WO2023020534A1 - Compounds and their uses as mif inhibitors - Google Patents

Compounds and their uses as mif inhibitors Download PDF

Info

Publication number
WO2023020534A1
WO2023020534A1 PCT/CN2022/113023 CN2022113023W WO2023020534A1 WO 2023020534 A1 WO2023020534 A1 WO 2023020534A1 CN 2022113023 W CN2022113023 W CN 2022113023W WO 2023020534 A1 WO2023020534 A1 WO 2023020534A1
Authority
WO
WIPO (PCT)
Prior art keywords
methyl
morpholino
fluoropyridin
thiazol
quinolin
Prior art date
Application number
PCT/CN2022/113023
Other languages
French (fr)
Inventor
Jianbei XI
Guohuang FAN
Jianfei Wang
Original Assignee
Nanjing Immunophage Biotech Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Immunophage Biotech Co., Ltd filed Critical Nanjing Immunophage Biotech Co., Ltd
Publication of WO2023020534A1 publication Critical patent/WO2023020534A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/08Indoles; Hydrogenated indoles with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/61Halogen atoms or nitro radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/20Oxygen atoms
    • C07D215/24Oxygen atoms attached in position 8
    • C07D215/26Alcohols; Ethers thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/54Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings condensed with carbocyclic rings or ring systems
    • C07D231/56Benzopyrazoles; Hydrogenated benzopyrazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/70Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
    • C07D239/72Quinazolines; Hydrogenated quinazolines
    • C07D239/74Quinazolines; Hydrogenated quinazolines with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to ring carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/62Benzothiazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/06Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/06Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/10Spiro-condensed systems
    • C07D491/107Spiro-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/08Bridged systems

Definitions

  • the present invention relates to novel compounds; methods for the production of the compounds of the invention; pharmaceutical compositions comprising the compounds of the invention; as well as uses and methods for treating a disease mediated by macrophage migration inhibitory factor (MIF) by administering the compounds of the invention.
  • MIF macrophage migration inhibitory factor
  • the compounds of the invention may be used as MIF inhibitors.
  • MIF was originally identified as a cytokine released from active T cells to inhibit the random movement of macrophages. It is secreted by epithelial cells, endothelial cells, lymphocytes, monocytes, and macrophages, and plays a role in innate and acquired immunity. In humans, the MIF gene is found on chromosome 22q11.2 and codes for an evolutionarily conserved protein consisting of 115 amino acids. The MIF protein has a molecular weight of 12.5 kD in its monomeric form. When the MIF protein is activated, MIF forms a trimer composed of three identical subunits, with each monomer containing two antiparallel ⁇ -helices that pack against a four-stranded ⁇ -sheet.
  • MIF demonstrates chemokine-like function and was identified as a ligand of CD74 which forms complex with both CXCR2 and CXCR4. Binding of MIF to these receptors enhances monocyte recruitment and leukocyte chemotaxis. The inflammatory cascade relies on the activation of CXCR2 and CD74, suggesting that MIF operates via a functional CXCR2/CD74 complex.
  • MIF has various biological roles, with the most significant being inflammation and immunity. MIF counter-regulates the actions of glucocorticoids, which are natural steroid hormones produced by the adrenal glands during cellular stress that possess as anti-inflammatory effects. MIF may stimulate the expression of other cytokines involved in inflammation. Inflammation is needed for the survival of organisms, but when it is incorrectly regulated, it may contribute to tumorigenesis. MIF plays a role in both innate and adaptive immunity and is constitutively expressed by monocytes, macrophages, dendritic cells, B cells, neutrophils, eosinophils, mast cells, and basophils.
  • T cells TNF-binding factor-2 and interferon- ⁇ production.
  • MIF is also reported to possess enzymatic activity, and it converts D-dopachrome in 5, 6-dihydroxy-2-carboxylic acid (DHICA) .
  • DHICA 6-dihydroxy-2-carboxylic acid
  • MIF is a pluripotent and pleiotropic cytokine expressed in numerous human malignancies such as glioblastomas, lung cancer, breast cancer, gastric cancer, bladder cancer, and melanoma. MIF has been shown to contribute to many different forms of cancer in multiple studies.
  • MIF is a regulator of the p53 signaling pathway and can physically interact with p53. MIF suppresses the activity of p53, which leads to the deregulation of the normal cell cycle. Since MIF functionally inactivates p53, cell cycle arrest and apoptosis do not occur.
  • MIF is involved in the phosphoinositide-3-kinase (PI3K) /Akt pathway, which plays a key role in the development of tumors.
  • PI3K phosphoinositide-3-kinase
  • MIF vascular endothelial growth factor
  • HIF-1 hypoxia inducible factor 1
  • MIF leads to the metastasis of tumor cells by decreasing the expression of E-cadherin and increasing the expression of N-cadherin.
  • EMT epithelial mesenchymal transition
  • MDSCs myeloid derived suppressor cells
  • MIF is also a pleiotropic inflammatory cytokine with upstream regulatory roles in innate and adaptive immunity, and is implicated in the pathogenesis of autoimmune diseases including multiple sclerosis (MS) , rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) .
  • MS multiple sclerosis
  • RA rheumatoid arthritis
  • SLE systemic lupus erythematosus
  • MIF is significantly up-regulated in the serum of MS, RA and SLE patients and animal models. MIF inhibition has been shown to improve both ex vivo and in vivo features of the autoimmune diseases.
  • MIF is also involved in metabolic diseases, cardiovascular diseases, nervous system diseases, respiratory disorders, gastrointestinal disorders, and infections.
  • MIF malignant neoplasmic disorders
  • inflammatory diseases autoimmune diseases, metabolic diseases, cardiovascular diseases, nervous system diseases, respiratory disorders, gastrointestinal disorders, and infections
  • cardiovascular diseases cardiovascular diseases
  • nervous system diseases respiratory disorders
  • gastrointestinal disorders and infections
  • targeted inhibition of MIF is a potential therapeutic approach for the diseases outlined above.
  • One of the most important strategies targeting MIF is to develop small molecule inhibitors against MIF, which have demonstrated promising preclinical efficacy.
  • the present invention provides novel compounds that function as MIF inhibitors.
  • the invention provides a compound of formula I,
  • Y 1 is O, S, or NH; the bond between Y 2 and Y 3 is a single bond or a double bond; when the bond is a single bond, Y 2 is CH 2 , Y 3 is O; when the bond is a double bond, Y 2 and Y 3 independently is CH or N; R is H or Ac; is optionally substituted with 0, 1, or 2 CN, NHR N , halogen, C 1-6 alkyl, C 1-6 haloalkyl, or C 3-6 cycloalkyl, wherein R N is H or COC 1-6 alkyl;
  • A is a 5-or 6-membered aryl or heteroaryl optionally substituted with 0, 1, or 2 substituents independently selected from the group consisting of halogen, C 1-6 alkyl, C 1-6 haloalkyl, OH, or C 1-6 alkoxy;
  • B is which is optionally deuterated, and is optionally substituted with 0, 1, or 2 C 1-6 alkyl, OH or C 1-6 alkoxy, wherein X is CH 2 , or O.
  • the compound is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-N-phenyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N
  • A is phenyl, pyridinyl, pyrimidinyl, pyridazinyl, imidazolyl, thiazolyl, or oxazolyl, which is optionally substituted with 0, 1, or 2 substituents independently selected from the group consisting of F, Cl, methyl, or trifluoromethyl.
  • A is
  • B is which is optionally deuterated, and is optionally substituted with 0, 1, or 2 methyl.
  • B is
  • the compound is selected from:
  • the invention provides a compound of formula II,
  • the compound is selected from:
  • the invention provides a compound of formula III,
  • X 1 is CH or N; is optionally substituted with 0 or 1 NH 2 , morpholino, halogen, or C 1- 6 alkyl;
  • A” is a 5-or 6-membered aryl or heteroaryl optionally substituted with 0, 1, or 2 substituents independently selected from the group consisting of OH, halogen, C 1-6 alkyl, C 1-6 haloalkyl, or C 1-6 alkoxy; or a 10-membered fused-ring heteroaryl;
  • B is which is optionally substituted with 0, 1, or 2 substituents independently selected from the group consisting of OH, NHBoc, C 1-6 alkyl, or C 1-6 alkoxy, wherein X is CH 2 , or O.
  • A is
  • phenyl optionally substituted with 0, 1, or 2 substituents independently selected from the group consisting of OH, F, trifluoromethyl; wherein the phenyl is not 4-monosubstituted by F;
  • pyridinyl optionally substituted with 0, 1, or 2 substituents independently selected from the group consisting of F, Cl, methyl, or trifluoromethyl; wherein when the pyridinyl is pyridin-2-yl, it is substituted; or
  • B is optionally substituted with 0 or 1 NHBoc; optionally substituted with 0, 1, or 2 methyl; substituted with 0 or 1 methyl or methoxy; substituted with 0 or 1 OH; or
  • the compound is selected from:
  • the invention provides a pharmaceutical composition, comprising a compound of formula I, II, or III described above, or a pharmaceutically acceptable salt thereof; and a pharmaceutically acceptable carrier or excipient.
  • the invention provides the use of a compound of formula I, II, or III, or a pharmaceutical composition described above, for the treatment of a disease mediated by macrophage migration inhibitory factor (MIF) .
  • MIF macrophage migration inhibitory factor
  • the disease mediated by MIF is tumor; inflammatory disease; autoimmune disease; metabolic disease; cardiovascular disease; nervous system disease; respiratory disorder; gastrointestinal disorder; infection.
  • the invention provides the use of a compound of formula I, II, or III, or a pharmaceutical composition described above, for the production of a medicine for the treatment of a disease mediated by MIF.
  • the disease mediated by MIF is tumor; inflammatory disease; autoimmune disease; metabolic disease; cardiovascular disease; nervous system disease; respiratory disorder; gastrointestinal disorder; infection.
  • the invention provides a method of treating a disease mediated by MIF in a subject in need thereof, comprising administering to the subject, a therapeutically effective amount of a compound of formula I, II, or III described above, or a pharmaceutically acceptable salt thereof.
  • the disease mediated by MIF is tumor; inflammatory disease; autoimmune disease; metabolic disease; cardiovascular disease; nervous system disease; respiratory disorder; gastrointestinal disorder; infection.
  • the invention provides a method of inhibiting MIF expression, production and/or secretion in a subject in need thereof, the method comprising administering to the subject, a pharmaceutically effective amount of a compound of formula I, II, or III described above, or a pharmaceutically acceptable salt thereof.
  • the invention provides a method of inhibiting MIF tautomerase catalytic activity in a subject in need thereof, the method comprising administering to the subject, a pharmaceutically effective amount of a compound of formula I, II, or III described above, or a pharmaceutically acceptable salt thereof.
  • MIF inhibitor includes any and all possible isomers, stereoisomers, enantiomers, diastereomers, tautomers, pharmaceutically acceptable salts, hydrates, solvates, and prodrugs of the MIF inhibitors described in this invention.
  • an element means one element or more than one element.
  • C 1-6 alkyl refers to straight-chained or branched alkyl group having 1 to 6 carbon atoms.
  • Examples of a C 1-6 alkyl group include, but are not limited to, methyl, ethyl, propyl, butyl, pentyl, hexyl, isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, and neopentyl.
  • C 3-6 cycloalkyl refers to a cyclic hydrocarbon containing 3-6 carbon atoms.
  • Examples of a cycloalkyl group include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. It is understood that any of the substitutable hydrogens on a cycloalkyl can be substituted with halogen, C 1 -C 3 alkyl, hydroxyl, alkoxy and cyano groups.
  • C 1-6 alkoxy refers to the group R′-O-, wherein R′is a C 1-6 alkyl.
  • Examples of a C 1-6 alkoxy group include, but are not limited to, methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy, pentyloxy, isopentyloxy, neopentyloxy, tert-pentyloxy, and hexyloxy.
  • halogen refers to fluoro, chloro, bromo or iodo.
  • Preferred “halogen” groups are fluoro, chloro or bromo. More preferred “halogen” groups are fluoro, chloro. Most preferred “halogen” is fluoro.
  • C 1-6 haloalkyl refers to a C 1-6 alkyl group where at least one, probably all of the hydrogen atoms are replaced by halogen atoms. More preferred “C 1-6 haloalkyl” are C 1-6 perhaloalkyl, e.g., trifluoromethyl.
  • aryl alone or in combination, means a carbocyclic aromatic system containing one, two or three rings wherein such rings may be attached together in a pendent manner or may be fused.
  • aryl embraces aromatic radicals such as phenyl, naphthyl, anthracenyl, phenanthryl, and biphenyl.
  • the aryl groups of the present invention can be optionally substituted with one, two, three, four, or five substituents independently selected from the groups as defined herein.
  • heteroaryl refers to an aromatic five-or six-membered ring, where at least one atom is selected from the group consisting of N, O, and S, and the remaining ring atoms are carbon.
  • the five-membered rings have two double bonds, and the six-membered rings have three double bonds.
  • the heteroaryl groups are connected to the parent molecular group through a substitutable carbon or nitrogen atom in the ring.
  • heteroaryl also includes systems where a heteroaryl ring is fused to an aryl group, a heterocycle group, or an additional heteroaryl group.
  • Heteroaryls are exemplified by benzothienyl, benzoxazolyl, benzofuranyl, benzimidazolyl, benzthiazolyl benzotriazolyl, cinnolinyl, furyl, imidazolyl, triazolyl, tetrazolyl, indazolyl, indolyl, isoxazolyl, isoquinolinyl, isothiazolyl, naphthyridinyl, oxadiazolyl, oxazolyl, isoxazolyl, purinyl, thiazolyl, isothiazolyl, thienopyridinyl, thienyl, thiadiazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, pyrazolyl, pyrrolyl, pyrido [2, 3-d] pyrimidinyl, pyrrolo [
  • a "substituted" group includes embodiments in which a monoradical substituent is bound to a single atom of the substituted group (e.g., forming a branch) , and includes embodiments in which the substituent may be a diradical bridging group bound to two adjacent atoms of the substituted group, thereby forming a fused ring on the substituted group.
  • an "available site” is a site of the group at which a hydrogen of the group may be replaced with a substituent.
  • “Pharmaceutically acceptable salts” refers to those salts which retain the biological effectiveness and properties of the free bases and which are obtained by reaction with inorganic acids, for example, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, and phosphoric acid or organic acids such as sulfonic acid, carboxylic acid, organic phosphoric acid, methanesulfonic acid, ethanesulfonic acid, toluenesulfonic acid, citric acid, fumaric acid, maleic acid, succinic acid, benzoic acid, salicylic acid, lactic acid, tartaric acid (e, (+) or (-) -tartaric acid or mixtures thereof) , amino acids (e.g., (+) or (-) -amino acids or mixtures thereof) , and the like.
  • inorganic acids for example, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, and phosphoric acid or organic acids such as sulf
  • salts can be prepared by methods known to those skilled in the art.
  • “pharmaceutically acceptable salt” refers to those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response, and the like, and are commensurate with a reasonable benefit/risk ratio.
  • Pharmaceutically acceptable salts are well known in the art. For example, S. M. Berge et al., describe pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences, 1977, 66, 1-19, incorporated herein by reference.
  • carrier encompasses carriers, excipients, and diluents, and means a material, composition, or vehicle, such as a liquid or solid filler, diluent, excipient, solvent, or encapsulating material, involved in carrying or transporting a pharmaceutical agent from one organ, or portion of the body, to another organ, or portion of the body.
  • effective amount means an amount of a compound according to the invention which, in the context of which it is administered or used, is sufficient to achieve the desired effect or result.
  • effective amount may include or be synonymous with a pharmaceutically effective amount or a therapeutically effective amount.
  • An effective amount can be determined by methods known to those of skill in the art.
  • a compound of a given formula (e.g., compound of Formula I, II, or III) is intended to encompass the compounds of the invention, and the pharmaceutically acceptable salts, pharmaceutically acceptable esters, isomers, tautomers, solvates, isotopes, hydrates, polymorphs, and prodrugs of such compounds.
  • the compounds of the invention may possess one or more asymmetric centers, and can be produced as a racemic mixture or as individual enantiomers or diastereoisomers.
  • the number of stereoisomers present in any given compound of a given formula depends upon the number of asymmetric centers present (there are 2" stereoisomers possible where n is the number of asymmetric centers) .
  • the individual stereoisomers may be obtained by resolving a racemic or non-racemic mixture of an intermediate at some appropriate stage of the synthesis or by resolution of the compound by conventional means.
  • Isomers are different compounds that have the same molecular formula. Isomers include stereoisomers, enantiomers and diastereomers.
  • Steps are isomers that differ only in the way the atoms are arranged in space.
  • Enantiomers are a pair of stereoisomers that are non-superimposable mirror images of each other.
  • a 1: 1 mixture of a pair of enantiomers is a “racemic” mixture.
  • the term “ ( ⁇ ) " is used to designate a racemic mixture where appropriate.
  • Diastereoisomers are stereoisomers that have at least two asymmetric atoms, but which are not mirror-images of each other.
  • Tautomeric isomers are in equilibrium with one another.
  • amide containing compounds may exist in equilibrium with imidic acid tautomers. Regardless of which tautomer is shown, and regardless of the nature of the equilibrium among tautomers, the compounds are understood by one of ordinary skill in the art to comprise both amide and imidic acid tautomers. Thus, the amide containing compounds are understood to include their imidic acid tautomers. Likewise, the imidic acid containing compounds are understood to include their amide tautomers.
  • polymorph refers to different crystal structures of a crystalline compound.
  • the different polymorphs may result from differences in crystal packing (packing polymorphism) or differences in packing between different conformers of the same molecule (conformational polymorphism) .
  • solvate refers to a complex formed by the combining of a compound of the present invention and a solvent.
  • hydrate refers to the complex formed by the combining of a compound of the present invention and water.
  • prodrug refers to compounds of the present invention that include chemical groups which, in vivo, can be converted and/or can be split off from the remainder of the molecule to provide for the active drug, a pharmaceutically acceptable salt thereof or a biologically active metabolite thereof.
  • a “subject” is a mammal, e.g., a human, mouse, rat, guinea pig, dog, cat, horse, cow, pig, or non-human primate, such as a monkey, chimpanzee, baboon or rhesus, and the terms “subject” and “patient” are used interchangeably in this invention.
  • inhibitortion indicates a significant decrease in the baseline activity of a biological activity or process.
  • disease is used in this invention to mean, and is used interchangeably with, the terms disorder, condition, or illness, unless otherwise indicated.
  • tumor refers to an abnormal growth of tissue.
  • a tumor may be benign or malignant.
  • a malignant tumor is referred to as a cancer.
  • Cancers differ from benign tumors in the ability of malignant cells to invade other tissues, either by direct growth into adjacent tissue through invasion or by implantation into distant sites by metastasis (i.e., transport through the blood or lymphatic system) .
  • autoimmune disease refers to a disease which arises from an inappropriate immune response of the body against substances and tissues normally present in the body (autoimmunity) of a patient.
  • the symptoms of autoimmune diseases can range from fatigue and mild rashes to rare, serious warning signs, like seizures.
  • the autoimmune disease is selected from the group consisting of rheumatoid arthritis (RA) , multiple sclerosis (MS) , sarcoidosis, psoriasis, Crohn's disease, systemic lupus erythematosus (SLE) , and diabetes mellitus type 1, and more preferably the autoimmune disease is selected from the group consisting of rheumatoid arthritis (RA) , multiple sclerosis (MS) , and systemic lupus erythematosus (SLE) .
  • RA rheumatoid arthritis
  • MS multiple sclerosis
  • SLE systemic lupus erythematosus
  • inflammatory disease refers to a disease caused by, resulting from, or resulting in inflammation.
  • inflammatory disease may also refer to a dysregulated inflammatory reaction that causes an exaggerated response by macrophages, granulocytes, and/or T-lymphocytes leading to abnormal tissue damage and/or cell death.
  • An inflammatory disease can be either an acute or chronic inflammatory condition and can result from infections or non-infectious causes.
  • Inflammatory disease preferably is chronic obstructive pulmonary disease (COPD) , pneumonia.
  • COPD chronic obstructive pulmonary disease
  • metabolic disease refers to a disease which is caused or characterized by an abnormal metabolism, i.e., the chemical changes in living cells by which energy is provided for vital processes and activities in a subject.
  • metabolic diseases include obesity, diabetes, nonalcoholic steatohepatitis (NASH) , diabetic nephropahy (DN) , hyperphagia, endocrine abnormalities, and triglyceride storage disease.
  • cardiovascular disease refers to a disease of the heart and blood vessels, and includes diseases of the arteries, veins, arterioles, venules, and capillaries.
  • cardiovascular diseases include atherosclerosis (AS) , myocardial infarction, coronary artery disease, stroke, heart failure, myocarditis, heart disease, cerebrovascular disease, and peripheral artery disease.
  • neural system disease refers to medical conditions affecting the nervous system. This category encompasses central nervous and peripheral nervous diseases or disorders, and non-limiting examples of nervous system diseases includes epilepsy, neuropathic pain, Parkinson's disease (PD) , amyotrophic lateral sclerosis (ALS) , dementia, and Alzheimer's disease (AD) .
  • PD Parkinson's disease
  • ALS amyotrophic lateral sclerosis
  • AD Alzheimer's disease
  • respiratory disorder refers to any disease related to respiration or the respiratory system and includes but is not limited to asthma, Idiopathic pulmonary fibrosis (IPF) , pulmonary hypertension, emphysema, bronchitis, sinusitis, rhinitis, airflow obstruction, bronchoconstriction, and acute respiratory distress syndrome (ARDS) .
  • IPF Idiopathic pulmonary fibrosis
  • pulmonary hypertension emphysema
  • bronchitis bronchitis
  • sinusitis rhinitis
  • airflow obstruction bronchoconstriction
  • ARDS acute respiratory distress syndrome
  • gastrointestinal disorder refers to any disease of the upper gastrointestinal tract of a subject including, for example, inflammatory bowel disease (IBD) , intrahepatic bile duct injury, acute pancreatitis, peptic ulcers, gastric hyperacidity, dyspepsia, and gastroesophageal reflux disease.
  • IBD inflammatory bowel disease
  • infection refers to the invasion by, multiplication and/or presence of a virus in a cell or a subject.
  • an infection is an "active" infection, i.e., one in which the virus is replicating in a cell or a subject.
  • An infection may also be a latent infection, i.e., one in which the virus is not replicating.
  • Non-limiting examples of infection include protozoal diseases, parasitosis, and sepsis.
  • treating refers to improving at least one symptom of the subject's disease. Treating can be curing, improving, or at least partially ameliorating the disease.
  • administer refers to either directly administering a compound or pharmaceutically acceptable salt of the compound or a composition to a subject, or administering a prodrug derivative or analog of the compound or pharmaceutically acceptable salt of the compound or composition to the subject, which can form an equivalent amount of active compound within the subject's body.
  • the invention also includes pharmaceutical compositions useful for treating a disease mediated by MIF, or for inhibiting MIF expression, production and/or secretion, or for inhibiting MIF tautomerase catalytic activity, or more than one of these activities.
  • the compositions can be suitable for internal use and comprise an effective amount of compounds of the invention as MIF inhibitors and a pharmaceutically acceptable carrier.
  • the MIF inhibitors are especially useful in that they demonstrate very low systemic toxicity or no systemic toxicity.
  • the MIF inhibitors can each be administered in amounts that are sufficient to treat or prevent but are not limited to cardiovascular and cerebrovascular diseases, autoimmune diseases and inflammatory disorders, fibrotic diseases, metabolic disorders, and tumors or prevent the development thereof in subjects.
  • Administration of the MIF inhibitors can be accomplished via any mode of administration for therapeutic agents. These modes include systemic or local administration such as oral, nasal, parenteral (intravenous) , intramuscular, intrathecal, intra-vitreal, transdermal, subcutaneous, vaginal, buccal, rectal, topical administration modes or as a drug-eluting stent.
  • systemic or local administration such as oral, nasal, parenteral (intravenous) , intramuscular, intrathecal, intra-vitreal, transdermal, subcutaneous, vaginal, buccal, rectal, topical administration modes or as a drug-eluting stent.
  • compositions can be in solid, semi-solid or liquid dosage form, such as injectables, tablets, suppositories, pills, time-release capsules, elixirs, tinctures, emulsions, syrups, powders, liquids, suspensions, or the like, sometimes in unit dosages and consistent with conventional pharmaceutical practices.
  • injectables tablets, suppositories, pills, time-release capsules, elixirs, tinctures, emulsions, syrups, powders, liquids, suspensions, or the like, sometimes in unit dosages and consistent with conventional pharmaceutical practices.
  • they can also be administered in intravenous (both bolus and infusion) , intraperitoneal, intrathecal, intra-vitreal injection, subcutaneous or intramuscular form, all using forms well known to those skilled in the pharmaceutical arts.
  • Illustrative pharmaceutical compositions are tablets and gelatin capsules comprising a MIF inhibitor and a pharmaceutically acceptable carrier, such as: a) a diluent, e.g., purified water, triglyceride oils, such as hydrogenated or partially hydrogenated vegetable oil, or mixtures thereof, corn oil, olive oil, sunflower oil, safflower oil, fish oils, such as EPA or DHA, or their esters or triglycerides or mixtures thereof, omega-3 fatty acids or derivatives thereof, lactose, dextrose, sucrose, mannitol, sorbitol, cellulose, sodium, saccharin, glucose and/or glycine; b) a lubricant, e.g., silica, talcum, stearic acid, its magnesium or calcium salt, sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride and/or polyethylene glycol; for tablets also; c
  • Liquid, particularly injectable, compositions can, for example, be prepared by dissolution, dispersion, etc.
  • the MIF inhibitor is dissolved in or mixed with a pharmaceutically acceptable solvent such as, for example, water, saline, aqueous dextrose, glycerol, ethanol, and the like, to thereby form an injectable isotonic solution or suspension.
  • a pharmaceutically acceptable solvent such as, for example, water, saline, aqueous dextrose, glycerol, ethanol, and the like.
  • Proteins such as albumin, chylomicron particles, or serum proteins can be used to solubilize the MIF inhibitors.
  • the MIF inhibitors can be also formulated as a suppository that can be prepared from fatty emulsions or suspensions; using polyalkylene glycols such as propylene glycol, as the carrier.
  • the pharmaceutical formulations described in this invention include, but are not limited to, aqueous liquid dispersions, self-emulsifying dispersions, solid solutions, liposomal dispersions, aerosols, solid dosage forms, powders, immediate release formulations, controlled release formulations, fast melt formulations, delayed release formulations, extended release formulations, pulsatile release formulations, multiparticulate formulations, and mixed immediate and controlled release formulations
  • the MIF inhibitors can also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles and multilamellar vesicles.
  • Liposomes can be formed from a variety of phospholipids, containing cholesterol, stearylamine or phosphatidylcholines.
  • a film of lipid components is hydrated with an aqueous solution of drug to a form lipid layer encapsulating the drug, as described in United States Patent No. 5, 262, 564.
  • MIF inhibitors can also be delivered by the use of monoclonal antibodies as individual carriers to which the MIF inhibitors are coupled.
  • the MIF inhibitors can also be coupled with soluble polymers as targetable drug carriers.
  • Such polymers can include polyvinylpyrrolidone, pyran copolymer, polyhydroxypropylmethacrylamide-phenol, polyhydroxyethylaspanamidephenol, or polyethyleneoxidepolylysine substituted with palmitoyl residues.
  • the MIF inhibitors can be coupled to a class of biodegradable polymers useful in achieving controlled release of a drug, for example, polylactic acid, polyepsilon caprolactone, polyhydroxy butyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacrylates and cross-linked or amphipathic block copolymers of hydrogels.
  • MIF inhibitors are not covalently bound to a polymer, e.g., a polycarboxylic acid polymer, or a polyacrylate.
  • Parenteral injectable administration is generally used for subcutaneous, intramuscular or intravenous injections and infusions.
  • Injectables can be prepared in conventional forms, either as liquid solutions or suspensions or solid forms suitable for dissolving in liquid prior to injection.
  • compositions can be prepared according to conventional mixing, granulating or coating methods, respectively, and the present pharmaceutical compositions can contain an appropriate amount of the MIF inhibitor.
  • the dosage regimen utilizing the MIF inhibitor is selected in accordance with a variety of factors including type, species, age, weight, sex, race, diet, and medical condition of the patient; the severity of the condition to be treated; the route of administration; the renal or hepatic function of the patient; and the MIF inhibitor employed.
  • a physician or veterinarian of ordinary skill in the art can readily determine and prescribe the effective amount of the drug required to prevent, counter, or arrest the progress of the condition.
  • appropriate dosages of the MIF inhibitors can be determined as set forth in Goodman, L. S.; Gilman, A. The Pharmacological Basis of Therapeutics, 5th ed.; MacMillan: New York, 1975, pp. 201-226.
  • MIF inhibitors can be administered at an appropriate dosing frequency. Furthermore, MIF inhibitors can be administered using administration routes well known to those of ordinary skill in the art.
  • MIF inhibitors and compositions described above can be used to treat or prevent MIF-associated diseases.
  • diseases include, but are not limited to, autoimmune diseases, tumors, chronic or acute inflammatory diseases, cardiovascular diseases, respiratory disorders, nervous system diseases, infections, metabolic diseases, and gastrointestinal disorders. Examples of such diseases or conditions include:
  • ⁇ rheumatic diseases including but not limited to rheumatoid arthritis, osteoarthritis, psoriatic arthritis
  • spondyloarthropathies including but not limited to ankylosing spondylitis, reactive arthritis, Reiter's syndrome
  • crystal arthropathies including but not limited to gout, pseudogout, calcium pyrophosphate deposition disease
  • Lyme disease polymyalgia rheumatica
  • ⁇ connective tissue diseases including but not limited to systemic lupus erythematosus, systemic sclerosis, polymyositis, dermatomyositis, syndrome
  • connective tissue diseases including but not limited to systemic lupus erythematosus, systemic sclerosis, polymyositis, dermatomyositis, syndrome
  • vasculitides including but not limited to polyarteritis nodosa, Wegener's granulomatosis, Churg-Strauss syndrome) ;
  • COPD chronic obstructive pulmonary disease
  • vascular diseases including atherosclerotic vascular disease and infarction, atherosclerosis, and vascular occlusive disease (including but not limited to atherosclerosis, ischaemic heart disease, myocardial infarction, stoke, peripheral vascular disease) , and vascular stent restenosis;
  • cardiovascular disease including atherosclerosis (AS) , myocardial infarction, coronary artery disease, stroke, heart failure, myocarditis, heart disease, cerebrovascular disease, and peripheral artery disease;
  • AS atherosclerosis
  • myocardial infarction myocardial infarction
  • coronary artery disease stroke, heart failure
  • myocarditis myocarditis
  • heart disease cerebrovascular disease
  • peripheral artery disease peripheral artery disease
  • ⁇ autoimmune diseases including but not limited to diabetes mellitus, thyroiditis, myasthenia gravis, sclerosing cholangitis, primary biliary cirrhosis, rheumatoid arthritis (RA) , multiple sclerosis (MS) , systemic lupus erythematosus (SLE) ) ;
  • pulmonary diseases including but not limited to diffuse interstitial lung diseases, pneumoconioses, fibrosing alveolitis, asthma, bronchitis, bronchiectasis, chronic obstructive pulmonary disease, adult respiratory distress syndrome
  • pulmonary diseases including but not limited to diffuse interstitial lung diseases, pneumoconioses, fibrosing alveolitis, asthma, bronchitis, bronchiectasis, chronic obstructive pulmonary disease, adult respiratory distress syndrome
  • ⁇ respiratory disorders including but not limited to asthma, Idiopathic pulmonary fibrosis (IPF) , pulmonary hypertension, emphysema, bronchitis, sinusitis, rhinitis, airflow obstruction, bronchoconstriction, acute respiratory distress syndrome (ARDS) ;
  • Idiopathic pulmonary fibrosis IPF
  • pulmonary hypertension emphysema
  • bronchitis bronchitis
  • sinusitis emphysema
  • rhinitis rhinitis
  • airflow obstruction bronchoconstriction
  • ARDS acute respiratory distress syndrome
  • ⁇ tumors whether primary or metastatic including but not limited to, glioblastomas, prostate cancer, colon cancer, lymphoma, lung cancer, gastric cancer, bladder cancer, melanoma, multiple myeloma, breast cancer, liver cancer, renal cancer, stomach cancer, leukaemia, cervical cancer and metastatic cancer;
  • ⁇ renal diseases including glomerulonephritis, interstitial nephritis;
  • ⁇ nervous system diseases including epilepsy, neuropathic pain, Parkinson's disease (PD) , amyotrophic lateral sclerosis (ALS) , dementia, and Alzheimer's disease (AD) ;
  • PD Parkinson's disease
  • ALS amyotrophic lateral sclerosis
  • AD Alzheimer's disease
  • ⁇ diseases characterised by modified angiogenesis eg diabetic retinopathy, rheumatoid arthritis, cancer
  • endometrial function eg., endometriosis
  • ⁇ infection including protozoal diseases, parasitosis, and sepsis;
  • infective disorders including endotoxic (septic) shock, exotoxic (septic) shock, infective (true septic) shock, malarial complications, other complications of infection, pelvic inflammatory disease;
  • metabolic diseases including obesity, diabetes, nonalcoholic steatohepatitis (NASH) , diabetic nephropahy (DN) , hyperphagia, endocrine abnormalities, and triglyceride storage disease;
  • NASH nonalcoholic steatohepatitis
  • DN diabetic nephropahy
  • hyperphagia hyperphagia
  • endocrine abnormalities and triglyceride storage disease
  • allergic diseases including allergies, atopic diseases, allergic rhinitis;
  • bone diseases eg osteoporosis, Paget's disease
  • ⁇ skin diseases including psoriasis, atopic dermatitis, UV (B) -induced dermal cell activation (eg sunburn, skin cancer) ;
  • ⁇ gastrointestinal diseases including inflammatory bowel disease (IBD) , intrahepatic bile duct injury, acute pancreatitis, peptic ulcers, gastric hyperacidity, dyspepsia, gastroesophageal reflux disease, ulcerative colitis, Crohn's disease, peptic ulceration, gastritis, oesophagitis, liver disease (including but not limited to cirrhosis, hepatitis) .
  • IBD inflammatory bowel disease
  • intrahepatic bile duct injury acute pancreatitis
  • peptic ulcers gastric hyperacidity
  • dyspepsia gastroesophageal reflux disease
  • ulcerative colitis Crohn's disease
  • peptic ulceration gastritis
  • oesophagitis liver disease (including but not limited to cirrhosis, hepatitis) .
  • the compounds disclosed in this invention may have chiral centers, e.g., chiral carbon atoms. Such compounds thus include racemic mixtures of all stereoisomers, including enantiomers, diastereomers, and atropisomers.
  • the compounds disclosed in this invention include enriched or resolved optical isomers at any or all asymmetric, chiral atoms. In other words, the chiral centers apparent from the depictions are provided as the chiral isomers or racemic mixtures. Both racemic and diastereomeric mixtures, as well as the individual optical isomers isolated or synthesized, substantially free of their enantiomeric or diastereomeric partners, are all within the scope of the invention.
  • racemic mixtures can be separated into their individual, substantially optically pure isomers through well-known techniques such as, for example, the separation of diastereomeric salts formed with optically active adjuncts, e.g., acids or bases followed by conversion back to the optically active substances.
  • optically active adjuncts e.g., acids or bases followed by conversion back to the optically active substances.
  • the desired optical isomer can also be synthesized by means of stereospecific reactions, beginning with the appropriate stereoisomer of the desired starting material.
  • compounds of the present invention can be prepared beginning with commercially starting materials and utilizing general synthetic techniques and procedures known to those skilled in the art.
  • Chromatography supplies and equipment may be purchased from such companies as for example AnaLogix, Inc, Burlington, WI; Analytical Sales and Services, Inc., Pompton Plains, NJ; Teledyne Isco, Lincoln, NE; VWR International, Bridgeport, NJ; and Rainin Instrument Company, Woburn, MA.
  • Chemicals and reagents may be purchased from companies such as for example Aldrich, Argonaut Technologies, VWR and Lancaster, Invitrogen, Sigma, Promega, Solarbio, Cisbio, Signalchem, MCE. Consumables may be purchased from companies such as for example Corning, Labcyte, Greiner, Nunc. Instruments may be purchased from companies such as for example Labcyte, PerkinElmer, Eppendorf, ThermoFisher.
  • Prep-HPLC Waters 2767/2545/2489, Waters Xbridge C18 10um OBD 19*250mm
  • Mobile Phase A 0.1%NH 4 OH in water
  • Mobile Phase B CH 3 CN
  • Flow 20 mL/min
  • Column temp RT
  • the compounds disclosed in this invention may be deuterated and/or synthesized following the procedures (Exemplary conditions: D 2 O; Raney Ni as catalyst; heat) well known to those skilled in the art.
  • the compounds of formula I, formula II, and formula III can be separated with above method to obtain compounds with different configurations; *indicates exemplary chiral site.
  • Step1 A mixture of 2H-1, 3-benzodioxol-4-ol (1-1) (100 mg, 0.72 mmol) , 4- (trifluoromethyl) benzaldehyde (1-2) (126 mg, 0.72 mmol) and morpholine (0.08 mL, 0.87 mmol) was stirred at 80 °C for 2 hr.
  • the reaction mixture was purified by Prep-HPLC (Waters 2767/2545/2489, Waters Xbridge C18 10um OBD 19*250mm, Mobile Phase A: 0.1%NH 4 HCO 3 in water, Mobile Phase B: CH 3 CN, Flow: 20 mL/min, Column temp: RT) to afford the title compound 5-[(morpholin-4-yl) [4- (trifluoromethyl) phenyl] methyl] -2H-1, 3-benzodioxol-4-ol (99 mg, 0.26 mmol, 35.9%yield) as a white solid.
  • LC-MS (ESI) m/z 382.1 [M+H] + .
  • the compounds of Formula I, II, and III are MIF inhibitors, and are useful in the treatment of diseases mediated by MIF.
  • the biological activities of the compounds of can be determined by using any suitable assay for determining the activity of a candidate compound as a MIF inhibitor.
  • This assay measured MIF’s tautomerase activity in a cell-free system and was based on the determination of initial rates of the MIF-catalyzed conversion of the ketonic into the enolic tautomer of HPP. This was achieved by spectrophotometric quantification of the complex between borate and the product of the reaction (enolic HPP) .
  • the substrate was prepared by conversion of the enolic HPP into its ketonic form. To achieve this, 0.5 M pHPP in methanol was diluted 10-fold with 50 mM sodium acetate buffer at pH 6.0, and then the suspension was shaken for 24 h at room temperature in darkness, and finally stored at 4°C for not more than 1 week, with 5 min sonication being recommended before use.
  • Assays were performed in clear-bottom 96 -well polystyrene plates (Greiner Bio-One) .
  • 4 ⁇ L compound with a series of concentration and 100 ⁇ L of the enzyme solution containing 20 ng/mL of MIF in 0.5 M boric acid buffer was dispensed onto sample and negative control wells.
  • 100 ⁇ L of the same buffer without MIF was dispensed onto positive control wells.
  • the 96-well plate was incubated at RT for 30 minutes with shaking at 120 rpm.
  • the reaction was started by addition of 50 ⁇ L reaction substrate containing 1.8 mg/mL HPP in 0.5 M sodium acetate buffer.
  • the absorbance value at 330 nm was recorded once per minute, and read 10 times continuously with a microplate reader (Tecan) . Initial rates were calculated for each well as the slope of the absorbance progress curve.

Abstract

Provided herein are compounds of Formula I, II, and III, which can be used as macrophage migration inhibitory factor (MIF) inhibitors; methods for the production of the compounds; pharmaceutical compositions comprising the compounds; as well as uses and methods for treating a disease mediated by MIF by administering the compounds.

Description

COMPOUNDS AND THEIR USES AS MIF INHIBITORS Background of the Invention Technical Field
The present invention relates to novel compounds; methods for the production of the compounds of the invention; pharmaceutical compositions comprising the compounds of the invention; as well as uses and methods for treating a disease mediated by macrophage migration inhibitory factor (MIF) by administering the compounds of the invention. In particular, the compounds of the invention may be used as MIF inhibitors.
Description of Related Art
MIF was originally identified as a cytokine released from active T cells to inhibit the random movement of macrophages. It is secreted by epithelial cells, endothelial cells, lymphocytes, monocytes, and macrophages, and plays a role in innate and acquired immunity. In humans, the MIF gene is found on chromosome 22q11.2 and codes for an evolutionarily conserved protein consisting of 115 amino acids. The MIF protein has a molecular weight of 12.5 kD in its monomeric form. When the MIF protein is activated, MIF forms a trimer composed of three identical subunits, with each monomer containing two antiparallel α-helices that pack against a four-stranded β-sheet. MIF demonstrates chemokine-like function and was identified as a ligand of CD74 which forms complex with both CXCR2 and CXCR4. Binding of MIF to these receptors enhances monocyte recruitment and leukocyte chemotaxis. The inflammatory cascade relies on the activation of CXCR2 and CD74, suggesting that MIF operates via a functional CXCR2/CD74 complex.
MIF has various biological roles, with the most significant being inflammation and immunity. MIF counter-regulates the actions of glucocorticoids, which are natural steroid hormones produced by the adrenal glands during cellular stress that possess as anti-inflammatory effects. MIF may stimulate the expression of other cytokines involved in inflammation. Inflammation is needed for the survival of organisms, but when it is incorrectly regulated, it may contribute to tumorigenesis. MIF plays a role in both innate and adaptive immunity and is constitutively expressed by monocytes, macrophages, dendritic cells, B cells, neutrophils, eosinophils, mast cells, and basophils. It promotes the stimulation and proliferation of T cells in response to foreign agents and acts as a regulator of responses to infections by increasing the expression of TLR4. Activated T cells release MIF to inhibit glucocorticoid-mediated interleukin-2 and interferon-γ production. MIF is also reported to possess enzymatic activity, and it converts D-dopachrome in 5, 6-dihydroxy-2-carboxylic acid (DHICA) . Although identification of DHICA as a true biological MIF substrate sheds light on this mechanism of action, the role of MIF enzymatic activity is not fully understood.
MIF is a pluripotent and pleiotropic cytokine expressed in numerous human malignancies such as glioblastomas, lung cancer, breast cancer, gastric cancer, bladder cancer, and melanoma. MIF has been shown to contribute to many different forms of cancer in multiple studies. First, MIF is a regulator of the p53 signaling pathway and can physically interact with p53. MIF suppresses the activity of p53, which leads to the deregulation of the normal cell cycle. Since MIF functionally inactivates p53, cell cycle arrest and apoptosis do not occur. Second, MIF is involved in the phosphoinositide-3-kinase (PI3K) /Akt pathway, which plays a key role in the development of tumors. Activation of this pathway allows crucial cells to prevent apoptosis. Previous studies have shown that MIF and CD74 initiate Akt activation and when MIF is overexpressed, it causes crucial cells to progress through the cell cycle via the PI3K/Akt pathway. Third, MIF plays a role in angiogenesis. When MIF is highly expressed, vascular endothelial growth factor (VEGF) , hypoxia inducible factor 1 (HIF-1) , and other angiogenic factors are responsible for the  creation of new blood vessels. Forth, MIF leads to the metastasis of tumor cells by decreasing the expression of E-cadherin and increasing the expression of N-cadherin. The decreased expression of E-cadherin also promotes epithelial mesenchymal transition (EMT) and can lead to the establishment of secondary tumors. EMT is a process that modulate epithelial cells to acquire characteristics of mesenchymal cells, which in turn leads to invasion and metastasis. Fifth, MIF plays a role in the development of tumor immunosuppressive microenvironment via promoting the generation of myeloid derived suppressor cells (MDSCs) , rendering tumor cells to escape immune surveillance, and facilitating tumor growth and metastasis.
In addition to the oncology area, MIF is also a pleiotropic inflammatory cytokine with upstream regulatory roles in innate and adaptive immunity, and is implicated in the pathogenesis of autoimmune diseases including multiple sclerosis (MS) , rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) . MIF is significantly up-regulated in the serum of MS, RA and SLE patients and animal models. MIF inhibition has been shown to improve both ex vivo and in vivo features of the autoimmune diseases.
In addition to the oncology, autoimmune, and inflammation area, MIF is also involved in metabolic diseases, cardiovascular diseases, nervous system diseases, respiratory disorders, gastrointestinal disorders, and infections.
The important role of MIF in cancer development, inflammatory diseases, autoimmune diseases, metabolic diseases, cardiovascular diseases, nervous system diseases, respiratory disorders, gastrointestinal disorders, and infections suggests that targeted inhibition of MIF is a potential therapeutic approach for the diseases outlined above. One of the most important strategies targeting MIF is to develop small molecule inhibitors against MIF, which have demonstrated promising preclinical efficacy.
Summary of the Invention
The present invention provides novel compounds that function as MIF inhibitors.
In one aspect, the invention provides a compound of formula I,
Figure PCTCN2022113023-appb-000001
wherein Y 1 is O, S, or NH; the bond between Y 2 and Y 3 is a single bond or a double bond; when the bond is a single bond, Y 2 is CH 2, Y 3 is O; when the bond is a double bond, Y 2 and Y 3 independently is CH or N; R is H or Ac; 
Figure PCTCN2022113023-appb-000002
is optionally substituted with 0, 1, or 2 CN, NHR N, halogen, C 1-6 alkyl, C 1-6 haloalkyl, or C 3-6 cycloalkyl, wherein R N is H or COC 1-6 alkyl;
A is a 5-or 6-membered aryl or heteroaryl optionally substituted with 0, 1, or 2 substituents independently selected from the group consisting of halogen, C 1-6 alkyl, C 1-6 haloalkyl, OH, or C 1-6 alkoxy;
B is
Figure PCTCN2022113023-appb-000003
which is optionally deuterated, and is optionally substituted with 0, 1, or 2 C 1-6 alkyl, OH or C 1-6 alkoxy, wherein X is CH 2, or O.
In some embodiments, the compound is
Figure PCTCN2022113023-appb-000004
Wherein the other variables are defined as in formula I.
In some embodiments, 
Figure PCTCN2022113023-appb-000005
is
Figure PCTCN2022113023-appb-000006
optionally substituted with 0, 1, or 2 substituents independently selected from the group consisting of CN, NH 2, NHCOCH 3, F, methyl, trifluoromethyl, or cyclopropyl; 
Figure PCTCN2022113023-appb-000007
optionally substituted with 0 or 1 methyl; or
Figure PCTCN2022113023-appb-000008
Figure PCTCN2022113023-appb-000009
In some preferred embodiments, 
Figure PCTCN2022113023-appb-000010
is
Figure PCTCN2022113023-appb-000011
Figure PCTCN2022113023-appb-000012
In one embodiment, A is phenyl, pyridinyl, pyrimidinyl, pyridazinyl, imidazolyl, thiazolyl, or oxazolyl, which is optionally substituted with 0, 1, or 2 substituents independently selected from the group consisting of F, Cl, methyl, or trifluoromethyl.
In a preferred embodiment, A is
Figure PCTCN2022113023-appb-000013
Figure PCTCN2022113023-appb-000014
In a more preferred embodiment, B is
Figure PCTCN2022113023-appb-000015
which is optionally deuterated, and is optionally substituted with 0, 1, or 2 methyl.
In a most preferred embodiment, B is
Figure PCTCN2022113023-appb-000016
Figure PCTCN2022113023-appb-000017
In another embodiment, the compound is selected from
Figure PCTCN2022113023-appb-000018
Figure PCTCN2022113023-appb-000019
Figure PCTCN2022113023-appb-000020
Figure PCTCN2022113023-appb-000021
Figure PCTCN2022113023-appb-000022
Figure PCTCN2022113023-appb-000023
Figure PCTCN2022113023-appb-000024
Figure PCTCN2022113023-appb-000025
In another aspect, the invention provides a compound of formula II,
Figure PCTCN2022113023-appb-000026
wherein
Figure PCTCN2022113023-appb-000027
is optionally substituted with 0 or 1 CO 2C 1-6 alkyl, halogen, or C 1-6 haloalkyl; 
Figure PCTCN2022113023-appb-000028
is optionally substituted with 0 or 1 halogen, OH, C 1-6 alkyl, C 1-6 haloalkyl, or C 1-6 alkoxy; B’ is
Figure PCTCN2022113023-appb-000029
optionally substituted with 0, 1, or 2 C 1-6 alkyl, OH, or C 1-6 alkoxy.
In one embodiment, 
Figure PCTCN2022113023-appb-000030
is
Figure PCTCN2022113023-appb-000031
optionally substituted with CO 2Me, F, or trifluoromethyl; or
Figure PCTCN2022113023-appb-000032
is substituted with 0 or 1 F; B’ is
Figure PCTCN2022113023-appb-000033
optionally substituted with 0, 1, or 2 methyl.
In another embodiment, the compound is selected from
Figure PCTCN2022113023-appb-000034
In another aspect, the invention provides a compound of formula III,
Figure PCTCN2022113023-appb-000035
wherein X 1 is CH or N; 
Figure PCTCN2022113023-appb-000036
is optionally substituted with 0 or 1 NH 2, morpholino, halogen, or C 1- 6 alkyl;
A” is a 5-or 6-membered aryl or heteroaryl optionally substituted with 0, 1, or 2 substituents independently selected from the group consisting of OH, halogen, C 1-6 alkyl, C 1-6 haloalkyl, or C 1-6 alkoxy; or a 10-membered fused-ring heteroaryl;
B” is
Figure PCTCN2022113023-appb-000037
which is optionally substituted with 0, 1, or 2 substituents independently selected from the group consisting of OH, NHBoc, C 1-6 alkyl, or C 1-6 alkoxy, wherein X is CH 2, or O.
In one embodiment, 
Figure PCTCN2022113023-appb-000038
is
Figure PCTCN2022113023-appb-000039
which is optionally substituted with 0 or 1 NH 2, morpholino, F, Cl, or methyl.
In a preferred embodiment, A” is
phenyl optionally substituted with 0, 1, or 2 substituents independently selected from the group consisting of OH, F, trifluoromethyl; wherein the phenyl is not 4-monosubstituted by F;
pyridinyl optionally substituted with 0, 1, or 2 substituents independently selected from the group consisting of F, Cl, methyl, or trifluoromethyl; wherein when the pyridinyl is pyridin-2-yl, it is substituted; or
Figure PCTCN2022113023-appb-000040
pyrimidinyl, 
Figure PCTCN2022113023-appb-000041
In a more preferred embodiment, B” is
Figure PCTCN2022113023-appb-000042
optionally substituted with 0 or 1 NHBoc; 
Figure PCTCN2022113023-appb-000043
optionally substituted with 0, 1, or 2 methyl; 
Figure PCTCN2022113023-appb-000044
substituted with 0 or 1 methyl or methoxy; 
Figure PCTCN2022113023-appb-000045
substituted with 0 or 1 OH; or
Figure PCTCN2022113023-appb-000046
In another embodiment, the compound is selected from
Figure PCTCN2022113023-appb-000047
Figure PCTCN2022113023-appb-000048
Figure PCTCN2022113023-appb-000049
Figure PCTCN2022113023-appb-000050
Figure PCTCN2022113023-appb-000051
Figure PCTCN2022113023-appb-000052
In yet another aspect, the invention provides a pharmaceutical composition, comprising a compound of formula I, II, or III described above, or a pharmaceutically acceptable salt thereof; and a pharmaceutically acceptable carrier or excipient.
In yet another aspect, the invention provides the use of a compound of formula I, II, or III, or a pharmaceutical composition described above, for the treatment of a disease mediated by macrophage migration inhibitory factor (MIF) .
Preferably, the disease mediated by MIF is tumor; inflammatory disease; autoimmune disease; metabolic disease; cardiovascular disease; nervous system disease; respiratory disorder; gastrointestinal disorder; infection.
In yet another aspect, the invention provides the use of a compound of formula I, II, or III, or a pharmaceutical composition described above, for the production of a medicine for the treatment of a disease mediated by MIF.
Preferably, the disease mediated by MIF is tumor; inflammatory disease; autoimmune disease; metabolic disease; cardiovascular disease; nervous system disease; respiratory disorder; gastrointestinal disorder; infection.
In yet another aspect, the invention provides a method of treating a disease mediated by MIF in a subject in need thereof, comprising administering to the subject, a therapeutically effective amount of a compound of formula I, II, or III described above, or a pharmaceutically acceptable salt thereof.
Preferably, the disease mediated by MIF is tumor; inflammatory disease; autoimmune disease; metabolic disease; cardiovascular disease; nervous system disease; respiratory disorder; gastrointestinal disorder; infection.
In yet another aspect, the invention provides a method of inhibiting MIF expression, production and/or secretion in a subject in need thereof, the method comprising administering to the subject, a pharmaceutically effective amount of a compound of formula I, II, or III described above, or a pharmaceutically acceptable salt thereof.
In yet another aspect, the invention provides a method of inhibiting MIF tautomerase catalytic activity in a subject in need thereof, the method comprising administering to the subject, a pharmaceutically effective amount of a compound of formula I, II, or III described above, or a pharmaceutically acceptable salt thereof.
Detailed Description of the Invention
Definitions
In the invention, the following definitions are applicable:
The term “MIF inhibitor” includes any and all possible isomers, stereoisomers, enantiomers, diastereomers, tautomers, pharmaceutically acceptable salts, hydrates, solvates, and prodrugs of the MIF inhibitors described in this invention.
The articles “a” and “an” are used in this invention to refer to one or more than one (i.e., to at least one) of the grammatical object of the article. By way of example, “an element” means one element or more than one element.
The term “and/or” is used in this invention to mean either “and” or “or” unless indicated otherwise.
The term “C 1-6 alkyl” , alone or in combination with other groups, refers to straight-chained or branched alkyl group having 1 to 6 carbon atoms. Examples of a C 1-6 alkyl group include, but are not limited to, methyl, ethyl, propyl, butyl, pentyl, hexyl, isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, and neopentyl.
The term “C 3-6 cycloalkyl” refers to a cyclic hydrocarbon containing 3-6 carbon atoms. Examples of a cycloalkyl group include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. It is understood  that any of the substitutable hydrogens on a cycloalkyl can be substituted with halogen, C 1-C 3 alkyl, hydroxyl, alkoxy and cyano groups.
The term “C 1-6 alkoxy” refers to the group R′-O-, wherein R′is a C 1-6 alkyl. Examples of a C 1-6 alkoxy group include, but are not limited to, methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy, pentyloxy, isopentyloxy, neopentyloxy, tert-pentyloxy, and hexyloxy.
The term “halogen” or “halo” refers to fluoro, chloro, bromo or iodo. Preferred “halogen” groups are fluoro, chloro or bromo. More preferred “halogen” groups are fluoro, chloro. Most preferred “halogen” is fluoro.
The term “C 1-6 haloalkyl” refers to a C 1-6 alkyl group where at least one, probably all of the hydrogen atoms are replaced by halogen atoms. More preferred “C 1-6 haloalkyl” are C 1-6 perhaloalkyl, e.g., trifluoromethyl.
The term “aryl” , alone or in combination, means a carbocyclic aromatic system containing one, two or three rings wherein such rings may be attached together in a pendent manner or may be fused. The term “aryl” embraces aromatic radicals such as phenyl, naphthyl, anthracenyl, phenanthryl, and biphenyl. The aryl groups of the present invention can be optionally substituted with one, two, three, four, or five substituents independently selected from the groups as defined herein.
The term “heteroaryl” , alone or in combination, refers to an aromatic five-or six-membered ring, where at least one atom is selected from the group consisting of N, O, and S, and the remaining ring atoms are carbon. The five-membered rings have two double bonds, and the six-membered rings have three double bonds. The heteroaryl groups are connected to the parent molecular group through a substitutable carbon or nitrogen atom in the ring. The term “heteroaryl” also includes systems where a heteroaryl ring is fused to an aryl group, a heterocycle group, or an additional heteroaryl group. Heteroaryls are exemplified by benzothienyl, benzoxazolyl, benzofuranyl, benzimidazolyl, benzthiazolyl benzotriazolyl, cinnolinyl, furyl, imidazolyl, triazolyl, tetrazolyl, indazolyl, indolyl, isoxazolyl, isoquinolinyl, isothiazolyl, naphthyridinyl, oxadiazolyl, oxazolyl, isoxazolyl, purinyl, thiazolyl, isothiazolyl, thienopyridinyl, thienyl, thiadiazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, pyrazolyl, pyrrolyl, pyrido [2, 3-d] pyrimidinyl, pyrrolo [2, 3-b] pyridinyl, quinazolinyl, quinolinyl, thieno [2, 3-c] pyridinyl, tetrazolyl, triazinyl, and the like. The heteroaryl groups of the present invention can be optionally substituted with one, two, three, four, or five substituents independently selected from the groups as defined herein.
"Optional" or "optionally" means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where said event or circumstance occurs and instances in which it does not.
A "substituted" group includes embodiments in which a monoradical substituent is bound to a single atom of the substituted group (e.g., forming a branch) , and includes embodiments in which the substituent may be a diradical bridging group bound to two adjacent atoms of the substituted group, thereby forming a fused ring on the substituted group.
Where a given group (moiety) is described in this invention as being attached to a second group and the site of attachment is not explicit, the given group may be attached at any available site of the given group to any available site of the second group. In this regard, an "available site" is a site of the group at which a hydrogen of the group may be replaced with a substituent.
“Pharmaceutically acceptable salts” refers to those salts which retain the biological effectiveness and properties of the free bases and which are obtained by reaction with inorganic acids, for example, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, and phosphoric acid or organic acids such as sulfonic acid, carboxylic  acid, organic phosphoric acid, methanesulfonic acid, ethanesulfonic acid, toluenesulfonic acid, citric acid, fumaric acid, maleic acid, succinic acid, benzoic acid, salicylic acid, lactic acid, tartaric acid (e, (+) or (-) -tartaric acid or mixtures thereof) , amino acids (e.g., (+) or (-) -amino acids or mixtures thereof) , and the like. These salts can be prepared by methods known to those skilled in the art. "pharmaceutically acceptable salt" refers to those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response, and the like, and are commensurate with a reasonable benefit/risk ratio. Pharmaceutically acceptable salts are well known in the art. For example, S. M. Berge et al., describe pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences, 1977, 66, 1-19, incorporated herein by reference.
The term “carrier” , as used in this invention, encompasses carriers, excipients, and diluents, and means a material, composition, or vehicle, such as a liquid or solid filler, diluent, excipient, solvent, or encapsulating material, involved in carrying or transporting a pharmaceutical agent from one organ, or portion of the body, to another organ, or portion of the body.
The term "effective amount" means an amount of a compound according to the invention which, in the context of which it is administered or used, is sufficient to achieve the desired effect or result. Depending on the context, the term effective amount may include or be synonymous with a pharmaceutically effective amount or a therapeutically effective amount. An effective amount can be determined by methods known to those of skill in the art.
A compound of a given formula (e.g., compound of Formula I, II, or III) is intended to encompass the compounds of the invention, and the pharmaceutically acceptable salts, pharmaceutically acceptable esters, isomers, tautomers, solvates, isotopes, hydrates, polymorphs, and prodrugs of such compounds. Additionally, the compounds of the invention may possess one or more asymmetric centers, and can be produced as a racemic mixture or as individual enantiomers or diastereoisomers. The number of stereoisomers present in any given compound of a given formula depends upon the number of asymmetric centers present (there are 2" stereoisomers possible where n is the number of asymmetric centers) . The individual stereoisomers may be obtained by resolving a racemic or non-racemic mixture of an intermediate at some appropriate stage of the synthesis or by resolution of the compound by conventional means.
The individual stereoisomers (including individual enantiomers and diastereoisomers) as well as racemic and non-racemic mixtures of stereoisomers are encompassed within the scope of the present invention, all of which are intended to be depicted by the structures of this specification unless otherwise specifically indicated.
"Isomers" are different compounds that have the same molecular formula. Isomers include stereoisomers, enantiomers and diastereomers.
"Stereoisomers" are isomers that differ only in the way the atoms are arranged in space.
"Enantiomers" are a pair of stereoisomers that are non-superimposable mirror images of each other. A 1: 1 mixture of a pair of enantiomers is a "racemic" mixture. The term " (±) " is used to designate a racemic mixture where appropriate.
"Diastereoisomers" are stereoisomers that have at least two asymmetric atoms, but which are not mirror-images of each other.
Some of the compounds exist as tautomeric isomers. Tautomeric isomers are in equilibrium with one another. For example, amide containing compounds may exist in equilibrium with imidic acid tautomers. Regardless  of which tautomer is shown, and regardless of the nature of the equilibrium among tautomers, the compounds are understood by one of ordinary skill in the art to comprise both amide and imidic acid tautomers. Thus, the amide containing compounds are understood to include their imidic acid tautomers. Likewise, the imidic acid containing compounds are understood to include their amide tautomers.
The term "polymorph" refers to different crystal structures of a crystalline compound. The different polymorphs may result from differences in crystal packing (packing polymorphism) or differences in packing between different conformers of the same molecule (conformational polymorphism) .
The term "solvate" refers to a complex formed by the combining of a compound of the present invention and a solvent.
The term "hydrate" refers to the complex formed by the combining of a compound of the present invention and water.
The term "prodrug" refers to compounds of the present invention that include chemical groups which, in vivo, can be converted and/or can be split off from the remainder of the molecule to provide for the active drug, a pharmaceutically acceptable salt thereof or a biologically active metabolite thereof.
A “subject” is a mammal, e.g., a human, mouse, rat, guinea pig, dog, cat, horse, cow, pig, or non-human primate, such as a monkey, chimpanzee, baboon or rhesus, and the terms “subject” and “patient” are used interchangeably in this invention.
The term "inhibition" , “inhibit” or “inhibiting” indicates a significant decrease in the baseline activity of a biological activity or process.
The term “disease” is used in this invention to mean, and is used interchangeably with, the terms disorder, condition, or illness, unless otherwise indicated.
The term “tumor” , as used in this invention, refers to an abnormal growth of tissue. A tumor may be benign or malignant. Generally, a malignant tumor is referred to as a cancer. Cancers differ from benign tumors in the ability of malignant cells to invade other tissues, either by direct growth into adjacent tissue through invasion or by implantation into distant sites by metastasis (i.e., transport through the blood or lymphatic system) .
The term “autoimmune disease” , as used in this invention, refers to a disease which arises from an inappropriate immune response of the body against substances and tissues normally present in the body (autoimmunity) of a patient. The symptoms of autoimmune diseases can range from fatigue and mild rashes to rare, serious warning signs, like seizures. Preferably, the autoimmune disease is selected from the group consisting of rheumatoid arthritis (RA) , multiple sclerosis (MS) , sarcoidosis, psoriasis, Crohn's disease, systemic lupus erythematosus (SLE) , and diabetes mellitus type 1, and more preferably the autoimmune disease is selected from the group consisting of rheumatoid arthritis (RA) , multiple sclerosis (MS) , and systemic lupus erythematosus (SLE) .
The term “inflammatory disease” , as used in this invention, refers to a disease caused by, resulting from, or resulting in inflammation. The term “inflammatory disease” may also refer to a dysregulated inflammatory reaction that causes an exaggerated response by macrophages, granulocytes, and/or T-lymphocytes leading to abnormal tissue damage and/or cell death. An inflammatory disease can be either an acute or chronic inflammatory condition and can result from infections or non-infectious causes. Inflammatory disease preferably is chronic obstructive pulmonary disease (COPD) , pneumonia.
The term “metabolic disease” , as used in this invention, refers to a disease which is caused or characterized by an abnormal metabolism, i.e., the chemical changes in living cells by which energy is provided for vital processes  and activities in a subject. Examples of metabolic diseases include obesity, diabetes, nonalcoholic steatohepatitis (NASH) , diabetic nephropahy (DN) , hyperphagia, endocrine abnormalities, and triglyceride storage disease.
The term “cardiovascular disease” , as used in this invention, refers to a disease of the heart and blood vessels, and includes diseases of the arteries, veins, arterioles, venules, and capillaries. Non-limiting examples of cardiovascular diseases include atherosclerosis (AS) , myocardial infarction, coronary artery disease, stroke, heart failure, myocarditis, heart disease, cerebrovascular disease, and peripheral artery disease.
The term “nervous system disease” , as used in this invention, refers to medical conditions affecting the nervous system. This category encompasses central nervous and peripheral nervous diseases or disorders, and non-limiting examples of nervous system diseases includes epilepsy, neuropathic pain, Parkinson's disease (PD) , amyotrophic lateral sclerosis (ALS) , dementia, and Alzheimer's disease (AD) .
The term “respiratory disorder” , as used in this invention, refers to any disease related to respiration or the respiratory system and includes but is not limited to asthma, Idiopathic pulmonary fibrosis (IPF) , pulmonary hypertension, emphysema, bronchitis, sinusitis, rhinitis, airflow obstruction, bronchoconstriction, and acute respiratory distress syndrome (ARDS) .
The term “gastrointestinal disorder” , as used in this invention, refers to any disease of the upper gastrointestinal tract of a subject including, for example, inflammatory bowel disease (IBD) , intrahepatic bile duct injury, acute pancreatitis, peptic ulcers, gastric hyperacidity, dyspepsia, and gastroesophageal reflux disease.
The term “infection” , as used in this invention, refers to the invasion by, multiplication and/or presence of a virus in a cell or a subject. In one embodiment, an infection is an "active" infection, i.e., one in which the virus is replicating in a cell or a subject. An infection may also be a latent infection, i.e., one in which the virus is not replicating. Non-limiting examples of infection include protozoal diseases, parasitosis, and sepsis.
The term “treating” , with regard to a subject, refers to improving at least one symptom of the subject's disease. Treating can be curing, improving, or at least partially ameliorating the disease.
The term “administer” , “administering” , or “administration” , as used in this invention, refers to either directly administering a compound or pharmaceutically acceptable salt of the compound or a composition to a subject, or administering a prodrug derivative or analog of the compound or pharmaceutically acceptable salt of the compound or composition to the subject, which can form an equivalent amount of active compound within the subject's body.
Pharmaceutical Compositions and Administration
The invention also includes pharmaceutical compositions useful for treating a disease mediated by MIF, or for inhibiting MIF expression, production and/or secretion, or for inhibiting MIF tautomerase catalytic activity, or more than one of these activities. The compositions can be suitable for internal use and comprise an effective amount of compounds of the invention as MIF inhibitors and a pharmaceutically acceptable carrier. The MIF inhibitors are especially useful in that they demonstrate very low systemic toxicity or no systemic toxicity.
The MIF inhibitors can each be administered in amounts that are sufficient to treat or prevent but are not limited to cardiovascular and cerebrovascular diseases, autoimmune diseases and inflammatory disorders, fibrotic diseases, metabolic disorders, and tumors or prevent the development thereof in subjects.
Administration of the MIF inhibitors can be accomplished via any mode of administration for therapeutic agents. These modes include systemic or local administration such as oral, nasal, parenteral (intravenous) , intramuscular, intrathecal, intra-vitreal, transdermal, subcutaneous, vaginal, buccal, rectal, topical administration modes or as a drug-eluting stent.
Depending on the intended mode of administration, the compositions can be in solid, semi-solid or liquid dosage form, such as injectables, tablets, suppositories, pills, time-release capsules, elixirs, tinctures, emulsions, syrups, powders, liquids, suspensions, or the like, sometimes in unit dosages and consistent with conventional pharmaceutical practices. Likewise, they can also be administered in intravenous (both bolus and infusion) , intraperitoneal, intrathecal, intra-vitreal injection, subcutaneous or intramuscular form, all using forms well known to those skilled in the pharmaceutical arts.
Illustrative pharmaceutical compositions are tablets and gelatin capsules comprising a MIF inhibitor and a pharmaceutically acceptable carrier, such as: a) a diluent, e.g., purified water, triglyceride oils, such as hydrogenated or partially hydrogenated vegetable oil, or mixtures thereof, corn oil, olive oil, sunflower oil, safflower oil, fish oils, such as EPA or DHA, or their esters or triglycerides or mixtures thereof, omega-3 fatty acids or derivatives thereof, lactose, dextrose, sucrose, mannitol, sorbitol, cellulose, sodium, saccharin, glucose and/or glycine; b) a lubricant, e.g., silica, talcum, stearic acid, its magnesium or calcium salt, sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride and/or polyethylene glycol; for tablets also; c) a binder, e.g., magnesium aluminum silicate, starch paste, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose, magnesium carbonate, natural sugars such as glucose or beta-lactose, corn sweeteners, natural and synthetic gums such as acacia, tragacanth or sodium alginate, waxes and/or polyvinylpyrrolidone, if desired; d) a disintegrant, e.g., starches, agar, methyl cellulose, bentonite, xanthan gum, alginic acid or its sodium salt, or effervescent mixtures; e) absorbent, colorant, flavorant and sweetener; f) an emulsifier or dispersing agent, such as Tween 80, Labrasol, HPMC, DOSS, caproyl 909, labrafac, labrafil, peceol, transcutol, capmul MCM, capmul PG-12, captex 355, gelucire, vitamin E TGPS or other acceptable emulsifier; and/or g) an agent that enhances absorption of the compound such as cyclodextrin, hydroxypropyl-cyclodextrin, PEG400, PEG200.
Liquid, particularly injectable, compositions can, for example, be prepared by dissolution, dispersion, etc. For example, the MIF inhibitor is dissolved in or mixed with a pharmaceutically acceptable solvent such as, for example, water, saline, aqueous dextrose, glycerol, ethanol, and the like, to thereby form an injectable isotonic solution or suspension. Proteins such as albumin, chylomicron particles, or serum proteins can be used to solubilize the MIF inhibitors.
The MIF inhibitors can be also formulated as a suppository that can be prepared from fatty emulsions or suspensions; using polyalkylene glycols such as propylene glycol, as the carrier.
In further embodiments, the pharmaceutical formulations described in this invention include, but are not limited to, aqueous liquid dispersions, self-emulsifying dispersions, solid solutions, liposomal dispersions, aerosols, solid dosage forms, powders, immediate release formulations, controlled release formulations, fast melt formulations, delayed release formulations, extended release formulations, pulsatile release formulations, multiparticulate formulations, and mixed immediate and controlled release formulations
The MIF inhibitors can also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles and multilamellar vesicles. Liposomes can be formed from a variety of phospholipids, containing cholesterol, stearylamine or phosphatidylcholines. In some embodiments, a film of lipid components is hydrated with an aqueous solution of drug to a form lipid layer encapsulating the drug, as described in United States Patent No. 5, 262, 564.
MIF inhibitors can also be delivered by the use of monoclonal antibodies as individual carriers to which the MIF inhibitors are coupled. The MIF inhibitors can also be coupled with soluble polymers as targetable drug  carriers. Such polymers can include polyvinylpyrrolidone, pyran copolymer, polyhydroxypropylmethacrylamide-phenol, polyhydroxyethylaspanamidephenol, or polyethyleneoxidepolylysine substituted with palmitoyl residues. Furthermore, the MIF inhibitors can be coupled to a class of biodegradable polymers useful in achieving controlled release of a drug, for example, polylactic acid, polyepsilon caprolactone, polyhydroxy butyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacrylates and cross-linked or amphipathic block copolymers of hydrogels. In one embodiment, MIF inhibitors are not covalently bound to a polymer, e.g., a polycarboxylic acid polymer, or a polyacrylate.
Parenteral injectable administration is generally used for subcutaneous, intramuscular or intravenous injections and infusions. Injectables can be prepared in conventional forms, either as liquid solutions or suspensions or solid forms suitable for dissolving in liquid prior to injection.
Compositions can be prepared according to conventional mixing, granulating or coating methods, respectively, and the present pharmaceutical compositions can contain an appropriate amount of the MIF inhibitor.
The dosage regimen utilizing the MIF inhibitor is selected in accordance with a variety of factors including type, species, age, weight, sex, race, diet, and medical condition of the patient; the severity of the condition to be treated; the route of administration; the renal or hepatic function of the patient; and the MIF inhibitor employed. A physician or veterinarian of ordinary skill in the art can readily determine and prescribe the effective amount of the drug required to prevent, counter, or arrest the progress of the condition.
For example, appropriate dosages of the MIF inhibitors can be determined as set forth in Goodman, L. S.; Gilman, A. The Pharmacological Basis of Therapeutics, 5th ed.; MacMillan: New York, 1975, pp. 201-226.
MIF inhibitors can be administered at an appropriate dosing frequency. Furthermore, MIF inhibitors can be administered using administration routes well known to those of ordinary skill in the art.
Uses of Compounds and Compositions Thereof
The compounds as MIF inhibitors and compositions described above can be used to treat or prevent MIF-associated diseases. These diseases include, but are not limited to, autoimmune diseases, tumors, chronic or acute inflammatory diseases, cardiovascular diseases, respiratory disorders, nervous system diseases, infections, metabolic diseases, and gastrointestinal disorders. Examples of such diseases or conditions include:
○ rheumatic diseases (including but not limited to rheumatoid arthritis, osteoarthritis, psoriatic arthritis) spondyloarthropathies (including but not limited to ankylosing spondylitis, reactive arthritis, Reiter's syndrome) , crystal arthropathies (including but not limited to gout, pseudogout, calcium pyrophosphate deposition disease) , Lyme disease, polymyalgia rheumatica;
○ connective tissue diseases (Including but not limited to systemic lupus erythematosus, systemic sclerosis, polymyositis, dermatomyositis, 
Figure PCTCN2022113023-appb-000053
syndrome) ;
○ vasculitides (including but not limited to polyarteritis nodosa, Wegener's granulomatosis, Churg-Strauss syndrome) ;
○ inflammatory diseases including chronic obstructive pulmonary disease (COPD) , pneumonia, consequences of trauma or ischaemia;
○ sarcoidosis;
○ vascular diseases including atherosclerotic vascular disease and infarction, atherosclerosis, and vascular occlusive disease (including but not limited to atherosclerosis, ischaemic heart disease, myocardial infarction, stoke, peripheral vascular disease) , and vascular stent restenosis;
○ cardiovascular disease, including atherosclerosis (AS) , myocardial infarction, coronary artery disease, stroke, heart failure, myocarditis, heart disease, cerebrovascular disease, and peripheral artery disease;
○ autoimmune diseases (including but not limited to diabetes mellitus, thyroiditis, myasthenia gravis, sclerosing cholangitis, primary biliary cirrhosis, rheumatoid arthritis (RA) , multiple sclerosis (MS) , systemic lupus erythematosus (SLE) ) ;
○ pulmonary diseases (including but not limited to diffuse interstitial lung diseases, pneumoconioses, fibrosing alveolitis, asthma, bronchitis, bronchiectasis, chronic obstructive pulmonary disease, adult respiratory distress syndrome) ;
○ respiratory disorders, including but not limited to asthma, Idiopathic pulmonary fibrosis (IPF) , pulmonary hypertension, emphysema, bronchitis, sinusitis, rhinitis, airflow obstruction, bronchoconstriction, acute respiratory distress syndrome (ARDS) ;
○ tumors whether primary or metastatic, including but not limited to, glioblastomas, prostate cancer, colon cancer, lymphoma, lung cancer, gastric cancer, bladder cancer, melanoma, multiple myeloma, breast cancer, liver cancer, renal cancer, stomach cancer, leukaemia, cervical cancer and metastatic cancer;
○ renal diseases including glomerulonephritis, interstitial nephritis;
○ disorders of the hypothalamic-pituitary-adrenal axis;
○ nervous system diseases including epilepsy, neuropathic pain, Parkinson's disease (PD) , amyotrophic lateral sclerosis (ALS) , dementia, and Alzheimer's disease (AD) ;
○ diseases characterised by modified angiogenesis (eg diabetic retinopathy, rheumatoid arthritis, cancer) , endometrial function (menstruation, implantation, endometriosis) ;
○ infection including protozoal diseases, parasitosis, and sepsis;
○ complications of infective disorders including endotoxic (septic) shock, exotoxic (septic) shock, infective (true septic) shock, malarial complications, other complications of infection, pelvic inflammatory disease;
○ metabolic diseases including obesity, diabetes, nonalcoholic steatohepatitis (NASH) , diabetic nephropahy (DN) , hyperphagia, endocrine abnormalities, and triglyceride storage disease;
○ transplant rejection, graft-versus-host disease;
○ allergic diseases including allergies, atopic diseases, allergic rhinitis;
○ bone diseases (eg osteoporosis, Paget's disease) ;
○ skin diseases including psoriasis, atopic dermatitis, UV (B) -induced dermal cell activation (eg sunburn, skin cancer) ;
○ pain, testicular dysfunctions and wound healing;
○ gastrointestinal diseases including inflammatory bowel disease (IBD) , intrahepatic bile duct injury, acute pancreatitis, peptic ulcers, gastric hyperacidity, dyspepsia, gastroesophageal reflux disease, ulcerative colitis, Crohn's disease, peptic ulceration, gastritis, oesophagitis, liver disease (including but not limited to cirrhosis, hepatitis) .
The compounds disclosed in this invention may have chiral centers, e.g., chiral carbon atoms. Such compounds thus include racemic mixtures of all stereoisomers, including enantiomers, diastereomers, and  atropisomers. In addition, the compounds disclosed in this invention include enriched or resolved optical isomers at any or all asymmetric, chiral atoms. In other words, the chiral centers apparent from the depictions are provided as the chiral isomers or racemic mixtures. Both racemic and diastereomeric mixtures, as well as the individual optical isomers isolated or synthesized, substantially free of their enantiomeric or diastereomeric partners, are all within the scope of the invention. The racemic mixtures can be separated into their individual, substantially optically pure isomers through well-known techniques such as, for example, the separation of diastereomeric salts formed with optically active adjuncts, e.g., acids or bases followed by conversion back to the optically active substances. The desired optical isomer can also be synthesized by means of stereospecific reactions, beginning with the appropriate stereoisomer of the desired starting material.
Examples
The present invention can be better understood according to the following examples. However, it would be easy for a person skilled in the art to understand that the contents described in the examples are merely intended to illustrate the present invention rather than limit the present invention described in detail in the claims.
Unless otherwise indicated, compounds of the present invention can be prepared beginning with commercially starting materials and utilizing general synthetic techniques and procedures known to those skilled in the art. Chromatography supplies and equipment may be purchased from such companies as for example AnaLogix, Inc, Burlington, WI; Analytical Sales and Services, Inc., Pompton Plains, NJ; Teledyne Isco, Lincoln, NE; VWR International, Bridgeport, NJ; and Rainin Instrument Company, Woburn, MA. Chemicals and reagents may be purchased from companies such as for example Aldrich, Argonaut Technologies, VWR and Lancaster, Invitrogen, Sigma, Promega, Solarbio, Cisbio, Signalchem, MCE. Consumables may be purchased from companies such as for example Corning, Labcyte, Greiner, Nunc. Instruments may be purchased from companies such as for example Labcyte, PerkinElmer, Eppendorf, ThermoFisher.
Example 1
Figure PCTCN2022113023-appb-000054
A mixture of quinolin-8-ol (200 mg, 1.38 mmol) , morpholine (0.13 mL, 1.52 mmol) and 3-fluoropyridine-2-carbaldehyde (compound A1) (172 mg, 1.38 mmol) was stirred at 80℃ overnight. The resulting mixture was purified by silica gel column chromatography [PE (2%of TEA) /EA = 1/0 to 3/1] to afford the title compound 10 (66.01 mg, 0.19 mmol, 13.7%yield) as a yellow solid.  1H NMR (400 MHz, DMSO-d 6) δ 10.05 (s, 1H) , 8.80 (dd, J = 4.2, 1.6 Hz, 1H) , 8.41 (d, J = 4.6 Hz, 1H) , 8.27 (dd, J = 8.3, 1.6 Hz, 1H) , 7.96 (d, J = 8.6 Hz, 1H) , 7.68 (ddd, J = 10.0, 8.4, 1.2 Hz, 1H) , 7.52 (dd, J = 8.3, 4.2 Hz, 1H) , 7.41 -7.31 (m, 1H) , 5.48 (d, J = 1.3 Hz, 1H) , 3.59 (t, J = 4.5 Hz, 2H) , 2.48 -2.41 (m, 1H) , 2.34 -2.25 (m, 1H) . LC-MS (ESI) : m/z 340.1 [M+H]  +.
The compounds below were synthesized following the procedures described in Example 1.
Figure PCTCN2022113023-appb-000055
Figure PCTCN2022113023-appb-000056
Figure PCTCN2022113023-appb-000057
Figure PCTCN2022113023-appb-000058
Figure PCTCN2022113023-appb-000059
Figure PCTCN2022113023-appb-000060
Example 2
Figure PCTCN2022113023-appb-000061
To a mixture of compound C1 (200 mg, 1.32 mmol) in EtOH (1 mL) were added morpholine (0.14 mL, 1.59 mmol) and compound A2 (0.14 mL, 1.32 mmol) , and the reaction mixture was stirred at 85℃ overnight. The reaction mixture was purified by alkalinity silica gel column chromatography (PE/EA/TEA = 1/0/0.002 to 3/1/0.08) to afford a crude product, which was purified by Prep-HPLC (Waters 2767/2545/2489, Waters Xbridge C18 10um OBD 19*250mm, Mobile Phase A: 0.1%NH 4OH in water, Mobile Phase B: CH 3CN, Flow: 20 mL/min, Column temp: RT) to afford the title compound 20 (21.2 mg, 0.05 mmol, 4.10%yield) as a white solid.  1H NMR (400 MHz, DMSO-d 6) δ 9.23 (s, 1H) , 7.62 -7.56 (m, 1H) , 7.52 -7.49 (m, 1H) , 7.43 -7.39 (m, 1H) , 7.30 -7.24 (m, 1H) , 7.20 -7.11 (m, 2H) , 5.22 (s, 1H) , 3.62 (t, J = 4.5 Hz, 4H) , 2.45 -2.34 (m, 4H) . LC-MS (ESI) : m/z 345.1 [M+H]  +.
The compounds below were synthesized following the procedures described in Example 2.
Figure PCTCN2022113023-appb-000062
Figure PCTCN2022113023-appb-000063
Example 3
Figure PCTCN2022113023-appb-000064
To a mixture of compound C1 (200 mg, 1.32 mmol) in EtOH (1 mL) were added compound A1 (165 mg, 1.32 mmol) and morpholine (0.14 mL, 1.59 mmol) , and the reaction mixture was stirred at 80℃ for overnight. The reaction mixture was purified by alkalinity silica gel column chromatography (DCM/MeOH/TEA = 1/0/0.002 to 50/1/0.1) to afford a crude product, which was slurried with EA/PE (1/1, 2 mL) to afford the title compound 39 (41.4 mg, 0.11 mmol, 8.10%yield) as a white solid.  1H NMR (400 MHz, DMSO-d 6) δ 11.00 (s, 1H) , 9.20 (s, 1H) , 8.43 (d, J = 4.5 Hz, 1H) , 7.71 (dd, J = 13.7, 4.9 Hz, 1H) , 7.51 (q, J = 8.3 Hz, 2H) , 7.38 (dt, J = 8.5, 4.3 Hz, 1H) , 5.30 (s, 1H) , 3.66 -3.58 (m, 4H) , 2.50 -2.43 (m, 2H) , 2.39 -2.30 (m, 2H) . LC-MS (ESI) : m/z 346.1 [M+H]  +.
The compounds below were synthesized following the procedures described in Example 3.
Figure PCTCN2022113023-appb-000065
Figure PCTCN2022113023-appb-000066
Figure PCTCN2022113023-appb-000067
Example 4
Figure PCTCN2022113023-appb-000068
A mixture of compound C2 (200 mg, 1.21 mmol) , compound A1 (151 mg, 1.21 mmol) , morpholine (0.12 mL, 1.33 mmol) and EtOH (2 mL) was stirred at 80℃ overnight. The resulting mixture was purified by prep-HPLC (Alkaline method: Waters 2767/2545/2489, Waters Xbridge C18 10um OBD 19*250 mm, Mobile Phase A: 0.1%NH 4OH in water, Mobile Phase B: CH 3CN, Flow: 20 mL/min, Column temp: RT) to afford compound 56 (22.3 mg, 0.06 mmol, 5.1%yield) as a white solid.  1H NMR (400 MHz, DMSO-d 6) δ 10.82 (s, 1H) , 8.43 (d, J = 4.6 Hz, 1H) , 7.71 (ddd, J = 9.9, 8.4, 1.2 Hz, 1H) , 7.42 -7.34 (m, 3H) , 5.26 (d, J = 1.7 Hz, 1H) , 3.61 (t, J = 4.6 Hz, 4H) , 2.76 (d, J = 7.0 Hz, 3H) , 2.49 -2.43 (m, 2H) , 2.37 -2.31 (m, 2H) . LC-MS (ESI) : m/z 360.1 [M+H]  +.
The compounds below were synthesized following the procedures described in Example 4.
Figure PCTCN2022113023-appb-000069
Figure PCTCN2022113023-appb-000070
Example 5
Step 1:
Figure PCTCN2022113023-appb-000071
To a solution of compound 61-1 (3.00 g, 21.2 mmol) in IPA (20 mL) at 0℃ were added KSCN (3.10 g, 31.8 mmol) and TFA (3.96 mL, 53.1 mmol) , and the reaction was stirred at 80℃ for 18 h. The reaction mixture was cooled to 0℃, then water (4 mL) was added. The resulting mixture was stirred for 1 h, then concentrated under reduced pressure. The residue was purified by silica gel column chromatography (PE/EA = 1/0 to 1/1) to afford crude compound 61-2 (3.00 g, 14.9 mmol, 70.5%yield) as a yellow solid. LC-MS (ESI) : m/z 201.1 [M+H]  +.
Step 2:
Figure PCTCN2022113023-appb-000072
To a solution of compound 61-2 (3.00 g, 14.9 mmol) in CHCl 3 (30 mL) at 5℃ was added Br 2 (0.77 mL, 14.9 mmol) dropwise. The reaction was stirred at this temperature for 1 hr. The reaction mixture was heated to 70℃for 3 hr, then cooled to rt and stirred at this temperature for 18 h. The resulting mixture was concentrated in vacuo. The residue was diluted with DCM (50 mL) and saturated NaHCO 3 solution (100 mL) . The organic layer was separated, washed with brine (50 mL) , and concentrated in vacuo. The residue was purified by silica gel column chromatography eluting (PE/EA = 1/0 to 1/1) to afford the title compound 61-3 (1.60 g, 8.07 mmol, 53.9%yield) as a brown solid. LC-MS (ESI) : m/z 199.1 [M+H]  +.
Step 3:
Figure PCTCN2022113023-appb-000073
To a solution of compound 61-3 (1.60 g, 8.07 mmol) in dioxane (20 mL) was added isoamyl nitrite (0.070 mL, 0.50 mmol) . The reaction mixture was stirred at 80℃ for 2 hr. The resulting mixture was concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/DCM =1/0 to 0: 1) to afford the title compound 61-4 (1.30 g, 5.39 mmol, 66.8%yield) as a yellow solid. LC-MS (ESI) : m/z 184.1 [M+H]  +.
Step 4:
Figure PCTCN2022113023-appb-000074
To a mixture of compound 61-4 (1.30 g, 7.09 mmol) in DCM (20 mL) at 5℃ was added BBr 3 (2.01 mL, 21.3 mmol) dropwise. The reaction was stirred at room temperature for 18 h. The resulting mixture was diluted with brine (40 mL) and DCM (20 mL) . The aqueous layer was adjusted to pH 8-9 with aqueous NaOH (1.0 M) . The organic layer was separated, washed with further brine (40 mL) , and concentrated in vacuo to afford the title compound C3 (1.00 g, 5.92 mmol, 83.5%yield) as a yellow solid. LC-MS (ESI) : m/z 170.2 [M+H]  +.
Step 5:
Figure PCTCN2022113023-appb-000075
A mixture of compound C3 (300 mg, 1.33 mmol) , compound A1 (166.38 mg, 1.33 mmol) , morpholine (0.14 mL, 1.59 mmol) and EtOH (1 mL) was stirred at 80℃ for 18 h. The reaction mixture was then purified by Prep-HPLC (Waters 2767/2545/2489, Waters Xbridge C18 10um OBD 19*250mm, Mobile Phase A: 0.1%CH 3H 2O in water, Mobile Phase B: CH 3CN, Flow: 20 mL/min, Column temp: RT) to afford the title compound 61 (91.62 mg, 0.252 mmol, 19.0%yield) as a yellow solid.  1H NMR (400 MHz, DMSO-d 6) δ 9.30 (s, 1H) , 9.17 -8.71 (m, 1H) , 8.43 (d, J = 4.6 Hz, 1H) , 7.76 -7.68 (m, 1H) , 7.54 (d, J = 10.4 Hz, 1H) , 7.38 (dt, J = 8.5, 4.3 Hz, 1H) , 5.36 (s, 1H) , 3.60 (t, J = 4.5 Hz, 4H) , 2.50 -2.39 (m, 2H) , 2.34 -2.26 (m, 2H) . LC-MS (ESI) : m/z 364.1 [M+H]  +.
The compounds below were synthesized following the procedures described in Example 5.
Figure PCTCN2022113023-appb-000076
Figure PCTCN2022113023-appb-000077
The compounds disclosed in this invention may be deuterated and/or synthesized following the procedures (Exemplary conditions: D 2O; Raney Ni as catalyst; heat) well known to those skilled in the art. In addition, the compounds disclosed in this invention may be purified by Chiral Prep-HPLC (Exemplary conditions: System: Waters SFC 80; Column: 
Figure PCTCN2022113023-appb-000078
Column size: 250*25 mm 10 μm; Mobile Phase A: Supercritical CO 2; Mobile Phase B: MEOH (+NH 3) ; A: B=50: 50; Wavelength: 214 nm ; Flow: 70 g/min ; Column temp: RT; Back Pressure: 100 bar; Cycle time: 15.0 min; Solvent: MeOH : redistilled grade, Supercritical CO 2 : Food grade) to afford compounds with different configurations. For example, the compounds of
Figure PCTCN2022113023-appb-000079
formula I, 
Figure PCTCN2022113023-appb-000080
formula II, and
Figure PCTCN2022113023-appb-000081
formula III, can be separated with above method to obtain compounds with different configurations; *indicates exemplary chiral site.
Example 6
5- [ (morpholin-4-yl) [4- (trifluoromethyl) phenyl] methyl] -2H-1, 3-benzodioxol-4-ol
Figure PCTCN2022113023-appb-000082
Step1: A mixture of 2H-1, 3-benzodioxol-4-ol (1-1) (100 mg, 0.72 mmol) , 4- (trifluoromethyl) benzaldehyde (1-2) (126 mg, 0.72 mmol) and morpholine (0.08 mL, 0.87 mmol) was stirred at 80 ℃ for 2 hr. The reaction mixture was purified by Prep-HPLC (Waters 2767/2545/2489, Waters Xbridge C18 10um OBD 19*250mm, Mobile Phase A: 0.1%NH 4HCO 3 in water, Mobile Phase B: CH 3CN, Flow: 20 mL/min, Column temp: RT) to afford the title compound 5-[(morpholin-4-yl) [4- (trifluoromethyl) phenyl] methyl] -2H-1, 3-benzodioxol-4-ol (99 mg, 0.26 mmol, 35.9%yield) as a white solid. LC-MS (ESI) : m/z 382.1 [M+H]  +1H NMR (400 MHz, DMSO-d6) δ 10.64 (s, 1H) , 7.66 (dd, J = 19.0, 8.2 Hz, 4H) , 6.75 (d, J = 8.1 Hz, 1H) , 6.40 (d, J = 8.1 Hz, 1H) , 5.93 (d, J = 2.6 Hz, 2H) , 4.75 (s, 1H) , 3.68 –3.56 (m, 4H) , 2.48 –2.38 (m, 2H) , 2.34 –2.25 (m, 2H) .
The compounds below were synthesized following the procedures described for compound 105
Figure PCTCN2022113023-appb-000083
Biological Assay and Data
As stated above, the compounds of Formula I, II, and III are MIF inhibitors, and are useful in the treatment of diseases mediated by MIF. The biological activities of the compounds of can be determined by using any suitable assay for determining the activity of a candidate compound as a MIF inhibitor.
MIF Enzymatic Assays
Tautomerase Assay Using HPP as substrate
This assay measured MIF’s tautomerase activity in a cell-free system and was based on the determination of initial rates of the MIF-catalyzed conversion of the ketonic into the enolic tautomer of HPP. This was achieved by spectrophotometric quantification of the complex between borate and the product of the reaction (enolic HPP) . The substrate was prepared by conversion of the enolic HPP into its ketonic form. To achieve this, 0.5 M pHPP in methanol was diluted 10-fold with 50 mM sodium acetate buffer at pH 6.0, and then the suspension was shaken for 24 h at room temperature in darkness, and finally stored at 4℃ for not more than 1 week, with 5 min sonication being recommended before use.
Assays were performed in clear-bottom 96 -well polystyrene plates (Greiner Bio-One) . First, 4 μL compound with a series of concentration and 100 μL of the enzyme solution containing 20 ng/mL of MIF in 0.5 M boric acid buffer was dispensed onto sample and negative control wells. Then, 100 μL of the same buffer without MIF was dispensed onto positive control wells. The 96-well plate was incubated at RT for 30 minutes with shaking at 120 rpm. The reaction was started by addition of 50 μL reaction substrate containing 1.8 mg/mL HPP in 0.5 M sodium acetate buffer. Then, the absorbance value at 330 nm was recorded once per minute, and read 10 times continuously with a microplate reader (Tecan) . Initial rates were calculated for each well as the slope of the absorbance progress curve.
All exemplified compounds (compounds 1-105) were tested in the MIF tautomerase assay or a similar assay described above. The data mentioned below represents a mean pIC 50 value of multiple test results. It is understood that the data illustrated below may have reasonable variation depending on the specific conditions and procedures used by the person conducting the testing.
Assay Data
The pIC 50 data from assays for measuring the inhibitory effect on MIF by compounds are listed in table 1 below.
Table 1. Inhibition of the MIF Enzyme in vitro by compounds
Figure PCTCN2022113023-appb-000084

Claims (25)

  1. A compound of formula I,
    Figure PCTCN2022113023-appb-100001
    wherein Y 1 is O, S, or NH; the bond between Y 2 and Y 3 is a single bond or a double bond; when the bond is a single bond, Y 2 is CH 2, Y 3 is O; when the bond is a double bond, Y 2 and Y 3 independently is CH or N; R is H or Ac; 
    Figure PCTCN2022113023-appb-100002
    is optionally substituted with 0, 1, or 2 CN, NHR N, halogen, C 1-6 alkyl, C 1-6 haloalkyl, or C 3-6 cycloalkyl, wherein R N is H or COC 1-6 alkyl;
    A is a 5-or 6-membered aryl or heteroaryl optionally substituted with 0, 1, or 2 substituents independently selected from the group consisting of halogen, C 1-6 alkyl, C 1-6 haloalkyl, OH, or C 1-6 alkoxy;
    B is
    Figure PCTCN2022113023-appb-100003
    which is optionally deuterated, and is optionally substituted with 0, 1, or 2 C 1-6 alkyl, OH or C 1-6 alkoxy, wherein X is CH 2, or O.
  2. The compound of claim 1, wherein
    Figure PCTCN2022113023-appb-100004
    is
    Figure PCTCN2022113023-appb-100005
    optionally substituted with 0, 1, or 2 substituents independently selected from the group consisting of CN, NH 2, NHCOCH 3, F, methyl, trifluoromethyl, or cyclopropyl; 
    Figure PCTCN2022113023-appb-100006
    optionally substituted with 0 or 1 methyl; or
    Figure PCTCN2022113023-appb-100007
    Figure PCTCN2022113023-appb-100008
  3. The compound of claim 2, wherein
    Figure PCTCN2022113023-appb-100009
    is
    Figure PCTCN2022113023-appb-100010
    Figure PCTCN2022113023-appb-100011
  4. The compound of any one of claims 1-3, wherein A is phenyl, pyridinyl, pyrimidinyl, pyridazinyl, imidazolyl, thiazolyl, or oxazolyl, which is optionally substituted with 0, 1, or 2 substituents independently selected from the group consisting of F, Cl, methyl, or trifluoromethyl.
  5. The compound of any one of claims 1-4, wherein A is
    Figure PCTCN2022113023-appb-100012
    Figure PCTCN2022113023-appb-100013
  6. The compound of any one of claims 1-5, wherein B is
    Figure PCTCN2022113023-appb-100014
    which is optionally deuterated, and is optionally substituted with 0, 1, or 2 methyl.
  7. The compound of any one of claims 1-6, wherein B is
    Figure PCTCN2022113023-appb-100015
    Figure PCTCN2022113023-appb-100016
  8. The compound of claim 1, wherein the compound is selected from
    5- ( (2-fluorophenyl) (morpholino) methyl) benzo [d] thiazol-4-ol;
    5- ( (3-fluoropyridin-2-yl) (morpholino) methyl) benzo [d] [1, 3] dioxol-4-ol;
    6- (morpholino (pyridin-2-yl) methyl) benzo [d] [1, 3] dioxol-5-ol;
    5- ( (3-fluoropyridin-2-yl) (morpholino) methyl) benzo [d] thiazol-4-ol;
    5- ( (3-fluoropyridin-2-yl) (morpholino) methyl) benzo [d] thiazol-6-ol;
    6- ( (2-fluorophenyl) (morpholino) methyl) -1H-indazol-7-ol;
    6- ( (2-fluorophenyl) (morpholino) methyl) -1H-indol-7-ol;
    2-amino-5- ( (3-fluoropyridin-2-yl) (morpholino) methyl) benzo [d] thiazol-4-ol;
    5- ( (3-fluoropyridin-2-yl) (morpholino) methyl) -2-methylbenzo [d] thiazol-4-ol;
    2-amino-7-fluoro-5- ( (3-fluoropyridin-2-yl) (morpholino) methyl) benzo [d] thiazol-4-ol;
    4- ( (3-fluoropyridin-2-yl) (morpholino) methyl) benzo [d] thiazol-5-ol;
    N- (5- ( (3-fluoropyridin-2-yl) (morpholino) methyl) -4-hydroxybenzo [d] thiazol-2-yl) acetamide;
    5- (morpholino (oxazol-4-yl) methyl) benzo [d] thiazol-4-ol;
    7-fluoro-5- ( (3-fluoropyridin-2-yl) (morpholino) methyl) benzo [d] thiazol-4-ol;
    6-fluoro-5- ( (3-fluoropyridin-2-yl) (morpholino) methyl) benzo [d] thiazol-4-ol;
    5- (morpholino (3- (trifluoromethyl) pyridin-2-yl) methyl) benzo [d] thiazol-4-ol;
    5- ( (3-chloropyridin-2-yl) (morpholino) methyl) benzo [d] thiazol-4-ol;
    7- ( (3-chloropyridin-2-yl) (morpholino) methyl) benzo [d] thiazol-4-ol;
    5- ( (3-methylpyridin-2-yl) (morpholino) methyl) benzo [d] thiazol-4-ol;
    5- ( (6-chloro-3-fluoropyridin-2-yl) (morpholino) methyl) benzo [d] thiazol-4-ol;
    2-cyclopropyl-5- ( (3-fluoropyridin-2-yl) (morpholino) methyl) benzo [d] thiazol-4-ol;
    5- ( (5-fluoropyridin-2-yl) (morpholino) methyl) benzo [d] thiazol-4-ol;
    7- ( (5-fluoropyridin-2-yl) (morpholino) methyl) benzo [d] thiazol-4-ol;
    5- ( (6-fluoropyridin-2-yl) (morpholino) methyl) benzo [d] thiazol-4-ol;
    5- ( (3-fluoro-5-methylpyridin-2-yl) (morpholino) methyl) benzo [d] thiazol-4-ol;
    5- ( (3-fluoropyridin-2-yl) (morpholino) methyl) -7-methylbenzo [d] thiazol-4-ol;
    5- ( (3-fluoropyridin-2-yl) (morpholino) methyl) -6-methylbenzo [d] thiazol-4-ol;
    5- ( (5-fluoropyridin-2-yl) (morpholino) methyl) -2-methylbenzo [d] thiazol-4-ol;
    7-fluoro-5- ( (5-fluoropyridin-2-yl) (morpholino) methyl) benzo [d] thiazol-4-ol;
    5- ( (3-fluoropyridin-2-yl) (morpholino) methyl) -2- (trifluoromethyl) benzo [d] thiazol-4-ol;
    5- ( (3-fluoropyridin-2-yl) (morpholino) methyl) benzo [d] thiazol-4-yl acetate;
    5- ( (6-oxa-3-azabicyclo [3.1.1] heptan-3-yl) (3-fluoropyridin-2-yl) methyl) benzo [d] thiazol-4-ol;
    5- ( (3-fluoropyridin-2-yl) (2-methylmorpholino) methyl) benzo [d] thiazol-4-ol;
    5- ( (2, 6-dimethylmorpholino) (3-fluoropyridin-2-yl) methyl) benzo [d] thiazol-4-ol;
    5- ( (3-fluoropyridin-2-yl) (piperidin-1-yl) methyl) benzo [d] thiazol-4-ol;
    5- ( (3-fluoropyridin-2-yl) (4-methylpiperidin-1-yl) methyl) benzo [d] thiazol-4-ol;
    5- ( (4, 4-dimethylpiperidin-1-yl) (3-fluoropyridin-2-yl) methyl) benzo [d] thiazol-4-ol;
    5- ( (3, 5-difluoropyridin-2-yl) (morpholino) methyl) -2-methylbenzo [d] thiazol-4-ol;
    5- ( (3, 5-difluoropyridin-2-yl) (morpholino) methyl) benzo [d] thiazol-4-ol;
    5- ( (2, 6-dimethylmorpholino) (3-fluoropyridin-2-yl) methyl) -2-methylbenzo [d] thiazol-4-ol;
    5- ( (3, 5-difluoropyridin-2-yl) (2, 6-dimethylmorpholino) methyl) -2-methylbenzo [d] thiazol-4-ol;
    5- ( (3-fluoropyridin-2-yl) (4-oxa-7-azaspiro [2.5] octan-7-yl) methyl) -2-methylbenzo [d] thiazol-4-ol;
    5- ( (3-fluoropyridin-2-yl) (morpholino) methyl) -4-hydroxybenzo [d] thiazole-2-carbonitrile;
    5- ( (3-fluoro-5-methylpyridin-2-yl) (morpholino) methyl) -2-methylbenzo [d] thiazol-4-ol;
    5- ( (2, 2-dimethylmorpholino) (3-fluoropyridin-2-yl) methyl) -2-methylbenzo [d] thiazol-4-ol;
    5- ( (3, 5-difluoropyridin-2-yl) (2, 2-dimethylmorpholino) methyl) -2-methylbenzo [d] thiazol-4-ol;
    5- ( ( (2S, 6R) -2, 6-dimethylmorpholino) (3-fluoropyridin-2-yl) methyl) -2-methylbenzo [d] thiazol-4-ol;
    5- ( (3, 5-difluoropyridin-2-yl) ( (2S, 6R) -2, 6-dimethylmorpholino) methyl) -2-methylbenzo [d] thiazol-4-ol;
    7- ( ( (2S, 6R) -2, 6-dimethylmorpholino) (3-fluoropyridin-2-yl) methyl) -2-methylbenzo [d] thiazol-4-ol;
    5- ( (3, 5-difluoropyridin-2-yl) (4-oxa-7-azaspiro [2.5] octan-7-yl) methyl) -2-methylbenzo [d] thiazol-4-ol;
    7- ( (3, 5-difluoropyridin-2-yl) (2, 2-dimethylmorpholino) methyl) -2-methylbenzo [d] thiazol-4-ol;
    7- ( (5-fluoropyridin-2-yl) (2-methylmorpholino) methyl) benzo [d] thiazol-4-ol;
    7- ( (2, 6-dimethylmorpholino) (5-fluoropyridin-2-yl) methyl) benzo [d] thiazol-4-ol.
  9. A compound of formula II,
    Figure PCTCN2022113023-appb-100017
    wherein
    Figure PCTCN2022113023-appb-100018
    is optionally substituted with 0 or 1 CO 2C 1-6 alkyl, halogen, or C 1-6 haloalkyl; 
    Figure PCTCN2022113023-appb-100019
    is optionally substituted with 0 or 1 halogen, OH, C 1-6 alkyl, C 1-6 haloalkyl, or C 1-6 alkoxy; B’ is
    Figure PCTCN2022113023-appb-100020
    optionally substituted with 0, 1, or 2 C 1-6 alkyl, OH, or C 1-6 alkoxy.
  10. The compound of claim 9, wherein
    Figure PCTCN2022113023-appb-100021
    is
    Figure PCTCN2022113023-appb-100022
    optionally substituted with CO 2Me, F, or trifluoromethyl; or
    Figure PCTCN2022113023-appb-100023
    is substituted with 0 or 1 F; B’ is
    Figure PCTCN2022113023-appb-100024
    optionally substituted with 0, 1, or 2 methyl.
  11. The compound of claim 9, wherein the compound is selected from
    4- ( (3-fluoropyridin-2-yl) (morpholino) methyl) phenol;
    methyl 3- ( (3-fluoropyridin-2-yl) (morpholino) methyl) -4-hydroxybenzoate;
    2- ( (3-fluoropyridin-2-yl) (morpholino) methyl) -4- (trifluoromethyl) phenol;
    4-fluoro-2- ( (3-fluoropyridin-2-yl) (morpholino) methyl) phenol;
    2-fluoro-6- ( (3-fluoropyridin-2-yl) (morpholino) methyl) phenol;
    5-fluoro-2- ( (3-fluoropyridin-2-yl) (morpholino) methyl) phenol.
  12. A compound of formula III,
    Figure PCTCN2022113023-appb-100025
    wherein X 1 is CH or N; 
    Figure PCTCN2022113023-appb-100026
    is optionally substituted with 0 or 1 NH 2, morpholino, halogen, or C 1- 6 alkyl;
    A” is a 5-or 6-membered aryl or heteroaryl optionally substituted with 0, 1, or 2 substituents independently selected from the group consisting of OH, halogen, C 1-6 alkyl, C 1-6 haloalkyl, or C 1-6 alkoxy; or a 10-membered fused-ring heteroaryl;
    B” is
    Figure PCTCN2022113023-appb-100027
    which is optionally substituted with 0, 1, or 2 substituents independently selected from the group consisting of OH, NHBoc, C 1-6 alkyl, or C 1-6 alkoxy, wherein X is CH 2, or O.
  13. The compound of claim 12, wherein
    Figure PCTCN2022113023-appb-100028
    is
    Figure PCTCN2022113023-appb-100029
    which is optionally substituted with 0 or 1 NH 2, morpholino, F, Cl, or methyl.
  14. The compound of claim 12 or 13, wherein A” is
    phenyl optionally substituted with 0, 1, or 2 substituents independently selected from the group consisting of OH, F, trifluoromethyl; wherein the phenyl is not 4-monosubstituted by F;
    pyridinyl optionally substituted with 0, 1, or 2 substituents independently selected from the group consisting of F, Cl, methyl, or trifluoromethyl; wherein when the pyridinyl is pyridin-2-yl, it is substituted; or
    Figure PCTCN2022113023-appb-100030
    pyrimidinyl, 
    Figure PCTCN2022113023-appb-100031
  15. The compound of any one of claims 12-14, wherein B” is
    Figure PCTCN2022113023-appb-100032
    optionally substituted with 0 or 1 NHBoc; 
    Figure PCTCN2022113023-appb-100033
    optionally substituted with 0, 1, or 2 methyl; 
    Figure PCTCN2022113023-appb-100034
    substituted with 0 or 1 methyl or methoxy; 
    Figure PCTCN2022113023-appb-100035
    substituted with 0 or 1 OH; or
    Figure PCTCN2022113023-appb-100036
  16. The compound of claim 12, wherein the compound is selected from
    7- ( (4-methylpiperidin-1-yl) (pyridin-4-yl) methyl) quinolin-8-ol;
    7- (morpholino (pyridin-2-yl) methyl) quinolin-8-ol;
    7- ( (2-fluorophenyl) (morpholino) methyl) quinolin-8-ol;
    7- ( (2, 4-difluorophenyl) (morpholino) methyl) quinolin-8-ol;
    7- ( (2, 6-difluorophenyl) (morpholino) methyl) quinolin-8-ol;
    7- ( (2-fluorophenyl) (4-methylpiperidin-1-yl) methyl) quinolin-8-ol;
    7- ( (4-methylpiperidin-1-yl) (pyrimidin-4-yl) methyl) quinolin-8-ol;
    7- ( (4-methylpiperidin-1-yl) (pyridazin-3-yl) methyl) quinolin-8-ol;
    7- ( (5-fluoropyridin-3-yl) (morpholino) methyl) quinolin-8-ol;
    7- ( (3-fluoropyridin-2-yl) (morpholino) methyl) quinolin-8-ol;
    5-fluoro-7- (morpholino (pyridin-4-yl) methyl) quinolin-8-ol;
    5-fluoro-7- ( (2-fluorophenyl) (morpholino) methyl) quinolin-8-ol;
    7- ( (4-fluorophenyl) (morpholino) methyl) quinolin-8-ol;
    7- ( (3-fluorophenyl) (morpholino) methyl) quinolin-8-ol;
    7- ( (2-methoxyphenyl) (morpholino) methyl) quinolin-8-ol;
    7- (morpholino (2- (trifluoromethyl) phenyl) methyl) quinolin-8-ol;
    7- ( (2-chlorophenyl) (morpholino) methyl) quinolin-8-ol;
    7- (morpholino (o-tolyl) methyl) quinolin-8-ol;
    5-chloro-7- (morpholino (pyridin-4-yl) methyl) quinolin-8-ol;
    7- ( (1H-indol-7-yl) (morpholino) methyl) quinolin-8-ol;
    7- (morpholino (phenyl) methyl) quinolin-8-ol;
    7- ( (3-fluoropyridin-2-yl) (morpholino) methyl) isoquinolin-8-ol;
    5-fluoro-7- ( (3-fluoropyridin-2-yl) (morpholino) methyl) quinolin-8-ol;
    7- (morpholino (quinolin-2-yl) methyl) quinolin-8-ol;
    7- ( (3-fluoropyridin-2-yl) (4-methoxypiperidin-1-yl) methyl) quinolin-8-ol;
    7- ( (3-fluoropyridin-2-yl) (pyrrolidin-1-yl) methyl) quinolin-8-ol;
    7- ( (3-fluoropyridin-2-yl) ( (tetrahydro-2H-pyran-4-yl) amino) methyl) quinolin-8-ol;
    7- ( (3-fluoropyridin-2-yl) ( (4-hydroxycyclohexyl) amino) methyl) quinolin-8-ol;
    tert-butyl (1- ( (3-fluoropyridin-2-yl) (8-hydroxyquinolin-7-yl) methyl) pyrrolidin-3-yl) carbamate;
    7- ( (3-fluoropyridin-2-yl) (2-oxa-6-azaspiro [3.3] heptan-6-yl) methyl) quinolin-8-ol;
    7- ( (3-fluoropyridin-2-yl) (2-methylmorpholino) methyl) quinolin-8-ol;
    7- ( (2, 6-dimethylmorpholino) (3-fluoropyridin-2-yl) methyl) quinolin-8-ol;
    7- ( (3-fluoropyridin-2-yl) (morpholino) methyl) quinazolin-8-ol;
    7- ( (1-methyl-1H-imidazol-4-yl) (morpholino) methyl) quinolin-8-ol;
    7- ( (3-fluoro-4-hydroxyphenyl) (morpholino) methyl) quinolin-8-ol;
    7- ( (2-fluoro-3-hydroxyphenyl) (morpholino) methyl) quinolin-8-ol;
    2-amino-7- ( (2-fluorophenyl) (morpholino) methyl) quinolin-8-ol;
    7- ( (2-fluorophenyl) (morpholino) methyl) -2-methylquinolin-8-ol;
    7- ( (3-fluoropyridin-2-yl) (morpholino) methyl) -2-methylquinolin-8-ol;
    7- ( (3-fluoropyridin-2-yl) (morpholino) methyl) -4-morpholinoquinolin-8-ol;
    7- (morpholino (thiazol-4-yl) methyl) quinolin-8-ol;
    7- (morpholino (pyrimidin-2-yl) methyl) quinolin-8-ol;
    7- ( (2, 4-difluorophenyl) (morpholino) methyl) -2-methylquinolin-8-ol;
    7- ( (2-fluorophenyl) (morpholino) methyl) quinazolin-8-ol;
    2-methyl-7- (morpholino (thiazol-4-yl) methyl) quinolin-8-ol.
  17. A pharmaceutical composition, comprising a compound of any one of claims 1 to 16, or a pharmaceutically acceptable salt thereof; and a pharmaceutically acceptable carrier or excipient.
  18. The use of compound of any one of claims 1 to 16, for the treatment of a disease mediated by macrophage migration inhibitory factor (MIF) .
  19. The use of claim 18, wherein the disease mediated by MIF is tumor; inflammatory disease; autoimmune disease; metabolic disease; cardiovascular disease; nervous system disease; respiratory disorder; gastrointestinal disorder; infection.
  20. The use of compound of any one of claims 1 to 16, for the production of a medicine for the treatment of a disease mediated by MIF.
  21. The use of claim 20, wherein the disease mediated by MIF is tumor; inflammatory disease; autoimmune disease; metabolic disease; cardiovascular disease; nervous system disease; respiratory disorder; gastrointestinal disorder; infection.
  22. A method of treating a disease mediated by MIF in a subject in need thereof, comprising administering to the subject, a therapeutically effective amount of a compound of any one of claims 1 to 16, or a pharmaceutically acceptable salt thereof.
  23. The method of claim 22, wherein the disease mediated by MIF is tumor; inflammatory disease; autoimmune disease; metabolic disease; cardiovascular disease; nervous system disease; respiratory disorder; gastrointestinal disorder; infection.
  24. A method of inhibiting MIF expression, production and/or secretion in a subject in need thereof, the method comprising administering to the subject, a pharmaceutically effective amount of a compound of any one of claims 1 to 16, or a pharmaceutically acceptable salt thereof.
  25. A method of inhibiting MIF tautomerase catalytic activity in a subject in need thereof, the method comprising administering to the subject, a pharmaceutically effective amount of a compound of any one of claims 1 to 16, or a pharmaceutically acceptable salt thereof.
PCT/CN2022/113023 2021-08-18 2022-08-17 Compounds and their uses as mif inhibitors WO2023020534A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2021113148 2021-08-18
CNPCT/CN2021/113148 2021-08-18

Publications (1)

Publication Number Publication Date
WO2023020534A1 true WO2023020534A1 (en) 2023-02-23

Family

ID=85240085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113023 WO2023020534A1 (en) 2021-08-18 2022-08-17 Compounds and their uses as mif inhibitors

Country Status (1)

Country Link
WO (1) WO2023020534A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011066864A1 (en) * 2009-12-03 2011-06-09 Ecole Polytechnique Federale De Lausanne (Epfl) Method and compositions for inhibition of macrophage migration inhibitory factor (mif)
WO2011106226A2 (en) * 2010-02-23 2011-09-01 Cornell University Prolylhydroxylase inhibitors and methods of use
WO2013192423A2 (en) * 2012-06-20 2013-12-27 Eutropics Pharmaceuticals, Inc. Methods and compositions useful for treating diseases involving bcl-2 family proteins with quinoline derivatives
CN105566293A (en) * 2016-01-12 2016-05-11 范国煌 Macrophage migration inhibition factor tetracyclic small-molecule inhibitor and application thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011066864A1 (en) * 2009-12-03 2011-06-09 Ecole Polytechnique Federale De Lausanne (Epfl) Method and compositions for inhibition of macrophage migration inhibitory factor (mif)
WO2011106226A2 (en) * 2010-02-23 2011-09-01 Cornell University Prolylhydroxylase inhibitors and methods of use
WO2013192423A2 (en) * 2012-06-20 2013-12-27 Eutropics Pharmaceuticals, Inc. Methods and compositions useful for treating diseases involving bcl-2 family proteins with quinoline derivatives
CN105566293A (en) * 2016-01-12 2016-05-11 范国煌 Macrophage migration inhibition factor tetracyclic small-molecule inhibitor and application thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DUAN ZHE; LIU JINGQIU; NIU LIPING; WANG JUN; FENG MINGQIAN; CHEN HUA; LUO CHENG: "Discovery of DC_H31 as potential mutant IDH1 inhibitor through NADPH-based high throughput screening", BIOORGANIC & MEDICINAL CHEMISTRY, vol. 27, no. 15, 28 May 2019 (2019-05-28), AMSTERDAM, NL, pages 3229 - 3236, XP085742161, ISSN: 0968-0896, DOI: 10.1016/j.bmc.2019.05.040 *
MCLEAN, L.R. ; ZHANG, Y. ; LI, H. ; LI, Z. ; LUKASCZYK, U. ; CHOI, Y.M. ; HAN, Z. ; PRISCO, J. ; FORDHAM, J. ; TSAY, J.T. ; REILIN: "Discovery of covalent inhibitors for MIF tautomerase via cocrystal structures with phantom hits from virtual screening", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 19, no. 23, 1 December 2009 (2009-12-01), Amsterdam NL , pages 6717 - 6720, XP026736091, ISSN: 0960-894X, DOI: 10.1016/j.bmcl.2009.09.106 *
SHERGALIS ANDREA, XUE DING, GHARBIA FATMA Z., DRIKS HANNAH, SHRESTHA BINITA, TANWEER AMINA, CROMER KIRIN, LJUNGMAN MATS, NEAMATI N: "Characterization of Aminobenzylphenols as Protein Disulfide Isomerase Inhibitors in Glioblastoma Cell Lines", JOURNAL OF MEDICINAL CHEMISTRY, vol. 63, no. 18, 24 September 2020 (2020-09-24), US , pages 10263 - 10286, XP093037489, ISSN: 0022-2623, DOI: 10.1021/acs.jmedchem.0c00728 *
ZAPATERO MARIA CLEOFÉ, PALOMA PÉREZ, MARÍA JESÚS VÁZQUEZ, GONZALO COLMENAREJO, MAITE DE LOS FRAILES, FERNANDO RAMÓN : "Discovery of novel inhibitors of the tautomerase activity of macrophage migration inhibitory factor (MIF)", JOURNAL OF BIOMOLECULAR SCREENING SOCIETY FOR LABORATORY AUTOMATION AND SCREENING, vol. 21, no. 5, 31 December 2016 (2016-12-31), pages 446 - 458, XP055882734, DOI: 10.1177/1087057116633997 *

Similar Documents

Publication Publication Date Title
AU2017200493B2 (en) Heterocyclyl compounds as MEK inhibitors
ES2478448T3 (en) N- (imidazopyrimidin-7-yl) heteroarylamide derivatives and their use as PDE10A inhibitors
CA2971640C (en) Cot modulators and methods of use thereof
RU2719428C2 (en) Indazole compounds as fgfr kinase inhibitors, preparation and use thereof
AU2009265813B2 (en) Novel phenylpyrazinones as kinase inhibitors
ES2742409T3 (en) Pyrazolylquinoxaline Kinase Inhibitors
JP6876833B2 (en) FGFR inhibitors and their use
KR101734606B1 (en) Nitrogen-containing heteroaryl derivatives
JP5940148B2 (en) Substituted pyridopyrazine as a novel Syk inhibitor
WO2019193541A1 (en) Bicyclic aromatic ring derivatives of formula (i) as atf4 inhibitors
WO1998035958A1 (en) Phthalazines with angiogenesis inhibiting activity
JPH01316363A (en) Piperazine derivative and salt thereof
EP2396325B1 (en) Derivatives of azaindoles as inhibitors of protein kinases abl and src
US10364255B2 (en) Heteroaromatic compounds as Vanin inhibitors
WO2016208592A1 (en) Bicyclic heterocyclic amide derivative
CN104341425A (en) Deuterated acetylenic derivative, pharmaceutical composition and application thereof
CN117355299A (en) Substituted 2- (2, 6-dioxopiperidin-3-yl) -5- (1-piperidin-4-yl) isoindoline-1, 3-dione derivatives and uses thereof
EP4351558A1 (en) Compounds having 5-(2-fluoro-6-hydroxyphenyl)-1,2,5-thiadiazolidin-3-one 1,1-dioxide as inhibitors of protein kinase phosphatase enzymes
JP2022517723A (en) Macrocycle compound as a CDK inhibitor, its production method and its application in pharmaceutical products
WO2021258272A1 (en) Compounds and their uses as mif inhibitors
US10676486B2 (en) Macrocyclic RIP2 kinase inhibitors
JP2022533572A (en) Bis-heterocyclic carbonyl-substituted dihydropyrazole compounds, processes for their preparation, and pharmaceutical uses thereof
WO2023020534A1 (en) Compounds and their uses as mif inhibitors
EP4330247A1 (en) Compounds and their uses as cd38 inhibitors
WO2023125841A1 (en) HETEROCYCLIC COMPOUND AS POLθ INHIBITOR, PREPARATION METHOD THEREFOR, AND USE THEREOF

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE