WO2023019916A1 - 蓄热调峰发电装置 - Google Patents

蓄热调峰发电装置 Download PDF

Info

Publication number
WO2023019916A1
WO2023019916A1 PCT/CN2022/079439 CN2022079439W WO2023019916A1 WO 2023019916 A1 WO2023019916 A1 WO 2023019916A1 CN 2022079439 W CN2022079439 W CN 2022079439W WO 2023019916 A1 WO2023019916 A1 WO 2023019916A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
heat storage
power generation
turbine
heat
Prior art date
Application number
PCT/CN2022/079439
Other languages
English (en)
French (fr)
Inventor
孟金来
Original Assignee
孟金来
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 孟金来 filed Critical 孟金来
Publication of WO2023019916A1 publication Critical patent/WO2023019916A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • F01K3/186Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters using electric heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/02Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0056Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using solid heat storage material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the invention relates to a heat storage peak regulation power generation device.
  • Hydropower, solar energy, and wind energy are all renewable energy sources, and the development and utilization of hydropower, solar energy, and wind energy will not produce a large amount of carbon dioxide.
  • the use of hydropower, solar power, and wind power generation has the problem that the power generation peak and the power consumption peak do not correspond in time, resulting in a large amount of waste, and causing the problem that only relying on hydropower, solar power, and wind power generation cannot meet the electricity demand, which in turn causes The utilization efficiency of existing various solar power generating devices and wind power generating devices is relatively low.
  • the purpose of the present invention is to provide a method that can efficiently convert the electric energy generated by various hydropower, solar power generation devices, and wind power generation devices into heat energy and store it, and then quickly and efficiently store the stored heat energy during the peak power consumption. Converting into electric energy can make the utilization efficiency of various existing hydropower, solar power generation devices, and wind power generation devices higher, and avoid heat storage peak-shaving power generation devices that waste a large amount of hydropower, solar power, and wind power generation capacity.
  • the heat storage peak regulation power generation device of the present invention comprises a thermal insulation shell, a gas channel is arranged in the thermal insulation shell, a heat storage body is arranged in the gas channel, and the two ends of the heat storage body are connected with a power supply through an electric control device, and the heat storage body is used for In order to convert the electrical energy input from the outside into heat energy and store it, there is a heat exchange space around the heat storage body that allows airflow to pass through.
  • the outlet of the gas channel is connected to the inlet of the turbine, and the power output shaft of the turbine is connected to the power of the generator.
  • the input shaft drive is connected, the outlet of the turbine communicates with the air inlet of the cooler or waste heat boiler which can cool the gas, the cooler or waste heat boiler is used to cool the gas flowing through its internal cooling channel, and the gas outlet of the cooler or waste heat boiler It communicates with the inlet of the compressor, and the outlet of the compressor communicates with the inlet of the gas passage.
  • the gas passage, cooler or waste heat boiler, turbine and compressor form a circulation system.
  • the gas passage, cooler or waste heat boiler, turbine and compressor The machine is filled with gaseous working fluid for circulation.
  • the thermal storage body stops converting electrical energy into heat energy under the control of the electrical control device, and when the thermal storage body converts electrical energy into thermal energy under the control of the electrical control device
  • the power output shaft of the turbine must not drive the power input shaft of the generator to rotate and generate electricity.
  • a plurality of heat storage bodies are arranged in the gas channel from front to back, and the two ends of each heat storage body are connected to the power supply through an electric control device, and are located near each heat storage body
  • the gas outlets of the gas passages are respectively provided on the side walls of the gas passages, and the gas flow regulating devices are respectively provided at the outlets of each gas passage, and the gas outlets of each gas passage communicate with the inlet of the turbine through the gas transmission passage.
  • the gas channel and the gas delivery channel are arranged in a steel pipe with a circular cross section, a partition is provided between the gas channel and the gas delivery channel, and each of the gas flow adjustment The devices are respectively arranged on the partitions.
  • a temperature measuring device is provided at the gas outlet of each gas channel, and a temperature measuring device is provided at the outlet section of the gas transmission channel or at the inlet of the turbine.
  • the surface of the heat storage body is connected with a plurality of heat dissipation fins, the gas transmission channel is closely arranged along the side wall of the gas channel, and the heat storage body adopts a bracket or a boom Fixed in the middle of the gas channel.
  • the heat storage body is made of iron-chromium-aluminum alloy or conductive ceramics or silicon carbide
  • the heat dissipation fins are made of iron-chromium-aluminum alloy or conductive ceramics or silicon carbide
  • the heat storage body It is in the shape of a strip, the cross-section of the heat storage body is circular, oval or rectangular, and the area of the cross-section of the heat storage body is greater than 100 square centimeters.
  • the outlet of the compressor communicates with the inlet of the turbine through a temperature-regulating air passage, and a cut-off valve for adjusting gas flow is provided on the temperature-regulating air passage.
  • the working medium circulating in the gas channel, cooler or waste heat boiler, turbine and compressor is hydrogen or helium or nitrogen or argon or carbon dioxide.
  • the waste heat boiler can produce hot water or steam by using the heat carried by the working fluid passing through the waste heat boiler.
  • the heat storage peak regulation power generation device of the present invention When the heat storage peak regulation power generation device of the present invention is in use, the two ends of the heat storage body are connected to the power supply through the electrical control device, and the heat storage body is used to convert the electric energy input from the outside into heat energy and store it. Therefore, the present invention is used for It converts the electric energy generated by various hydropower, solar power generation devices, and wind power generation devices into heat energy during peak power generation and stores it.
  • the gas channels, coolers or waste heat boilers, turbines and compressors are filled with energy for circulation.
  • the gaseous working medium start the compressor, the gaseous working medium will be boosted and injected into the air inlet of the gas channel, then the gaseous working medium will flow along the gas channel and be heated by the regenerator, the heated gaseous The working medium will enter the turbine and drive the turbine to rotate, and then the turbine will drive the generator to rotate and generate electricity, thus converting the stored heat energy into electricity quickly and efficiently at the peak of power consumption; the gaseous working medium discharged from the turbine after power generation It will enter the cooler or waste heat boiler, where the gaseous working medium will be cooled down, and then discharged from the cooler or waste heat boiler, and then the gaseous working medium will return to the compressor, re-pressurized and enter the gas channel again , and so on, the thermal energy stored in the heat storage body can be gradually converted into electrical energy again.
  • the heat storage peak-shaving power generation device of the present invention can efficiently convert the electric energy generated by various hydropower, solar power generation devices, and wind power generation devices into heat energy and store it, and then quickly store the stored heat energy at the peak of power consumption. , Highly efficient conversion into electric energy, so that the utilization efficiency of various existing hydropower, solar power generation devices, and wind power generation devices is higher, and avoid the characteristics of a large amount of waste of hydropower, solar power, and wind power generation capacity.
  • Fig. 1 is a front view of a schematic structural diagram of a heat storage peak-shaving power generation device of the present invention.
  • the thermal storage peak regulation power generation device of the present invention includes a thermal insulation shell 1, a gas passage 2 is arranged in the thermal insulation casing 1, a heat storage body 3 made of a conductive material is arranged in the gas passage 2, and the thermal storage
  • the two ends of the heating body 3 are connected to the power supply through an electrical control device.
  • the heat storage body 3 is used to convert the electric energy input from the outside into heat energy and store it.
  • the gas outlet of channel 2 communicates with the inlet of the turbine 4, the power output shaft of the turbine 4 is connected with the power input shaft of the generator 11, and the outlet of the turbine 4 communicates with the gas-cooling cooler 8 or the inlet of the waste heat boiler.
  • the cooler 8 or the waste heat boiler is used to cool the gas flowing through its internal cooling channel, the gas outlet of the cooler 8 or the waste heat boiler communicates with the inlet of the compressor 7, and the outlet of the compressor 7 communicates with the inlet of the gas channel 2 , gas passage 2, cooler 8 or waste heat boiler, turbine 4 and compressor 7 constitute a Brayton cycle system, gas passage 2, cooler 8 or waste heat boiler, turbine 4 and compressor 7 are filled with gaseous Working fluid.
  • the heat storage body 3 is placed in the electric control device. Stop converting electric energy into thermal energy under regulation, when heat accumulator 3 converts electric energy into thermal energy under the regulation and control of electrical control device, the power output shaft of turbine 4 must not drive the power input shaft of generator 11 to rotate and generate electricity.
  • the above-mentioned gas channel 2 is provided with a plurality of regenerators 3 from front to back, and the two ends of each regenerator 3 are connected to the power supply through an electrical control device.
  • the gas outlets of the gas passages 2 are respectively provided on the side walls of the gas passages 2, and the gas flow regulating devices 5 are respectively provided at the gas outlets of each gas passage 2, and the gas outlets of each gas passage 2 pass through the gas delivery passage 6 and the The inlets of turbine 4 are connected.
  • the temperature and flow of the gaseous working medium can be adjusted by adjusting and opening different numbers of gas flow regulating devices 5 , or opening the gas flow regulating devices 5 at different positions, thereby also adjusting the power generation capacity of the generator 11 .
  • the flow rate and the temperature of the working fluid delivered to the turbine 4 will be relatively low, if the air inlet located at the gas passage 2 is opened If the gas flow regulating device 5 in the first stage is used, the flow rate and temperature of the working fluid delivered to the turbine 4 will be relatively increased. On the contrary, if the gas flow regulating device 5 located at the gas outlet of the gas channel 2 is opened, the flow rate of the working fluid delivered to the turbine 4 will be relatively low, but the temperature of the working fluid will be relatively high. If the gas flow regulating device 5 in the gas port section increases the flow rate of the working fluid delivered to the turbine 4, the temperature of the working fluid will decrease relatively. In this way, the power generation of the generator 11 can be flexibly adjusted to adapt to different changes in power consumption.
  • the above-mentioned gas channel 2 and gas delivery channel 6 are arranged in a steel pipe with a circular cross section, and a partition 12 is arranged between the gas channel 2 and the gas delivery channel 6, and each of the gas flow adjustment The devices 5 are respectively arranged on the partitions 12 .
  • a temperature measuring device is provided at the gas outlet of each of the above-mentioned gas passages 2 , and a temperature measuring device is provided at the outlet section of the gas transmission channel 6 or the inlet of the turbine 4 .
  • the surface of the above-mentioned regenerator 3 is connected with a plurality of cooling fins, the gas delivery channel 6 is closely arranged along the side wall of the gas channel 2, and the regenerator 3 is fixed by a bracket or a boom In the middle of the gas channel 2.
  • the above-mentioned regenerator 3 is made of iron-chromium-aluminum alloy or conductive ceramics or silicon carbide, and the heat dissipation fins are made of iron-chromium-aluminum alloy or conductive ceramics or silicon carbide, and the regenerator 3 is in the shape of a long strip shape, the cross-section of the heat storage body 3 is circular, oval or rectangular, and the area of the cross-section of the heat storage body 3 is greater than 100 square centimeters.
  • the outlet of the above-mentioned compressor 7 communicates with the inlet of the turbine 4 through a temperature-regulating air passage 9, and a cut-off valve 10 for adjusting gas flow is provided on the temperature-regulating air passage 9.
  • the working medium circulated in the above-mentioned gas channel 2, cooler 8 or waste heat boiler, turbine 4 and compressor 7 is hydrogen or helium or nitrogen or argon or carbon dioxide.
  • the above-mentioned waste heat boiler 8 can produce hot water or steam by using the heat carried by the working fluid passing through its interior.
  • the melting point of the heat storage body 3 is usually higher than 1400°C, and the upper limit temperature of the heat storage body 3 during heat storage can be set around 1400°C.
  • the thermal body 3 and the thermal storage body 3 can have a section size of 100mm-300mm in diameter and a total length of more than 1000 meters, so as to store enough heat energy.
  • the two ends of the heat storage body 3 are connected to the power supply through the electrical control device, and the heat storage body 3 is used to convert the electric energy input from the outside into heat energy and store it. Therefore, the present invention It is used to convert the electric energy generated by various hydropower, solar power generation devices, and wind power generation devices into thermal energy during the peak power generation, and when the power consumption peaks, due to the gas channel 2, the cooler 8 or the waste heat boiler, the turbine 4 and the compressor 7 is filled with a gaseous working medium for circulation. When the compressor 7 is started, the gaseous working medium will be boosted and injected into the air inlet of the gas channel 2, and then the gaseous working medium will flow along the gas channel 2 and be stored.
  • the heating body 3 is heated, and the heated gaseous working medium will enter the turbine 4 and drive the turbine 4 to rotate, and then the turbine 4 will drive the generator 11 to rotate and generate electricity, so that the stored heat energy will be quickly and efficiently generated during peak power consumption Converted into electrical energy; the gaseous working medium discharged from the turbine 4 after power generation will enter the cooler 8 or waste heat boiler, where the gaseous working medium will be cooled, and then discharged from the cooler 8 or waste heat boiler, and then the gaseous working medium It will return to the compressor 7 again, and then enter the gas channel 2 again after being pressurized again. In this way, the thermal energy stored in the thermal storage body 3 can be gradually converted into electrical energy again.
  • the heat storage peak-shaving power generation device of the present invention can efficiently convert the electric energy generated by various hydropower, solar power generation devices, and wind power generation devices into heat energy and store it at the peak of power generation, and then quickly and efficiently store the stored heat energy at the peak of power consumption. Efficiently converted into electric energy, so that the existing various hydropower, solar power generation devices, and wind power generation devices can be used more efficiently, and avoid a large amount of heat energy wasted by hydropower, solar power, and wind power generation capabilities.

Abstract

一种蓄热调峰发电装置,包括保温壳体,保温壳体内设有气体通道,气体通道内设有蓄热体,蓄热体的二端通过电气控制装置与电源相连,蓄热体用于将外界输入的电能转换为热能并储存起来,气体通道的出气口与涡轮机的进口相通,涡轮机的动力输出轴与发电机的动力输入轴传动相连,涡轮机的出口与可冷却气体的冷却器或余热锅炉的进气口相通,冷却器或余热锅炉的出气口与压气机的进口相通,压气机的出口与气体通道的进气口相通。其目的在于提供一种可以高效率的将发电高峰产生的电能转换成热能储存起来,然后在用电高峰将储存的热能快速、高效率地转化成电能,避免大量的水电、太阳能、风能地发电能力浪费的蓄热调峰发电装置。

Description

蓄热调峰发电装置 技术领域
本发明涉及一种蓄热调峰发电装置。
背景技术
水电、太阳能、风能都属于可再生能源,并且对水电、太阳能、风能的开发利用不会产生大量的二氧化碳。但是,利用水电、太阳能、风能发电存在着发电高峰与用电高峰在时间上不对应的问题,导致大量的浪费,并且造成仅仅依赖水电、太阳能、风能发电无法满足用电需求的问题,进而造成对现有的各种太阳能发电装置、风能发电装置的利用效率较低。
发明内容
本发明的目的在于提供一种可以高效率的将各种水电、太阳能发电装置、风能发电装置在发电高峰产生的电能转换成热能储存起来,然后在用电高峰将储存的热能快速、高效率地转化成电能,可让现有的各种水电、太阳能发电装置、风能发电装置的利用效率更高,避免大量的水电、太阳能、风能地发电能力浪费的蓄热调峰发电装置。
本发明的蓄热调峰发电装置,包括保温壳体,保温壳体内设有气体通道,气体通道内设有蓄热体,蓄热体的二端通过电气控制装置与电源相连,蓄热体用于将外界输入的电能转换为热能并储存起来,蓄热体的周围设有可让气流通过的换热空间,气体通道的出气口与涡轮机的进口相通,涡轮机的动力输出轴与发电机的动力输入轴传动相连,涡轮机的出口与可冷却气体的冷却器或余热锅炉的进气口相通,冷却器或余热锅炉用于冷却流动穿过其内部冷却通道的气体,冷却器或余热锅炉的出气口与压气机的进口相通,压气机的出口与气体通道的进气口相通,气体通道、冷却器或余热锅炉、涡轮机和压气机构成一个循环系统,气体通道、冷却器或余热锅炉、涡轮机和压气机内充有用于循环的气态的工质。当涡轮机的动力输出轴驱动发电机的动力输入轴转动并发电时,蓄热体在电气控制装置的调控下停止将电能转换为热能,当蓄热体在电气控制装置的调控下将电能转换为热能时,涡轮机的动力输出轴不得驱动发电机的动力输入轴转动并发电。
本发明的蓄热调峰发电装置,其中所述气体通道内自前向后设有多个蓄热体,每个蓄热体的二端通过电气控制装置与电源相连,位于每个蓄热体附近的气体通道侧壁上都分别设有气体通道的出气口,每个气体通道的出气口处分别设有气体流量调节装置,每个气体通道的出气口都通过输气通道与涡轮机的进口相通。
本发明的蓄热调峰发电装置,其中所述气体通道和输气通道设置在横截面为圆形的钢管内,气体通道与输气通道之间设有隔板,每个所述气体流量调节装置分别设置在隔板上。
本发明的蓄热调峰发电装置,其中每个所述气体通道的出气口处分别设有测温装置,所述输气通道的出口段或涡轮机的进口处设有测温装置。
本发明的蓄热调峰发电装置,其中所述蓄热体的表面连接有多个散热翅片,所述输气通道沿着气体通道的侧壁紧贴布置,蓄热体采用支架或吊杆固定在气体通道内的中部。
本发明的蓄热调峰发电装置,其中所述蓄热体采用铁铬铝合金或导电陶瓷或碳化硅制成,散热翅片采用铁铬铝合金或导电陶瓷或碳化硅制成,蓄热体呈长条状,蓄热体的横截面为圆形或椭圆形或矩形,蓄热体横截面的面积大于100平方厘米。
本发明的蓄热调峰发电装置,其中所述压气机的出口与涡轮机的进口通过调温气道相通,调温气道上设有调节气体流量的截门。
本发明的蓄热调峰发电装置,其中所述气体通道、冷却器或余热锅炉、涡轮机和压气机内循环的工质为氢气或氦气或氮气或氩气或二氧化碳。
本发明的蓄热调峰发电装置,其中所述余热锅炉可利用穿过其内部的工质所携带的热量生产热水或蒸汽。
本发明的蓄热调峰发电装置在使用时,其蓄热体的二端通过电气控制装置与电源相连,蓄热体用于将外界输入的电能转换为热能并储存起来,因此本发明用于将各种水电、太阳能发电装置、风能发电装置在发电高峰产生的电能转换成热能储存起来,而在用电高峰时,由于气体通道、冷却器或余热锅炉、涡轮机和压气机内充有用于循环的气态的工质,启动压气机,气态的工质就会升压并注入气体通道的进气口,然后气态的工质会沿着气体通道流动并被蓄热体加热,被加热的气态的工质会进入涡轮机并驱动涡轮机转动,然后涡轮机会拖动发电机转动并发电,由此将用电高峰将储存的热能快速、高效率地转化成电能;发电后从涡轮机排出的气态的工质会进入冷却器或余热锅炉,在此气态的工质会被降温,然后再从冷却器或余热锅炉排出,然后气态的工质会再次回到压气机,重新被加压后再次进入气体通道内,如此循环往复,就可以逐渐将蓄热体储存的热能再次转换为电能。因此,本发明的蓄热调峰发电装置具有可以高效率的将各种水电、太阳能发电装置、风能发电装置在发电高峰产生的电能转换成热能储存起来,然后在用电高峰将储存的热能快速、高效率地转化成电能,让现有的各种水电、太阳能发电装置、风能发电装置的利用效率更高,避免大量的水电、太阳能、风能地发电能力浪费的特点。
下面结合附图对本发明的蓄热调峰发电装置作进一步详细说明。
附图说明
图1为本发明的蓄热调峰发电装置的结构示意图的主视图。
具体实施方式
如图1所示,本发明的蓄热调峰发电装置,包括保温壳体1,保温壳体1内设有气体通道2,气体通道2内设有导电材料制成的蓄热体3,蓄热体3的二端通过电气控制装置与电源 相连,蓄热体3用于将外界输入的电能转换为热能并储存起来,蓄热体3的周围设有可让气流通过的换热空间,气体通道2的出气口与涡轮机4的进口相通,涡轮机4的动力输出轴与发电机11的动力输入轴传动相连,涡轮机4的出口与可冷却气体的冷却器8或余热锅炉的进气口相通,冷却器8或余热锅炉用于冷却流动穿过其内部冷却通道的气体,冷却器8或余热锅炉的出气口与压气机7的进口相通,压气机7的出口与气体通道2的进气口相通,气体通道2、冷却器8或余热锅炉、涡轮机4和压气机7构成一个布雷顿循环系统,气体通道2、冷却器8或余热锅炉、涡轮机4和压气机7内充有用于循环的气态的工质。
为了高效率的使用本发明的蓄热调峰发电装置,避免无谓的能源浪费,当涡轮机4的动力输出轴驱动发电机11的动力输入轴转动并发电时,蓄热体3在电气控制装置的调控下停止将电能转换为热能,当蓄热体3在电气控制装置的调控下将电能转换为热能时,涡轮机4的动力输出轴不得驱动发电机11的动力输入轴转动并发电。
作为本发明的进一步改进,上述气体通道2内自前向后设有多个蓄热体3,每个蓄热体3的二端通过电气控制装置与电源相连,位于每个蓄热体3附近的气体通道2侧壁上都分别设有气体通道2的出气口,每个气体通道2的出气口处分别设有气体流量调节装置5,每个气体通道2的出气口都通过输气通道6与涡轮机4的进口相通。在使用时,可通过调节开启不同数量的气体流量调节装置5,或者开启不同位置气体流量调节装置5来调节气态工质的温度和流量,进而也调节了发电机11的发电量。例如,只开启位于气体通道2的进气口端的气体流量调节装置5,则输送到涡轮机4的工质的流量和工质的温度都会相对较低,如果增加开启位于气体通道2的进气口段的气体流量调节装置5,则输送到涡轮机4的工质的流量和工质的温度都会相对提高。反之,开启位于气体通道2的出气口端的气体流量调节装置5,则输送到涡轮机4的工质的流量相对较低,但工质的温度都会相对较高,如果增加开启位于气体通道2的出气口段的气体流量调节装置5,则输送到涡轮机4的工质的流量会增加,而工质的温度会相对降低。这样就可以灵活的调节发电机11的发电量,以适应不同的用电量变化。
作为本发明的进一步改进,上述气体通道2和输气通道6设置在横截面为圆形的钢管内,气体通道2与输气通道6之间设有隔板12,每个所述气体流量调节装置5分别设置在隔板12上。
作为本发明的进一步改进,上述每个所述气体通道2的出气口处分别设有测温装置,所述输气通道6的出口段或涡轮机4的进口处设有测温装置。
作为本发明的进一步改进,上述蓄热体3的表面连接有多个散热翅片,所述输气通道6沿着气体通道2的侧壁紧贴布置,蓄热体3采用支架或吊杆固定在气体通道2内的中部。
作为本发明的进一步改进,上述蓄热体3采用铁铬铝合金或导电陶瓷或碳化硅制成,散 热翅片采用铁铬铝合金或导电陶瓷或碳化硅制成,蓄热体3呈长条状,蓄热体3的横截面为圆形或椭圆形或矩形,蓄热体3横截面的面积大于100平方厘米。
作为本发明的进一步改进,上述压气机7的出口与涡轮机4的进口通过调温气道9相通,调温气道9上设有调节气体流量的截门10。
作为本发明的进一步改进,上述气体通道2、冷却器8或余热锅炉、涡轮机4和压气机7内循环的工质为氢气或氦气或氮气或氩气或二氧化碳。
作为本发明的进一步改进,上述余热锅炉8可利用穿过其内部的工质所携带的热量生产热水或蒸汽。
为了让蓄热体3能够储存足够多的热能,蓄热体3的熔点通常要高于1400℃,蓄热体3储热时的上限温度可以设定在1400℃附近,对于圆形截面的蓄热体3,蓄热体3的截面尺寸可以设置成直径100mm—300mm,总长度大于1000米,从而能够储存足够多的热能。
本发明的蓄热调峰发电装置在使用时,其蓄热体3的二端通过电气控制装置与电源相连,蓄热体3用于将外界输入的电能转换为热能并储存起来,因此本发明用于将各种水电、太阳能发电装置、风能发电装置在发电高峰产生的电能转换成热能储存起来,而在用电高峰时,由于气体通道2、冷却器8或余热锅炉、涡轮机4和压气机7内充有用于循环的气态的工质,启动压气机7,气态的工质就会升压并注入气体通道2的进气口,然后气态的工质会沿着气体通道2流动并被蓄热体3加热,被加热的气态的工质会进入涡轮机4并驱动涡轮机4转动,然后涡轮机4会拖动发电机11转动并发电,由此将用电高峰将储存的热能快速、高效率地转化成电能;发电后从涡轮机4排出的气态的工质会进入冷却器8或余热锅炉,在此气态的工质会被降温,然后再从冷却器8或余热锅炉排出,然后气态的工质会再次回到压气机7,重新被加压后再次进入气体通道2内,如此循环往复,就可以逐渐将蓄热体3储存的热能再次转换为电能。因此,本发明的蓄热调峰发电装置可以高效率的将各种水电、太阳能发电装置、风能发电装置在发电高峰产生的电能转换成热能储存起来,然后在用电高峰将储存的热能快速、高效率地转化成电能,让现有的各种水电、太阳能发电装置、风能发电装置的利用效率更高,避免大量的水电、太阳能、风能地发电能力浪费的热能。

Claims (9)

  1. 蓄热调峰发电装置,其特征在于:包括保温壳体(1),保温壳体(1)内设有气体通道(2),气体通道(2)内设有蓄热体(3),蓄热体(3)用于将外界输入的电能转换为热能并储存起来,蓄热体(3)的周围设有可让气流通过的换热空间,气体通道(2)的出气口与涡轮机(4)的进口相通,涡轮机(4)的动力输出轴与发电机的动力输入轴传动相连,涡轮机(4)的出口与可冷却气体的冷却器(8)或余热锅炉的进气口相通,冷却器(8)或余热锅炉用于冷却流动穿过其内部冷却通道的气体,冷却器(8)或余热锅炉的出气口与压气机(7)的进口相通,压气机(7)的出口与气体通道(2)的进气口相通,气体通道(2)、冷却器(8)或余热锅炉、涡轮机(4)和压气机(7)构成一个循环系统,气体通道(2)、冷却器(8)或余热锅炉、涡轮机(4)和压气机(7)内充有用于循环的气态的工质。
  2. 根据权利要求1所述的蓄热调峰发电装置,其特征在于:所述气体通道(2)内自前向后设有多个蓄热体(3),每个蓄热体(3)的二端通过电气控制装置与电源相连,位于每个蓄热体(3)附近的气体通道(2)侧壁上都分别设有气体通道(2)的出气口,每个气体通道(2)的出气口处分别设有气体流量调节装置(5),每个气体通道(2)的出气口通过输气通道(6)与涡轮机(4)的进口相通。
  3. 根据权利要求2所述的蓄热调峰发电装置,其特征在于:所述气体通道(2)和输气通道(6)设置在横截面为圆形的钢管内,气体通道(2)与输气通道(6)之间设有隔板(12),每个所述气体流量调节装置(5)分别设置在隔板(12)上。
  4. 根据权利要求3所述的蓄热调峰发电装置,其特征在于:每个所述气体通道(2)的出气口处分别设有测温装置,所述输气通道(6)的出口段或涡轮机(4)的进口处设有测温装置。
  5. 根据权利要求4所述的蓄热调峰发电装置,其特征在于:所述蓄热体(3)的表面连接有多个散热翅片,所述输气通道(6)沿着气体通道(2)的侧壁紧贴布置,蓄热体(3)采用支架或吊杆固定在气体通道(2)内的中部。
  6. 根据权利要求5所述的蓄热调峰发电装置,其特征在于:所述蓄热体(3)采用铁铬铝合金或导电陶瓷或碳化硅制成,散热翅片采用铁铬铝合金或导电陶瓷或碳化硅制成,蓄热体(3)呈长条状,蓄热体(3)的横截面为圆形或椭圆形或矩形,蓄热体(3)横截面的面积大于100平方厘米。
  7. 根据权利要求1至6中任何一项所述的蓄热调峰发电装置,其特征在于:所述压气机(7)的出口与涡轮机(4)的进口通过调温气道(9)相通,调温气道(9)上设有调节气体流量的截门(10)。
  8. 根据权利要求7所述的蓄热调峰发电装置,其特征在于:所述气体通道(2)、冷却器(8)或余热锅炉、涡轮机(4)和压气机(7)内循环的工质为氢气或氦气或氮气或氩气或二氧化碳。
  9. 根据权利要求8所述的蓄热调峰发电装置,其特征在于:所述余热锅炉(8)可利用穿过其内部的工质所携带的热量生产热水或蒸汽。
PCT/CN2022/079439 2021-08-16 2022-03-04 蓄热调峰发电装置 WO2023019916A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110938424.2A CN113586182A (zh) 2021-08-16 2021-08-16 蓄热调峰发电装置
CN202110938424.2 2021-08-16

Publications (1)

Publication Number Publication Date
WO2023019916A1 true WO2023019916A1 (zh) 2023-02-23

Family

ID=78258130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079439 WO2023019916A1 (zh) 2021-08-16 2022-03-04 蓄热调峰发电装置

Country Status (2)

Country Link
CN (1) CN113586182A (zh)
WO (1) WO2023019916A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113586182A (zh) * 2021-08-16 2021-11-02 孟金来 蓄热调峰发电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140053554A1 (en) * 2012-08-21 2014-02-27 Mehrdad Tartibi Power generation system having thermal energy storage
CN205717463U (zh) * 2016-04-15 2016-11-23 青岛敏深风电科技有限公司 一种高效蓄热式供热装置
CN109959290A (zh) * 2017-12-14 2019-07-02 中国科学院上海应用物理研究所 固体蓄热储能系统及包含其的储能电站
WO2019149623A1 (en) * 2018-01-31 2019-08-08 Ss&A Power Development Ag Energy storage device and system
CN212157096U (zh) * 2020-03-11 2020-12-15 赫普能源环境科技股份有限公司 一种火电厂固体蓄热发电调峰调频系统
CN113586182A (zh) * 2021-08-16 2021-11-02 孟金来 蓄热调峰发电装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010056302A (ko) * 1999-12-14 2001-07-04 김인수 온수 난방용 태양열 집열판, 열교환 장치 및 방법
JP2011169187A (ja) * 2010-02-17 2011-09-01 Jfe Engineering Corp 太陽熱利用廃棄物発電装置
CN108362151B (zh) * 2018-01-30 2020-03-27 中国科学院上海应用物理研究所 蓄热储能发电系统
CN112228853B (zh) * 2020-10-14 2022-08-02 中国科学院上海应用物理研究所 多孔介质传蓄热装置、传蓄热发电系统及储能电站
CN113153473B (zh) * 2021-04-19 2022-12-09 西安交通大学 一种压缩空气与燃气蒸汽循环集成的调峰系统及其运行方法
CN216741649U (zh) * 2021-08-16 2022-06-14 孟金来 蓄热型调峰发电装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140053554A1 (en) * 2012-08-21 2014-02-27 Mehrdad Tartibi Power generation system having thermal energy storage
CN205717463U (zh) * 2016-04-15 2016-11-23 青岛敏深风电科技有限公司 一种高效蓄热式供热装置
CN109959290A (zh) * 2017-12-14 2019-07-02 中国科学院上海应用物理研究所 固体蓄热储能系统及包含其的储能电站
WO2019149623A1 (en) * 2018-01-31 2019-08-08 Ss&A Power Development Ag Energy storage device and system
CN212157096U (zh) * 2020-03-11 2020-12-15 赫普能源环境科技股份有限公司 一种火电厂固体蓄热发电调峰调频系统
CN113586182A (zh) * 2021-08-16 2021-11-02 孟金来 蓄热调峰发电装置

Also Published As

Publication number Publication date
CN113586182A (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
US10280803B2 (en) Energy storage device and method for storing energy
EP3746648B1 (en) Energy storage device and system
JP6913044B2 (ja) 圧縮空気貯蔵発電装置
WO2023019916A1 (zh) 蓄热调峰发电装置
CN111075529B (zh) 一种适用于脉冲型聚变堆的布雷登循环发电系统
CN111075668A (zh) 一种利用固体颗粒储热的储电系统
CN109616229A (zh) 用于钠冷快堆的梯级供热超临界二氧化碳循环热电联供系统
CN108362151B (zh) 蓄热储能发电系统
CN216741649U (zh) 蓄热型调峰发电装置
CN213807869U (zh) 一种利用制冷站冷量余量的燃气轮机进气双回路冷却系统
CN113053548A (zh) 一种具有自然循环堆芯余热导出功能的高温气冷堆
CN110242362B (zh) 超临界二氧化碳布雷顿循环做功系统
WO2020063224A1 (zh) 耦合动态储能的固体蓄热电锅炉供热制冷系统
CN209328527U (zh) 用于钠冷快堆的梯级供热超临界二氧化碳循环热电联供系统
CN208441894U (zh) 一种压缩空气储能蓄热回热装置
CN104792002A (zh) 一种用双作用热声热泵为加热器的开水加热系统
US20220275755A1 (en) Gas turbine comprising thermal energy store, method for operating same, and method for modifying same
CN106948878A (zh) 闭式燃气螺管转子发动机装置
CN113446078A (zh) 一种带深冷的二氧化碳余热发电储能系统
JP3784617B2 (ja) 小容量のガスタービンコージェネレーションシステムの熱電比制御方法
RU97121547A (ru) Способ эксплуатации энергетической установки и установки для его осуществления
CN216523315U (zh) 用于调峰发电的电热蓄热装置
CN116191573B (zh) 一种基于数据处理的电力调峰系统
JP3242127U (ja) 蓄電及び蓄熱システム
CN112683093B (zh) 一种阀门切换的蓄热式回热超临界二氧化碳循环系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE