WO2023020281A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2023020281A1
WO2023020281A1 PCT/CN2022/110027 CN2022110027W WO2023020281A1 WO 2023020281 A1 WO2023020281 A1 WO 2023020281A1 CN 2022110027 W CN2022110027 W CN 2022110027W WO 2023020281 A1 WO2023020281 A1 WO 2023020281A1
Authority
WO
WIPO (PCT)
Prior art keywords
indication information
communication device
link
frame
asynchronous
Prior art date
Application number
PCT/CN2022/110027
Other languages
English (en)
French (fr)
Inventor
何青春
程型清
高磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22857593.2A priority Critical patent/EP4380244A1/en
Publication of WO2023020281A1 publication Critical patent/WO2023020281A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of wireless communication, and in particular to a communication method and device.
  • an asynchronous link (that is, a connection-oriented asynchronous link) is first established between a first communication device (such as a master control node) and a second communication device (such as a terminal node) for transmission control Signaling and asynchronous data, the link is reliable transmission, that is, the first communication device receives the acknowledgment (Acknowledge, ACK) fed back by the second communication device or the number of retransmissions of data packets reaches the preset maximum number of retransmissions or meets the requirement of packet discarding A new data packet is transmitted only after the conditions are met, and the transmission time of each data packet is relatively wide.
  • ACK acknowledgment
  • a new data packet is transmitted only after the conditions are met, and the transmission time of each data packet is relatively wide.
  • a synchronous link that is, a connection-oriented synchronous link
  • a synchronous link is defined in the communication system to transmit "isochronous" data streams, that is, each frame of data can only be transmitted within a limited time , if the second communication device fails to receive successfully within a limited time, the first communication device will also perform new data transmission in the next time period according to the preconfigured time, therefore, the synchronization link is an unreliable transmission.
  • each synchronous link is associated with an asynchronous link.
  • the first communication device and the second communication device need to maintain the synchronous link and the asynchronous link associated with the synchronous link at the same time.
  • the second communication device receives the Periodically, an asynchronous link is received at a predetermined moment, resulting in high power consumption of the second communication device.
  • Embodiments of the present application provide a communication method and device, so as to reduce power consumption of communication equipment.
  • a communication method including: a first communication device receives first indication information sent by a second communication device, and the first indication information is carried on a synchronous link; An indication message to stop receiving the asynchronous link associated with the synchronous link.
  • the first communication device does not need to monitor the asynchronous link when there is no scheduling for the first communication device on the asynchronous link, in this case, the first The indication information may also be expressed as indicating that there is no scheduling for the first communication device on the asynchronous link.
  • the second communication device (such as the master control node) instructs the first communication device (such as the terminal node) to stop receiving the asynchronous link through the first instruction information, so as to save power consumption of the first communication device.
  • the above solution can allow the second communication device to instruct the first communication device to stop receiving the asynchronous link, thereby improving system flexibility and The power consumption of the first communication device can be reduced.
  • the first indication information is included in a physical layer frame header of the first synchronization link frame; the method further includes: the first communication device parsing the first synchronization link A physical layer frame header of a frame, where the first communication device acquires the first indication information from a physical layer frame header of the first synchronous link frame.
  • the first indication information is included in the high layer payload header of the first synchronization link frame; the method further includes: the first communication device parsing the first synchronization link a high-layer payload header of a frame, and the first communication device obtains the first indication information from the high-layer payload header of the first synchronous link frame.
  • the stopping receiving the asynchronous link according to the first indication information includes: the first communication device stops receiving the asynchronous link after a first time offset according to the first indication information. asynchronous link.
  • the time length indicated by the first time offset is greater than or equal to 0.
  • the first communication device stops receiving the asynchronous link immediately after obtaining the first indication information;
  • the time length indicated by the first time offset is When the time length is greater than 0, the first communication device stops receiving the asynchronous link when the time from obtaining the first indication information to the first time offset indication arrives.
  • the method further includes: starting a timer; if the timer times out, the first communication device starts The asynchronous link is received.
  • the method further includes: starting a timer, if the second communication is received during the running of the timer The second indication information sent by the device starts receiving the asynchronous link.
  • the first communication device may automatically start receiving the asynchronous link, so as to avoid the problem that the asynchronous link cannot be restarted when the second indication information is lost.
  • the method further includes: the first communication device receives the asynchronous link sent by the second communication device second indication information, the first communication device starts receiving the asynchronous link according to the second indication information.
  • the second indication information is included in the physical layer frame header of the second synchronous link frame; the method further includes: the first communication device parsing the second synchronous link A physical layer frame header of a frame, where the first communication device acquires the second indication information from a physical layer frame header of the second synchronous link frame.
  • the second indication information is included in the high-level payload header of the second synchronization link frame; the method further includes: the first communication device parsing the second synchronization link a high-layer payload header of a frame, and the first communication device obtains the second indication information from the high-layer payload header of the second synchronous link frame.
  • the starting to receive the asynchronous link according to the second indication information includes: the first communication device starts receiving the asynchronous link after a second time offset according to the second indication information. asynchronous link.
  • the time length indicated by the second time offset is greater than or equal to 0.
  • the first communication device starts receiving the asynchronous link immediately after obtaining the second indication information;
  • the time indicated by the second time offset is When the time length is greater than 0, the first communication device starts receiving the asynchronous link when the time from obtaining the second indication information to the second time offset indication arrives.
  • the first indication information may also be used to indicate to stop receiving the control link, and the first communication device further stops receiving the control link according to the first indication information.
  • the second indication information may also be used to indicate to start receiving the control link, and the first communication device further starts receiving the control link according to the second indication information.
  • the second communication device uses the control link to allocate resources of the synchronous link and/or asynchronous link to the first communication device, more specifically, the second communication device uses the control link Sending semi-static configuration information of a synchronous link and/or an asynchronous link to the first communication device
  • the semi-static configuration information may be, for example, a transmission pattern (pattern) of a synchronous link/asynchronous link transmission, the transmission pattern It is used to indicate the transmission time window (interval) of the synchronous link/asynchronous link of the second communication device and the transmission time window (interval) of the synchronous link/asynchronous link of the first communication device.
  • a communication method including: the second communication device sends first indication information to the first communication device, the first indication information is carried on a synchronization link, and the first indication information is used to indicate stop receiving an asynchronous link, the asynchronous link being associated with the synchronous link.
  • the first indication information is included in a physical layer frame header of the first synchronous link frame.
  • the first indication information is included in a high-layer payload header of the first synchronization link frame.
  • the second indication information is also used to indicate to stop receiving the control link.
  • the method further includes: the second communication device sending second indication information to the first communication device, the second indication information being carried on the synchronization link, the The second indication information is used to indicate to start receiving the asynchronous link.
  • the second indication information is included in a physical layer frame header of the second synchronous link frame.
  • the second indication information is included in a high-layer payload header of the second synchronization link frame.
  • the second indication information is also used to indicate to start the receiving control link.
  • the method may further include the following operations:
  • the second communication device determines, according to the auxiliary information sent by the first communication device, that it is necessary to instruct the first communication device to stop receiving an asynchronous link; or, the second communication device determines, according to the load of the second communication device In this case, it is determined that it is necessary to instruct the first communication device to stop receiving the asynchronous link; or, the second communication device determines that it is necessary to instruct the first communication device to stop receiving the asynchronous link according to the transmission capability of the first communication device or, the second communication device determines that it is necessary to instruct the first communication device to stop receiving the asynchronous link according to the power consumption of the second communication device and/or the power consumption of the first communication device.
  • a communication device including a processing unit and a transceiver unit; the transceiver unit is configured to receive first indication information sent by a second communication device, and the first indication information is carried on a synchronization link; the A processing unit, configured to control the transceiver unit to stop receiving the asynchronous link according to the first indication information, the asynchronous link being associated with the synchronous link.
  • the communication device may be a battery or a chip or an integrated circuit inside the battery.
  • the first indication information is included in the physical layer frame header of the first synchronous link frame; the processing unit is specifically configured to: parse the physical layer of the first synchronous link frame A frame header, obtaining the first indication information from a physical layer frame header of the first synchronous link frame.
  • the first indication information is included in the high-layer payload header of the first synchronization link frame; the processing unit is specifically configured to: parse the high-layer payload header of the first synchronization link frame A payload header, obtaining the first indication information from a high-layer payload header of the first synchronization link frame.
  • the processing unit is specifically configured to: according to the first indication information, control the transceiver unit to stop receiving the asynchronous link after a first time offset.
  • the first indication information is also used to indicate to stop receiving the control link; the processing unit is further configured to: control the transceiver unit to stop receiving the control link according to the first indication information .
  • the processing unit is further configured to: after the transceiver unit receives the first indication information, start a timer; if the timer runs overtime, control the transceiver unit to start The asynchronous link is received.
  • the processing unit is further configured to: start a timer after the transceiver unit receives the first indication information, and if the transceiver unit receives the The second indication information sent by the second communication device controls the transceiver unit to start receiving the asynchronous link.
  • the transceiving unit is further configured to: receive second indication information sent by the second communication device after stopping receiving the asynchronous link; the processing unit is further configured to: according to the The second indication information controls the transceiver unit to start receiving the asynchronous link.
  • the second indication information is included in the physical layer frame header of the second synchronous link frame; the processing unit is specifically configured to: parse the physical layer of the second synchronous link frame A frame header, obtaining the second indication information from a physical layer frame header of the second synchronous link frame.
  • the second indication information is included in the high-layer payload header of the second synchronization link frame; the processing unit is specifically configured to: parse the high-layer payload header of the second synchronization link frame A payload header, obtaining the second indication information from a high-layer payload header of the second synchronous link frame.
  • the processing unit is specifically configured to: according to the second indication information, control the transceiver unit to start receiving the asynchronous link after the second time offset.
  • the second indication information is also used to indicate the start of receiving the control link; the processing unit is further configured to: control the transceiver unit to start receiving the control link according to the second indication information. link.
  • a communication device including a transceiver unit; the transceiver unit is configured to send first indication information to a first communication device, the first indication information is carried on a synchronous link, and the first indication information Used to indicate to stop receiving the asynchronous link associated with the synchronous link.
  • the communication device may be a battery management system or a chip or an integrated circuit of the battery management system.
  • the first indication information is included in a physical layer frame header of the first synchronous link frame.
  • the first indication information is included in a high-layer payload header of the first synchronization link frame.
  • the first indication information is also used to indicate to stop receiving the control link.
  • the transceiving unit is further configured to: send second indication information to the first communication device, the second indication information is carried on the synchronization link, and the second indication information It is used to indicate to start receiving the asynchronous link.
  • the second indication information is included in a physical layer frame header of the second synchronous link frame.
  • the second indication information is included in a high-layer payload header of the second synchronization link frame.
  • the second indication information is also used to indicate to start the receiving control link.
  • a communication device including: one or more processors, and an interface circuit; when instructions of one or more computer programs are executed by the one or more processors, the communication device performs the following steps: The method described in any one of the first aspect or the second aspect above.
  • a sixth aspect provides a terminal, including the communication device as described in the fifth aspect.
  • a computer-readable storage medium includes a computer program, and when the computer program runs on a computing device, the computing device executes the above-mentioned first or second aspect. any one of the methods described.
  • a computer program product is provided.
  • the computer program product When the computer program product is invoked by a computer, the computer executes the method described in any one of the first aspect or the second aspect.
  • FIG. 1 is a schematic diagram of a communication system architecture applicable to the present application
  • FIG. 2 is a schematic diagram of an Open System Interconnection (OSI) model of a communication device in an embodiment of the present application;
  • OSI Open System Interconnection
  • FIG. 3 is a schematic diagram of data sending and receiving timing of a synchronous link and an asynchronous link in traditional communication
  • FIG. 4 is a schematic flowchart of a communication method provided in an embodiment of the present application.
  • 5a and 5b are respectively schematic diagrams of the first synchronization link frame in the embodiment of the present application.
  • FIG. 6a and FIG. 6b are respectively schematic diagrams of the second synchronous link frame in the embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a communication method provided in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the timing sequence of sending and receiving of synchronous link and asynchronous link data processing in the embodiment of the present application.
  • FIG. 9 and FIG. 10 are schematic structural diagrams of communication devices provided by embodiments of the present application, respectively;
  • FIG. 11 is a schematic structural diagram of a terminal provided in an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the embodiments of the present application may be applied to a wireless communication system, for example, may be applied to a short-distance communication system.
  • the communication system 100 includes a communication device 110( a ) coupled to a communication device 110 ( b ) via a communication link 120 .
  • Communication device 110(b) may exchange data with communication device 110(a) over communication link 120.
  • a communication link 120 can be established between the communication device 110(a) and the communication device 110(b) based on a wireless communication protocol, so that the communication device 110(a) and the communication device 110(b) can communicate with each other.
  • the communication device 110(a) and the communication device 110(b) may be any suitable electronic devices capable of networking and supporting wireless communication, for example, the communication device 110(a) may be a computer, a gateway, an access point or a controller, etc. , the communication device 110(b) may be a mobile phone, a personal digital assistant (PDA), a set-top box, a game machine, or a vehicle terminal.
  • the communication device 110(b) as a terminal node may include smart home devices (such as Bluetooth speakers, etc.), and the communication device 110(a) as a master control node is used to control smart home devices, such as including controllers, home gateways, etc.
  • the communication device 110(a) may be a smart phone or a tablet computer as a master control node, and the communication device 110(b) may include a Bluetooth headset as a terminal node.
  • the above communication architecture can also be applied to other scenarios, such as smart manufacturing application scenarios, which will not be listed here.
  • communication device 110(a), communication device 110(b), and communication link 120 are merely exemplary components of a network, as the network may further include any number of suitable devices to form a larger network (including, for example, , local area network (LAN), wide area network (WAN), wireless LAN (WLAN)), and/or can connect to the Internet.
  • LAN local area network
  • WAN wide area network
  • WLAN wireless LAN
  • FIG. 2 there is a block diagram of an open system interconnection (OSI) model 200 ( a, b ) of the communication device 110 ( a ) and the communication device 110 ( b ) in FIG. 1 .
  • the OSI model 200 (a, b) is divided into 7 logical layers (or 7-layer protocol stack), including from top to bottom: application layer 211 (a, b), presentation layer 212 (a, b), session layer 213(a,b), transport layer 214(a,b), network layer 215(a,b), data link layer 216(a,b), physical layer 217(a,b).
  • OSI model 200(a,b) may be used to represent communication device 110(a) and communication device 110(b).
  • the physical layer 217(a,b) provides electrical and physical specifications for interactions between the communication devices 110(a), 110(b) and the communication link 120, including things like pin layout and signal voltages.
  • the data link layer (or link layer) 216(a,b) provides functional and/or procedural provisions for data transmission between the communication device 110(a) and the communication device 110(b), Such as addressing and channel access control mechanisms.
  • the data link layer 216(a, b) has two sublayers, which include a logical link control (logical link control, LLC) layer and a media access control (media access control, MAC) layer from top to bottom.
  • MAC media access control
  • the data link layer assembles datagrams from the network layer into data packets, that is, frames.
  • Each frame includes a frame header and a payload.
  • the frame header includes necessary control information (such as sender address information, receiver address information, etc.) information, etc.), the payload part includes the content of the data packet.
  • FIG. 2 only shows the OSI seven-layer protocol model, and the communication device in the embodiment of the present application may also adopt other network protocol models, for example, a five-layer protocol model may be adopted.
  • the five-layer protocol model includes from top to bottom: application layer, transport layer, network layer, link layer and physical layer (also known as the physical layer).
  • the definition of the link layer in the five-layer protocol model is basically the same as the data link layer in the OSI seven-layer protocol model
  • the definition of the physical layer in the five-layer protocol model is basically the same as the physical layer in the OSI seven-layer protocol model.
  • other protocol models exist or may exist in existing technologies and future evolution technologies.
  • the protocol model followed by the communication device applied in the solution provided by the present application is not limited to the above possible protocol models, and may be any possible protocol model that can support the communication of the present application.
  • the layer above the physical layer that is, the data link layer (or link layer) is called a high layer, or multiple layers including at least the data link layer are collectively called a high layer.
  • the "higher layer” in the embodiment of the present application is compared with the physical layer, and the specific meaning of the "higher layer” in the embodiment of the present application may be determined according to the adopted protocol model.
  • communication links between communication devices may include asynchronous links and synchronous links, and may further include control links.
  • the communication device transmits and receives data according to a certain time sequence, which includes a synchronous link transmission time window and an asynchronous link transmission time window. That is to say, the transmission between communication devices within the synchronous link transmission time window is called synchronous link transmission. It is understandable that the communication device transmits through the synchronous link; It is called asynchronous link transmission, understandably, a communication device performs transmission through an asynchronous link.
  • FIG. 3 exemplarily shows a schematic diagram of a timing sequence for sending and receiving data between a synchronous link and an asynchronous link.
  • a synchronous link transmission time window 1 (interval1 or pattern1) and a synchronous link transmission time window 2 (interval2 or pattern2) are data transmission time windows of the synchronous link.
  • the synchronization link transmission time window 1 and the synchronization link transmission time window 2 may respectively include two sub time windows (sub jinterval or sub pattern).
  • the data transmission within a sub-time window includes the transmission from the master node (the master node is represented as G in Figure 3) to the terminal node (the terminal node is represented as T in Figure 3) (indicated as G>T in Figure 3 ), and the transmission from the terminal node to the master node (denoted as T>G in Figure 3).
  • the time interval between synchronous link transmission time window 1 and synchronous link transmission time window 2 is determined, which can be used for data transmission of asynchronous link, synchronous link transmission time window 1 and synchronous link transmission time window 2
  • the time slice used for asynchronous link data transmission may be referred to as an asynchronous link transmission time window.
  • the data transmission within the asynchronous link transmission time window includes control frame transmission (represented as G-control in Figure 3), through which the master control node can indicate to the terminal node the transmission resources allocated for the terminal node, Or send scheduling information to terminal nodes.
  • the communication device can use repeated transmission to improve transmission reliability.
  • a data packet (such as a synchronous link frame) can be transmitted multiple times, wherein, for this data packet, the first transmission can be called the initial transmission Or a new transmission, and subsequent repeated transmissions may be called retransmissions.
  • the synchronous link is established based on the connected state asynchronous link.
  • the established synchronous link is also called the connected state synchronous link
  • the asynchronous link is also called the connected state asynchronous link.
  • the synchronous link in the connected state is also released. After the synchronous link in the connected state is released, it does not affect the asynchronous link in the connected state.
  • the synchronous link can be applied to the transmission of isochronous data.
  • the receiving end or the sending end can know its own receiving window or sending window in a time interval in advance, that is, the receiving or sending of data is performed at the preconfigured time nearly periodically.
  • the number of transmissions of a certain data packet of a synchronous link is limited, that is, after several retransmissions The data will be flushed. From this point of view, the time between two new transmissions is fixed. Due to the limited number of retransmissions, synchronous link transmission is also considered as unreliable transmission.
  • the asynchronous link is relative to the synchronous link, and the sending and receiving time is bursty, that is, there is no strict time requirement between two new data packets. process and sending process). For example, if there is no scheduling instruction for new data transmission, data retransmission may continue forever. From this perspective, the reliability of an asynchronous link is higher than that of a synchronous link.
  • the frame corresponding to the control link is a control frame, and the control frame is used to configure transmission resources semi-statically.
  • the control frame is transmitted periodically, and each control frame is configured with a relatively large time slice, and there will be multiple uplink and downlink transmissions in this time slice.
  • the second communication device may use the control link to send a control frame, so as to allocate resources of the synchronous link and/or resources of the asynchronous link to the first communication device.
  • the second communication device may use the control link to send the semi-static configuration information of the synchronous link and/or the semi-static configuration information of the asynchronous link to the first communication device
  • the semi-static configuration information of the synchronous link may be, for example, is the transmission pattern (pattern) of the synchronous link transmission, which is used to indicate the position of the synchronous link transmission time window (interval) of the second communication device and the synchronous link transmission time window (interval) of the first communication device
  • the semi-static configuration information of the asynchronous link may be, for example, the transmission pattern (pattern) of the asynchronous link transmission, and the transmission pattern is used to indicate the position of the asynchronous link transmission time time window (interval) of the second communication device
  • the terminal node receives the asynchronous link within the asynchronous link transmission time window according to the configured asynchronous link receiving cycle (for example, receiving the control frame transmitted on the asynchronous link), so as to obtain the resource or scheduling information allocated to it by the master control node. Even when the master control node does not perform data scheduling or effective data transmission to the terminal node within the asynchronous link transmission time window, the terminal node will receive the asynchronous link within the asynchronous link transmission time window, thereby increasing the power consumption.
  • the configured asynchronous link receiving cycle for example, receiving the control frame transmitted on the asynchronous link
  • the embodiment of the present application provides a communication method and device, which can realize that the master control node controls the terminal node to stop receiving or start receiving the asynchronous link, and the terminal node communicates with the terminal node according to the asynchronous link receiving period in each asynchronous link. Compared with receiving an asynchronous link in a transmission time window, the power consumption of the terminal node can be saved by adopting the embodiment of the present application.
  • FIG. 4 it is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • a synchronous link and an asynchronous link are established between the first communication device and the second communication device. Further, the establishment time of the asynchronous link is earlier than the establishment time of the synchronous link.
  • the synchronous link is established based on the asynchronous link, and the synchronous link established based on the asynchronous link is associated with the asynchronous link.
  • the synchronous link data transmission between the first communication device and the second communication device can be scheduled or resource allocated by the control frame transmitted on the asynchronous link.
  • the second communication device is used to control the reception of the asynchronous link by the first communication device, the second communication device may be a master control node, and the first communication device may be a terminal node.
  • the process can include:
  • the second communication device sends first indication information to the first communication device, where the first indication information is carried in a synchronization link.
  • the first indication information is used to indicate to stop receiving the asynchronous link. Understandably, stopping receiving an asynchronous link may be understood as stopping detecting an asynchronous link.
  • the first indication information may be indication information of one or more bits. Taking the first indication information as one bit as an example, the first indication information may be a bit whose value is "0".
  • the first indication information is included in a physical layer frame header of the first synchronous link frame.
  • the first communication device parses the physical layer frame header of the first synchronous link frame, and acquires the first indication information from the physical layer frame header of the first synchronous link frame.
  • the physical layer frame header may be a frame header of a physical layer protocol data unit (protocol data unit, PDU).
  • PDU physical layer protocol data unit
  • each layer of the sending system (or sending equipment) will establish a data unit.
  • the data unit contains information from the upper layer and additional information from the entity of the current layer.
  • the data Units are transferred to a lower layer than the current one.
  • the receiving system (or receiving device) transfers these data units from the bottom up and separates out the relevant information in the data units at each layer of the protocol stack.
  • Fig. 5a is a schematic structural diagram of an exemplary first synchronous link frame.
  • the second communication device is used as the sending end device of the first synchronous link frame, and the high-level entities (such as data link layer entities or MAC layer entities, etc.)
  • the data unit service data unit, SDU
  • the physical layer entity obtains the PDU from the data link layer or the MAC layer
  • the PDU is used as a payload (payload), and a physical layer frame header (header) is added before the payload (payload) to form the first synchronous link frame sent on a physical channel.
  • the physical layer frame header (header) includes the first indication information.
  • the embodiment of the present application does not limit the specific position of the first indication information in the physical layer frame header.
  • the first communication device receives the first synchronous link frame from the physical channel, where the first synchronous link frame includes a physical layer frame header and a payload.
  • the payload is a PDU of an upper layer of the physical layer (such as a data link layer or a MAC layer).
  • the physical layer entity parses the physical layer frame header to obtain the first indication information, then removes the physical layer frame header, and submits the payload to the data link layer or the MAC layer for processing.
  • the payload may include a payload header and an SDU.
  • the payload header may include one or more fields, and the data link layer or MAC layer entity obtains the relevant information of the SDU according to the payload header, and submits the SDU to its upper layer for processing.
  • first synchronization link frame is a data structure transmitted on the synchronization link, and may also be called the first data packet or the first message, etc., and the embodiment of the present application does not name the data structure. Do limit. Of course, in this embodiment of the present application, other data formats may also be used to transmit the first indication information.
  • the first indication information is included in the payload header of the first synchronization link frame.
  • the first communication device parses the payload header of the first synchronization link frame at a high layer to obtain the first indication information.
  • Fig. 5b is a schematic structural diagram of an exemplary first synchronous link frame.
  • the second communication device is used as the sending end device of the first synchronous link frame, and the upper layers such as the data link layer or the MAC layer in the protocol stack will add the payload header to the SDU obtained from its upper layer ( payload header) to get the PDU and pass it to the physical layer.
  • the payload header includes the first indication information.
  • the embodiment of the present application does not limit the specific position of the first indication information in the payload header.
  • the PDU After the physical layer entity obtains the PDU from the data link layer or the MAC layer, the PDU is used as a payload (payload), and a physical layer frame header (header) is added before the payload (payload) to form the first synchronous link frame sent on a physical channel.
  • payload payload
  • header physical layer frame header
  • the first communication device receives the first synchronous link frame from the physical channel, where the first synchronous link frame includes a physical layer frame header and a payload.
  • the payload is the PDU obtained after the upper layer (such as the data link layer or MAC layer) adds a payload header (payload header) to the SDU from its upper layer.
  • the physical layer entity removes the physical layer frame header, and submits the payload (ie, PDU) to the data link layer or the MAC layer.
  • the payload (ie PDU) includes a payload header and an SDU.
  • the data link layer or MAC layer entity After receiving the payload, the data link layer or MAC layer entity parses the payload header to obtain the first indication information, then removes the payload header, and delivers the SDU in the payload to its upper layer for processing.
  • the payload header may include one or more fields, and the data link layer or MAC layer entity obtains relevant information of the SDU according to the payload header, and submits the SDU to its upper layer for processing.
  • the second communication device sends first indication information to the first communication device within a synchronization link transmission time window.
  • the second communication device (such as the master control node G) can transmit data in one or more sub-time windows of a synchronous link transmission time window " In G>T" transmission, the first indication information is carried in the physical layer frame header or the high layer payload header and sent to the first communication device.
  • the second communication device may judge whether the condition for instructing the first communication device to stop receiving the asynchronous link is satisfied, and if it is judged that the condition is met, the second communication device may send the first instruction to the first communication device information to instruct the first communications device to stop receiving the asynchronous link.
  • the conditions for judging whether to instruct the first communication device to stop receiving the asynchronous link may include:
  • the second communication device may determine whether to instruct the first communication device to stop receiving the asynchronous link according to the condition. For example, if the second communications device determines that the first communications device does not need to be scheduled, it may instruct the first communications device to stop receiving asynchronous links.
  • the first communication device may not need to receive the asynchronous link, so in this case, the first indication information may also be expressed as It is used to indicate that there is no scheduling for the first communication device on the asynchronous link.
  • the second communication device may determine whether to instruct the first communication device to stop receiving the asynchronous link according to the auxiliary information sent by the first communication device. For example, if the auxiliary information sent by the first communication device indicates that the power of the first communication device is low (such as lower than a set threshold), the scheduling of the first communication device may be temporarily stopped, and the first communication device may be instructed to stop receiving Asynchronous link.
  • the second communication device may determine whether to instruct the first communication device to stop receiving the asynchronous link according to the load condition of the second communication device. For example, if the load of the second communication device is high (for example, higher than a set threshold), scheduling of the first communication device may be temporarily stopped, and the first communication device may be instructed to stop receiving asynchronous links.
  • the second communication device may determine whether to instruct the first communication device to stop receiving the asynchronous link according to the transmission capability of the first communication device. For example, if the transmission capability of the first communication device is limited or low, stop scheduling the first communication device, and may instruct the first communication device to stop receiving asynchronous links.
  • the second communication device may determine whether to instruct the first communication device to stop receiving the asynchronous link according to the power consumption of the second communication device and/or the power consumption of the first communication device. For example, if the power consumption of the second communications device is high and/or the power consumption of the first communications device is high, the scheduling of the first communications device may be temporarily stopped and the first communications device may be instructed to stop receiving asynchronous links.
  • the above judging conditions can be used in any combination, that is, when the above two or more conditions are met, the second communication device judges that it needs to instruct the first communication device to stop receiving the asynchronous link. For example, if the transmission capability of the first communication device is low and the power consumption of the first communication device is high, the second communication device instructs the first communication device to stop receiving the asynchronous link. It can be understood that, the above only exemplarily lists several ways of judging whether it is necessary to instruct the first communication device to stop receiving the asynchronous link, and this embodiment of the present application is not limited to the above ways.
  • the first communication device stops receiving the asynchronous link according to the first indication information, where the asynchronous link is associated with the synchronous link carrying the first indication information.
  • the first communication device may stop receiving the asynchronous link after the first time offset according to the first indication information.
  • the first time offset may be preconfigured. By setting the first time offset, the first communication device can delay receiving the asynchronous link for a period of time after receiving the first indication information, thereby improving system flexibility.
  • the first communications device may stop receiving the asynchronous link after a first time offset from the first moment.
  • the first moment may be the moment when the first indication information is obtained through analysis. For example, if the first indication information is included in the physical layer frame header of the first synchronous link frame, the first moment may be the moment when the first indication information is obtained by parsing the physical layer frame header of the first synchronous link frame; If the first indication information is included in the high-layer payload header of the first synchronous link frame, the first moment may be the moment when the first indication information is obtained by parsing the high-layer payload header of the first synchronous link frame.
  • the first moment may also be the moment when the first synchronous link frame containing the first indication information is received, for example, when the first communication device receives the first synchronous link frame and records the current time as the first synchronous link frame
  • the receiving time of the frame if the first indication information is parsed from the physical layer frame header or the high-level payload header of the first synchronous link frame, then the recorded receiving time of the first synchronous link frame is used as the first synchronous link frame moment.
  • the time length indicated by the first time offset is greater than or equal to 0.
  • the first communication device may stop receiving the asynchronous link immediately after obtaining the first indication information; when the time length indicated by the first time offset is greater than 0, the first communication device When the time from obtaining the first indication information to the time indicated by the first time offset arrives, the device stops receiving the asynchronous link.
  • the second communication device (such as the master control node) carries the first indication information in the first synchronous link frame to instruct the first communication device (such as the terminal node) to stop asynchronous link reception, so as to save power consumption of the first communication device.
  • the second communication device can instruct the first communication device to stop receiving the asynchronous link, especially when there is no scheduling information for the first communication device on the asynchronous link, instruct the first communication device to stop receiving the asynchronous link.
  • the asynchronous link compared with the first communication device receiving the asynchronous link according to the configured receiving period of the asynchronous link, can reduce the power consumption of the first communication device and can also improve system flexibility.
  • the second communication device After the second communication device instructs the first communication device to stop receiving the asynchronous link through the first instruction information, it may also send the second instruction information to the first communication device to instruct the second communication device to start receiving the asynchronous link, for example, when the first communication device stops receiving the asynchronous link.
  • the second communication device When the second communication device needs to perform transmission scheduling for the first communication device, it may send second indication information to the first communication device, so that the first communication device receives the asynchronous link again to obtain the scheduling information.
  • the second communication device sends second indication information to the first communication device, where the second indication information is carried in a synchronization link.
  • the second indication information is used to indicate to start receiving the asynchronous link. Understandably, starting to receive an asynchronous link can be understood as starting to detect an asynchronous link.
  • the second indication information may be indication information of one or more bits. Taking the second indication information as one bit as an example, the second indication information may be a bit whose value is "1", so as to distinguish it from the first indication information whose value is "0".
  • the second indication information is included in a physical layer frame header of the second synchronous link frame.
  • the first communication device parses the physical layer frame header of the second synchronous link frame, and acquires the second indication information from the physical layer frame header of the second synchronous link frame.
  • the physical layer frame header may be a frame header of a physical layer PDU.
  • Fig. 6a is a schematic structural diagram of an exemplary second synchronous link frame. As shown in Figure 6a, the second communication device is used as the sender device of the second synchronous link frame, and the upper layers such as the data link layer or the MAC layer in the protocol stack will add the SDU obtained from the upper layer to the payload header ( payload header) to get the PDU and pass it to the physical layer.
  • the PDU After the physical layer entity obtains the PDU from the data link layer or the MAC layer, the PDU is used as a payload (payload), and a physical layer frame header (header) is added before the payload (payload) to form a second synchronous link frame sent on a physical channel.
  • the physical layer frame header (haeder) includes the second indication information. The embodiment of the present application does not limit the specific position of the second indication information in the physical layer frame header.
  • the first communication device receives the second synchronous link frame from the physical channel, where the second synchronous link frame includes a physical layer frame header and a payload.
  • the payload is the PDU obtained after the upper layer (such as the data link layer or MAC layer) adds a payload header (payload header) to the SDU from its upper layer.
  • the physical layer entity parses the physical layer frame header to obtain the second indication information, then removes the physical layer frame header, and submits the payload to the data link layer or the MAC layer for processing.
  • the payload may include a payload header and an SDU.
  • the payload header may include one or more fields, and the data link layer or MAC layer entity obtains the relevant information of the SDU according to the payload header, and submits the SDU to its upper layer for processing.
  • the above-mentioned second synchronization link frame is a data structure transmitted on the synchronization link, and may also be called a second data packet or a second message, etc., and the embodiment of the present application does not name the data structure Do limit.
  • other data formats may also be used to transmit the second indication information.
  • the second indication information is included in the payload header of the second synchronization link frame.
  • the first communication device parses the payload header of the second synchronization link frame at a high layer to obtain the second indication information.
  • Fig. 6b is a schematic structural diagram of an exemplary second synchronous link frame.
  • the second communication device is used as the sending end device of the second synchronous link frame, and the upper layers such as the data link layer or the MAC layer in the protocol stack will add the payload header to the SDU obtained from its upper layer ( payload header) to get the PDU and pass it to the physical layer.
  • the payload header includes the second indication information.
  • the embodiment of the present application does not limit the specific position of the second indication information in the payload header.
  • the PDU After the physical layer entity obtains the PDU from the data link layer or the MAC layer, the PDU is used as a payload (payload), and a physical layer frame header (header) is added before the payload (payload) to form a second synchronous link frame sent on a physical channel.
  • payload payload
  • header physical layer frame header
  • the first communication device receives the second synchronous link frame from the physical channel, where the second synchronous link frame includes a physical layer frame header and a payload.
  • the payload is a PDU of an upper layer of the physical layer (such as a data link layer or a MAC layer).
  • the physical layer entity removes the physical layer frame header, and submits the payload (ie, PDU) to the data link layer or the MAC layer.
  • the payload (ie PDU) includes a payload header and an SDU.
  • the data link layer or MAC layer entity After receiving the payload, the data link layer or MAC layer entity parses the payload header to obtain the second indication information, then removes the payload header, and delivers the SDU in the payload to its upper layer for processing.
  • the payload header may include one or more fields, and the data link layer or MAC layer entity obtains the relevant information of the SDU according to the payload header, and submits the SDU to its upper layer for processing.
  • the second communication device sends the first indication information to the first communication device within the synchronization link transmission time window.
  • the second communication device (such as the master control node G) can transmit data in one or more sub-time windows of a synchronous link transmission time window " In G>T" transmission, the second indication information is carried in the physical layer frame header or the high layer payload header and sent to the first communication device.
  • the second communication device may judge whether the condition for instructing the first communication device to start receiving the asynchronous link is met, and if it is judged that the condition is met, the second communication device may send the second instruction to the first communication device information to instruct the first communications device to initiate reception of the asynchronous link.
  • the conditions for judging whether to instruct the first communication device to start receiving the asynchronous link may include:
  • the second communication device may determine whether to instruct the first communication device to start receiving the asynchronous link according to whether to schedule the first communication device or allocate transmission resources for the first communication device. For example, if the second communication device needs to schedule the first communication device due to business needs, it may instruct the first communication device to start receiving the asynchronous link.
  • the second communication device determines whether to instruct the first communication device to start receiving the asynchronous link according to the auxiliary information sent by the first communication device. For example, if the auxiliary information sent by the first communication device indicates that the power of the first communication device is sufficient (such as higher than a set threshold) and the first communication device needs to be scheduled, the first communication device may be instructed to start receiving an asynchronous link .
  • the second communication device determines whether to instruct the first communication device to start receiving the asynchronous link according to the load condition of the second communication device. For example, if the load of the second communication device is low (such as lower than a set threshold), the first communication device may be allowed to be scheduled, and the first communication device may be instructed to start receiving an asynchronous link.
  • the second communication device determines whether to instruct the first communication device to start receiving the asynchronous link according to the transmission capability of the first communication device. For example, if the transmission capability of the first communication device is relatively high, scheduling may be performed on the first communication device, and the first communication device is instructed to start receiving an asynchronous link.
  • the second communication device determines whether to instruct the first communication device to start receiving the asynchronous link according to the power consumption of the second communication device and/or the power consumption of the first communication device. For example, if the second communications device's lower power consumption and/or the first communications device's lower power consumption may allow scheduling of the first communications device, the first communications device may be instructed to initiate receiving an asynchronous link.
  • the above judging conditions can be used in any combination, that is, when the above two or more conditions are met, the second communication device judges that it needs to instruct the first communication device to start receiving an asynchronous link. For example, if the transmission capability of the first communication device is high and the power consumption of the first communication device is low, the second communication device instructs the first communication device to start receiving the asynchronous link. It can be understood that, the above only exemplarily lists several ways of judging whether it is necessary to instruct the first communication device to start receiving an asynchronous link, and this embodiment of the present application is not limited to the above ways.
  • S404 The first communication device starts receiving the asynchronous link according to the second indication information.
  • the first communication device may start receiving the asynchronous link after the second time offset according to the second indication information.
  • the second time offset can be preconfigured.
  • the first communication device can delay receiving the asynchronous link for a period of time after receiving the second indication information, thereby improving system flexibility.
  • the first communication device may stop receiving the asynchronous link after a second time offset starting from the second moment.
  • the second moment may be the moment when the second indication information is obtained through analysis.
  • the first moment may be the moment when the second indication information is obtained by parsing the physical layer frame header of the second synchronous link frame;
  • the second moment may be the moment when the second indication information is obtained by parsing the high-layer payload header of the second synchronous link frame.
  • the second moment may also be the moment when the second synchronous link frame containing the second indication information is received, for example, when the first communication device receives the second synchronous link frame and records the current time as the second synchronous link frame
  • the receiving time of the frame if the second indication information is parsed from the physical layer frame header or the high layer payload header of the second synchronous link frame, then the recorded receiving time of the second synchronous link frame is used as the first Two moments.
  • the time length indicated by the second time offset is greater than or equal to 0.
  • the first communication device may immediately start receiving the asynchronous link after obtaining the second indication information; when the time length indicated by the second time offset is greater than 0, the first communication device When the time from obtaining the second indication information to the time indicated by the second time offset arrives, the device starts receiving the asynchronous link.
  • the second communication device (such as the master control node) carries the second indication information in the second synchronous link frame to instruct the first communication device (such as the terminal node) to start the asynchronous link
  • the reception of the asynchronous link can be enabled again on the basis of saving the power consumption of the first communication device, so as to ensure the service transmission of the first communication device.
  • the second communication device instructs the first communication device to stop receiving the asynchronous link through the first indication information within the synchronous link transmission time window
  • the subsequent synchronous link transmission In the time window the first communication device is instructed to start the asynchronous link through the second indication information, but because the synchronous link is an unreliable transmission, the first communication device may not receive the second indication information.
  • the embodiment of the present application In order to avoid the problem that the first communication device stops receiving the asynchronous link for a long time due to the unreliability of the transmission of the synchronous link, thereby causing the first communication device to be unable to obtain the scheduling information sent by the second communication device, the embodiment of the present application In this method, after the first communication device stops receiving the asynchronous link, if it does not receive the second indication information sent by the second communication device within a set period of time, the first communication device may automatically start receiving the asynchronous link.
  • FIG. 7 shows a timer-based communication method.
  • the second communication device sends first indication information to the first communication device (for the method of sending the first indication information, refer to the foregoing embodiments).
  • the first communication device stops receiving the synchronization link according to the first indication information, and starts a timer.
  • the method further includes: S703, when the timer times out, the first communication device starts receiving the asynchronous link.
  • the first communication device If the first communication device receives the second indication information sent by the second communication device during the running of the timer, the first communication device starts to receive the asynchronous link. That is, the timer is stopped or turned off.
  • the first communication device stops receiving the asynchronous link, if it does not receive the second indication information for instructing to start receiving the asynchronous link within a long period of time, the first communication device The device may automatically start receiving the asynchronous link, so as to avoid the problem that the receiving of the asynchronous link cannot be restarted when the second indication information is lost.
  • the second communication device may send second indication information to instruct the first communication device to start receiving an asynchronous link to receive newly transmitted data when performing new data transmission for the first communication device.
  • a first indication may be sent to instruct the first communication device to stop receiving the asynchronous link to save power consumption.
  • FIG. 8 shows a transmission sequence of a synchronous link and an asynchronous link.
  • the control node G needs to transmit data to the terminal node T, then in the "G>T" transmission of the first sub-time window of the transmission time window 1 of the synchronous link Send a bit "1" (that is, the second indication information) in , instructing the terminal node T to start receiving the asynchronous link after the second time offset; subsequently, the control node G needs to retransmit data to the terminal node T, then the synchronous In the "G>T” transmission of the third sub-time window of link transmission time window 1, a bit "0" (that is, the first indication information) is sent to instruct the terminal node T to stop receiving the asynchronous link after the first time offset.
  • a bit "0" that is, the first indication information
  • the terminal node T receives the second indication information and the first indication information successively, and the terminal node T can perform corresponding operations according to the last received indication information in the same synchronous link transmission time window .
  • the terminal node receives the first indication information last, so it stops receiving the asynchronous link after the first time offset according to the first indication information.
  • the first indication information may also be used to indicate to stop receiving the control link, and the first communication device may further stop receiving the control link according to the first indication information.
  • the second indication information may also be used to indicate to start receiving the control link, and the first communication device may further start receiving the control link according to the second indication information.
  • the embodiment of the present application also provides a communication device.
  • the communication device can implement the functions of the first communication device in the above embodiments.
  • the communication device can be a terminal, such as a smart home device in a smart home application scenario, a terminal in a smart transportation scenario, a terminal in a smart manufacturing scenario, or a smart wearable equipment etc.
  • the communication device may include: a transceiver unit 901 and a processing unit 902 .
  • the transceiver unit 901 is configured to receive the first instruction information sent by the second communication device, the first instruction information is carried on the synchronous link;
  • the processing unit 902 is configured to control the transceiver unit 901 to stop receiving the asynchronous link according to the first instruction information , the asynchronous link is associated with the synchronous link.
  • the above-mentioned communication device provided by the embodiment of the present application can implement all or part of the method steps of the first communication device in the above-mentioned method embodiment, and can achieve the same technical effect.
  • the same parts and beneficial effects as those in the method embodiment will be described in detail.
  • the embodiment of the present application also provides a communication device.
  • the communication device can implement the functions of the second communication device in the above embodiments.
  • the communication device may be a control device, such as a controller in a smart home application scenario, a controller in a smart transportation scenario, or a controller in a smart manufacturing scenario.
  • the communication device may include: a transceiver unit 1001 and a processing unit 1002 .
  • the transceiver unit 1001 is configured to send first indication information to the first communication device, the first indication information is carried on the synchronous link, and the first indication information is used to indicate to stop receiving the asynchronous link, the asynchronous link and the Synchronous link association.
  • the above-mentioned communication device provided by the embodiment of the present application can implement all or part of the method steps of the second communication device in the above-mentioned method embodiment, and can achieve the same technical effect.
  • the same parts and beneficial effects as those in the method embodiment will be described in detail.
  • the embodiment of the present application also provides a terminal.
  • the terminal can implement the method flow in the embodiment of the present application.
  • the terminal may be a smart terminal or a smart wearable device in scenarios such as smart transportation, smart home, and smart manufacturing that can implement the above-mentioned method flow of the present application.
  • the terminal may include a battery management system (battery management system, BMS) and a battery.
  • BMS battery management system
  • FIG. 11 it is a schematic structural diagram of a terminal provided in an embodiment of the present application.
  • the terminal may include a processor 1110, an external memory interface 1121, an internal memory 1120, a universal serial bus (universal serial bus, USB) interface 1170, an antenna 1, an antenna 2, a mobile communication module 1130, a wireless communication module 1140, and a sensor module 1150 .
  • the sensor module 1150 may include a gyroscope sensor 1151, an acceleration sensor 1152, a fingerprint sensor 1153, and a touch sensor 1154 (of course, the terminal may also include other sensors, such as a pressure sensor, an acceleration sensor, a gyroscope sensor, an ambient light sensor, a bone conduction sensors, etc., not shown in the figure).
  • the terminal also includes a battery management system and a battery 1162 , and the battery management system may include a charging management module 1160 and a power management module 1161 .
  • the structure shown in the embodiment of the present application does not constitute a specific limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or combine certain components, or separate certain components, or arrange different components.
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • the processor 1110 may include one or more processing units, for example: the processor 1110 may include an application processor (application processor, AP), a modem, a graphics processing unit (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural network processor (neural-network processing unit, NPU), etc. Wherein, different processing units may be independent devices, or may be integrated in one or more processors. Wherein, the controller may be the nerve center and command center of the terminal. The controller can generate an operation control signal according to the instruction opcode and timing signal, and complete the control of fetching and executing the instruction.
  • application processor application processor
  • ISP image signal processor
  • controller may be the nerve center and command center of the terminal. The controller can generate an operation control signal according to the instruction opcode and timing signal, and complete the control of fetching and executing the instruction.
  • a memory may also be provided in the processor 1110 for storing instructions and data.
  • the memory in the processor 1110 may be a cache memory.
  • the memory may hold instructions or data that the processor 1110 has just used or recycled. If the processor 1110 needs to use the instruction or data again, it can be called directly from the memory. Repeated access is avoided, and the waiting time of the processor 1110 is reduced, thereby improving the efficiency of the system.
  • Internal memory 1120 may be used to store one or more computer programs including instructions.
  • the processor 1110 executes various functional applications and data processing of the terminal by executing instructions stored in the internal memory 1120 .
  • the internal memory 1120 may include an area for storing programs and an area for storing data. Wherein, the storage program area can store operating system, codes of application programs, and the like.
  • the internal memory 1120 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, universal flash storage (universal flash storage, UFS) and the like.
  • the processor 1110 may execute the instructions stored in the internal memory 1120 and/or the instructions stored in the memory provided in the processor 1110, so that the terminal executes the method provided by the embodiment of the present application.
  • information such as codes and other data provided in the embodiments of the present application for executing the method flow may also be stored in an external memory.
  • the processor 1110 may execute codes stored in the external memory through the external memory interface 1121 .
  • the external memory interface 1121 may be used to connect an external memory card (for example, a Micro SD card) to expand the storage capacity of the terminal.
  • the external memory card communicates with the processor 1110 through the external memory interface 1121 to implement a data storage function.
  • the wireless communication function of the terminal can be realized by the antenna 1, the antenna 2, the mobile communication module 1130, the wireless communication module 1140, the modem processor and the baseband processor.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • the mobile communication module 1130 can provide wireless communication solutions including 2G/3G/4G/5G applied to the terminal.
  • the embodiment of the present application also provides a communication device, which may have the structure shown in Figure 12, and the communication device may be a device or a chip or a chip system that implements the above method.
  • the communication device 1200 shown in FIG. 12 may include at least one processor 1201 and an interface circuit 1202 .
  • the interface circuit 1202 may be used to support the communication apparatus 1200 in receiving or sending signaling or data, for example, it may be used for the communication apparatus 1200 to perform the step of sending the first indication information by the second communication device in the method shown in FIG. 4 or FIG. 7 , or A step of the second communication device receiving the first indication information.
  • the at least one processor 1201 is configured to implement the steps involved in the first communication device and/or the second communication device in the method provided by the above embodiments of the present application, for example, it may be configured to stop receiving an asynchronous link according to the first indication information.
  • the communication device 1200 may further include a memory 1203, in which computer programs and instructions are stored, and the memory 1203 may be coupled with the processor 1201 and/or the interface circuit 1202, and is used to support the processor 1201 to call the computer programs in the memory 1203, Instructions to implement the steps involved in the first communication device or the second communication device in the method provided by the embodiment of the present application; in addition, the memory 1203 can also be used to store the data involved in the method embodiment of the present application, for example, to store the support interface
  • the circuit 1202 implements data and instructions necessary for interaction, and/or is used to store configuration information necessary for the communication device 1200 to execute the method described in the embodiment of the present application.
  • the embodiment of the present application also provides a computer-readable storage medium on which some instructions are stored. When these instructions are called and executed by the computer, the computer can complete the above-mentioned method embodiment and method implementation. methods involved in any one possible design of the example.
  • the computer-readable storage medium is not limited, for example, it may be RAM (random-access memory, random access memory), ROM (read-only memory, read-only memory), etc.
  • the present application also provides a computer program product, which can complete the method involved in the method embodiment and any possible design of the above method embodiment when the computer program product is invoked and executed by a computer.
  • Coupled refers to the direct or indirect combination of two parts with each other.
  • This combination can be fixed or movable. This combination can allow the flow of fluid, electricity, electrical signals or other types of signals between two parts. communicate between.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present invention will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a solid state disk (Solid State Disk, SSD)), etc.
  • a magnetic medium such as a floppy disk, a hard disk, or a magnetic tape
  • an optical medium such as a DVD
  • a semiconductor medium such as a solid state disk (Solid State Disk, SSD)
  • the various illustrative logic units and circuits described in the embodiments of the present application can be implemented by a general-purpose processor, a digital signal processor, an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA) or other programmable logic devices, Discrete gate or transistor logic, discrete hardware components, or any combination of the above designed to implement or operate the described functions.
  • the general-purpose processor may be a microprocessor, and optionally, the general-purpose processor may also be any conventional processor, controller, microcontroller or state machine.
  • a processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration to accomplish.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,应用于无线通信技术领域,用以减少通信设备功耗。第一通信设备接收第二通信设备发送的第一指示信息,所述第一指示信息承载于同步链路,用于指示第一通信设备停止接收与该同步链路关联的异步链路;第一通信设备根据该第一指示信息停止接收该异步链路。第一通信设备还可接收第二通信设备发送的第二指示信息,所述第二指示信息承载于该同步链路,用于指示第一通信设备启动接收该异步链路,所述第一通信设备根据该第二指示信息,启动接收该异步链路。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2021年08月20日提交中国专利局、申请号为202110963288.2、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种通信方法及装置。
背景技术
现有的一些无线通信技术中,第一通信设备(比如主控节点)和第二通信设备(比如终端节点)之间首先建立异步链路(即面向连接的异步链路),用于传输控制信令和异步数据,该链路为可靠传输,即第一通信设备收到第二通信设备反馈的确认(Acknowledge,ACK)或者数据包重传次数达到预设的最大重传次数或者满足包丢弃条件后,才传输新的数据包,每个数据包的传输时间较为宽泛。
对于音频等传输时序相对严格的业务,通信系统中定义了同步链路(即面向连接的同步链路),用于传输“等时”数据流,即每一帧数据只能在有限时间内传输,如果在有限时间内第二通信设备没有成功接收,第一通信设备也会按照预配置的时间在下一个时间周期进行数据新传,因此,同步链路为非可靠传输。
由于同步链路的特点,同步链路的控制信令需要通过可靠的异步链路传输。每个同步链路均关联一个异步链路,第一通信设备和第二通信设备需要同时维护同步链路以及与该同步链路关联的异步链路,第二通信设备按照配置的异步链路接收周期,在预定时刻接收异步链路,导致第二通信设备功耗较高。
发明内容
本申请实施例提供一种通信方法及装置,用以减少通信设备功耗。
第一方面,提供一种通信方法,包括:第一通信设备接收第二通信设备发送的第一指示信息,所述第一指示信息承载于同步链路;所述第一通信设备根据所述第一指示信息停止接收异步链路,所述异步链路与所述同步链路相关联。
可理解的,由于当所述异步链路上没有对所述第一通信设备的调度时,所述第一通信设备可不必对该异步链路进行监听,因此在该情况下,所述第一指示信息可也表述为用于指示所述异步链路上不存在对所述第一通信设备的调度。
上述实现方式中,第二通信设备(如主控节点)通过第一指示信息指示第一通信设备(如终端节点)停止对异步链路的接收,以节省第一通信设备的功耗。与第一通信设备按照配置的异步链路接收周期去接收异步链路相比,采用上述方案可以由第二通信设备指示第一通信设备停止对异步链路的接收,从而提高系统灵活性,并可以降低第一通信设备的功耗。
在一种可能的实现方式中,所述第一指示信息包括在第一同步链路帧的物理层帧头中; 所述方法还包括:所述第一通信设备解析所述第一同步链路帧的物理层帧头,所述第一通信设备从所述第一同步链路帧的物理层帧头获取所述第一指示信息。
在一种可能的实现方式中,所述第一指示信息包括在第一同步链路帧的高层有效载荷头中;所述方法还包括:所述第一通信设备解析所述第一同步链路帧的高层有效载荷头,所述第一通信设备从所述第一同步链路帧的高层有效载荷头获取所述第一指示信息。
在一种可能的实现方式中,所述根据所述第一指示信息停止接收异步链路,包括:所述第一通信设备根据所述第一指示信息,在第一时间偏移后停止接收所述异步链路。
可选的,所述第一时间偏移指示的时间长度大于或等于0。当所述第一时间偏移指示的时间长度为0时,所述第一通信设备在获得所述第一指示信息后立即停止接收所述异步链路;当所述第一时间偏移指示的时间长度大于0时,所述第一通信设备在从获得所述第一指示信息到该第一时间偏移指示的时间到达时,停止接收所述异步链路。通过上述方案可以灵活指定对停止接收所述异步链路的操作生效时间。
在一种可能的实现方式中,在所述接收第二通信设备发送的第一指示信息之后,所述方法还包括:启动定时器;若所述定时器超时,则所述第一通信设备启动接收所述异步链路。
在一种可能的实现方式中,在所述接收第二通信设备发送的第一指示信息之后,所述方法还包括:启动定时器,若在所述定时器运行期间接收到所述第二通信设备发送的第二指示信息,则启动接收所述异步链路。
通过上述实现方式,当所述第一通信设备停止接收所述异步链路后,若在较长时间内没有接收用于指示启动接收所述异步链路的第二指示信息,则所述第一通信设备可以自动启动接收所述异步链路,以避免在第二指示信息丢失的情况下,无法重新启动接收所述异步链路的问题。
在一种可能的实现方式中,所述第一通信设备根据所述第一指示信息停止接收异步链路之后,所述方法还包括:所述第一通信设备接收所述第二通信设备发送的第二指示信息,所述第一通信设备根据所述第二指示信息启动接收所述异步链路。
在一种可能的实现方式中,所述第二指示信息包括在第二同步链路帧的物理层帧头中;所述方法还包括:所述第一通信设备解析所述第二同步链路帧的物理层帧头,所述第一通信设备从所述第二同步链路帧的物理层帧头获取所述第二指示信息。
在一种可能的实现方式中,所述第二指示信息包括在第二同步链路帧的高层有效载荷头中;所述方法还包括:所述第一通信设备解析所述第二同步链路帧的高层有效载荷头,所述第一通信设备从所述第二同步链路帧的高层有效载荷头获取所述第二指示信息。
在一种可能的实现方式中,所述根据所述第二指示信息启动接收异步链路,包括:所述第一通信设备根据所述第二指示信息,在第二时间偏移后启动接收所述异步链路。
可选的,所述第二时间偏移指示的时间长度大于或等于0。当所述第二时间偏移指示的时间长度为0时,所述第一通信设备在获得所述第二指示信息后立即启动接收所述异步链路;当所述第二时间偏移指示的时间长度大于0时,所述第一通信设备在从获得所述第二指示信息到该第二时间偏移指示的时间到达时,启动接收所述异步链路。通过上述方案可以灵活指定对启动接收所述异步链路的操作生效时间。
在一种可能的实现方式中,所述第一指示信息还可用于指示停止接收控制链路,所述第一通信设备根据所述第一指示信息进一步停止接收所述控制链路。在一种可能的实现方 式中,所述第二指示信息还可用于指示启动接收所述控制链路,所述第一通信设备根据所述第二指示信息进一步启动接收所述控制链路。其中,所述第二通信设备使用所述控制链路为所述第一通信设备分配同步链路和/或异步链路的资源,更具体的,所述第二通信设备使用所述控制链路向所述第一通信设备发送同步链路和/或异步链路的半静态配置信息,所述半静态配置信息比如可以是同步链路/异步链路传输的传输图案(pattern),该传输图案用于指示所述第二通信设备的同步链路/异步链路的传输时间窗口(interval)和所述第一通信设备的同步链路/异步链路的传输时间窗口(interval)。
第二方面,提供一种通信方法,包括:第二通信设备向第一通信设备发送第一指示信息,所述第一指示信息承载于同步链路,所述第一指示信息用于指示停止接收异步链路,所述异步链路与所述同步链路相关联。
在一种可能的实现方式中,所述第一指示信息包括在第一同步链路帧的物理层帧头中。
在一种可能的实现方式中,所述第一指示信息包括在第一同步链路帧的高层有效载荷头中。
在一种可能的实现方式中,所述第二指示信息还用于指示停止接收控制链路。
在一种可能的实现方式中,所述方法还包括:所述第二通信设备向所述第一通信设备发送第二指示信息,所述第二指示信息承载于所述同步链路,所述第二指示信息用于指示启动接收所述异步链路。
在一种可能的实现方式中,所述第二指示信息包括在第二同步链路帧的物理层帧头中。
在一种可能的实现方式中,所述第二指示信息包括在第二同步链路帧的高层有效载荷头中。
在一种可能的实现方式中,所述第二指示信息还用于指示启动接收控制链路。
在一种可能的实现方式中,所述第二通信设备向所述第一通信设备发送第一同步链路帧之前,该方法还可包括以下操作:
所述第二通信设备根据所述第一通信设备发送的辅助信息,确定需要指示所述第一通信设备停止接收异步链路;或者,所述第二通信设备根据所述第二通信设备的负载情况,确定需要指示所述第一通信设备停止接收异步链路;或者,所述第二通信设备根据所述第一通信设备的传输能力,确定需要指示所述第一通信设备停止接收异步链路;或者,所述第二通信设备根据所述第二通信设备的功耗和/或所述第一通信设备的功耗,确定需要指示所述第一通信设备停止接收异步链路。
第三方面,提供一种通信装置,包括处理单元和收发单元;所述收发单元,用于接收第二通信设备发送的第一指示信息,所述第一指示信息承载于同步链路;所述处理单元,用于根据所述第一指示信息控制所述收发单元停止接收异步链路,所述异步链路与所述同步链路相关联。一种可能的场景中,该通信装置可以为电池或者电池内部的芯片或者集成电路。
在一种可能的实现方式中,所述第一指示信息包括在第一同步链路帧的物理层帧头中;所述处理单元具体用于:解析所述第一同步链路帧的物理层帧头,从所述第一同步链路帧的物理层帧头获取所述第一指示信息。
在一种可能的实现方式中,所述第一指示信息包括在第一同步链路帧的高层有效载荷头中;所述处理单元具体用于:解析所述第一同步链路帧的高层有效载荷头,从所述第一同步链路帧的高层有效载荷头获取所述第一指示信息。
在一种可能的实现方式中,处理单元具体用于:根据所述第一指示信息,在第一时间偏移后控制所述收发单元停止接收所述异步链路。
在一种可能的实现方式中,所述第一指示信息还用于指示停止接收控制链路;所述处理单元还用于:根据所述第一指示信息控制所述收发单元停止接收控制链路。
在一种可能的实现方式中,所述处理单元还用于:在所述收发单元接收所述第一指示信息后,启动定时器;若所述定时器运行超时,则控制所述收发单元启动接收所述异步链路。
在一种可能的实现方式中,所述处理单元还用于:在所述收发单元接收所述第一指示信息后,启动定时器,若所述定时器运行期间所述收发单元接收到所述第二通信设备发送的第二指示信息,则控制所述收发单元启动接收所述异步链路。
在一种可能的实现方式中,所述收发单元还用于:停止接收所述异步链路之后,接收所述第二通信设备发送的第二指示信息;所述处理单元还用于:根据所述第二指示信息控制所述收发单元启动接收所述异步链路。
在一种可能的实现方式中,所述第二指示信息包括在第二同步链路帧的物理层帧头中;所述处理单元具体用于:解析所述第二同步链路帧的物理层帧头,从所述第二同步链路帧的物理层帧头获取所述第二指示信息。
在一种可能的实现方式中,所述第二指示信息包括在第二同步链路帧的高层有效载荷头中;所述处理单元具体用于:解析所述第二同步链路帧的高层有效载荷头,从所述第二同步链路帧的高层有效载荷头获取所述第二指示信息。
在一种可能的实现方式中,所述处理单元具体用于:根据所述第二指示信息,在所述第二时间偏移后控制所述收发单元启动接收所述异步链路。
在一种可能的实现方式中,所述第二指示信息还用于指示启动接收控制链路;所述处理单元还用于:根据所述第二指示信息控制所述收发单元启动接收所述控制链路。
第四方面,提供一种通信装置,包括收发单元;所述收发单元,用于向第一通信设备发送第一指示信息,所述第一指示信息承载于同步链路,所述第一指示信息用于指示停止接收异步链路,所述异步链路与所述同步链路相关联。一种可能的场景中,该通信装置可以为电池管理系统或者电池管理系统的芯片或者集成电路。
在一种可能的实现方式中,所述第一指示信息包括在第一同步链路帧的物理层帧头中。
在一种可能的实现方式中,所述第一指示信息包括在第一同步链路帧的高层有效载荷头中。
在一种可能的实现方式中,所述第一指示信息还用于指示停止接收控制链路。
在一种可能的实现方式中,所述收发单元还用于:向所述第一通信设备发送第二指示信息,所述第二指示信息承载于所述同步链路,所述第二指示信息用于指示启动接收所述异步链路。
在一种可能的实现方式中,所述第二指示信息包括在第二同步链路帧的物理层帧头中。
在一种可能的实现方式中,所述第二指示信息包括在第二同步链路帧的高层有效载荷头中。
在一种可能的实现方式中,所述第二指示信息还用于指示启动接收控制链路。
第五方面,提供一种通信装置,包括:一个或多个处理器,接口电路;当一个或多个计算机程序的指令被所述一个或多个处理器执行时,使得所述通信装置执行如上述第一方 面或第二方面中任一项所述的方法。
第六方面,提供一种终端,包括如上述第五方面中所述的通信装置。
第七方面,提供一种计算机可读存储介质,所述计算机可读存储介质包括计算机程序,当计算机程序在计算设备上运行时,使得所述计算设备执行如上述第一方面或第二方面中任一项所述的方法。
第八方面,提供一种计算机程序产品,所述计算机程序产品在被计算机调用时,使得所述计算机执行如上述第一方面或第二方面中任一项所述的方法。
以上第二方面到第八方面的有益效果,请参见第一方面的有益效果,不重复赘述。
附图说明
图1为本申请适用的通信系统架构示意图;
图2为本申请实施例中的通信设备的开放系统互连(OSI)模型示意图;
图3为传统通信中同步链路与异步链路的数据收发时序示意图;
图4为本申请实施例提供的通信方法的流程示意图;
图5a、图5b分别为本申请实施例中第一同步链路帧的示意图;
图6a、图6b分别为本申请实施例中第二同步链路帧的示意图;
图7为本申请实施例提供的通信方法的流程示意图;
图8为本申请实施例中的同步链路和异步链路数据处理的收发时序示意图;
图9、图10分别为本申请实施例提供的通信装置的结构示意图;
图11为本申请实施例提供的终端的结构示意图;
图12为本申请实施例提供的通信装置的结构示意图。
具体实施方式
本申请实施例可应用于无线通信系统,例如可应用于短距通信系统。
参见图1,为可以实现本申请实施例的示例性通信系统100的框图。通信系统100包括通信设备110(a),通信设备110(a)经由通信链路120耦合到通信设备110(b)。通信设备110(b)可以通过通信链路120与通信设备110(a)交换数据。通信设备110(a)与通信设备110(b)之间可以基于无线通信协议建立通信链路120,使得通信设备110(a)和通信设备110(b)可以彼此通信。
通信设备110(a)与通信设备110(b)可以是任何适当的、能够联网且支持无线通信的电子设备,例如,通信设备110(a)可以是计算机、网关、接入点或控制器等,通信设备110(b)可以是移动电话、个人数字助理(PDA)、机顶盒、游戏机或车载终端等。以智能家居应用场景为例,通信设备110(b)作为终端节点可包括智能家居设备(如蓝牙音箱等),通信设备110(a)作为主控节点用于对智能家居设备进行控制,比如包括控制器、家庭网关等。再以智能终端应用场景为例,通信设备110(a)作为主控节点可以是智能手机或平板电脑等,通信设备110(b)作为终端节点可以包括蓝牙耳机等。上述通信架构也可应用于其他场景,比如智能制造应用场景,在此不再一一列举。
当然,通信设备110(a)、通信设备110(b)以及通信链路120仅仅是网络的示例性组件,这是由于网络可以进一步包括任意数量的适当的设备以形成较大的网络(包括例如,局域 网(LAN)、广域网(WAN)、无线LAN(WLAN)),和/或可以连接到互联网。
参见图2,为图1中的通信设备110(a)和通信设备110(b)的开放系统互连(OSI)模型200(a,b)的框图。OSI模型200(a,b)被划分成7个逻辑层(或称7层协议栈),自上而下包括:应用层211(a,b),表示层212(a,b),会话层213(a,b),传输层214(a,b),网络层215(a,b),数据链路层216(a,b),物理层217(a,b)。OSI模型200(a,b)可以用于表示通信设备110(a)和通信设备110(b)。
物理层217(a,b)提供了针对在通信设备110(a)、110(b)和通信链路120之间交互的电气的和物理的规范,包括像引脚布局和信号电压等。数据链路层(或称链路层)216(a,b)提供了针对在通信设备110(a)和通信设备110(b)之间的数据传输的功能性和/或程序性的规定,诸如寻址和信道接入控制机制等。数据链路层216(a,b)具有两个子层,这两个子层自上而下包括逻辑链路控制(logical link control,LLC)层和介质接入控制(media access control,MAC)层。为了简单起见,数据链路层216(a,b)也被称为MAC层。数据链路层将来自于网络层的数据报组装成数据包,即帧(frame),每一帧包括帧头和载荷,帧头中包括必要的控制信息(比如发送端地址信息、接收端地址信息等),载荷部分包括数据包的内容。
图2仅示出了OSI七层协议模型,本申请实施例中的通信设备还可能采用其他网络协议模型,举例来说,可采用五层协议模型。五层协议模型自上而下包括:应用层、传输层、网络层、链路层和物理层(也称实体层)。五层协议模型中的链路层的定义基本与OSI七层协议模型中的数据链路层相同,五层协议模型中的物理层的定义基本与OSI七层协议模型中的物理层相同。应当指出的是,除上述OSI七层协议模型和五层协议模型以外,现有技术和未来的演进技术中还存在或者可能存在其它协议模型。可以理解,本申请提供的方案所应用的通信装置所遵循的协议模型不局限于上述可能的协议模型,可以是能够支撑本申请的通信的任意可能的协议模型。
本申请提供的方案中,将物理层的上一层,即数据链路层(或称链路层)称为高层,或者,至少包含数据链路层的多个层统称为高层。可理解,本申请实施例中的“高层”是相较于物理层而言的,本申请实施例中的“高层”的具体含义,可根据所采用的协议模型而定。
在通信系统中,通信设备间的通信链路可包括异步链路和同步链路,还可进一步包括控制链路。
通信设备按照一定的时序进行数据收发,其中包括同步链路传输时间窗和异步链路传输时间窗。也就是说,在同步链路传输时间窗内通信设备间的传输称为同步链路传输,可理解的,通信设备通过同步链路进行传输;在异步链路传输时间窗内通信设备间的传输称为异步链路传输,可理解的,通信设备通过异步链路进行传输。图3示例性示出了一种同步链路与异步链路的数据收发时序示意图。
如图3所示,同步链路传输时间窗1(interval1或称pattern1)和同步链路传输时间窗2(interval2或称pattern2)为同步链路的数据传输时间窗。同步链路传输时间窗1和同步链路传输时间窗2可分别包括两个子时间窗(sub jinterval或称sub pattern)。一个子时间窗内的数据传输包括主控节点(主控节点在图3中表示为G)到终端节点(终端节点在图3中表示为T)的传输(在图3中表示为G>T),以及终端节点到主控节点的传输(在图3中表示为T>G)。
同步链路传输时间窗1和同步链路传输时间窗2之间的时间间隔大小是确定的,可以用于异步链路的数据传输,同步链路传输时间窗1和同步链路传输时间窗2之间用于异步 链路数据传输的时间片可称为异步链路传输时间窗。在异步链路传输时间窗内的数据传输中包括控制帧传输(在图3中表示为G-控制),通过该控制帧,主控节点可将为终端节点分配的传输资源指示给终端节点,或者将调度信息发送给终端节点。
通信设备可采用重复传输的方式以提高传输可靠性,比如,对于一个数据包(比如同步链路帧)可传输多次,其中,对于该数据包来说,第一次传输可称为初传或新传,其后的重复传输可称为重传。
通信设备处于连接态时,同步链路是基于连接态异步链路建立的,连接态下,建立的同步链路也称为连接态同步链路,异步链路也称为连接态异步链路。连接态异步链路释放后,连接态同步链路也跟随释放。连接态同步链路释放后,不影响连接态异步链路。
同步链路可适用于等时数据的传输,接收端或发送端预先可知在一个时间区间内自身的接收窗或发送窗,即近周期性在预配置的时刻进行数据的接收或发送。一个示例,在如图3所示的同步链路传输间隔中,为了在下一时刻发送新的数据包,一条同步链路的某个数据包的传输次数是有限的,也就是几次重传之后数据就会被冲洗(flush)掉,从这个角度看,两次新传之间的时间是固定的,由于有限次重传,因此,同步链路传输也被认为是非可靠传输。
异步链路是相对于同步链路而言的,收发时刻具有突发性,也就是两次新传数据包之间没有严格的时间要求,根据调度指示确定是数据新传还是重传(包括接收过程和发送过程)。例如,如果没有调度指示进行数据新传,则数据重传可能一直进行下去,从这个角度看,异步链路的可靠性高于同步链路。
控制链路对应的帧为控制帧,控制帧用来半静态配置传输资源。控制帧周期性传输,每一个控制帧配置一个相对较大的时间片,在这个时间片内会有多次上下行传输。例如,第二通信设备可使用该控制链路发送控制帧,从而为第一通信设备分配同步链路的资源和/或异步链路的资源。比如,第二通信设备可使用该控制链路向第一通信设备发送同步链路的半静态配置信息和/或异步链路的半静态配置信息,所述同步链路的半静态配置信息比如可以是同步链路传输的传输图案(pattern),该传输图案用于指示第二通信设备的同步链路传输时间时间窗(interval)的位置和第一通信设备的同步链路传输时间窗(interval)的位置;所述异步链路的半静态配置信息比如可以是异步链路传输的传输图案(pattern),该传输图案用于指示第二通信设备的异步链路传输时间时间窗(interval)的位置和第一通信设备的异步链路传输时间窗(interval)的位置。
终端节点按照配置的异步链路接收周期,在异步链路传输时间窗内接收异步链路(如接收异步链路上传输的控制帧),以获取主控节点为其分配的资源或者调度信息。即使当主控节点在异步链路传输时间窗内没有对终端节点进行数据调度或有效的数据传输,该终端节点也会在该异步链路传输时间窗接收异步链路,从而增加了该终端节点的功耗。
为此,本申请实施例提供了一种通信方法及装置,可实现由主控节点控制终端节点对异步链路停止接收或启动接收,与终端节点按照异步链路接收周期在每个异步链路传输时间窗去接收异步链路相比,采用本申请实施例可以节省终端节点的功耗。
参见图4,为本申请实施例提供的通信方法的流程示意图。该流程中,第一通信设备和第二通信设备之间建立有同步链路和异步链路。进一步,异步链路的建立时间早于同步链路的建立时间。同步链路是基于异步链路建立的,基于异步链路建立的同步链路,与该异步链路相关联。第一通信设备和第二通信设备间的同步链路数据传输可由该异步链路上 传输的控制帧进行调度或进行资源分配。在本流程中,第二通信设备用于控制第一通信设备对异步链路的接收,第二通信设备可以是主控节点,第一通信设备可以是终端节点。
如图4所示,该流程可包括:
S401:第二通信设备向第一通信设备发送第一指示信息,该第一指示信息承载于同步链路。
第一指示信息用于指示停止接收异步链路。可理解的,停止接收异步链路可理解为停止对异步链路进行检测。
可选的,第一指示信息可以是一个或多个比特的指示信息。以第一指示信息为一个比特为例,第一指示信息可以是一个取值为“0”的比特。
在一些实施例中,第一指示信息包括在第一同步链路帧的物理层帧头中。第一通信设备解析第一同步链路帧的物理层帧头,从该第一同步链路帧的物理层帧头获取第一指示信息。
可选的,所述物理层帧头可以是物理层协议数据单元(protocol data unit,PDU)的帧头。基于分层网络结构,例如如图2所示的OSI模型,发送系统(或发送设备的每一层都将建立数据单元。数据单元包含来自上层的信息以及当前层的实体附加的信息,该数据单元被传送到比当前层较低的层。接收系统(或接收设备)自下而上传送这些数据单元,并在协议栈的每一层分离出数据单元中的相关信息。
图5a是一种示例性的第一同步链路帧的结构示意图。如图5a所示,第二通信设备作为第一同步链路帧的发送端设备,其协议栈中的高层实体(如数据链路层实体或MAC层实体等),将从上层获取到的业务数据单元(service data unit,SDU)添加有效载荷头(payload header)得到PDU并传递给物理层。物理层实体从数据链路层或MAC层获取PDU后,将该PDU作为有效载荷(payload),并在该有效载荷(payload)前添加物理层帧头(header)后形成第一同步链路帧在物理信道上发送。其中,该物理层帧头(header)中包括第一指示信息。本申请实施例对第一指示信息在该物理层帧头中的具体位置不做限制。
第一通信设备作为第一同步链路帧的接收端设备,从物理信道接收第一同步链路帧,该第一同步链路帧包括物理层帧头和有效载荷。其中,有效载荷为物理层的上层(如数据链路层或MAC层)的PDU。物理层实体解析该物理层帧头,得到第一指示信息,然后去掉物理层帧头,将有效载荷递交至数据链路层或MAC层处理。其中,有效载荷可以包括有效载荷头和SDU。有效载荷头可以包括一个或多个字段,数据链路层或MAC层实体根据有效载荷头获取到SDU的相关信息,将SDU递交至其上层处理。
可理解的,上述第一同步链路帧是在同步链路上传输的一种数据结构,也可以被称为第一数据包或第一消息等,本申请实施例对该数据结构的命名不做限制。当然,本申请实施例也可使用其他数据格式来传输第一指示信息。
在另一些实施例中,第一指示信息包括在第一同步链路帧的有效载荷头中。第一通信设备在高层解析第一同步链路帧的有效载荷头,获得第一指示信息。
图5b是一种示例性的第一同步链路帧的结构示意图。如图5b所示,第二通信设备作为第一同步链路帧的发送端设备,其协议栈中的数据链路层或MAC层等高层,将从其上层获取到的SDU添加有效载荷头(payload header)得到PDU并传递给物理层。其中,该有效载荷头中包括第一指示信息。本申请实施例对第一指示信息在该有效载荷头中的具体位置不做限制。物理层实体从数据链路层或MAC层获取PDU后,将该PDU作为有效载 荷(payload),并在该有效载荷(payload)前添加物理层帧头(header)后形成第一同步链路帧在物理信道上发送。
第一通信设备作为第一同步链路帧的接收端设备,从物理信道接收第一同步链路帧,该第一同步链路帧包括物理层帧头和有效载荷。其中,有效载荷也就是高层(如数据链路层或称MAC层)对来自于其上层的SDU添加有效载荷头(payload header)后得到的PDU。物理层实体去掉物理层帧头,将有效载荷(即PDU)递交至数据链路层或MAC层。该有效载荷(即PDU)包括有效载荷头和SDU。数据链路层或MAC层实体接收到该有效载荷后解析有效载荷头,获得第一指示信息,然后去掉该有效载荷头,并将该有效载荷中的SDU传递给其上层进行处理。其中,有效载荷头可以包括一个或多个字段,数据链路层或MAC层实体根据有效载荷头获取到SDU的相关信息,将SDU递交至其上层处理。
S401中,第二通信设备在同步链路传输时间窗内,将第一指示信息发送给第一通信设备。以图3所示的同步链路与异步链路的数据收发时序为例,第二通信设备(如主控节点G)可以在一个同步链路传输时间窗中的一个或多个子时间窗的“G>T”传输中,将第一指示信息承载在物理层帧头或高层有效载荷头中发送给第一通信设备。
可选的,第二通信设备在发送第一指示信息之前,可以判断是否满足需要指示第一通信设备停止接收异步链路的条件,若判断满足条件,则通过向第一通信设备发送第一指示信息以指示第一通信设备停止接收异步链路。
示例性的,用于判断是否需要指示第一通信设备停止接收异步链路的条件可包括:
(1)是否对第一通信设备进行调度或者为第一通信设备分配传输资源。第二通信设备可根据该条件判断是否需要指示第一通信设备停止接收异步链路。例如,如果第二通信设备确定无需调度第一通信设备,则可指示第一通信设备停止接收异步链路。
可理解的,当无需在异步链路上发送对第一通信设备的调度信息时,第一通信设备可不必对该异步链路进行接收,因此在该情况下,第一指示信息可也表述为用于指示异步链路上不存在对第一通信设备的调度。
(2)第一通信设备发送的辅助信息是否表明可指示第一通信设备停止接收异步链路。第二通信设备可根据第一通信设备发送的辅助信息判断是否需要指示第一通信设备停止接收异步链路。例如,如果第一通信设备发送的辅助信息表明第一通信设备的电量较低(比如低于设定阈值),则可暂时停止对第一通信设备进行调度,并可指示第一通信设备停止接收异步链路。
(3)第二通信设备的负载是否大于设定阈值。第二通信设备可根据第二通信设备的负载情况判断是否需要指示第一通信设备停止接收异步链路。例如,如果第二通信设备的负载较高(比如高于设定阈值),可暂时停止对第一通信设备进行调度,并可指示第一通信设备停止接收异步链路。
(4)第一通信设备的传输能力是否表明可指示第一通信设备停止接收异步链路。第二通信设备可根据第一通信设备的传输能力,判断是否需要指示第一通信设备停止接收异步链路。例如,如果第一通信设备的传输能力有限或者较低,则停止对第一通信设备进行调度,并可指示第一通信设备停止接收异步链路。
(5)第二通信设备的功耗是否大于设定阈值,和/或第一通信设备的功耗是否大于设定阈值。第二通信设备可根据该第二通信设备的功耗和/或第一通信设备的功耗,判断是否需要指示第一通信设备停止接收异步链路。例如,如果第二通信设备的功耗较高和/或第一 通信设备的功耗较高,则可暂时停止对第一通信设备进行调度,并可指示第一通信设备停止接收异步链路。
上述判断条件可以任意结合使用,也就是说,当满足上述两个或两个以上条件时,第二通信设备才判断需要指示第一通信设备停止接收异步链路。比如,如果第一通信设备的传输能力较低且第一通信设备的功耗较高,则第二通信设备指示第一通信设备停止接收异步链路。可理解的,以上仅示例性的列举出了几种判断是否需要指示第一通信设备停止接收异步链路的方式,本申请实施例并不仅限于上述方式。
S402:第一通信设备根据第一指示信息停止接收异步链路,该异步链路与承载第一指示信息的同步链路相关联。
可选的,第一通信设备可根据第一指示信息,在第一时间偏移后停止接收异步链路。该第一时间偏移可预先配置。通过设置第一时间偏移,可以使得第一通信设备在收到第一指示信息后延迟一段时间停止对异步链路的接收操作,从而可以提高系统灵活性。
可选的,第一通信设备可在从第一时刻开始的第一时间偏移后,停止接收异步链路。示例性的,第一时刻可以是解析得到第一指示信息的时刻。比如,如果第一指示信息包括在第一同步链路帧的物理层帧头中,该第一时刻可以是从第一同步链路帧的物理层帧头中解析得到第一指示信息的时刻;如果第一指示信息包括在第一同步链路帧的高层有效载荷头中,该第一时刻可以是从该第一同步链路帧的高层有效载荷头中解析得到第一指示信息的时刻。第一时刻也可以是接收到包含有第一指示信息的第一同步链路帧的时刻,比如,当第一通信设备接收到第一同步链路帧后记录当前时间作为该第一同步链路帧的接收时间,若从该第一同步链路帧的物理层帧头或高层有效载荷头中解析出第一指示信息,则将所记录的第一同步链路帧的接收时间作为所述第一时刻。
可选的,第一时间偏移指示的时间长度大于或等于0。当第一时间偏移指示的时间长度为0时,第一通信设备可在获得第一指示信息后立即停止接收异步链路;当第一时间偏移指示的时间长度大于0时,第一通信设备在从获得第一指示信息到该第一时间偏移指示的时间到达时,停止接收异步链路。通过上述方案可以灵活指定对停止接收异步链路的操作生效时间。
根据上述图4所示的流程,第二通信设备(如主控节点)通过在第一同步链路帧中携带第一指示信息,以指示第一通信设备(如终端节点)停止对异步链路的接收,以节省第一通信设备的功耗。采用上述方案可以由第二通信设备指示第一通信设备停止对异步链路的接收,尤其是在异步链路上不存在对该第一通信设备的调度信息时,指示第一通信设备停止接收该异步链路,与第一通信设备按照配置的异步链路接收周期去接收异步链路相比,可以降低第一通信设备的功耗,还可以提高系统灵活性。
第二通信设备通过第一指示信息指示第一通信设备停止接收异步链路后,还可以向第一通信设备发送第二指示信息,以指示第二通信设备开启接收异步链路,比如,当第二通信设备需要对第一通信设备进行传输调度时,可向第一通信设备发送第二指示信息,以使得第一通信设备重新接收异步链路以获得调度信息。
参见图4,在S402之后,可选的,还可以包括以下步骤:
S403:第二通信设备向第一通信设备发送第二指示信息,该第二指示信息承载于同步链路。
第二指示信息用于指示启动接收异步链路。可理解的,启动接收异步链路可理解为启 动对异步链路进行检测。
可选的,第二指示信息可以是一个或多个比特的指示信息。以第二指示信息为一个比特为例,第二指示信息可以是一个取值为“1”的比特,以区别与取值为“0”的一个比特的第一指示信息。
可选的,在一些实施例中,第二指示信息包括在第二同步链路帧的物理层帧头中。第一通信设备解析第二同步链路帧的物理层帧头,从该第二同步链路帧的物理层帧头获取第二指示信息。
可选的,所述物理层帧头可以是物理层PDU的帧头。图6a是一种示例性的第二同步链路帧的结构示意图。如图6a所示,第二通信设备作为第二同步链路帧的发送端设备,其协议栈中的数据链路层或MAC层等高层,将从其上层获取到的SDU添加有效载荷头(payload header)得到PDU并传递给物理层。物理层实体从数据链路层或MAC层获取PDU后,将该PDU作为有效载荷(payload),并在该有效载荷(payload)前添加物理层帧头(header)后形成第二同步链路帧在物理信道上发送。其中,该物理层帧头(haeder)中包括第二指示信息。本申请实施例对第二指示信息在该物理层帧头中的具体位置不做限制。
第一通信设备作为第二同步链路帧的接收端设备,从物理信道接收第二同步链路帧,该第二同步链路帧包括物理层帧头和有效载荷。其中,有效载荷也就是高层(如数据链路层或称MAC层)对来自于其上层的SDU添加有效载荷头(payload header)后得到的PDU。物理层实体解析该物理层帧头,得到第二指示信息,然后去掉物理层帧头,将有效载荷递交至数据链路层或MAC层处理。其中,有效载荷可以包括有效载荷头和SDU。有效载荷头可以包括一个或多个字段,数据链路层或MAC层实体根据有效载荷头获取到SDU的相关信息,将SDU递交至其上层处理。
可理解的,上述第二同步链路帧是在同步链路上传输的一种数据结构,也可以被称为第二数据包或第二消息等,本申请实施例对该数据结构的命名不做限制。当然,本申请实施例也可使用其他数据格式来传输第二指示信息。
在另一些实施例中,第二指示信息包括在第二同步链路帧的有效载荷头中。第一通信设备在高层解析第二同步链路帧的有效载荷头,获得第二指示信息。
图6b是一种示例性的第二同步链路帧的结构示意图。如图6b所示,第二通信设备作为第二同步链路帧的发送端设备,其协议栈中的数据链路层或MAC层等高层,将从其上层获取到的SDU添加有效载荷头(payload header)得到PDU并传递给物理层。其中,该有效载荷头中包括第二指示信息。本申请实施例对第二指示信息在该有效载荷头中的具体位置不做限制。物理层实体从数据链路层或MAC层获取PDU后,将该PDU作为有效载荷(payload),并在该有效载荷(payload)前添加物理层帧头(header)后形成第二同步链路帧在物理信道上发送。
第一通信设备作为第二同步链路帧的接收端设备,从物理信道接收第二同步链路帧,该第二同步链路帧包括物理层帧头和有效载荷。其中,有效载荷为物理层的上层(如数据链路层或MAC层)的PDU。物理层实体去掉物理层帧头,将有效载荷(即PDU)递交至数据链路层或MAC层。该有效载荷(即PDU)包括有效载荷头和SDU。数据链路层或MAC层实体接收到该有效载荷后解析有效载荷头,获得第二指示信息,然后去掉该有效载荷头,并将该有效载荷中的SDU传递给其上层进行处理。其中,有效载荷头可以包括 一个或多个字段,数据链路层或MAC层实体根据有效载荷头获取到SDU的相关信息,将SDU递交至其上层处理。
S403中,第二通信设备在同步链路传输时间窗内,将第一指示信息发送给第一通信设备。以图3所示的同步链路与异步链路的数据收发时序为例,第二通信设备(如主控节点G)可以在一个同步链路传输时间窗中的一个或多个子时间窗的“G>T”传输中,将第二指示信息承载在物理层帧头或高层有效载荷头中发送给第一通信设备。
可选的,第二通信设备在发送第二指示信息之前,可以判断是否满足需要指示第一通信设备启动接收异步链路的条件,若判断满足条件,则通过向第一通信设备发送第二指示信息以指示第一通信设备启动接收异步链路。
示例性的,用于判断是否需要指示第一通信设备启动接收异步链路的条件可包括:
(1)是否对第一通信设备进行调度或者为第一通信设备分配传输资源。第二通信设备可根据是否对第一通信设备进行调度或者为第一通信设备分配传输资源,判断是否需要指示第一通信设备启动接收异步链路。例如,如果第二通信设备出于业务需要,需要调度第一通信设备,则可指示第一通信设备启动接收异步链路。
(2)第一通信设备发送的辅助信息是否表明可指示第一通信设备启动接收异步链路。第二通信设备根据第一通信设备发送的辅助信息,判断是否需要指示第一通信设备启动接收异步链路。例如,如果第一通信设备发送的辅助信息表明第一通信设备的电量充足(比如高于设定阈值),并需要对第一通信设备进行调度,则可指示第一通信设备启动接收异步链路。
(3)第二通信设备的负载是否小于设定阈值。第二通信设备根据第二通信设备的负载情况,判断是否需要指示第一通信设备启动接收异步链路。例如,如果第二通信设备的负载较低(比如低于设定阈值),可允许对第一通信设备进行调度,则可指示第一通信设备启动接收异步链路。
(4)第一通信设备的传输能力是否表明可指示第一通信设备启动接收异步链路。第二通信设备根据第一通信设备的传输能力,判断是否需要指示第一通信设备启动接收异步链路。例如,如果第一通信设备的传输能力较高,可对第一通信设备进行调度,则指示第一通信设备启动接收异步链路。
(5)第二通信设备的功耗是否小于设定阈值,和/或第一通信设备的功耗是否小于设定阈值。第二通信设备根据该第二通信设备的功耗和/或第一通信设备的功耗,判断是否需要指示第一通信设备启动接收异步链路。例如,如果第二通信设备的功耗较低和/或第一通信设备的功耗较低,可允许对第一通信设备进行调度,则可指示第一通信设备启动接收异步链路。
上述判断条件可以任意结合使用,也就是说,当满足上述两个或两个以上条件时,第二通信设备才判断需要指示第一通信设备启动接收异步链路。比如,如果第一通信设备的传输能力较高且第一通信设备的功耗较低,则第二通信设备指示第一通信设备启动接收异步链路。可理解的,以上仅示例性的列举出了几种判断是否需要指示第一通信设备启动接收异步链路的方式,本申请实施例并不仅限于上述方式。
S404:第一通信设备根据第二指示信息启动接收该异步链路。
可选的,第一通信设备可根据第二指示信息,在第二时间偏移后启动接收异步链路。该第二时间偏移可预先配置。通过设置第二时间偏移,可以使得第一通信设备在收到第二 指示信息后延迟一段时间启动对异步链路的接收操作,从而可以提高系统灵活性。
可选的,第一通信设备可在从第二时刻开始的第二时间偏移后,停止接收异步链路。示例性的,第二时刻可以是解析得到第二指示信息的时刻。比如,如果第二指示信息包括在第二同步链路帧的物理层帧头中,该第一时刻可以是从第二同步链路帧的物理层帧头中解析得到第二指示信息的时刻;如果第二指示信息包括在第额同步链路帧的高层有效载荷头中,该第二时刻可以是从该第二同步链路帧的高层有效载荷头中解析得到第二指示信息的时刻。第二时刻也可以是接收到包含有第二指示信息的第二同步链路帧的时刻,比如,当第一通信设备接收到第二同步链路帧后记录当前时间作为该第二同步链路帧的接收时间,若从该第二同步链路帧的物理层帧头或高层有效载荷头中解析出第二指示信息,则将所记录的第二同步链路帧的接收时间作为所述第二时刻。
可选的,第二时间偏移指示的时间长度大于或等于0。当第二时间偏移指示的时间长度为0时,第一通信设备可在获得第二指示信息后立即启动接收异步链路;当第二时间偏移指示的时间长度大于0时,第一通信设备在从获得第二指示信息到该第二时间偏移指示的时间到达时,启动接收异步链路。通过上述方案可以灵活指定对启动接收异步链路的操作生效时间。
根据上述图4所示的流程,第二通信设备(如主控节点)通过在第二同步链路帧中携带第二指示信息,以指示第一通信设备(如终端节点)启动对异步链路的接收,可以在节省第一通信设备的功耗的基础上,再次使得第一通信设备启动对异步链路的接收,从而保证第一通信设备的业务传输。
在一些情况下,第二通信设备在同步链路传输时间窗内通过第一指示信息指示第一通信设备停止接收异步链路后,当需要调度第一通信设备时,在后续的同步链路传输时间窗内通过第二指示信息指示第一通信设备启动异步链路,但由于同步链路为非可靠传输,第一通信设备有可能未接收到第二指示信息。为了避免由于同步链路传输的非可靠性而导致第一通信设备在过长时间停止接收异步链路,进而导致第一通信设备无法获得第二通信设备发送的调度信息的问题,本申请实施例中,第一通信设备在停止接收异步链路后,若在设定时长内未接收到第二通信设备发送的第二指示信息,则第一通信设备可自动启动接收异步链路。
可选的,可通过使用定时器的方式来实现上述方案。示例性的,图7示出了一种基于定时器的通信方法。如图7所示,在S701,第二通信设备向第一通信设备发送第一指示信息(第一指示信息的发送方法可参见前述实施例)。在S702,第一通信设备根据该第一指示信息停止接收同步链路,并启动定时器。
若该定时器运行期间不被停止,则该定时器将在运行预设时长后超时。则所述方法还包括:S703,当该定时器运行超时,第一通信设备启动接收上述异步链路。
若在该定时器运行期间,第一通信设备接收到第二通信设备发送的第二指示信息时,第一通信设备启动接收上述异步链路。即,定时器被停止或者关闭。
通过上述方案,当所述第一通信设备停止接收所述异步链路后,若在较长时间内没有接收用于指示启动接收所述异步链路的第二指示信息,则所述第一通信设备可以自动启动接收所述异步链路,以避免在第二指示信息丢失的情况下,无法重新启动接收所述异步链路的问题。
根据本申请的实施例,可选的,第二通信设备可以在为第一通信设备进行数据新传时, 发送第二指示信息以指示第一通信开启接收异步链路以接收新传数据,在为第一通信设备进行数据重传时,可发送第一指示以指示第一通信设备停止接收异步链路以节省功耗。示例性的,图8示出了一种同步链路和异步链路传输的时序。如图所示,在同步链路传输时间窗1,控制节点G需要向终端节点T进行数据新传,则在同步链路传输时间窗1的第一个子时间窗的“G>T”传输中发送比特“1”(即第二指示信息),指示终端节点T在第二时间偏移后启动接收异步链路;随后,控制节点G需要向该终端节点T进行数据重传,则在同步链路传输时间窗1的第三个子时间窗的“G>T”传输中发送比特“0”(即第一指示信息),指示终端节点T在第一时间偏移后停止接收异步链路。同步链路传输时间窗1中,终端节点T先后接收到第二指示信息和第一指示信息,终端节点T可以根据在同一个同步链路传输时间窗内最后一次接收到的指示信息进行相应操作。比如,以图7为例,在同步链路传输时间窗1中,终端节点最后接收到的是第一指示信息,因此根据第一指示信息在第一时间偏移后停止接收异步链路。
可选的,在一些实施例中,第一指示信息还可用于指示停止接收控制链路,第一通信设备根据第一指示信息可进一步停止接收所述控制链路。可选的,第二指示信息还可用于指示启动接收所述控制链路,第一通信设备根据第二指示信息可进一步启动接收所述控制链路。
基于相同的技术构思,本申请实施例还提供了一种通信装置。该通信装置可实现上述实施例中第一通信设备的功能。在一些应用场景下,该通信装置可以是终端,比如可以是智能家居应用场景下的智能家居设备,也可以是智能运输场景下的终端,还可以是智能制造场景下的终端,或者是智能穿戴设备等。
如图9所示,该通信装置可包括:收发单元901和处理单元902。收发单元901,用于接收第二通信设备发送的第一指示信息,所述第一指示信息承载于同步链路;处理单元902,用于根据第一指示信息控制收发单元901停止接收异步链路,该异步链路与该同步链路相关联。
在此需要说明的是,本申请实施例提供的上述通信装置,能够实现上述方法实施例中第一通信设备的所有或部分方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于相同的技术构思,本申请实施例还提供了一种通信装置。该通信装置可实现上述实施例中第二通信设备的功能。在一些应用场景下,该通信装置可以是控制设备,比如可以是智能家居应用场景下的控制器,也可以是智能运输场景下的控制器,还可以是智能制造场景下的控制器等。
如图10所示,该通信装置可包括:收发单元1001和处理单元1002。收发单元1001,用于向第一通信设备发送第一指示信息,该第一指示信息承载于同步链路,该第一指示信息用于指示停止接收异步链路,所述异步链路与所述同步链路相关联。
在此需要说明的是,本申请实施例提供的上述通信装置,能够实现上述方法实施例中第二通信设备的所有或部分方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于相同的技术构思,本申请实施例还提供了一种终端。该终端可实现本申请实施例中的方法流程。该终端可以是能够实现本申请的上述方法流程的智能运输、智能家居、智能制造等场景下的智能终端或智能穿戴设备等。进一步的,该终端中可包括电池管理系统 (battery management system,BMS)和电池。
参见图11,为本申请实施例提供的终端的结构示意图。
示例性地,如图11所示,为该终端的一种可能结构示意图。该终端可以包括处理器1110,外部存储器接口1121,内部存储器1120,通用串行总线(universal serial bus,USB)接口1170,天线1,天线2,移动通信模块1130,无线通信模块1140,传感器模块1150。其中传感器模块1150可以包括陀螺仪传感器1151,加速度传感器1152,指纹传感器1153,触摸传感器1154(当然,该终端还可以包括其它传感器,比如压力传感器、加速度传感器、陀螺仪传感器、环境光传感器、骨传导传感器等,图中未示出)。终端还包括电池管理系统和电池1162,该电池管理系统可包括充电管理模块1160、电源管理模块1161。
可以理解的是,本申请实施例示意的结构并不构成对该终端的具体限定。在本申请另一些实施例中,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
其中,处理器1110可以包括一个或多个处理单元,例如:处理器1110可以包括应用处理器(application processor,AP),调制解调器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。其中,控制器可以是该终端的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
在一些实施例中,处理器1110中还可以设置存储器,用于存储指令和数据。示例性地,处理器1110中的存储器可以为高速缓冲存储器。该存储器可以保存处理器1110刚用过或循环使用的指令或数据。如果处理器1110需要再次使用该指令或数据,可从存储器中直接调用。避免了重复存取,减少了处理器1110的等待时间,因而提高了系统的效率。
内部存储器1120可以用于存储一个或多个计算机程序,该一个或多个计算机程序包括指令。处理器1110通过运行存储在内部存储器1120的指令,从而执行该终端的各种功能应用以及数据处理。内部存储器1120可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,应用程序的代码等。
此外,内部存储器1120可以包括高速随机存取存储器,还可以包括非易失性存储器,例如一个或多个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。在一些实施例中,处理器1110可以通过运行存储在内部存储器1120的指令,和/或存储在设置于处理器1110中的存储器的指令,来使得该终端执行本申请实施例提供的方法。
当然,本申请实施例提供的用于执行方法流程的代码、以及其他数据等信息还可以存储在外部存储器中。这种情况下,处理器1110可以通过外部存储器接口1121运行存储在外部存储器中的代码。
外部存储器接口1121可以用于连接外部存储卡(例如,Micro SD卡),实现扩展该终端的存储能力。外部存储卡通过外部存储器接口1121与处理器1110通信,实现数据存储功能。
该终端的无线通信功能可以通过天线1,天线2,移动通信模块1130,无线通信模块1140,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。
移动通信模块1130可以提供应用在该终端上的包括2G/3G/4G/5G等无线通信的解决方 案。
基于相同技术构思,本申请实施例还提供一种通信装置,该通信装置可以具有如图12所示的结构,该通信装置可以是实现上述方法的设备或芯片或芯片系统。
如图12所示的通信装置1200可以包括至少一个处理器1201以及接口电路1202。接口电路1202可用于支持通信装置1200进行信令或者数据的接收或发送,比如可用于通信装置1200执行如图4或图7所示的方法中第二通信设备发送第一指示信息的步骤,或者第二通信设备接收第一指示信息的步骤。所述至少一个处理器1201用于实现本申请上述实施例提供的方法中第一通信设备和/或第二通信设备涉及的步骤,比如可用于根据第一指示信息停止接收异步链路。
可选的,通信装置1200还可以包括存储器1203,其中存储有计算机程序、指令,存储器1203可以与处理器1201和/或接口电路1202耦合,用于支持处理器1201调用存储器1203中的计算机程序、指令以实现本申请实施例提供的方法中第一通信设备或第二通信设备涉及的步骤;另外,存储器1203还可以用于存储本申请方法实施例所涉及的数据,例如,用于存储支持接口电路1202实现交互所必须的数据、指令,和/或,用于存储通信装置1200执行本申请实施例所述方法所必须的配置信息。
基于与上述方法实施例相同构思,本申请实施例还提供了一种计算机可读存储介质,其上存储有一些指令,这些指令被计算机调用执行时,可以使得计算机完成上述方法实施例、方法实施例的任意一种可能的设计中所涉及的方法。本申请实施例中,对计算机可读存储介质不做限定,例如,可以是RAM(random-access memory,随机存取存储器)、ROM(read-only memory,只读存储器)等。
基于与上述方法实施例相同构思,本申请还提供一种计算机程序产品,该计算机程序产品在被计算机调用执行时可以完成方法实施例以及上述方法实施例任意可能的设计中所涉及的方法。
其中,“耦合”是指两个部件彼此直接或间接地结合,这种结合可以是固定的或可移动性的,这种结合可以允许流动液、电、电信号或其它类型信号在两个部件之间进行通信。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。 通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
尽管结合具体特征及其实施例对本发明进行了描述,显而易见的,在不脱离本发明的范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本发明的示例性说明,且视为已覆盖本发明范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (43)

  1. 一种通信方法,其特征在于,包括:
    接收第二通信设备发送的第一指示信息,所述第一指示信息承载于同步链路;
    其中,所述第一指示信息用于指示与所述同步链路关联的异步链路上是否存在对第一通信设备的调度。
  2. 如权利要求1所述的方法,其特征在于,所述第一指示信息指示了与所述同步链路关联的异步链路上不存在对第一通信设备的调度;所述方法还包括:
    根据所述第一指示信息停止接收所述异步链路。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一指示信息包括在第一同步链路帧的物理层帧头中;
    所述方法还包括:
    解析所述第一同步链路帧的物理层帧头;
    从所述第一同步链路帧的物理层帧头获取所述第一指示信息。
  4. 如权利要求1或2所述的方法,其特征在于,所述第一指示信息包括在第一同步链路帧的高层有效载荷头中;
    所述方法还包括:
    解析所述第一同步链路帧的高层有效载荷头;
    从所述第一同步链路帧的高层有效载荷头获取所述第一指示信息。
  5. 如权利要求2-4任一项所述的方法,其特征在于,所述第一指示信息指示了与所述同步链路关联的异步链路上不存在对第一通信设备的调度;所述根据所述第一指示信息停止接收所述异步链路,包括:
    根据所述第一指示信息,在第一时间偏移后停止接收所述异步链路。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述第一指示信息还用于指示是否停止接收控制链路;
    所述方法还包括:
    根据所述第一指示信息停止或启动接收控制链路。
  7. 如权利要求2-6任一项所述的方法,其特征在于,所述第一指示信息指示了与所述同步链路关联的异步链路上不存在对第一通信设备的调度;在所述接收第二通信设备发送的第一指示信息之后,所述方法还包括:
    启动定时器;
    若所述定时器运行超时,则启动接收所述异步链路。
  8. 如权利要求2-6任一项所述的方法,其特征在于,所述第一指示信息指示了与所述同步链路关联的异步链路上不存在对第一通信设备的调度;在所述接收第二通信设备发送的第一指示信息之后,所述方法还包括:
    启动定时器;
    若在所述定时器运行期间接收到所述第二通信设备发送的第二指示信息,启动接收所述异步链路。
  9. 如权利要求2-6任一项所述的方法,其特征在于,所述根据所述第一指示信息停止接收所述异步链路之后,所述方法还包括:
    接收所述第二通信设备发送的第二指示信息;
    根据所述第二指示信息启动接收所述异步链路。
  10. 如权利要求8或9所述的方法,其特征在于,所述第二指示信息包括在第二同步链路帧的物理层帧头中;
    所述方法还包括:
    解析所述第二同步链路帧的物理层帧头;
    从所述第二同步链路帧的物理层帧头获取所述第二指示信息。
  11. 如权利要求8或9所述的方法,其特征在于,所述第二指示信息包括在第二同步链路帧的高层有效载荷头中;
    所述方法还包括:
    解析所述第二同步链路帧的高层有效载荷头;
    从所述第二同步链路帧的高层有效载荷头获取所述第二指示信息。
  12. 如权利要求9-11任一项所述的方法,其特征在于,所述根据所述第二指示信息启动接收所述异步链路,包括:
    根据所述第二指示信息,在第二时间偏移后启动接收所述异步链路。
  13. 如权利要求9-12任一项所述的方法,其特征在于,所述第二指示信息还用于指示启动接收控制链路;
    所述方法还包括:
    根据所述第二指示信息启动接收控制链路。
  14. 一种通信方法,其特征在于,所述方法包括:
    向第一通信设备发送第一指示信息,所述第一指示信息承载于同步链路;
    其中,所述第一指示信息用于指示与所述同步链路关联的异步链路上是否存在对所述第一通信设备的调度。
  15. 如权利要求14所述的方法,其特征在于,所述第一指示信息包括在第一同步链路帧的物理层帧头中。
  16. 如权利要求14所述的方法,其特征在于,所述第一指示信息包括在第一同步链路帧的高层有效载荷头中。
  17. 如权利要求14-16任一项所述的方法,其特征在于,所述第一指示信息还用于指示是否停止接收控制链路。
  18. 如权利要求14-17任一项所述的方法,其特征在于,所述方法还包括:
    向所述第一通信设备发送第二指示信息,所述第二指示信息承载于所述同步链路,所述第二指示信息用于指示启动接收所述异步链路。
  19. 如权利要求18所述的方法,其特征在于,所述第二指示信息包括在第二同步链路帧的物理层帧头中。
  20. 如权利要求18所述的方法,其特征在于,所述第二指示信息包括在第二同步链路帧的高层有效载荷头中。
  21. 如权利要求18-20任一项所述的方法,其特征在于,所述第二指示信息还用于指示启动接收控制链路。
  22. 一种通信装置,其特征在于,包括:处理单元和收发单元;
    所述收发单元,用于接收第二通信设备发送的第一指示信息,所述第一指示信息承载 于同步链路;
    其中,所述第一指示信息用于指示与所述同步链路关联的异步链路上是否存在对第一通信设备的调度。
  23. 如权利要求22所述的通信装置,其特征在于,所述第一指示信息指示了与所述同步链路关联的异步链路上不存在对第一通信设备的调度;所述处理单元,用于:
    根据所述第一指示信息控制所述收发单元停止接收所述异步链路。
  24. 如权利要求22或23所述的通信装置,其特征在于,所述第一指示信息包括在第一同步链路帧的物理层帧头中;所述处理单元具体用于:解析所述第一同步链路帧的物理层帧头,从所述第一同步链路帧的物理层帧头获取所述第一指示信息;或者
    所述第一指示信息包括在第一同步链路帧的高层有效载荷头中;所述处理单元具体用于:解析所述第一同步链路帧的高层有效载荷头,从所述第一同步链路帧的高层有效载荷头获取所述第一指示信息。
  25. 如权利要求23-24任一项所述的通信装置,其特征在于,所述第一指示信息指示了与所述同步链路关联的异步链路上不存在对第一通信设备的调度;所述处理单元具体用于:
    根据所述第一指示信息,在第一时间偏移后控制所述收发单元停止接收所述异步链路。
  26. 如权利要求22-25任一项所述的通信装置,其特征在于,所述第一指示信息还用于指示是否停止接收控制链路;
    所述处理单元还用于:根据所述第一指示信息控制所述收发单元停止或启动接收控制链路。
  27. 如权利要求23-26任一项所述的通信装置,其特征在于,所述第一指示信息指示了与所述同步链路关联的异步链路上不存在对第一通信设备的调度;所述处理单元还用于:
    在所述收发单元接收所述第一指示信息后,启动定时器;
    若所述定时器运行超时,则控制所述收发单元启动接收所述异步链路。
  28. 如权利要求23-26任一项所述的通信装置,其特征在于,所述第一指示信息指示了与所述同步链路关联的异步链路上不存在对第一通信设备的调度;所述处理单元还用于:
    在所述收发单元接收所述第一指示信息后,启动定时器,若所述定时器运行期间所述收发单元接收到所述第二通信设备发送的第二指示信息,则控制所述收发单元启动接收所述异步链路。
  29. 如权利要求23-26任一项所述的通信装置,其特征在于,所述收发单元还用于:停止接收异步链路之后,接收所述第二通信设备发送的第二指示信息;
    所述处理单元还用于:根据所述第二指示信息控制所述收发单元启动接收所述异步链路。
  30. 如权利要求28或29所述的通信装置,其特征在于,所述第二指示信息包括在第二同步链路帧的物理层帧头中;所述处理单元具体用于:解析所述第二同步链路帧的物理层帧头,从所述第二同步链路帧的物理层帧头获取所述第二指示信息;或者
    所述第二指示信息包括在第二同步链路帧的高层有效载荷头中;所述处理单元具体用于:解析所述第二同步链路帧的高层有效载荷头,从所述第二同步链路帧的高层有效载荷头获取所述第二指示信息。
  31. 如权利要求29-30任一项所述的通信装置,其特征在于,所述处理单元具体用于:
    根据所述第二指示信息,在所述第二时间偏移后控制所述收发单元启动接收所述异步 链路。
  32. 如权利要求29-31任一项所述的通信装置,其特征在于,所述第二指示信息还用于指示启动接收控制链路;
    所述处理单元还用于:根据所述第二指示信息控制所述收发单元启动接收所述控制链路。
  33. 一种通信装置,其特征在于,包括:收发单元;
    所述收发单元,用于向第一通信设备发送第一指示信息,所述第一指示信息承载于同步链路;
    其中,所述第一指示信息用于指示与所述同步链路关联的异步链路上是否存在对所述第一通信设备的调度。
  34. 如权利要求33所述的通信装置,其特征在于,所述第一指示信息包括在第一同步链路帧的物理层帧头中;或者,所述第一指示信息包括在第一同步链路帧的高层有效载荷头中。
  35. 如权利要求33-34任一项所述的通信装置,其特征在于,所述第一指示信息还用于指示是否停止接收控制链路。
  36. 如权利要求33-35任一项所述的通信装置,其特征在于,所述收发单元还用于:向所述第一通信设备发送第二指示信息,所述第二指示信息承载于所述同步链路,所述第二指示信息用于指示启动接收所述异步链路。
  37. 如权利要求36所述的通信装置,其特征在于,所述第二指示信息包括在第二同步链路帧的物理层帧头中;或者,所述第二指示信息包括在第二同步链路帧的高层有效载荷头中。
  38. 如权利要求36-37任一项所述的通信装置,其特征在于,所述第二指示信息还用于指示启动接收控制链路。
  39. 一种通信装置,其特征在于,包括:一个或多个处理器,接口电路;其中,当一个或多个计算机程序的指令被所述一个或多个处理器执行时,使得所述通信装置执行如权利要求1-13中任一项所述的方法,或者,使得所述通信装置执行如权利要求14-21任一项所述的方法。
  40. 一种终端,其特征在于,包括如权利要求39中所述的通信装置。
  41. 一种通信系统,其特征在于,包括用于执行如权利要求1-13任一项所述方法的第一通信设备,以及用于执行如权利要求14-21任一项所述方法的第二通信设备。
  42. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机程序,当计算机程序在计算设备上运行时,使得所述计算设备执行如权利要求1-13中任一项所述的方法,或者执行如权利要求14-21中任一项所述的方法。
  43. 一种计算机程序产品,其特征在于,所述计算机程序产品在被计算机调用时,使得所述计算机执行如权利要求1-13中任一项所述的方法,或者执行如权利要求14-21中任一项所述的方法。
PCT/CN2022/110027 2021-08-20 2022-08-03 一种通信方法及装置 WO2023020281A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22857593.2A EP4380244A1 (en) 2021-08-20 2022-08-03 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110963288.2A CN115915348A (zh) 2021-08-20 2021-08-20 一种通信方法及装置
CN202110963288.2 2021-08-20

Publications (1)

Publication Number Publication Date
WO2023020281A1 true WO2023020281A1 (zh) 2023-02-23

Family

ID=85240039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110027 WO2023020281A1 (zh) 2021-08-20 2022-08-03 一种通信方法及装置

Country Status (3)

Country Link
EP (1) EP4380244A1 (zh)
CN (1) CN115915348A (zh)
WO (1) WO2023020281A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1333968A (zh) * 1998-11-24 2002-01-30 艾利森电话股份有限公司 基于时隙的通信系统的多媒体协议
US20100045511A1 (en) * 2005-06-10 2010-02-25 Thales Generic radar architecture
CN105933083A (zh) * 2015-11-04 2016-09-07 中国人民解放军63680部队 基于动态窗口的虚拟信道通用调度算法
CN111264079A (zh) * 2019-11-14 2020-06-09 深圳市汇顶科技股份有限公司 数据传输方法、电子设备、系统及存储介质
CN112839090A (zh) * 2021-01-08 2021-05-25 北京和利时智能技术有限公司 一种基于时间槽的数据链路层通信控制方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1333968A (zh) * 1998-11-24 2002-01-30 艾利森电话股份有限公司 基于时隙的通信系统的多媒体协议
US20100045511A1 (en) * 2005-06-10 2010-02-25 Thales Generic radar architecture
CN105933083A (zh) * 2015-11-04 2016-09-07 中国人民解放军63680部队 基于动态窗口的虚拟信道通用调度算法
CN111264079A (zh) * 2019-11-14 2020-06-09 深圳市汇顶科技股份有限公司 数据传输方法、电子设备、系统及存储介质
CN112839090A (zh) * 2021-01-08 2021-05-25 北京和利时智能技术有限公司 一种基于时间槽的数据链路层通信控制方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SIEMENS: "Synch/Asynch comparison", 3GPP DRAFT; R2-041316 - SYNCH-ASYNCH COMPARISON, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Cannes; 20040625, 25 June 2004 (2004-06-25), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP050112075 *

Also Published As

Publication number Publication date
CN115915348A (zh) 2023-04-04
EP4380244A1 (en) 2024-06-05

Similar Documents

Publication Publication Date Title
US9985749B2 (en) Method and system for improving wireless link efficiency
US10321513B2 (en) Method for PDCP control PDU transmission by user equipment (UE)
WO2021139719A1 (zh) 非连续接收drx参数配置方法和装置
WO2018165995A1 (zh) 一种数据处理方法及终端设备、基站
WO2020259581A1 (zh) 通信方法及装置
JP7464564B2 (ja) マルチコネクティビティにおける信頼性のある通信のための装置及び方法
WO2006106634A1 (ja) 無線lanシステム、その基地局および端末局
WO2008079520A1 (en) Piggyback acknowledgement
WO2022001175A1 (zh) 数据包发送的方法、装置
EP4009691A1 (en) Communication method, method for establishing slrb, and communication apparatus
WO2019080906A1 (zh) 一种基于lwaap的数据传输方法、装置及存储介质
WO2012046402A1 (ja) 無線通信システム、データ送信装置、データ無線受信装置、及び、無線通信方法
WO2023020281A1 (zh) 一种通信方法及装置
WO2022121876A1 (zh) 多播业务的确认模式传输方法、装置、设备及存储介质
WO2020147768A1 (zh) 处理数据的方法和处理数据的装置
TWI807146B (zh) 維持無線電資源控制連接的方法和裝置
WO2017177438A1 (zh) 一种控制信息的传输方法及装置
WO2021128100A1 (zh) 一种通信方法及装置
CN113056008A (zh) 数据传输方法及装置
WO2023093696A1 (zh) 一种通信方法及装置
WO2022027311A1 (zh) 一种通信方法及装置
WO2024067172A1 (zh) 一种数据传输的方法和装置
WO2024020986A1 (zh) 确定设备的连接状态的方法、装置、芯片和存储介质
CN110505641B (zh) 利用全双工UART通信提高ZigBee主从通信轮询效率的方法及其协调器
WO2024007882A1 (zh) 一种通信方法以及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857593

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022857593

Country of ref document: EP

Effective date: 20240301

NENP Non-entry into the national phase

Ref country code: DE