value in the range from the first timing t1 to the second timing t2, which is the timing after the first timing t1. , the shape of the manipulator 100 at the second timing t2 is estimated. By doing so, the first timing t1, which is estimated to be the timing at which bending of the bending portion 102 is started, can be set as one end of the integration interval. can be estimated to
 また、本実施形態の手法は、制御装置300として実現してもよい。つまり、本実施形態の制御装置300は、第2入力値を、第1タイミングt1から第1タイミングt1より後のタイミングである第2タイミングt2までの範囲で積分した値に基づいて、第2タイミングt2のマニピュレータ100の形状を推定する。これにより、上記と同様の効果を得ることができる。 Also, the method of the present embodiment may be implemented as the control device 300. That is, the control device 300 of the present embodiment integrates the second input value in the range from the first timing t1 to the second timing t2, which is the timing after the first timing t1, based on the second timing Estimate the shape of the manipulator 100 at t2. Thereby, an effect similar to that described above can be obtained.
 また、本実施形態の手法は、形状推定方法として実現してもよい。つまり、本実施形態の形状推定方法は、第2入力値を、第1タイミングt1から第1タイミングt1より後のタイミングである第2タイミングt2までの範囲で積分した値に基づいて、第2タイミングt2のマニピュレータ100の形状を推定することを含む。これにより、上記と同様の効果を得ることができる。 Also, the method of the present embodiment may be implemented as a shape estimation method. That is, the shape estimation method of the present embodiment calculates the second input value at the second timing based on the value obtained by integrating the second input value in the range from the first timing t1 to the second timing t2, which is the timing after the first timing t1. including estimating the shape of the manipulator 100 at t2. Thereby, an effect similar to that described above can be obtained.
 なお、本実施形態の手法は上記に限らず、種々の変形実施が可能である。例えば、第1入力値は第1センサ150から入力される加速度データであるが、制御装置300は、第1センサ150から第1入力値として速度データを取得してもよい。このようにすることで、例えば前述した多関節マニピュレータのモデルにおける式(3)において推測される点Fの速度をそのまま閾値Lにして、第1入力値と比較することができる。このようにしても、第1タイミングt1を同様に求めることができるため、第1入力値が加速度データである場合と同様の効果を得ることができる。 The method of this embodiment is not limited to the above, and various modifications are possible. For example, the first input value is acceleration data input from the first sensor 150, but the control device 300 may acquire velocity data from the first sensor 150 as the first input value. By doing so, for example, the speed of the point F estimated in the above-described multi-joint manipulator model equation (3) can be used as the threshold value L and compared with the first input value. Even in this way, the first timing t1 can be obtained in the same manner, so that the same effect as when the first input value is acceleration data can be obtained.
 なお、上記のように本実施形態について詳細に説明したが、本実施形態の新規事項および効果から実体的に逸脱しない多くの変形が可能であることは当業者には容易に理解できるであろう。従って、このような変形例はすべて本開示の範囲に含まれるものとする。例えば、明細書又は図面において、少なくとも一度、より広義または同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また本実施形態及び変形例の全ての組み合わせも、本開示の範囲に含まれる。またマニピュレータシステム、制御装置及び形状推定方法の構成及び動作等も、本実施形態で説明したものに限定されず、種々の変形実施が可能である。 Although the present embodiment has been described in detail as above, those skilled in the art will easily understand that many modifications that do not substantially deviate from the novel matters and effects of the present embodiment are possible. . Accordingly, all such modifications are intended to be included within the scope of this disclosure. For example, a term described at least once in the specification or drawings together with a different broader or synonymous term can be replaced with the different term anywhere in the specification or drawings. All combinations of this embodiment and modifications are also included in the scope of the present disclosure. Also, the configurations and operations of the manipulator system, control device, and shape estimation method are not limited to those described in the present embodiment, and various modifications are possible.
 10…マニピュレータシステム、100…マニピュレータ、110…アウターシース、120…湾曲駒、130…先端、140…連結部、150…第1センサ、160…ワイヤ、160r…右湾曲ワイヤ、160l…左湾曲ワイヤ、160u…上湾曲ワイヤ、160d…下湾曲ワイヤ、200…操作部、200A,200B…アングルノブ、250…第2センサ、300…制御装置、L…閾値、t1…第1タイミング、t2…第2タイミング、t3…第3タイミング、ts…開始タイミング DESCRIPTION OF SYMBOLS 10... Manipulator system, 100... Manipulator, 110... Outer sheath, 120... Bending piece, 130... Tip, 140... Connection part, 150... First sensor, 160... Wire, 160r... Right bending wire, 160l... Left bending wire, 160u...upward bending wire, 160d...downward bending wire, 200...operation unit, 200A, 200B...angle knob, 250...second sensor, 300...control device, L...threshold value, t1...first timing, t2...second timing , t3... third timing, ts... start timing

Claims (19)

  1.  マニピュレータと、
     前記マニピュレータの先端の動きを取得する第1センサと、
     前記マニピュレータを湾曲操作する操作部と、
     前記操作部の湾曲操作の操作入力量を取得する第2センサと、
     前記マニピュレータの形状を推定する制御装置と、
     を含み、
     前記制御装置は、
     第1状態の前記マニピュレータの形状から、前記マニピュレータが湾曲し始めたとみなす開始タイミングを、前記第1センサからの入力値である第1入力値に基づいて推定し、
     推定した前記開始タイミング以降における前記第2センサからの入力値である第2入力値に基づいて、前記操作部の湾曲操作により前記第1状態から変化した状態である第2状態の前記マニピュレータの形状を推定することを特徴とするマニピュレータシステム。
    a manipulator;
    a first sensor that acquires movement of the tip of the manipulator;
    an operation unit that bends the manipulator;
    a second sensor that acquires an operation input amount of the bending operation of the operation unit;
    a control device for estimating the shape of the manipulator;
    including
    The control device is
    from the shape of the manipulator in the first state, estimating a start timing at which the manipulator begins to bend based on a first input value that is an input value from the first sensor;
    A shape of the manipulator in a second state, which is a state changed from the first state by a bending operation of the operation unit, based on a second input value that is an input value from the second sensor after the estimated start timing. A manipulator system characterized by estimating .
  2.  請求項1において、
     前記制御装置は、
     前記第1状態の前記マニピュレータの形状から、前記マニピュレータが湾曲し始めたとみなす前記操作入力量の閾値を推定し、
     前記第1入力値に基づいて、前記操作入力量が前記閾値を超えたタイミングである第1タイミングを前記開始タイミングとして判定し、
     前記第1タイミングより後の所定タイミングにおける前記第2入力値に基づいて、前記第2状態における前記マニピュレータの形状を推定することを特徴とするマニピュレータシステム。
    In claim 1,
    The control device is
    estimating a threshold value of the operation input amount at which the manipulator is considered to start bending from the shape of the manipulator in the first state;
    determining, based on the first input value, a first timing, which is a timing at which the operation input amount exceeds the threshold value, as the start timing;
    A manipulator system that estimates a shape of the manipulator in the second state based on the second input value at a predetermined timing after the first timing.
  3.  請求項2において、
     前記制御装置は、
     前記第2入力値を、前記第1タイミングから前記第1タイミングより後のタイミングである第2タイミングまでの範囲で積分した値に基づいて、前記第2タイミングの前記マニピュレータの形状を推定することを特徴とするマニピュレータシステム。
    In claim 2,
    The control device is
    estimating the shape of the manipulator at the second timing based on a value obtained by integrating the second input value in a range from the first timing to a second timing that is a timing after the first timing; Characterized manipulator system.
  4.  請求項2において、
     前記制御装置は、
     前記操作部への操作入力が行われたタイミングである第3タイミングにおける前記第2入力値と、所定のアルゴリズムにおけるヤコビ行列に基づいて前記閾値を求め、前記閾値と前記第1入力値を比較することで前記第1タイミングを求めることを特徴とするマニピュレータシステム。
    In claim 2,
    The control device is
    The threshold is obtained based on the second input value at a third timing, which is the timing at which an operation input to the operation unit is performed, and a Jacobian matrix in a predetermined algorithm, and the threshold and the first input value are compared. A manipulator system, wherein the first timing is obtained by:
  5.  請求項1において、
     前記第1状態は、前記操作部への操作入力が行われたタイミングである第3タイミングより前のタイミングにおける前記マニピュレータの形状の状態、及び前記第3タイミングにおける前記マニピュレータの形状の状態のうち少なくとも一方であることを特徴とするマニピュレータシステム。
    In claim 1,
    The first state is at least a state of the shape of the manipulator at a timing before a third timing at which an operation input to the operation unit is performed, and a state of the shape of the manipulator at the third timing. A manipulator system characterized by being one.
  6.  請求項1において、
     前記制御装置は、
     前記操作部への操作入力が行われたタイミングである第3タイミングより前の所定期間における前記第1入力値を用いて、前記第1入力値のうち、前記操作部からの湾曲操作に依存しない外乱値を推定し、
     前記外乱値と、前記第1入力値に基づいて、前記開始タイミングを推定することを特徴とするマニピュレータシステム。
    In claim 1,
    The control device is
    Using the first input value in a predetermined period before a third timing at which an operation input to the operation unit is performed, the first input value does not depend on the bending operation from the operation unit. Estimate the disturbance value,
    A manipulator system, wherein the start timing is estimated based on the disturbance value and the first input value.
  7.  請求項1において、
     前記第1センサは、前記マニピュレータの先端に設けられた加速度センサ、角速度センサまたはその両方であることを特徴とするマニピュレータシステム。
    In claim 1,
    A manipulator system, wherein the first sensor is an acceleration sensor, an angular velocity sensor, or both, provided at the tip of the manipulator.
  8.  請求項1において、
     前記操作部は、所定の角度の範囲で回転操作され、
     前記第2センサは、前記角度を計測する角度センサであることを特徴とするマニピュレータシステム。
    In claim 1,
    The operation unit is rotated within a predetermined angle range,
    The manipulator system, wherein the second sensor is an angle sensor that measures the angle.
  9.  請求項1において、
     前記マニピュレータは、ワイヤを含み、
     前記第2センサは、前記ワイヤの牽引量を取得可能なセンサであることを特徴とするマニピュレータシステム。
    In claim 1,
    the manipulator comprises a wire;
    The manipulator system, wherein the second sensor is a sensor capable of acquiring a pulling amount of the wire.
  10.  マニピュレータの形状を推定する制御装置であって、
     前記マニピュレータの先端の動きを取得する第1センサからの入力値である第1入力値を取得し、
     前記マニピュレータを湾曲操作する操作部の湾曲操作に基づく操作入力量を取得する第2センサからの入力値である第2入力値を取得し、
     前記第1入力値に基づいて、第1状態の前記マニピュレータの形状から、前記マニピュレータが湾曲し始めたとみなす開始タイミングを推定し、
     推定した前記開始タイミング以降における前記第2入力値に基づいて、前記操作部の湾曲操作により前記第1状態から変化した状態である第2状態の前記マニピュレータの形状を推定することを特徴とする制御装置。
    A control device for estimating the shape of a manipulator,
    Acquiring a first input value that is an input value from a first sensor that acquires the movement of the tip of the manipulator;
    acquiring a second input value that is an input value from a second sensor that acquires an operation input amount based on a bending operation of an operation unit that bends the manipulator;
    estimating a start timing at which the manipulator begins to bend from the shape of the manipulator in the first state, based on the first input value;
    Control characterized by estimating the shape of the manipulator in a second state, which is a state changed from the first state by a bending operation of the operation unit, based on the second input value after the estimated start timing. Device.
  11.  請求項10において、
     前記第1状態の前記マニピュレータの形状から、前記マニピュレータが湾曲し始めたとみなす前記操作入力量の閾値を推定し、
     前記第1入力値に基づいて、前記操作入力量が前記閾値を超えたタイミングである第1タイミングを前記開始タイミングとして判定し、
     前記第1タイミングより後の所定タイミングにおける前記第2入力値に基づいて、前記第2状態における前記マニピュレータの形状を推定することを特徴とする制御装置。
    In claim 10,
    estimating a threshold value of the operation input amount at which the manipulator is considered to start bending from the shape of the manipulator in the first state;
    determining, based on the first input value, a first timing, which is a timing at which the operation input amount exceeds the threshold value, as the start timing;
    A control device that estimates a shape of the manipulator in the second state based on the second input value at a predetermined timing after the first timing.
  12.  請求項11において、
     前記第2入力値を、前記第1タイミングから前記第1タイミングより後のタイミングである第2タイミングまでの範囲で積分した値に基づいて、前記第2タイミングの前記マニピュレータの形状を推定することを特徴とする制御装置。
    In claim 11,
    estimating the shape of the manipulator at the second timing based on a value obtained by integrating the second input value in a range from the first timing to a second timing that is a timing after the first timing; A controller characterized by:
  13.  請求項11において、
     前記操作部への操作入力が行われたタイミングである第3タイミングにおける前記第2入力値と、所定のアルゴリズムにおけるヤコビ行列に基づいて前記閾値を求め、前記閾値と前記第1入力値を比較することで前記第1タイミングを求めることを特徴とする制御装置。
    In claim 11,
    The threshold is obtained based on the second input value at a third timing, which is the timing at which an operation input to the operation unit is performed, and a Jacobian matrix in a predetermined algorithm, and the threshold and the first input value are compared. and obtaining the first timing.
  14.  請求項10において、
     前記操作部への操作入力が行われたタイミングである第3タイミングより前の所定期間における前記第1入力値を用いて、前記第1入力値のうち、前記操作部からの湾曲操作に依存しない外乱値を推定し、
     前記外乱値と、前記第1入力値に基づいて、前記開始タイミングを推定することを特徴とする制御装置。
    In claim 10,
    Using the first input value in a predetermined period before a third timing at which an operation input to the operation unit is performed, the first input value does not depend on the bending operation from the operation unit. Estimate the disturbance value,
    A control device, wherein the start timing is estimated based on the disturbance value and the first input value.
  15.  マニピュレータの形状を推定する形状推定方法であって、
     前記マニピュレータの先端の動きを取得する第1センサからの入力値である第1入力値を取得することと、
     前記マニピュレータを湾曲操作する操作部の湾曲操作に基づく操作入力量を取得する第2センサからの入力値である第2入力値を取得することと、
     前記第1入力値に基づいて、第1状態の前記マニピュレータの形状から、前記マニピュレータが湾曲し始めたとみなす開始タイミングを推定することと、
     推定した前記開始タイミング以降における前記第2入力値に基づいて、前記操作部の湾曲操作により前記第1状態から変化した状態である第2状態の前記マニピュレータの形状を推定することと、を含むことを特徴とする形状推定方法。
    A shape estimation method for estimating the shape of a manipulator, comprising:
    obtaining a first input value that is an input value from a first sensor that obtains movement of the tip of the manipulator;
    Acquiring a second input value that is an input value from a second sensor that acquires an operation input amount based on a bending operation of an operation unit that bends the manipulator;
    estimating a start timing at which the manipulator begins to bend from the shape of the manipulator in the first state, based on the first input value;
    estimating the shape of the manipulator in a second state, which is a state changed from the first state by a bending operation of the operation unit, based on the second input value after the estimated start timing. A shape estimation method characterized by:
  16.  請求項15において、
     前記第1状態の前記マニピュレータの形状から、前記マニピュレータが湾曲し始めたとみなす前記操作入力量の閾値を推定することと、
     前記第1入力値に基づいて、前記操作入力量が前記閾値を超えたタイミングである第1タイミングを判定することと、
     前記第1タイミングより後の所定タイミングにおける前記第2入力値に基づいて、前記第2状態における前記マニピュレータの形状を推定することと、を含むことを特徴とする形状推定方法。
    In claim 15,
    estimating a threshold value of the amount of operation input for determining that the manipulator has started to bend from the shape of the manipulator in the first state;
    Determining a first timing at which the operation input amount exceeds the threshold based on the first input value;
    estimating a shape of the manipulator in the second state based on the second input value at a predetermined timing after the first timing.
  17.  請求項16において、
     前記第2入力値を、前記第1タイミングから前記第1タイミングより後のタイミングである第2タイミングまでの範囲で積分した値に基づいて、前記第2タイミングの前記マニピュレータの形状を推定することを含むことを特徴とする形状推定方法。
    In claim 16,
    estimating the shape of the manipulator at the second timing based on a value obtained by integrating the second input value in a range from the first timing to a second timing that is a timing after the first timing; A shape estimation method, comprising:
  18.  請求項16において、
     前記操作部への操作入力が行われたタイミングである第3タイミングにおける前記第2入力値と、所定のアルゴリズムにおけるヤコビ行列に基づいて前記閾値を求めることと、前記閾値と前記第1入力値を比較することで前記第1タイミングを求めることと、を含むことを特徴とする形状推定方法。
    In claim 16,
    determining the threshold value based on the second input value at a third timing, which is the timing at which an operation input to the operation unit is performed, and a Jacobian matrix in a predetermined algorithm; A shape estimation method, comprising: obtaining the first timing by comparison.
  19.  請求項15において、
     前記操作部への操作入力が行われたタイミングである第3タイミングより前の所定期間における前記第1入力値を用いて、前記第1入力値のうち、前記操作部からの湾曲操作に依存しない外乱値を推定することと、
     前記外乱値と、前記第1入力値に基づいて、前記開始タイミングを推定することを含むことを特徴とする形状推定方法。
    In claim 15,
    Using the first input value in a predetermined period before a third timing at which an operation input to the operation unit is performed, the first input value does not depend on the bending operation from the operation unit. estimating a disturbance value;
    A shape estimation method, comprising estimating the start timing based on the disturbance value and the first input value.
PCT/JP2021/029852 2021-08-16 2021-08-16 Manipulator system, control device, and shape estimation method WO2023021538A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/029852 WO2023021538A1 (en) 2021-08-16 2021-08-16 Manipulator system, control device, and shape estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/029852 WO2023021538A1 (en) 2021-08-16 2021-08-16 Manipulator system, control device, and shape estimation method

Publications (1)

Publication Number Publication Date
WO2023021538A1 true WO2023021538A1 (en) 2023-02-23

Family

ID=85240163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029852 WO2023021538A1 (en) 2021-08-16 2021-08-16 Manipulator system, control device, and shape estimation method

Country Status (1)

Country Link
WO (1) WO2023021538A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63294825A (en) * 1987-05-28 1988-12-01 Olympus Optical Co Ltd Endoscopic apparatus
JP2002264048A (en) * 2001-03-08 2002-09-18 Hitachi Ltd Positioning control device for towed mechanism
JP2007029290A (en) * 2005-07-25 2007-02-08 Olympus Medical Systems Corp Medical controlling apparatus
JP2008220672A (en) * 2007-03-13 2008-09-25 Olympus Corp Endoscope system and endoscope image recording method
WO2012153646A1 (en) * 2011-05-12 2012-11-15 オリンパスメディカルシステムズ株式会社 Medical control device
JP2013085616A (en) * 2011-10-14 2013-05-13 Olympus Corp Bending operation system
JP2015160278A (en) * 2014-02-27 2015-09-07 オリンパス株式会社 Medical system and calibration method of operational tool
JP2018057799A (en) * 2016-09-29 2018-04-12 富士フイルム株式会社 Endoscope system and method of driving endoscope system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63294825A (en) * 1987-05-28 1988-12-01 Olympus Optical Co Ltd Endoscopic apparatus
JP2002264048A (en) * 2001-03-08 2002-09-18 Hitachi Ltd Positioning control device for towed mechanism
JP2007029290A (en) * 2005-07-25 2007-02-08 Olympus Medical Systems Corp Medical controlling apparatus
JP2008220672A (en) * 2007-03-13 2008-09-25 Olympus Corp Endoscope system and endoscope image recording method
WO2012153646A1 (en) * 2011-05-12 2012-11-15 オリンパスメディカルシステムズ株式会社 Medical control device
JP2013085616A (en) * 2011-10-14 2013-05-13 Olympus Corp Bending operation system
JP2015160278A (en) * 2014-02-27 2015-09-07 オリンパス株式会社 Medical system and calibration method of operational tool
JP2018057799A (en) * 2016-09-29 2018-04-12 富士フイルム株式会社 Endoscope system and method of driving endoscope system

Similar Documents

Publication Publication Date Title
US9827047B2 (en) Control apparatus and control method of insertion apparatus, insertion apparatus having control apparatus, control program for insertion apparatus, and controlling integrated electronic circuit of insertion apparatus
US9233467B2 (en) Control apparatus and method for master-slave robot, master-slave robot, and control program
US11877814B2 (en) Tension control in actuation of multi-joint medical instruments
CN110559082B (en) Surgical robot and control method and control device for mechanical arm of surgical robot
JP5743495B2 (en) Robot controller
US8523765B2 (en) Medical control apparatus
JP6164970B2 (en) Robot control method, robot system, program, recording medium, and component manufacturing method
US9387043B2 (en) Medical master/slave type device for minimally invasive surgery
JPWO2013018404A1 (en) Insert section shape estimation device
JP4897122B2 (en) Endoscope shape detection apparatus and endoscope shape detection method
KR20140011984A (en) Control system, program, and method of controlling mechanical equipment
US11540699B2 (en) Medical manipulator system
JP6003312B2 (en) Robot system
WO2023021538A1 (en) Manipulator system, control device, and shape estimation method
CN113263496B (en) Method for optimizing path of six-degree-of-freedom mechanical arm and computer equipment
JP2007029290A (en) Medical controlling apparatus
JP2017154193A (en) robot
WO2023032074A1 (en) Manipulator system and method for inferring shape of manipulator
JP2007007837A (en) Device, method, and program for positional control
US20170004237A1 (en) Simulation method and simulation apparatus
WO2020045538A1 (en) Estimation device, estimation method, and program
CN117224241B (en) Control method and related device of soft endoscope control system
JP5829164B2 (en) Medical equipment system
CN117162078A (en) Soft robot gesture sensing method and device based on multi-source data fusion
JP2020028645A (en) Estimation system, estimation method and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE