WO2023019707A1 - 基于时间敏感以太网的列车通信网络拓扑结构及通讯方法 - Google Patents

基于时间敏感以太网的列车通信网络拓扑结构及通讯方法 Download PDF

Info

Publication number
WO2023019707A1
WO2023019707A1 PCT/CN2021/123550 CN2021123550W WO2023019707A1 WO 2023019707 A1 WO2023019707 A1 WO 2023019707A1 CN 2021123550 W CN2021123550 W CN 2021123550W WO 2023019707 A1 WO2023019707 A1 WO 2023019707A1
Authority
WO
WIPO (PCT)
Prior art keywords
tsn
network
ethernet
terminal
type
Prior art date
Application number
PCT/CN2021/123550
Other languages
English (en)
French (fr)
Inventor
殷建华
郝波
周学勋
李思源
黄越
全清华
汪文心
易荣武
刘文超
唐红英
Original Assignee
中车株洲电力机车研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车株洲电力机车研究所有限公司 filed Critical 中车株洲电力机车研究所有限公司
Publication of WO2023019707A1 publication Critical patent/WO2023019707A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/50Queue scheduling
    • H04L47/62Queue scheduling characterised by scheduling criteria
    • H04L47/625Queue scheduling characterised by scheduling criteria for service slots or service orders
    • H04L47/6275Queue scheduling characterised by scheduling criteria for service slots or service orders based on priority

Definitions

  • the invention belongs to the technical field of train network communication, and in particular relates to a time-sensitive Ethernet-based train communication network topology and communication method.
  • the train is composed of multiple systems, among which the train communication network (Train Communication Network, TCN) provides data communication services for each subsystem of the train, is the core component of the train, and is the "brain” and "nervous” system of the train.
  • TCN Train Communication Network
  • EOB Ethernet Train Backbone
  • ECN Ethernet Consist Network
  • Multi-network integration is the development trend of the rail transit industry.
  • the train network control system and passenger information system although both use Ethernet technology, are physically independent of each other.
  • the former is characterized by the transmission of data related to train control, which is related to train driving safety but the amount of data is small;
  • the latter is characterized by the transmission of data not related to train control, which is non-critical and does not involve train driving safety but has a large amount of data and needs to be occupied Larger bandwidth.
  • TCN Time Sensitive Networking
  • ETB in the commonly used TCN currently uses link aggregation redundancy to realize cross-marshalling communication, and ECN within a marshalling adopts ring topology redundancy to realize intra-marshalling communication.
  • redundancy of TCN has been realized at present, there are multiple communication paths between two terminals that communicate with each other, resulting in uncertain communication delay between two terminals that communicate with each other, which cannot meet the requirements of the TSN network. Require.
  • the main purpose of the present disclosure is to provide a time-sensitive Ethernet-based train communication network topology and communication method to solve the problem of multiple communication paths between two terminals communicating with each other in the prior art.
  • the communication delay between communication terminals is uncertain, which cannot meet the requirements of the TSN network.
  • the embodiments of the present disclosure provide a train communication network topology based on time-sensitive Ethernet.
  • the train includes at least one division unit; the train communication network topology includes: a terminal layer and at least two Ethernet layers based on the time-sensitive network TSN.
  • the Ethernet layer includes a TSN-based Ethernet backbone layer and a TSN-based Ethernet grouping network layer; the Ethernet backbone layer includes a TSN backbone switch arranged in a division unit; the Ethernet grouping network layer includes a plurality of TSN groupings arranged in a division unit The switch; the terminal layer includes at least one terminal corresponding to each TSN composition switch; the TSN composition switch is connected to the corresponding at least one terminal.
  • the TSN backbone switches of each division unit are connected sequentially.
  • the TSN backbone switch in the same division unit is connected to any TSN group switch; all TSN group switches are connected to each other to form a ring group network; the ring group network is configured as an independent interactive network corresponding to each TSN-based Ethernet layer path and the linear network interaction path corresponding to the ring marshalling network.
  • the independent interaction network path is used to transmit the first type of data sent by at least one terminal.
  • the linear network interaction path is used to transmit the second type of data sent by at least one terminal.
  • the priority of the first type of data is higher than the priority of the second type of data.
  • the embodiment of the present disclosure also provides a communication method based on the topology of the time-sensitive Ethernet-based train communication network.
  • the type of data sent by the terminal is determined.
  • the first type of data is sent to the target terminal in the group via at least some TSN composition switches in at least one independent interaction network path of the current division unit; and/ Or, the first type of data is routed through at least part of the TSN grouping switches in at least one independent interactive network path of the current division unit, at least part of the TSN backbone switches of the TSN-based Ethernet backbone layer, and at least one independent interactive network path of the target division unit At least part of the TSN composition switches in the group send to the inter-group target terminal.
  • the second type of data is sent to the target terminal in the group via at least part of the TSN composition switches of the linear network interaction path of the current division unit; and/or, Passing the second type of data through at least some of the TSN composition switches in the linear network interaction path of the current division unit, at least some of the TSN backbone switches of the TSN-based Ethernet backbone layer, and at least part of the linear network interaction path of the target division unit
  • the TSN group switch sends it to the inter-group target terminal.
  • Fig. 1 is the schematic diagram of the topology structure of the train communication network based on Ethernet in the related art
  • FIG. 2 is a schematic diagram of the topology of the train communication network based on time-sensitive Ethernet of the present disclosure
  • Fig. 3 is a schematic diagram of a specific form of an application example of Fig. 2;
  • Fig. 4 is a schematic diagram of a TRDP process data frame format and message header
  • FIG. 5 is a schematic diagram of a message format proposed in the present disclosure.
  • Fig. 6 is the expanded schematic diagram of Ethernet frame header in Fig. 4;
  • FIG. 7 is a schematic diagram showing the expansion of the VLAN field in FIG. 6 .
  • Multi-network integration is the development trend of the rail transit industry.
  • the train network control system and passenger information system although both use Ethernet technology, are physically independent of each other.
  • the former is characterized by the transmission of data related to train control, which is related to train driving safety but the amount of data is small;
  • the latter is characterized by the transmission of data not related to train control, which is non-critical and does not involve train driving safety but has a large amount of data and needs to be occupied Larger bandwidth.
  • the reason why the train network control system and the passenger information system are not transmitted in the same network is that the transmission of non-critical data will affect the delay of key data transmission, making the transmission time of the latter uncertain. For example, with a bandwidth of 1G, it is theoretically feasible to transmit %20 of key data and %70 of non-key data, but in fact, the time delay of key data will become larger, which will affect driving safety.
  • the minimum delay is close to the performance when there is no non-critical data interference.
  • the traffic of 20% bandwidth burst model is injected into the network, and the maximum delay is increased by 380 microseconds.
  • the real performance will be worse. That is, in the Ethernet system, if multi-network integration is realized, key control data cannot be guaranteed.
  • TCN Time Sensitive Networking
  • TSN is a set of protocol standards developed by the IEEE802.1TSN task group. This standard defines the time-sensitive mechanism of Ethernet data transmission. The transmission performance in the standard Ethernet adds determinism and reliability to ensure that Ethernet can provide a stable and consistent service level for the transmission of critical data.
  • the real-time performance of TSN is mainly realized through the IEEE8-2.1Qbv function. The difference is that the traditional Ethernet IEEE802.1Qbu+IEEE802.3br uses a preemptive MAC method to transmit high-real-time data, and IEEE802.1Qbv uses TimeAwareShaper to provide high-real-time data. A dedicated time channel, while other non-real-time data is transmitted in the Best Effort way.
  • the realization principle is that in the whole process of end-to-end data packet transmission, the TSN network performs comprehensive data packet scheduling optimization for each key protocol/control information/data flow on the entire network, and accurately defines the data in each forwarding process. Packet priority, all point-to-point paths are prioritized and designated channels in advance to ensure the real-time and accuracy of key data.
  • FIG. 1 is a schematic diagram of a topology structure of an Ethernet-based train communication network in the related art. As shown in Figure 1, the topology of the train communication network can be roughly divided into the following three layers.
  • the first layer ETB network, which is composed of three-layer switch ETBN, is mainly responsible for train reconnection and cross-marshalling communication.
  • the second layer ECN network, which is composed of a layer-2 switch ECNN, provides an Ethernet interaction channel for the terminal.
  • the third layer the terminal layer, which sends and receives interactive data.
  • the ETB network adopts link aggregation redundancy, and the ECN network adopts ring topology redundancy, both of which meet robustness requirements.
  • the first terminal ED11 of the first division unit #1 communicates with the second terminal ED12 of the first division unit #1, assuming that the virtual breakpoint is between the third switch ECNN#13 of the first division unit #1 and the first division Between the fourth switch ECNN#14 of unit #1, the communication path between the two is ED11—ECNN#13—ECNN#11—ECNN#12—ECNN#14—ED12.
  • the present disclosure provides the following technical solutions.
  • FIG. 2 is a schematic diagram of the topology structure of the time-sensitive Ethernet-based train communication network of the present disclosure.
  • the train includes at least one division unit S ( Figure 2 takes two division units S as an example), and the train communication network topology includes: a terminal layer 10 and at least two Ethernet layers 11 based on TSN ( Figure 2 2 as an example with two TSN-based Ethernet layers 11).
  • the TSN-based Ethernet layer 11 includes a TSN-based ETB layer 111 and a TSN-based ECN layer 112 .
  • the ETB layer 111 includes a TSN backbone switch ETBN provided in a division unit.
  • the ECN layer includes a plurality of TSN composition switches ECNN arranged in the division unit.
  • the terminal layer 10 includes at least one terminal ED corresponding to each TSN composition switch ECNN.
  • the TSN marshalling switch ECNN is connected to at least one corresponding terminal ED; the TSN backbone switch ETBN of each division unit is connected in turn; the TSN backbone switch ETBN in the same division unit is connected to any TSN marshalling switch ECNN; all TSN marshalling switches ECNN are connected to each other to form A ring marshalling network.
  • the ring-type composition network formed by all TSN composition switches ECNN is logically configured as an independent interactive network path corresponding to each TSN-based ECN layer and a linear network interaction corresponding to the ring-type composition network path.
  • the independent interaction network path is used to transmit the first type of data sent by at least one terminal
  • the linear network interaction path is used to transmit the second type of data sent by at least one terminal.
  • the priority of the first type of data is higher than the priority of the second type of data. That is to say, the first type of data is key data, and the second type of data is non-key data.
  • FIG. 3 is a schematic diagram of a specific form of an application example of FIG. 2 .
  • the first TSN-based Ethernet layer 11A in the first division unit S#1 includes a TSN-based ETB 111A and a TSN-based ECN layer 112A.
  • ETB111A includes the first TSN backbone switch ETBN#A11 set in the first division unit S#1;
  • ECN layer 112A includes the first TSN group switch ECNN#A11 set in the first division unit S#1, the second A TSN composition switch ECNN#A12 and a third TSN composition switch ECNN#A13.
  • the second TSN-based Ethernet layer 11B in the first division unit S#1 includes the TSN-based ETB111B and the TSN-based ECN layer 112B; the ETB111B includes the second TSN backbone set in the first division unit S#1
  • the terminal layer 10 includes a first terminal ED11-TSN, a second terminal ED12-TSN, a third terminal ED13 and a fourth terminal ED14.
  • the first terminal ED11-TSN is respectively connected with the first TSN composition switch ECNN#A11 and the fourth TSN composition switch ECNN#B11.
  • the second terminal ED12-TSN is respectively connected to the second TSN composition switch ECNN#A12 and the fifth TSN composition switch ECNN#B12.
  • the third terminal ED13 is connected to the third TSN group switch ECNN#A13.
  • the fourth terminal ED14 is connected to the sixth TSN group switch ECNN#B13.
  • the ETB111A in the second division unit S#2 includes the third TSN backbone switch ETBN#A21 set in the first division unit S#2.
  • the ECN layer 112A includes the seventh TSN composition switch ECNN#A21, the eighth TSN composition switch ECNN#A22 and the ninth TSN composition switch ECNN#A23 arranged in the second division unit S#1.
  • the ETB111B in the second division unit S#2 includes the fourth TSN backbone switch ETBN#B21 set in the second division unit S#2.
  • the ECN layer 112B includes the tenth TSN composition switch ECNN#B21, the eleventh TSN composition switch ECNN#B22 and the twelfth TSN composition switch ECNN#B23 arranged in the second division unit S#2.
  • the terminal layer 10 includes a fifth terminal ED21-TSN, a sixth terminal ED22-TSN, a seventh terminal ED23 and an eighth terminal ED24.
  • the fifth terminal ED21-TSN is respectively connected to the seventh TSN composition switch ECNN#A21 and the tenth TSN composition switch ECNN#B21.
  • the sixth terminal ED22-TSN is respectively connected to the eighth TSN composition switch ECNN#A22 and the eleventh TSN composition switch ECNN#B22.
  • the seventh terminal ED23 is connected to the ninth TSN group switch ECNN#A23.
  • the eighth terminal ED24 is connected to the twelfth TSN group switch ECNN#B23.
  • the first TSN-based Ethernet layer 11A can be defined as the first plane
  • the second TSN-based Ethernet layer 11B can be defined as the second plane.
  • the first TSN group switch ECNN#A11, The second TSN marshalling switch ECNN#A12 and the third TSN marshalling switch ECNN#A13 form an independent interactive network path
  • the first TSN marshalling switch ECNN#A11, the second TSN marshalling switch ECNN#A12 the third TSN
  • the marshalling switch ECNN#A13, the fourth TSN marshalling switch ECNN#B11, the fifth TSN marshalling switch ECNN#B12 and the sixth TSN marshalling switch ECNN#B13 constitute a ring marshalling network, which can be defined as
  • the ring-type marshalling network can correspond to a linear network interaction path.
  • two terminals communicating with each other need to communicate in each independent interaction network path, and the interaction path is unchanged.
  • the interaction path between the first terminal ED11-TSN and the second terminal ED12-TSN of the first division unit S#1 is always ED11-TSN—ECNN#A11—ECNN#A12 —ED12-TSN. Since the interaction path of two terminals communicating with each other in each independent interaction network path is unchanged, the communication time of the two terminals communicating with each other can be calculated.
  • time slice planning After time synchronization, the purpose of time slice planning is to make one of the terminals To send key data at a specific time, the switch guarantees the exclusive bandwidth of the key data according to the time slice plan, so as to realize the isolation of multimedia data and key data, thereby realizing multi-network integration.
  • the second type of data When the second type of data is communicated, since the second type of data has little impact on train safety, its communication path has little impact on the realization of the TSN network, and it can be transmitted according to a linear network interaction path.
  • the format of the communication protocol message in this embodiment may be set in the following manner.
  • FIG. 4 is a schematic diagram of a TRDP process data frame format and message header.
  • the message format of the communication protocol in this embodiment is based on TRDP process data (TRDP-PD).
  • TRDP-PD TRDP process data
  • the message format is shown on the left, and the detailed format of the TRDP-PD message is shown in the picture on the right.
  • FIG. 5 is a schematic diagram of a message format proposed in the present disclosure. Comparing Figure 4 and Figure 5, this disclosure adds 8 bytes to the TRDP-PD header to become TRDP-PD-TSN.
  • key messages sent by terminals supporting TSN must use TRDP-PD-TSN. If a terminal supporting TSN needs to receive, it also needs to support TRDP-PD-TSN.
  • TRDP-PD-TSN The value of this field in the current TRDP-PD protocol is 1.
  • the value of this field in TRDP-PD-TSN is 0xffff or other values, thus ensuring the compatibility of the software, that is, the sender fills in different
  • the value of the field implements TRDP-PD or TRDP-PD-TSN, and the receiving end distinguishes the type of TRDP-PD through the value of this field.
  • Source group number Identify which group a certain TRDP-PD-TSN message comes from. For example, the group number on the left in Figure 10 is 1, and the group number on the right is 2. There may be more groups in the actual application process. For example, there are 3 topological reconnections in 2. 0xff indicates no reconnection, only local marshalling network.
  • Destination group bitmap bit0 is set to 1 to indicate that group 1 needs to receive the message, and so on, and other bits identify other groups.
  • FIG. 6 is an expanded schematic diagram of the header of the Ethernet frame in FIG. 4 .
  • the destination MAC address can be a Layer 2 multicast MAC address in the format of 01:00:5e:xx:xx:xx, and TRDP-PD-TSN must use this MAC address.
  • FIG. 7 is a schematic diagram showing the expansion of the VLAN field in FIG. 6 .
  • This embodiment makes the following plans for the use of the VLAN ID field:
  • Plane codes For example, the first plane, the second plane, and the third plane in FIG. 3 use different plane codes, such as the first plane 1, the second plane 2, and the third plane 3.
  • Sub-VLAN ID further divide VLANs in the plane, such as dividing multiple VLANs in the A plane.
  • Priority and CFI Set the mapping relationship between messages and Qbv queues. This disclosure stipulates that the key data is the highest priority and is mapped to the highest priority Qbv queue.
  • the process of realizing communication based on the time-sensitive Ethernet-based train communication network topology of this embodiment may specifically include the following steps a to c.
  • the type of data sent by the terminal may be determined according to a communication protocol message format corresponding to the data sent by the terminal.
  • the value of the TRDP-PD-TSN field corresponding to the data is 0xffff or other values, it can be determined as the first type of data, and when the value of the TRDP-PD field corresponding to the data is 1, it can be determined as the second type of data.
  • the first type of data is sent to the target terminal in the group via at least some TSN composition switches in at least one independent interaction network path of the current division unit; and/or, The first type of data passes through at least part of the TSN composition switches in at least one independent interactive network path of the current division unit, at least part of the TSN backbone switches in the TSN-based ETB layer, and at least part of the TSN in at least one independent interactive network path of the target division unit
  • the group switch sends to the inter-group target terminal.
  • the first terminal ED11-TSN of the first division unit S#1 needs to send the first type of data to the second terminal ED12-TSN (target terminal in the group), then the independent interactive network path corresponding to the first plane
  • At least some of the TSN grouping switches in can be ECNN#A11 and ECNN#A12.
  • the interaction path between the first terminal ED11-TSN and the second terminal ED12-TSN of the first division unit S#1 is ED11-TSN—ECNN#A11—ECNN#A12—ED12-TSN.
  • the interaction path between the first terminal ED11-TSN and the second terminal ED12-TSN of the first division unit S#1 is ED11-TSN—ECNN#B11—ECNN#B12—ED12-TSN .
  • the first plane At least some of the TSN grouping switches in the corresponding independent interaction network paths may be ECNN#A11, and in the first plane, at least some of the TSN backbone switches of the TSN-based ETB layer may be ETBN#A11 and ETBN#A21. In the first plane, At least some of the TSN composition switches in at least one independent interactive network path of the target division unit are ECNN#A21.
  • the interaction path between the first terminal ED11-TSN of the first division unit S#1 and the fifth terminal ED21-TSN of the second division unit S#2 is ED11-TSN—ECNN#A11—ETBN#A11 — ETBN #A21 — ED21-TSN.
  • the interaction path between the first terminal ED11-TSN of the first division unit S#1 and the fifth terminal ED21-TSN of the second division unit S#2 is ED11-TSN— ECNN#B11—ECNN#B12—ECNN#B13—ETBN#B11—ETBN#B23—ETBN#B22—ETBN#B21—ED21-TSN.
  • the second type of data is sent to the target terminal in the group through at least part of the TSN composition switches of the linear network interaction path of the current division unit; and/or, the second type of data is sent to the target terminal in the group;
  • the type data is sent to at least part of the TSN composition switches in the linear network interaction path of the current division unit, at least part of the TSN backbone switches in the TSN-based ETB layer, and at least part of the TSN composition switches in the linear network interaction path of the target division unit.
  • Target terminal between groups.
  • the first terminal ED11-TSN of the first division unit S#1 needs to send the first type of data to the third terminal ED13 (in-group target terminal) of the first division unit S#1, then in the third At least some of the TSN composition switches in the linear network interaction path corresponding to the plane may be ECNN#A11, ECNN#A12, and ECNN#A13.
  • the interaction path between the first terminal ED11-TSN of the first division unit S#1 and the third terminal ED13 of the first division unit S#1 is ED11-TSN—ECNN#A11—ECNN#A12—ECNN #A13—ED13.
  • the corresponding At least part of the TSN group switches in the linear network interaction path can be ECNN#A11
  • at least part of the TSN backbone switches based on the TSN ETB layer can be ETBN#A11 and ETBN#A21
  • at least one of the independent interaction network paths of the target division unit The at least part of the TSN composition switches are ECNN#A21, ECNN#A22 and ECNN#A23.
  • the interaction path between the first terminal ED11-TSN of the first division unit S#1 and the seventh terminal ED23 of the second division unit S#2 is ED11-TSN—ECNN#A11—ETBN#A11—ETBN #A21—ECNN#A22—ECNN#A23—ED23.
  • each terminal formulates the destination group through the "destination group bitmap" when sending a message
  • the receiving terminal needs to make a choice according to this field after getting the data from the upper layer, that is, the group it is in and the "purpose group Bitmap" match, the business data is used, otherwise it is not used.
  • a ring-shaped marshalling network is formed by connecting all TSN marshalling switches ECNN to each other and is configured as an independent interaction corresponding to each TSN-based ECN layer
  • the network path and the linear network interaction path corresponding to the ring-type marshalling network, and the first type of data sent by at least one terminal is transmitted by the independent interaction network path, and the priority of at least one terminal sent by the linear network interaction path is lower than
  • the second type of data of the first type of data realizes the determinism of the corresponding interaction path of the first type of data in the marshalling and cross-marshalling communication, so as to meet the requirements of the TSN network and ensure that key data will not be affected when multi-network integration .
  • At least one terminal supporting TSN is respectively connected to a corresponding TSN composition switch in each ECN layer, and the terminal supporting TSN sends the first type of data and/or the second type of data.
  • the independent interactive network path of each plane can realize data transmission, thereby realizing the redundancy of the ETB layer, and there is no need to set an intermediate bypass for the ETB layer, even if one of the ETB If one layer fails, other ETB layers can also transmit data, improving the stability of the entire train communication network.
  • At least one terminal that does not support TSN is connected to a corresponding TSN composition switch in at least one ECN layer; the terminal that does not support TSN sends the second type of data.
  • At least one terminal that does not support TSN can also be connected to the corresponding TSN composition switch in at least one ECN layer through a TSN conversion board. In this way, it is equivalent to transforming a terminal that does not support TSN into a terminal that supports TSN.
  • the TSN conversion board includes an Ethernet input network port, a TSN network output network port, and a TSN network chip. Terminals that do not support TSN are connected to the Ethernet input network port of the TSN conversion board through the Ethernet interface, and the TSN network output network port of the TSN conversion board is connected to the TSN switch.
  • the TSN network chip is used to convert between Ethernet and TSN networks.
  • the TSN-based Ethernet backbone layer is Layer 2
  • the TSN-based marshalling layer is Layer 2.
  • the TSN grouping switch supports terminal 100M or 1000M network access, and the TSN backbone switch adopts a bandwidth higher than or equal to that of the 1000M network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本公开涉及一种基于时间敏感以太网的列车通信网络拓扑结构及通讯方法。所述结构包括终端层、至少两个由基于TSN的以太网骨干层和基于TSN的以太网编组网层形成的TSN的以太网层。所有以太网编组网层中的TSN编组交换机相互连接构成一个环型编组网,该环型编组网被配置为与每个基于TSN的以太网编组网层相对应的独立交互网络路径和与环型编组网相对应的线性网路交互路径。独立交互网络路径传输至少一个终端发送的第一类型数据。线性网路交互路径传输至少一个终端发送的优先级低于第一类型数据的第二类型数据。

Description

基于时间敏感以太网的列车通信网络拓扑结构及通讯方法
相关申请的交叉引用
本申请要求享有2021年08月18日提交的名称为“基于时间敏感以太网的列车通信网络拓扑结构及通讯方法”的中国专利申请CN202110950431.4的优先权,其全部内容通过引用并入本申请中。
技术领域
本发明属于列车网络通信技术领域,具体涉及一种基于时间敏感以太网的列车通信网络拓扑结构及通讯方法。
背景技术
列车由多个系统组成,其中列车通信网络(Train Communication Network,TCN)为列车各子系统提供数据通信服务,是列车核心组成部分,是列车的“大脑”和“神经”系统。随着工业以太网的逐渐普及,由以太网组成的以太网骨干网(Ethernet Train Backbone,ETB)和以太网编组网(Ethernet Consist Network,ECN)应用愈趋广泛。
多网融合是轨道交通行业的发展趋势,比如列车网络控制系统与乘客信息系统,尽管两者都采用了以太网技术,但在物理实体上却是两套相互独立的网络。前者的特点是传输与列车控制相关数据,涉及到列车行驶安全但数据量较小;后者的特点是传输与列车控制无关的数据,非关键不涉及列车行驶安全但数据量很大,需要占用较大的带宽。
为了保证关键数据的实时性和准确性,在轨道交通列车上部署实施基于时间敏感网络(Time Sensitive Networking,TSN)的以太网成为下一代TCN通信技术的主要研究方向。TCN通信技术的实现原理是在数据包端到端传送的整个过程中,TSN网络对整个网络上的每个关键协议/控制信息/数据流做全面的数据包排包优化,准确定义每次转发过程中数据包的优先级,所有点对点路径事前排好优先级和指定通道,保证关键数据的实时性和准确性。
目前常用TCN中ETB采用链路汇聚冗余实现跨编组的通信,编组内的ECN采用环形拓扑冗余,实现编组内的通信。然而,目前虽然实现了TCN的冗余,但是两个相互通信的终端之间有多条通讯路径,从而导致两个相互通信的终端之间的通讯延时是不确定的,无法满足TSN网络的要求。
发明内容
本公开的主要目的是提供一种基于时间敏感以太网的列车通信网络拓扑结构及通讯方法,以解决现有技术中因两个相互通信的终端之间有多条通讯路径,从而导致两个相互通信的终端之间的通讯延时是不确定的,无法满足TSN网络的要求的问题。
针对上述问题,第一方面,本公开实施例提供了一种基于时间敏感以太网的列车通信网络拓扑结构。列车包括至少一个划分单元;列车通信网络拓扑结构包括:终端层和至少两个基于时间敏感网络TSN的以太网层。
以太网层包括基于TSN的以太网骨干层和基于TSN的以太网编组网层;以太网骨干层包括设置于划分单元的TSN骨干交换机;以太网编组网层包括设置于划分单元的多个TSN编组交换机;终端层包括与每个TSN编组交换机相对应的至少一个终端;TSN编组交换机与对应的至少一个终端相连。
每个划分单元的TSN骨干交换机依次相连。
同一划分单元中TSN骨干交换机与任一TSN编组交换机相连;所有TSN编组交换机相互连接构成一个环型编组网;环型编组网被配置为与每个基于TSN的以太网层相对应的独立交互网络路径和与环型编组网相对应的线性网路交互路径。
独立交互网络路径用于传输至少一个终端发送的第一类型数据。
线性网路交互路径用于传输至少一个终端发送的第二类型数据。
第一类型数据的优先级高于第二类型数据的优先级。
另一方面,本公开实施例还提供了一种如上的基于时间敏感以太网的列车通信网络拓扑结构的通讯方法。
在该方法中,确定终端发送的数据的类型。
在该方法中,若终端发送的数据的类型为第一类型数据,将第一类型数据经由当前划分单元的至少一个独立交互网络路径中的至少部分TSN编组交换机发送给组内目标终端;和/或,将第一类型数据经由当前划分单元的至少一个独立交互网络路径中的至少部分TSN编组交换机、基于TSN的以太网骨干层的至少部分TSN骨干交换机以及目标划分单元的至少一个独立交互网络路径中的至少部分TSN编组交换机发送给组间目标终端。
在该方法中,若终端发送的数据的类型为第二类型数据,将第二类型数据经由当前划分单元的线性网路交互路径的至少部分TSN编组交换机发送给组内目标终端;和/或,将第二类型数据经由当前划分单元的线性网路交互路径中的至少部分TSN编组交换机、基于 TSN的以太网骨干层的至少部分TSN骨干交换机以及目标划分单元的线性网路交互路径中的至少部分TSN编组交换机发送给组间目标终端。
本公开的其它特征和优点将在随后的说明书中阐述,并且部分地调节说明书中变得显而易见,或者通过实施本公开而了解。本公开的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本公开的进一步理解,并且构成说明书的一部分,与本公开的实施例共同用于解释本公开,并不构成对本公开的限制。在附图中:
图1为相关技术中基于以太网的列车通信网络拓扑结构示意图;
图2为本公开的基于时间敏感以太网的列车通信网络拓扑结构示意图;
图3为图2的一种应用示例的具体形式的示意图;
图4为TRDP过程数据帧格式与报文头部的示意图;
图5为本公开提出的报文格式的示意图;
图6为图4中以太网帧头部的展开示意图;
图7为图6中VLAN字段的展开示意图。
具体实施方式
以下将结合附图及实施例来详细说明本公开的实施方式,借此对本公开如何应用技术手段来解决技术问题,并达成技术效果的实现过程能充分理解并据以实施。需要说明的是,只要不构成冲突,本公开中的各个实施例以及各实施例中的各个特征可以相互结合,所形成的技术方案均在本公开的保护范围之内。
多网融合是轨道交通行业的发展趋势,比如列车网络控制系统与乘客信息系统,尽管两者都采用了以太网技术,但在物理实体上却是两套相互独立的网络。前者的特点是传输与列车控制相关数据,涉及到列车行驶安全但数据量较小;后者的特点是传输与列车控制无关的数据,非关键不涉及列车行驶安全但数据量很大,需要占用较大的带宽。
当前阶段,之所以没有把列车网络控制系统与乘客信息系统在一个网络中传输,是因为非关键数据的传输会影响关键数据传输的时延,是后者的传输时间变得不确定。比如1G的带宽,%20传输关键数据,%70传输非关键数据,理论上是可行的,但实际上关键数据 的时延会变的较大,影响行车安全。
以报文经过一个交换机为测试场景,使用%2的流量模拟关键控制数据时,最小延迟接近无非关键数据干扰时的性能。向网络注入了20%带宽突发模型的流量,最大延时均增加了380个微妙。目前网络中最大的交换机数量为20个左右,理论上引入的累积抖动为380us*20=7.6ms,接近目前实际的最小10ms的通信周期,这是不可接受的。在实际网络中,由于网络规模更大、数据流更复杂、带宽占用率更高,真实的性能会更差。即在以太网系统中,如果实现多网融合,关键的控制数据是得不到保障的。
为了保证关键数据的实时性和准确性,在轨道交通列车上部署实施基于时间敏感网络(Time Sensitive Networking,TSN)的以太网成为下一代TCN通信技术的主要研究方向。
TSN是IEEE802.1TSN任务组开发的一套协议标准,该标准定义了以太网数据传输的时间敏感机制,通过流量分组优先转发、调度机制清理线路以及带宽预留等机制来保证业务流量在以太网中的传输性能,为标准以太网增加了确定性和可靠性,以确保以太网能够为关键数据的传输提供稳定一致的服务级别。TSN的实时性主要通过IEEE8-2.1Qbv功能实现,不同在于传统以太网IEEE802.1Qbu+IEEE802.3br采用抢占式MAC的方式来对高实时性数据进行传输,IEEE802.1Qbv采用TimeAwareShaper为高实时数据提供专用的时间通道,而对其他非实时数据采用Best Effort的方式进行传输。其实现原理是在数据包端到端传送的整个过程中,TSN网络对整个网络上的每个关键协议/控制信息/数据流做全面的数据包排包优化,准确定义每次转发过程中数据包的优先级,所有点对点路径事前排好优先级和指定通道,保证关键数据的实时性和准确性。
图1为相关技术中基于以太网的列车通信网络拓扑结构示意图。如图1所示,该列车通信网络拓扑结构大致可以分为如下3层。
第一层:ETB网,由三层交换机ETBN构成,主要负责列车重联和实现跨编组通信。
第二层:ECN网,由二层交换机ECNN构成,为终端提供以太网交互通道。
第三层:终端层,发出和接收交互数据。
如图1所示,ETB网采用链路汇聚冗余,ECN网采用环形拓扑冗余,这两点满足健壮性要求。图1中第一划分单元#1的第一终端ED11与第一划分单元#1的第二终端ED12通信,假设虚断点在第一划分单元#1的第三交换机ECNN#13与第一划分单元#1的第四交换机ECNN#14之间,则两者的通信路径为ED11—ECNN#13—ECNN#11—ECNN#12—ECNN#14—ED12。当第一划分单元#1的第一交换机ECNN#11与第一划分单元#1的第二交换机ECNN#12之间的链路失效时,两者之间的通信路径为ED11—ECNN#13—ECNN#14 —ED12。由此可见,图1所示的方案尽管有冗余,但第一划分单元#1的第一终端ED11与第一划分单元#1的第二终端ED12之间的通信路径的不确定性会导致两个相互通信的终端之间的通讯延时是不确定的,无法满足TSN网络的要求。ETB层面原因与之类似,在此不再一一举例说明。
因此,为了解决上述技术问题,本公开提供了以下技术方案。
图2为本公开的基于时间敏感以太网的列车通信网络拓扑结构示意图。如图2所示,列车包括至少一个划分单元S(图2以两个划分单元S为例),该列车通信网络拓扑结构包括:终端层10和至少两个基于TSN的以太网层11(图2以两个基于TSN的以太网层11为例)。例如,基于TSN的以太网层11包括基于TSN的ETB层111和基于TSN的ECN层112。ETB层111包括设置于划分单元的TSN骨干交换机ETBN。ECN层包括设置于划分单元的多个TSN编组交换机ECNN。终端层10包括与每个TSN编组交换机ECNN相对应的至少一个终端ED。TSN编组交换机ECNN与对应的至少一个终端ED相连;每个划分单元的TSN骨干交换机ETBN依次相连;同一划分单元中TSN骨干交换机ETBN与任一TSN编组交换机ECNN相连;所有TSN编组交换机ECNN相互连接构成一个环型编组网。
在一些实施方式中,所有TSN编组交换机ECNN形成的环型编组网在逻辑上配置为与每个基于TSN的ECN层相对应的独立交互网络路径和与环型编组网相对应的线性网路交互路径。例如,独立交互网络路径用于传输至少一个终端发送的第一类型数据,线性网路交互路径用于传输至少一个终端发送的第二类型数据。第一类型数据的优先级高于第二类型数据的优先级。也就是说,第一类型数据为关键数据,第二类型数据为非关键数据。
图3为图2的一种应用示例的具体形式的示意图。如图3所示,第一个划分单元S#1中第一个基于TSN的以太网层11A包括基于TSN的ETB111A和基于TSN的ECN层112A。ETB111A包括设置于第一个划分单元S#1的第一个TSN骨干交换机ETBN#A11;ECN层112A包括设置于第一个划分单元S#1的第一个TSN编组交换机ECNN#A11、第二个TSN编组交换机ECNN#A12和第三个TSN编组交换机ECNN#A13。第一个划分单元S#1中第二个基于TSN的以太网层11B包括基于TSN的ETB111B和基于TSN的ECN层112B;ETB111B包括设置于第一个划分单元S#1的第二个TSN骨干交换机ETBN#B11;ECN层112B包括设置于第一个划分单元S#1的第四个TSN编组交换机ECNN#B11、第五个TSN编组交换机ECNN#B12和第六个TSN编组交换机ECNN#B13。
终端层10包括第一个终端ED11-TSN、第二个终端ED12-TSN、第三个终端ED13和第四个终端ED14。第一个终端ED11-TSN分别与第一个TSN编组交换机ECNN#A11和第 四个TSN编组交换机ECNN#B11相连。第二个终端ED12-TSN分别与第二个TSN编组交换机ECNN#A12和第五个TSN编组交换机ECNN#B12相连。第三个终端ED13与第三个TSN编组交换机ECNN#A13相连。第四个终端ED14与第六个TSN编组交换机ECNN#B13相连。
第二个划分单元S#2中ETB111A包括设置于第一个划分单元S#2的第三个TSN骨干交换机ETBN#A21。ECN层112A包括设置于第二个划分单元S#1的第七个TSN编组交换机ECNN#A21、第八个TSN编组交换机ECNN#A22和第九个TSN编组交换机ECNN#A23。第二个划分单元S#2中ETB111B包括设置于第二个划分单元S#2的第四个TSN骨干交换机ETBN#B21。ECN层112B包括设置于第二个划分单元S#2的第十个TSN编组交换机ECNN#B21、第十一个TSN编组交换机ECNN#B22和第十二个TSN编组交换机ECNN#B23。
终端层10包括第五个终端ED21-TSN、第六个终端ED22-TSN、第七个终端ED23和第八个终端ED24。第五个终端ED21-TSN分别与第七个TSN编组交换机ECNN#A21和第十个TSN编组交换机ECNN#B21相连。第六个终端ED22-TSN分别与第八个TSN编组交换机ECNN#A22和第十一个TSN编组交换机ECNN#B22相连。第七个终端ED23与第九个TSN编组交换机ECNN#A23相连。第八个终端ED24与第十二个TSN编组交换机ECNN#B23相连。
如图2所示,第一个基于TSN的以太网层11A可以定义为第一平面,第二个基于TSN的以太网层11B可以定义为第二平面,第一个TSN编组交换机ECNN#A11、第二个TSN编组交换机ECNN#A12和第三个TSN编组交换机ECNN#A13构成一个独立交互网络路径,第一个TSN编组交换机ECNN#A11、第二个TSN编组交换机ECNN#A12、第三个TSN编组交换机ECNN#A13、第四个TSN编组交换机ECNN#B11、第五个TSN编组交换机ECNN#B12和第六个TSN编组交换机ECNN#B13构成一个环型编组网,该环型编组网可以定义为第三平面3,该环型编组网可以对应线性网路交互路径。
在一些实施方式中,对于第一类型数据进行通信时,相互通信的两个终端需要在每个独立交互网络路径中进行通信,其交互路径是不变的。例如,在第一平面中,第一个划分单元S#1的第一个终端ED11-TSN与第二个终端ED12-TSN之间的交互路径始终为ED11-TSN—ECNN#A11—ECNN#A12—ED12-TSN。由于每个独立交互网络路径中相互通信的两个终端交互路径是不变,所以相互通信的两个终端的通讯时间是可以计算出来的,时间同步以后,时间片规划的目的使其中一个终端在特定时间发送关键数据,交换机在按时间片规划保证关键数据在该时间内专有带宽,从而实现多媒体数据和关键数据的隔离,由此实现多网融合。
对于第二类型数据进行通信时,由于第二类型数据对列车安全性的影响较小,其通讯路径对实现TSN网络影响较小,其可以按照线性网路交互路径进行传输即可。
在一些实施方式中,本实施例的通信协议报文格式可以按照如下方式设置。
图4为TRDP过程数据帧格式与报文头部的示意图。如图4所示,本实施例的通信协议报文格式基于TRDP过程数据(TRDP-PD),左侧为报文格式,右侧图片展示了TRDP-PD报文的详细格式。图5为本公开提出的报文格式的示意图。对照图4与图5,本公开在TRDP-PD头部增加了8个字节,成为TRDP-PD-TSN,本公开中支持TSN的终端发送的关键报文必须使用TRDP-PD-TSN,不支持TSN的终端如果需要接收也需要支持TRDP-PD-TSN。
如图5所示,对本公开提出的报文格式的说明如下:
(1)ProtocolVersion:当前TRDP-PD协议中该字段数值为1,本公开中TRDP-PD-TSN中该字段值为0xffff或其它数值,由此保证了软件的兼容性,即发送端通过填充不同的数值实现TRDP-PD或TRDP-PD-TSN,接收端通过该字段值区分TRDP-PD的类型。
(2)源编组编号:标识某TRDP-PD-TSN报文来自与哪个编组,比如图10中左边的编组号为1,右侧的编组号为2,实际应用过程中编组数量可能更多,比如有3个2中的拓扑重联。0xff标识无重联,仅有本地编组网。
(3)保留字段:后续扩展使用。
(4)目的编组位图:bit0置位1标识编组1需要接收该报文,以此类推,其它bit位标识其它编组。
图6为图4中以太网帧头部的展开示意图。为了保持与原组播管理协议不冲突,本专利明确目的MAC地址可以为01:00:5e:xx:xx:xx格式的二层组播MAC地址,TRDP-PD-TSN必须使用该MAC地址。
图7为图6中VLAN字段的展开示意图。本实施例针对VLAN ID字段使用做出如下规划:
(11)平面代码:比如图3中的第一平面、第二平面、第三平面使用不同的平面代码,如第一平面1、第二平面2、第三平面3。
(12)子VLAN ID:在平面内进一步划分VLAN,比如在A平面内再划分多个VLAN。
(13)优先级与CFI:设置报文与Qbv队列的映射关系,本公开规定关键数据是由最高优先级且映射到最高优先级的Qbv队列。
基于上述通信协议报文格式和以太网帧头部,本实施例的基于时间敏感以太网的列车通信网络拓扑结构实现通讯的过程具体可以包括如下步骤a至c。
a、确定终端发送的数据的类型。
例如,可以根据终端发送的数据对应的通信协议报文格式确定出终端发送的数据的类型。当该数据对应的TRDP-PD-TSN字段的值为0xffff或其它数值时,可以确定为第一类型数据,该数据对应的TRDP-PD字段的值为1时,可以确定为第二类型数据。
b、若终端发送的数据的类型为第一类型数据,将第一类型数据经由当前划分单元的至少一个独立交互网络路径中的至少部分TSN编组交换机发送给组内目标终端;和/或,将第一类型数据经由当前划分单元的至少一个独立交互网络路径中的至少部分TSN编组交换机、基于TSN的ETB层的至少部分TSN骨干交换机以及目标划分单元的至少一个独立交互网络路径中的至少部分TSN编组交换机发送给组间目标终端。
例如,第一个划分单元S#1的第一个终端ED11-TSN需要发送第一类型数据到第二个终端ED12-TSN(组内目标终端),则在第一平面对应的独立交互网络路径中的至少部分TSN编组交换机可以为ECNN#A11和ECNN#A12。第一个划分单元S#1的第一个终端ED11-TSN与第二个终端ED12-TSN之间的交互路径为ED11-TSN—ECNN#A11—ECNN#A12—ED12-TSN。在第二平面中第一个划分单元S#1的第一个终端ED11-TSN与第二个终端ED12-TSN之间的交互路径为ED11-TSN—ECNN#B11—ECNN#B12—ED12-TSN。
第一个划分单元S#1的第一个终端ED11-TSN需要发送第一类型数据到第二个划分单元S#2的第五个终端ED21-TSN(组间目标终端)时,第一平面对应的独立交互网络路径中的至少部分TSN编组交换机可以为ECNN#A11,第一平面中,基于TSN的ETB层的至少部分TSN骨干交换机可以为ETBN#A11和ETBN#A21,第一平面中,目标划分单元的至少一个独立交互网络路径中的至少部分TSN编组交换机为ECNN#A21。第一个划分单元S#1的第一个终端ED11-TSN与第二个划分单元S#2的第五个终端ED21-TSN之间的交互路径为ED11-TSN—ECNN#A11—ETBN#A11—ETBN#A21—ED21-TSN。
在第二个平面中,第一个划分单元S#1的第一个终端ED11-TSN与第二个划分单元S#2的第五个终端ED21-TSN之间的交互路径为ED11-TSN—ECNN#B11—ECNN#B12—ECNN#B13—ETBN#B11—ETBN#B23—ETBN#B22—ETBN#B21—ED21-TSN。
c、若终端发送的数据的类型为第二类型数据,将第二类型数据经由当前划分单元的线性网路交互路径的至少部分TSN编组交换机发送给组内目标终端;和/或,将第二类型数据经由当前划分单元的线性网路交互路径中的至少部分TSN编组交换机、基于TSN的ETB层的至少部分TSN骨干交换机以及目标划分单元的线性网路交互路径中的至少部分TSN 编组交换机发送给组间目标终端。
例如,第一个划分单元S#1的第一个终端ED11-TSN需要发送第一类型数据到第一个划分单元S#1的第三个终端ED13(组内目标终端),则在第三平面对应的线性网路交互路径中的至少部分TSN编组交换机可以为ECNN#A11、ECNN#A12和ECNN#A13。第一个划分单元S#1的第一个终端ED11-TSN与第一个划分单元S#1的第三个终端ED13之间的交互路径为ED11-TSN—ECNN#A11—ECNN#A12—ECNN#A13—ED13。
第一个划分单元S#1的第一个终端ED11-TSN需要发送第二类型数据到第二个划分单元S#2的第七个终端ED23(组间目标终端)时,第三平面对应的线性网路交互路径中的至少部分TSN编组交换机可以为ECNN#A11,基于TSN的ETB层的至少部分TSN骨干交换机可以为ETBN#A11和ETBN#A21,目标划分单元的至少一个独立交互网络路径中的至少部分TSN编组交换机为ECNN#A21、ECNN#A22和ECNN#A23。第一个划分单元S#1的第一个终端ED11-TSN与第二个划分单元S#2的第七个终端ED23之间的交互路径为ED11-TSN—ECNN#A11—ETBN#A11—ETBN#A21—ECNN#A22—ECNN#A23—ED23。
需要说明的是,由于每个终端在发送报文时通过“目的编组位图”制定了目的编组,接收终端从上层拿到数据以后需要根据该字段做取舍,即自己所在的编组与“目的编组位图”吻合则使用业务数据否则不使用。
本实施例的基于时间敏感以太网的列车通信网络拓扑结构及通讯方法中,通过将所有TSN编组交换机ECNN相互连接构成一个环型编组网配置为与每个基于TSN的ECN层相对应的独立交互网络路径和与环型编组网相对应的线性网路交互路径,并由独立交互网络路径传输至少一个终端发送的第一类型数据,由线性网路交互路径传输至少一个终端发送的优先级低于第一类型数据的第二类型数据,实现了第一类型数据在编组内和跨编组通讯时其对应的交互路径的确定性,从而满足TSN网络的要求,保障多网融合时关键数据不受影响。
在一些实施方式中,至少一个终端中支持TSN的终端分别与每个ECN层中对应的TSN编组交换机相连,支持TSN的终端发送第一类型数据和/或第二类型数据。这样,支持TSN的终端在发送第一类型数据时,每个平面的独立交互网络路径均可以实现数据传输,从而实现ETB层的冗余,且无需对ETB层设置中级旁路,即使其中一个ETB层出现故障,其他ETB层也能进行数据传输,提高了整个列车通信网络的稳定性。
在一些实施方式中,至少一个终端中不支持TSN的终端与至少一个ECN层中对应的TSN编组交换机相连;不支持TSN的终端发送第二类型数据。
在一些实施方式中,还可以将至少一个终端中不支持TSN的终端与至少一个ECN层 中对应的TSN编组交换机通过TSN转换板卡相连。这样,相当于将不支持TSN的终端改造成支持TSN的终端。
在一些实施方式中,TSN转换板卡包括以太网输入网口、TSN网络输出网口、TSN网络芯片。不支持TSN的终端经由以太网接口接入TSN转换板卡的以太网输入网口,TSN转换板卡的TSN网络输出网口与TSN交换机连接。TSN网络芯片用于进行以太网与TSN网络之间的转换。
在一些实施方式种,基于TSN的以太网骨干层为2层,基于TSN编组层为2层。
在一些实施方式中,TSN编组交换机支持终端百兆网或千兆网接入,TSN骨干交换机采用高于或等于千兆网的宽带设置。
可以理解的是,上述各实施例中相同或相似部分可以相互参考,在一些实施例中未详细说明的内容可以参见其他实施例中相同或相似的内容。
需要说明的是,在本公开的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本公开的描述中,除非另有说明,“多个”的含义是指至少两个。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
虽然本公开所公开的实施方式如上,但所述的内容只是为了便于理解本公开而采用的实施方式,并非用以限定本公开。任何本公开所属技术领域内的技术人员,在不脱离本公开所公开的精神和范围的前提下,可以在实施的形式上及细节上作任何的修改与变化,但本公开的保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (10)

  1. 一种基于时间敏感以太网的列车通信网络拓扑结构,其中,列车包括至少一个划分单元;所述列车通信网络拓扑结构包括:终端层和至少两个基于时间敏感网络TSN的以太网层;
    所述以太网层包括基于TSN的以太网骨干层和基于TSN的以太网编组网层;所述以太网骨干层包括设置于所述划分单元的TSN骨干交换机;所述以太网编组网层包括设置于所述划分单元的多个TSN编组交换机;所述终端层包括与每个TSN编组交换机相对应的至少一个终端;TSN编组交换机与对应的至少一个终端相连;
    每个划分单元的TSN骨干交换机依次相连;
    同一划分单元中TSN骨干交换机与任一TSN编组交换机相连;所有TSN编组交换机相互连接构成一个环型编组网;所述环型编组网被配置为与每个基于TSN的以太网编组网层相对应的独立交互网络路径和与所述环型编组网相对应的线性网路交互路径;
    所述独立交互网络路径用于传输至少一个终端发送的第一类型数据;
    所述线性网路交互路径用于传输至少一个终端发送的第二类型数据;
    其中,所述第一类型数据的优先级高于所述第二类型数据的优先级。
  2. 根据权利要求1所述的基于时间敏感以太网的列车通信网络拓扑结构,其中,至少一个终端中支持TSN的终端分别与每个以太网编组网层中对应的TSN编组交换机相连;
    所述支持TSN的终端发送所述第一类型数据和/或所述第二类型数据。
  3. 根据权利要求1所述的基于时间敏感以太网的列车通信网络拓扑结构,其中,
    至少一个终端中不支持TSN的终端与至少一个以太网编组网层中对应的TSN编组交换机相连;
    所述不支持TSN的终端发送所述第二类型数据。
  4. 根据权利要求3所述的基于时间敏感以太网的列车通信网络拓扑结构,其中,至少一个终端中不支持TSN的终端与至少一个以太网编组网层中对应的TSN编组交换机通过TSN转换板卡相连。
  5. 根据权利要求4所述的基于时间敏感以太网的列车通信网络拓扑结构,其中,所述TSN转换板卡包括以太网输入网口、TSN网络输出网口、TSN网络芯片。
  6. 根据权利要求5所述的基于时间敏感以太网的列车通信网络拓扑结构,其中,所 述不支持TSN的终端经由以太网接口接入所述TSN转换板卡的以太网输入网口,所述TSN转换板卡的TSN网络输出网口与所述TSN交换机连接;其中,所述TSN网络芯片用于进行以太网与TSN网络之间的转换。
  7. 根据权利要求1所述的基于时间敏感以太网的列车通信网络拓扑结构,其中,基于TSN的以太网骨干层为2层,基于TSN编组层为2层。
  8. 根据权利要求1所述的基于时间敏感以太网的列车通信网络拓扑结构,其中,TSN编组交换机支持终端百兆网或千兆网接入。
  9. 根据权利要求1所述的基于时间敏感以太网的列车通信网络拓扑结构,其中,TSN骨干交换机采用高于或等于千兆网的宽带设置。
  10. 一种如权利要求1-9任一项所述的基于时间敏感以太网的列车通信网络拓扑结构的通讯方法,包括:
    确定终端发送的数据的类型;
    若终端发送的数据的类型为第一类型数据,将所述第一类型数据经由当前划分单元的至少一个独立交互网络路径中的至少部分TSN编组交换机发送给组内目标终端;和/或,将所述第一类型数据经由当前划分单元的至少一个独立交互网络路径中的至少部分TSN编组交换机、基于TSN的以太网骨干层的至少部分TSN骨干交换机以及目标划分单元的至少一个独立交互网络路径中的至少部分TSN编组交换机发送给组间目标终端;
    若终端发送的数据的类型为第二类型数据,将所述第二类型数据经由当前划分单元的线性网路交互路径的至少部分TSN编组交换机发送给组内目标终端;和/或,将所述第二类型数据经由当前划分单元的线性网路交互路径中的至少部分TSN编组交换机、基于TSN的以太网骨干层的至少部分TSN骨干交换机以及目标划分单元的线性网路交互路径中的至少部分TSN编组交换机发送给组间目标终端。
PCT/CN2021/123550 2021-08-18 2021-10-13 基于时间敏感以太网的列车通信网络拓扑结构及通讯方法 WO2023019707A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110950431.4A CN115714694A (zh) 2021-08-18 2021-08-18 基于时间敏感以太网的列车通信网络拓扑结构及通讯方法
CN202110950431.4 2021-08-18

Publications (1)

Publication Number Publication Date
WO2023019707A1 true WO2023019707A1 (zh) 2023-02-23

Family

ID=85230000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123550 WO2023019707A1 (zh) 2021-08-18 2021-10-13 基于时间敏感以太网的列车通信网络拓扑结构及通讯方法

Country Status (2)

Country Link
CN (1) CN115714694A (zh)
WO (1) WO2023019707A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070061056A1 (en) * 2005-09-14 2007-03-15 Bombardier Transportation Gmbh Bypass switch for an ethernet-type network
WO2009000544A1 (en) * 2007-06-27 2008-12-31 Bombardier Transportation Gmbh Communication system for transferring communication information within a railway train
CN106240601A (zh) * 2016-08-26 2016-12-21 中车唐山机车车辆有限公司 列车网络系统
CN109561006A (zh) * 2017-09-26 2019-04-02 株洲中车时代电气股份有限公司 基于以太网的列车通信网络拓扑结构
CN111335088A (zh) * 2020-04-03 2020-06-26 株洲时代电子技术有限公司 轨道工程列车重联系统及其应用
CN112744265A (zh) * 2019-10-31 2021-05-04 株洲中车时代电气股份有限公司 列车通信网络结构的控制装置及方法和列车通信网络系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070061056A1 (en) * 2005-09-14 2007-03-15 Bombardier Transportation Gmbh Bypass switch for an ethernet-type network
WO2009000544A1 (en) * 2007-06-27 2008-12-31 Bombardier Transportation Gmbh Communication system for transferring communication information within a railway train
CN106240601A (zh) * 2016-08-26 2016-12-21 中车唐山机车车辆有限公司 列车网络系统
CN109561006A (zh) * 2017-09-26 2019-04-02 株洲中车时代电气股份有限公司 基于以太网的列车通信网络拓扑结构
CN112744265A (zh) * 2019-10-31 2021-05-04 株洲中车时代电气股份有限公司 列车通信网络结构的控制装置及方法和列车通信网络系统
CN111335088A (zh) * 2020-04-03 2020-06-26 株洲时代电子技术有限公司 轨道工程列车重联系统及其应用

Also Published As

Publication number Publication date
CN115714694A (zh) 2023-02-24

Similar Documents

Publication Publication Date Title
US9614788B2 (en) All delivered network switch
CN1625176B (zh) 基于边缘到边缘伪线仿真协议的通信方法
US7835369B2 (en) Data stream bonding device and method for bonding data streams
EP1256207B1 (en) Multi-portal bridge for providing network connectivity
US6438128B1 (en) Alternate use of data packet fields to convey information
CN100403735C (zh) 一种实现捆绑接口边到边伪线仿真服务的方法及系统
CN102263697B (zh) 一种聚合链路流量分担方法和装置
CN1992670B (zh) 一种以太网承载帧中继的方法
CN101394361B (zh) 报文传输方法、设备和系统
WO2020150872A1 (en) Ethernet and controller area network protocol interconversion for in-vehicle networks
CN102025586B (zh) 多协议标签交换网络和以太网的互通方法、装置和系统
CN101277196B (zh) 一种基于pcie交换网的通信系统、通信方法及线卡板
US20120163165A1 (en) Apparatus and method for packet transport service based on multi protocol label switching-transport profile (mpls-tp) network
CN102118277A (zh) 丢包检测方法和装置及路由器
CN107566265A (zh) 一种对称转发模型下的evpn vxlan 网关esi 冗余接入方法
EP1940083A2 (en) RPR transmission route designation method and apparatus
US20220368623A1 (en) Multicast Packet Detection Method, Network Device, and System
WO2021244108A1 (zh) Bier组播流量的统计方法、设备以及系统
CN100428738C (zh) 无连接的分组交换通信系统
WO2023019707A1 (zh) 基于时间敏感以太网的列车通信网络拓扑结构及通讯方法
CN113438182A (zh) 一种基于信用的流量控制系统和流量控制方法
EP2222022A1 (en) A forwarding device and a forwarding method of signaling communication network information and management communication network information
US20100329245A1 (en) Transparent Mapping of Cell Streams to Packet Services
CN106899342A (zh) 一种数据封装、传输方法及装置
CN104285413A (zh) Igmp/mld转换

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE